IONA

Artix:

Artix Transactions Guide, Java
Version 4.0, March 2006

Making Software Work Together™

IONA Technologies PLC and/or its subsidiaries may have patents, patent applications,
trademarks, copyrights, or other intellectual property rights covering subject matter in
this publication. Except as expressly provided in any written license agreement from
IONA Technologies PLC, the furnishing of this publication does not give you any license
to these patents, trademarks, copyrights, or other intellectual property. Any rights not
expressly granted herein are reserved.

IONA, IONA Technologies, the IONA logo, Orbix, Orbix Mainframe, Orbix Connect, Artix,
Artix Mainframe, Artix Mainframe Developer, Mobile Orchestrator, Orbix/E, Orbacus,
Enterprise Integrator, Adaptive Runtime Technology, and Making Software Work Together
are trademarks or registered trademarks of IONA Technologies PLC and/or its subsidiar-
ies.

Java and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the
United States and other countries. CORBA is a trademark or registered trademark of the
Object Management Group, Inc. in the United States and other countries. All other
trademarks that appear herein are the property of their respective owners.

While the information in this publication is believed to be accurate, IONA Technologies PLC makes no warranty of
any kind to this material including, but not limited to, the implied warranties of merchantability and fitness for a
particular purpose. IONA shall not be liable for errors contained herein, or for incidental or consequential dam-

ages in connection with the furnishing, performance or use of this material.

COPYRIGHT NOTICE

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any
means, photo- copying, recording or otherwise, without prior written consent of IONA Technologies PLC. No
third-party intellectual property right liability is assumed with respect to the use of the information contained
herein. IONA Technologies PLC assumes no responsibility for errors or omissions contained in this publication.
This publication and features described herein are subject to change without notice.

Copyright © 2003-2006 IONA Technologies PLC. All rights reserved.

All products or services mentioned in this publication are covered by the trademarks, service marks, or product
names as designated by the companies that market those products.

Updated: 23-Mar-2006

Contents

List of Tables
List of Figures
Preface

Chapter 1 Introduction to Transactions
Basic Transaction Concepts
Artix Transaction Features

Chapter 2 Selecting a Transaction System
Configuring OTS Lite
Configuring OTS Encina
Configuring Non-Recoverable WS-AT
Configuring Recoverable WS-AT

Chapter 3 Basic Transaction Programming
Artix Transaction Interfaces
Beginning and Ending Transactions

Chapter 4 Transaction Propagation
Transaction Propagation and Interposition

Chapter 5 Threading
Client Threading
Threading and XA Resources

Chapter 6 Transaction Recovery
Transactions Systems and Recovery
Transaction Recovery Scenarios
Server Crash before or during Prepare Phase

Vii

10
13
17
21

25
26
28

33
34

39
40
45

51
52
54
55

CONTENTS

Server Crash after Prepare Phase
Transaction Coordinator Crash

Chapter 7 Recoverable Resources
Transaction Participants
Interposition

Chapter 8 Notification Handlers
Introduction to Notification Handlers

Chapter 9 MQ Transactions
Reliable Messaging with MQ Transactions

Index

57
59

61
62
68

69
70

73
74

83

List of Tables

Table 1: Transaction Systems and Recoverability

52

LIST OF TABLES

vi

List of Figures

Figure 1: Artix Client Invokes a Transactional Operation on a CORBA OTS Server
Figure 2: One-Phase Commit Protocol

Figure 3: Two-Phase Commit Protocol

Figure 4: Overview of a Client-Server System that Uses OTS Lite
Figure 5: Overview of a Client-Server System that Uses OTS Encina
Figure 6: Client-Server System that Uses Non-Recoverable WS-AT
Figure 7: Client-Server System that Uses Recoverable WS-AT
Figure 8: Overview of the Artix Transaction API

Figure 9: Overview of Different Kinds of Transaction Propagation
Figure 10: Limitation of Transaction Propagation Using OTS Lite
Figure 11: Default Client Threading Model

Figure 12: Detaching and Re-Attaching a Transaction to a Thread
Figure 13: Detaching and Re-Attaching a Transaction to a Thread
Figure 14: Attaching a Transaction to Multiple Threads

Figure 15: Transferring a Transaction from One Thread to Another
Figure 16: Auto-Association with a Single Registered Resource
Figure 17: Auto-Association with Multiple Registered Resources
Figure 18: Database Resource Operating in Multi-Threaded Mode
Figure 19: Threading for a Dynamically Registered Resource
Figure 20: Server Crash before or during the Prepare Phase

Figure 21: Server Crash after the Prepare Phase

Figure 22: Transaction Participants in a 2-Phase Commit Protocol
Figure 23: Oneway Operation Invoked Over an MQ Transport with MQ Transactions Enabled

5
6
7

10

13

17

21

26

35

36

40

42

42

43

44

45

47

48

49

55

57

62

75

Figure 24: Synchronous Operation Invoked Over the MQ Transport with MQ Transactions Enabled78

vii

LIST OF FIGURES

viii

Preface

What is Covered in this Book

This book explains how to program and configure Artix transactions in Java.

Who Should Read this Book

This guide is intended for Artix Java programmers. This guide assumes that
the reader is familiar with WSDL and XML schemas.

The Artix Library

The Artix documentation library is organized in the following sections:
® QGetting Started

® Designing and Developing Artix Solutions

® Configuring and Deploying Artix Solutions

® Using Artix Services

® |Integrating Artix Solutions

® Integrating with Enterprise Management Systems

® Reference Documentation

Getting Started

The books in this section provide you with a background for working with

Artix. They describe many of the concepts and technologies used by Artix.

They include:

® Release Notes contains release-specific information about Artix.

® |nstallation Guide describes the prerequisites for installing Artix and the
procedures for installing Artix on supported systems.

® QGetting Started with Artix describes basic Artix and WSDL concepts.

../release_notes/index.htm
../install_guide/index.htm
../getting_started/index.htm

PREFACE

® Using Artix Designer describes how to use Artix Designer to build Artix
solutions.

® Artix Technical Use Cases provides a number of step-by-step examples
of building common Artix solutions.

Designing and Developing Artix Solutions

The books in this section go into greater depth about using Artix to solve

real-world problems. They describe how Artix uses WSDL to define services,

and how to use the Artix APIs to build new services. They include:

® Building Service-Oriented Architectures with Artix provides an overview
of service-oriented architectures and describes how they can be
implemented using Artix.

® Understanding Artix Contracts describes the components of an Artix
contract. Special attention is paid to the WSDL extensions used to
define Artix-specific payload formats and transports.

® Developing Artix Applications in C++ discusses the technical aspects
of programming applications using the C++ API.

¢ Developing Advanced Artix Plug-ins in C++ discusses the technical
aspects of implementing advanced plug-ins (for example, interceptors)
using the C++ API.

® Developing Artix Applications in Java discusses the technical aspects
of programming applications using the Java API.

Configuring and Deploying Artix Solutions

This section includes:

® Configuring and Deploying Artix Solutions discusses how to configure
and deploy Artix-enabled systems, and provides examples of typical
use cases.

Using Artix Services

The books in this section describe how to use the services provided with

Artix:

® Artix Locator Guide discusses how to use the Artix locator.

® Artix Session Manager Guide discusses how to use the Artix session
manager.

® Artix Transactions Guide, C++ explains how to enable Artix C+ +
applications to participate in transacted operations.

../designer/index.htm
../cookbook/index.htm
../soa/index.htm
../contract/index.htm
../prog_guide/index.htm
../plugin_guide/index.htm
../java_pguide/index.htm
../deploy/index.htm
../locator_guide/index.htm
../session_mgr/index.htm
../transactions_cxx/index.htm

PREFACE

® Artix Transactions Guide, Java explains how to enable Artix Java
applications to participate in transacted operations.
® Artix Security Guide explains how to use the security features of Artix.

Integrating Artix Solutions

The books in this section describe how to integrate Artix solutions with other

middleware technologies:

® Artix for CORBA provides information on using Artix in a CORBA
environment.

® Artix for J2EE provides information on using Artix to integrate with
J2EE applications.

For details on integrating with Microsoft's .NET technology, see the
documentation for Artix Connect.

Integrating with Enterprise Management Systems

The books in this section describe how to integrate Artix solutions with a

range of enterprise management systems. They include:

® IBM Tivoli Integration Guide explains how to integrate Artix with IBM
Tivoli.

® BMC Patrol Integration Guide explains how to integrate Artix with BMC
Patrol.

® CA WSDM Integration Guide explains how to integrate Artix with CA
WSDM.

Reference Documentation

These books provide detailed reference information about specific Artix
APIls, WSDL extensions, configuration variables, command-line tools, and
terminology. The reference documentation includes:

® Artix Command Line Reference
® Artix Configuration Reference

® Artix WSDL Extension Reference
® Artix Java API Reference

® Artix C++ API Reference

® Artix .NET API Reference

® Artix Glossary

Xi

../transactions_java/index.htm
../security/index.htm
../corba_ws/index.htm
../j2ee/index.htm
../tivoli/index.htm
../bmc/index.htm
../ca_wsdm/index.htm
../command_ref/index.htm
../config_ref/index.htm
../wsdl_ref/index.htm
../javadoc/index.html
../cppdoc/index.html
../ndoc/index.html
../glossary/index.htm

PREFACE

Xii

Getting the Latest Version

The latest updates to the Artix documentation can be found at http://
www.iona.com/support/docs.

Compare the version dates on the web page for your product version with
the date printed on the copyright page of the PDF edition of the book you
are reading.

Searching the Artix Library

You can search the online documentation by using the Search box at the top
right of the documentation home page:

http://www.iona.com/support/docs

To search a particular library version, browse to the required index page,
and use the Search box at the top right, for example:
http://www.iona.com/support/docs/artix/4.0/index.xml

You can also search within a particular book. To search within a HTML
version of a book, use the Search box at the top left of the page. To search
within a PDF version of a book, in Adobe Acrobat, select Edit|Find, and
enter your search text.

Artix Online Help

Artix Designer and the Artix Management Console include comprehensive

online help, providing:

® Step-by-step instructions on how to perform important tasks

® Afull search feature

® Context-sensitive help for each screen

There are two ways that you can access the online help:

® Select Help|Help Contents from the menu bar. Sections on Artix
Designer and the Artix Management Console appear in the contents
panel of the Eclipse help browser.

® Press F1 for context-sensitive help.

In addition, there are a number of cheat sheets that guide you through the

most important functionality in Artix Designer. To access these, select
Help|Cheat Sheets.

http://www.iona.com/support/docs
http://www.iona.com/support/docs/artix/4.0/index.xml
http://www.iona.com/support/docs
http://www.iona.com/support/docs

PREFACE

Artix Glossary

The Artix Glossary provides a comprehensive reference of Artix terminology.
It provides quick definitions of the main Artix components and concepts. All
terms are defined in the context of the development and deployment of Web
services using Artix.

Additional Resources

The IONA Knowledge Base (http://www.iona.com/support/knowledge base/
index.xml) contains helpful articles written by IONA experts about Artix and
other products.

The IONA Update Center (http://www.iona.com/support/updates/index.xml)
contains the latest releases and patches for IONA products.

If you need help with this or any other IONA product, go to IONA Online
Support (http://www.iona.com/support/index.xml).

Comments, corrections, and suggestions on IONA documentation can be
sent to docs-support@iona.com .

xiii

http://www.iona.com/support/kb/index.jspa
http://www.iona.com/support/updates/index.xml
http://www.iona.com/support/index.xml
http://www.iona.com/support/index.xml
../glossary/index.htm

PREFACE

Document Conventions

Typographical conventions

This book uses the following typographical conventions:

Fi xed width

Fixed width italic

[talic

Bold

Xiv

Fixed width (courier font) in normal text represents
portions of code and literal names of items such as
classes, functions, variables, and data structures. For
example, text might refer to the | T_Bus: : AnyType
class.

Constant width paragraphs represent code examples
or information a system displays on the screen. For
example:

#i ncl ude <stdio. h>

Fixed width italic words or characters in code and
commands represent variable values you must
supply, such as arguments to commands or path
names for your particular system. For example:

% cd / users/ Your User Nane

Italic words in normal text represent emphasis and
introduce new terms.

Bold words in normal text represent graphical user
interface components such as menu commands and
dialog boxes. For example: the User Preferences
dialog.

Keying Conventions

PREFACE

This book uses the following keying conventions:

No prompt

%

{1

When a command’s format is the same for multiple
platforms, the command prompt is not shown.

A percent sign represents the UNIX command shell
prompt for a command that does not require root
privileges.

A number sign represents the UNIX command shell
prompt for a command that requires root privileges.

The notation > represents the MS-DOS or Windows
command prompt.

Horizontal or vertical ellipses in format and syntax
descriptions indicate that material has been
eliminated to simplify a discussion.

Brackets enclose optional items in format and syntax
descriptions.

Braces enclose a list from which you must choose an
item in format and syntax descriptions.

In format and syntax descriptions, a vertical bar
separates items in a list of choices enclosed in {}
(braces).

In graphical user interface descriptions, a vertical bar
separates menu commands (for example, select
File| Open).

Xv

PREFACE

Xvi

In this chapter

CHAPTER 1

Introduction to
Transactions

This chapter provides an introduction to transaction concepts
and to the transaction features supported by Artix.

This chapter discusses the following topics:

Basic Transaction Concepts page 2

Artix Transaction Features page 4

CHAPTER 1 | Introduction to Transactions

Basic Transaction Concepts

What is a transaction?

Example

Artix gives separate software objects the power to interact freely even if they
are on different platforms or written in different languages. Artix adds to this
power by permitting those interactions to be transactions.

What is a transaction? Ordinary, non-transactional software processes can
sometimes proceed and sometimes fail, and sometimes fail after only half
completing their task. This can be a disaster for certain applications. The
most common example is a bank fund transfer: imagine a failed software
call that debited one account but failed to credit another. A transactional
process, on the other hand, is secure and reliable as it is guaranteed to
succeed or fail in a completely controlled way.

The classical illustration of a transaction is that of funds transfer in a

banking application. This involves two operations: a debit of one account

and a credit of another (perhaps after extracting an appropriate fee). To

combine these operations into a single unit of work, the following properties

are required:

® If the debit operation fails, the credit operation should fail, and
vice-versa; that is, they should both work or both fail.

® The system goes through an inconsistent state during the process
(between the debit and the credit). This inconsistent state should be
hidden from other parts of the application.

® |tis implicit that committed results of the whole operation are
permanently stored.

Properties of transactions

Basic Transaction Concepts

The following points illustrate the so-called ACID properties of a transaction.

Atomic A transaction is an all or nothing procedure —
individual updates are assembled and either
committed or aborted (rolled back) simultaneously
when the transaction completes.

Consistent A transaction is a unit of work that takes a system
from one consistent state to another.

Isolated While a transaction is executing, its partial results
are hidden from other entities accessing the
transaction.

Durable The results of a transaction are persistent.

Thus a transaction is an operation on a system that takes it from one
persistent, consistent state to another.

CHAPTER 1 | Introduction to Transactions

Artix Transaction Features

Overview

Supported protocols

Client-side transaction support

This section gives a short overview of the main features supported by Artix
transactions. The Artix transaction API is designed to be compatible with a
variety of different underlying transaction systems. Generally, you can
access the transaction system using a technology-neutral API, but the
technology-specific APIs are also available, in case you need to access more
advanced functionality.

The main features of Artix transactions are as follows:
® Supported protocols

® C(Client-side transaction support.

® Server-side transaction support.

® Compatibility with Orbix.

® Pluggable transaction system.

® One-phase commit.

® Two-phase commit.

® Transaction propagation.

Artix supports distributed transactions using the following protocols:
® CORBA binding over IIOP.
® SOAP binding over any compatible transport.

Transaction demarcation functions (begi n_t ransacti on(),

commit _transaction() and rol | back_transaction()) can be used on the
client side to initiate and terminate a transaction. While the transaction is
active, all of the operations called from the current thread are included in
the transaction (that is, the operations’ request headers include a
transaction context).

Server-side transaction support

Compatibility with Orbix

Artix Transaction Features

On the server side, an APl is provided that enables you to implement
transaction participants (sometimes referred to as transactional resources).
Using transaction participants, you can implement servers that participate in
a distributed transaction with the ACID transaction properties (Atomicity,
Consistency, Integrity, and Durability).

Artix supports several different approaches to implementing a transaction
participant, depending on what kind of transaction system is loaded into
your application. For example, you might take a technology-neutral
approach by implementing the I T_Bus: : Transacti onParti ci pant class, or
you might decide to exploit the special features of a particular transaction
system instead.

The Artix transaction facility is fully compatible with CORBA OTS in Orbix.
Hence, if you already have a transactional server implemented with Orbix
ASP, you can easily integrate this with an Artix client, as shown in Figure 1.

Figure 1: Artix Client Invokes a Transactional Operation on a CORBA OTS
Server

Orbix Domain

Artix
Client

begi n_transaction()
. invoke

: invoke

Resource

Pluggable transaction system

Transaction
Factory

CORBA i
| Server !

1
1
1
1
1
1
1
1
T
1
1
: i
commi t _transaction() : !
1
1
1
1
1
1
1
1
1
1
1
1
L

The underlying transaction system used by Artix can be replaced within a
pluggable framework. Currently, the following transaction systems are
supported by Artix:

® QTS Lite.
® OTS Encina.
® WS-AtomicTransactions.

CHAPTER 1 | Introduction to Transactions

One-phase commit

Two-phase commit

Artix supports the one-phase commit (1PC) protocol for transactions. This
protocol can be used if there is only one resource participating in the
transaction. The 1PC protocol essentially delegates the transaction
completion to the single resource manager. Figure 2 shows a schematic
overview of the 1PC protocol for a simple client-server system.

Figure 2: One-Phase Commit Protocol

Artix
Client

. invoke »

P : @ Artix Server
: invoke : >

‘commi t _transaction()--

©F

Resource

Transaction
System

The 1PC protocol progresses through the following stages:

1. The client calls begi n_transacti on() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations
on the remote server. The WSDL operations are transactional, requiring
updates to a persistent resource.

3. Theclient calls commi t _transacti on() to make permanent any
changes caused during the transaction (alternatively, the client could
call rol I back_transacti on() to abort the transaction).

4. The transaction system performs the commit phase by sending a
notification to the server that it should perform a 1PC commit.

The two-phase commit (2PC) protocol enables multiple resources to
participate in a transaction. In order to preserve the essential properties of a
transaction involving multiple distributed resources, it is necessary to use a
more elaborate algorithm. The 2PC algorithm consists of the following two
phases:

Artix Transaction Features

® Prepare phase—the transaction system notifies all of the participants
to prepare the transaction. The participants prepare the transaction by
saving the information that would be required to redo or undo the
changes made during the transaction. At the end of this phase, the
participants vote whether to commit or roll back the transaction.

® Commit (or rollback) phase—if all of the participants vote to commit
the transaction, the transaction system notifies the participants to
commit the changes. On the other hand, if one or more participants
vote to roll back the transaction, the transaction system notifies the
participants to roll back the changes.

Figure 3 shows a schematic overview of the 2PC protocol for a client and
two remote servers.

Figure 3: Two-Phase Commit Protocol

Artix Server

------ >
1
: @ ol > Resource
............................. = Transaction
@ begi n_transaction() ' @ System
Artix . invoke : — 1
Client @ - : R
: invoke :
@'comri t_transaction()Z-f----"3 <12>
PSR R PSR IS XA SO I ;!
1
1
@@
i)
! > Artix Server
1

- -prepare - - -1
---commit----- > Resource

Transaction
System

The 2PC protocol progresses through the following stages:
1. The client calls begi n_transacti on() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations
on both of the remote servers.

CHAPTER 1 | Introduction to Transactions

Transaction propagation

3. Theclient calls commi t _transacti on() to make permanent any
changes caused during the transaction (alternatively, the client could
call rol | back_transaction() to abort the transaction).

4. The transaction system performs the prepare phase by polling all of the
remote transaction participants (the first phase of a two-phase
commit).

5. The transaction system performs the commit or rollback phase by
sending a notification to all of the remote transaction participants (the
second phase of a two-phase commit).

If you have a section of code executing within a transaction context, Artix
automatically propagates a transaction context with the request message,
whenever a remote operation is called.

For example, consider a three-tier system, where a client initiates a
transaction, invokes an operation on server 1, and then server 1 makes a
further call on server 2. In this scenario, Artix automatically propagates the
transaction to server 2. The transaction is propagated, even if the protocol
between the client and server 1 differs from the protocol used between
server 1 and server 2.

In this chapter

CHAPTER 2

Selecting a
Transaction
System

Using the Artix plug-in architecture, you can choose between
a number of different transaction system implementations.
Because the Artix transaction APl is designed to be
independent of the underlying transaction system, it is
possible to select a particular transaction system at runtime.
Typically, you would choose the transaction system that
provides the best match for your services. For example, if the
majority of your services are SOAP-based, you would select
the WS-AT transaction system.

This chapter discusses the following topics:

Configuring OTS Lite page 10
Configuring OTS Encina page 13
Configuring Non-Recoverable WS-AT page 17
Configuring Recoverable WS-AT page 21

CHAPTER 2 | Selecting a Transaction System

Configuring OTS Lite

Overview

OTS Lite and interposition

Default transaction provider

10

The OTS Lite plug-in is a lightweight transaction manager, which is subject
to the following restrictions: it supports the 1PC protocol only and it lets you
register only one resource. This plug-in allows applications that only access
a single transactional resource to use the OTS APIs without incurring a large
overhead, but allows them to migrate easily to the more powerful 2PC
protocol by switching to a different transaction manager. Figure 4 shows a
client-server deployment that uses the OTS Lite plug-in.

Figure 4: Overview of a Client-Server System that Uses OTS Lite

Artix Client » Artix Server i
Resource
OoTS OoTS
OTS Lite

If you plan to use OTS Lite in an application that needs to propagate
transactions between different transaction systems, you should be aware
that OTS Lite is subject to certain limitations in the context of interposition.
See “Limitation of using OTS Lite with propagation” on page 36 for details.

The following variable specifies the default transaction system used by an
Artix client or server:

pl ugi ns: bus: def aul t _t x_provi der: pl ugi n

To select the CORBA OTS transaction system, you must initialize this
configuration variable with the value, ots_t x_provi der .

Configuring OTS Lite

Loading the OTS plug-in In order to use the CORBA OTS transaction system, the OTS plug-in must be
loaded both by the client and by the server. To load the OTS plug-in, include
the ot s plug-in name in the or b_pl ugi ns list. For example:

Artix Configuration File

ots_lite client_or_server {
pl ugi ns: bus: defaul t _tx_provider:plugin = "ots_tx_provider";
orb_plugins =[..., "ots"];

Loading the OTS Lite plug-in The OTS Lite plug-in, which is capable of managing 1PC transactions, can
be loaded on the client side, but it is not usually needed on the server side.
You can load the OTS Lite plug-in in one of the following ways:
® Dynamic loading—configure Artix to load the ots_l i te plug-in
dynamically, if it is required. For this approach, you need to configure
theinitial _references: Transacti onFact ory: pl ugi n variable as
follows:

Artix Configuration File

ots_lite_client_or_server {
pl ugi ns: bus: def aul t _t x_provi der: pl ugi n= "ot s_t x_provi der";
orb_plugins = [..., "ots"];
initial _references: Transacti onFactory:plugin = "ots_lite";

o

This style of configuration has the advantage that the OTS Lite plug-in
is loaded only if it is actually needed.

® Explicit loading—Iload the ots_lite plug-in by adding it to the list of
orb_pl ugi ns, as follows:

Artix Configuration File

ots_lite client {
pl ugi ns: bus: def aul t _t x_provi der: pl ugi n= "ot s_t x_provi der";
orb_plugins = [..., "ots", "ots_lite"];

};'

11

CHAPTER 2 | Selecting a Transaction System

Sample configuration The following example shows a sample configuration for using the OTS Lite
transaction manager:

Artix Configuration File

Basic configuration for transaction plug-ins (shared library
nanes and so on) included in the global configuration scope.
... (not shown)

ots_lite client_or_server {
pl ugi ns: bus: def aul t _t x_provi der: pl ugi n= "ot s_t x_provi der";
orb_plugins = ["xmfile_|og_strean, "iiop_profile", "giop",
"iiop", "ots"];
initial_references: Transacti onFactory:plugin = "ots_lite";

b

12

Configuring OTS Encina

Configuring OTS Encina

Overview The Encina OTS Transaction Manager provides full recoverable 2PC
transaction coordination implemented on top of the industry proven Encina
Toolkit from IBM/Transarc. Encina supports both 1PC and 2PC protocols
and allows you to register multiple resources. Figure 5 shows a client/server
deployment that uses the OTS Encina plug-in.

Figure 5: Overview of a Client-Server System that Uses OTS Encina

| Artix Server j

Resource
oTS
Artix Client
oTS
OTS Encina
| Artix Server i
Resource
oTS
Default transaction provider The following variable specifies the default transaction system used by an

Artix client or server:

pl ugi ns: bus: def aul t _t x_pr ovi der: pl ugi n

To select the CORBA OTS transaction system, you must initialize this
configuration variable with the value, ots_t x_provi der.

13

CHAPTER 2 | Selecting a Transaction System

Loading the OTS plug-in

Loading the OTS Encina plug-in

14

For applications that use the CORBA OTS transaction system, the OTS
plug-in must be loaded both by the client and by the server. To load the OTS
plug-in, include the ot s plug-in name in the orb_pl ugi ns list. For example:

Artix Configuration File

ots_encina_client_or_server {
pl ugi ns: bus: defaul t _tx_provi der:plugin = "ots_tx_provider";
orb plugins =[..., "ots"];

The OTS Encina plug-in, which is capable of managing 1PC and 2PC
transactions, can be loaded on the client side, but it is not usually needed
on the server side. You can load the OTS Encina plug-in in one of the
following ways:

® Dynamic loading—configure Artix to load the ot s_enci na plug-in
dynamically, if it is required. For this approach, you need to configure

theinitial _references: Transacti onFact ory: pl ugi n variable as
follows:

Artix Configuration File

ots_encina_client_or_server {
pl ugi ns: bus: def aul t _t x_pr ovi der: pl ugi n="ot s_t x_pr ovi der";
orb_plugins = [..., "ots"];
initial _references: Transacti onFactory: pl ugi n="ot s_enci na";

o

This style of configuration has the advantage that the OTS Encina
plug-in is loaded only if it is actually needed.

® Explicit loading—Ioad the ot s_enci na plug-in by adding it to the list of
orb_pl ugi ns, as follows:

Artix Configuration File

ots_lite client {
pl ugi ns: bus: def aul t _t x_provi der: pl ugi n= "ot s_tx_provi der";
orb_plugins = [..., "ots", "ots_encina"];

g

Configuring OTS Encina

Sample configuration Example 1 shows a complete configuration for using the OTS Encina
transaction manager:

Example 1: Sample Configuration for OTS Encina Plug-In

Artix Configuration File
ots_encina_client_or_server {

1 pl ugi ns: bus: def aul t _t x_provi der: pl ugi n= "ot s_t x_provi der";
orb_plugins =[..., "ots"];

2 initial _references: TransactionFactory: plugin = "ots_enci na";

3 pl ugi ns: ot s_enci na: di rect _persi stence = "true";
pl ugi ns: ot s_enci na:iiop: port = "3213";

4 plugins:ots_encina:initial _disk ="../../log/encina.log";

5 pl ugins: ots_encina:initial_disk_size ="1";

6 plugi ns:ots_encina:restart_file =

"“..l..llogl/encina_restart";
7 pl ugi ns: ot s_enci na: backup_restart_file =
"../..llog/encina_restart.bak";

Boil erplate configuration settings for OIS Enci na:
(you shoul d never need to change these)
8 pl ugi ns: ot s_enci na: shl i b_name = "it_ots_enci na";
pl ugi ns: ot s_enci na_adm shl i b_nane = "it_ots_enci na_adni;
pl ugi ns: ot s_enci na_adm gr anmar _db
"ot s_enci na_adm grammar. txt";
pl ugi ns: ot s_enci na_adm hel p_db = "ots_enci na_adm hel p. txt";

¥

The preceding configuration can be described as follows:

1. These two lines configure Artix to use the CORBA OTS transaction
system and load the OTS plug-in.

2. This line configures Artix to load the ot s_enci na plug-in dynamically, if
it is needed by the application (typically needed on the client side).

3. Configuring Encina to use direct persistence means that the Encina
transaction manager service listens on a fixed IP port. The port on
which the transaction manager listens is specified by the
pl ugi ns: ots_enci na: i i op: port variable.

15

CHAPTER 2 | Selecting a Transaction System

16

The pl ugi ns: ot s_enci na: i ni tial _di sk variable specifies the path for
the initial file used by the Encina OTS for its transaction logs.

If this file does not exist when you start the client, Encina OTS
automatically creates it (cold start).

The pl ugi ns: ot s_enci na: i ni ti al _di sk_si ze variable specifies the
size of the initial file used by the Encina OTS for its transaction logs.
Defaults to 2.

The pl ugi ns: ots_enci na: restart _fil e variable specifies the path for
the restart file, which Encina OTS uses to locate its transaction logs.

If this file does not exist when you start the client, Encina OTS
automatically creates it (cold start).

The pl ugi ns: ot s_enci na: backup_restart_fil e variable specifies the
path for the backup restart file, which Encina OTS uses to locate its
transaction logs.

If this file does not exist when you start the client, Encina OTS
automatically creates it (cold start).

The settings in the next few lines specify the basic configuration of the
OTS Encina plug-in. It should not be necessary ever to change the
values of these configuration settings.

Configuring Non-Recoverable WS-AT

Configuring Non-Recoverable WS-AT

Overview The WS-AtomicTransactions (WS-AT) transaction system uses SOAP
headers to transmit transaction contexts between the participants in a
transaction. The lightweight WS-AT transaction system supports the 2PC
protocol and allows you to register multiple resources; unlike OTS Encina,
however, it does not support recovery. Figure 6 shows a client/server
deployment that uses the lightweight WS-AT transaction system.

Figure 6: Client-Server System that Uses Non-Recoverable WS-AT

Artix Server i

Resource

WS-AT

Artix Client

WS-AT

WS-Coordination

Artix Server j

Resource

WS-AT

Default transaction provider The following variable specifies the default transaction system used by an
Artix client or server:

pl ugi ns: bus: def aul t _t x_provi der: pl ugi n
To select the WS-AT transaction system, you must initialize this
configuration variable with the value, wsat _t x_pr ovi der.

17

CHAPTER 2 | Selecting a Transaction System

Disabling recovery

Plug-ins for WS-AT

Sample configuration

18

Since Artix version 4.0, the WS-AT transaction system is recoverable by
default (by layering itself over OTS Encina). Hence, to use the lightweight,
non-recoverable version of WS-AT in your application, you need to explicitly
disable recovery by setting the following configuration variable to true:

pl ugi ns: ws_coor di nati on_servi ce: di sabl e_tx_recovery = "true";

The division of the WS-AT transaction system into separate plug-ins reflects

the fact that the WS-AT specification has two distinct parts:

WS-AtomicTransactions and WS-Coordination.

The following plug-ins are required to support the WS-AT transaction

system:

® wsat_protocol plug-in—implements WS-AtomicTransactions. It is
required by all services and clients that use WS-AT transactions. This
plug-in enables an Artix executable to receive and transmit WS-AT
transaction contexts.

® ws_coordination_service plug-in—implements WS-Coordination.
Only one instance of this plug-in is required (typically, loaded into a
client). This plug-in coordinates the two-phase commit protocol.

Example 2 shows a complete configuration for using the non-recoverable
WS-AT transaction manager:

Example 2: Sample Configuration for Non-Recoverable WS-AT

Artix Configuration File
ws_atom c_transactions {
client
{
orb_plugins = ["l ocal _| og_streant,
"ws_coordi nati on_service"];
pl ugi ns: bus: def aul t _t x_provi der: pl ugi n ="wsat _tx_provi der";
pl ugi ns: ws_coor di nati on_servi ce: di sabl e_tx_recovery ="true";

}

server
{
orb_plugins = ["local | og_streant, "wsat_protocol ",
"coordi nat or _stub_wsdl "] ;
pl ugi ns: ws_coor di nati on_servi ce: di sabl e_tx_recovery ="true";

Configuring Non-Recoverable WS-AT

Example 2: Sample Configuration for Non-Recoverable WS-AT
/1 No need to specify defaul t_tx_provider here.
IE

The preceding configuration can be described as follows:

1. The ws_coordinati on_servi ce plug-in is needed only on the client
side. Artix does not support auto-loading of this plug-in; you must
explicitly include it in the orb_pl ugi ns list.

The ws_coor di nati on_ser vi ce plug-in implicitly loads the
wsat _prot ocol plug-in as well. Hence, it is unnecessary to include
wsat _protocol plug-in in the or b_pl ugi ns list on the client side.

2. This line specifies that WS-AT is the default transaction provider. This
implies that whenever a client initiates a transaction (for example, by
calling begi n_t ransaction()), Artix creates a new WS-AT transaction
by default.

3. This line specifies that transaction recovery is disabled. The effect of
this setting is that the transaction system relies on a lightweight,
non-recoverable implementation of WS-AT.

4. The server needs to load the wsat _pr ot ocol plug-in, in order to
process incoming atomic transactions coordination contexts and to
propagate transaction contexts. The coor di nat or _st ub_wsdl plug-in
enables the server to talk to the WS-Coordination service on the client
side.

5. Strictly speaking, it is unnecessary to specify a default transaction
provider on the server side. On the server side, the transaction provider
is automatically determined by the incoming transaction context.

If the server needs to initiate its own transactions, however, it would be
appropriate to set the default transaction provider here also.

19

CHAPTER 2 | Selecting a Transaction System

References The specifications for WS-AtomicTransactions and WS-Coordination are
available at the following locations:

® WS-AtomicTransactions

(http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-AtomicT
ransaction.pdf).

® WS-Coordination

(http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Coordin
ation.pdf).

20

http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-AtomicTransaction.pdf
http://msdn.microsoft.com/library/en-us/dnglobspec/html/WS-Coordination.pdf

Configuring Recoverable WS-AT

Configuring Recoverable WS-AT

Overview

Default transaction provider

In order to provide enterprise-level transaction management using the
WS-AT protocols, Artix supports an option to layer WS-AT over the OTS
Encina transaction manager. With this configuration, WS-AT becomes a
fully recoverable transaction system. Figure 7 shows a client/server
deployment that uses the recoverable WS-AT transaction system.

Figure 7: Client-Server System that Uses Recoverable WS-AT

Artix Server i
Resource
WS-AT
Artix Client oTs
WS-AT
WS-Coordination
oTS > Artix Server i
) Resource
OTS Encina
WS-AT
oTS

The following variable specifies the default transaction system used by an
Artix client or server:

pl ugi ns: bus: def aul t _t x_pr ovi der: pl ugi n

To select the WS-AT transaction system, you must initialize this
configuration variable with the value, wsat _t x_pr ovi der .

21

CHAPTER 2 | Selecting a Transaction System

Enabling recovery Since Artix version 4.0, the WS-AT transaction system is recoverable by
default. Hence, to use the recoverable version of WS-AT in your application,
you can either omit the
pl ugi ns: ws_coor di nat i on_ser vi ce: di sabl e_t x_r ecovery variable from
your Artix configuration file or set it to false, as follows:

Artix Configuration File
pl ugi ns: ws_coor di nati on_servi ce: di sabl e_tx_recovery = "fal se";

Loading WS-AT and OTS Encina The configuration for the recoverable WS-AT transaction system is

plug-ins essentially a combination of the WS-AT configuration and the OTS Encina
configuration. It is only necessary to load the WS-AT plug-ins explicitly—if
recovery is enabled, Artix implicitly loads the OTS and OTS Encina plug-ins.

Sample configuration Example 2 shows a complete configuration for using the recoverable WS-AT
transaction manager:

Example 3: Sample Configuration for Recoverable WS-AT

Artix Configuration File
ws_atom c_transactions {
client
{
1 orb_plugins = ["l ocal _| og_streant,
"ws_coordi nati on_service"];
2 pl ugi ns: bus: def aul t _t x_provi der: pl ugi n ="wsat _t x_provi der";

3 # OIS Enci na Configuration
initial _references: TransactionFactory: plugin =
"ots_encina";
pl ugi ns: ot s_enci na: di rect _persi stence = "true";
pl ugi ns: ots_encina:iiop:port = "3213";
plugins:ots_encina:initial _disk ="../../log/encina.log";
plugins:ots_encina:initial_disk_size = "1";
plugins:ots_encina:restart_file =
"../../log/encina_restart"”;
pl ugi ns: ot s_enci na: backup_restart_file =
"..l../loglencina_restart. bak";

Boil erplate configuration settings for OIS Enci na:

(you shoul d never need to change these)
pl ugi ns: ot s_enci na: shli b_nane = "it_ots_encina";

22

Configuring Recoverable WS-AT

Example 3: Sample Configuration for Recoverable WS-AT

The

pl ugi ns: ot s_enci na_adm shl i b_nare
pl ugi ns: ot s_enci na_adm gr ammar _db
"ots_enci na_adm grammar. txt";
pl ugi ns: ot s_enci na_adm hel p_db = "ots_enci na_adm hel p. txt";

IE

"it_ots_encina_adnt;

server

{

orb_plugins = ["l ocal _| og_streant, "wsat_protocol",
"coordi nat or _stub_wsdl "] ;

/1 No need to specify defaul t_tx_provider here.

}

preceding configuration can be described as follows:

The ws_coor di nati on_ser vi ce plug-in is needed only on the client
side. Artix does not support auto-loading of this plug-in; you must
explicitly include it in the orb_pl ugi ns list.

The ws_coor di nati on_ser vi ce plug-in implicitly loads the

wsat _protocol , ots, and ot s_enci na plug-ins as well. Hence, it is
unnecessary to include the wsat _prot ocol , ot s, and ots_enci na
plug-ins in the or b_pl ugi ns list on the client side.

This line specifies that WS-AT is the default transaction provider. This
implies that whenever a client initiates a transaction (for example, by
calling begi n_transacti on()), Artix creates a new WS-AT transaction
by default.

From this line up to the end of the client scope shows the OTS Encina
configuraion settings. For detailed descriptions of the OTS Encina
settings, see “Sample configuration” on page 15.

The server needs to load the wsat _prot ocol plug-in, in order to
process incoming WS-AT coordination contexts and to propagate
transaction contexts. The coor di nat or _st ub_wsdl plug-in enables the
server to talk to the WS-Coordination service on the client side.

23

CHAPTER 2 | Selecting a Transaction System

24

Strictly speaking, it is unnecessary to specify a default transaction
provider on the server side. On the server side, the transaction provider
is automatically determined by the incoming transaction context.

If the server needs to initiate its own transactions, however, it would be
appropriate to set the default transaction provider here also.

In this chapter

CHAPTER 3

Basic Transaction
Programming

This chapter covers the basics of programming transactional
clients and servers. For simple applications, this probably
covers all you need to know about transaction programming.

This chapter discusses the following topics:

Artix Transaction Interfaces page 26

Beginning and Ending Transactions page 28

25

CHAPTER 3 | Basic Transaction Programming

Artix Transaction Interfaces

Overview

com.iona.jbus.Bus

getTransactionSystem() o

Figure 8 shows an overview of the main classes that make up the Artix
transaction API. The Artix transaction API is designed to function as a
generic wrapper for a wide variety of specific transaction systems. As long as
you use the Artix APIs, you will be able to switch between any of the
transaction systems supported by Artix.

Figure 8: Overview of the Artix Transaction API

Accessing the transaction system

26

com.iona.jbus.transactions.TransactionSystem

getTransactionManager()
v

com.iona.jbus.transactions.TransactionManager

com.iona.jbus.transactions.TransactionParticipant

com.iona.jbus.transactions.TransactionNotificationHandler

To access the Artix transaction system, call the get Tr ansact i onSyst en()
method on the bus. The returned

comiona. j bus. transacti on. Transact i onSyst emobject provides the
starting point for accessing all aspects of Artix transactions.

The signature of Bus. get Transact i onSyst en() is shown in Example 4.
Example 4: Signature for getTransactionSystem()

Transacti onSyst em get Tr ansact i onSyst en{) throws BusExcepti on;

TransactionSystem class

TransactionManager class

TransactionParticipant interface

TransactionNotificationHandler
interface

Artix Transaction Interfaces

The Transact i onSyst emclass provides the basic methods needed for
transaction demarcation (begi nTransacti on(), commi t Transact i on() and
rol I backTransaction()). For more details see “Beginning and Ending
Transactions” on page 28.

In addition to providing access the transaction demarcation method the
Transact i onSyst emobject provides two other methods:
® get Transacti onManager () returns a
comiona. j bus. transacti on. Transact i onManager object that
provides access to some of the more advanced transaction features.
® withinTransaction() returns true if it is called within an active
transaction.

The Transact i onManager class provides advanced transaction functionality.
The most important method it provides is enl i st (), which enables you to
implement a transactional resource by enlisting a transaction participant
object. It also provides methods for attaching and detaching threads from a
transaction. See “Threading” on page 39.

The comiona. j bus. t ransacti on. Transacti onParti ci pant interface is
used to create transactional resources. An implementation of
TransactionParti ci pant acts as the resource manager for the datastore
involved in the transaction. It receives callbacks from the transaction
manager that are used to coordinate the commit or rollback steps with other
transaction participants. For more details, see “Recoverable Resources” on
page 61.

The comi ona. j bus. t ransacati on. Transact i onNot i fi cati onHandl er
interface is used to create objects that receive notification callbacks from the
transaction manager whenever a transaction is either committed or rolled
back.

27

CHAPTER 3 | Basic Transaction Programming

Beginning and Ending Transactions

Overview On the client side, the functions for beginning and committing (or rolling
back) a transaction are collectively referred to as transaction demarcation
methods. Within a given thread, any Artix operations invoked after the
transaction begin and before the transaction commit (or rollback) are
implicitly associated with the transaction. The transaction demarcation
methods are typically the only methods that you need on the client side.

TransactionSystem methods Example 5 shows the methods belonging to the Transact i onSyst em
interface.

Example 5: The TransactionSystem Interface

/1 Java
package comi ona.j bus.transaction

public interface Transacti onSystem {
voi d begi nTransacti on()
throws Transacti onAl readyActi veExcepti on,
Transact i onSyst ennavai | abl eExcepti on,
BusExcept i on;

bool ean commi t Tr ansact i on(bool ean report Heuri sti cs)
throws NoActiveTransacti onException, BusExcepti on;

voi d rol | backTransacti on()
throws NoActiveTransacti onException, BusExcepti on;

Transact i onManager get Transact i onManager (
String transacti onManager Type

)

throws Transacti onSyst ennavai | abl eExcepti on, BusExcepti on;

bool ean wi t hi nTransacti on();

Client transaction functions The following functions are used to demarcate transactions on the client
side:

28

Beginning and Ending Transactions

® begi nTransact i on() —creates a new transaction on the client side and
associates it with the current thread. This method takes no arguments
and has no return value.
This method can throw the following exceptions:
¢+ Transacti onAl readyAct i veExcepti on is thrown if
begi nTransact i on() is called inside an already active
transaction.
¢+ Transacti onSyst entnavai | abl eExcept i on is thrown if the
transaction system cannot be loaded. This usually points to a
configuration problem.
® commt Transact i on() —ends the transaction normally, making any
changes permanent. This method takes a single boolean argument,
report Heuri stics, and returns true, if the transaction is commited
successfully.
This method can throw the following exception:

. NoAct i veTr ansact i onExcept i on is thrown if there is there is no
transaction associated with the current thread.

® roll backTransacti on()—aborts the transaction, rolling back any
changes.

This method can throw the following exception:

. NoAct i veTr ansact i onExcept i on is thrown if there is there is no
transaction associated with the current thread.

Other transaction functions In addition to the preceding demarcation functions, which are intended for
use on the client side, the Transact i onSyst emclass also provides the
following functions, which can be used both on the client side and on the
server side:
® withinTransaction()—returns true if the current thread is associated
with a transaction; otherwise, f al se.

® get Transact i onVanager () —returns a reference to a
Transact i onManager object, which provides access to advanced
transaction features.

Typically, a Transact i onManager object is needed on the server side in
order to enlist participants in a transaction (for example, see
“Recoverable Resources” on page 61).

29

CHAPTER 3 | Basic Transaction Programming

This method can throw the following exception:

. Transact i onSyst enthavai | abl eExcept i on is thrown if the
transaction system cannot be loaded.

Example Example 6 shows an Artix client that invokes a series of operations as an
atomic transaction. The client invokes on single service called Dat a. Dat a
provides a read and a wri t e function.

Example 6: Transactional Client Example

inport java.util.*;
inport java.io.*;

inport java.net.*;
inport java.rm.*;

inport javax.xn .namespace. Q\ane;
inport javax.xm.rpc.*;

inport comi ona.j bus. Bus;
inport comiona.jbus.transaction.*;

public class Transaction dient

{

public static void main(String args[]) throws Exception
{
Bus bus = Bus.init(args);
2 String serviceNamre = "DataService";
String wsdl Name = "soap_t x_deno. wsdl ";
Q\ane servi ceQ\are = new QNane("http://transacti on_deno",
servi ceNane) ;
Q\ane port QNane = new QN\ame("", " Dat aSQAPPort");
Data client = null;
URL wadl Location = new URL(wsdl Nane) ;
Servi ceFactory factory = Servi ceFact ory. newl nst ance() ;
Service service = factory. createServi ce(wsdl Locati on,
servi ceQ\ane) ;
client = (Data)service. get Port(portQ\ane, Dat a. cl ass);

[

3 Transact i onSyst em t xSyst em = bus. get Transact i onSyst en() ;

4 t xSyst em begi nTransacti on();

30

Beginning and Ending Transactions

Example 6: Transactional Client Example

}

try

{
int value = client.read();
Systemout.println("value: " + value);
Systemout. println("lncrenmenting the value");
client.wite(value + 1);
Systemout. println("New val ues are");
int value2 = client.read();
Systemout. println("value: " + value2);

}

catch (Trowabl e T)
{
Systemout.printin("rolling back transaction...");
txSystemrol | backTransat i on() ;
Systemexit(1);
}
Systemout.println("comitting transaction...");
bool ean result = txSystem conmt Transacti on(true);
if (result)
{
Systemout . println("Transacti on conmtted!");
}
el se
{

Systemout . println("Transaction *not* Conmtted!!");

}

The code in Example 6 does the following:

o ok Wb

Initializes the bus.

Creates a proxy for the Dat a service.
Gets the transaction system.

Begins a transaction.

Invokes operations on the service.

Rolls back the transaction if an exception is thrown while invoking
operations on the service.

Commits the transaction if all of the operations succeeded.

31

CHAPTER 3 | Basic Transaction Programming

32

In this chapter

CHAPTER 4

Transaction
Propagation

Transaction propagation refers to the implicit propagation of
transaction context data in message headers.

This chapter discusses the following topics:

Transaction Propagation and Interposition page 34

33

CHAPTER 4 | Transaction Propagation

Transaction Propagation and Interposition

Overview

Transaction contexts

Propagation scenario

34

In a multi-tier application, Artix automatically propagates transactions from
tier to tier. This ensures that all of the processes that are relevant to the
outcome of a transaction can participate in the transaction. You do not have
to do anything special to switch on transaction propagation; it is enabled by
default. However, the receiver of a transaction context must have a
transaction plug-in loaded, otherwise the transaction context would be
ignored.

A transaction context is a data structure that is transmitted to a remote
server and used to recreate the transaction at a remote location. The type of
transaction context that is transmitted depends on the middleware protocol.
Artix supports the following kinds of transaction context:

® QTS transaction context—a transaction context that is sent in a GIOP
header (part of the CORBA standard).

® WS-AT transaction context—a transaction context that is embedded in
a SOAP header.

The propagation scenario shown in Figure 9 shows two different kinds of

transaction propagation, as follows:

® Transaction propagation within a single middleware technology—the
OTS transaction context, which propagates across the top half of
Figure 9, illustrates a simple kind of propagation, where the client and
the servers all use the same CORBA OTS transaction technology.

® Transaction propagation across middleware technologies—the WS-AT
transaction context, which propagates across the bottom half of
Figure 9, illustrates a kind of propagation, where the transaction
crosses technology domains. While the client uses OTS Encina to

Transaction Propagation and Interposition

manage the transaction, it must generate a WS-AT transaction context
to send to the server. The ability to transform transaction contexts is
known as interposition.

Figure 9: Overview of Different Kinds of Transaction Propagation

Artix Server
CORBA
""" ors
Tx Context
@ nT oTs
Artix Client
—————— 1
@ |
oTS seeeees Lo
¢ WS-AT
. . Tx Context
OTS Encina Teeeees oo
® ! Artix Server
————— -+ SOAP/HTTP
WS-AT

Scenario steps

Resource

Artix Server
CORBA

oTS

-

Resource

The propagation scenario shown in Figure 9 can be described as follows:

Stage

Description

1

The Artix client (which is configured to use the OTS Encina
transaction system) initiates a transaction by calling the

begi nTransact i on() method. The client then invokes a remote
operation, which results in a request message being sent over
an lIOP connection.

The request received by the server includes an OTS transaction
context embedded in a GIOP header. Although this server does
not participate directly in the transaction (it registers no

resources), it is capable of propagating the transaction context
to the next tier in the application.

35

CHAPTER 4 | Transaction Propagation

Limitation of using OTS Lite with
propagation

36

Stage Description

3 | The third tier of the application receives a request containing
an OTS transaction context. This server participates in the
transaction by registering a database resource with the OTS
transaction manager.

4 | The client invokes a remote operation, which results in a
request message being sent over a SOAP/HTTP connection.

5 | In this case, Artix automatically translates the OTS transaction
into a WS-AT transaction context, which is suitable for
transmission in the header of the SOAP/HTTP request.

There is no need to perform any special configuration or
programming to enable interposition; it occurs automatically.

Figure 10 shows an interposition scenario where the client, which uses an
OTS transaction system, connects to a SOAP/HTTP server, which uses the
WS-AT transaction system.

Figure 10: Limitation of Transaction Propagation Using OTS Lite

ArtixClient | | weaT Artix Server
-+ ~Tx Context™ =~ ¥ SOAP/HTTP

Resource

oTS WS-AT

OTS Encina

Because there is only one explicitly registered resource in this scenario (the
database connected to the server), it would seem that the client could use
an OTS Lite transaction manager for this scenario. In reality, however, the
client must use the OTS Encina transaction manager. The reason for this is
that Artix implicitly registers an interposition resource to bridge the
OTS-to-WS-AT middleware boundary. Therefore, there are really two
resources in this scenario.

Suppressing propagation

Transaction Propagation and Interposition

In summary, interposition requires additional resources as follows:

® OTS-to-WS-AT middleware boundary—one interposition resource is
registered automatically. Applications with one explicitly registered
resource must use OTS Encina.

® WS-AT-to-OTS middleware boundary—no interposition resource
required. Applications with one explicitly registered resource may use
OTS Lite.

Once you have selected a transaction system (for example, the application
loads an OTS plug-in or a WS-AT plug-in), transaction contexts are
propagated by default.

It is possible, however, to suppress transaction propagation selectively using
the det achThread() and attachThread() methods. After calling

det achThread(), subsequent operation invocations do not participate in the
transaction and, therefore, do not propagate any transaction context. You
can re-establish an association with a transaction by calling
attachThread() .

For more details on these functions, see “Threading” on page 39.

37

CHAPTER 4 | Transaction Propagation

38

In this chapter

CHAPTER 5

Threading

This chapter discusses the thread affinity of transactions and
how you can modify thread affinities using the Artix transaction
API.

This chapter discusses the following topics:

Client Threading page 40

Threading and XA Resources page 45

39

CHAPTER 5 | Threading

Client Threading

Overview

Default client threading model

Thread X

begi nTransacti on()

Artix supports a threading API that enables you to change the thread affinity
of a given transaction. Using the at t achThread() and det achThr ead()
methods, you can flexibly re-assign threads to a transaction (subject to the
limitations imposed by the underlying transaction system).

Figure 11 shows the default threading model for transaction on the client
side. When you call begi nTransacti on(), Artix creates a new transaction
and attaches it to the current thread. So long as the transaction remains
attached, any WSDL operations called from the current thread become part
of the transaction. When you call conmi t Transact i on() (or

rol | backTransact i on(), if the transaction must be aborted), the
transaction is deleted.

Figure 11: Default Client Threading Model

commi t Transacti on()

Transaction Scope

Transaction identifiers

40

A transaction identifier is an opaque identifier of type
comiona. jbus. transaction. Transactionl dentifier that uniquely
identifies a transaction.

Client Threading

Controlling thread affinity On the client side, thread affinity is controlled by the following
Transact i onManager methods:

Example 7: Functions for Controlling Thread Affinity

public class Transacti onManager

{

}

public Transactionldentifier detachThread();

publ i ¢ bool ean attachThread(Transacti onl dentifier
transactionl dentifier)

throws | nvalidTransactionldentifierException

public Transactionldentifier getTransactionldentifier()

These functions can be explained as follows:

det at chThread()

Detach the transaction from the current thread. After the call to

det at chThread() , WSDL operations called from the current thread do
not participate in the transaction. The returned transaction identifier
can be used to re-attach the transaction to the current thread at a later
stage.

at t achThr ead()

Attach the transaction, specified by the transacti onl denti fier
argument, to the current thread.

get Transactionl dentifier()

Return the identifier of the transaction that is attached to the current
thread. If no transaction is attached, return nul I .

41

CHAPTER 5 | Threading

Detaching and re-attaching a Figure 13 shows how to use the det achThread() and att achThr ead()

transaction to a thread methods to suspend temporarily the association between a transaction and
a thread. This can be useful if, in the midst of a transaction, you need to
perform some non-transactional tasks.

Figure 12: Detaching and Re-Attaching a Transaction to a Thread

begi n_transaction() det ach_t hread() attach_t hread() commi t _transaction()

N e

Thread X
Figure 13: Detaching and Re-Attaching a Transaction to a Thread
begi nTransacti on() det achThr ead() attachThread() commi t Transacti on()
Thread X

42

Client Threading

Attaching atransactiontomultiple Figure 14 shows how to use the get Transacti onl dentifier() and
threads attachThread() methods to associate a transaction with multiple threads.
The get Transacti onl denti fi er () method is called from within the thread
that initiated the transaction. The transaction ID can then be passed to the
other threads, Y and Z, enabling them to attach the transaction.

Figure 14: Attaching a Transaction to Multiple Threads

begi nTransact i on() id = getTransactionldentifier() comi t Transacti on()

S S
Thread X WW

R Transaction Scope

Thread Y /_/WWW

Thread Z W\/

attachThread(i d) attachThread(id)

Note: Some transaction systems do not allow you to associate multiple
threads with a transaction. In this case, an at t achThread() call fails
(returning f al se), if you attempt to attach a second thread to the

transaction.

Figure 15 shows how to use the det achThread() and attachThr ead()
methods to transfer a transaction from thread X to thread Y. The transaction
ID returned from the det achThr ead() call must be passed to thread Y,
enabling it to attach the transaction.

Transferring a transaction from
one thread to another

43

CHAPTER 5 | Threading

Figure 15: Transferring a Transaction from One Thread to Another

begi nTransacti on() id = detachThread()

Thread X /_/_/_/_/\/_/\/\/m

Transaction Scope

Thead Y\ N\ N\ NN U T

attachThread(id) commi t Transacti on()

Note: Some transaction systems do not allow you to transfer a
transaction from one thread to another. In this case, an att achThr ead()
call fails (returning f al se), unless you are re-attaching the original thread
to the transaction.

44

Threading and XA Resources

Threading and XA Resources

Overview This section discusses the following threading models for XA resources:
® Auto-association.
® Multiple registered resources.
® Multi-threaded resource connections.
® Dynamic registration.

Auto-association When an Artix server receives a transactional request (that is, a request
accompanied by a transaction context), Artix automatically creates an
association between the current thread and locally registered resources. For
each registered resource, the Artix transaction manager creates a
transaction branch, which participates in the global transaction.

Figure 16 shows the sequence of events that occur when a transactional
request arrives at an Artix server that has one registered resource.

Figure 16: Auto-Association with a Single Registered Resource

@ Upcall @ Return
xa_! _
@ a_start() xa, end()©

@Receive TEQUESE Y ess oSOt TSRS RIIRKIKRKE Y Send reply
: Transaction Branch Scope .

Thread X N\ N\ D\ DN\

Resource /

Connection

Resource

45

CHAPTER 5 | Threading

46

The sequence of events shown in Figure 16 on page 45 can be explained as
follows:

1.

Request is received—an operation request is received, which contains
a transaction context.

Artix calls xa_st art () —to create a temporary association between the
current thread and the local resource. The resource creates a new
transaction branch, which performs work on behalf of the global
transaction.

Artix calls servant function—control is passed to the servant function
that implements the WSDL operation. Any interactions and updates
you make to the resource are now governed implicitly by the global
transaction.

Servant function returns—control passes back to the Artix runtime.
Artix calls xa_end()—to end the association between the current
thread and the resource. Effectively, the local transaction branch is
terminated (but the global transaction is still active).

Reply is sent—and the thread becomes available to process another
request.

Multiple registered resources

Threading and XA Resources

Figure 17 shows how auto-association works with multiple registered
resources. When the Artix server receives a transactional request, it obtains
a list of all registered resources. Artix then creates a new transaction branch
for each resource, before making an upcall to the relevant servant function.

Figure 17: Auto-Association with Multiple Registered Resources

Upcall

xa_start()

Return

xa_end()

eadx NEE £ 2 1 2 0 ™\

Resource R1

Resource R2

After the upcall, any application code in the servant function that interacts
with one of the resources (either resource R1 or resource R2) is implicitly

governed by a global transaction, where the global transaction ID has been
obtained from the received transaction context.

47

CHAPTER 5 | Threading

Multi-threaded resource Most modern databases offer the option of running in a multi-threaded

connections mode. What this means is that instead of having a single connection to the
database, which must be shared between all threads in the server, the
database allows the transaction manager to open a dedicated connection for
each server thread. This has the advantage of reducing contention between
the server threads.

Figure 18 shows an example of a resource configured to use multi-threaded
mode, where the server threads each open an independent connection to
the resource. This enables the threads to access the resource concurrently.

Figure 18: Database Resource Operating in Multi-Threaded Mode

xa_start() xa_end()

Resource
Connections

Resource

To use the multi-threaded resource mode, both the resource manager and
the Artix transaction manager must be configured appropriately.

48

Dynamic registration

Threading and XA Resources

As shown in Figure 19, some XA resources support an alternative algorithm,
dynamic registration, for associating a global transaction with a locally
registered resource.

Figure 19: Threading for a Dynamically Registered Resource

Upcall Return

Thread X

880

pogest,

|

|

XXt

frossll

Resource Lol
O T

|

Connection

Resource

When dynamic registration is enabled, the transaction manager does not
automatically create a transaction branch for an incoming request (that is,
the transaction manager does not call xa_start ()). Instead, the transaction
manager waits until it receives a callback, ax_reg(), from the resource
manager. This callback indicates to the transaction manager that the
application code has attempted to update the resource in some way (for
example, by calling EXEC SQ. UPDATE). The transaction manager responds to
this by creating a new transaction branch, which it associates with a global
transaction (assuming the incoming request has a transaction context).

The advantage of this algorithm is that the transaction branch is created
only when necessary. In some cases, if the application code does not make
any resource updates, it might not be necessary to create a transaction
branch at all.

49

CHAPTER 5 | Threading

50

In this chapter

CHAPTER 6

Transaction
Recovery

Transaction recovery is an enterprise-level feature thatensures
a transaction system can cope with any kind of crash or system
failure, without losing data or getting into an inconsistent
state. In Artix, transaction recovery is implemented by the
Encina transaction engine.

This chapter discusses the following topics:

Transactions Systems and Recovery page 52

Transaction Recovery Scenarios page 54

51

CHAPTER 6 | Transaction Recovery

Transactions Systems and Recovery

Overview

OTS Lite

OTS Encina

Non-recoverable WS-AT

52

Not all of the Artix transaction systems support recovery. It is important to
distinguish between the lightweight transactions systems, which are
non-recoverable, and the enterprise-level transactions systems, which are
recoverable. Table 1 summarizes the characteristics of the various Artix

transaction systems.

Table 1: Transaction Systems and Recoverability

Transaction System Single or Multiple Recoverable?
Resources?
OTS Lite Single No
OTS Encina Multiple Yes
Non-recoverable WS-AT Multiple No
Recoverable WS-AT Multiple Yes

OTS Lite is a lightweight transaction system, whose programming interface
is based on the CORBA OTS standard. The OTS Lite system can manage a
single resource only and is not recoverable.

OTS Encina is a complete, enterprise-level transaction system, whose
programming interface is based on the CORBA OTS standard. The OTS
Encina system can manage multiple resources and is recoverable.

Recoverability is the key property that distinguishes an enterprise-level
transaction systems from lightweight transaction systems. Recoverability
ensures that the system can always be brought back into a consistent state,
irrespective of when or how a transaction participant fails.

The non-recoverable WS-AT transaction system is a lightweight transaction
system based on the WS-AtomicTransactions and WS-Coordination
standards. The non-recoverable WS-AT transaction system (in contrast to
OTS Lite) can manage multiple resources.

Recoverable WS-AT

Transactions Systems and Recovery

The recoverable WS-AT transaction system is layered on top of the OTS
Encina transaction engine to give enterprise-level transaction support. From
Artix 4.0 onwards, WS-AT is layered over OTS by default and the relevant
OTS plug-ins are automatically loaded when WS-AT is enabled. If the

pl ugi ns: ws_coor di nati on_ser vi ce: di sabl e_t x_r ecovery variable appears
in your Artix configuration file, it must be set as follows to ensure
recoverability:

Artix Configuration File
pl ugi ns: ws_coor di nati on_servi ce: di sabl e_tx_recovery = "fal se";

When WS-AT is layered over Encina, the initiation of a transaction in
WS-Coordination effectively initiates an OTS transaction. The coordination
context returned from the WS-Coordination service (and subsequently
propagated on SOAP calls) includes an identifier indicating that it is OTS
based and also includes an encoded form of the relevant OTS propagation
context. That is, all transactions, including WS-AT initiated ones, are always
OTS transactions. If a participant enlistment is required then the WS-AT
system will completely bypass the WS-AT protocols and enlist the
participant directly with OTS. This means that at completion time, OTS is
aware of, and in control of, all resources in the system, be they native OTS
resources, WSAT Participants, XA resources and so on.

Note: It is also possible to layer WS-AT over OTS Lite, but there is no
benefit in doing so, because OTS Lite is more limited than plain WS-AT.

53

CHAPTER 6 | Transaction Recovery

Transaction Recovery Scenarios

Overview The whole point of transaction recovery is that it enables a transaction
system to recover to a consistent state, irrespective of what kind of system
failures occur. This section discusses a variety of different failure scenarios
in order to illustrate how Encina recovers the transactional system.

In this section This section contains the following subsections:
Server Crash before or during Prepare Phase page 55
Server Crash after Prepare Phase page 57
Transaction Coordinator Crash page 59

54

Transaction Recovery Scenarios

Server Crash before or during Prepare Phase

Overview Figure 20 shows a scenario involving two transactional resources, one
attached to server 1 and another attached to server 2, and a client, which
initiates a transaction involving server 1 and server 2. This scenario uses the
OTS Encina transaction system, where the OTS Encina transaction
coordinator is loaded into the client and the two servers participate in the
transaction.

The mode of failure described in this scenario involves server 1 crashing
either before or during the prepare phase of the two-phase commit protocol.

Figure 20: Server Crash before or during the Prepare Phase

@ crash!!
Server 1
------ >
1
2 @ Resource
(@ begin_transaction() i oTs
Artix ~ : invoke : R
Client : - :
¢ invoke :
@ commi t _transaction()=f--""" @
............................ '
ots ©)

1
1
1
OTS Encina E » Server 2
'--prepare - - -

Resource

oTS

55

CHAPTER 6 | Transaction Recovery

Steps leading to crash As shown in Figure 20, the steps leading to a server crash before or during
the prepare phase of a two-phase commit can be described as follows:

1. The client calls begi n_transacti on() to initiate the transaction.

2. Within the transaction, the client calls one or more WSDL operations
on both of the remote servers.

3. Theclient calls commi t _transacti on() to make permanent any
changes caused during the transaction.

4. The transaction coordinator initiates the prepare phase of the
two-phase commit. At some point either before or during the prepare
phase, server 1 crashes. That is, the transaction coordinator never
receives a vote commit or vote rollback from server 1.

Transaction system recovery If the transaction coordinator does not receive a reply from the prepare call
on server 1 (for example, the connection to server 1 breaks or the
transaction times out), the transaction coordinator will presume that the
transaction is to be rolled back (this rule is called presumed rollback).

The transaction system also rolls back the transaction on all of the other
transaction participants.

Server 1 recovery The manner in which server 1 recovers depends on whether it wrote
anything into its log during the prepare phase. When server 1 re-starts after
crashing, the transaction is recovered in one of the following ways:
® No record of prepare phase in log—in this case, server 1 knows that a
transaction was begun (this is recorded in its log) and that the
transaction was interrupted before the prepare phase. Server 1
automatically rolls back the transaction (presumed rollback), bringing
it back to a state that is consistent with the rest of the system.

® Prepare phase recorded in log—in this case, it is possible that the
prepare phase had completed successfully. Server 1, therefore, needs
to contact the transaction coordinator to discover the outcome of the
transaction. From its log, it can retrieve a recovery coordinator
reference, which it uses to query the transaction state. Depending on
the reply, it will either commit or roll back the transaction (in the
scenario shown in Figure 20, it will be a rollback).

56

Transaction Recovery Scenarios

Server Crash after Prepare Phase

Overview

Figure 21 shows a scenario involving two transactional resources, one
attached to server 1 and another attached to server 2, and a client, which
initiates a transaction involving server 1 and server 2. This scenario uses the
OTS Encina transaction system.

The mode of failure described in this scenario involves server 1 crashing

after the prepare phase of the two-phase commit protocol.

Figure 21: Server Crash after the Prepare Phase

Artix
Client

®

begi n_transaction() :

.............................

OTS Encina

Steps leading to crash

® Ccrash!!

Server 1

oTs
1
!
i
i Server 2
'--prepare - - -1
---commit----
oTs

Resource

Resource

As shown in Figure 21, the steps leading to a server crash after the prepare

phase of a two-phase commit can be described as follows:

1. The client calls commit _transaction() to make permanent any
changes caused during the transaction.

2. The transaction system performs the prepare phase by polling all of the
remote transaction participants.

57

CHAPTER 6 | Transaction Recovery

Transaction system recovery

Server 1 recovery

58

3. Atfter replying to the prepare call, but before receiving the commit call,
server 1 crashes. For this scenario, it is assumed that server 1 replied
to the prepare call with a vote commit.

4. Assuming that the other transaction participants all reply to the
prepare phase with a vote commit, the transaction coordinator decides
to commit the transaction and sends a commit notification to the
participants.

If the prepare phase has completed successfully (that is, the prepare call
returned from all of the transaction participants), the transaction coordinator
determines the outcome of the transaction to be either commit or rollback.
In the present scenario, it is assumed that the outcome is commit.

When the transaction coordinator attempts to send a commit notification to
server 1, it discovers that server 1 has crashed. The transaction coordinator
reacts to this situation by retrying the commit call forever.

When server 1 is restarted, it knows from its own log that a transaction was
prepared but not commited. Therefore, it expects to receive either a commit
or a rollback call from the transaction coordinator. Because the transaction
coordinator retries the commit call forever, server 1 is bound to receive a
commit call shortly after it starts up, thereby resolving the transaction.

Transaction Recovery Scenarios

Transaction Coordinator Crash

Overview Another mode of failure can occur where the process hosting the transaction
coordinator crashes (for example, in Figure 21 this would be the client
process). The transaction coordinator has its own log, which it uses as the
basis for recovery.

Encina logs To enable the transaction coordinator to recover gracefully after a crash, it
writes whatever information would be needed for recovery into a log file or
partition as it goes along.

Transaction system recovery After a transaction coordinator crash, the possible recovery scenarios can be

reduced essentially to two cases, as follows:

® The coordinator determined the transaction outcome before
crashing—upon restarting, the transaction coordinator will try forever
to notify the participants of the transaction outcome (commit or
rollback).

® The coordinator did not determine the transaction outcome before
crashing—the presumed rollback rule is used here. Transaction
participants that were not prepared will simply presume a rollback,
after a timeout has elapsed. Prepared participants will use the
coordinator reference to contact the transaction coordinator and query
the outcome of the transaction.

59

CHAPTER 6 | Transaction Recovery

60

CHAPTER 7

Recoverable
Resources

This section describes those aspects of server side
programming which enable you to update a persistent resource

transactionally.
In this chapter This chapter discusses the following topics:
Transaction Participants page 62
Interposition page 68

61

CHAPTER 7 | Recoverable Resources

Transaction Participants

Overview

Participants in a 2-phase commit

When Artix uses a persistent resource, the easiest way to integrate that
resource within the Artix transaction system is to enlist the resource’s XA
switch. If the resource does not support the XA standard, however, you need
to implement a transaction participant instead. A transaction participant is
an object on the server side that interfaces between the Artix transaction
manager and a persistent resource. The role of the transaction participant is
to receive callbacks from the transaction manager, which tell the participant
whether to make pending changes permanent or whether to abort the
current transaction and return the resource to its previous consistent state.

Figure 22 shows an example of a two-phase commit involving two
transaction participant instances. Any operations meant to be transactional
should start by creating a transaction participant object and enlisting it with
the transaction manager.

Figure 22: Transaction Participants in a 2-Phase Commit Protocol

Artix Server [_enlist >
------ >

Resource

Artix i nvoke

Client .
i nvoke

Transaction TransactionParti ci pant
System
delete

@iconm’ tTransaction() “-f---2-"3

62

Resource

1
1
. . .
Lo Artix Server [__eniist
| '--prepare ---[[C--
1
t---commit----- [R >
lransaction TransactionParti ci pant
System
delete

Participants in a 2-phase commit

Implementing a transaction
participant

Transaction Participants

As shown in Figure 22, the transaction participants participate in a
two-phase commit as follows:

Stage Description

1 | The client calls begi nTransacti on() to initiate a distributed
transaction.

2 | Within the transaction, the client calls transactional operations
on Server A and on Server B. In order to participate in the
distributed transaction, the servant code creates a new
transaction participant and enlists it with the transaction
manager.

3 | The client calls commi t Transacti on() to make permanent any
changes caused during the transaction.

4 | The transaction system performs the prepare phase by calling
prepare() on all of the transaction participants. Each
participant can vote either to commit or to rollback the current
transaction by returning a flag from the prepare() function.

5 | The transaction system performs the commit or rollback phase
by calling commi t () or rol | back() on all of the transaction
participants.

6 | When the transaction is finished, the transaction manager
automatically deletes the associated transaction participant
instances.

To create a transaction participant, define a class that implements the
comiona. j bus. transaciton. Transacti onParti ci pant interface.

63

CHAPTER 7 | Recoverable Resources

TransactionParticipant methods

1PC callback method

2PC callback functions

64

Example 8 shows the public member functions of the
TransactionParticipant interface.

Example 8: The TransactionParticipant Interface

/1 Java
package com i ona.j bus.transaction;

inport comi ona.j bus. BusExcepti on;

public interface TransactionParti ci pant

{ voi d commi t ChePhase() throws BusExcepti on;
Vot eCut corre prepare();
void commit();
voi d roll back();

voi d set Transact i onManager (Tr ansact i onManager txManager) ;

String preferredTransacti onVanager () ;

The following method is called during a one-phase commit:

® comm t hePhase() —this method should make permanent any changes

associated with the current transaction.

The following methods are called during a two-phase commit:

® prepare()—called during phase one of a two-phase commit. Before

returning, this method should write a recovery log to persistent storage.
The recovery log should contain whatever data would be necessary to
restore the system to a consistent state, in the event that the server
crashes before the transaction is finished.

Note: In some transaction systems, such as OTS Encina, the
transaction manager will not call prepare() if it knows that
transaction will be rolled back.

Getting the transaction manager

Transaction Participants

The prepare() function also votes on whether to commit or roll back
the transaction overall, by returning one of the following vote
outcomes:

¢+ VoteQut cone. VOTE_OCOMWM T—Vvote to commit the transaction.

. Vot eQut core. VOTE_ROLLBACK—Vote to roll back the transaction.
For example, you would return VOTE_ROLLBACK, if an error
occurred while attempting to write the recovery log.

¢+ Vot eCQut cone. VOTE_READCNLY—explicitly request not to be
included in the commit phase of the 2PC protocol.

comi t () —called during phase two of a two-phase commit, if the

transaction outcome was successful overall. The implementation of

this method should make permanent any changes associated with the
current transaction.

rol | back() —called during phase two of a two-phase commit, if the

transaction must be aborted. The implementation of this method

should undo any changes associated with the current transaction,
returning the system to the state it was in before.

After the transaction participant is enlisted by a transaction manager
instance, the transaction system calls back to pass a transaction manager to
the participant. The following methods are relevant to this callback
behavior:

pr ef erredTr ansact i onManager () —called just after the participant is

enlisted. The return value is a string that tells the transaction system

what type of transaction manager the participant requires. The

following return strings are supported:

. DEFAULT_TRANSACTI ON_TYPE—no preference; use the current
default.

. OT'S_TRANSACTI ON_TYPE—prefer the OTSTr ansact i onManager
interface (manager for CORBA OTS transactions).

. VBAT_TRANSACTI ON_TYPE—prefer the WBATTr ansact i onManager
interface (manager for WS-AtomicTransactions).

set Transact i onManager () —called after the

pref erredTr ansact i onManager () call. The transaction system calls

set Transact i onManager () to pass a transaction manager of the

65

CHAPTER 7 | Recoverable Resources

Enlisting a transaction participant

66

preferred type to the participant. If the type of transaction manager
requested by the participant differs from the one currently in use, Artix
uses interposition to simulate the preferred transaction manager type.

For more details about interposition, see “Interposition” on page 68.

Example 9 shows an example of how to enlist a participant instance in a
transaction. You must enlist a participant at the start of any transactional
WSDL operation. Example 9 shows a sample implementation of an
operation, wite(), which is called in the context of a transaction.

Example 9: Example of Enlisting a Transactional Participant

public void wite(int value) throws Exception

{
Bus bus = D spat chLocal s. get Qurrent Bus();

Transact i onSyst em t xSyst em = bus. get Tr ansact i onSysten() ;

if (txSystemwithinTransaction())

{

TxPartici pant participant = new TxPartici pant (this);

Transact i onManager t xManager =
t xSyst em get Tr ansact i onManager (Tr ansact i onSyst em DEFAULT_TRAN

SACTI ON_TYPE) ;
txManager . enl i st(participant, true);

mval ue = val ue;
}

el se

{

Systemout. println("No transaction");
t hr ow new BusExcepti on("l nvocation not in transaction");
}
}

Transaction Participants

The preceding code example can be explained as follows:

1.

D spat chLocal s. get Qurrent Bus() is a standard function that returns

a reference to the current thread’s bus instance.

write() requires a transaction. If it is not called in the context of a

transaction, it raises an exception back to the client.

The TXParti ci pant class is an implementation of the

Transact i onParti ci pant interface.

The participant is enlisted in the transaction, ensuring that the

participant receives callbacks either to commit or rollback any

changes.

The second parameter is a boolean flag that specifies the kind of

participant:

¢+ trueindicates a durable participant, which participates in all
phases of the transaction.

. f al se indicates a volatile participant, which is only guaranteed to
participate in the prepare phase of the 2PC protocol. There is no
guarantee that a volatile participant will participate in the commit
phase.

67

CHAPTER 7 | Recoverable Resources

Interposition

What is interposition?

Interposition matrix

68

Sometimes, there can be a mismatch between the transaction APl used by
the application code and the type of the underlying transaction system. For
example, imagine that you have a legacy CORBA server that manages
transactions with CORBA OTS. If you migrate this server code to a
WS-AT-based Artix service, you would obtain a mismatch between the
transaction API used by the application code (which is CORBA OTS-based)
and the underlying transaction system (which is WS-AT).

To bridge this APl mismatch, Artix uses interposition. With interposition,
the Artix runtime provides the application code with an object of the
preferred type (for example, an OTSTr ansact i onManager object), but the
object is merely a facade, whose calls are ultimately translated into a form
suitable for the underlying transaction system (for example, WS-AT).

Artix supports interposition between every permutation of transaction
systems. Internally, Artix converts calls made on a specific transaction API
into a technology-neutral API. The calls are then converted from the
technology-neutral API into one of the supported transaction APlIs.

CHAPTER 8

Notification
Handlers

A notification handler is an object that receives callbacks to
inform it about the outcome of a transaction.

In this chapter This chapter discusses the following topics:

Introduction to Notification Handlers page 70

69

CHAPTER 8 | Notification Handlers

Introduction to Notification Handlers

Overview A notification handler is an object that records the outcome of a
transaction. It can be used both on the server side and on the client side.
For example, you might use a notification handler to log transaction
outcomes or to synchronize other events with a transaction.

Implementing a notification To implement a notification handler, implement the
handler comiona.jbus.transaction. Transacti onNoti fi cati onHandl er interface.
TransactionNotificationHandler Example 10 shows the Transact i onNot i fi cati onHandl er interface. These
interface methods will only be called if an appropriate notification mechanism is
available in the underlying transaction system.
Example 10: The TransactionNotificationHandler Interface
Il Java
package com i ona.j bus.transaction;
public interface Transacti onNoti ficati onHandl er
{
void commit|nitiated(Transactionldentifier transactionld);
void cormitted();
voi d aborted();
}
Notification callback functions The following notification handler functions receive callbacks from the

transaction manager:

® commtlnitiated()—informs the handler that a commit has been

initiated. This method is called before any participants are prepared.

Note: WS-AT does not support this notification point.

® comm tted() —informs the handler that the transaction completed

successfully.

70

Enlisting a notification handler

Introduction to Notification Handlers

® aborted()—informs the handler that the transaction did not complete

successfully and was aborted.

To use a notification handler, you must enlist it with a Transact i onManager
object while there is a current transaction. You can enlist a notification
handler at any time prior to the termination of the transaction.

Example 11 shows how to enlist a sample notification handler,
Noti fi cati onHandl er | npl .

Example 11: Example of Enlisting a Notification Handler

/1 Java
Bus bus = Di spatchlLocal s. get Qurrent Bus();
Transact i onSyst em t xSyst em = bus. get Tr ansact i onSyst en{) ;

if (txSystemwi thinTransaction())

{
Noti ficationHandl er | npl not Handl er = new
Noti fi cati onHandl er | npl ;

Transact i onManager txManager =

t xSyst em get Tr ansact i onManager (Tr ansact i onSyst em DEFAULT_TRAN
SACTI ON_TYPE) ;

t xManager . enl i st For Not i fi cati on(not Handl er);

71

CHAPTER 8 | Notification Handlers

72

In this chapter

CHAPTER 9

MQ Transactions

This chapter describes how transactions are integrated with
the Artix MQ transport, which integrates with the IBM
MQ-Series product to provide a reliable message-oriented
transport.

This chapter discusses the following topics:

Reliable Messaging with MQ Transactions page 74

73

CHAPTER 9 | MQ Transactions

Reliable Messaging with MQ Transactions

Overview This section describes how to enable reliable messaging with MQ
transactions in your Artix applications. MQ transactions differ in several
important respects from ordinary Artix transactions, in particular:
® MQ transactions are managed by a transaction manager that is internal
to the MQ-Series product.

® MQ transactions are enabled by setting the relevant attributes of a
WSDL port in the WSDL contract.

® You can not initiate and terminate MQ transactions on the client side
using the Artix transaction API (for example, the functions in
I T_Bus: : Transact i onSyst emare not used for MQ on the client side).

On the client side, MQ transactions follow a completely different model from
Artix transactions. On the server side, however, the MQ transaction is
integrated with an Artix transaction, so that an incoming message is
considered to have been processed, only if the Artix transaction completes
successfully on the server side.

74

Reliable Messaging with MQ Transactions

Oneway invocation scenario Figure 23 shows a oneway invocation scenario, where an Artix client
invokes oneway operations on an Artix server over the MQ transport with
MQ transactions enabled. Because the WSDL operations are oneway (that
is, consisting only of output messages), the MQ transport does not require a
reply queue in this scenario.

Figure 23: Oneway Operation Invoked Over an MQ Transport with MQ
Transactions Enabled

i Client | 5 @ ; i propagation. . .
Artix Client : send » MQ RequesiQueUe MG receive | Artix Server
MQ : | ® MQ
: Transaction .
i....Scope : WS-AT
WS-Coordination

Transaction Scope

Description of oneway invocation The oneway operation invocation shown in Figure 23 is executed in the
following stages:

Stage Description

1 | When the client invokes a oneway operation over MQ, an MQ
transaction is initiated. After the request message is pushed
onto the client side of the MQ request queue, the MQ
transaction is committed.

Note: The client MQ transaction is local and does not extend
beyond the client side.

2 | MQ-Series is responsible for reliably transmitting the request
message from the client side of the MQ transport to the server
side of the MQ transport.

3 | When the server pulls the request message off the incoming
queue, an Artix transaction is initiated before dispatching the
request to the relevant Artix servant.

75

CHAPTER 9 | MQ Transactions

Stage

Description

If the Artix servant now invokes operations on some other Artix
servers, these invocations occur within a transaction context.
Hence, these follow-on invocations propagate a transaction
context (for example, a WS-AT context) and enable the remote
servers to participate in the transaction.

If the operation completes its work successfully, the transaction
is committed and the request message permanently disappears
from the queue.

On the other hand, if the operation is unsuccessful, the
transaction is rolled back and the request message is pushed
back onto the queue. The request message is immediately
reprocessed (the maximum number of times the message can
be processed is determined by the queue’s backout threshold—
see “Configuring the backout threshold” on page 81).

Oneway client configuration To enable transactional semantics for a client that invokes oneway
operations over the MQ transport, you should define a WSDL port as shown
in Example 12.

Example 12: WSDL Port Configuration for Oneway Client Over MQ

<wsdl : servi ce nane="MQ¥ervice">
<wsdl : port bindi ng="t ns: Bi ndi ngNane" name=""Port Narme" >

<ny: client QueueManager="M_DEF QW

QueueNane="HW REQUEST"

AccessMde="send"

Correl ationStyl e="correl ati onl d"
Transacti onal ="i nt ernal "

Del i very="persi stent"

UsageSt yl e="peer"

/>

</wsdl : port >
</wsdl : servi ce>

76

Oneway server configuration

Reliable Messaging with MQ Transactions

Because the invocation is oneway, there is no need to specify a reply queue
manager. To enable transactions, you must set the Transact i onal attribute
tointernal and the Delivery attribute to persistent.

On the server side, you must configure both the WSDL contract and the
Artix configuration file appropriately for using MQ transactions.

WSDL Contract Configuration

To enable transactional semantics for a server that receives oneway
invocations over the MQ transport, you should define a WSDL port as shown
in Example 13.

Example 13: WSDL Port Configuration for Oneway Server Over MQ

<wsdl : servi ce name="M¥ervi ce">
<wsdl : port bi ndi ng="t ns: Bi ndi ngNarre" narre="Por t Narre" >

<ny: server QueueManager ="M _DEF QM
QueueNane="HW REQUEST"

AccessMbde="r ecei ve"
Correl ati onStyl e="correl ati onl d"
Transactional ="i nt ernal "
Del i very="persi stent"
UsageSt yl e="peer"
/>
</wsdl : port >
</ wsdl : servi ce>

To enable transactions, you must set the Transacti onal attribute to
internal and the Del i very attribute to persistent.

Artix Configuration File

On the server side, Artix initiates a transaction whenever it receives a
request message from the MQ transport. Because this transaction is
managed by an Artix transaction manager, you must load and configure one
of the Artix transaction systems (for example, OTS or WS-AT).

For details of how to select a transaction system, see “Selecting a
Transaction System” on page 9.

77

CHAPTER 9 | MQ Transactions

Synchronous invocation scenario

Description of synchronous

invocation

78

Figure 24 shows a synchronous invocation scenario, where an Artix client

invokes normal operations on an Artix server over the MQ transport with MQ
transactions enabled. Because the WSDL operations are synchronous (that
is, consisting of output messages and input messages), the MQ transport
requires a reply queue.

Figure 24: Synchronous Operation Invoked Over the MQ Transport with MQ
Transactions Enabled

@ N 3

Artix Client

MQ

eceive

Artix Server | Propagation. .. :
MQ BN :

RequestQueue MQ \

ReplyQueue MQ send

WS-AT

® 2E0)

WS-Coordination

Transaction Scope

The synchronous operation invocation shown in Figure 24 is executed in the

following stages:

Stage

Description

1

When the client invokes a synchronous operation over MQ, an
MQ transaction is initiated.

MQ-Series is responsible for reliably transmitting the request
message from the client side of the MQ transport to the server
side of the MQ transport.

When the server pulls the request message off the incoming
queue, an Artix transaction is initiated before dispatching the
request to the relevant Artix servant.

Synchronous client configuration

Reliable Messaging with MQ Transactions

Stage

Description

If the Artix servant now invokes operations on some other Artix
servers, these invocations occur within a transaction context.
Hence, these follow-on invocations propagate a transaction
context (for example, a WS-AT context) and enable the remote
servers to participate in the transaction.

If the operation completes its work successfully, the transaction
is committed, the request message permanently disappears
from the request queue, and a reply message gets pushed onto
the reply queue.

On the other hand, if the operation is unsuccessful, the
transaction is rolled back. No reply message is sent and the
request message is pushed back onto the request queue. The
request message is immediately reprocessed (the maximum
number of times the message can be processed is determined
by the request queue’s backout threshold—see “Configuring
the backout threshold” on page 81).

MQ-Series is responsible for reliably transmitting the reply
message from the server side of the MQ transport to the client
side of the MQ transport.

When the client receives the reply message, the synchronous
operation call returns and the client transaction is committed.
Because the client is independent of the server side
transaction, however, it is not possible for the client code to
receive a rollback exception from the server.

It is possible to manage blocked calls by defining the Ti neout
attribute on the ny: cl i ent element in the WSDL contract. If
the timeout is exceeded, an exception will be thrown.

To enable transactional semantics for a client that invokes synchronous
operations over the MQ transport, you should define a WSDL port as shown
in Example 14.

Example 14: WSDL Port Configuration for Synchronous Client Over MQ

<wsdl : servi ce name="M¥ervi ce">
<wsdl : port bi ndi ng="t ns: Bi ndi ngNarre" narre="Por t Narre" >

<ng: client QueueManager="M_DEF QV

79

CHAPTER 9 | MQ Transactions

Example 14: WSDL Port Configuration for Synchronous Client Over MQ

/>

</wsdl : port >
</wsdl : servi ce>

QueueNane="HW REQUEST"

Repl yQueueManager =" MY_DEF_QW
Repl yQueueNane="HW REPLY"
AccessMde="send"

Correl ationStyl e="correl ati onl d"
Transacti onal ="i nt ernal "

Del i very="persi stent"

UsageSt yl e="r esponder "

To enable transactions, you must set the Transacti onal attribute to
internal and the Del i very attribute to persi stent.

Synchronous server configuration On the server side, you must configure both the WSDL contract and the
Artix configuration file appropriately for using MQ transactions.

WSDL Contract Configuration

To enable transactional semantics for a server that receives synchronous
invocations over the MQ transport, define a WSDL port as shown in

Example 15.

Example 15: WSDL Port Configuration for Synchronous Server Over MQ

<wsdl : servi ce nane="MQ¥ervice">
<wsdl : port bi ndi ng="tns: Bi ndi ngNarre" narme=" Por t Narre" >

<ny: server QueueManager ="MW_DEF_QM

/>

</ wsdl : port >
</wsdl : servi ce>

80

QueueNane="HW REQUEST"

Repl yQueueManager =" MY_DEF_QW
Repl yQueueNane="HW REPLY"
AccessMbde="r ecei ve"

Correl ationStyl e="correl ati onl d"
Transacti onal ="i nt ernal "

Del i very="persi stent"

UsageSt yl e="r esponder "

Configuring the backout threshold

Accessing the backout count

Reliable Messaging with MQ Transactions

To enable transactions, you must set the Transacti onal attribute to
internal and the Del i very attribute to persi stent.

Artix Configuration File

On the server side, Artix initiates a transaction whenever it receives a
request message from the MQ transport. Because this transaction is
managed by an Artix transaction manager, you must load and configure one
of the Artix transaction systems (for example, OTS or WS-AT).

For details of how to select a transaction system, see “Selecting a
Transaction System” on page 9.

You can configure the backout threshold using the runngsc command-line

tool, which is provided as part of the MQ-Series product. To configure a

queue to use backouts, set the following MQ attributes:

® BOTHRESH—the backout threshold, which defines the maximum
number of times a message can be pushed back onto the queue.

® BONAME—the backout queue name. If the current backout count
equals the backout threshold, Artix puts the message onto the backout
queue whose name is given by BOQNAMVE.

Hence, the BOQNAME queue would contain all of the messages that have been

rolled back more than BOTHRESHtimes. The administrator can then manually

examine the messages stored in the BOQNAME queue and take appropriate

remedial action.

For more details about how to set MQ attributes, see your MQ-Series user

documentation.

On the server side, you can obtain the backout count for the current
message using Artix contexts. To access the current backout count, perform
the following steps:
1. Retrieve the server context identified by the
I T ContextAttributes:: MY | NOOM NG MESSAGE ATTRI BUTES QName.
2. Cast the returned context instance to the
I T_ContextAttributes:: MMessageAttri but esType type.
3. Invoke the get Backout Count () function to access the current backout
count.

81

CHAPTER 9 | MQ Transactions

For more details about programming with Artix contexts, see Developing
Artix Applications in C++.

82

Index

A

attach_thread() function
and suppressing propagation 37

B

backout count 81

backout threshold 76, 79
configuring 81

BOQNAME attribute 81

BOTHRESH attribute 81

Bus.getTransacionSystem() 26

D
Delivery attribute 77
detach_thread() function

and suppressing propagation 37

G

getBackoutCount() function 81
getTransacionSystem() 26
getTransactionManager() 27

|
interoperability

transaction propagation 34
interposition

resource for 36

M
MQ-Series
BOQNAME attribute 81
BOTHRESH attribute 81
runmgsc command-line tool 81
MQ transactions 74
backout count 81
backout threshold 76, 79, 81
Delivery attribute 77
synchronous invocation 78
Transactional attribute 77

o
oneway invocations

and MQ transactions 75
OTS Lite

limitations on using 36

R

reliable messaging
and transactions 74
runmgsc command-line tool 81

S

synchronous invocation
and MQ transactions 78

T

Transactional attribute 77

TransactionAlreadyActiveException 29

transaction contexts 34
TransactionManager 27
TransactionNotificationHandler 27
TransactionParticipant 27, 63
transaction propagation 34
suppressing, how to 37
transactions 2
compatibility with CORBA OTS 5
example 2
properties 3
TransactionSystem 26
getTransactionManager() 27

TransactionSystemUnavailableException 29

U
UsageStyle attribute 80

83

INDEX

84

	Artix Transactions Guide, Java
	List of Tables
	List of Figures
	Preface
	What is Covered in this Book
	Who Should Read this Book
	The Artix Library
	Getting the Latest Version
	Searching the Artix Library
	Artix Online Help
	Artix Glossary
	Additional Resources
	Document Conventions

	Introduction to Transactions
	Basic Transaction Concepts
	Artix Transaction Features

	Selecting a Transaction System
	Configuring OTS Lite
	Configuring OTS Encina
	Configuring Non-Recoverable WS-AT
	Configuring Recoverable WS-AT

	Basic Transaction Programming
	Artix Transaction Interfaces
	Beginning and Ending Transactions

	Transaction Propagation
	Transaction Propagation and Interposition

	Threading
	Client Threading
	Threading and XA Resources

	Transaction Recovery
	Transactions Systems and Recovery
	Transaction Recovery Scenarios
	Server Crash before or during Prepare Phase
	Server Crash after Prepare Phase
	Transaction Coordinator Crash

	Recoverable Resources
	Transaction Participants
	Interposition

	Notification Handlers
	Introduction to Notification Handlers

	MQ Transactions
	Reliable Messaging with MQ Transactions

	Index

