
Artix Transactions Guide, Java
Version 4.0, March 2006

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiar-
ies.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential dam-
ages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photo- copying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 2003–2006 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: 23-Mar-2006

iii

Contents
List of Tables v

List of Figures vii

Preface ix

Chapter 1 Introduction to Transactions 1
Basic Transaction Concepts 2
Artix Transaction Features 4

Chapter 2 Selecting a Transaction System 9
Configuring OTS Lite 10
Configuring OTS Encina 13
Configuring Non-Recoverable WS-AT 17
Configuring Recoverable WS-AT 21

Chapter 3 Basic Transaction Programming 25
Artix Transaction Interfaces 26
Beginning and Ending Transactions 28

Chapter 4 Transaction Propagation 33
Transaction Propagation and Interposition 34

Chapter 5 Threading 39
Client Threading 40
Threading and XA Resources 45

Chapter 6 Transaction Recovery 51
Transactions Systems and Recovery 52
Transaction Recovery Scenarios 54

Server Crash before or during Prepare Phase 55

CONTENTS

 iv

Server Crash after Prepare Phase 57
Transaction Coordinator Crash 59

Chapter 7 Recoverable Resources 61
Transaction Participants 62
Interposition 68

Chapter 8 Notification Handlers 69
Introduction to Notification Handlers 70

Chapter 9 MQ Transactions 73
Reliable Messaging with MQ Transactions 74

Index 83

v

List of Tables
Table 1: Transaction Systems and Recoverability 52

LIST OF TABLES

 vi

vii

List of Figures
Figure 1: Artix Client Invokes a Transactional Operation on a CORBA OTS Server 5

Figure 2: One-Phase Commit Protocol 6

Figure 3: Two-Phase Commit Protocol 7

Figure 4: Overview of a Client-Server System that Uses OTS Lite 10

Figure 5: Overview of a Client-Server System that Uses OTS Encina 13

Figure 6: Client-Server System that Uses Non-Recoverable WS-AT 17

Figure 7: Client-Server System that Uses Recoverable WS-AT 21

Figure 8: Overview of the Artix Transaction API 26

Figure 9: Overview of Different Kinds of Transaction Propagation 35

Figure 10: Limitation of Transaction Propagation Using OTS Lite 36

Figure 11: Default Client Threading Model 40

Figure 12: Detaching and Re-Attaching a Transaction to a Thread 42

Figure 13: Detaching and Re-Attaching a Transaction to a Thread 42

Figure 14: Attaching a Transaction to Multiple Threads 43

Figure 15: Transferring a Transaction from One Thread to Another 44

Figure 16: Auto-Association with a Single Registered Resource 45

Figure 17: Auto-Association with Multiple Registered Resources 47

Figure 18: Database Resource Operating in Multi-Threaded Mode 48

Figure 19: Threading for a Dynamically Registered Resource 49

Figure 20: Server Crash before or during the Prepare Phase 55

Figure 21: Server Crash after the Prepare Phase 57

Figure 22: Transaction Participants in a 2-Phase Commit Protocol 62

Figure 23: Oneway Operation Invoked Over an MQ Transport with MQ Transactions Enabled 75

Figure 24: Synchronous Operation Invoked Over the MQ Transport with MQ Transactions Enabled78

LIST OF FIGURES

 viii

ix

Preface
What is Covered in this Book
This book explains how to program and configure Artix transactions in Java.

Who Should Read this Book
This guide is intended for Artix Java programmers. This guide assumes that

the reader is familiar with WSDL and XML schemas.

The Artix Library
The Artix documentation library is organized in the following sections:

• Getting Started

• Designing and Developing Artix Solutions

• Configuring and Deploying Artix Solutions

• Using Artix Services

• Integrating Artix Solutions

• Integrating with Enterprise Management Systems

• Reference Documentation

Getting Started

The books in this section provide you with a background for working with

Artix. They describe many of the concepts and technologies used by Artix.

They include:

• Release Notes contains release-specific information about Artix.

• Installation Guide describes the prerequisites for installing Artix and the

procedures for installing Artix on supported systems.

• Getting Started with Artix describes basic Artix and WSDL concepts.

../release_notes/index.htm
../install_guide/index.htm
../getting_started/index.htm

PREFACE

 x

• Using Artix Designer describes how to use Artix Designer to build Artix

solutions.

• Artix Technical Use Cases provides a number of step-by-step examples

of building common Artix solutions.

Designing and Developing Artix Solutions

The books in this section go into greater depth about using Artix to solve

real-world problems. They describe how Artix uses WSDL to define services,

and how to use the Artix APIs to build new services. They include:

• Building Service-Oriented Architectures with Artix provides an overview

of service-oriented architectures and describes how they can be

implemented using Artix.

• Understanding Artix Contracts describes the components of an Artix

contract. Special attention is paid to the WSDL extensions used to

define Artix-specific payload formats and transports.

• Developing Artix Applications in C++ discusses the technical aspects

of programming applications using the C++ API.

• Developing Advanced Artix Plug-ins in C++ discusses the technical

aspects of implementing advanced plug-ins (for example, interceptors)

using the C++ API.

• Developing Artix Applications in Java discusses the technical aspects

of programming applications using the Java API.

Configuring and Deploying Artix Solutions

This section includes:

• Configuring and Deploying Artix Solutions discusses how to configure

and deploy Artix-enabled systems, and provides examples of typical

use cases.

Using Artix Services

The books in this section describe how to use the services provided with

Artix:

• Artix Locator Guide discusses how to use the Artix locator.

• Artix Session Manager Guide discusses how to use the Artix session

manager.

• Artix Transactions Guide, C++ explains how to enable Artix C++

applications to participate in transacted operations.

../designer/index.htm
../cookbook/index.htm
../soa/index.htm
../contract/index.htm
../prog_guide/index.htm
../plugin_guide/index.htm
../java_pguide/index.htm
../deploy/index.htm
../locator_guide/index.htm
../session_mgr/index.htm
../transactions_cxx/index.htm

PREFACE

xi

• Artix Transactions Guide, Java explains how to enable Artix Java

applications to participate in transacted operations.

• Artix Security Guide explains how to use the security features of Artix.

Integrating Artix Solutions

The books in this section describe how to integrate Artix solutions with other

middleware technologies:

• Artix for CORBA provides information on using Artix in a CORBA

environment.

• Artix for J2EE provides information on using Artix to integrate with

J2EE applications.

For details on integrating with Microsoft’s .NET technology, see the

documentation for Artix Connect.

Integrating with Enterprise Management Systems

The books in this section describe how to integrate Artix solutions with a

range of enterprise management systems. They include:

• IBM Tivoli Integration Guide explains how to integrate Artix with IBM

Tivoli.

• BMC Patrol Integration Guide explains how to integrate Artix with BMC

Patrol.

• CA WSDM Integration Guide explains how to integrate Artix with CA

WSDM.

Reference Documentation

These books provide detailed reference information about specific Artix

APIs, WSDL extensions, configuration variables, command-line tools, and

terminology. The reference documentation includes:

• Artix Command Line Reference

• Artix Configuration Reference

• Artix WSDL Extension Reference

• Artix Java API Reference

• Artix C++ API Reference

• Artix .NET API Reference

• Artix Glossary

../transactions_java/index.htm
../security/index.htm
../corba_ws/index.htm
../j2ee/index.htm
../tivoli/index.htm
../bmc/index.htm
../ca_wsdm/index.htm
../command_ref/index.htm
../config_ref/index.htm
../wsdl_ref/index.htm
../javadoc/index.html
../cppdoc/index.html
../ndoc/index.html
../glossary/index.htm

PREFACE

 xii

Getting the Latest Version
The latest updates to the Artix documentation can be found at http://

www.iona.com/support/docs.

Compare the version dates on the web page for your product version with

the date printed on the copyright page of the PDF edition of the book you

are reading.

Searching the Artix Library
You can search the online documentation by using the Search box at the top

right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,

and use the Search box at the top right, for example:

http://www.iona.com/support/docs/artix/4.0/index.xml

You can also search within a particular book. To search within a HTML

version of a book, use the Search box at the top left of the page. To search

within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and

enter your search text.

Artix Online Help
Artix Designer and the Artix Management Console include comprehensive

online help, providing:

• Step-by-step instructions on how to perform important tasks

• A full search feature

• Context-sensitive help for each screen

There are two ways that you can access the online help:

• Select Help|Help Contents from the menu bar. Sections on Artix

Designer and the Artix Management Console appear in the contents

panel of the Eclipse help browser.

• Press F1 for context-sensitive help.

In addition, there are a number of cheat sheets that guide you through the

most important functionality in Artix Designer. To access these, select

Help|Cheat Sheets.

http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/4.0/index.xml
http://www.iona.com/support/docs
http://www.iona.com/support/docs

PREFACE

xiii

Artix Glossary
The Artix Glossary provides a comprehensive reference of Artix terminology.

It provides quick definitions of the main Artix components and concepts. All

terms are defined in the context of the development and deployment of Web

services using Artix.

Additional Resources
The IONA Knowledge Base (http://www.iona.com/support/knowledge_base/

index.xml) contains helpful articles written by IONA experts about Artix and

other products.

The IONA Update Center (http://www.iona.com/support/updates/index.xml)

contains the latest releases and patches for IONA products.

If you need help with this or any other IONA product, go to IONA Online

Support (http://www.iona.com/support/index.xml).

Comments, corrections, and suggestions on IONA documentation can be

sent to .

http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml
../glossary/index.htm

PREFACE

 xiv

Document Conventions

Typographical conventions

This book uses the following typographical conventions:

Fixed width Fixed width (courier font) in normal text represents

portions of code and literal names of items such as

classes, functions, variables, and data structures. For

example, text might refer to the IT_Bus::AnyType

class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#include <stdio.h>

Fixed width italic Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd /users/YourUserName

Italic Italic words in normal text represent emphasis and
introduce new terms.

Bold Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.

PREFACE

xv

Keying Conventions

This book uses the following keying conventions:

No prompt When a command’s format is the same for multiple
platforms, the command prompt is not shown.

% A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

> The notation > represents the MS-DOS or Windows
command prompt.

...

.

.

.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

[] Brackets enclose optional items in format and syntax
descriptions.

{} Braces enclose a list from which you must choose an
item in format and syntax descriptions.

| In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File|Open).

PREFACE

 xvi

1

CHAPTER 1

Introduction to
Transactions
This chapter provides an introduction to transaction concepts

and to the transaction features supported by Artix.

In this chapter This chapter discusses the following topics:

Basic Transaction Concepts page 2

Artix Transaction Features page 4

CHAPTER 1 | Introduction to Transactions

 2

Basic Transaction Concepts

What is a transaction? Artix gives separate software objects the power to interact freely even if they

are on different platforms or written in different languages. Artix adds to this

power by permitting those interactions to be transactions.

What is a transaction? Ordinary, non-transactional software processes can

sometimes proceed and sometimes fail, and sometimes fail after only half

completing their task. This can be a disaster for certain applications. The

most common example is a bank fund transfer: imagine a failed software

call that debited one account but failed to credit another. A transactional

process, on the other hand, is secure and reliable as it is guaranteed to

succeed or fail in a completely controlled way.

Example The classical illustration of a transaction is that of funds transfer in a

banking application. This involves two operations: a debit of one account

and a credit of another (perhaps after extracting an appropriate fee). To

combine these operations into a single unit of work, the following properties

are required:

• If the debit operation fails, the credit operation should fail, and

vice-versa; that is, they should both work or both fail.

• The system goes through an inconsistent state during the process

(between the debit and the credit). This inconsistent state should be

hidden from other parts of the application.

• It is implicit that committed results of the whole operation are

permanently stored.

Basic Transaction Concepts

3

Properties of transactions The following points illustrate the so-called ACID properties of a transaction.

Thus a transaction is an operation on a system that takes it from one

persistent, consistent state to another.

Atomic A transaction is an all or nothing procedure –
individual updates are assembled and either
committed or aborted (rolled back) simultaneously
when the transaction completes.

Consistent A transaction is a unit of work that takes a system
from one consistent state to another.

Isolated While a transaction is executing, its partial results
are hidden from other entities accessing the
transaction.

Durable The results of a transaction are persistent.

CHAPTER 1 | Introduction to Transactions

 4

Artix Transaction Features

Overview This section gives a short overview of the main features supported by Artix

transactions. The Artix transaction API is designed to be compatible with a

variety of different underlying transaction systems. Generally, you can

access the transaction system using a technology-neutral API, but the

technology-specific APIs are also available, in case you need to access more

advanced functionality.

The main features of Artix transactions are as follows:

• Supported protocols

• Client-side transaction support.

• Server-side transaction support.

• Compatibility with Orbix.

• Pluggable transaction system.

• One-phase commit.

• Two-phase commit.

• Transaction propagation.

Supported protocols Artix supports distributed transactions using the following protocols:

• CORBA binding over IIOP.

• SOAP binding over any compatible transport.

Client-side transaction support Transaction demarcation functions (begin_transaction(),

commit_transaction() and rollback_transaction()) can be used on the

client side to initiate and terminate a transaction. While the transaction is

active, all of the operations called from the current thread are included in

the transaction (that is, the operations’ request headers include a

transaction context).

Artix Transaction Features

5

Server-side transaction support On the server side, an API is provided that enables you to implement

transaction participants (sometimes referred to as transactional resources).

Using transaction participants, you can implement servers that participate in

a distributed transaction with the ACID transaction properties (Atomicity,

Consistency, Integrity, and Durability).

Artix supports several different approaches to implementing a transaction

participant, depending on what kind of transaction system is loaded into

your application. For example, you might take a technology-neutral

approach by implementing the IT_Bus::TransactionParticipant class, or

you might decide to exploit the special features of a particular transaction

system instead.

Compatibility with Orbix The Artix transaction facility is fully compatible with CORBA OTS in Orbix.

Hence, if you already have a transactional server implemented with Orbix

ASP, you can easily integrate this with an Artix client, as shown in Figure 1.

Pluggable transaction system The underlying transaction system used by Artix can be replaced within a

pluggable framework. Currently, the following transaction systems are

supported by Artix:

• OTS Lite.

• OTS Encina.

• WS-AtomicTransactions.

Figure 1: Artix Client Invokes a Transactional Operation on a CORBA OTS

Server

CORBA
Server

Transaction
Factory

Resource

Orbix Domain
begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client

CHAPTER 1 | Introduction to Transactions

 6

One-phase commit Artix supports the one-phase commit (1PC) protocol for transactions. This

protocol can be used if there is only one resource participating in the

transaction. The 1PC protocol essentially delegates the transaction

completion to the single resource manager. Figure 2 shows a schematic

overview of the 1PC protocol for a simple client-server system.

The 1PC protocol progresses through the following stages:

1. The client calls begin_transaction() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations

on the remote server. The WSDL operations are transactional, requiring

updates to a persistent resource.

3. The client calls commit_transaction() to make permanent any

changes caused during the transaction (alternatively, the client could

call rollback_transaction() to abort the transaction).

4. The transaction system performs the commit phase by sending a

notification to the server that it should perform a 1PC commit.

Two-phase commit The two-phase commit (2PC) protocol enables multiple resources to

participate in a transaction. In order to preserve the essential properties of a

transaction involving multiple distributed resources, it is necessary to use a

more elaborate algorithm. The 2PC algorithm consists of the following two

phases:

Figure 2: One-Phase Commit Protocol

Artix Server

Transaction
System

Resource

begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client

1

2

3
4

Artix Transaction Features

7

• Prepare phase—the transaction system notifies all of the participants

to prepare the transaction. The participants prepare the transaction by

saving the information that would be required to redo or undo the

changes made during the transaction. At the end of this phase, the

participants vote whether to commit or roll back the transaction.

• Commit (or rollback) phase—if all of the participants vote to commit

the transaction, the transaction system notifies the participants to

commit the changes. On the other hand, if one or more participants

vote to roll back the transaction, the transaction system notifies the

participants to roll back the changes.

Figure 3 shows a schematic overview of the 2PC protocol for a client and

two remote servers.

The 2PC protocol progresses through the following stages:

1. The client calls begin_transaction() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations

on both of the remote servers.

Figure 3: Two-Phase Commit Protocol

begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client

1

3

Artix Server

Transaction
System

Resource

Artix Server

Transaction
System

Resource

2

2
4

5

4
5

prepare
commit

CHAPTER 1 | Introduction to Transactions

 8

3. The client calls commit_transaction() to make permanent any

changes caused during the transaction (alternatively, the client could

call rollback_transaction() to abort the transaction).

4. The transaction system performs the prepare phase by polling all of the

remote transaction participants (the first phase of a two-phase

commit).

5. The transaction system performs the commit or rollback phase by

sending a notification to all of the remote transaction participants (the

second phase of a two-phase commit).

Transaction propagation If you have a section of code executing within a transaction context, Artix

automatically propagates a transaction context with the request message,

whenever a remote operation is called.

For example, consider a three-tier system, where a client initiates a

transaction, invokes an operation on server 1, and then server 1 makes a

further call on server 2. In this scenario, Artix automatically propagates the

transaction to server 2. The transaction is propagated, even if the protocol

between the client and server 1 differs from the protocol used between

server 1 and server 2.

9

CHAPTER 2

Selecting a
Transaction
System
Using the Artix plug-in architecture, you can choose between

a number of different transaction system implementations.

Because the Artix transaction API is designed to be

independent of the underlying transaction system, it is

possible to select a particular transaction system at runtime.

Typically, you would choose the transaction system that

provides the best match for your services. For example, if the

majority of your services are SOAP-based, you would select

the WS-AT transaction system.

In this chapter This chapter discusses the following topics:

Configuring OTS Lite page 10

Configuring OTS Encina page 13

Configuring Non-Recoverable WS-AT page 17

Configuring Recoverable WS-AT page 21

CHAPTER 2 | Selecting a Transaction System

 10

Configuring OTS Lite

Overview The OTS Lite plug-in is a lightweight transaction manager, which is subject

to the following restrictions: it supports the 1PC protocol only and it lets you

register only one resource. This plug-in allows applications that only access

a single transactional resource to use the OTS APIs without incurring a large

overhead, but allows them to migrate easily to the more powerful 2PC

protocol by switching to a different transaction manager. Figure 4 shows a

client-server deployment that uses the OTS Lite plug-in.

OTS Lite and interposition If you plan to use OTS Lite in an application that needs to propagate

transactions between different transaction systems, you should be aware

that OTS Lite is subject to certain limitations in the context of interposition.

See “Limitation of using OTS Lite with propagation” on page 36 for details.

Default transaction provider The following variable specifies the default transaction system used by an

Artix client or server:

plugins:bus:default_tx_provider:plugin

To select the CORBA OTS transaction system, you must initialize this

configuration variable with the value, ots_tx_provider.

Figure 4: Overview of a Client-Server System that Uses OTS Lite

Artix Client Artix Server

OTS

Resource

OTS

OTS Lite

Configuring OTS Lite

11

Loading the OTS plug-in In order to use the CORBA OTS transaction system, the OTS plug-in must be

loaded both by the client and by the server. To load the OTS plug-in, include

the ots plug-in name in the orb_plugins list. For example:

Loading the OTS Lite plug-in The OTS Lite plug-in, which is capable of managing 1PC transactions, can

be loaded on the client side, but it is not usually needed on the server side.

You can load the OTS Lite plug-in in one of the following ways:

• Dynamic loading—configure Artix to load the ots_lite plug-in

dynamically, if it is required. For this approach, you need to configure

the initial_references:TransactionFactory:plugin variable as

follows:

This style of configuration has the advantage that the OTS Lite plug-in

is loaded only if it is actually needed.

• Explicit loading—load the ots_lite plug-in by adding it to the list of

orb_plugins, as follows:

Artix Configuration File
ots_lite_client_or_server {
 plugins:bus:default_tx_provider:plugin = "ots_tx_provider";
 orb_plugins = [..., "ots"];
};

Artix Configuration File
ots_lite_client_or_server {
 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = [..., "ots"];
 initial_references:TransactionFactory:plugin = "ots_lite";
 ...
};

Artix Configuration File
ots_lite_client {
 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = [..., "ots", "ots_lite"];
 ...
};

CHAPTER 2 | Selecting a Transaction System

 12

Sample configuration The following example shows a sample configuration for using the OTS Lite

transaction manager:

Artix Configuration File

Basic configuration for transaction plug-ins (shared library
names and so on) included in the global configuration scope.
... (not shown)

ots_lite_client_or_server {
 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = ["xmlfile_log_stream", "iiop_profile", "giop",

"iiop", "ots"];
 initial_references:TransactionFactory:plugin = "ots_lite";
};

Configuring OTS Encina

13

Configuring OTS Encina

Overview The Encina OTS Transaction Manager provides full recoverable 2PC

transaction coordination implemented on top of the industry proven Encina

Toolkit from IBM/Transarc. Encina supports both 1PC and 2PC protocols

and allows you to register multiple resources. Figure 5 shows a client/server

deployment that uses the OTS Encina plug-in.

Default transaction provider The following variable specifies the default transaction system used by an

Artix client or server:

plugins:bus:default_tx_provider:plugin

To select the CORBA OTS transaction system, you must initialize this

configuration variable with the value, ots_tx_provider.

Figure 5: Overview of a Client-Server System that Uses OTS Encina

Artix Client

OTS

OTS Encina

Artix Server

OTS

Resource

Artix Server

OTS

Resource

CHAPTER 2 | Selecting a Transaction System

 14

Loading the OTS plug-in For applications that use the CORBA OTS transaction system, the OTS

plug-in must be loaded both by the client and by the server. To load the OTS

plug-in, include the ots plug-in name in the orb_plugins list. For example:

Loading the OTS Encina plug-in The OTS Encina plug-in, which is capable of managing 1PC and 2PC

transactions, can be loaded on the client side, but it is not usually needed

on the server side. You can load the OTS Encina plug-in in one of the

following ways:

• Dynamic loading—configure Artix to load the ots_encina plug-in

dynamically, if it is required. For this approach, you need to configure

the initial_references:TransactionFactory:plugin variable as

follows:

This style of configuration has the advantage that the OTS Encina

plug-in is loaded only if it is actually needed.

• Explicit loading—load the ots_encina plug-in by adding it to the list of

orb_plugins, as follows:

Artix Configuration File
ots_encina_client_or_server {
 plugins:bus:default_tx_provider:plugin = "ots_tx_provider";
 orb_plugins = [..., "ots"];
};

Artix Configuration File
ots_encina_client_or_server {
 plugins:bus:default_tx_provider:plugin="ots_tx_provider";
 orb_plugins = [..., "ots"];
 initial_references:TransactionFactory:plugin="ots_encina";
 ...
};

Artix Configuration File
ots_lite_client {
 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = [..., "ots", "ots_encina"];
 ...
};

Configuring OTS Encina

15

Sample configuration Example 1 shows a complete configuration for using the OTS Encina

transaction manager:

The preceding configuration can be described as follows:

1. These two lines configure Artix to use the CORBA OTS transaction

system and load the OTS plug-in.

2. This line configures Artix to load the ots_encina plug-in dynamically, if

it is needed by the application (typically needed on the client side).

3. Configuring Encina to use direct persistence means that the Encina

transaction manager service listens on a fixed IP port. The port on

which the transaction manager listens is specified by the

plugins:ots_encina:iiop:port variable.

Example 1: Sample Configuration for OTS Encina Plug-In

Artix Configuration File
ots_encina_client_or_server {

1 plugins:bus:default_tx_provider:plugin= "ots_tx_provider";
 orb_plugins = [..., "ots"];

2 initial_references:TransactionFactory:plugin = "ots_encina";

3 plugins:ots_encina:direct_persistence = "true";
 plugins:ots_encina:iiop:port = "3213";

4 plugins:ots_encina:initial_disk = "../../log/encina.log";
5 plugins:ots_encina:initial_disk_size = "1";
6 plugins:ots_encina:restart_file =

"../../log/encina_restart";
7 plugins:ots_encina:backup_restart_file =

"../../log/encina_restart.bak";

 # Boilerplate configuration settings for OTS Encina:
 # (you should never need to change these)

8 plugins:ots_encina:shlib_name = "it_ots_encina";
 plugins:ots_encina_adm:shlib_name = "it_ots_encina_adm";
 plugins:ots_encina_adm:grammar_db =

"ots_encina_adm_grammar.txt";
 plugins:ots_encina_adm:help_db = "ots_encina_adm_help.txt";
};

CHAPTER 2 | Selecting a Transaction System

 16

4. The plugins:ots_encina:initial_disk variable specifies the path for

the initial file used by the Encina OTS for its transaction logs.

If this file does not exist when you start the client, Encina OTS

automatically creates it (cold start).

5. The plugins:ots_encina:initial_disk_size variable specifies the

size of the initial file used by the Encina OTS for its transaction logs.

Defaults to 2.

6. The plugins:ots_encina:restart_file variable specifies the path for

the restart file, which Encina OTS uses to locate its transaction logs.

If this file does not exist when you start the client, Encina OTS

automatically creates it (cold start).

7. The plugins:ots_encina:backup_restart_file variable specifies the

path for the backup restart file, which Encina OTS uses to locate its

transaction logs.

If this file does not exist when you start the client, Encina OTS

automatically creates it (cold start).

8. The settings in the next few lines specify the basic configuration of the

OTS Encina plug-in. It should not be necessary ever to change the

values of these configuration settings.

Configuring Non-Recoverable WS-AT

17

Configuring Non-Recoverable WS-AT

Overview The WS-AtomicTransactions (WS-AT) transaction system uses SOAP

headers to transmit transaction contexts between the participants in a

transaction. The lightweight WS-AT transaction system supports the 2PC

protocol and allows you to register multiple resources; unlike OTS Encina,

however, it does not support recovery. Figure 6 shows a client/server

deployment that uses the lightweight WS-AT transaction system.

Default transaction provider The following variable specifies the default transaction system used by an

Artix client or server:

plugins:bus:default_tx_provider:plugin

To select the WS-AT transaction system, you must initialize this

configuration variable with the value, wsat_tx_provider.

Figure 6: Client-Server System that Uses Non-Recoverable WS-AT

Artix Client

WS-AT

WS-Coordination

Artix Server

WS-AT

Resource

Artix Server

WS-AT

Resource

CHAPTER 2 | Selecting a Transaction System

 18

Disabling recovery Since Artix version 4.0, the WS-AT transaction system is recoverable by

default (by layering itself over OTS Encina). Hence, to use the lightweight,

non-recoverable version of WS-AT in your application, you need to explicitly

disable recovery by setting the following configuration variable to true:

plugins:ws_coordination_service:disable_tx_recovery = "true";

Plug-ins for WS-AT The division of the WS-AT transaction system into separate plug-ins reflects

the fact that the WS-AT specification has two distinct parts:

WS-AtomicTransactions and WS-Coordination.

The following plug-ins are required to support the WS-AT transaction

system:

• wsat_protocol plug-in—implements WS-AtomicTransactions. It is

required by all services and clients that use WS-AT transactions. This

plug-in enables an Artix executable to receive and transmit WS-AT

transaction contexts.

• ws_coordination_service plug-in—implements WS-Coordination.

Only one instance of this plug-in is required (typically, loaded into a

client). This plug-in coordinates the two-phase commit protocol.

Sample configuration Example 2 shows a complete configuration for using the non-recoverable

WS-AT transaction manager:

Example 2: Sample Configuration for Non-Recoverable WS-AT

Artix Configuration File
ws_atomic_transactions {
 client
 {

1 orb_plugins = ["local_log_stream",
"ws_coordination_service"];

2 plugins:bus:default_tx_provider:plugin ="wsat_tx_provider";
3 plugins:ws_coordination_service:disable_tx_recovery ="true";

 };

 server
 {

4 orb_plugins = ["local_log_stream", "wsat_protocol",
"coordinator_stub_wsdl"];

 plugins:ws_coordination_service:disable_tx_recovery ="true";

Configuring Non-Recoverable WS-AT

19

The preceding configuration can be described as follows:

1. The ws_coordination_service plug-in is needed only on the client

side. Artix does not support auto-loading of this plug-in; you must

explicitly include it in the orb_plugins list.

The ws_coordination_service plug-in implicitly loads the

wsat_protocol plug-in as well. Hence, it is unnecessary to include

wsat_protocol plug-in in the orb_plugins list on the client side.

2. This line specifies that WS-AT is the default transaction provider. This

implies that whenever a client initiates a transaction (for example, by

calling begin_transaction()), Artix creates a new WS-AT transaction

by default.

3. This line specifies that transaction recovery is disabled. The effect of

this setting is that the transaction system relies on a lightweight,

non-recoverable implementation of WS-AT.

4. The server needs to load the wsat_protocol plug-in, in order to

process incoming atomic transactions coordination contexts and to

propagate transaction contexts. The coordinator_stub_wsdl plug-in

enables the server to talk to the WS-Coordination service on the client

side.

5. Strictly speaking, it is unnecessary to specify a default transaction

provider on the server side. On the server side, the transaction provider

is automatically determined by the incoming transaction context.

If the server needs to initiate its own transactions, however, it would be

appropriate to set the default transaction provider here also.

5 // No need to specify default_tx_provider here.
 };
};

Example 2: Sample Configuration for Non-Recoverable WS-AT

CHAPTER 2 | Selecting a Transaction System

 20

References The specifications for WS-AtomicTransactions and WS-Coordination are

available at the following locations:

• WS-AtomicTransactions

(http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-AtomicT

ransaction.pdf).

• WS-Coordination

(http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Coordin

ation.pdf).

http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-AtomicTransaction.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Coordination.pdf

Configuring Recoverable WS-AT

21

Configuring Recoverable WS-AT

Overview In order to provide enterprise-level transaction management using the

WS-AT protocols, Artix supports an option to layer WS-AT over the OTS

Encina transaction manager. With this configuration, WS-AT becomes a

fully recoverable transaction system. Figure 7 shows a client/server

deployment that uses the recoverable WS-AT transaction system.

Default transaction provider The following variable specifies the default transaction system used by an

Artix client or server:

plugins:bus:default_tx_provider:plugin

To select the WS-AT transaction system, you must initialize this

configuration variable with the value, wsat_tx_provider.

Figure 7: Client-Server System that Uses Recoverable WS-AT

Artix Client

WS-AT

WS-Coordination

Artix Server

WS-AT

Resource

Artix Server

WS-AT

Resource

OTS

OTS Encina

OTS

OTS

CHAPTER 2 | Selecting a Transaction System

 22

Enabling recovery Since Artix version 4.0, the WS-AT transaction system is recoverable by

default. Hence, to use the recoverable version of WS-AT in your application,

you can either omit the

plugins:ws_coordination_service:disable_tx_recovery variable from

your Artix configuration file or set it to false, as follows:

Loading WS-AT and OTS Encina

plug-ins

The configuration for the recoverable WS-AT transaction system is

essentially a combination of the WS-AT configuration and the OTS Encina

configuration. It is only necessary to load the WS-AT plug-ins explicitly—if

recovery is enabled, Artix implicitly loads the OTS and OTS Encina plug-ins.

Sample configuration Example 2 shows a complete configuration for using the recoverable WS-AT

transaction manager:

Artix Configuration File
plugins:ws_coordination_service:disable_tx_recovery = "false";

Example 3: Sample Configuration for Recoverable WS-AT

Artix Configuration File
ws_atomic_transactions {
 client
 {

1 orb_plugins = ["local_log_stream",
"ws_coordination_service"];

2 plugins:bus:default_tx_provider:plugin ="wsat_tx_provider";

3 # OTS Encina Configuration
 initial_references:TransactionFactory:plugin =

"ots_encina";
 plugins:ots_encina:direct_persistence = "true";
 plugins:ots_encina:iiop:port = "3213";
 plugins:ots_encina:initial_disk = "../../log/encina.log";
 plugins:ots_encina:initial_disk_size = "1";
 plugins:ots_encina:restart_file =

"../../log/encina_restart";
 plugins:ots_encina:backup_restart_file =

"../../log/encina_restart.bak";

 # Boilerplate configuration settings for OTS Encina:
 # (you should never need to change these)
 plugins:ots_encina:shlib_name = "it_ots_encina";

Configuring Recoverable WS-AT

23

The preceding configuration can be described as follows:

1. The ws_coordination_service plug-in is needed only on the client

side. Artix does not support auto-loading of this plug-in; you must

explicitly include it in the orb_plugins list.

The ws_coordination_service plug-in implicitly loads the

wsat_protocol, ots, and ots_encina plug-ins as well. Hence, it is

unnecessary to include the wsat_protocol, ots, and ots_encina

plug-ins in the orb_plugins list on the client side.

2. This line specifies that WS-AT is the default transaction provider. This

implies that whenever a client initiates a transaction (for example, by

calling begin_transaction()), Artix creates a new WS-AT transaction

by default.

3. From this line up to the end of the client scope shows the OTS Encina

configuraion settings. For detailed descriptions of the OTS Encina

settings, see “Sample configuration” on page 15.

4. The server needs to load the wsat_protocol plug-in, in order to

process incoming WS-AT coordination contexts and to propagate

transaction contexts. The coordinator_stub_wsdl plug-in enables the

server to talk to the WS-Coordination service on the client side.

 plugins:ots_encina_adm:shlib_name = "it_ots_encina_adm";
 plugins:ots_encina_adm:grammar_db =

"ots_encina_adm_grammar.txt";
 plugins:ots_encina_adm:help_db = "ots_encina_adm_help.txt";
 };

 server
 {

4 orb_plugins = ["local_log_stream", "wsat_protocol",
"coordinator_stub_wsdl"];

5 // No need to specify default_tx_provider here.
 };
};

Example 3: Sample Configuration for Recoverable WS-AT

CHAPTER 2 | Selecting a Transaction System

 24

5. Strictly speaking, it is unnecessary to specify a default transaction

provider on the server side. On the server side, the transaction provider

is automatically determined by the incoming transaction context.

If the server needs to initiate its own transactions, however, it would be

appropriate to set the default transaction provider here also.

25

CHAPTER 3

Basic Transaction
Programming
This chapter covers the basics of programming transactional

clients and servers. For simple applications, this probably

covers all you need to know about transaction programming.

In this chapter This chapter discusses the following topics:

Artix Transaction Interfaces page 26

Beginning and Ending Transactions page 28

CHAPTER 3 | Basic Transaction Programming

 26

Artix Transaction Interfaces

Overview Figure 8 shows an overview of the main classes that make up the Artix

transaction API. The Artix transaction API is designed to function as a

generic wrapper for a wide variety of specific transaction systems. As long as

you use the Artix APIs, you will be able to switch between any of the

transaction systems supported by Artix.

Accessing the transaction system To access the Artix transaction system, call the getTransactionSystem()

method on the bus. The returned

com.iona.jbus.transaction.TransactionSystem object provides the

starting point for accessing all aspects of Artix transactions.

The signature of Bus.getTransactionSystem() is shown in Example 4.

Figure 8: Overview of the Artix Transaction API

com.iona.jbus.Bus com.iona.jbus.transactions.TransactionSystem

com.iona.jbus.transactions.TransactionManager

com.iona.jbus.transactions.TransactionParticipant

com.iona.jbus.transactions.TransactionNotificationHandler

getTransactionManager()

getTransactionSystem()

Example 4: Signature for getTransactionSystem()

TransactionSystem getTransactionSystem() throws BusException;

Artix Transaction Interfaces

27

TransactionSystem class The TransactionSystem class provides the basic methods needed for

transaction demarcation (beginTransaction(), commitTransaction() and

rollbackTransaction()). For more details see “Beginning and Ending

Transactions” on page 28.

In addition to providing access the transaction demarcation method the

TransactionSystem object provides two other methods:

• getTransactionManager() returns a

com.iona.jbus.transaction.TransactionManager object that

provides access to some of the more advanced transaction features.

• withinTransaction() returns true if it is called within an active

transaction.

TransactionManager class The TransactionManager class provides advanced transaction functionality.

The most important method it provides is enlist(), which enables you to

implement a transactional resource by enlisting a transaction participant

object. It also provides methods for attaching and detaching threads from a

transaction. See “Threading” on page 39.

TransactionParticipant interface The com.iona.jbus.transaction.TransactionParticipant interface is

used to create transactional resources. An implementation of

TransactionParticipant acts as the resource manager for the datastore

involved in the transaction. It receives callbacks from the transaction

manager that are used to coordinate the commit or rollback steps with other

transaction participants. For more details, see “Recoverable Resources” on

page 61.

TransactionNotificationHandler

interface

The com.iona.jbus.transacation.TransactionNotificationHandler

interface is used to create objects that receive notification callbacks from the

transaction manager whenever a transaction is either committed or rolled

back.

CHAPTER 3 | Basic Transaction Programming

 28

Beginning and Ending Transactions

Overview On the client side, the functions for beginning and committing (or rolling

back) a transaction are collectively referred to as transaction demarcation

methods. Within a given thread, any Artix operations invoked after the

transaction begin and before the transaction commit (or rollback) are

implicitly associated with the transaction. The transaction demarcation

methods are typically the only methods that you need on the client side.

TransactionSystem methods Example 5 shows the methods belonging to the TransactionSystem

interface.

Client transaction functions The following functions are used to demarcate transactions on the client

side:

Example 5: The TransactionSystem Interface

// Java
package com.iona.jbus.transaction

public interface TransactionSystem {
 void beginTransaction()
 throws TransactionAlreadyActiveException,
 TransactionSystemUnavailableException,
 BusException;

 boolean commitTransaction(boolean reportHeuristics)
 throws NoActiveTransactionException, BusException;

 void rollbackTransaction()
 throws NoActiveTransactionException, BusException;

 TransactionManager getTransactionManager(
 String transactionManagerType
)
 throws TransactionSystemUnavailableException, BusException;

 boolean withinTransaction();
};

Beginning and Ending Transactions

29

• beginTransaction()—creates a new transaction on the client side and

associates it with the current thread. This method takes no arguments

and has no return value.

This method can throw the following exceptions:

♦ TransactionAlreadyActiveException is thrown if

beginTransaction() is called inside an already active

transaction.

♦ TransactionSystemUnavailableException is thrown if the

transaction system cannot be loaded. This usually points to a

configuration problem.

• commitTransaction()—ends the transaction normally, making any

changes permanent. This method takes a single boolean argument,

reportHeuristics, and returns true, if the transaction is commited

successfully.

This method can throw the following exception:

♦ NoActiveTransactionException is thrown if there is there is no

transaction associated with the current thread.

• rollbackTransaction()—aborts the transaction, rolling back any

changes.

This method can throw the following exception:

♦ NoActiveTransactionException is thrown if there is there is no

transaction associated with the current thread.

Other transaction functions In addition to the preceding demarcation functions, which are intended for

use on the client side, the TransactionSystem class also provides the

following functions, which can be used both on the client side and on the

server side:

• withinTransaction()—returns true if the current thread is associated

with a transaction; otherwise, false.

• getTransactionManager()—returns a reference to a

TransactionManager object, which provides access to advanced

transaction features.

Typically, a TransactionManager object is needed on the server side in

order to enlist participants in a transaction (for example, see

“Recoverable Resources” on page 61).

CHAPTER 3 | Basic Transaction Programming

 30

This method can throw the following exception:

♦ TransactionSystemUnavailableException is thrown if the

transaction system cannot be loaded.

Example Example 6 shows an Artix client that invokes a series of operations as an

atomic transaction. The client invokes on single service called Data. Data

provides a read and a write function.

Example 6: Transactional Client Example

import java.util.*;
import java.io.*;
import java.net.*;
import java.rmi.*;

import javax.xml.namespace.QName;
import javax.xml.rpc.*;

import com.iona.jbus.Bus;
import com.iona.jbus.transaction.*;

public class Transaction Client
{
 public static void main(String args[]) throws Exception
 {

1 Bus bus = Bus.init(args);
2 String serviceName = "DataService";

 String wsdlName = "soap_tx_demo.wsdl";
 QName serviceQName = new QName("http://transaction_demo",
 serviceName);
 QName portQName = new QName("", "DataSOAPPort");
 Data client = null;
 URL wsdlLocation = new URL(wsdlName);
 ServiceFactory factory = ServiceFactory.newInstance();
 Service service = factory.createService(wsdlLocation,
 serviceQName);
 client = (Data)service.getPort(portQName,Data.class);

3 TransactionSystem txSystem = bus.getTransactionSystem();

4 txSystem.beginTransaction();

Beginning and Ending Transactions

31

The code in Example 6 does the following:

1. Initializes the bus.

2. Creates a proxy for the Data service.

3. Gets the transaction system.

4. Begins a transaction.

5. Invokes operations on the service.

6. Rolls back the transaction if an exception is thrown while invoking

operations on the service.

7. Commits the transaction if all of the operations succeeded.

5 try
 {
 int value = client.read();
 System.out.println("value: " + value);
 System.out.println("Incrementing the value");
 client.write(value + 1);
 System.out.println("New values are");
 int value2 = client.read();
 System.out.println("value: " + value2);
 }

6 catch (Trowable T)
 {
 System.out.println("rolling back transaction...");
 txSystem.rollbackTransation();
 System.exit(1);
 }

7 System.out.println("committing transaction...");
 boolean result = txSystem.commitTransaction(true);
 if (result)
 {
 System.out.println("Transaction committed!");
 }
 else
 {
 System.out.println("Transaction *not* Committed!!");
 }
 }
}

Example 6: Transactional Client Example

CHAPTER 3 | Basic Transaction Programming

 32

33

CHAPTER 4

Transaction
Propagation
Transaction propagation refers to the implicit propagation of

transaction context data in message headers.

In this chapter This chapter discusses the following topics:

Transaction Propagation and Interposition page 34

CHAPTER 4 | Transaction Propagation

 34

Transaction Propagation and Interposition

Overview In a multi-tier application, Artix automatically propagates transactions from

tier to tier. This ensures that all of the processes that are relevant to the

outcome of a transaction can participate in the transaction. You do not have

to do anything special to switch on transaction propagation; it is enabled by

default. However, the receiver of a transaction context must have a

transaction plug-in loaded, otherwise the transaction context would be

ignored.

Transaction contexts A transaction context is a data structure that is transmitted to a remote

server and used to recreate the transaction at a remote location. The type of

transaction context that is transmitted depends on the middleware protocol.

Artix supports the following kinds of transaction context:

• OTS transaction context—a transaction context that is sent in a GIOP

header (part of the CORBA standard).

• WS-AT transaction context—a transaction context that is embedded in

a SOAP header.

Propagation scenario The propagation scenario shown in Figure 9 shows two different kinds of

transaction propagation, as follows:

• Transaction propagation within a single middleware technology—the

OTS transaction context, which propagates across the top half of

Figure 9, illustrates a simple kind of propagation, where the client and

the servers all use the same CORBA OTS transaction technology.

• Transaction propagation across middleware technologies—the WS-AT

transaction context, which propagates across the bottom half of

Figure 9, illustrates a kind of propagation, where the transaction

crosses technology domains. While the client uses OTS Encina to

Transaction Propagation and Interposition

35

manage the transaction, it must generate a WS-AT transaction context

to send to the server. The ability to transform transaction contexts is

known as interposition.

Scenario steps The propagation scenario shown in Figure 9 can be described as follows:

Figure 9: Overview of Different Kinds of Transaction Propagation

Artix Client

OTS

OTS Encina

Artix Server
CORBA

OTS

Resource

Artix Server
SOAP/HTTP

WS-AT

Resource

Artix Server
CORBA

OTS1

2 3

4

5

WS-AT
Tx Context

OTS
Tx Context

OTS
Tx Context

Stage Description

1 The Artix client (which is configured to use the OTS Encina
transaction system) initiates a transaction by calling the
beginTransaction() method. The client then invokes a remote
operation, which results in a request message being sent over
an IIOP connection.

2 The request received by the server includes an OTS transaction
context embedded in a GIOP header. Although this server does
not participate directly in the transaction (it registers no
resources), it is capable of propagating the transaction context
to the next tier in the application.

CHAPTER 4 | Transaction Propagation

 36

Limitation of using OTS Lite with

propagation

Figure 10 shows an interposition scenario where the client, which uses an

OTS transaction system, connects to a SOAP/HTTP server, which uses the

WS-AT transaction system.

Because there is only one explicitly registered resource in this scenario (the

database connected to the server), it would seem that the client could use

an OTS Lite transaction manager for this scenario. In reality, however, the

client must use the OTS Encina transaction manager. The reason for this is

that Artix implicitly registers an interposition resource to bridge the

OTS-to-WS-AT middleware boundary. Therefore, there are really two

resources in this scenario.

3 The third tier of the application receives a request containing
an OTS transaction context. This server participates in the
transaction by registering a database resource with the OTS
transaction manager.

4 The client invokes a remote operation, which results in a
request message being sent over a SOAP/HTTP connection.

5 In this case, Artix automatically translates the OTS transaction
into a WS-AT transaction context, which is suitable for
transmission in the header of the SOAP/HTTP request.

There is no need to perform any special configuration or
programming to enable interposition; it occurs automatically.

Stage Description

Figure 10: Limitation of Transaction Propagation Using OTS Lite

Artix Client

OTS

OTS Encina

Artix Server
SOAP/HTTP

WS-AT

Resource

WS-AT
Tx Context

Transaction Propagation and Interposition

37

In summary, interposition requires additional resources as follows:

• OTS-to-WS-AT middleware boundary—one interposition resource is

registered automatically. Applications with one explicitly registered

resource must use OTS Encina.

• WS-AT-to-OTS middleware boundary—no interposition resource

required. Applications with one explicitly registered resource may use

OTS Lite.

Suppressing propagation Once you have selected a transaction system (for example, the application

loads an OTS plug-in or a WS-AT plug-in), transaction contexts are

propagated by default.

It is possible, however, to suppress transaction propagation selectively using

the detachThread() and attachThread() methods. After calling

detachThread(), subsequent operation invocations do not participate in the

transaction and, therefore, do not propagate any transaction context. You

can re-establish an association with a transaction by calling

attachThread().

For more details on these functions, see “Threading” on page 39.

CHAPTER 4 | Transaction Propagation

 38

39

CHAPTER 5

Threading
This chapter discusses the thread affinity of transactions and

how you can modify thread affinities using the Artix transaction

API.

In this chapter This chapter discusses the following topics:

Client Threading page 40

Threading and XA Resources page 45

CHAPTER 5 | Threading

 40

Client Threading

Overview Artix supports a threading API that enables you to change the thread affinity

of a given transaction. Using the attachThread() and detachThread()

methods, you can flexibly re-assign threads to a transaction (subject to the

limitations imposed by the underlying transaction system).

Default client threading model Figure 11 shows the default threading model for transaction on the client

side. When you call beginTransaction(), Artix creates a new transaction

and attaches it to the current thread. So long as the transaction remains

attached, any WSDL operations called from the current thread become part

of the transaction. When you call commitTransaction() (or

rollbackTransaction(), if the transaction must be aborted), the

transaction is deleted.

Transaction identifiers A transaction identifier is an opaque identifier of type

com.iona.jbus.transaction.TransactionIdentifier that uniquely

identifies a transaction.

Figure 11: Default Client Threading Model

Thread X

beginTransaction()

Transaction Scope

commitTransaction()

Client Threading

41

Controlling thread affinity On the client side, thread affinity is controlled by the following

TransactionManager methods:

These functions can be explained as follows:

• detatchThread()

Detach the transaction from the current thread. After the call to

detatchThread(), WSDL operations called from the current thread do

not participate in the transaction. The returned transaction identifier

can be used to re-attach the transaction to the current thread at a later

stage.

• attachThread()

Attach the transaction, specified by the transactionIdentifier

argument, to the current thread.

• getTransactionIdentifier()

Return the identifier of the transaction that is attached to the current

thread. If no transaction is attached, return null.

Example 7: Functions for Controlling Thread Affinity

public class TransactionManager
{
 public TransactionIdentifier detachThread();

 public boolean attachThread(TransactionIdentifier
transactionIdentifier)

 throws InvalidTransactionIdentifierException

 public TransactionIdentifier getTransactionIdentifier()
...

}

CHAPTER 5 | Threading

 42

Detaching and re-attaching a

transaction to a thread

Figure 13 shows how to use the detachThread() and attachThread()

methods to suspend temporarily the association between a transaction and

a thread. This can be useful if, in the midst of a transaction, you need to

perform some non-transactional tasks.

Figure 12: Detaching and Re-Attaching a Transaction to a Thread

Figure 13: Detaching and Re-Attaching a Transaction to a Thread

Thread X

begin_transaction()

Transaction Scope

commit_transaction()detach_thread() attach_thread()

Thread X

beginTransaction()

Transaction Scope

commitTransaction()detachThread() attachThread()

Client Threading

43

Attaching a transaction to multiple

threads

Figure 14 shows how to use the getTransactionIdentifier() and

attachThread() methods to associate a transaction with multiple threads.

The getTransactionIdentifier() method is called from within the thread

that initiated the transaction. The transaction ID can then be passed to the

other threads, Y and Z, enabling them to attach the transaction.

Transferring a transaction from

one thread to another

Figure 15 shows how to use the detachThread() and attachThread()

methods to transfer a transaction from thread X to thread Y. The transaction

ID returned from the detachThread() call must be passed to thread Y,

enabling it to attach the transaction.

Figure 14: Attaching a Transaction to Multiple Threads

Note: Some transaction systems do not allow you to associate multiple
threads with a transaction. In this case, an attachThread() call fails
(returning false), if you attempt to attach a second thread to the
transaction.

Thread X

beginTransaction()

Transaction Scope

commitTransaction()id = getTransactionIdentifier()

attachThread(id)

Thread Y

Thread Z

attachThread(id)

CHAPTER 5 | Threading

 44

Figure 15: Transferring a Transaction from One Thread to Another

Note: Some transaction systems do not allow you to transfer a
transaction from one thread to another. In this case, an attachThread()
call fails (returning false), unless you are re-attaching the original thread
to the transaction.

Thread X

beginTransaction()

Transaction Scope

commitTransaction()

id = detachThread()

Thread Y

attachThread(id)

Threading and XA Resources

45

Threading and XA Resources

Overview This section discusses the following threading models for XA resources:

• Auto-association.

• Multiple registered resources.

• Multi-threaded resource connections.

• Dynamic registration.

Auto-association When an Artix server receives a transactional request (that is, a request

accompanied by a transaction context), Artix automatically creates an

association between the current thread and locally registered resources. For

each registered resource, the Artix transaction manager creates a

transaction branch, which participates in the global transaction.

Figure 16 shows the sequence of events that occur when a transactional

request arrives at an Artix server that has one registered resource.

Figure 16: Auto-Association with a Single Registered Resource

Thread X

xa_start()

Transaction Branch Scope

xa_end()

Resource

Upcall Return

Receive request Send reply
1

2

3 4

5

6

Resource
Connection

CHAPTER 5 | Threading

 46

The sequence of events shown in Figure 16 on page 45 can be explained as

follows:

1. Request is received—an operation request is received, which contains

a transaction context.

2. Artix calls xa_start()—to create a temporary association between the

current thread and the local resource. The resource creates a new

transaction branch, which performs work on behalf of the global

transaction.

3. Artix calls servant function—control is passed to the servant function

that implements the WSDL operation. Any interactions and updates

you make to the resource are now governed implicitly by the global

transaction.

4. Servant function returns—control passes back to the Artix runtime.

5. Artix calls xa_end()—to end the association between the current

thread and the resource. Effectively, the local transaction branch is

terminated (but the global transaction is still active).

6. Reply is sent—and the thread becomes available to process another

request.

Threading and XA Resources

47

Multiple registered resources Figure 17 shows how auto-association works with multiple registered

resources. When the Artix server receives a transactional request, it obtains

a list of all registered resources. Artix then creates a new transaction branch

for each resource, before making an upcall to the relevant servant function.

After the upcall, any application code in the servant function that interacts

with one of the resources (either resource R1 or resource R2) is implicitly

governed by a global transaction, where the global transaction ID has been

obtained from the received transaction context.

Figure 17: Auto-Association with Multiple Registered Resources

Thread X

xa_start()

Transaction Branch Scope

xa_end()

Resource R1

Upcall Return

Resource R2

CHAPTER 5 | Threading

 48

Multi-threaded resource

connections

Most modern databases offer the option of running in a multi-threaded

mode. What this means is that instead of having a single connection to the

database, which must be shared between all threads in the server, the

database allows the transaction manager to open a dedicated connection for

each server thread. This has the advantage of reducing contention between

the server threads.

Figure 18 shows an example of a resource configured to use multi-threaded

mode, where the server threads each open an independent connection to

the resource. This enables the threads to access the resource concurrently.

To use the multi-threaded resource mode, both the resource manager and

the Artix transaction manager must be configured appropriately.

Figure 18: Database Resource Operating in Multi-Threaded Mode

xa_start()

Transaction Branch Scope

xa_end()

Resource

Resource
Connections

Thread Y

Thread X

Transaction Branch Scope

Threading and XA Resources

49

Dynamic registration As shown in Figure 19, some XA resources support an alternative algorithm,

dynamic registration, for associating a global transaction with a locally

registered resource.

When dynamic registration is enabled, the transaction manager does not

automatically create a transaction branch for an incoming request (that is,

the transaction manager does not call xa_start()). Instead, the transaction

manager waits until it receives a callback, ax_reg(), from the resource

manager. This callback indicates to the transaction manager that the

application code has attempted to update the resource in some way (for

example, by calling EXEC SQL UPDATE). The transaction manager responds to

this by creating a new transaction branch, which it associates with a global

transaction (assuming the incoming request has a transaction context).

The advantage of this algorithm is that the transaction branch is created

only when necessary. In some cases, if the application code does not make

any resource updates, it might not be necessary to create a transaction

branch at all.

Figure 19: Threading for a Dynamically Registered Resource

Thread X
Transaction Branch Scope

xa_end()

Resource

Upcall Return

Resource
Connection

ax_reg()

CHAPTER 5 | Threading

 50

51

CHAPTER 6

Transaction
Recovery
Transaction recovery is an enterprise-level feature that ensures

a transaction system can cope with any kind of crash or system

failure, without losing data or getting into an inconsistent

state. In Artix, transaction recovery is implemented by the

Encina transaction engine.

In this chapter This chapter discusses the following topics:

Transactions Systems and Recovery page 52

Transaction Recovery Scenarios page 54

CHAPTER 6 | Transaction Recovery

 52

Transactions Systems and Recovery

Overview Not all of the Artix transaction systems support recovery. It is important to

distinguish between the lightweight transactions systems, which are

non-recoverable, and the enterprise-level transactions systems, which are

recoverable. Table 1 summarizes the characteristics of the various Artix

transaction systems.

OTS Lite OTS Lite is a lightweight transaction system, whose programming interface

is based on the CORBA OTS standard. The OTS Lite system can manage a

single resource only and is not recoverable.

OTS Encina OTS Encina is a complete, enterprise-level transaction system, whose

programming interface is based on the CORBA OTS standard. The OTS

Encina system can manage multiple resources and is recoverable.

Recoverability is the key property that distinguishes an enterprise-level

transaction systems from lightweight transaction systems. Recoverability

ensures that the system can always be brought back into a consistent state,

irrespective of when or how a transaction participant fails.

Non-recoverable WS-AT The non-recoverable WS-AT transaction system is a lightweight transaction

system based on the WS-AtomicTransactions and WS-Coordination

standards. The non-recoverable WS-AT transaction system (in contrast to

OTS Lite) can manage multiple resources.

Table 1: Transaction Systems and Recoverability

Transaction System Single or Multiple
Resources?

Recoverable?

OTS Lite Single No

OTS Encina Multiple Yes

Non-recoverable WS-AT Multiple No

Recoverable WS-AT Multiple Yes

Transactions Systems and Recovery

53

Recoverable WS-AT The recoverable WS-AT transaction system is layered on top of the OTS

Encina transaction engine to give enterprise-level transaction support. From

Artix 4.0 onwards, WS-AT is layered over OTS by default and the relevant

OTS plug-ins are automatically loaded when WS-AT is enabled. If the

plugins:ws_coordination_service:disable_tx_recovery variable appears

in your Artix configuration file, it must be set as follows to ensure

recoverability:

When WS-AT is layered over Encina, the initiation of a transaction in

WS-Coordination effectively initiates an OTS transaction. The coordination

context returned from the WS-Coordination service (and subsequently

propagated on SOAP calls) includes an identifier indicating that it is OTS

based and also includes an encoded form of the relevant OTS propagation

context. That is, all transactions, including WS-AT initiated ones, are always

OTS transactions. If a participant enlistment is required then the WS-AT

system will completely bypass the WS-AT protocols and enlist the

participant directly with OTS. This means that at completion time, OTS is

aware of, and in control of, all resources in the system, be they native OTS

resources, WSAT Participants, XA resources and so on.

Artix Configuration File
plugins:ws_coordination_service:disable_tx_recovery = "false";

Note: It is also possible to layer WS-AT over OTS Lite, but there is no
benefit in doing so, because OTS Lite is more limited than plain WS-AT.

CHAPTER 6 | Transaction Recovery

 54

Transaction Recovery Scenarios

Overview The whole point of transaction recovery is that it enables a transaction

system to recover to a consistent state, irrespective of what kind of system

failures occur. This section discusses a variety of different failure scenarios

in order to illustrate how Encina recovers the transactional system.

In this section This section contains the following subsections:

Server Crash before or during Prepare Phase page 55

Server Crash after Prepare Phase page 57

Transaction Coordinator Crash page 59

Transaction Recovery Scenarios

55

Server Crash before or during Prepare Phase

Overview Figure 20 shows a scenario involving two transactional resources, one

attached to server 1 and another attached to server 2, and a client, which

initiates a transaction involving server 1 and server 2. This scenario uses the

OTS Encina transaction system, where the OTS Encina transaction

coordinator is loaded into the client and the two servers participate in the

transaction.

The mode of failure described in this scenario involves server 1 crashing

either before or during the prepare phase of the two-phase commit protocol.

Figure 20: Server Crash before or during the Prepare Phase

begin_transaction()
 invoke
 ...
 invoke
commit_transaction()

Artix
Client

1

3

Server 1

OTS

Resource

Server 2

OTS

Resource

2

2
4

4

prepare

OTS

OTS Encina

4 Crash!!

CHAPTER 6 | Transaction Recovery

 56

Steps leading to crash As shown in Figure 20, the steps leading to a server crash before or during

the prepare phase of a two-phase commit can be described as follows:

1. The client calls begin_transaction() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations

on both of the remote servers.

3. The client calls commit_transaction() to make permanent any

changes caused during the transaction.

4. The transaction coordinator initiates the prepare phase of the

two-phase commit. At some point either before or during the prepare

phase, server 1 crashes. That is, the transaction coordinator never

receives a vote commit or vote rollback from server 1.

Transaction system recovery If the transaction coordinator does not receive a reply from the prepare call

on server 1 (for example, the connection to server 1 breaks or the

transaction times out), the transaction coordinator will presume that the

transaction is to be rolled back (this rule is called presumed rollback).

The transaction system also rolls back the transaction on all of the other

transaction participants.

Server 1 recovery The manner in which server 1 recovers depends on whether it wrote

anything into its log during the prepare phase. When server 1 re-starts after

crashing, the transaction is recovered in one of the following ways:

• No record of prepare phase in log—in this case, server 1 knows that a

transaction was begun (this is recorded in its log) and that the

transaction was interrupted before the prepare phase. Server 1

automatically rolls back the transaction (presumed rollback), bringing

it back to a state that is consistent with the rest of the system.

• Prepare phase recorded in log—in this case, it is possible that the

prepare phase had completed successfully. Server 1, therefore, needs

to contact the transaction coordinator to discover the outcome of the

transaction. From its log, it can retrieve a recovery coordinator

reference, which it uses to query the transaction state. Depending on

the reply, it will either commit or roll back the transaction (in the

scenario shown in Figure 20, it will be a rollback).

Transaction Recovery Scenarios

57

Server Crash after Prepare Phase

Overview Figure 21 shows a scenario involving two transactional resources, one

attached to server 1 and another attached to server 2, and a client, which

initiates a transaction involving server 1 and server 2. This scenario uses the

OTS Encina transaction system.

The mode of failure described in this scenario involves server 1 crashing

after the prepare phase of the two-phase commit protocol.

Steps leading to crash As shown in Figure 21, the steps leading to a server crash after the prepare

phase of a two-phase commit can be described as follows:

1. The client calls commit_transaction() to make permanent any

changes caused during the transaction.

2. The transaction system performs the prepare phase by polling all of the

remote transaction participants.

Figure 21: Server Crash after the Prepare Phase

begin_transaction()
...
...
...
commit_transaction()

Artix
Client

1

Server 1

OTS

Resource

Server 2

OTS

Resource

2

2

prepare

OTS

OTS Encina

3 Crash!!

prepare

4

commit

CHAPTER 6 | Transaction Recovery

 58

3. After replying to the prepare call, but before receiving the commit call,

server 1 crashes. For this scenario, it is assumed that server 1 replied

to the prepare call with a vote commit.

4. Assuming that the other transaction participants all reply to the

prepare phase with a vote commit, the transaction coordinator decides

to commit the transaction and sends a commit notification to the

participants.

Transaction system recovery If the prepare phase has completed successfully (that is, the prepare call

returned from all of the transaction participants), the transaction coordinator

determines the outcome of the transaction to be either commit or rollback.

In the present scenario, it is assumed that the outcome is commit.

When the transaction coordinator attempts to send a commit notification to

server 1, it discovers that server 1 has crashed. The transaction coordinator

reacts to this situation by retrying the commit call forever.

Server 1 recovery When server 1 is restarted, it knows from its own log that a transaction was

prepared but not commited. Therefore, it expects to receive either a commit

or a rollback call from the transaction coordinator. Because the transaction

coordinator retries the commit call forever, server 1 is bound to receive a

commit call shortly after it starts up, thereby resolving the transaction.

Transaction Recovery Scenarios

59

Transaction Coordinator Crash

Overview Another mode of failure can occur where the process hosting the transaction

coordinator crashes (for example, in Figure 21 this would be the client

process). The transaction coordinator has its own log, which it uses as the

basis for recovery.

Encina logs To enable the transaction coordinator to recover gracefully after a crash, it

writes whatever information would be needed for recovery into a log file or

partition as it goes along.

Transaction system recovery After a transaction coordinator crash, the possible recovery scenarios can be

reduced essentially to two cases, as follows:

• The coordinator determined the transaction outcome before

crashing—upon restarting, the transaction coordinator will try forever

to notify the participants of the transaction outcome (commit or

rollback).

• The coordinator did not determine the transaction outcome before

crashing—the presumed rollback rule is used here. Transaction

participants that were not prepared will simply presume a rollback,

after a timeout has elapsed. Prepared participants will use the

coordinator reference to contact the transaction coordinator and query

the outcome of the transaction.

CHAPTER 6 | Transaction Recovery

 60

61

CHAPTER 7

Recoverable
Resources
This section describes those aspects of server side

programming which enable you to update a persistent resource

transactionally.

In this chapter This chapter discusses the following topics:

Transaction Participants page 62

Interposition page 68

CHAPTER 7 | Recoverable Resources

 62

Transaction Participants

Overview When Artix uses a persistent resource, the easiest way to integrate that

resource within the Artix transaction system is to enlist the resource’s XA

switch. If the resource does not support the XA standard, however, you need

to implement a transaction participant instead. A transaction participant is

an object on the server side that interfaces between the Artix transaction

manager and a persistent resource. The role of the transaction participant is

to receive callbacks from the transaction manager, which tell the participant

whether to make pending changes permanent or whether to abort the

current transaction and return the resource to its previous consistent state.

Participants in a 2-phase commit Figure 22 shows an example of a two-phase commit involving two

transaction participant instances. Any operations meant to be transactional

should start by creating a transaction participant object and enlisting it with

the transaction manager.

Figure 22: Transaction Participants in a 2-Phase Commit Protocol

beginTransaction()
 invoke
 ...
 invoke
commitTransaction()

Artix
Client

1

3

Artix Server

Transaction
System

Resource

Artix Server

Transaction
System

Resource

2

2
4

5

4
5

prepare
commit

enlist

TransactionParticipant

delete6

enlist

TransactionParticipant

delete6

Transaction Participants

63

Participants in a 2-phase commit As shown in Figure 22, the transaction participants participate in a

two-phase commit as follows:

Implementing a transaction

participant

To create a transaction participant, define a class that implements the

com.iona.jbus.transaciton.TransactionParticipant interface.

Stage Description

1 The client calls beginTransaction() to initiate a distributed
transaction.

2 Within the transaction, the client calls transactional operations
on Server A and on Server B. In order to participate in the
distributed transaction, the servant code creates a new
transaction participant and enlists it with the transaction
manager.

3 The client calls commitTransaction() to make permanent any
changes caused during the transaction.

4 The transaction system performs the prepare phase by calling
prepare() on all of the transaction participants. Each
participant can vote either to commit or to rollback the current
transaction by returning a flag from the prepare() function.

5 The transaction system performs the commit or rollback phase
by calling commit() or rollback() on all of the transaction
participants.

6 When the transaction is finished, the transaction manager
automatically deletes the associated transaction participant
instances.

CHAPTER 7 | Recoverable Resources

 64

TransactionParticipant methods Example 8 shows the public member functions of the

TransactionParticipant interface.

1PC callback method The following method is called during a one-phase commit:

• commitOnePhase()—this method should make permanent any changes

associated with the current transaction.

2PC callback functions The following methods are called during a two-phase commit:

• prepare()—called during phase one of a two-phase commit. Before

returning, this method should write a recovery log to persistent storage.

The recovery log should contain whatever data would be necessary to

restore the system to a consistent state, in the event that the server

crashes before the transaction is finished.

Example 8: The TransactionParticipant Interface

// Java
package com.iona.jbus.transaction;

import com.iona.jbus.BusException;

public interface TransactionParticipant
{
 void commitOnePhase() throws BusException;

 VoteOutcome prepare();

 void commit();

 void rollback();

 void setTransactionManager(TransactionManager txManager);

 String preferredTransactionManager();
}

Note: In some transaction systems, such as OTS Encina, the
transaction manager will not call prepare() if it knows that
transaction will be rolled back.

Transaction Participants

65

The prepare() function also votes on whether to commit or roll back

the transaction overall, by returning one of the following vote

outcomes:

♦ VoteOutcome.VOTE_COMMIT—vote to commit the transaction.

♦ VoteOutcome.VOTE_ROLLBACK—vote to roll back the transaction.

For example, you would return VOTE_ROLLBACK, if an error

occurred while attempting to write the recovery log.

♦ VoteOutcome.VOTE_READONLY—explicitly request not to be

included in the commit phase of the 2PC protocol.

• commit()—called during phase two of a two-phase commit, if the

transaction outcome was successful overall. The implementation of

this method should make permanent any changes associated with the

current transaction.

• rollback()—called during phase two of a two-phase commit, if the

transaction must be aborted. The implementation of this method

should undo any changes associated with the current transaction,

returning the system to the state it was in before.

Getting the transaction manager After the transaction participant is enlisted by a transaction manager

instance, the transaction system calls back to pass a transaction manager to

the participant. The following methods are relevant to this callback

behavior:

• preferredTransactionManager()—called just after the participant is

enlisted. The return value is a string that tells the transaction system

what type of transaction manager the participant requires. The

following return strings are supported:

♦ DEFAULT_TRANSACTION_TYPE—no preference; use the current

default.

♦ OTS_TRANSACTION_TYPE—prefer the OTSTransactionManager

interface (manager for CORBA OTS transactions).

♦ WSAT_TRANSACTION_TYPE—prefer the WSATTransactionManager

interface (manager for WS-AtomicTransactions).

• setTransactionManager()—called after the

preferredTransactionManager() call. The transaction system calls

setTransactionManager() to pass a transaction manager of the

CHAPTER 7 | Recoverable Resources

 66

preferred type to the participant. If the type of transaction manager

requested by the participant differs from the one currently in use, Artix

uses interposition to simulate the preferred transaction manager type.

For more details about interposition, see “Interposition” on page 68.

Enlisting a transaction participant Example 9 shows an example of how to enlist a participant instance in a

transaction. You must enlist a participant at the start of any transactional

WSDL operation. Example 9 shows a sample implementation of an

operation, write(), which is called in the context of a transaction.

Example 9: Example of Enlisting a Transactional Participant

public void write(int value) throws Exception
{
 Bus bus = DispatchLocals.getCurrentBus();

 TransactionSystem txSystem = bus.getTransactionSystem();

 if (txSystem.withinTransaction())
 {
 TxParticipant participant = new TxParticipant(this);

 TransactionManager txManager =
txSystem.getTransactionManager(TransactionSystem.DEFAULT_TRAN
SACTION_TYPE);

 txManager.enlist(participant, true);

 m_value = value;
 }
 else
 {
 System.out.println("No transaction");
 throw new BusException("Invocation not in transaction");
 }
}

Transaction Participants

67

The preceding code example can be explained as follows:

1. DispatchLocals.getCurrentBus() is a standard function that returns

a reference to the current thread’s bus instance.

2. write() requires a transaction. If it is not called in the context of a

transaction, it raises an exception back to the client.

3. The TXParticipant class is an implementation of the

TransactionParticipant interface.

4. The participant is enlisted in the transaction, ensuring that the

participant receives callbacks either to commit or rollback any

changes.

The second parameter is a boolean flag that specifies the kind of

participant:

♦ true indicates a durable participant, which participates in all

phases of the transaction.

♦ false indicates a volatile participant, which is only guaranteed to

participate in the prepare phase of the 2PC protocol. There is no

guarantee that a volatile participant will participate in the commit

phase.

CHAPTER 7 | Recoverable Resources

 68

Interposition

What is interposition? Sometimes, there can be a mismatch between the transaction API used by

the application code and the type of the underlying transaction system. For

example, imagine that you have a legacy CORBA server that manages

transactions with CORBA OTS. If you migrate this server code to a

WS-AT-based Artix service, you would obtain a mismatch between the

transaction API used by the application code (which is CORBA OTS-based)

and the underlying transaction system (which is WS-AT).

To bridge this API mismatch, Artix uses interposition. With interposition,

the Artix runtime provides the application code with an object of the

preferred type (for example, an OTSTransactionManager object), but the

object is merely a facade, whose calls are ultimately translated into a form

suitable for the underlying transaction system (for example, WS-AT).

Interposition matrix Artix supports interposition between every permutation of transaction

systems. Internally, Artix converts calls made on a specific transaction API

into a technology-neutral API. The calls are then converted from the

technology-neutral API into one of the supported transaction APIs.

69

CHAPTER 8

Notification
Handlers
A notification handler is an object that receives callbacks to

inform it about the outcome of a transaction.

In this chapter This chapter discusses the following topics:

Introduction to Notification Handlers page 70

CHAPTER 8 | Notification Handlers

 70

Introduction to Notification Handlers

Overview A notification handler is an object that records the outcome of a

transaction. It can be used both on the server side and on the client side.

For example, you might use a notification handler to log transaction

outcomes or to synchronize other events with a transaction.

Implementing a notification

handler

To implement a notification handler, implement the

com.iona.jbus.transaction.TransactionNotificationHandler interface.

TransactionNotificationHandler

interface

Example 10 shows the TransactionNotificationHandler interface. These

methods will only be called if an appropriate notification mechanism is

available in the underlying transaction system.

Notification callback functions The following notification handler functions receive callbacks from the

transaction manager:

• commitInitiated()—informs the handler that a commit has been

initiated. This method is called before any participants are prepared.

• committed()—informs the handler that the transaction completed

successfully.

Example 10:The TransactionNotificationHandler Interface

// Java
package com.iona.jbus.transaction;

public interface TransactionNotificationHandler
{
 void commitInitiated(TransactionIdentifier transactionId);

 void committed();

 void aborted();
}

Note: WS-AT does not support this notification point.

Introduction to Notification Handlers

71

• aborted()—informs the handler that the transaction did not complete

successfully and was aborted.

Enlisting a notification handler To use a notification handler, you must enlist it with a TransactionManager

object while there is a current transaction. You can enlist a notification

handler at any time prior to the termination of the transaction.

Example 11 shows how to enlist a sample notification handler,

NotificationHandlerImpl.

Example 11:Example of Enlisting a Notification Handler

// Java
Bus bus = DispatchLocals.getCurrentBus();
TransactionSystem txSystem = bus.getTransactionSystem();

if (txSystem.withinTransaction())
{
 NotificationHandlerImpl notHandler = new

NotificationHandlerImpl;

 TransactionManager txManager =
txSystem.getTransactionManager(TransactionSystem.DEFAULT_TRAN
SACTION_TYPE);

 txManager.enlistForNotification(notHandler);
}

CHAPTER 8 | Notification Handlers

 72

73

CHAPTER 9

MQ Transactions
This chapter describes how transactions are integrated with

the Artix MQ transport, which integrates with the IBM

MQ-Series product to provide a reliable message-oriented

transport.

In this chapter This chapter discusses the following topics:

Reliable Messaging with MQ Transactions page 74

CHAPTER 9 | MQ Transactions

 74

Reliable Messaging with MQ Transactions

Overview This section describes how to enable reliable messaging with MQ

transactions in your Artix applications. MQ transactions differ in several

important respects from ordinary Artix transactions, in particular:

• MQ transactions are managed by a transaction manager that is internal

to the MQ-Series product.

• MQ transactions are enabled by setting the relevant attributes of a

WSDL port in the WSDL contract.

• You can not initiate and terminate MQ transactions on the client side

using the Artix transaction API (for example, the functions in

IT_Bus::TransactionSystem are not used for MQ on the client side).

On the client side, MQ transactions follow a completely different model from

Artix transactions. On the server side, however, the MQ transaction is

integrated with an Artix transaction, so that an incoming message is

considered to have been processed, only if the Artix transaction completes

successfully on the server side.

Reliable Messaging with MQ Transactions

75

Oneway invocation scenario Figure 23 shows a oneway invocation scenario, where an Artix client

invokes oneway operations on an Artix server over the MQ transport with

MQ transactions enabled. Because the WSDL operations are oneway (that

is, consisting only of output messages), the MQ transport does not require a

reply queue in this scenario.

Description of oneway invocation The oneway operation invocation shown in Figure 23 is executed in the

following stages:

Figure 23: Oneway Operation Invoked Over an MQ Transport with MQ

Transactions Enabled

receiveArtix Client
MQ

Artix Server
MQ

WS-AT

WS-Coordination

MQ MQ
send

RequestQueue
propagation. . .

Transaction
Scope

1
2

3 4

5

Transaction Scope

Stage Description

1 When the client invokes a oneway operation over MQ, an MQ
transaction is initiated. After the request message is pushed
onto the client side of the MQ request queue, the MQ
transaction is committed.

Note: The client MQ transaction is local and does not extend
beyond the client side.

2 MQ-Series is responsible for reliably transmitting the request
message from the client side of the MQ transport to the server
side of the MQ transport.

3 When the server pulls the request message off the incoming
queue, an Artix transaction is initiated before dispatching the
request to the relevant Artix servant.

CHAPTER 9 | MQ Transactions

 76

Oneway client configuration To enable transactional semantics for a client that invokes oneway

operations over the MQ transport, you should define a WSDL port as shown

in Example 12.

4 If the Artix servant now invokes operations on some other Artix
servers, these invocations occur within a transaction context.
Hence, these follow-on invocations propagate a transaction
context (for example, a WS-AT context) and enable the remote
servers to participate in the transaction.

5 If the operation completes its work successfully, the transaction
is committed and the request message permanently disappears
from the queue.

On the other hand, if the operation is unsuccessful, the
transaction is rolled back and the request message is pushed
back onto the queue. The request message is immediately
reprocessed (the maximum number of times the message can
be processed is determined by the queue’s backout threshold—
see “Configuring the backout threshold” on page 81).

Stage Description

Example 12:WSDL Port Configuration for Oneway Client Over MQ

<wsdl:service name="MQService">
 <wsdl:port binding="tns:BindingName" name="PortName">
 <mq:client QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"

 AccessMode="send"
 CorrelationStyle="correlationId"
 Transactional="internal"
 Delivery="persistent"
 UsageStyle="peer"
 />
 ...
 </wsdl:port>
</wsdl:service>

Reliable Messaging with MQ Transactions

77

Because the invocation is oneway, there is no need to specify a reply queue

manager. To enable transactions, you must set the Transactional attribute

to internal and the Delivery attribute to persistent.

Oneway server configuration On the server side, you must configure both the WSDL contract and the

Artix configuration file appropriately for using MQ transactions.

WSDL Contract Configuration

To enable transactional semantics for a server that receives oneway

invocations over the MQ transport, you should define a WSDL port as shown

in Example 13.

To enable transactions, you must set the Transactional attribute to

internal and the Delivery attribute to persistent.

Artix Configuration File

On the server side, Artix initiates a transaction whenever it receives a

request message from the MQ transport. Because this transaction is

managed by an Artix transaction manager, you must load and configure one

of the Artix transaction systems (for example, OTS or WS-AT).

For details of how to select a transaction system, see “Selecting a

Transaction System” on page 9.

Example 13:WSDL Port Configuration for Oneway Server Over MQ

<wsdl:service name="MQService">
 <wsdl:port binding="tns:BindingName" name="PortName">
 ...
 <mq:server QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"

 AccessMode="receive"
 CorrelationStyle="correlationId"
 Transactional="internal"
 Delivery="persistent"
 UsageStyle="peer"
 />
 </wsdl:port>
</wsdl:service>

CHAPTER 9 | MQ Transactions

 78

Synchronous invocation scenario Figure 24 shows a synchronous invocation scenario, where an Artix client

invokes normal operations on an Artix server over the MQ transport with MQ

transactions enabled. Because the WSDL operations are synchronous (that

is, consisting of output messages and input messages), the MQ transport

requires a reply queue.

Description of synchronous

invocation

The synchronous operation invocation shown in Figure 24 is executed in the

following stages:

Figure 24: Synchronous Operation Invoked Over the MQ Transport with MQ

Transactions Enabled

receive

Artix Client
MQ

Artix Server
MQ

WS-AT

WS-Coordination

MQ MQRequestQueue

propagation. . .

1 2 3

4

5

Transaction Scope

MQ MQReplyQueue

6

send

7
receive send

Stage Description

1 When the client invokes a synchronous operation over MQ, an
MQ transaction is initiated.

2 MQ-Series is responsible for reliably transmitting the request
message from the client side of the MQ transport to the server
side of the MQ transport.

3 When the server pulls the request message off the incoming
queue, an Artix transaction is initiated before dispatching the
request to the relevant Artix servant.

Reliable Messaging with MQ Transactions

79

Synchronous client configuration To enable transactional semantics for a client that invokes synchronous

operations over the MQ transport, you should define a WSDL port as shown

in Example 14.

4 If the Artix servant now invokes operations on some other Artix
servers, these invocations occur within a transaction context.
Hence, these follow-on invocations propagate a transaction
context (for example, a WS-AT context) and enable the remote
servers to participate in the transaction.

5 If the operation completes its work successfully, the transaction
is committed, the request message permanently disappears
from the request queue, and a reply message gets pushed onto
the reply queue.

On the other hand, if the operation is unsuccessful, the
transaction is rolled back. No reply message is sent and the
request message is pushed back onto the request queue. The
request message is immediately reprocessed (the maximum
number of times the message can be processed is determined
by the request queue’s backout threshold—see “Configuring
the backout threshold” on page 81).

6 MQ-Series is responsible for reliably transmitting the reply
message from the server side of the MQ transport to the client
side of the MQ transport.

7 When the client receives the reply message, the synchronous
operation call returns and the client transaction is committed.
Because the client is independent of the server side
transaction, however, it is not possible for the client code to
receive a rollback exception from the server.

It is possible to manage blocked calls by defining the Timeout
attribute on the mq:client element in the WSDL contract. If
the timeout is exceeded, an exception will be thrown.

Stage Description

Example 14:WSDL Port Configuration for Synchronous Client Over MQ

<wsdl:service name="MQService">
 <wsdl:port binding="tns:BindingName" name="PortName">
 <mq:client QueueManager="MY_DEF_QM"

CHAPTER 9 | MQ Transactions

 80

To enable transactions, you must set the Transactional attribute to

internal and the Delivery attribute to persistent.

Synchronous server configuration On the server side, you must configure both the WSDL contract and the

Artix configuration file appropriately for using MQ transactions.

WSDL Contract Configuration

To enable transactional semantics for a server that receives synchronous

invocations over the MQ transport, define a WSDL port as shown in

Example 15.

 QueueName="HW_REQUEST"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 AccessMode="send"
 CorrelationStyle="correlationId"
 Transactional="internal"
 Delivery="persistent"
 UsageStyle="responder"
 />
 ...
 </wsdl:port>
</wsdl:service>

Example 14:WSDL Port Configuration for Synchronous Client Over MQ

Example 15:WSDL Port Configuration for Synchronous Server Over MQ

<wsdl:service name="MQService">
 <wsdl:port binding="tns:BindingName" name="PortName">
 ...
 <mq:server QueueManager="MY_DEF_QM"
 QueueName="HW_REQUEST"
 ReplyQueueManager="MY_DEF_QM"
 ReplyQueueName="HW_REPLY"
 AccessMode="receive"
 CorrelationStyle="correlationId"
 Transactional="internal"
 Delivery="persistent"
 UsageStyle="responder"
 />
 </wsdl:port>
</wsdl:service>

Reliable Messaging with MQ Transactions

81

To enable transactions, you must set the Transactional attribute to

internal and the Delivery attribute to persistent.

Artix Configuration File

On the server side, Artix initiates a transaction whenever it receives a

request message from the MQ transport. Because this transaction is

managed by an Artix transaction manager, you must load and configure one

of the Artix transaction systems (for example, OTS or WS-AT).

For details of how to select a transaction system, see “Selecting a

Transaction System” on page 9.

Configuring the backout threshold You can configure the backout threshold using the runmqsc command-line

tool, which is provided as part of the MQ-Series product. To configure a

queue to use backouts, set the following MQ attributes:

• BOTHRESH—the backout threshold, which defines the maximum

number of times a message can be pushed back onto the queue.

• BOQNAME—the backout queue name. If the current backout count

equals the backout threshold, Artix puts the message onto the backout

queue whose name is given by BOQNAME.

Hence, the BOQNAME queue would contain all of the messages that have been

rolled back more than BOTHRESH times. The administrator can then manually

examine the messages stored in the BOQNAME queue and take appropriate

remedial action.

For more details about how to set MQ attributes, see your MQ-Series user

documentation.

Accessing the backout count On the server side, you can obtain the backout count for the current

message using Artix contexts. To access the current backout count, perform

the following steps:

1. Retrieve the server context identified by the

IT_ContextAttributes::MQ_INCOMING_MESSAGE_ATTRIBUTES QName.

2. Cast the returned context instance to the

IT_ContextAttributes::MQMessageAttributesType type.

3. Invoke the getBackoutCount() function to access the current backout

count.

CHAPTER 9 | MQ Transactions

 82

For more details about programming with Artix contexts, see Developing

Artix Applications in C++.

83

Index
A
attach_thread() function

and suppressing propagation 37

B
backout count 81
backout threshold 76, 79

configuring 81
BOQNAME attribute 81
BOTHRESH attribute 81
Bus.getTransacionSystem() 26

D
Delivery attribute 77
detach_thread() function

and suppressing propagation 37

G
getBackoutCount() function 81
getTransacionSystem() 26
getTransactionManager() 27

I
interoperability

transaction propagation 34
interposition

resource for 36

M
MQ-Series

BOQNAME attribute 81
BOTHRESH attribute 81
runmqsc command-line tool 81

MQ transactions 74
backout count 81
backout threshold 76, 79, 81
Delivery attribute 77
synchronous invocation 78
Transactional attribute 77

O
oneway invocations

and MQ transactions 75
OTS Lite

limitations on using 36

R
reliable messaging

and transactions 74
runmqsc command-line tool 81

S
synchronous invocation

and MQ transactions 78

T
Transactional attribute 77
TransactionAlreadyActiveException 29
transaction contexts 34
TransactionManager 27
TransactionNotificationHandler 27
TransactionParticipant 27, 63
transaction propagation 34

suppressing, how to 37
transactions 2

compatibility with CORBA OTS 5
example 2
properties 3

TransactionSystem 26
getTransactionManager() 27

TransactionSystemUnavailableException 29

U
UsageStyle attribute 80

INDEX

 84

	Artix Transactions Guide, Java
	List of Tables
	List of Figures
	Preface
	What is Covered in this Book
	Who Should Read this Book
	The Artix Library
	Getting the Latest Version
	Searching the Artix Library
	Artix Online Help
	Artix Glossary
	Additional Resources
	Document Conventions

	Introduction to Transactions
	Basic Transaction Concepts
	Artix Transaction Features

	Selecting a Transaction System
	Configuring OTS Lite
	Configuring OTS Encina
	Configuring Non-Recoverable WS-AT
	Configuring Recoverable WS-AT

	Basic Transaction Programming
	Artix Transaction Interfaces
	Beginning and Ending Transactions

	Transaction Propagation
	Transaction Propagation and Interposition

	Threading
	Client Threading
	Threading and XA Resources

	Transaction Recovery
	Transactions Systems and Recovery
	Transaction Recovery Scenarios
	Server Crash before or during Prepare Phase
	Server Crash after Prepare Phase
	Transaction Coordinator Crash

	Recoverable Resources
	Transaction Participants
	Interposition

	Notification Handlers
	Introduction to Notification Handlers

	MQ Transactions
	Reliable Messaging with MQ Transactions

	Index

