
Artix Transactions Guide, C++
Version 4.0, March 2006

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiar-
ies.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential dam-
ages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photo- copying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 2003–2006 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: 23-Mar-2006

iii

Contents
List of Tables v

List of Figures vii

Preface ix

Chapter 1 Introduction to Transactions 1
Basic Transaction Concepts 2
Artix Transaction Features 4
X/Open Distributed Transaction Processing 9

X/Open DTP Architecture 10
X/Open XA Interface 13

Chapter 2 Getting Started with Transactions 17
Sample Scenario 18
Client Example 24
Server Example 27
Configuration 36

Chapter 3 Selecting a Transaction System 39
Configuring OTS Lite 40
Configuring OTS Encina 43
Configuring Non-Recoverable WS-AT 47
Configuring Recoverable WS-AT 51

Chapter 4 Basic Transaction Programming 55
Artix Transaction Interfaces 56
Beginning and Ending Transactions 59
Server Programming 62

Registering an XA Resource 63
Dynamic Registration Optimization 69
Writing a Custom Resource 76

CONTENTS

 iv

Server-Side Programming Model 77

Chapter 5 Transaction Propagation 81
Transaction Propagation and Interposition 82

Chapter 6 Threading 87
Client Threading 88
Threading and XA Resources 93

Chapter 7 Transaction Recovery 99
Transactions Systems and Recovery 100
Transaction Recovery Scenarios 102

Server Crash before or during Prepare Phase 103
Server Crash after Prepare Phase 105
Transaction Coordinator Crash 107

Chapter 8 Recoverable Resources 109
Transaction Participants 110
Interposition 117

Chapter 9 Notification Handlers 119
Introduction to Notification Handlers 120

Chapter 10 Exposing Artix as an XA Resource 123
Introduction to the Artix XA Resource Manager 124
Obtaining an Artix XA Resource Manager 127

Obtaining the XA Switch from a Global Function 128
Obtaining the XA Switch from a Bus Instance 129
Obtaining the XA Switch from a Switch Load File 130

Artix XA Open and Close Strings 132
Configuring the Artix XA Resource Manager 134

Chapter 11 MQ Transactions 137
Reliable Messaging with MQ Transactions 138

Index 147

v

List of Tables
Table 1: Sample Mechanisms for Obtaining XA Switches 64

Table 2: Examples of Open Strings for Some XA Resource Managers 65

Table 3: Examples of Close Strings for Some XA Resource Managers 65

Table 4: Transaction Systems and Recoverability 100

Table 5: Default Switch Load File for Artix on Various Platforms 130

LIST OF TABLES

 vi

vii

List of Figures
Figure 1: Artix Client Invokes a Transactional Operation on a CORBA OTS Server 5

Figure 2: One-Phase Commit Protocol 6

Figure 3: Two-Phase Commit Protocol 7

Figure 4: The X/Open DTP Architecture 10

Figure 5: Bank Scenario with Transactions 18

Figure 6: Overview of a Client-Server System that Uses OTS Lite 40

Figure 7: Overview of a Client-Server System that Uses OTS Encina 43

Figure 8: Client-Server System that Uses Non-Recoverable WS-AT 47

Figure 9: Client-Server System that Uses Recoverable WS-AT 51

Figure 10: Overview of the Artix Transaction API 56

Figure 11: Invocation Dispatch for a Normally Registered RM 70

Figure 12: Invocation Dispatch for a Dynamically Registered RM 72

Figure 13: Overview of Different Kinds of Transaction Propagation 83

Figure 14: Limitation of Transaction Propagation Using OTS Lite 84

Figure 15: Default Client Threading Model 88

Figure 16: Detaching and Re-Attaching a Transaction to a Thread 90

Figure 17: Detaching and Re-Attaching a Transaction to a Thread 90

Figure 18: Attaching a Transaction to Multiple Threads 91

Figure 19: Transferring a Transaction from One Thread to Another 92

Figure 20: Auto-Association with a Single Registered Resource 93

Figure 21: Auto-Association with Multiple Registered Resources 95

Figure 22: Database Resource Operating in Multi-Threaded Mode 96

Figure 23: Threading for a Dynamically Registered Resource 97

Figure 24: Server Crash before or during the Prepare Phase 103

Figure 25: Server Crash after the Prepare Phase 105

Figure 26: Transaction Participants in a 2-Phase Commit Protocol 110

LIST OF FIGURES

 viii

Figure 27: Artix XA Resource Manager Manages a Local Resource 124

Figure 28: Artix XA Resource Manager Manages a Remote Resource 125

Figure 29: Oneway Operation Invoked Over an MQ Transport with MQ Transactions Enabled 139

Figure 30: Synchronous Operation Invoked Over the MQ Transport with MQ Transactions Enabled
142

ix

Preface
What is Covered in this Book
This book explains how to program and configure Artix transactions in C++.

Who Should Read this Book
This guide is intended for Artix C++ programmers. This guide assumes that

the reader is familiar with WSDL and XML schemas.

The Artix Library
The Artix documentation library is organized in the following sections:

• Getting Started

• Designing and Developing Artix Solutions

• Configuring and Deploying Artix Solutions

• Using Artix Services

• Integrating Artix Solutions

• Integrating with Enterprise Management Systems

• Reference Documentation

Getting Started

The books in this section provide you with a background for working with

Artix. They describe many of the concepts and technologies used by Artix.

They include:

• Release Notes contains release-specific information about Artix.

• Installation Guide describes the prerequisites for installing Artix and the

procedures for installing Artix on supported systems.

• Getting Started with Artix describes basic Artix and WSDL concepts.

../release_notes/index.htm
../install_guide/index.htm
../getting_started/index.htm

PREFACE

 x

• Using Artix Designer describes how to use Artix Designer to build Artix

solutions.

• Artix Technical Use Cases provides a number of step-by-step examples

of building common Artix solutions.

Designing and Developing Artix Solutions

The books in this section go into greater depth about using Artix to solve

real-world problems. They describe how Artix uses WSDL to define services,

and how to use the Artix APIs to build new services. They include:

• Building Service-Oriented Architectures with Artix provides an overview

of service-oriented architectures and describes how they can be

implemented using Artix.

• Understanding Artix Contracts describes the components of an Artix

contract. Special attention is paid to the WSDL extensions used to

define Artix-specific payload formats and transports.

• Developing Artix Applications in C++ discusses the technical aspects

of programming applications using the C++ API.

• Developing Advanced Artix Plug-ins in C++ discusses the technical

aspects of implementing advanced plug-ins (for example, interceptors)

using the C++ API.

• Developing Artix Applications in Java discusses the technical aspects

of programming applications using the Java API.

Configuring and Deploying Artix Solutions

This section includes:

• Configuring and Deploying Artix Solutions discusses how to configure

and deploy Artix-enabled systems, and provides examples of typical

use cases.

Using Artix Services

The books in this section describe how to use the services provided with

Artix:

• Artix Locator Guide discusses how to use the Artix locator.

• Artix Session Manager Guide discusses how to use the Artix session

manager.

• Artix Transactions Guide, C++ explains how to enable Artix C++

applications to participate in transacted operations.

../designer/index.htm
../cookbook/index.htm
../soa/index.htm
../contract/index.htm
../prog_guide/index.htm
../plugin_guide/index.htm
../java_pguide/index.htm
../deploy/index.htm
../locator_guide/index.htm
../session_mgr/index.htm
../transactions_cxx/index.htm

PREFACE

xi

• Artix Transactions Guide, Java explains how to enable Artix Java

applications to participate in transacted operations.

• Artix Security Guide explains how to use the security features of Artix.

Integrating Artix Solutions

The books in this section describe how to integrate Artix solutions with other

middleware technologies:

• Artix for CORBA provides information on using Artix in a CORBA

environment.

• Artix for J2EE provides information on using Artix to integrate with

J2EE applications.

For details on integrating with Microsoft’s .NET technology, see the

documentation for Artix Connect.

Integrating with Enterprise Management Systems

The books in this section describe how to integrate Artix solutions with a

range of enterprise management systems. They include:

• IBM Tivoli Integration Guide explains how to integrate Artix with IBM

Tivoli.

• BMC Patrol Integration Guide explains how to integrate Artix with BMC

Patrol.

• CA WSDM Integration Guide explains how to integrate Artix with CA

WSDM.

Reference Documentation

These books provide detailed reference information about specific Artix

APIs, WSDL extensions, configuration variables, command-line tools, and

terminology. The reference documentation includes:

• Artix Command Line Reference

• Artix Configuration Reference

• Artix WSDL Extension Reference

• Artix Java API Reference

• Artix C++ API Reference

• Artix .NET API Reference

• Artix Glossary

../transactions_java/index.htm
../security/index.htm
../corba_ws/index.htm
../j2ee/index.htm
../tivoli/index.htm
../bmc/index.htm
../ca_wsdm/index.htm
../command_ref/index.htm
../config_ref/index.htm
../wsdl_ref/index.htm
../javadoc/index.html
../cppdoc/index.html
../ndoc/index.html
../glossary/index.htm

PREFACE

 xii

Getting the Latest Version
The latest updates to the Artix documentation can be found at http://

www.iona.com/support/docs.

Compare the version dates on the web page for your product version with

the date printed on the copyright page of the PDF edition of the book you

are reading.

Searching the Artix Library
You can search the online documentation by using the Search box at the top

right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,

and use the Search box at the top right, for example:

http://www.iona.com/support/docs/artix/4.0/index.xml

You can also search within a particular book. To search within a HTML

version of a book, use the Search box at the top left of the page. To search

within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and

enter your search text.

Artix Online Help
Artix Designer and the Artix Management Console include comprehensive

online help, providing:

• Step-by-step instructions on how to perform important tasks

• A full search feature

• Context-sensitive help for each screen

There are two ways that you can access the online help:

• Select Help|Help Contents from the menu bar. Sections on Artix

Designer and the Artix Management Console appear in the contents

panel of the Eclipse help browser.

• Press F1 for context-sensitive help.

In addition, there are a number of cheat sheets that guide you through the

most important functionality in Artix Designer. To access these, select

Help|Cheat Sheets.

http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/4.0/index.xml
http://www.iona.com/support/docs
http://www.iona.com/support/docs

PREFACE

xiii

Artix Glossary
The Artix Glossary provides a comprehensive reference of Artix terminology.

It provides quick definitions of the main Artix components and concepts. All

terms are defined in the context of the development and deployment of Web

services using Artix.

Additional Resources
The IONA Knowledge Base (http://www.iona.com/support/knowledge_base/

index.xml) contains helpful articles written by IONA experts about Artix and

other products.

The IONA Update Center (http://www.iona.com/support/updates/index.xml)

contains the latest releases and patches for IONA products.

If you need help with this or any other IONA product, go to IONA Online

Support (http://www.iona.com/support/index.xml).

Comments, corrections, and suggestions on IONA documentation can be

sent to .

http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml
../glossary/index.htm

PREFACE

 xiv

Document Conventions

Typographical conventions

This book uses the following typographical conventions:

Fixed width Fixed width (courier font) in normal text represents

portions of code and literal names of items such as

classes, functions, variables, and data structures. For

example, text might refer to the IT_Bus::AnyType

class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/ YourUserName

Italic Italic words in normal text represent emphasis and
introduce new terms.

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.

PREFACE

xv

Keying Conventions

This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, the command prompt is not shown.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the MS-DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).

PREFACE

 xvi

1

CHAPTER 1

Introduction to
Transactions
This chapter provides an introduction to transaction concepts
and to the transaction features supported by Artix.

In this chapter This chapter discusses the following topics:

Basic Transaction Concepts page 2

Artix Transaction Features page 4

X/Open Distributed Transaction Processing page 9

CHAPTER 1 | Introduction to Transactions

 2

Basic Transaction Concepts

What is a transaction? Artix gives separate software objects the power to interact freely even if they

are on different platforms or written in different languages. Artix adds to this

power by permitting those interactions to be transactions.

What is a transaction? Ordinary, non-transactional software processes can

sometimes proceed and sometimes fail, and sometimes fail after only half

completing their task. This can be a disaster for certain applications. The

most common example is a bank fund transfer: imagine a failed software

call that debited one account but failed to credit another. A transactional

process, on the other hand, is secure and reliable as it is guaranteed to

succeed or fail in a completely controlled way.

Example The classical illustration of a transaction is that of funds transfer in a

banking application. This involves two operations: a debit of one account

and a credit of another (perhaps after extracting an appropriate fee). To

combine these operations into a single unit of work, the following properties

are required:

• If the debit operation fails, the credit operation should fail, and

vice-versa; that is, they should both work or both fail.

• The system goes through an inconsistent state during the process

(between the debit and the credit). This inconsistent state should be

hidden from other parts of the application.

• It is implicit that committed results of the whole operation are

permanently stored.

Basic Transaction Concepts

3

Properties of transactions The following points illustrate the so-called ACID properties of a transaction.

Thus a transaction is an operation on a system that takes it from one

persistent, consistent state to another.

Atomic A transaction is an all or nothing procedure –
individual updates are assembled and either
committed or aborted (rolled back) simultaneously
when the transaction completes.

Consistent A transaction is a unit of work that takes a system
from one consistent state to another.

Isolated While a transaction is executing, its partial results
are hidden from other entities accessing the
transaction.

Durable The results of a transaction are persistent.

CHAPTER 1 | Introduction to Transactions

 4

Artix Transaction Features

Overview This section gives a short overview of the main features supported by Artix

transactions. The Artix transaction API is designed to be compatible with a

variety of different underlying transaction systems. Generally, you can

access the transaction system using a technology-neutral API, but the

technology-specific APIs are also available, in case you need to access more

advanced functionality.

The main features of Artix transactions are as follows:

• Supported protocols

• Client-side transaction support.

• Server-side transaction support.

• Compatibility with Orbix.

• Pluggable transaction system.

• One-phase commit.

• Two-phase commit.

• Transaction propagation.

Supported protocols Artix supports distributed transactions using the following protocols:

• CORBA binding over IIOP.

• SOAP binding over any compatible transport.

Client-side transaction support Transaction demarcation functions (begin_transaction() ,

commit_transaction() and rollback_transaction()) can be used on the

client side to initiate and terminate a transaction. While the transaction is

active, all of the operations called from the current thread are included in

the transaction (that is, the operations’ request headers include a

transaction context).

Artix Transaction Features

5

Server-side transaction support On the server side, an API is provided that enables you to implement

transaction participants (sometimes referred to as transactional resources).

Using transaction participants, you can implement servers that participate in

a distributed transaction with the ACID transaction properties (Atomicity,

Consistency, Integrity, and Durability).

Artix supports several different approaches to implementing a transaction

participant, depending on what kind of transaction system is loaded into

your application. For example, you might take a technology-neutral

approach by implementing the IT_Bus::TransactionParticipant class, or

you might decide to exploit the special features of a particular transaction

system instead.

Compatibility with Orbix The Artix transaction facility is fully compatible with CORBA OTS in Orbix.

Hence, if you already have a transactional server implemented with Orbix

ASP, you can easily integrate this with an Artix client, as shown in Figure 1.

Pluggable transaction system The underlying transaction system used by Artix can be replaced within a

pluggable framework. Currently, the following transaction systems are

supported by Artix:

• OTS Lite.

• OTS Encina.

• WS-AtomicTransactions.

Figure 1: Artix Client Invokes a Transactional Operation on a CORBA OTS
Server

CORBA
Server

Transaction
Factory

Resource

Orbix Domain
begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client

CHAPTER 1 | Introduction to Transactions

 6

One-phase commit Artix supports the one-phase commit (1PC) protocol for transactions. This

protocol can be used if there is only one resource participating in the

transaction. The 1PC protocol essentially delegates the transaction

completion to the single resource manager. Figure 2 shows a schematic

overview of the 1PC protocol for a simple client-server system.

The 1PC protocol progresses through the following stages:

1. The client calls begin_transaction() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations

on the remote server. The WSDL operations are transactional, requiring

updates to a persistent resource.

3. The client calls commit_transaction() to make permanent any

changes caused during the transaction (alternatively, the client could

call rollback_transaction() to abort the transaction).

4. The transaction system performs the commit phase by sending a

notification to the server that it should perform a 1PC commit.

Two-phase commit The two-phase commit (2PC) protocol enables multiple resources to

participate in a transaction. In order to preserve the essential properties of a

transaction involving multiple distributed resources, it is necessary to use a

more elaborate algorithm. The 2PC algorithm consists of the following two

phases:

Figure 2: One-Phase Commit Protocol

Artix Server

Transaction
System

Resource

begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client

1

2

3
4

Artix Transaction Features

7

• Prepare phase—the transaction system notifies all of the participants

to prepare the transaction. The participants prepare the transaction by

saving the information that would be required to redo or undo the

changes made during the transaction. At the end of this phase, the

participants vote whether to commit or roll back the transaction.

• Commit (or rollback) phase—if all of the participants vote to commit

the transaction, the transaction system notifies the participants to

commit the changes. On the other hand, if one or more participants

vote to roll back the transaction, the transaction system notifies the

participants to roll back the changes.

Figure 3 shows a schematic overview of the 2PC protocol for a client and

two remote servers.

The 2PC protocol progresses through the following stages:

1. The client calls begin_transaction() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations

on both of the remote servers.

Figure 3: Two-Phase Commit Protocol

begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client

1

3

Artix Server

Transaction
System

Resource

Artix Server

Transaction
System

Resource

2

2
4

5

4
5

prepare
commit

CHAPTER 1 | Introduction to Transactions

 8

3. The client calls commit_transaction() to make permanent any

changes caused during the transaction (alternatively, the client could

call rollback_transaction() to abort the transaction).

4. The transaction system performs the prepare phase by polling all of the

remote transaction participants (the first phase of a two-phase

commit).

5. The transaction system performs the commit or rollback phase by

sending a notification to all of the remote transaction participants (the

second phase of a two-phase commit).

Transaction propagation If you have a section of code executing within a transaction context, Artix

automatically propagates a transaction context with the request message,

whenever a remote operation is called.

For example, consider a three-tier system, where a client initiates a

transaction, invokes an operation on server 1, and then server 1 makes a

further call on server 2. In this scenario, Artix automatically propagates the

transaction to server 2. The transaction is propagated, even if the protocol

between the client and server 1 differs from the protocol used between

server 1 and server 2.

X/Open Distributed Transaction Processing

9

X/Open Distributed Transaction Processing

Overview The X/Open Distributed Transaction Processing (DTP) architecture is a

technical standard published by the Open Group. The X/Open DTP

architecture enables you to integrate resources relatively easily into a

distributed transaction system.

In this section This section contains the following subsections:

X/Open DTP Architecture page 10

X/Open XA Interface page 13

CHAPTER 1 | Introduction to Transactions

 10

X/Open DTP Architecture

Overview This subsection provides a brief overview of the X/Open Distributed

Transaction Processing (DTP) architecture, also known as the XA

specification. For a complete description of the X/Open DTP standard, you

can download the XA specification from the following Web page:

http://www.opengroup.org/bookstore/catalog/c193.htm

DTP model Figure 4 shows an overview of the X/Open DTP model, showing the basic

components and the interfaces between them. The key idea of the X/Open

architecture is that responsibility for managing transactions in a distributed

system must be divided between two components: a transaction manager

and a resource manager. This division would be unnecessary for local

transactions, which could be managed happily by a resource manager

alone, but it is essential for distributed transactions, where the mechanisms

for coordinating global transactions (that is, starting, committing, and rolling

back) are implemented separately from the resource manager.

Figure 4: The X/Open DTP Architecture

{
 EXEC SQL UPDATE
 .
 EXEC SQL UPDATE
}

Application
Program

Resource

XA Resource
Manager

XA Transaction
Manager

XA Interface

AX Interface

T
X

 I
nt

er
fa

ce

http://www.opengroup.org/bookstore/catalog/c193.htm

X/Open Distributed Transaction Processing

11

Resource A resource is any part of the system that could undergo a persistent change.

In most cases, a resource represents some form of persistent storage (such

as a database), but it could also represent, for example, the mechanism in

an Automated Teller Machine that tenders cash to customers.

Resource manager A resource manager manages part of a computer’s shared resources. In

particular, the resource manager must be capable of grouping resource

operations into transactions and either committing or rolling back those

transactions in response to calls from the transaction manager (mediated by

the XA interface).

For example, the Oracle DB with an XA switch is an XA-compliant resource

manager.

Transaction manager A transaction manager is responsible for coordinating transactions across a

distributed system. The transaction manager coordinates decisions to

commit or roll back a global transaction and is also responsible for

coordinating failure recovery.

For example, the OTS Encina transaction manager implements the 2-phase

commit protocol for global transactions.

Global transaction A global transaction is a transaction that spans multiple processes and

multiple resources in a distributed system. To manage a global transaction

properly, it is necessary to ensure that the updates made to different

resources in different processes can be committed atomically (or rolled

back) at the end of the transaction.

Transaction branch Because a global transaction is spread over a distributed system, work can

be done on the global transaction in different processes. Moreover, within

each process, work can be done in different resource managers (for

example, you might have an Oracle XA resource manager and an MQ-Series

resource manager both registered within the same process). Hence, it is

useful to introduce the concept of a transaction branch, which identifies the

work done on a global transaction by each resource manager in each

process. The total work done on a global transaction is, therefore, equal to

the sum of the work done in all of its branches.

CHAPTER 1 | Introduction to Transactions

 12

XA interfaces The XA architecture defines a suite of interfaces that mediate the interaction

between the various components of the XA DTP model, as follows:

• XA interface—a collection of functions that the transaction manager

can call on a resource manager in order to coordinate local and

distributed transactions. This interface is fully supported by Artix, both

in the role of transaction manager (where Artix manages foreign

resource managers through the XA interface) and in the role of resource

manager (where Artix is controlled by a foreign transaction manager).

• AX interface—a collection of functions that the resource manager can

call back on the transaction manager. This interface is used internally

by Artix to implement the dynamic registration optimization. See

“Dynamic Registration Optimization” on page 69 for more details.

• TX interface—a collection of functions that perform transaction

demarcation (beginning, committing and rolling back transactions) by

calling on the transaction manager. Artix does not implement the TX

interface; you use the demarcation functions provided on the

IT_Bus::TransactionSystem class instead.

X/Open Distributed Transaction Processing

13

X/Open XA Interface

Overview The X/Open XA interface is the interface that a transaction manager uses to

control the committing or rolling back of a transaction branch in a resource

manager. The great convenience of the XA interface is that it provides a

simple mechanism for integrating a resource into a distributed transaction

system. The XA interface effectively enables you to plug in a resource

manager into a distributed transaction system.

For example, if you want to integrate an Oracle DB into the OTS Encina

distributed transaction system (which is one of the transaction systems

supported by Artix), you would simply register Oracle’s XA switch with Artix.

This requires no more than two or three lines of code in your application

program. Once you have registered the Oracle XA switch, the Oracle DB is

able to partake in distributed transactions managed by OTS Encina.

CHAPTER 1 | Introduction to Transactions

 14

XA switch type XA defines a set of C-function pointers, and a C-struct that holds these

function pointers, xa_switch_t (see orbix_sys/xa.h) as shown in

Example 1.

Function pointers The function pointers provided by the xa_switch_t struct point to the

following XA functions:

• xa_open() and xa_close() —the xa_open() function opens a

connection to the resource. For example, in a single-threaded

application, the transaction manager would usually call xa_open() as it

starts up.

Example 1: The XA Switch Type, xa_switch_t

/* C */
struct xa_switch_t
{
 char name[RMNAMESZ]; /* name of resource manage r */
 long flags; /* resource manager specific option s */
 long version; /* must be 0 */
 int (* xa_open_entry) /* xa_open function pointer */
 (char *, int, long);
 int (* xa_close_entry) /* xa_close function pointer */
 (char *, int, long);
 int (* xa_start_entry) /* xa_start function pointer */
 (XID *, int, long);
 int (* xa_end_entry) /* xa_end function pointer */
 (XID *, int, long);
 int (* xa_rollback_entry) /* xa_rollback function pointer */
 (XID *, int, long);
 int (* xa_prepare_entry) /* xa_prepare function pointer */
 (XID *, int, long);
 int (* xa_commit_entry) /* xa_commit function pointer */
 (XID *, int, long);
 int (* xa_recover_entry) /* xa_recover function pointer */
 (XID *, long, int, long);
 int (* xa_forget_entry) /* xa_forget function pointer */
 (XID *, int, long);
 int (* xa_complete_entry) /* xa_complete function pointer */
 (int *, int *, int, long);
};

X/Open Distributed Transaction Processing

15

The xa_close() function closes the connection to the resource. For

example, the transaction manager would usually call xa_close() as it

shuts down.

• xa_start() and xa_end() —the transaction manager calls xa_start()

before doing any work on a transaction branch. At the end of the work,

the transaction manager calls xa_end() .

The xa_start() and xa_end() functions are closely related to the XA

threading model (see “Threading and XA Resources” on page 93). The

xa_start() function creates an association between the current thread

and a transaction branch, and the xa_end() function ends the

association. By passing in the appropriate flag, it is also possible for

xa_end() to temporarily suspend the association between the current

thread and the transaction branch and for xa_start() to resume the

association.

• xa_prepare() , xa_commit() , and xa_rollback() —the transaction

manager calls these functions in the course of the 1-phase and

2-phase commit protocols.

• xa_recover() and xa_forget() —the transaction manager can call

these functions to recover after a system crash. Typically, a transaction

manager provides a recovery tool to manage the recovery process.

Providing an XA switch instance Each XA resource manager must provide a global instance of the

xa_switch_t type. For example, this might be provided either as a global

xa_switch_t struct or as the return value from a global function. The

mechanism for obtaining an xa_switch_t instance is not standardised and

varies from product to product.

For example, Oracle provides a global xa_switch_t instance called xaosw .

CHAPTER 1 | Introduction to Transactions

 16

17

 CHAPTER 2

Getting Started
with Transactions
This chapter discusses a simple demonstration scenario
involving a client and two remote servers. The servers enlist
XA resources, which are responsible for integrating the servers’
persistent storage with the Artix transaction system.

In this chapter This chapter discusses the following topics:

Sample Scenario page 18

Client Example page 24

Server Example page 27

Configuration page 36

CHAPTER 2 | Getting Started with Transactions

 18

Sample Scenario

Overview This section describes a sample scenario involving a funds transfer between

two different bank servers, where each bank server is a transactional

resource. This scenario is used as the basis for the examples discussed in

the rest of this chapter.

Bank example Figure 5 shows the outline of a scenario involving a funds transfer between

two bank accounts, which are located on different servers, Bank Server 1

and Bank Server 2. This scenario assumes that the application is using the

OTS transaction system. In particular, the client loads the OTS Encina

plug-in, which is responsible for coordinating the global transactions.

Figure 5: Bank Scenario with Transactions

begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client

1

4

Bank Server 1

OTS

Resource

Bank Server 2

OTS

Resource

OTS

OTS Encina

make_withdrawal()

make_deposit()

3

2

Sample Scenario

19

Funds transfer The scenario shown in Figure 5 can be described as follows:

1. The client initiates a transaction by calling the

IT_Bus::TransactionSystem::begin_transaction() function.

2. Within the scope of the transaction, the client invokes the

make_withdrawal() operation on an account in Bank Server 1, in order

to withdraw a sum of money. The operation request is accompanied by

a transaction context.

3. The client invokes the make_deposit() operation on another account in

Bank Server 2, in order to deposit the sum of money.

4. The client calls the

IT_Bus::TransactionSystem::commit_transaction() to commit the

transaction. The Artix transaction manager then uses a two-phase

commit protocol to commit the changes to Bank Server 1 and Bank

Server 2.

Bank WSDL contract Example 2 shows the WSDL contract for the Bank example that is described

in this section. There are two port types in this contract, Bank and Account .

For each of the two port types there is a SOAP binding, BankBinding and

AccountBinding .

Example 2: Bank WSDL Contract

<definitions targetNamespace="http://www.iona.com/d emos/transactions/bank"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:bank="http://schemas.iona.com/demos/trans actions/bank"
 xmlns:wsa="http://www.w3.org/2005/03/addressing "
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soa p/"
 xmlns:tns="http://www.iona.com/demos/transactio ns/bank"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema" >
 <types>
 <schema elementFormDefault="qualified"
 targetNamespace="http://schemas.iona.co m/demos/transactions/bank"
 xmlns="http://www.w3.org/2001/XMLSchema "
 xmlns:wsdl="http://schemas.xmlsoap.org/ wsdl/">
 <import namespace="http://www.w3.org/20 05/03/addressing"/>
 <complexType name="AccountIDsType">
 <sequence>
 <element maxOccurs="unbounded" minOccurs="0" name="name"
 type="xsd:string"/>

CHAPTER 2 | Getting Started with Transactions

 20

 </sequence>
 </complexType>
 <complexType name="list_accountsInputDa ta">
 <sequence/>
 </complexType>
 <complexType name="list_accountsOutputD ata">
 <sequence>
 <element name="return" type="ba nk:AccountIDsType"/>
 </sequence>
 </complexType>
 <element name="list_accounts" type="ban k:list_accountsInputData"/>
 <element name="list_accountsResponse" t ype="bank:list_accountsOutputData"/>
 <complexType name="create_accountInputD ata">
 <sequence>
 <element name="account_id" type ="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="create_accountOutput Data">
 <sequence>
 <element name="return" type="ws a:EndpointReferenceType"/>
 </sequence>
 </complexType>
 <element name="create_account" type="ba nk:create_accountInputData"/>
 <element name="create_accountResponse" type="bank:create_accountOutputData"/>
 <complexType name="get_accountInputData ">
 <sequence>
 <element name="account_id" type ="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="get_accountOutputDat a">
 <sequence>
 <element name="return" type="ws a:EndpointReferenceType"/>
 </sequence>
 </complexType>
 <element name="get_account" type="bank: get_accountInputData"/>
 <element name="get_accountResponse" typ e="bank:get_accountOutputData"/>
 <complexType name="delete_accountInputD ata">
 <sequence>
 <element name="account_id" type ="xsd:string"/>
 </sequence>
 </complexType>
 <complexType name="delete_accountOutput Data">
 <sequence/>
 </complexType>
 <element name="delete_account" type="ba nk:delete_accountInputData"/>

Example 2: Bank WSDL Contract

Sample Scenario

21

 <element name="delete_accountResponse" type="bank:delete_accountOutputData"/>
 <complexType name="get_balanceInputData ">
 <sequence/>
 </complexType>
 <complexType name="get_balanceOutputDat a">
 <sequence>
 <element name="return" type="xs d:double"/>
 </sequence>
 </complexType>
 <element name="get_balance" type="bank: get_balanceInputData"/>
 <element name="get_balanceResponse" typ e="bank:get_balanceOutputData"/>
 <complexType name="make_depositInputDat a">
 <sequence>
 <element name="amount" type="xs d:double"/>
 </sequence>
 </complexType>
 <complexType name="make_depositOutputDa ta">
 <sequence/>
 </complexType>
 <element name="make_deposit" type="bank :make_depositInputData"/>
 <element name="make_depositResponse" ty pe="bank:make_depositOutputData"/>
 <complexType name="make_withdrawlInputD ata">
 <sequence>
 <element name="amount" type="xs d:double"/>
 </sequence>
 </complexType>
 <complexType name="make_withdrawlOutput Data">
 <sequence/>
 </complexType>
 <element name="make_withdrawl" type="ba nk:make_withdrawlInputData"/>
 <element name="make_withdrawlResponse" type="bank:make_withdrawlOutputData"/>
 </schema>
 </types>
 <message name="list_accounts">
 <part element="bank:list_accounts" name="pa rameters"/>
 </message>
 <message name="list_accountsResponse">
 <part element="bank:list_accountsResponse" name="parameters"/>
 </message>
 <message name="create_account">
 <part element="bank:create_account" name="p arameters"/>
 </message>
 <message name="create_accountResponse">
 <part element="bank:create_accountResponse" name="parameters"/>
 </message>

Example 2: Bank WSDL Contract

CHAPTER 2 | Getting Started with Transactions

 22

 <message name="get_account">
 <part element="bank:get_account" name="para meters"/>
 </message>
 <message name="get_accountResponse">
 <part element="bank:get_accountResponse" na me="parameters"/>
 </message>
 <message name="delete_account">
 <part element="bank:delete_account" name="p arameters"/>
 </message>
 <message name="delete_accountResponse">
 <part element="bank:delete_accountResponse" name="parameters"/>
 </message>
 <message name="get_balance">
 <part element="bank:get_balance" name="para meters"/>
 </message>
 <message name="get_balanceResponse">
 <part element="bank:get_balanceResponse" na me="parameters"/>
 </message>
 <message name="make_deposit">
 <part element="bank:make_deposit" name="par ameters"/>
 </message>
 <message name="make_depositResponse">
 <part element="bank:make_depositResponse" n ame="parameters"/>
 </message>
 <message name="make_withdrawl">
 <part element="bank:make_withdrawl" name="p arameters"/>
 </message>
 <message name="make_withdrawlResponse">
 <part element="bank:make_withdrawlResponse" name="parameters"/>
 </message>
 <portType name="Bank">
 <operation name=" list_accounts">
 <input message="tns:list_accounts" name ="list_accounts"/>
 <output message="tns:list_accountsRespo nse" name="list_accountsResponse"/>
 </operation>
 <operation name=" create_account">
 <input message="tns:create_account" nam e="create_account"/>
 <output message="tns:create_accountResp onse" name="create_accountResponse"/>
 </operation>
 <operation name=" get_account">
 <input message="tns:get_account" name=" get_account"/>
 <output message="tns:get_accountRespons e" name="get_accountResponse"/>
 </operation>
 <operation name=" delete_account">
 <input message="tns:delete_account" nam e="delete_account"/>

Example 2: Bank WSDL Contract

Sample Scenario

23

 <output message="tns:delete_accountResp onse" name="delete_accountResponse"/>
 </operation>
 </portType>

 <portType name="Account">
 <operation name=" get_balance">
 <input message="tns:get_balance" name=" get_balance"/>
 <output message="tns:get_balanceRespons e" name="get_balanceResponse"/>
 </operation>
 <operation name=" make_deposit">
 <input message="tns:make_deposit" name= "make_deposit"/>
 <output message="tns:make_depositRespon se" name="make_depositResponse"/>
 </operation>
 <operation name=" make_withdrawl">
 <input message="tns:make_withdrawl" nam e="make_withdrawl"/>
 <output message="tns:make_withdrawlResp onse" name="make_withdrawlResponse"/>
 </operation>
 </portType>
 ...
</definitions>

Example 2: Bank WSDL Contract

CHAPTER 2 | Getting Started with Transactions

 24

Client Example

Overview This section describes a transactional Artix client that connects to two

remote transactional Artix servers, server A and server B. The client uses the

Artix transaction demarcation API to delimit the transaction. The client must

also be configured to load a transaction system plug-in (see “Selecting a

Transaction System” on page 39).

C++ demonstration code The bank client demonstration code is located in the following directory:

ArtixInstallDir/artix/ Version/demos/transactions/common/src
/clients/cxx_bank_client

C++ example Example 3 shows how to use the transaction demarcation functions in an

Artix client. Two remote servers, bank server A and bank server B,

participate in the transaction. Hence, this example requires a two-phase

commit protocol.

Example 3: C++ Bank Client Example

// C++
1 BankClient * bank_1_proxy = /* Obtain 1st bank prox y */ ;

BankClient * bank_2_proxy = /* Obtain 2nd bank prox y */ ;

AccountClient * acc_1;
AccountClient * acc_2;

try {
2 WS_Addressing::EndpointReferenceType acc_1_ref;

 bank_1_proxy->get_account("account_1", acc_1_re f);
 acc_1 = new AccountClient(acc_1_ref, bus);

3 WS_Addressing::EndpointReferenceType acc_2_ref;
 bank_2_proxy->get_account("account_2", acc_2_re f);
 acc_2 = new AccountClient(acc_2_ref, bus);
}
catch (const IT_Bus::Exception & access_balance_ex)
{
 String err_msg("ERROR - account balance access failure! : ");
 err_msg += access_balance_ex.message();
 throw IT_Bus::Exception(err_msg);

Client Example

25

The preceding code example can be explained as follows:

1. The bank proxies, bank_1_proxy and bank_2_proxy , provide the initial

connections to bank server A and bank server B, respectively.

In the demonstration code (not shown here), each bank server writes a

reference to a file which is then read by the client (this presupposes

that the clients and servers can both access the same file system).

2. Obtain a proxy to an account in bank server A by calling

get_account() on bank_1_proxy . The endpoint reference, acc_1_ref ,

returned from get_account() is used to initialize an account proxy

object, acc_1 .

3. Likewise, obtain a proxy to an account in bank server B, acc_2 .

4. You should always enclose a transaction in a try block, because it

might be necessary to catch an exception and roll back the transaction.

5. The IT_Bus::TransactionSystem::begin_transaction() call initiates

the transaction.

}

4 try {
5 bus->transactions(). begin_transaction();

 acc_1->make_withdrawl(2000.00);
 acc_2->make_deposit(2000.00);

6 bus->transactions(). commit_transaction(true);

 display_balances(acc_1, bank_1_id, acc_2, bank_ 2_id);
}

7 catch (const IT_Bus::Exception & transfer_ex)
{
 String err_msg("ERROR - funds transfer failure! : ");
 err_msg += transfer_ex.message();

8 if (bus->transactions(). within_transaction())
 {

9 bus->transactions(). rollback_transaction();
 }
 throw IT_Bus::Exception(err_msg);
}

Example 3: C++ Bank Client Example

CHAPTER 2 | Getting Started with Transactions

 26

6. The IT_Bus::TransactionSystem::commit_transaction() call

attempts to commit the changes made to server A and server B. The

boolean argument is the report_heuristics flag, which can take the

following values:

♦ true —specifies that heuristic decisions should be reported during

the commit protocol (if supported by the underlying transaction

system).

♦ false—specifies that heuristic decisions should not be reported.

7. It is essential to catch and handle any exceptions that might be thrown

during a transaction.

8. The within_transaction() call is needed at this point, because the

rollback_transaction() function must only be called from within a

transaction. If rollback_transaction() is called outside a transaction,

it raises an exception.

9. If an exception is thrown, the transaction must be aborted by calling

IT_Bus::TransactionSystem::rollback_transaction() .

Server Example

27

Server Example

Overview This section describes a transactional Artix server that implements a bank

service and an unlimited number of account services (each account service

representing a single account). The server uses a transactional resource—an

Oracle database—to store the account records. This transactional resource

is integrated with the Artix transaction manager using an XA interface

(which is an X/Open standard, supported both by Artix and by Oracle).

C++ demonstration code The bank server demonstration code is located in the following directory:

ArtixInstallDir/artix/ Version/demos/transactions/common/src
/servers/cxx_xa_http_soap_wsat

Servant classes The bank server implements two servant classes, as follows:

• BankImpl class.

• AccountImpl class.

BankImpl class The BankImpl servant class implements the operations from the Bank port

type. The BankImpl class has the characteristics of a typical account factory

class: that is, it provides operations for creating, finding and deleting

account objects. Clients that use the bank server would initially connect to

the BankService service and then call the Bank operations to obtain a

reference to an account object.

Because the BankImpl class does not participate in any transaction (that is,

it does not access any transactional resources), it is of no relevance to

transactional programming and is not discussed here in detail.

AccountImpl class The AccountImpl servant class implements the operations from the Account

port type. The AccountImpl class is responsible for accessing and updating

account details stored in an Oracle database. Because the Oracle XA switch

is registered with the Artix transaction manager, any database updates must

be coordinated by the Artix transaction manager. When writing the

CHAPTER 2 | Getting Started with Transactions

 28

AccountImpl class, therefore, you should be aware that its operations are

participating in a global transaction and that this affects the way you access

the database.

Integration with Oracle database In the bank server demonstration, the Oracle database is treated as a

resource whose transactions are to be coordinated by the Artix transaction

manager. In order to integrate the Oracle database with the Artix transaction

manager, you must do the following:

1. Register the Oracle XA switch—to subordinate Oracle transactions to

the Artix transaction manager, register an Oracle XA switch object with

the Artix transaction manager. See “Registering an XA Resource” on

page 63 for a detailed discussion.

2. Modify code that interacts with the database—when the XA interface

is enabled, you must observe the following programming restrictions:

♦ Do not open or close any database connections—connections are

now managed automatically through the XA interface.

♦ Do not use embedded SQL or native database API to demarcate

transactions—for example, you must not call the embedded SQL

commands, EXEC SQL BEGIN, EXEC SQL COMMIT, or EXEC SQL

ROLLBACK.

3. Link the server with the relevant Oracle libraries.

C++ registering the Oracle XA

switch

Example 4 shows how to register an Oracle XA switch with the Artix

transaction manager. Registration must occur before the server processes

any incoming requests. You would normally register the XA switch during

initialization of the server program.

Example 4: C++ Registering an Oracle XA Switch

// C++
1 #include <sqlca.h>

2 extern "C" IT_DECLSPEC_IMPORT xa_switch_t xaosw;
extern "C" IT_DECLSPEC_IMPORT xa_switch_t xaoswd;
...

3 xa_switch_t* database_switch = &xaosw;

IT_Bus::TransactionManager & tx_mgr =

Server Example

29

The preceding code fragment can be explained as follows:

1. The sqlca.h header file is an Oracle header file that defines two

instances of xa_switch_t type: xaosw , for a normal XA switch, and

xaoswd , for a dynamically registering XA switch.

2. Declare xaosw to be an external C type (the xa_switch_t type is

declared in C, not C++).

3. The XA switch used in this example, database_switch , is simply a

pointer to an ordinary Oracle XA switch object, xaosw .

4. The XA transaction manager, xa_tx_mgr , is an object that is used to

integrate XA resources with the Artix transaction manager.

 bus->transactions().get_transaction_manager(
 IT_Bus::TransactionSystem::XA_TRANSACTION_T YPE
);

4 IT_Bus::XATransactionManager& xa_tx_mgr =
 dynamic_cast<IT_Bus::XATransactionManager&>(tx_ mgr);

IT_Bus::String db_resource_id("oracle_bank");
db_resource_id += bank_id;

5 bool succeeded = xa_tx_mgr. register_xa_resource(
 database_switch,
 IT_Bus::String::EMPTY, // open_string - " "
 IT_Bus::String::EMPTY, // close_string - " "
 db_resource_id, // configuration prefix
 false, // don't use dynamic_registratio n_optimization
 false // not single-threaded
);

if (!succeeded)
{
 throw IT_Bus::Exception(
 "Failed to register Oracle database as an X A resource"
);
}

Example 4: C++ Registering an Oracle XA Switch

CHAPTER 2 | Getting Started with Transactions

 30

5. Call register_xa_resource() on the IT_Bus::XATransactionManager

instance to register the Oracle XA switch, xaosw , with the Artix XA

transaction manager.

In this example, the open string and the close string are read from an

Artix configuration file. This is flagged by passing an empty string, "" ,

as the open string. The identifier, db_resource_id , is then used as a

prefix string to identify the relevant variables in the configuration file.

See “Configuration” on page 36 for details.

C++ AccountImpl class Example 5 shows the implementation of the AccountImpl servant class. The

operations implemented by this class are all intended to execute in the

context of a global transaction. This has an effect on the way you program

the database access: in particular, you must avoid starting a local

transaction.

Example 5: C++ AccountImpl Servant Class

// C++
...
void

1 AccountImpl::get_balance(
 IT_Bus::Double &_return
) IT_THROW_DECL((IT_Bus::Exception))
{

2 IT_Bus::String id = get_instance_id();
 const char * id_str = id.c_str();
 double return_balance = 0;

3 ::get_balance_from_db(id_str, return_balance);

 _return = return_balance;
}

void
4 AccountImpl::make_deposit(

 const IT_Bus::Double amount
) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::String id = get_instance_id();
 const char * id_str = id.c_str();

 IT_Bus::Double balance;
 get_balance(balance);

Server Example

31

 balance += amount;

 ::set_balance_in_db(id_str, balance);

 cout << "Made deposit of $" << amount << " to a ccount \'" <<
id << endl;

}

void
AccountImpl::make_withdrawl(
 const IT_Bus::Double amount
) IT_THROW_DECL((IT_Bus::Exception))
{
 IT_Bus::String id = get_instance_id();
 const char * id_str = id.c_str();

 IT_Bus::Double balance;
 get_balance(balance);

 if (balance < amount)
 {
 throw IT_Bus::Exception("Not enough funds t o faciliate

withdrawl");
 }

 balance -= amount;

 ::set_balance_in_db(id_str, balance);

 cout << "Made withdrawl of $" << amount << " fr om account \'"
<< id << endl;

}

AccountIDsType
AccountImpl::list_all()
{
 AccountIDsType account_ids;
 account_ids = ::list_all_accounts();
 return account_ids;
}

Example 5: C++ AccountImpl Servant Class

CHAPTER 2 | Getting Started with Transactions

 32

The preceding class implementation can be explained as follows:

1. The get_balance() function provides the implementation of the

account service’s get_balance WSDL operation.

2. The get_instance_id() function returns the identity of the account

that is being accessed. The implementation of the get_instance_id()

function depends on the approach used to implement the account

servant class, as follows:

♦ Transient servant—in this approach, a distinct servant object is

created for each account instance. The account identity would be

passed to the servant object at creation time and stored in a

member variable. The get_instance_id() function simply returns

the stored identity in this case.

♦ Default servant—in this approach, a single servant object

services requests for all account instances. The account identity,

therefore, cannot be stored in a member variable. The

get_instance_id() function obtains the account identity by

querying the current address context in this case. For details of

how this works, see the discussion of default servants in

Developing Artix Application in C++.

3. The get_balance_from_db() function uses embedded SQL calls to

retrieve the account balance from an Oracle database. This database

access is integrated into the global transaction.

See Example 6 for a detailed description of this function.

4. The following make_deposit() , make_withdrawl() and list_all()

functions are implementations of WSDL operations, which follow a

pattern similar to the get_balance() function.

Server Example

33

C++ database code Example 6 shows some of the functions that the bank server uses to access

the Oracle database (taken from the oracle_db_fns.pc file). This file

contains embedded SQL statements, which will ultimately be converted into

C++ by the Oracle pre-compiler.

Example 6: C++ Database Code for Accessing Account Data

// For Pro/C++ compiler (C++ with embedded SQL)

void
1 get_balance_from_db(

 const char * the_account_id,
 double& return_balance
)
{
 // local Oracle variables

 EXEC SQL BEGIN DECLARE SECTION;
 VARCHAR acc_id[20];
 double balance=0.0;
 EXEC SQL END DECLARE SECTION;

 acc_id.len = strlen(the_account_id);
 strncpy((char*)&acc_id.arr[0], the_account_id, 19);
 return_balance = (double)0.0;

 // get the balance from the database table
 bool foundit=false;
 EXEC SQL WHENEVER NOT FOUND DO break;
 for (;;)
 {
 EXEC SQL SELECT CURRENT_BALANCE
 INTO :balance
 FROM ARTIX_ACCOUNTS
 WHERE ACCOUNT_ID = :acc_id;

 foundit = true;
 break;
 }
 if (foundit)
 {
 return_balance = balance;
 }
}

CHAPTER 2 | Getting Started with Transactions

 34

The preceding database code can be explained as follows:

1. The get_balance_from_db() function uses conventional embedded

SQL calls to access the ARTIX_ACCOUNTS table, selecting the

CURRENT_BALANCE field from the row indexed by ACCOUNT_ID.

From a transaction viewpoint, it is worth noting that transaction

demarcation statements (EXEC SQL BEGIN, EXEC SQL COMMIT, or EXEC

SQL ROLLBACK) do not appear anywhere in this function. When an XA

switch is registered, the Artix transaction manager is responsible for

transaction demarcation.

2. The set_balance_in_db() function uses conventional embedded SQL

calls to update the ARTIX_ACCOUNTS table, setting the CURRENT_BALANCE

field in the row indexed by ACCOUNT_ID.

void
2 set_balance_in_db(

 const char * the_account_id,
 double new_balance
)
{
 EXEC SQL BEGIN DECLARE SECTION;
 VARCHAR acc_id[20];
 double balance;
 EXEC SQL END DECLARE SECTION;

 acc_id.len = strlen(the_account_id);
 strncpy((char*)&acc_id.arr[0], the_account_id, 19);
 balance = new_balance;

 bool foundit=false;
 EXEC SQL WHENEVER NOT FOUND DO break;
 for (;;)
 {
 EXEC SQL UPDATE ARTIX_ACCOUNTS
 SET CURRENT_BALANCE = :balance
 WHERE ACCOUNT_ID = :acc_id;

 foundit=true;
 break;
 }
}

Example 6: C++ Database Code for Accessing Account Data

Server Example

35

Once again, note the absence of any transaction demarcation

statements (EXEC SQL BEGIN, EXEC SQL COMMIT, or EXEC SQL

ROLLBACK).

CHAPTER 2 | Getting Started with Transactions

 36

Configuration

Overview To use Artix transactions, it is necessary to load and configure the relevant

transaction system (Artix supports multiple transaction systems). Artix does

not load a transaction system by default. Hence, you must include

transaction plug-ins explicitly in the orb_plugins list.

For a more detailed discussion of transaction configuration, see “Selecting a

Transaction System” on page 39.

Configuration file location The tx_demo.cfg configuration file is located in the following directory:

ArtixInstallDir/artix/ Version/demos/transactions/common/etc

Client configuration Example 7 shows the configuration settings for the bank client, which uses

the artix.demos.tx_demo.wsat_coordinated Bus ID (which can be

specified, for example, by the -ORBname command-line switch). In this

example, the client is configured to use the WS-AT transaction manager.

Example 7: Client Configuration Using the WS-AT Transaction Manager

Artix Configuration File

Global configuration settings
...

Transaction demonstrations settings
artix
{
 demos
 {
 tx_demo
 {
 ...
 wsat_coordinated
 {
 orb_plugins = ["local_log_stream", "ws_coordination_service"];
 plugins:bus:default_tx_provider:plugin="wsat_tx_provider";
 };
 };
 };

Configuration

37

The following configuration settings are relevant to transactions in the client:

• orb_plugins —the client is configured to load the

ws_coordination_service plug-in, which implements a transaction

manager on the pattern of the WS-Coordination standard. Implicitly,

the client also loads the wsat_protocol plug-in, which provides the

capability to send WS-AtomicTransaction transaction contexts over

SOAP.

• plugins:bus:default_tx_provider:plugin —because Artix can

support several different transaction systems (for example, WS-AT and

OTS Encina), you need to specify explicitly which transaction system

the client uses when it initiates a transaction. In this example, the

client is configured to use the WS-AT transaction system by default.

Server configuration

};

Example 7: Client Configuration Using the WS-AT Transaction Manager

Example 8: Server Configuration with Oracle XA Resource

Artix Configuration File

Global configuration settings
...

Transaction demonstrations settings
artix
{
 demos
 {
 tx_demo
 {
 ...
 wsat_server
 {
 orb_plugins = ["local_log_stream", "wsat_protocol", "coordinator_stub_wsdl"];
 plugins:bus:default_tx_provider:plu gin="wsat_tx_provider";

 oracle_xa

CHAPTER 2 | Getting Started with Transactions

 38

The following configuration settings are relevant to transactions in the

server:

• orb_plugins —the server is configured to load the wsat_protocol

plug-in, which provides the capability to send WS-AtomicTransaction

transaction contexts over SOAP, and the coordinator_stub_wsdl

plug-in, which enables the server to call back on the transaction

coordinator object in the client.

• oracle_bankA:open_string —if the programmer passes a blank open

string when registering an XA switch, Artix reads the open string from

configuration instead. The prefix, oracle_bankA , is set by the

programmer at registration time (see “C++ registering the Oracle XA

switch” on page 28).

• oracle_bankA:close_string —if the programmer passes a blank open

string when registering an XA switch, Artix reads the close string from

configuration instead. In this example, the close string is a blank,

because Oracle does not use the close string.

 {
 policies:http:trace_requests:en abled="true";

 # Configuration settings for th e Oracle Databases
 #
 oracle_bankA:open_string="Oracle_XA+Acc=P/scott/tiger+SesTm=60+threads=true";
 oracle_bankA:close_string="";
 poa:oracle_bankA:direct_persistent="true";
 poa:oracle_bankA:well_known_address:host="0.0.0.0"; # all network adapters
 poa:oracle_bankA:well_known_address:port="13003"; # unique port

 oracle_bankB:open_string="Oracle_XA+Acc=P/scott/tiger+SesTm=60+threads=true";
 oracle_bankB:close_string="";
 poa:oracle_bankB:direct_persistent="true";
 poa:oracle_bankB:well_known_address:host="0.0.0.0"; # all network adapters
 poa:oracle_bankB:well_known_address:port="13004"; # unique port
 };
 };
 };
 };
};

Example 8: Server Configuration with Oracle XA Resource

39

CHAPTER 3

Selecting a
Transaction
System
Using the Artix plug-in architecture, you can choose between
a number of different transaction system implementations.
Because the Artix transaction API is designed to be
independent of the underlying transaction system, it is
possible to select a particular transaction system at runtime.
Typically, you would choose the transaction system that
provides the best match for your services. For example, if the
majority of your services are SOAP-based, you would select
the WS-AT transaction system.

In this chapter This chapter discusses the following topics:

Configuring OTS Lite page 40

Configuring OTS Encina page 43

Configuring Non-Recoverable WS-AT page 47

Configuring Recoverable WS-AT page 51

CHAPTER 3 | Selecting a Transaction System

 40

Configuring OTS Lite

Overview The OTS Lite plug-in is a lightweight transaction manager, which is subject

to the following restrictions: it supports the 1PC protocol only and it lets you

register only one resource. This plug-in allows applications that only access

a single transactional resource to use the OTS APIs without incurring a large

overhead, but allows them to migrate easily to the more powerful 2PC

protocol by switching to a different transaction manager. Figure 6 shows a

client-server deployment that uses the OTS Lite plug-in.

OTS Lite and interposition If you plan to use OTS Lite in an application that needs to propagate

transactions between different transaction systems, you should be aware

that OTS Lite is subject to certain limitations in the context of interposition.

See “Limitation of using OTS Lite with propagation” on page 84 for details.

Default transaction provider The following variable specifies the default transaction system used by an

Artix client or server:

plugins:bus:default_tx_provider:plugin

To select the CORBA OTS transaction system, you must initialize this

configuration variable with the value, ots_tx_provider .

Figure 6: Overview of a Client-Server System that Uses OTS Lite

Artix Client Artix Server

OTS

Resource

OTS

OTS Lite

Configuring OTS Lite

41

Loading the OTS plug-in In order to use the CORBA OTS transaction system, the OTS plug-in must be

loaded both by the client and by the server. To load the OTS plug-in, include

the ots plug-in name in the orb_plugins list. For example:

Loading the OTS Lite plug-in The OTS Lite plug-in, which is capable of managing 1PC transactions, can

be loaded on the client side, but it is not usually needed on the server side.

You can load the OTS Lite plug-in in one of the following ways:

• Dynamic loading—configure Artix to load the ots_lite plug-in

dynamically, if it is required. For this approach, you need to configure

the initial_references:TransactionFactory:plugin variable as

follows:

This style of configuration has the advantage that the OTS Lite plug-in

is loaded only if it is actually needed.

• Explicit loading—load the ots_lite plug-in by adding it to the list of

orb_plugins , as follows:

Artix Configuration File
ots_lite_client_or_server {
 plugins:bus:default_tx_provider:plugin = "ots_tx_provider";
 orb_plugins = [..., "ots"];
};

Artix Configuration File
ots_lite_client_or_server {
 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = [..., "ots"];
 initial_references:TransactionFactory:plugin = "ots_lite";
 ...
};

Artix Configuration File
ots_lite_client {
 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = [..., "ots", "ots_lite"];
 ...
};

CHAPTER 3 | Selecting a Transaction System

 42

Sample configuration The following example shows a sample configuration for using the OTS Lite

transaction manager:

Artix Configuration File

Basic configuration for transaction plug-ins (sha red library
names and so on) included in the global configu ration scope.
... (not shown)

ots_lite_client_or_server {
 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = ["xmlfile_log_stream", "iiop_prof ile", "giop",

"iiop", "ots"];
 initial_references:TransactionFactory:plugin = "ots_lite";
};

Configuring OTS Encina

43

Configuring OTS Encina

Overview The Encina OTS Transaction Manager provides full recoverable 2PC

transaction coordination implemented on top of the industry proven Encina

Toolkit from IBM/Transarc. Encina supports both 1PC and 2PC protocols

and allows you to register multiple resources. Figure 7 shows a client/server

deployment that uses the OTS Encina plug-in.

Default transaction provider The following variable specifies the default transaction system used by an

Artix client or server:

plugins:bus:default_tx_provider:plugin

To select the CORBA OTS transaction system, you must initialize this

configuration variable with the value, ots_tx_provider .

Figure 7: Overview of a Client-Server System that Uses OTS Encina

Artix Client

OTS

OTS Encina

Artix Server

OTS

Resource

Artix Server

OTS

Resource

CHAPTER 3 | Selecting a Transaction System

 44

Loading the OTS plug-in For applications that use the CORBA OTS transaction system, the OTS

plug-in must be loaded both by the client and by the server. To load the OTS

plug-in, include the ots plug-in name in the orb_plugins list. For example:

Loading the OTS Encina plug-in The OTS Encina plug-in, which is capable of managing 1PC and 2PC

transactions, can be loaded on the client side, but it is not usually needed

on the server side. You can load the OTS Encina plug-in in one of the

following ways:

• Dynamic loading—configure Artix to load the ots_encina plug-in

dynamically, if it is required. For this approach, you need to configure

the initial_references:TransactionFactory:plugin variable as

follows:

This style of configuration has the advantage that the OTS Encina

plug-in is loaded only if it is actually needed.

• Explicit loading—load the ots_encina plug-in by adding it to the list of

orb_plugins , as follows:

Artix Configuration File
ots_encina_client_or_server {
 plugins:bus:default_tx_provider:plugin = "ots_tx_provider";
 orb_plugins = [..., "ots"];
};

Artix Configuration File
ots_encina_client_or_server {
 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = [..., "ots"];
 initial_references:TransactionFactory:plugin="ots_encina";
 ...
};

Artix Configuration File
ots_lite_client {
 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = [..., "ots", "ots_encina"];
 ...
};

Configuring OTS Encina

45

Sample configuration Example 9 shows a complete configuration for using the OTS Encina

transaction manager:

The preceding configuration can be described as follows:

1. These two lines configure Artix to use the CORBA OTS transaction

system and load the OTS plug-in.

2. This line configures Artix to load the ots_encina plug-in dynamically, if

it is needed by the application (typically needed on the client side).

3. Configuring Encina to use direct persistence means that the Encina

transaction manager service listens on a fixed IP port. The port on

which the transaction manager listens is specified by the

plugins:ots_encina:iiop:port variable.

Example 9: Sample Configuration for OTS Encina Plug-In

Artix Configuration File
ots_encina_client_or_server {

1 plugins:bus:default_tx_provider:plugin= "ots_tx _provider";
 orb_plugins = [..., "ots"];

2 initial_references:TransactionFactory:plugin = "ots_encina";

3 plugins:ots_encina:direct_persistence = "true";
 plugins:ots_encina:iiop:port = "3213";

4 plugins:ots_encina:initial_disk = "../../log/en cina.log";
5 plugins:ots_encina:initial_disk_size = "1";
6 plugins:ots_encina:restart_file =

"../../log/encina_restart";
7 plugins:ots_encina:backup_restart_file =

"../../log/encina_restart.bak";

 # Boilerplate configuration settings for OTS En cina:
 # (you should never need to change these)

8 plugins:ots_encina:shlib_name = "it_ots_encina" ;
 plugins:ots_encina_adm:shlib_name = "it_ots_enc ina_adm";
 plugins:ots_encina_adm:grammar_db =

"ots_encina_adm_grammar.txt";
 plugins:ots_encina_adm:help_db = "ots_encina_ad m_help.txt";
};

CHAPTER 3 | Selecting a Transaction System

 46

4. The plugins:ots_encina:initial_disk variable specifies the path for

the initial file used by the Encina OTS for its transaction logs.

If this file does not exist when you start the client, Encina OTS

automatically creates it (cold start).

5. The plugins:ots_encina:initial_disk_size variable specifies the

size of the initial file used by the Encina OTS for its transaction logs.

Defaults to 2.

6. The plugins:ots_encina:restart_file variable specifies the path for

the restart file, which Encina OTS uses to locate its transaction logs.

If this file does not exist when you start the client, Encina OTS

automatically creates it (cold start).

7. The plugins:ots_encina:backup_restart_file variable specifies the

path for the backup restart file, which Encina OTS uses to locate its

transaction logs.

If this file does not exist when you start the client, Encina OTS

automatically creates it (cold start).

8. The settings in the next few lines specify the basic configuration of the

OTS Encina plug-in. It should not be necessary ever to change the

values of these configuration settings.

Configuring Non-Recoverable WS-AT

47

Configuring Non-Recoverable WS-AT

Overview The WS-AtomicTransactions (WS-AT) transaction system uses SOAP

headers to transmit transaction contexts between the participants in a

transaction. The lightweight WS-AT transaction system supports the 2PC

protocol and allows you to register multiple resources; unlike OTS Encina,

however, it does not support recovery. Figure 8 shows a client/server

deployment that uses the lightweight WS-AT transaction system.

Default transaction provider The following variable specifies the default transaction system used by an

Artix client or server:

plugins:bus:default_tx_provider:plugin

To select the WS-AT transaction system, you must initialize this

configuration variable with the value, wsat_tx_provider .

Figure 8: Client-Server System that Uses Non-Recoverable WS-AT

Artix Client

WS-AT

WS-Coordination

Artix Server

WS-AT

Resource

Artix Server

WS-AT

Resource

CHAPTER 3 | Selecting a Transaction System

 48

Disabling recovery Since Artix version 4.0, the WS-AT transaction system is recoverable by

default (by layering itself over OTS Encina). Hence, to use the lightweight,

non-recoverable version of WS-AT in your application, you need to explicitly

disable recovery by setting the following configuration variable to true:

plugins:ws_coordination_service:disable_tx_recovery = "true";

Plug-ins for WS-AT The division of the WS-AT transaction system into separate plug-ins reflects

the fact that the WS-AT specification has two distinct parts:

WS-AtomicTransactions and WS-Coordination.

The following plug-ins are required to support the WS-AT transaction

system:

• wsat_protocol plug-in—implements WS-AtomicTransactions. It is

required by all services and clients that use WS-AT transactions. This

plug-in enables an Artix executable to receive and transmit WS-AT

transaction contexts.

• ws_coordination_service plug-in—implements WS-Coordination.

Only one instance of this plug-in is required (typically, loaded into a

client). This plug-in coordinates the two-phase commit protocol.

Sample configuration Example 10 shows a complete configuration for using the non-recoverable

WS-AT transaction manager:

Example 10:Sample Configuration for Non-Recoverable WS-AT

Artix Configuration File
ws_atomic_transactions {
 client
 {

1 orb_plugins = ["local_log_stream",
"ws_coordination_service"];

2 plugins:bus:default_tx_provider:plugin = "wsat_tx_provider";
3 plugins:ws_coordination_service:disable_tx_reco very ="true";

 };

 server
 {

4 orb_plugins = ["local_log_stream", "wsat_protocol",
"coordinator_stub_wsdl"];

 plugins:ws_coordination_service:disable_tx_reco very ="true";

Configuring Non-Recoverable WS-AT

49

The preceding configuration can be described as follows:

1. The ws_coordination_service plug-in is needed only on the client

side. Artix does not support auto-loading of this plug-in; you must

explicitly include it in the orb_plugins list.

The ws_coordination_service plug-in implicitly loads the

wsat_protocol plug-in as well. Hence, it is unnecessary to include

wsat_protocol plug-in in the orb_plugins list on the client side.

2. This line specifies that WS-AT is the default transaction provider. This

implies that whenever a client initiates a transaction (for example, by

calling begin_transaction()), Artix creates a new WS-AT transaction

by default.

3. This line specifies that transaction recovery is disabled. The effect of

this setting is that the transaction system relies on a lightweight,

non-recoverable implementation of WS-AT.

4. The server needs to load the wsat_protocol plug-in, in order to

process incoming atomic transactions coordination contexts and to

propagate transaction contexts. The coordinator_stub_wsdl plug-in

enables the server to talk to the WS-Coordination service on the client

side.

5. Strictly speaking, it is unnecessary to specify a default transaction

provider on the server side. On the server side, the transaction provider

is automatically determined by the incoming transaction context.

If the server needs to initiate its own transactions, however, it would be

appropriate to set the default transaction provider here also.

5 // No need to specify default_tx_provider h ere.
 };
};

Example 10:Sample Configuration for Non-Recoverable WS-AT

CHAPTER 3 | Selecting a Transaction System

 50

References The specifications for WS-AtomicTransactions and WS-Coordination are

available at the following locations:

• WS-AtomicTransactions

(http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-AtomicT

ransaction.pdf).

• WS-Coordination

(http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Coordin

ation.pdf).

http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-AtomicTransaction.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Coordination.pdf

Configuring Recoverable WS-AT

51

Configuring Recoverable WS-AT

Overview In order to provide enterprise-level transaction management using the

WS-AT protocols, Artix supports an option to layer WS-AT over the OTS

Encina transaction manager. With this configuration, WS-AT becomes a

fully recoverable transaction system. Figure 9 shows a client/server

deployment that uses the recoverable WS-AT transaction system.

Default transaction provider The following variable specifies the default transaction system used by an

Artix client or server:

plugins:bus:default_tx_provider:plugin

To select the WS-AT transaction system, you must initialize this

configuration variable with the value, wsat_tx_provider .

Figure 9: Client-Server System that Uses Recoverable WS-AT

Artix Client

WS-AT

WS-Coordination

Artix Server

WS-AT

Resource

Artix Server

WS-AT

Resource

OTS

OTS Encina

OTS

OTS

CHAPTER 3 | Selecting a Transaction System

 52

Enabling recovery Since Artix version 4.0, the WS-AT transaction system is recoverable by

default. Hence, to use the recoverable version of WS-AT in your application,

you can either omit the

plugins:ws_coordination_service:disable_tx_recovery variable from

your Artix configuration file or set it to false, as follows:

Loading WS-AT and OTS Encina

plug-ins

The configuration for the recoverable WS-AT transaction system is

essentially a combination of the WS-AT configuration and the OTS Encina

configuration. It is only necessary to load the WS-AT plug-ins explicitly—if

recovery is enabled, Artix implicitly loads the OTS and OTS Encina plug-ins.

Sample configuration Example 10 shows a complete configuration for using the recoverable

WS-AT transaction manager:

Artix Configuration File
plugins:ws_coordination_service:disable_tx_recovery = "false";

Example 11:Sample Configuration for Recoverable WS-AT

Artix Configuration File
ws_atomic_transactions {
 client
 {

1 orb_plugins = ["local_log_stream",
"ws_coordination_service"];

2 plugins:bus:default_tx_provider:plugin = "wsat_tx_provider";

3 # OTS Encina Configuration
 initial_references:TransactionFactory:plugin =

"ots_encina";
 plugins:ots_encina:direct_persistence = "true ";
 plugins:ots_encina:iiop:port = "3213";
 plugins:ots_encina:initial_disk = "../../log/ encina.log";
 plugins:ots_encina:initial_disk_size = "1";
 plugins:ots_encina:restart_file =

"../../log/encina_restart";
 plugins:ots_encina:backup_restart_file =

"../../log/encina_restart.bak";

 # Boilerplate configuration settings for OTS Encina:
 # (you should never need to change these)
 plugins:ots_encina:shlib_name = "it_ots_encin a";

Configuring Recoverable WS-AT

53

The preceding configuration can be described as follows:

1. The ws_coordination_service plug-in is needed only on the client

side. Artix does not support auto-loading of this plug-in; you must

explicitly include it in the orb_plugins list.

The ws_coordination_service plug-in implicitly loads the

wsat_protocol , ots , and ots_encina plug-ins as well. Hence, it is

unnecessary to include the wsat_protocol , ots , and ots_encina

plug-ins in the orb_plugins list on the client side.

2. This line specifies that WS-AT is the default transaction provider. This

implies that whenever a client initiates a transaction (for example, by

calling begin_transaction()), Artix creates a new WS-AT transaction

by default.

3. From this line up to the end of the client scope shows the OTS Encina

configuraion settings. For detailed descriptions of the OTS Encina

settings, see “Sample configuration” on page 45.

4. The server needs to load the wsat_protocol plug-in, in order to

process incoming WS-AT coordination contexts and to propagate

transaction contexts. The coordinator_stub_wsdl plug-in enables the

server to talk to the WS-Coordination service on the client side.

 plugins:ots_encina_adm:shlib_name = "it_ots_e ncina_adm";
 plugins:ots_encina_adm:grammar_db =

"ots_encina_adm_grammar.txt";
 plugins:ots_encina_adm:help_db = "ots_encina_ adm_help.txt";
 };

 server
 {

4 orb_plugins = ["local_log_stream", "wsat_protocol",
"coordinator_stub_wsdl"];

5 // No need to specify default_tx_provider h ere.
 };
};

Example 11:Sample Configuration for Recoverable WS-AT

CHAPTER 3 | Selecting a Transaction System

 54

5. Strictly speaking, it is unnecessary to specify a default transaction

provider on the server side. On the server side, the transaction provider

is automatically determined by the incoming transaction context.

If the server needs to initiate its own transactions, however, it would be

appropriate to set the default transaction provider here also.

55

CHAPTER 4

Basic Transaction
Programming
This chapter covers the basics of programming transactional
clients and servers. For simple applications, this probably
covers all you need to know about transaction programming.

In this chapter This chapter discusses the following topics:

Artix Transaction Interfaces page 56

Beginning and Ending Transactions page 59

Server Programming page 62

CHAPTER 4 | Basic Transaction Programming

 56

Artix Transaction Interfaces

Overview Figure 10 shows an overview of the main classes that make up the Artix

transaction API. The Artix transaction API is designed to function as a

generic wrapper for a wide variety of specific transaction systems. As long as

your code is restricted to using the generic classes, you will be able to

switch between any of the transaction systems supported by Artix.

On the server side it is likely that you will need to access advanced

functionality, which is available only from technology-specific transaction

manager classes, such as OTSTransactionManager or

WSATTransactionManager .

Figure 10: Overview of the Artix Transaction API

...

WSATTransactionManager

OTSTransactionManager

TransactionSystemIT_Bus::Bus

transactions()

dynamic_cast<...>

TransactionManager

TransactionParticipant

TransactionNotificationHandler

get_transaction_manager()

Artix Transaction Interfaces

57

Accessing the transaction system To access the Artix transaction system, call the transactions() function on

the Bus. The returned IT_Bus::TransactionSystem reference provides the

starting point for accessing all aspects of Artix transactions.

The IT_Bus::Bus::transactions() function has the following signature:

IT_Bus::TransactionSystem&
transactions() IT_THROW_DECL((IT_Bus::Exception));

TransactionSystem class The IT_Bus::TransactionSystem class provides the basic functions needed

for transaction demarcation on the client side (begin_transaction() ,

commit_transaction() and rollback_transaction()). For more details see

“Beginning and Ending Transactions” on page 59.

To access server-side functions and advanced client-side functions, you

must call IT_Bus::TransactionSystem::get_transaction_manager() to

obtain an IT_Bus::TransactionManager instance.

TransactionManager class The IT_Bus::TransactionManager class provides server-side functions and

advanced transaction functionality. For the server side, the most important

member function is IT_Bus::TransactionManager::enlist() , which

enables you to implement a transactional resource by enlisting a transaction

participant object.

In order to support multiple transaction systems, the TransactionManager

class is designed as a facade, which is layered above a specific

implementation. In some cases, if the functionality provided by the generic

TransactionManager is not sufficient, you might need to downcast the

TransactionManager reference to one of the following types:

• OTSTransactionManager class.

• WSATTransactionManager class.

OTSTransactionManager class The IT_Bus::OTSTransactionManager class provides access to an

underlying CORBA OTS implementation of the transaction system. Using

this class, you can access the CosTransactions::Coordinator and the

CosTransactions::Current objects for this transaction.

A discussion of the CORBA OTS is beyond the scope of this guide. For more

details, see the CORBA OTS Guide

(http://www.iona.com/support/docs/orbix/6.2/develop.xml), which is

available from the Orbix documentation suite.

http://www.iona.com/support/docs/orbix/6.2/develop.xml
http://www.iona.com/support/docs/orbix/6.2/develop.xml

CHAPTER 4 | Basic Transaction Programming

 58

WSATTransactionManager class The IT_Bus::WSATTransactionManager class provides access to an

underlying WS-AT implementation of the transaction system. Currently, the

WSATTransactionManager class provides access to the WS-AT context,

which is included in a SOAP header with every transactional operation call.

TransactionParticipant base class If you want to implement a transactional resource on the server side, you

can define and implement a class that inherits from the

IT_Bus::TransactionParticipant base class. The

TransactionParticipant class receives callbacks from the transaction

manager that are used to coordinate the commit or rollback steps with other

transaction participants. For more details, see “Recoverable Resources” on

page 109.

There are alternative ways of implementing a transactional resource, which

do not require you to implement a TransactionParticipant class. Some

transaction managers (for example, OTSTransactionManager) support

alternative approaches.

TransactionNotificationHandler

base class

If you want to synchronize certain actions with the committing or rolling

back of a transaction, you can define and implement a class that inherits

from the IT_Bus::TransactionNotificationHandler base class. The

IT_Bus::TransactionNotificationHandler class receives notification

callbacks from the transaction manager whenever a transaction is either

committed or rolled back.

Beginning and Ending Transactions

59

Beginning and Ending Transactions

Overview On the client side, the functions for beginning and committing (or rolling

back) a transaction are collectively referred to as transaction demarcation

functions. Within a given thread, any Artix operations invoked after the

transaction begin and before the transaction commit (or rollback) are

implicitly associated with the transaction. The transaction demarcation

functions are typically the only functions that you need on the client side.

TransactionSystem member

functions

Example 12 shows the public member functions of the

IT_Bus::TransactionSystem class.

Example 12:The IT_Bus::TransactionSystem Class

// C++
namespace IT_Bus
{
 class IT_BUS_API TransactionSystem
 : public virtual RefCountedBase
 {
 public:
 virtual ~TransactionSystem();

 virtual void
 begin_transaction() IT_THROW_DECL((Exceptio n)) = 0;

 virtual Boolean
 commit_transaction(
 Boolean report_heuristics
) IT_THROW_DECL((Exception)) = 0;

 virtual void
 rollback_transaction() IT_THROW_DECL((Excep tion)) = 0;

 virtual TransactionManager&
 get_transaction_manager(
 const String&

tx_manager_type=DEFAULT_TRANSACTION_TYPE
) IT_THROW_DECL((Exception)) = 0;

 virtual Boolean

CHAPTER 4 | Basic Transaction Programming

 60

Client transaction functions The following functions are used to demarcate transactions on the client

side:

• begin_transaction() —creates a new transaction on the client side

and associates it with the current thread. This function takes no

arguments and has no return value.

This function can throw the following exceptions:

♦ TransactionAlreadyActiveException is thrown if

begin_transaction() is called inside an already active

transaction.

♦ TransactionSystemUnavailableException is thrown if the

transaction system cannot be loaded. This usually points to a

configuration problem.

• commit_transaction() —ends the transaction normally, making any

changes permanent. This function takes a single boolean argument,

report_heuristics , and returns true , if the transaction is commited

successfully.

This function can throw the following exception:

♦ NoActiveTransactionException is thrown if there is there is no

transaction associated with the current thread.

• rollback_transaction() —aborts the transaction, rolling back any

changes.

This function can throw the following exception:

 within_transaction() = 0;
 ...
 // String constants for transaction manager types
 static const String DEFAULT_TRANSACT ION_TYPE;
 static const String WSAT_TRANSACTION _TYPE;
 static const String OTS_TRANSACTION_ TYPE;
 static const String XA_TRANSACTION_T YPE;
 ...
 };

 typedef Var<TransactionSystem> TransactionSystem_var;
 typedef TransactionSystem* TransactionSystem_ptr;
};

Example 12:The IT_Bus::TransactionSystem Class

Beginning and Ending Transactions

61

♦ NoActiveTransactionException is thrown if there is there is no

transaction associated with the current thread.

Other transaction functions In addition to the preceding demarcation functions, which are intended for

use on the client side, the TransactionSystem class also provides the

following functions, which can be used both on the client side and on the

server side:

• within_transaction() —returns true if the current thread is

associated with a transaction; otherwise, false .

• get_transaction_manager() —returns a reference to a

TransactionManager object, which provides access to advanced

transaction features.

Typically, a TransactionManager object is needed on the server side in

order to enlist participants in a transaction (for example, see

“Recoverable Resources” on page 109). For advanced applications,

you can also downcast the TransactionManager reference to get a

particular implementation of the transaction system (for example, an

IT_Bus::OTSTransactionManager object or an

IT_Bus::WSATTransactionManager object).

This function can throw the following exception:

♦ TransactionSystemUnavailableException is thrown if the

transaction system cannot be loaded.

CHAPTER 4 | Basic Transaction Programming

 62

Server Programming

Overview On the server side, the main transactions-related programming task is the

integration of resources with the Artix transaction system. The purpose of

this integration step is to enable the Artix transaction manager to control the

resource’s transactions.

By far the simplest and most common method of integrating resources into

the Artix transaction system is to use the XA standard, which is supported

by most modern databases. An XA-compliant resource provides a special

data structure, the XA switch, which you can then register with Artix in order

to integrate the resource with the Artix transaction system.

In this section This section contains the following subsections:

Registering an XA Resource page 63

Dynamic Registration Optimization page 69

Writing a Custom Resource page 76

Server-Side Programming Model page 77

Server Programming

63

Registering an XA Resource

Overview The simplest way to integrate a third-party resource (such as a database)

into the Artix transaction system is to use the XA interface. If the third-party

resource supports the XA interface, all that you need to do to integrate the

resource with the Artix transaction system is to register a particular type of

object, an XA switch, with the Artix transaction manager. This puts the Artix

transaction manager in charge of beginning, committing and rolling back

transactions associated with the XA resource. This also implies that the

resource can now participate in distributed transactions, since these are

supported by the Artix transaction manager.

When to register an XA resource You should register an XA resource in the main() function as your

application program is performing initialization and before you attempt to

access the resource for the first time.

register_xa_resource() function The register_xa_resource() function, which is a member of the

IT_Bus::XATransactionManager class, is used to register third-party XA

resource managers with the Artix transaction manager. Example 13 gives

the signature of the register_xa_resource() function.

Example 13:The register_xa_resource() Function

// C++
// In IT_Bus::XATransactionManager
IT_Bus::Boolean
register_xa_resource(
 xa_switch_t* xa_switch,
 IT_Bus::String open_string,
 IT_Bus::String close_string,
 IT_Bus::String resource_manager_identifier,
 IT_Bus::Boolean use_dynamic_registration_optimi zation,
 IT_Bus::Boolean is_single_threaded_resource
)=0;

CHAPTER 4 | Basic Transaction Programming

 64

register_xa_resource() arguments The IT_Bus::XATransactionManager::register_xa_resource() function

takes the following arguments:

• xa_switch,

• open_string,

• close_string,

• resource_manager_identifier,

• use_dynamic_registration_optimization,

• is_single_threaded_resource.

xa_switch The xa_switch argument is a pointer to an xa_switch_t instance, which is

provided by the third-party XA resource manager. The xa_switch_t type is

declared in the <orbix_sys/xa.h> header, which you need to include in any

file that references the xa_switch_t type.

Each XA resource manager defines a specific XA switch instance, which is

essentially a global struct variable. Table 1 gives the identifier names for

some common XA resource managers.

open_string The open_string argument specifies the string that the Artix XA transaction

manager passes to xa_open() when it opens a connection to the XA

resource manager. The form of the open string is not defined by Artix; it is

defined by the particular third-party XA resource manager being registered.

Table 1: Sample Mechanisms for Obtaining XA Switches

XA Resource
Manager

XA Switch Instance

Oracle DB Two XA switches are defined as global instances
in the Oracle sqlca.h header file:

• xaosw—normal Oracle XA switch.

• xaoswd —Oracle XA switch that supports

dynamic registration.

Sybase DB sybase_xa_switch

DB2 db2xa_switch (UNIX), or

*db2xa_switch (Windows)

Server Programming

65

The XA standard intends that the open string be used as a general

mechanism for passing initialization parameters to the XA resource

manager.

Examples of open strings for some common XA resource managers are

provided in Table 2.

close_string The close_string argument specifies the string that the Artix XA

transaction manager passes to xa_close() when it closes a connection to

the XA resource manager.

Examples of close strings for some common XA resource managers are

provided in Table 3. Some XA resource managers (for example, Oracle DB)

ignore the close string, in which case you can pass an empty string, "" .

Table 2: Examples of Open Strings for Some XA Resource Managers

XA Resource
Manager

Example Open String

Oracle DB Oracle_XA+Acc=P/SCOTT/TIGER+SesTm=60+thre

ads=true

Sybase DB -U<Username> -P <Password> -N <DB_Name>

-T <LoggingType> -L <LogFile>

DB2 <DB_Name>, <Username>, <Password>

Note: An empty open string, "" , is treated as a special case. In this case,
Artix assumes that the open string is specified in the Artix configuration
file. The name of the configuration variable that specifies the open string is
determined by the resource_manager_identifier argument.

Table 3: Examples of Close Strings for Some XA Resource Managers

XA Resource
Manager

Example Close String

Oracle DB None

Sybase DB None

DB2 None

CHAPTER 4 | Basic Transaction Programming

 66

resource_manager_identifier The resource_manager_identifier argument specifies a string that serves

as a name prefix for certain configuration variables in the Artix configuration

file. These configuration variables can then be used to configure the

resource manager registration.

In particular, if you pass an empty string, "" , as the open_string argument,

Artix assumes that you want to specify the value of the open string in

configuration instead of passing it as an argument. In this case, Artix looks

for a configuration variable called ResourceManagerPrefix:open_string ,

where ResourceManagerPrefix is the string passed as the

resource_manager_identifier argument.

For example, if you specify the open_string argument to be an empty

string, "" , and the resource_manager_identifier argument to be

xa_resource_managers:oracle , you can then specify the open string in the

Artix configuration file as follows:

Where the Artix Bus has been initialized with the configuration scope,

oracle_xa_example .

use_dynamic_registration_optimi

zation

The use_dynamic_registration_optimization argument is a boolean flag

that informs the Artix XA transaction manager whether or not the resource

manager has enabled the dynamic registration optimization. Consult the

Artix Configuration File
oracle_xa_example {
 xa_resource_managers:oracle:open_string =
 "Oracle_XA+Acc=P/SCOTT/TIGER+SesTm=60";
 xa_resource_managers:oracle:close_string="";

 poa:xa_resource_managers:oracle:direct_persiste nt="true";
 poa:xa_resource_managers:oracle:well_known_addr ess:host
 ="0.0.0.0"; # all network adapters
 poa:xa_resource_managers:oracle:well_known_addr ess:port
 ="13003"; # unique port
 ...
};

Server Programming

67

documentation for your third-party XA resource manager to discover whether

or not this optimization is supported. If the optimization is supported, you

can enable it as follows:

1. Follow the instructions in the third-party XA resource manager

documentation to enable the dynamic registration optimization.

2. Pass the value, true , to the

use_dynamic_registration_optimization argument.

It is important to ensure that both the transaction manager and the resource

manager are aware of the dynamic registration optimization, because this

optimization changes the nature of their interaction through the XA

interface. For more details, see “Dynamic Registration Optimization” on

page 69.

is_single_threaded_resource The is_single_threaded_resource argument is a boolean flag that selects

the XA threading model in the transaction manager as follows:

• false —the XA threading model is multi-threaded (each thread maps

to a resource connection),

• true —the XA threading model is single-threaded (a process maps to a

single resource connection).

You must also ensure that the third-party XA resource manager is configured

to use the same threading model as the transaction manager.

For example, if you want to use the multi-threaded model with the Oracle

XA switch, you must include the setting, threads=true , in the Oracle XA

open string.

For more details see “Threading and XA Resources” on page 93.

Example Example 14 shows an example of how to register an Oracle XA switch with

the Artix XA transaction manager.

Example 14:Example of Registering an Oracle XA Switch

// C++
#include <it_bus/bus.h>
#include <it_bus/transaction_system.h>
#include <it_bus_pdk/xa_transaction_manager.h>

1 #include <orbix_sys/xa.h>

2 #include <sqlca.h>

CHAPTER 4 | Basic Transaction Programming

 68

The preceding code fragment can be explained as follows:

1. The Artix orbix_sys/xa.h header file contains the standard declaration

of the xa_switch_t struct type, as defined in the The XA Specification.

Include this header in any file that refers to the xa_switch_t type.

2. The sqlca.h header file is an Oracle header file that defines two

instances of xa_switch_t type: xaosw , for a normal XA switch, and

xaoswd , for a dynamically registering XA switch.

3. Declare xaosw to be an external C type (the xa_switch_t type is

declared in C, not C++).

4. From the Bus instance, obtain an IT_Bus::XATransactionManager

instance.

5. Call register_xa_resource() on the XATransactionManager instance

to register the Oracle XA switch, xaosw , with the Artix XA transaction

manager. In this example, the open string is provided explicitly in the

second parameter; the resource manager identifier is not used (empty

string); the dynamic registration optimization is not used; and the

threading model is multi-threaded.

3 extern "C" IT_DECLSPEC_IMPORT xa_switch_t xaosw;

IT_Bus::Bus_var bus = ...
...

4 IT_Bus::XATransactionManager& xa_tx_mgr = dynamic_c ast
<IT_Bus::XATransactionManager&>(
 bus->transactions().get_transaction_manager(
 IT_Bus::TransactionSystem::XA_TRANSACTION_T YPE
)
);

5 xa_tx_mgr-> register_xa_resource(
 &xaosw, // Oracle XA switch
 "Oracle_XA+Acc=P/SCOTT/TIGER+SesTm=60+threads=t rue",
 // Oracle open string
 "", // Oracle close strin g
 "", // resource manager i dentifier
 false, // dynamic registrati on?
 true // multi-threaded?
);

Example 14:Example of Registering an Oracle XA Switch

Server Programming

69

Dynamic Registration Optimization

Overview The dynamic registration optimization is a variation of the usual protocol

that governs interactions between an XA transaction manager and an XA

resource manager. Typically, it results in more efficient access to the

resource. For example, if the resource is a database, this optimization

causes the database tables to be locked less often, thereby improving

concurrency. Hence, it is usually a good idea to enable this optimization.

If you just want to know how to enable this feature, skip ahead to “Enabling

dynamic registration” on page 73 for details. For advanced users, this

subsection also provides background information on the dynamic

registration optimization, so that you can understand how this protocol

works. A key difference between dynamic registration and normal

registration is that dynamic registration exploits the AX interface.

AX interface Example 15 shows the signatures of the two functions, ax_reg() and

ax_unreg() , that constitute the AX interface. These functions enable an XA

resource manager to call back on an XA transaction manager (that is,

reversing the usual direction of control, where the transaction manager calls

the resource manager).

The AX functions can be explained as follows:

• ax_reg() function—is called by the resource manager to inform the

transaction manager that work is about to begin on a transaction in the

current thread. For example, in the case of a database, the ax_reg()

call would be triggered, when the application code attempts to perform

a database update.

• ax_unreg() function—is needed only for the special case where an

application makes some database updates outside the context of a

global transaction. The resource manager then calls ax_unreg() to

Example 15:Functions in the AX Interface

/* C */
int ax_reg(int rmid, XID *xid, long flags)

int ax_unreg(int rmid, long flags)

CHAPTER 4 | Basic Transaction Programming

 70

inform the transaction manager that the work has ended and,

therefore, the current thread is free once more to participate in a global

transaction.

Normal registration Figure 11 shows the outline of an Artix transactional server that has a

normally registered resource manager, where FooImpl::op() is the

implementation of the WSDL operation, op() .

The server is divided up into the following parts:

• The Application Code—showing the implementation of the WSDL

operation, op() , and

• The Transaction Manager—showing the calls made by the Artix

transaction manager,

• The Resource Manager—showing a database resource and its

associated XA resource manager.

The shaded area shows the scope of the association between the current

thread and a transaction branch in the resource manager. The association

begins with xa_start() and ends with xa_end() .

Figure 11: Invocation Dispatch for a Normally Registered RM

FooImpl::op()
{
 .
 .
 EXEC SQL UPDATE
 .
 EXEC SQL UPDATE
 .
 .
}

1
2

3

4

5

Application Code
Transaction

Manager
Resource
Manager

xa_start()

xa_end()

Oracle DB

Upcall

Return

Transaction Branch Scope

Server Programming

71

Steps in normal registration In this scenario, the Artix server accesses an XA resource which is registered

normally. When the server receives a client request with transactional

context, the invocation dispatch proceeds as follows:

1. Before dispatching the invocation, the Artix transaction manager (TM)

obtains a list of all the registered XA resource managers (RMs). In this

case, there is only one RM, which is registered normally. The TM calls

xa_start() on the RM, thereby creating an association between the

current thread and a transaction branch in the RM.

2. The Artix runtime makes an upcall to the FooImpl::op() function,

which implements the WSDL operation, op() .

3. In the body of the op() function, the application code makes updates

to the resource—for example, through some embedded SQL calls such

as EXEC SQL UPDATE. These updates are governed by the current

transaction.

4. The FooImpl::op() upcall returns.

5. The Artix TM calls xa_end() on the RM, thereby ending the association

between the current thread and the transaction branch in the RM.

Note: The xa_start() call typically imposes some overheads on the
resource. For example, a mutex lock might be set on the database
connection.

CHAPTER 4 | Basic Transaction Programming

 72

Dynamic registration Figure 12 shows the outline of an Artix transactional server that has a

dynamically registered resource manager, where FooImpl::op() is the

implementation of the WSDL operation, op() .

The shaded area shows the scope of the association between the current

thread and a transaction branch in the resource manager. The association

begins when the RM calls ax_reg() and ends when the TM calls xa_end() .

Steps in dynamic registration In this scenario, the Artix server accesses an XA resource which is registered

dynamically. When the server receives a client request with transactional

context, the invocation dispatch proceeds as follows:

1. Before dispatching the invocation, the Artix TM obtains a list of all the

registered XA RMs. In this case, there is one dynamically registered

RM. The TM does not call xa_start() on the dynamically registered

RM.

2. The Artix runtime makes an upcall to the FooImpl::op() function,

which implements the WSDL operation, op() .

3. In the body of the op() function, the application code makes updates

to the resource—for example, through some embedded SQL calls such

as EXEC SQL UPDATE. The very first update triggers the RM to make an

ax_reg() callback on the TM. This callback initiates an association

between the current thread and a transaction branch in the RM.

Figure 12: Invocation Dispatch for a Dynamically Registered RM

FooImpl::op()
{
 .
 .
 EXEC SQL UPDATE
 .
 EXEC SQL UPDATE
 .
 .
}

1
2

3

4

5

Application Code
Transaction

Manager
Resource
Manager

ax_reg()

xa_end()
Oracle DB

Upcall

Return

Transaction Branch Scope

Server Programming

73

4. The FooImpl::op() upcall returns.

5. The Artix TM calls xa_end() on the dynamically registered RM, thereby

ending the association between the current thread and the transaction

branch in the RM.

Enabling dynamic registration To enable dynamic registration for a particular XA resource, perform the

following steps:

1. Follow the instructions in the third-party XA resource manager

documentation to enable the dynamic registration optimization.

2. In particular, you must ensure that the Artix library containing the

implementation of the AX interface (ax_reg() and ax_unreg()

functions) is accessible to the third-party XA resource manager. The

Artix library containing the AX interface implementation is, as follows:

♦ Windows platforms—it_xa.lib .

♦ UNIX platforms—libit_xa.so or libit_xa.sl .

3. Pass the value, true , to the

use_dynamic_registration_optimization argument of the

IT_Bus::XATransactionManager::register_xa_resource() function

when you are registering the resource manager’s XA switch.

It is important to ensure that both the transaction manager and the resource

manager are aware of the dynamic registration optimization, because this

optimization changes the nature of their interaction through the XA

interface.

The following examples explain how to enable dynamic registration for

certain third-party XA resource managers:

• Enabling dynamic registration for Oracle.

• Enabling dynamic registration for DB2.

CHAPTER 4 | Basic Transaction Programming

 74

Enabling dynamic registration for

Oracle

In Oracle, dynamic registration is enabled by registering a special XA switch

instance, xaoswd , instead of the normal XA switch instance, xaosw . You

must also set the dynamic registration flag in the register_xa_resource()

call to true . Sample code for registering an Oracle XA switch with dynamic

registration enabled is shown in Example 16.

To make the Artix implementation of the AX interface available to Oracle,

you must also ensure that the it_xa.lib (Windows) or libit_xa[.so][.sl]

(UNIX) library is placed in the link line before the Oracle client library.

Enabling dynamic registration for

DB2

In DB2, dynamic registration is enabled by updating the DB2 configuration

with the name of the Artix library that implements the AX interface. Enter

the following db2 command:

db2 update dbm cfg using TP_MON_NAME <AX_LibNameRoot>

Where <AX_LibNameRoot> is the name of the relevant Artix library less the

filename suffix—that is, it_xa (Windows) or libit_xa.so , libit_xa.sl

(UNIX). The Artix library must also be made accessible to DB2 (by including

it in the library path, or whatever is appropriate for your platform). You need

to restart DB2 after issuing this command.

Example 16:Dynamic Registration for the Oracle XA Resource Manager

// C++
#include <it_bus/bus.h>
#include <it_bus/transaction_system.h>
#include <it_bus_pdk/xa_transaction_manager.h>
#include <orbix_sys/xa.h>

#include <sqlca.h>
extern "C" IT_DECLSPEC_IMPORT xa_switch_t xaoswd;
...
xa_tx_mgr->register_xa_resource(
 &xaoswd, // Oracle XA dynamic switch
 "Oracle_XA+Acc=P/SCOTT/TIGER+SesTm=60+threads=t rue",
 // Oracle open string
 "", // Oracle close strin g
 "", // resource manager i dentifier
 true, // dynamic registration = true
 false // single-threaded = false
);

Server Programming

75

You must also set the dynamic registration flag in the

register_xa_resource() call to true . Sample code for registering a DB2

XA switch with dynamic registration enabled is shown in Example 17.

Example 17:Dynamic Registration for the DB2 XA Resource Manager

// C++
#include <it_bus/bus.h>
#include <it_bus/transaction_system.h>
#include <it_bus_pdk/xa_transaction_manager.h>
#include <orbix_sys/xa.h>

#ifdef WIN32
#define db2xa_switch (*db2xa_switch)
#endif
extern "C" IT_DECLSPEC_IMPORT xa_switch_t db2xa_switch;
...
xa_tx_mgr->register_xa_resource(
 &db2xa_switch, // DB2 XA switch
 " <DB_Name>, <Username>, <Password>",
 // DB2 open string
 "", // DB2 close string
 "", // resource manager i dentifier
 true, // dynamic registration = true
 false // single-threaded = false
);

CHAPTER 4 | Basic Transaction Programming

 76

Writing a Custom Resource

When do you need a custom

resource?

Occasionally, it might be necessary to integrate a resource with the Artix

transaction manager, where that resource does not support the XA standard.

That is, the resource does not provide an XA switch that can be registered

with a transaction manager.

Implementing a custom resource In this case, you would have to write a custom resource by implementing a

class that derives from the Artix IT_Bus::TransactionParticipant base

class. This custom resource would implement the same functionality as a

resource manager. Writing the custom resource is a fairly complex task that

requires a good understanding of transaction systems.

Reference For an introduction to some of the programming issues involved in writing a

custom resource, see “Recoverable Resources” on page 109.

Server Programming

77

Server-Side Programming Model

Overview When you register an XA resource with Artix, this typically has an impact on

the way you program the XA resource itself. You should consult the

documentation for the third-party resource in order to get a detailed

overview of the resource’s programming model under XA.

Although the programming model under XA is specific to a particular

resource implementation, it is possible to make a few general observations

on the programming model, as follows:

• Restrictions on connecting to and disconnecting from a resource.

• Transaction demarcation restrictions.

• Demarcation models under XA.

Restrictions on connecting to and

disconnecting from a resource

Typically, an XA switch is implemented in such a way that xa_open() is

responsible for opening a connection to the XA resource and xa_close() is

responsible for closing the connection to the XA resource. In this case the

Artix transaction manager, through calls to xa_open() and xa_close() , is

responsible for opening and closing connections to the resource. Typically,

this implies that you must avoid making any explicit calls (using the

resource API) to open or close connections to the resource.

For example, when you register an XA switch for the Oracle database, the

xa_open() and xa_close() calls are responsible for opening and closing

connections to the database. When an XA switch is registered, Oracle

forbids you from opening or closing a database connection explicitly.

Transaction demarcation

restrictions

If your third-party resource has a native demarcation API—that is, a native

API for beginning, committing and rolling back transactions—you must not

use this native demarcation API when you have registered the resource’s XA

switch.

For example, if the resource is a database supporting embedded SQL, you

must avoid using any embedded SQL statements that demarcate a

transaction (whether explicitly or implicitly). At a minimum, you must avoid

using the EXEC SQL BEGIN, EXEC SQL COMMIT, and EXEC SQL ROLLBACK

commands.

CHAPTER 4 | Basic Transaction Programming

 78

Demarcation models under XA When a resource’s transactions are under the control of the Artix XA

transaction manager, the programming model for transaction demarcation

changes fundamentally. When implementing a WSDL operation in Artix,

there are essentially two different cases to consider:

• Operation participating in a global transaction.

• Operation not participating in a global transaction.

• Operation sometimes participating in a global transaction.

Operation participating in a global

transaction

If you are writing database code in the body of an operation which always

participates in a global transaction (that is, incoming requests always

include a transaction context), you should observe the following coding

guidelines when accessing the database:

• Do not open or close any database connections—that is the

responsibility of the transaction manager.

• Do not use any embedded SQL commands that demaracate

transactions. For example, avoid using EXEC SQL BEGIN, EXEC SQL

COMMIT, and EXEC SQL ROLLBACK.

• Do not use any native database APIs that demarcate transactions.

• Do not use the Artix begin_transaction() , commit_transaction() ,

and rollback_transaction() functions (defined on the

IT_Bus::TransactionSystem object). A thread can only associate with

one transaction at a time and the operation’s thread is already

associated with a global transaction.

Operation not participating in a

global transaction

If you are writing database code in the body of an operation which never

participates in a global transaction (that is, incoming requests never include

a transaction context), you should observe the following coding guidelines

when accessing the database:

• Do not open or close any database connections—that is the

responsibility of the transaction manager.

• You can demarcate transactions, but you must not do so using

embedded SQL commands or the native database API. Instead, use

the demarcation functions provided by the Artix

IT_Bus::TransactionSystem class—that is, begin_transaction() ,

commit_transaction() , and rollback_transaction() .

Server Programming

79

Operation sometimes

participating in a global

transaction

Artix currently does not support operations that are sometimes called with a

transaction context and sometimes not.

CHAPTER 4 | Basic Transaction Programming

 80

81

CHAPTER 5

Transaction
Propagation
Transaction propagation refers to the implicit propagation of
transaction context data in message headers.

In this chapter This chapter discusses the following topics:

Transaction Propagation and Interposition page 82

CHAPTER 5 | Transaction Propagation

 82

Transaction Propagation and Interposition

Overview In a multi-tier application, Artix automatically propagates transactions from

tier to tier. This ensures that all of the processes that are relevant to the

outcome of a transaction can participate in the transaction. You do not have

to do anything special to switch on transaction propagation; it is enabled by

default. However, the receiver of a transaction context must have a

transaction plug-in loaded, otherwise the transaction context would be

ignored.

Transaction contexts A transaction context is a data structure that is transmitted to a remote

server and used to recreate the transaction at a remote location. The type of

transaction context that is transmitted depends on the middleware protocol.

Artix supports the following kinds of transaction context:

• OTS transaction context—a transaction context that is sent in a GIOP

header (part of the CORBA standard).

• WS-AT transaction context—a transaction context that is embedded in

a SOAP header.

Propagation scenario The propagation scenario shown in Figure 13 shows two different kinds of

transaction propagation, as follows:

• Transaction propagation within a single middleware technology—the

OTS transaction context, which propagates across the top half of

Figure 13, illustrates a simple kind of propagation, where the client

and the servers all use the same CORBA OTS transaction technology.

• Transaction propagation across middleware technologies—the WS-AT

transaction context, which propagates across the bottom half of

Figure 13, illustrates a kind of propagation, where the transaction

crosses technology domains. While the client uses OTS Encina to

Transaction Propagation and Interposition

83

manage the transaction, it must generate a WS-AT transaction context

to send to the server. The ability to transform transaction contexts is

known as interposition.

Scenario steps The propagation scenario shown in Figure 13 can be described as follows:

Figure 13: Overview of Different Kinds of Transaction Propagation

Artix Client

OTS

OTS Encina

Artix Server
CORBA

OTS

Resource

Artix Server
SOAP/HTTP

WS-AT

Resource

Artix Server
CORBA

OTS1

2 3

4

5

WS-AT
Tx Context

OTS
Tx Context

OTS
Tx Context

Stage Description

1 The Artix client (which is configured to use the OTS Encina
transaction system) initiates a transaction by calling the
begin_transaction() function. The client then invokes a
remote operation, which results in a request message being
sent over an IIOP connection.

2 The request received by the server includes an OTS transaction
context embedded in a GIOP header. Although this server does
not participate directly in the transaction (it registers no
resources), it is capable of propagating the transaction context
to the next tier in the application.

CHAPTER 5 | Transaction Propagation

 84

Limitation of using OTS Lite with

propagation

Figure 14 shows an interposition scenario where the client, which uses an

OTS transaction system, connects to a SOAP/HTTP server, which uses the

WS-AT transaction system.

Because there is only one explicitly registered resource in this scenario (the

database connected to the server), it would seem that the client could use

an OTS Lite transaction manager for this scenario. In reality, however, the

client must use the OTS Encina transaction manager. The reason for this is

that Artix implicitly registers an interposition resource to bridge the

OTS-to-WS-AT middleware boundary. Therefore, there are really two

resources in this scenario.

3 The third tier of the application receives a request containing
an OTS transaction context. This server participates in the
transaction by registering a database resource with the OTS
transaction manager.

4 The client invokes a remote operation, which results in a
request message being sent over a SOAP/HTTP connection.

5 In this case, Artix automatically translates the OTS transaction
into a WS-AT transaction context, which is suitable for
transmission in the header of the SOAP/HTTP request.

There is no need to perform any special configuration or
programming to enable interposition; it occurs automatically.

Stage Description

Figure 14: Limitation of Transaction Propagation Using OTS Lite

Artix Client

OTS

OTS Encina

Artix Server
SOAP/HTTP

WS-AT

Resource

WS-AT
Tx Context

Transaction Propagation and Interposition

85

In summary, interposition requires additional resources as follows:

• OTS-to-WS-AT middleware boundary—one interposition resource is

registered automatically. Applications with one explicitly registered

resource must use OTS Encina.

• WS-AT-to-OTS middleware boundary—no interposition resource

required. Applications with one explicitly registered resource may use

OTS Lite.

Suppressing propagation Once you have selected a transaction system (for example, the application

loads an OTS plug-in or a WS-AT plug-in), transaction contexts are

propagated by default.

It is possible, however, to suppress transaction propagation selectively using

the detach_thread() and attach_thread() functions. After calling

detach_thread() , subsequent operation invocations do not participate in

the transaction and, therefore, do not propagate any transaction context.

You can re-establish an association with a transaction by calling

attach_thread() .

For more details on these functions, see “Threading” on page 87.

CHAPTER 5 | Transaction Propagation

 86

87

CHAPTER 6

Threading
This chapter discusses the thread affinity of transactions and
how you can modify thread affinities using the Artix transaction
API.

In this chapter This chapter discusses the following topics:

Client Threading page 88

Threading and XA Resources page 93

CHAPTER 6 | Threading

 88

Client Threading

Overview Artix supports a threading API that enables you to change the thread affinity

of a given transaction. Using the attach_thread() and detach_thread()

functions, you can flexibly re-assign threads to a transaction (subject to the

limitations imposed by the underlying transaction system).

Default client threading model Figure 15 shows the default threading model for transaction on the client

side. When you call begin_transaction() , Artix creates a new transaction

and attaches it to the current thread. So long as the transaction remains

attached, any WSDL operations called from the current thread become part

of the transaction. When you call commit_transaction() (or

rollback_transaction() , if the transaction must be aborted), the

transaction is deleted.

Transaction identifiers A transaction identifier is an opaque identifier of type

IT_Bus::TransactionIdentifier that identifies a transaction uniquely.

Depending on the underlying transaction system, a transaction identifier can

be downcast (using dynamic_cast<...>) to an implementation-specific

transaction identifier.

For example, if OTS is the underlying transaction system, the transaction

identifier can be downcast to an instance of an OTSTransactionIdentifier .

The OTS transaction identifier provides access to implementation-specific

features, such as the CosTransaction::Control class.

Figure 15: Default Client Threading Model

Thread X

begin_transaction()

Transaction Scope

commit_transaction()

Client Threading

89

Controlling thread affinity On the client side, thread affinity is controlled by the following

TransactionManager member functions:

These functions can be explained as follows:

• detach_thread()

Detach the transaction from the current thread. After the call to

detach_thread() , WSDL operations called from the current thread do

not participate in the transaction. The returned transaction identifier

can be used to re-attach the transaction to the current thread at a later

stage.

• attach_thread()

Attach the transaction, specified by the tx_identifier argument, to

the current thread.

• get_tx_identifier()

Return the identifier of the transaction that is attached to the current

thread. If no transaction is attached, return NULL.

Example 18:Functions for Controlling Thread Affinity

// C++
namespace IT_Bus
{
 class IT_BUS_API TransactionManager
 : public virtual RefCountedBase
 {
 public:
 virtual TransactionIdentifier* detach_threa d()=0;

 virtual Boolean attach_threa d(
 TransactionIdentifier* tx_identifier
) = 0;

 virtual TransactionIdentifier* get_tx_ident ifier()=0;
 ...
};

CHAPTER 6 | Threading

 90

Detaching and re-attaching a

transaction to a thread

Figure 16 shows how to use the detach_thread() and attach_thread()

functions to suspend temporarily the association between a transaction and

a thread. This can be useful if, in the midst of a transaction, you need to

perform some non-transactional tasks.

Figure 16: Detaching and Re-Attaching a Transaction to a Thread

Figure 17: Detaching and Re-Attaching a Transaction to a Thread

Thread X

begin_transaction()

Transaction Scope

commit_transaction()detach_thread() attach_thread()

Thread X

beginTransaction()

Transaction Scope

commitTransaction()detachThread() attachThread()

Client Threading

91

Attaching a transaction to multiple

threads

Figure 18 shows how to use the get_tx_identifier() and

attach_thread() functions to associate a transaction with multiple threads.

The get_tx_identifier() function is called from within the thread that

initiated the transaction. The transaction ID can then be passed to the other

threads, Y and Z, enabling them to attach the transaction.

Transferring a transaction from

one thread to another

Figure 19 shows how to use the detach_thread() and attach_thread()

functions to transfer a transaction from thread X to thread Y. The transaction

ID returned from the detach_thread() call must be passed to thread Y,

enabling it to attach the transaction.

Figure 18: Attaching a Transaction to Multiple Threads

Note: Some transaction systems do not allow you to associate multiple
threads with a transaction. In this case, an attach_thread() call fails
(returning false), if you attempt to attach a second thread to the
transaction.

Thread X

begin_transaction()

Transaction Scope

commit_transaction()id = get_tx_identifier()

attach_thread(id)

Thread Y

Thread Z

attach_thread(id)

CHAPTER 6 | Threading

 92

Figure 19: Transferring a Transaction from One Thread to Another

Note: Some transaction systems do not allow you to transfer a
transaction from one thread to another. In this case, an attach_thread()
call fails (returning false), unless you are re-attaching the original thread
to the transaction.

Thread X

begin_transaction()

Transaction Scope

commit_transaction()

id = detach_thread()

Thread Y

attach_thread(id)

Threading and XA Resources

93

Threading and XA Resources

Overview This section discusses the following threading models for XA resources:

• Auto-association.

• Multiple registered resources.

• Multi-threaded resource connections.

• Dynamic registration.

Auto-association When an Artix server receives a transactional request (that is, a request

accompanied by a transaction context), Artix automatically creates an

association between the current thread and locally registered resources. For

each registered resource, the Artix transaction manager creates a

transaction branch, which participates in the global transaction.

Figure 20 shows the sequence of events that occur when a transactional

request arrives at an Artix server that has one registered resource.

Figure 20: Auto-Association with a Single Registered Resource

Thread X

xa_start()

Transaction Branch Scope

xa_end()

Resource

Upcall Return

Receive request Send reply
1

2

3 4

5

6

Resource
Connection

CHAPTER 6 | Threading

 94

The sequence of events shown in Figure 20 on page 93 can be explained as

follows:

1. Request is received—an operation request is received, which contains

a transaction context.

2. Artix calls xa_start() —to create a temporary association between the

current thread and the local resource. The resource creates a new

transaction branch, which performs work on behalf of the global

transaction.

3. Artix calls servant function—control is passed to the servant function

that implements the WSDL operation. Any interactions and updates

you make to the resource are now governed implicitly by the global

transaction.

4. Servant function returns—control passes back to the Artix runtime.

5. Artix calls xa_end() —to end the association between the current

thread and the resource. Effectively, the local transaction branch is

terminated (but the global transaction is still active).

6. Reply is sent—and the thread becomes available to process another

request.

Threading and XA Resources

95

Multiple registered resources Figure 21 shows how auto-association works with multiple registered

resources. When the Artix server receives a transactional request, it obtains

a list of all registered resources. Artix then creates a new transaction branch

for each resource, before making an upcall to the relevant servant function.

After the upcall, any application code in the servant function that interacts

with one of the resources (either resource R1 or resource R2) is implicitly

governed by a global transaction, where the global transaction ID has been

obtained from the received transaction context.

Figure 21: Auto-Association with Multiple Registered Resources

Thread X

xa_start()

Transaction Branch Scope

xa_end()

Resource R1

Upcall Return

Resource R2

CHAPTER 6 | Threading

 96

Multi-threaded resource

connections

Most modern databases offer the option of running in a multi-threaded

mode. What this means is that instead of having a single connection to the

database, which must be shared between all threads in the server, the

database allows the transaction manager to open a dedicated connection for

each server thread. This has the advantage of reducing contention between

the server threads.

Figure 22 shows an example of a resource configured to use multi-threaded

mode, where the server threads each open an independent connection to

the resource. This enables the threads to access the resource concurrently.

To use the multi-threaded resource mode, both the resource manager and

the Artix transaction manager must be configured appropriately. For details

of how to configure the Artix transaction manager in this case, see

“is_single_threaded_resource” on page 67.

Figure 22: Database Resource Operating in Multi-Threaded Mode

xa_start()

Transaction Branch Scope

xa_end()

Resource

Resource
Connections

Thread Y

Thread X

Transaction Branch Scope

Threading and XA Resources

97

Dynamic registration As shown in Figure 23, some XA resources support an alternative algorithm,

dynamic registration, for associating a global transaction with a locally

registered resource.

When dynamic registration is enabled, the transaction manager does not

automatically create a transaction branch for an incoming request (that is,

the transaction manager does not call xa_start()). Instead, the transaction

manager waits until it receives a callback, ax_reg() , from the resource

manager. This callback indicates to the transaction manager that the

application code has attempted to update the resource in some way (for

example, by calling EXEC SQL UPDATE). The transaction manager responds to

this by creating a new transaction branch, which it associates with a global

transaction (assuming the incoming request has a transaction context).

The advantage of this algorithm is that the transaction branch is created

only when necessary. In some cases, if the application code does not make

any resource updates, it might not be necessary to create a transaction

branch at all.

For details of how to configure dynamic registration, see “Dynamic

Registration Optimization” on page 69.

Figure 23: Threading for a Dynamically Registered Resource

Thread X
Transaction Branch Scope

xa_end()

Resource

Upcall Return

Resource
Connection

ax_reg()

CHAPTER 6 | Threading

 98

99

CHAPTER 7

Transaction
Recovery
Transaction recovery is an enterprise-level feature that ensures
a transaction system can cope with any kind of crash or system
failure, without losing data or getting into an inconsistent
state. In Artix, transaction recovery is implemented by the
Encina transaction engine.

In this chapter This chapter discusses the following topics:

Transactions Systems and Recovery page 100

Transaction Recovery Scenarios page 102

CHAPTER 7 | Transaction Recovery

 100

Transactions Systems and Recovery

Overview Not all of the Artix transaction systems support recovery. It is important to

distinguish between the lightweight transactions systems, which are

non-recoverable, and the enterprise-level transactions systems, which are

recoverable. Table 4 summarizes the characteristics of the various Artix

transaction systems.

OTS Lite OTS Lite is a lightweight transaction system, whose programming interface

is based on the CORBA OTS standard. The OTS Lite system can manage a

single resource only and is not recoverable.

OTS Encina OTS Encina is a complete, enterprise-level transaction system, whose

programming interface is based on the CORBA OTS standard. The OTS

Encina system can manage multiple resources and is recoverable.

Recoverability is the key property that distinguishes an enterprise-level

transaction systems from lightweight transaction systems. Recoverability

ensures that the system can always be brought back into a consistent state,

irrespective of when or how a transaction participant fails.

Non-recoverable WS-AT The non-recoverable WS-AT transaction system is a lightweight transaction

system based on the WS-AtomicTransactions and WS-Coordination

standards. The non-recoverable WS-AT transaction system (in contrast to

OTS Lite) can manage multiple resources.

Table 4: Transaction Systems and Recoverability

Transaction System Single or Multiple
Resources?

Recoverable?

OTS Lite Single No

OTS Encina Multiple Yes

Non-recoverable WS-AT Multiple No

Recoverable WS-AT Multiple Yes

Transactions Systems and Recovery

101

Recoverable WS-AT The recoverable WS-AT transaction system is layered on top of the OTS

Encina transaction engine to give enterprise-level transaction support. From

Artix 4.0 onwards, WS-AT is layered over OTS by default and the relevant

OTS plug-ins are automatically loaded when WS-AT is enabled. If the

plugins:ws_coordination_service:disable_tx_recovery variable appears

in your Artix configuration file, it must be set as follows to ensure

recoverability:

When WS-AT is layered over Encina, the initiation of a transaction in

WS-Coordination effectively initiates an OTS transaction. The coordination

context returned from the WS-Coordination service (and subsequently

propagated on SOAP calls) includes an identifier indicating that it is OTS

based and also includes an encoded form of the relevant OTS propagation

context. That is, all transactions, including WS-AT initiated ones, are always

OTS transactions. If a participant enlistment is required then the WS-AT

system will completely bypass the WS-AT protocols and enlist the

participant directly with OTS. This means that at completion time, OTS is

aware of, and in control of, all resources in the system, be they native OTS

resources, WSAT Participants, XA resources and so on.

Artix Configuration File
plugins:ws_coordination_service:disable_tx_recovery = "false";

Note: It is also possible to layer WS-AT over OTS Lite, but there is no
benefit in doing so, because OTS Lite is more limited than plain WS-AT.

CHAPTER 7 | Transaction Recovery

 102

Transaction Recovery Scenarios

Overview The whole point of transaction recovery is that it enables a transaction

system to recover to a consistent state, irrespective of what kind of system

failures occur. This section discusses a variety of different failure scenarios

in order to illustrate how Encina recovers the transactional system.

In this section This section contains the following subsections:

Server Crash before or during Prepare Phase page 103

Server Crash after Prepare Phase page 105

Transaction Coordinator Crash page 107

Transaction Recovery Scenarios

103

Server Crash before or during Prepare Phase

Overview Figure 24 shows a scenario involving two transactional resources, one

attached to server 1 and another attached to server 2, and a client, which

initiates a transaction involving server 1 and server 2. This scenario uses the

OTS Encina transaction system, where the OTS Encina transaction

coordinator is loaded into the client and the two servers participate in the

transaction.

The mode of failure described in this scenario involves server 1 crashing

either before or during the prepare phase of the two-phase commit protocol.

Figure 24: Server Crash before or during the Prepare Phase

begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client

1

3

Server 1

OTS

Resource

Server 2

OTS

Resource

2

2
4

4

prepare

OTS

OTS Encina

4 Crash!!

CHAPTER 7 | Transaction Recovery

 104

Steps leading to crash As shown in Figure 24, the steps leading to a server crash before or during

the prepare phase of a two-phase commit can be described as follows:

1. The client calls begin_transaction() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations

on both of the remote servers.

3. The client calls commit_transaction() to make permanent any

changes caused during the transaction.

4. The transaction coordinator initiates the prepare phase of the

two-phase commit. At some point either before or during the prepare

phase, server 1 crashes. That is, the transaction coordinator never

receives a vote commit or vote rollback from server 1.

Transaction system recovery If the transaction coordinator does not receive a reply from the prepare call

on server 1 (for example, the connection to server 1 breaks or the

transaction times out), the transaction coordinator will presume that the

transaction is to be rolled back (this rule is called presumed rollback).

The transaction system also rolls back the transaction on all of the other

transaction participants.

Server 1 recovery The manner in which server 1 recovers depends on whether it wrote

anything into its log during the prepare phase. When server 1 re-starts after

crashing, the transaction is recovered in one of the following ways:

• No record of prepare phase in log—in this case, server 1 knows that a

transaction was begun (this is recorded in its log) and that the

transaction was interrupted before the prepare phase. Server 1

automatically rolls back the transaction (presumed rollback), bringing

it back to a state that is consistent with the rest of the system.

• Prepare phase recorded in log—in this case, it is possible that the

prepare phase had completed successfully. Server 1, therefore, needs

to contact the transaction coordinator to discover the outcome of the

transaction. From its log, it can retrieve a recovery coordinator

reference, which it uses to query the transaction state. Depending on

the reply, it will either commit or roll back the transaction (in the

scenario shown in Figure 24, it will be a rollback).

Transaction Recovery Scenarios

105

Server Crash after Prepare Phase

Overview Figure 25 shows a scenario involving two transactional resources, one

attached to server 1 and another attached to server 2, and a client, which

initiates a transaction involving server 1 and server 2. This scenario uses the

OTS Encina transaction system.

The mode of failure described in this scenario involves server 1 crashing

after the prepare phase of the two-phase commit protocol.

Steps leading to crash As shown in Figure 25, the steps leading to a server crash after the prepare

phase of a two-phase commit can be described as follows:

1. The client calls commit_transaction() to make permanent any

changes caused during the transaction.

2. The transaction system performs the prepare phase by polling all of the

remote transaction participants.

Figure 25: Server Crash after the Prepare Phase

begin_transaction()
...
...
...
commit_transaction()

Artix
Client

1

Server 1

OTS

Resource

Server 2

OTS

Resource

2

2

prepare

OTS

OTS Encina

3 Crash!!

prepare

4

commit

CHAPTER 7 | Transaction Recovery

 106

3. After replying to the prepare call, but before receiving the commit call,

server 1 crashes. For this scenario, it is assumed that server 1 replied

to the prepare call with a vote commit.

4. Assuming that the other transaction participants all reply to the

prepare phase with a vote commit, the transaction coordinator decides

to commit the transaction and sends a commit notification to the

participants.

Transaction system recovery If the prepare phase has completed successfully (that is, the prepare call

returned from all of the transaction participants), the transaction coordinator

determines the outcome of the transaction to be either commit or rollback.

In the present scenario, it is assumed that the outcome is commit.

When the transaction coordinator attempts to send a commit notification to

server 1, it discovers that server 1 has crashed. The transaction coordinator

reacts to this situation by retrying the commit call forever.

Server 1 recovery When server 1 is restarted, it knows from its own log that a transaction was

prepared but not commited. Therefore, it expects to receive either a commit

or a rollback call from the transaction coordinator. Because the transaction

coordinator retries the commit call forever, server 1 is bound to receive a

commit call shortly after it starts up, thereby resolving the transaction.

Transaction Recovery Scenarios

107

Transaction Coordinator Crash

Overview Another mode of failure can occur where the process hosting the transaction

coordinator crashes (for example, in Figure 25 this would be the client

process). The transaction coordinator has its own log, which it uses as the

basis for recovery.

Encina logs To enable the transaction coordinator to recover gracefully after a crash, it

writes whatever information would be needed for recovery into a log file or

partition as it goes along.

Transaction system recovery After a transaction coordinator crash, the possible recovery scenarios can be

reduced essentially to two cases, as follows:

• The coordinator determined the transaction outcome before

crashing—upon restarting, the transaction coordinator will try forever

to notify the participants of the transaction outcome (commit or

rollback).

• The coordinator did not determine the transaction outcome before

crashing—the presumed rollback rule is used here. Transaction

participants that were not prepared will simply presume a rollback,

after a timeout has elapsed. Prepared participants will use the

coordinator reference to contact the transaction coordinator and query

the outcome of the transaction.

CHAPTER 7 | Transaction Recovery

 108

109

CHAPTER 8

Recoverable
Resources
This section describes those aspects of server side
programming which enable you to update a persistent resource
transactionally.

In this chapter This chapter discusses the following topics:

Transaction Participants page 110

Interposition page 117

CHAPTER 8 | Recoverable Resources

 110

Transaction Participants

Overview When Artix uses a persistent resource, the easiest way to integrate that

resource within the Artix transaction system is to enlist the resource’s XA

switch. If the resource does not support the XA standard, however, you need

to implement a transaction participant instead. A transaction participant is

an object on the server side that interfaces between the Artix transaction

manager and a persistent resource. The role of the transaction participant is

to receive callbacks from the transaction manager, which tell the participant

whether to make pending changes permanent or whether to abort the

current transaction and return the resource to its previous consistent state.

Participants in a 2-phase commit Figure 26 shows an example of a two-phase commit involving two

transaction participant instances. Any operations meant to be transactional

should start by creating a transaction participant object and enlisting it with

the transaction manager.

Figure 26: Transaction Participants in a 2-Phase Commit Protocol

begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client

1

3

Artix Server

Transaction
System

Resource

Artix Server

Transaction
System

Resource

2

2
4

5

4
5

prepare
commit

enlist

TransactionParticipant

delete6

enlist

TransactionParticipant

delete6

Transaction Participants

111

Participants in a 2-phase commit As shown in Figure 26, the transaction participants participate in a

two-phase commit as follows:

Implementing a transaction

participant

To implement a transaction participant, define a class that inherits from the

IT_Bus::TransactionParticipant base class and implement all of its

member functions.

TransactionParticipant member

functions

Example 19 shows the public member functions of the

IT_Bus::TransactionParticipant class.

Stage Description

1 The client calls begin_transaction() to initiate a distributed
transaction.

2 Within the transaction, the client calls transactional operations
on Server A and on Server B. In order to participate in the
distributed transaction, the servant code creates a new
transaction participant and enlists it with the transaction
manager.

3 The client calls commit_transaction() to make permanent any
changes caused during the transaction.

4 The transaction system performs the prepare phase by calling
prepare() on all of the transaction participants. Each
participant can vote either to commit or to rollback the current
transaction by returning a flag from the prepare() function.

5 The transaction system performs the commit or rollback phase
by calling commit() or rollback() on all of the transaction
participants.

6 When the transaction is finished, the transaction manager
automatically deletes the associated transaction participant
instances.

Example 19:The IT_Bus::TransactionParticipant Class

// C++
namespace IT_Bus

CHAPTER 8 | Recoverable Resources

 112

1PC callback function The following function is called during a one-phase commit:

• commit_one_phase() —this function should make permanent any

changes associated with the current transaction.

2PC callback functions The following functions are called during a two-phase commit:

{
 class IT_BUS_API TransactionParticipant
 : public virtual RefCountedBase
 {
 public:
 virtual ~TransactionParticipant();

 enum VoteOutcome {
 VoteCommit,
 VoteRollback,
 VoteReadOnly
 };

 // 1PC Functions.
 virtual void commit_one_phase()=0;

 // 2PC Functions.
 virtual VoteOutcome prepare()=0;
 virtual void commit()=0;
 virtual void rollback()=0;

 // Getting the transaction manager.
 virtual String
 preferred_transaction_manager()=0;

 virtual void
 set_manager(
 TransactionManager* tx_manager
)=0;
 ...
 };
 typedef Var<TransactionParticipant>
 TransactionParticipant_var;
 typedef TransactionParticipant* TransactionParticipant_ptr;
};

Example 19:The IT_Bus::TransactionParticipant Class

Transaction Participants

113

• prepare() —called during phase one of a two-phase commit. Before

returning, this function should write a recovery log to persistent

storage. The recovery log should contain whatever data would be

necessary to restore the system to a consistent state, in the event that

the server crashes before the transaction is finished.

The prepare() function also votes on whether to commit or roll back

the transaction overall, by returning one of the following vote

outcomes:

♦ IT_Bus::TransactionParticipant::VoteCommit —vote to

commit the transaction.

♦ IT_Bus::TransactionParticipant::VoteRollback —vote to roll

back the transaction. For example, you would return

VoteRollback , if an error occurred while attempting to write the

recovery log.

♦ IT_Bus::TransactionParticipant::VoteReadOnly —explicitly

request not to be included in the commit phase of the 2PC

protocol.

• commit() —called during phase two of a two-phase commit, if the

transaction outcome was successful overall. The implementation of

this function should make permanent any changes associated with the

current transaction.

• rollback() —called during phase two of a two-phase commit, if the

transaction must be aborted. The implementation of this function

should undo any changes associated with the current transaction,

returning the system to the state it was in before.

Getting the transaction manager After the transaction participant is enlisted by a transaction manager

instance, the transaction system calls back to pass a transaction manager to

the participant. The following functions are relevant to this callback

behavior:

Note: In some transaction systems, such as OTS Encina, the
transaction manager will not call prepare() if it knows that
transaction will be rolled back.

CHAPTER 8 | Recoverable Resources

 114

• preferred_transaction_manager() —called just after the participant

is enlisted. The return value is a string that tells the transaction system

what type of transaction manager the participant requires. The

following return strings are supported:

♦ DEFAULT_TRANSACTION_TYPE—no preference; use the current

default.

♦ OTS_TRANSACTION_TYPE—prefer the OTSTransactionManager

interface (manager for CORBA OTS transactions).

♦ WSAT_TRANSACTION_TYPE—prefer the WSATTransactionManager

interface (manager for WS-AtomicTransactions).

• set_manager() —called after the preferred_transaction_manager()

call. The transaction system calls set_manager() to pass a transaction

manager of the preferred type to the participant. If the type of

transaction manager requested by the participant differs from the one

currently in use, Artix uses interposition to simulate the preferred

transaction manager type.

For more details about interposition, see “Interposition” on page 117.

Enlisting a transaction participant Example 20 shows an example of how to enlist a participant instance in a

transaction. You must enlist a participant at the start of any transactional

WSDL operation. Example 20 shows a sample implementation of a WSDL

operation, transactional_op() , which is called in the context of a

transaction.

Example 20:Example of Enlisting a Transactional Participant

// C++
void
HelloWorldServantImpl:: transactional_op(
 const IT_Bus::String value
) IT_THROW_DECL((IT_Bus::Exception))
{
 cout << "HelloWorld transactional_op() called" << endl;

1 IT_Bus::Bus_var bus = this->get_bus();
2 if (bus->transactions().within_transaction())

 {
 cout << "This is a transaction" << endl;

Transaction Participants

115

The preceding code example can be explained as follows:

1. The get_bus() function is a standard servant function that returns a

stored reference to the Bus instance.

2. In this example, the transactional_op() operation requires a

transaction. If it is not called in the context of a transaction, it raises an

exception back to the client.

It is an implementation decision whether or not an operation should

require a transaction. In some cases, it may be appropriate for the

operation to proceed with or without a transaction.

3. The TXParticipant class is a sample participant class, which is

implemented by inheriting from IT_Bus::TransactionParticipant .

In this example, a new TXParticipant instance is created every time

transactional_op() is called.

4. This line enlists the participant in the transaction, ensuring that the

participant receives callbacks either to commit or rollback any

changes.

The second parameter is a boolean flag that specifies the kind of

participant:

3 TXParticipant * participant = new TXPartici pant(this);
4 bus->transactions().get_transaction_manager (). enlist(

 participant,
 true
);

5 // Implementation of ’transactional_op()’ c omes here.
 // Includes writing to DB or other persiste nt resources.
 // (not shown)
 ...
 }
 else
 {
 cout << "No transaction" << endl;
 IT_Bus::Exception ex("Invocation not in tra nsaction");
 throw ex;
 }
}

Example 20:Example of Enlisting a Transactional Participant

CHAPTER 8 | Recoverable Resources

 116

♦ true indicates a durable participant, which participates in all

phases of the transaction.

♦ false indicates a volatile participant, which is only guaranteed to

participate in the prepare phase of the 2PC protocol. There is no

guarantee that a volatile participant will participate in the commit

phase.

5. The implementation of transactional_op() involves writing to a

persistent resource. The committing or rolling back of any changes to

this persistent resource is controlled by the enlisted TXPersistent

instance.

Alternatives to the Artix

transaction participant

Implementing and enlisting an Artix TransactionParticipant class is not

the only way to make a WSDL operation transactional. By drilling down to

the underlying transaction manager type (for example,

IT_Bus::OTSTransactionManager) it is sometimes possible to use an

alternative API supported by a specific transaction system.

For example, the following demonstration shows how to use the OTS

transaction system:

ArtixInstallDir/artix/ Version/demos/transactions/orbix_client_art
ix_server

Interposition

117

Interposition

What is interposition? Sometimes, there can be a mismatch between the transaction API used by

the application code and the type of the underlying transaction system. For

example, imagine that you have a legacy CORBA server that manages

transactions with CORBA OTS. If you migrate this server code to a

WS-AT-based Artix service, you would obtain a mismatch between the

transaction API used by the application code (which is CORBA OTS-based)

and the underlying transaction system (which is WS-AT).

To bridge this API mismatch, Artix uses interposition. With interposition,

the Artix runtime provides the application code with an object of the

preferred type (for example, an OTSTransactionManager object), but the

object is merely a facade, whose calls are ultimately translated into a form

suitable for the underlying transaction system (for example, WS-AT).

Interposition matrix Artix supports interposition between every permutation of transaction

systems. Internally, Artix converts calls made on a specific transaction API

into a technology-neutral API. The calls are then converted from the

technology-neutral API into one of the supported transaction APIs.

Using interposition As an example of interposition, consider a service that loads the WS-AT

transaction system (for example, see “Configuring Non-Recoverable WS-AT”

on page 47), but actually implements the transaction functionality using the

CORBA OTS programming interface. In this case, it is necessary for the

TransactionParticipant implementation to request explicitly an OTS

transaction manager, instead of the default WS-AT transaction manager.

Example 21 shows the implementation of the

preferred_transaction_manager() function and the set_manager()

function for the transaction participant implementation, TxParticipant .

Example 21:Example of a TransactionParticipant that Uses Interposition

// C++
...
IT_Bus::String
TXParticipant::preferred_transaction_manager()

CHAPTER 8 | Recoverable Resources

 118

When Artix calls back on set_manager() , it passes a transaction manager

object, tx_manager , of OTSTransactionManager type. There is no need to

query the type of the tx_manager object before downcasting it, because its

type is already specified by the preferred_transaction_manager()

callback.

{
 return IT_Bus::TransactionSystem::OTS_TRANSACTI ON_TYPE;
}

void
TXParticipant::set_manager(
 IT_Bus::TransactionManager* tx_manager
)
{
 m_ots_tx_manager =
 dynamic_cast<IT_Bus::OTSTransactionManager* >(tx_manager);
}

Example 21:Example of a TransactionParticipant that Uses Interposition

119

CHAPTER 9

Notification
Handlers
A notification handler is an object that receives callbacks to
inform it about the outcome of a transaction.

In this chapter This chapter discusses the following topics:

Introduction to Notification Handlers page 120

CHAPTER 9 | Notification Handlers

 120

Introduction to Notification Handlers

Overview A notification handler is an object that records the outcome of a

transaction. It can be used both on the server side and on the client side.

For example, you might use a notification handler to log transaction

outcomes or to synchronize other events with a transaction.

Implementing a notification

handler

To implement a notification handler, define a class that inherits from the

IT_Bus::TransactionNotificationHandler base class and implement all of

its member functions.

TransactionNotificationHandler

base class

Example 22 shows the TransactionNotificationHandler base class.

These functions will only be called if an appropriate notification mechanism

is available in the underlying transaction system.

Example 22:The IT_Bus::TransactionNotificationHandler Class

// C++
namespace IT_Bus
{
 class IT_BUS_API TransactionNotificationHandler
 : public virtual RefCountedBase
 {
 public:
 ...
 virtual void commit_initiated(
 TransactionIdentifier_ptr tx_identifi er
)=0;
 virtual void committed()=0;
 virtual void aborted()=0;
 ...
 };

 typedef Var<TransactionNotificationHandler>
 TransactionNotificationHandler_var;
 typedef TransactionNotificationHandler*
 TransactionNotificationHandler_ptr;
};

Introduction to Notification Handlers

121

Notification callback functions The following notification handler functions receive callbacks from the

transaction manager:

• commit_initiated() —informs the handler that a commit has been

initiated. This function is called before any participants are prepared.

• committed() —informs the handler that the transaction completed

successfully.

• aborted() —informs the handler that the transaction did not complete

successfully and was aborted.

Enlisting a notification handler To use a notification handler, you must enlist it with a TransactionManager

object while there is a current transaction. You can enlist a notification

handler at any time prior to the termination of the transaction.

Example 23 shows how to enlist a sample notification handler,

NotificationHandlerImpl .

Note: WS-AT does not support this notification point.

Example 23:Example of Enlisting a Notification Handler

// C++
IT_Bus::Bus_var bus = ... // Get reference to Bus o bject
if (bus->transactions().within_transaction())
{
 // Enlist notification handler
 NotificationHandlerImpl * handler
 = new NotificationHandlerImpl();
 TransactionManager& tx_manager
 = bus->transactions().get_transaction_manag er()
 tx_manager. enlist_for_notification(handler);
}
else
{
 IT_Bus::Exception ex("Invocation not in transac tion");
 throw ex;
}

CHAPTER 9 | Notification Handlers

 122

123

CHAPTER 10

Exposing Artix as
an XA Resource
You can expose Artix as an XA resource manager by registering
the Artix XA switch with a third-party XA transaction manager.

In this chapter This chapter discusses the following topics:

Introduction to the Artix XA Resource Manager page 124

Obtaining an Artix XA Resource Manager page 127

Artix XA Open and Close Strings page 132

Configuring the Artix XA Resource Manager page 134

CHAPTER 10 | Exposing Artix as an XA Resource

 124

Introduction to the Artix XA Resource Manager

Overview The most common use case for XA in Artix is where you register a

third-party resource manager (such as an Oracle DB) with Artix and Artix is

responsible for coordinating the transactions.

It is possible, however, to reverse these roles, so that Artix assumes the role

of an XA resource manager and a foreign transaction manager is responsible

for coordinating the transactions in Artix. To support this use case, Artix

provides an XA switch, which can be registered with the foreign transaction

manager. Although this use case is much less common than the former,

there are two possible scenarios where you might want to expose Artix as an

XA resource manager, as follows:

• Scenario 1 - local resource.

• Scenario 2 - remote resource.

Scenario 1 - local resource In the scenario shown in Figure 27, the Artix XA resource manager is

registered with the Microsoft DTC transaction manager and has

responsibility for managing a local resource. This scenario could arise, for

example, if you have already implemented a recoverable resource using the

Artix transaction API and you now want to integrate the resource with a

third party transaction manager (such as Microsoft DTC).

Figure 27: Artix XA Resource Manager Manages a Local Resource

Application Program

Resource

Artix
Tx Manager

Microsoft DTC
Tx Manager

XA Interface

enlist()

Introduction to the Artix XA Resource Manager

125

Of course, it is unlikely that you would implement an Artix recoverable

resource just for this purpose. But if you already have such an

implementation, the Artix XA switch enables you to integrate it rapidly with

a third-party transaction manager.

Scenario 2 - remote resource In the scenario shown in Figure 28, the Artix XA resource manager is

registered with the Microsoft DTC transaction manager, but the managed

resource (or resources) belongs to a remote server. In this case, the Artix

Bus is effectively being used as a transport stack to facilitate interoperability

with a remote server that manages a transactional resource. Artix uses the

IIOP protocol to communicate with the CORBA server and the OTS standard

is used to coordinate the distributed CORBA transactions.

To program this example, you would demarcate the transactions using the

relevant API from Microsoft DTC. To access the operations supported by the

remote CORBA server, use the Artix programming API (the relevant function

signatures for the operations are provided in the Artix stub code).

Figure 28: Artix XA Resource Manager Manages a Remote Resource

Application Program

Resource

Artix
Tx Manager

Microsoft DTC
Tx Manager

XA Interface OTS

CORBA
Server

IIOP/TLS

CHAPTER 10 | Exposing Artix as an XA Resource

 126

How to use the Artix XA switch To use the Artix XA switch with a third-party transaction manager, perform

the following steps:

1. Obtain the Artix XA switch—you need to obtain a pointer to a struct of

xa_switch_t type (as specified by the XA standard). Artix provides a

number of ways of obtaining the Artix XA switch instance. See

“Obtaining an Artix XA Resource Manager” on page 127 for details.

2. Register the Artix XA switch—after obtaining a pointer to the Artix XA

switch, you must register the switch instance with your third-party

transaction manager. Typically, the registration step consists of a

single function call that requires you to provide an open string and a

close string (for details of the Artix-specific open and close strings, see

“Artix XA Open and Close Strings” on page 132).

For details of how to register the XA switch, consult the documentation

for your third-party transaction manager.

3. Configure the Artix XA resource manager—the Artix XA resource

manager needs to be configured as described in “Configuring the Artix

XA Resource Manager” on page 134.

4. Observe the usual XA programming conventions—according to the

usual XA programming conventions, once you have registered the Artix

XA switch, the third-party transaction manager, and not the Artix

transaction system, is responsible for transaction demarcation. This

implies that you should not use the begin_transaction() ,

commit_transaction() , and rollback_transaction() functions from

the TransactionSystem class to demarcate transactions.

Obtaining an Artix XA Resource Manager

127

Obtaining an Artix XA Resource Manager

Overview Artix supports several different ways of obtaining an XA resource manager.

Essentially, this involves providing a pointer to the xa_switch_t struct. The

different approaches to obtaining the XA switch are described in the

following subsections.

In this section This section contains the following subsections:

Obtaining the XA Switch from a Global Function page 128

Obtaining the XA Switch from a Bus Instance page 129

Obtaining the XA Switch from a Switch Load File page 130

CHAPTER 10 | Exposing Artix as an XA Resource

 128

Obtaining the XA Switch from a Global Function

Overview In this scenario, you obtain a pointer to the Artix xa_switch_t instance by

calling a global function. Use this approach when the external transaction

manager provides an API function to enlist the XA switch and you do not

have an instance of an Artix Bus.

GetXaSwitch() function To obtain a pointer to the Artix XA switch, call the GetXaSwitch() function,

which is a C function defined in the global scope. The GetXaSwitch()

function takes no arguments and has a return type of xa_switch_t * .

Example Example 24 shows how to obtain an Artix XA switch using the

GetXaSwitch() function. Remember to include the it_bus/xa_switch.h

header file.

Required library You need to link your code with the Artix it_xa_switch library.

Example 24:Obtaining the Artix XA Switch Using GetXaSwitch()

// C++
#include <it_bus/xa_switch.h>
....
xa_switch_t* artix_xa_switch = ::GetXaSwitch();
....

Obtaining an Artix XA Resource Manager

129

Obtaining the XA Switch from a Bus Instance

Overview In this scenario, you obtain a pointer to the Artix xa_switch_t instance

through an IT_Bus::XATransactionManager object, which you can obtain

from the Artix Bus. Use this approach when the external transaction

manager provides an API function to enlist the XA switch and you do have

an instance of an Artix Bus.

get_xa_switch() function To obtain a pointer to the Artix XA switch, call the get_xa_switch()

function, which is a member of the IT_Bus::XATransactionManager class.

The get_xa_switch() function takes no arguments and has a return type of

xa_switch_t * .

Example Example 25 shows how to obtain an Artix XA switch from the Bus instance,

by calling the IT_Bus::XATransactionManager::get_xa_switch() function.

Required library You need to link your code with the Artix it_bus library.

Example 25:Obtaining the Artix XA Switch from a Bus Instance

// C++
#include <it_bus/bus.h>
#include <it_bus/transaction_system.h>
#include <it_bus_pdk/xa_transaction_manager.h>

IT_Bus::Bus_var bus = ...
...
IT_Bus::XATransactionManager& xa_tx_mgr = dynamic_c ast
<
 IT_Bus::XATransactionManager,
 bus->transactions().get_transaction_manager(
 IT_Bus::TransactionSystem::XA_TRANSACTION_T YPE
)
>;
xa_switch_t* artix_xa_switch = xa_tx_mgr->get_xa_sw itch();

CHAPTER 10 | Exposing Artix as an XA Resource

 130

Obtaining the XA Switch from a Switch Load File

Overview In this scenario, the third-party transaction manager obtains the Artix XA

switch by loading a shared library file (the switch load file). Use this

approach when the external transaction manager does not provide an API

function to enlist the XA switch, but does support switch load files.

Using a switch load file To use a switch load file, you supply the third-party transaction manager

(TM) with the name and location of the relevant shared library or DLL.

When the TM loads the switch load library file, it calls a particular function

to obtain the XA switch instance. The mechanisms that are used to load the

switch file and obtain the XA switch instance are specific to the particular

TM. Refer to your third-party TM documentation for details.

Default switch load file Artix provides a default switch load file: the it_xa_switch library. The

precise name of the default switch load file depends on the platform, as

shown in Table 5.

The default switch load file exposes the C functions shown in Example 26.

Table 5: Default Switch Load File for Artix on Various Platforms

Platform Link Library Shared Library or DLL

Windows VC++ 6.0 it_xa_switch.lib it_xa_switch5_vc60.dll

Windows VC++ 7.1 it_xa_switch.lib it_xa_switch5_vc71.dll

Solaris libit_xa_switch.so libit_xa_switch_sc53.so.5

HP-UX libit_xa_switch.sl libit_xa_switch_acca0331.5

AIX libit_xa_switch.a libit_xa_switch5_xlc60.so

Example 26:Functions in the Default Artix Switch Load File

/* C */
xa_switch_t* GetXaSwitch() /* for use by Microsoft DTC */
xa_switch_t* MQStart() /* for use by MQSeries */

Obtaining an Artix XA Resource Manager

131

Example of using a switch load file

with Microsoft DTC

For example, if you are writing a COM+ application on the Windows

platform, you can use Microsoft DTC to load a switch load file. Microsoft

DTC provides the following function to load a switch load file:

The argument, pszDSN, is used as the open string for the XA switch; the

argument, pszClientDllName , is the name of the switch load file; and the

argument, pdwRMCookie, is a cookie used to identify the resource manager

loaded by this call. See Opening an XA Connection in the Microsoft

documentation for more details.

Creating a custom switch load file You can create your own custom switch load file, as follows. Implement the

global function required by your third-party TM (usually a simple wrapper

function around the Artix GetXaSwitch() function). Then compile this code

as a shared library or DLL, as appropriate for the platform you are working

on.

For example, the following code shows the implementation of a load switch

file for use with MQ-Series:

The header, cmqc.h , is an MQ-Series header file that defines the signature of

the MQStart() function. The MQSeries() function is called automatically by

MQ-Series after it loads the switch file.

// In IDtcToXaMapper

HRESULT RequestNewResourceManager(
 CHAR * pszDSN,
 CHAR * pszClientDllName,
 DWORD * pdwRMCookie
);

// C++
#include <cmqc.h>
#include<it_bus/xa_switch.h>

struct xa_switch_t * MQENTRY MQStart(void)
{
 return ::GetXaSwitch();
}

Note: You do not actually have to implement the MQStart() function,
because it is already defined in the default switch load file.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cossdk/html/bfd5de9b-1863-49db-9762-a8e0fbdb6c15.asp

CHAPTER 10 | Exposing Artix as an XA Resource

 132

Artix XA Open and Close Strings

Overview When registering the Artix XA switch with a third-party transaction manager

(TM), the TM usually requires you to supply an open string and a close

string. These strings are used as follows:

• The TM passes the open string to the xa_open() function, when it

opens a connection to the Artix resource manager,

• The TM passes the close string to the xa_close() function, when it

closes the connection to the Artix resource manager.

The format of the open and close strings is specific to an XA switch

implementation. Therefore, just as Oracle and Sybase have their own

proprietary formats for their open and close strings, the Artix XA switch

defines proprietary open string and close string formats, as described here.

Specifying open and close strings The mechanism for specifying the open and close strings is defined by the

third-party TM implementation. See your TM documentation for details.

Open string For the Artix XA switch, the open string must be an Artix Bus ID. In practice,

the Bus ID is equivalent to the name of an Artix configuration scope.

For example, if you choose a Bus ID equal to

xa_bus.ots_lite_coordinated , Artix will initialize a Bus object that takes

its configuration from the xa_bus.ots_lite_coordinated scope in the Artix

configuration file (for example, see the configuration scope in Example 27).

Artix XA Open and Close Strings

133

Close string For the Artix XA switch, there are two cases to consider for the close string:

• If the Artix XA switch is obtained either from a global function (see

“Obtaining the XA Switch from a Global Function” on page 128) or

from a switch load file (see “Obtaining the XA Switch from a Switch

Load File” on page 130), the close string should usually be

shutdown=true . This close string tells the Bus to call

IT_Bus::Bus::shutdown(true) when xa_close() is called by the TM.

• If the Artix XA switch is obtained from a Bus instance (see “Obtaining

the XA Switch from a Bus Instance” on page 129), the close string

should be empty, "" , implying that the caller will take care of calling

bus->shutdown() .

CHAPTER 10 | Exposing Artix as an XA Resource

 134

Configuring the Artix XA Resource Manager

Overview When Artix is exposed as an XA resource manager, it has the same

configuration requirements as an Artix application that uses the OTS

transaction coordinator. Two alternative configurations can be used:

• Configuration for a single resource.

• Configuration for multiple resources.

Configuration for a single resource Example 27 shows the configuration, xa_bus.ots_lite_coordinated ,

which is suitable for an Artix XA resource manager that manages a single

resource. This type of configuration is suitable for the scenario shown in

Figure 27 on page 124.

The presence of the ots plug-in is required in the list of ORB plug-ins. The

default_tx_provider setting ensures that the xa_transaction_provider

plug-in is loaded by default. Strictly speaking, the latter setting is

unnecessary. Whenever a third-party transaction manager attempts to

obtain a reference to the Artix XA switch, the xa_transaction_provider

plug-in is loaded automatically.

To use this configuration with the Artix XA switch, pass

xa_bus.ots_lite_coordinated as the open string.

Example 27:Resource Manager Configuration for a Single Resource

Artix Configuration File
xa_bus
{
 orb_plugins = ["local_log_stream", "iiop_profil e", "giop",

"iiop", "ots"];
 plugins:ots:default_ots_policy="adapts";
 plugins:bus:default_tx_provider:plugin=

"xa_transaction_provider";

 ots_lite_coordinated
 {
 initial_references:TransactionFactory:plugin ="ots_lite";
 };
};

Configuring the Artix XA Resource Manager

135

Configuration for multiple

resources

Example 28 shows the configuration, xa_bus.ots_encina_coordinated ,

which is suitable for an Artix XA resource manager that manages multiple

resources. This type of configuration is suitable for the scenario shown in

Figure 28 on page 125.

The presence of the ots plug-in is required in the list of ORB plug-ins.

To use this configuration with the Artix XA switch, pass

xa_bus.ots_encina_coordinated as the open string.

Example 28:Resource Manager Configuration for Multiple Resources

Artix Configuration File
xa_bus
{
 orb_plugins = ["local_log_stream", "iiop_profil e", "giop",

"iiop", "ots"];
 plugins:ots:default_ots_policy="adapts";
 plugins:bus:default_tx_provider:plugin=

"xa_transaction_provider";

 ots_encina_coordinated
 {
 plugins:ots_encina:direct_persistence = "tr ue";
 plugins:ots_encina:shlib_name = "it_ots_enc ina";
 plugins:ots_encina_adm:shlib_name = "it_ots _encina_adm";
 plugins:ots_encina_adm:grammar_db =

"ots_encina_adm_grammar.txt";
 plugins:ots_encina_adm:help_db =

"ots_encina_adm_help.txt";
 initial_references:TransactionFactory:plugi n =

"ots_encina";
 plugins:ots_encina:initial_disk = "encina.l og";
 plugins:ots_encina:initial_disk_size = "1";
 plugins:ots_encina:restart_file = "encina_r estart";
 plugins:ots_encina:backup_restart_file =

"encina_restart.bak";
 };
};

Note: There might be more resources registered than you think. In certain
cases, Artix automatically registers extra resources to support interposition.
See “Limitation of using OTS Lite with propagation” on page 84.

CHAPTER 10 | Exposing Artix as an XA Resource

 136

Interoperating with WS-AT

transactions

The Artix XA resource manager can also interoperate over SOAP with

applications that require WS-AT transactions. This requires no special

configuration. Artix automatically loads the required WS-AT plug-ins, if they

are needed.

137

CHAPTER 11

MQ Transactions
This chapter describes how transactions are integrated with
the Artix MQ transport, which integrates with the IBM
MQ-Series product to provide a reliable message-oriented
transport.

In this chapter This chapter discusses the following topics:

Reliable Messaging with MQ Transactions page 138

CHAPTER 11 | MQ Transactions

 138

Reliable Messaging with MQ Transactions

Overview This section describes how to enable reliable messaging with MQ

transactions in your Artix applications. MQ transactions differ in several

important respects from ordinary Artix transactions, in particular:

• MQ transactions are managed by a transaction manager that is internal

to the MQ-Series product.

• MQ transactions are enabled by setting the relevant attributes of a

WSDL port in the WSDL contract.

• You can not initiate and terminate MQ transactions on the client side

using the Artix transaction API (for example, the functions in

IT_Bus::TransactionSystem are not used for MQ on the client side).

On the client side, MQ transactions follow a completely different model from

Artix transactions. On the server side, however, the MQ transaction is

integrated with an Artix transaction, so that an incoming message is

considered to have been processed, only if the Artix transaction completes

successfully on the server side.

Reliable Messaging with MQ Transactions

139

Oneway invocation scenario Figure 29 shows a oneway invocation scenario, where an Artix client

invokes oneway operations on an Artix server over the MQ transport with

MQ transactions enabled. Because the WSDL operations are oneway (that

is, consisting only of output messages), the MQ transport does not require a

reply queue in this scenario.

Description of oneway invocation The oneway operation invocation shown in Figure 29 is executed in the

following stages:

Figure 29: Oneway Operation Invoked Over an MQ Transport with MQ

Transactions Enabled

receiveArtix Client
MQ

Artix Server
MQ

WS-AT

WS-Coordination

MQ MQ
send

RequestQueue
propagation. . .

Transaction
Scope

1
2

3 4

5

Transaction Scope

Stage Description

1 When the client invokes a oneway operation over MQ, an MQ
transaction is initiated. After the request message is pushed
onto the client side of the MQ request queue, the MQ
transaction is committed.

Note: The client MQ transaction is local and does not extend
beyond the client side.

2 MQ-Series is responsible for reliably transmitting the request
message from the client side of the MQ transport to the server
side of the MQ transport.

3 When the server pulls the request message off the incoming
queue, an Artix transaction is initiated before dispatching the
request to the relevant Artix servant.

CHAPTER 11 | MQ Transactions

 140

Oneway client configuration To enable transactional semantics for a client that invokes oneway

operations over the MQ transport, you should define a WSDL port as shown

in Example 29.

4 If the Artix servant now invokes operations on some other Artix
servers, these invocations occur within a transaction context.
Hence, these follow-on invocations propagate a transaction
context (for example, a WS-AT context) and enable the remote
servers to participate in the transaction.

5 If the operation completes its work successfully, the transaction
is committed and the request message permanently disappears
from the queue.

On the other hand, if the operation is unsuccessful, the
transaction is rolled back and the request message is pushed
back onto the queue. The request message is immediately
reprocessed (the maximum number of times the message can
be processed is determined by the queue’s backout threshold—
see “Configuring the backout threshold” on page 145).

Stage Description

Example 29:WSDL Port Configuration for Oneway Client Over MQ

<wsdl:service name=" MQService">
 <wsdl:port binding="tns: BindingName" name=" PortName">
 <mq: client QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"

 AccessMode="send"
 CorrelationStyle="correlationId "
 Transactional="internal"
 Delivery="persistent"
 UsageStyle="peer"
 />
 ...
 </wsdl:port>
</wsdl:service>

Reliable Messaging with MQ Transactions

141

Because the invocation is oneway, there is no need to specify a reply queue

manager. To enable transactions, you must set the Transactional attribute

to internal and the Delivery attribute to persistent .

Oneway server configuration On the server side, you must configure both the WSDL contract and the

Artix configuration file appropriately for using MQ transactions.

WSDL Contract Configuration

To enable transactional semantics for a server that receives oneway

invocations over the MQ transport, you should define a WSDL port as shown

in Example 30.

To enable transactions, you must set the Transactional attribute to

internal and the Delivery attribute to persistent .

Artix Configuration File

On the server side, Artix initiates a transaction whenever it receives a

request message from the MQ transport. Because this transaction is

managed by an Artix transaction manager, you must load and configure one

of the Artix transaction systems (for example, OTS or WS-AT).

For details of how to select a transaction system, see “Selecting a

Transaction System” on page 39.

Example 30:WSDL Port Configuration for Oneway Server Over MQ

<wsdl:service name=" MQService">
 <wsdl:port binding="tns: BindingName" name=" PortName">
 ...
 <mq: server QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"

 AccessMode="receive"
 CorrelationStyle="correlationId "
 Transactional="internal"
 Delivery="persistent"
 UsageStyle="peer"
 />
 </wsdl:port>
</wsdl:service>

CHAPTER 11 | MQ Transactions

 142

Synchronous invocation scenario Figure 30 shows a synchronous invocation scenario, where an Artix client

invokes normal operations on an Artix server over the MQ transport with MQ

transactions enabled. Because the WSDL operations are synchronous (that

is, consisting of output messages and input messages), the MQ transport

requires a reply queue.

Description of synchronous

invocation

The synchronous operation invocation shown in Figure 30 is executed in the

following stages:

Figure 30: Synchronous Operation Invoked Over the MQ Transport with MQ

Transactions Enabled

receive

Artix Client
MQ

Artix Server
MQ

WS-AT

WS-Coordination

MQ MQRequestQueue

propagation. . .

1 2 3

4

5

Transaction Scope

MQ MQReplyQueue

6

send

7
receive send

Stage Description

1 When the client invokes a synchronous operation over MQ, an
MQ transaction is initiated.

2 MQ-Series is responsible for reliably transmitting the request
message from the client side of the MQ transport to the server
side of the MQ transport.

3 When the server pulls the request message off the incoming
queue, an Artix transaction is initiated before dispatching the
request to the relevant Artix servant.

Reliable Messaging with MQ Transactions

143

Synchronous client configuration To enable transactional semantics for a client that invokes synchronous

operations over the MQ transport, you should define a WSDL port as shown

in Example 31.

4 If the Artix servant now invokes operations on some other Artix
servers, these invocations occur within a transaction context.
Hence, these follow-on invocations propagate a transaction
context (for example, a WS-AT context) and enable the remote
servers to participate in the transaction.

5 If the operation completes its work successfully, the transaction
is committed, the request message permanently disappears
from the request queue, and a reply message gets pushed onto
the reply queue.

On the other hand, if the operation is unsuccessful, the
transaction is rolled back. No reply message is sent and the
request message is pushed back onto the request queue. The
request message is immediately reprocessed (the maximum
number of times the message can be processed is determined
by the request queue’s backout threshold—see “Configuring
the backout threshold” on page 145).

6 MQ-Series is responsible for reliably transmitting the reply
message from the server side of the MQ transport to the client
side of the MQ transport.

7 When the client receives the reply message, the synchronous
operation call returns and the client transaction is committed.
Because the client is independent of the server side
transaction, however, it is not possible for the client code to
receive a rollback exception from the server.

It is possible to manage blocked calls by defining the Timeout
attribute on the mq:client element in the WSDL contract. If
the timeout is exceeded, an exception will be thrown.

Stage Description

Example 31:WSDL Port Configuration for Synchronous Client Over MQ

<wsdl:service name=" MQService">
 <wsdl:port binding="tns: BindingName" name=" PortName">
 <mq: client QueueManager="MY_DEF_QM"

CHAPTER 11 | MQ Transactions

 144

To enable transactions, you must set the Transactional attribute to

internal and the Delivery attribute to persistent .

Synchronous server configuration On the server side, you must configure both the WSDL contract and the

Artix configuration file appropriately for using MQ transactions.

WSDL Contract Configuration

To enable transactional semantics for a server that receives synchronous

invocations over the MQ transport, define a WSDL port as shown in

Example 32.

 QueueName="HW_REQUEST"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 AccessMode="send"
 CorrelationStyle="correlationId "
 Transactional="internal"
 Delivery="persistent"
 UsageStyle="responder"
 />
 ...
 </wsdl:port>
</wsdl:service>

Example 31:WSDL Port Configuration for Synchronous Client Over MQ

Example 32:WSDL Port Configuration for Synchronous Server Over MQ

<wsdl:service name=" MQService">
 <wsdl:port binding="tns: BindingName" name=" PortName">
 ...
 <mq: server QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 AccessMode="receive"
 CorrelationStyle="correlationId "
 Transactional="internal"
 Delivery="persistent"
 UsageStyle="responder"
 />
 </wsdl:port>
</wsdl:service>

Reliable Messaging with MQ Transactions

145

To enable transactions, you must set the Transactional attribute to

internal and the Delivery attribute to persistent .

Artix Configuration File

On the server side, Artix initiates a transaction whenever it receives a

request message from the MQ transport. Because this transaction is

managed by an Artix transaction manager, you must load and configure one

of the Artix transaction systems (for example, OTS or WS-AT).

For details of how to select a transaction system, see “Selecting a

Transaction System” on page 39.

Configuring the backout threshold You can configure the backout threshold using the runmqsc command-line

tool, which is provided as part of the MQ-Series product. To configure a

queue to use backouts, set the following MQ attributes:

• BOTHRESH—the backout threshold, which defines the maximum

number of times a message can be pushed back onto the queue.

• BOQNAME—the backout queue name. If the current backout count

equals the backout threshold, Artix puts the message onto the backout

queue whose name is given by BOQNAME.

Hence, the BOQNAME queue would contain all of the messages that have been

rolled back more than BOTHRESH times. The administrator can then manually

examine the messages stored in the BOQNAME queue and take appropriate

remedial action.

For more details about how to set MQ attributes, see your MQ-Series user

documentation.

Accessing the backout count On the server side, you can obtain the backout count for the current

message using Artix contexts. To access the current backout count, perform

the following steps:

1. Retrieve the server context identified by the

IT_ContextAttributes::MQ_INCOMING_MESSAGE_ATTRIBUTE S QName.

2. Cast the returned context instance to the

IT_ContextAttributes::MQMessageAttributesType type.

3. Invoke the getBackoutCount() function to access the current backout

count.

CHAPTER 11 | MQ Transactions

 146

For more details about programming with Artix contexts, see Developing

Artix Applications in C++.

147

Index
A
attach_thread() function

and suppressing propagation 85

B
backout count 145
backout threshold 140, 143

configuring 145
BOQNAME attribute 145
BOTHRESH attribute 145

D
Delivery attribute 141
detach_thread() function

and suppressing propagation 85

G
getBackoutCount() function 145

I
interoperability

transaction propagation 82
interposition

resource for 84

M
MQ-Series

BOQNAME attribute 145
BOTHRESH attribute 145
runmqsc command-line tool 145

MQ transactions 138
backout count 145
backout threshold 140, 143, 145
Delivery attribute 141
synchronous invocation 142
Transactional attribute 141

O
oneway invocations

and MQ transactions 139
OTS Lite

limitations on using 84

R
reliable messaging

and transactions 138
runmqsc command-line tool 145

S
synchronous invocation

and MQ transactions 142

T
Transactional attribute 141
TransactionAlreadyActiveException 60
transaction contexts 82
transaction propagation 82

suppressing, how to 85
transactions 2

compatibility with CORBA OTS 5
example 2
properties 3

TransactionSystemUnavailableException 60

U
UsageStyle attribute 144

INDEX

 148

	Artix Transactions Guide, C++
	List of Tables
	List of Figures
	Preface
	What is Covered in this Book
	Who Should Read this Book
	The Artix Library
	Getting the Latest Version
	Searching the Artix Library
	Artix Online Help
	Artix Glossary
	Additional Resources
	Document Conventions

	Introduction to Transactions
	Basic Transaction Concepts
	Artix Transaction Features
	X/Open Distributed Transaction Processing
	X/Open DTP Architecture
	X/Open XA Interface

	Getting Started with Transactions
	Sample Scenario
	Client Example
	Server Example
	Configuration

	Selecting a Transaction System
	Configuring OTS Lite
	Configuring OTS Encina
	Configuring Non-Recoverable WS-AT
	Configuring Recoverable WS-AT

	Basic Transaction Programming
	Artix Transaction Interfaces
	Beginning and Ending Transactions
	Server Programming
	Registering an XA Resource
	Dynamic Registration Optimization
	Writing a Custom Resource
	Server-Side Programming Model

	Transaction Propagation
	Transaction Propagation and Interposition

	Threading
	Client Threading
	Threading and XA Resources

	Transaction Recovery
	Transactions Systems and Recovery
	Transaction Recovery Scenarios
	Server Crash before or during Prepare Phase
	Server Crash after Prepare Phase
	Transaction Coordinator Crash

	Recoverable Resources
	Transaction Participants
	Interposition

	Notification Handlers
	Introduction to Notification Handlers

	Exposing Artix as an XA Resource
	Introduction to the Artix XA Resource Manager
	Obtaining an Artix XA Resource Manager
	Obtaining the XA Switch from a Global Function
	Obtaining the XA Switch from a Bus Instance
	Obtaining the XA Switch from a Switch Load File

	Artix XA Open and Close Strings
	Configuring the Artix XA Resource Manager

	MQ Transactions
	Reliable Messaging with MQ Transactions

	Index

