
SSSCCCAAA PPPooollliiicccyyy FFFrrraaammmeeewwwooorrrkkk
SCA Version 1.00, March 07

Technical Contacts:

 Michael Beisiegel, IBM (mbgl@us.ibm.com)

 Dave Booz, IBM (booz@us.ibm.com)

Ching-Yun Chao, IBM (cyc@us.ibm.com)

 Mike Edwards IBM (mike_edwards@uk.ibm.com)

 Sabin Ielceanu, TIBCO Software Inc. (sabin@tibco.com)

 Anish Karmarkar Oracle (anish.karmarkar@oracle.com)

 Ashok Malhotra, Oracle (ashok.malhotra@oracle.com)

Eric Newcomer, IONA (Eric.Newcomer@iona.com)

 Sanjay Patil, SAP (sanjay.patil@sap.com)

 Michael Rowley, BEA (mrowley@bea.com)

 Chris Sharp, IBM (sharpc@uk.ibm.com)

 Ümit Yalçinalp, SAP (umit.yalcinalp@sap.com)

mailto:mbgl@us.ibm.com
mailto:booz@us.ibm.com
mailto:bcyc@us.ibm.com
mailto:sabin@tibco.com
mailto:ashok.malhotra@oracle.com
mailto:mrowley@bea.com
mailto:sharpc@uk.ibm.com
mailto:umit.yalcinalp@sap.com

SCA Service Component Architecture

SCA Policy Framework V1.00 ii March 2007

Copyright Notice

© Copyright BEA Systems, Inc., Cape Clear Software, International Business Machines
Corp, Interface21, IONA Technologies, Oracle, Primeton Technologies, Progress Software,
Red Hat, Rogue Wave Software, SAP AG., Siemens AG., Software AG., Sun Microsystems,
Inc., Sybase Inc., TIBCO Software Inc., 2005, 2007. All rights reserved.

License

The Service Component Architecture Specification is being provided by the copyright holders under
the following license. By using and/or copying this work, you agree that you have read, understood
and will comply with the following terms and conditions:

Permission to copy, display and distribute the Service Component Architecture Specification and/or
portions thereof, without modification, in any medium without fee or royalty is hereby granted,
provided that you include the following on ALL copies of the Service Component Architecture
Specification, or portions thereof, that you make:

1. A link or URL to the Service Component Architecture Specification at this location:

• http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

2. The full text of the copyright notice as shown in the Service Component Architecture Specification.

BEA, Cape Clear, IBM, Interface21, IONA, Oracle, Primeton, Progress Software, Red Hat, Rogue
Wave, SAP, SIEMENS AG, Software AG., Sun Microsystems, Sybase, TIBCO (collectively, the
“Authors”) agree to grant you a royalty-free license, under reasonable, non-discriminatory terms
and conditions to patents that they deem necessary to implement the Service Component
Architecture Specification.

THE Service Component Architecture SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS
MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, REGARDING THIS
SPECIFICATION AND THE IMPLEMENTATION OF ITS CONTENTS, INCLUDING, BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT
OR TITLE.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR DISTRIBUTION OF THE
Service Components Architecture SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including advertising or
publicity pertaining to the Service Component Architecture Specification or its contents without
specific, written prior permission. Title to copyright in the Service Component Architecture
Specification will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

SCA Service Component Architecture

SCA Policy Framework V1.00 iii March 2007

Status of this Document

This specification may change before final release and you are cautioned against relying on the
content of this specification. The authors are currently soliciting your contributions and suggestions.
Licenses are available for the purposes of feedback and (optionally) for implementation.

IBM is a registered trademark of International Business Machines Corporation in the United States,
other countries, or both.

BEA is a registered trademark of BEA Systems, Inc.

Cape Clear is a registered trademark of Cape Clear Software

IONA and IONA Technologies are registered trademarks of IONA Technologies plc.

Oracle is a registered trademark of Oracle USA, Inc.

Primeton is a registered trademark of Primeton Technologies, Ltd.

Progress is a registered trademark of Progress Software Corporation

Red Hat is a registered trademark of Red Hat Inc.

Rogue Wave is a registered trademark of Quovadx, Inc

SAP is a registered trademark of SAP AG.

SIEMENS is a registered trademark of SIEMENS AG

Software AG is a registered trademark of Software AG

Sun and Sun Microsystems are registered trademarks of Sun Microsystems, Inc.

Sybase is a registered trademark of Sybase, Inc.

TIBCO is a registered trademark of TIBCO Software, Inc.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States,
other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

SCA Service Component Architecture

SCA Policy Framework V1.00 iv March 2007

Table of Contents
Copyright Notice ...ii
License..ii
Status of this Document .. iii
Table of Contents ...iv

1 Policy Framework ..1
1.1 Introduction ..1

1.1.1 XML Namespaces .. 1
1.2 Overview ...2

1.2.1 Policies and PolicySets... 2
1.2.2 Intents describe the requirements of Components, Services and References ... 3
1.2.3 Determining which policies apply to a particular wire... 3

1.3 Framework Model..4
1.3.1 Intents... 4
1.3.2 Profile Intents ... 6
1.3.3 PolicySets ... 7

1.4 Attaching Intents and PolicySets to SCA Constructs ...14
1.4.1 Attachment Rules ... 14
1.4.2 Usage of @requires attribute for specifying intents ... 15
1.4.3 Usage of @requires and @policySet attributes together .. 16
1.4.4 Operation-Level Intents and PolicySets on Services & References ... 17
1.4.5 Operation-Level Intents and PolicySets on Bindings... 17
1.4.6 Intents and PolicySets on Implementations and Component Types... 17
1.4.7 BindingTypes and Related Intents.. 18
1.4.8 Treatment of Components with Internal Wiring .. 19
1.4.9 Preparing Services and References for External Connection ... 21
1.4.10 Guided Selection of PolicySets using Intents... 21

1.5 Implementation Policies...24
1.5.1 Natively Supported Intents ... 25
Each implementation type (e.g. <sca.implementation.java> or <sca.implementation.bpel> has an implementation type
definition within the SCA Domain The form of the implementation type definition is as follows:.................................... 25
1.5.2 Operation-Level Intents and PolicySets on Implementations... 25
1.5.3 Writing Policy Sets for Implementation Policies ... 26

1.6 Roles and Responsibilities ...27
1.6.1 Policy Administrator .. 27
1.6.2 Developer ... 27
1.6.3 Assembler... 27
1.6.4 Deployer ... 28

1.7 Security Policy ..29
1.7.1 SCA Security Intents .. 29
1.7.2 Interaction Security Policy ... 29
1.7.3 Implementation Security Policy ... 31

1.8 Reliability Policy...34
1.8.1 Policy Intents.. 34
1.8.2 End to end Reliable Messaging .. 36
1.8.3 Intent definitions .. 36

1.9 Miscellaneous Intents...37
2 Appendix 1 ..39

SCA Service Component Architecture

SCA Policy Framework V1.00 v March 2007

2.1 XML Schemas ...39
3 References...41

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 1

1 Policy Framework 1

 2

1.1 Introduction 3

The capture and expression of non-functional requirements is an important aspect of service 4
definition and has an impact on SCA throughout the lifecycle of components and compositions. SCA 5
provides a framework to support specification of constraints, capabilities and QoS expectations from 6
component design through to concrete deployment. This specification describes the framework and 7
its usage. 8

Specifically, this section describes the SCA policy association framework that allows policies and 9
policy subjects specified using WS-Policy [6] and WS-PolicyAttachment [7], as well as with other 10
policy languages, to be associated with SCA components. 11

This document should be read in conjunction with the SCA Assembly Specification[2]. Details of 12
policies for specific policy domains can be found in sections 1.7, 1.8 and 1.9. 13

1.1.1 XML Namespaces 14

This specification uses a number of namespace prefixes throughout; they are listed below. Note that the 15
choice of any namespace prefix is arbitrary and not semantically significant.). 16

Prefixes and Namespaces used in this Specification

Prefix XML Namespace Specification

sca

http://www.osoa.org/xmlns/sca/1.0"

This is assumed to be the default namespace in this
specification. xs:QNames that appear without a prefix are
from the SCA namespace.

[SCA]

acme Some namespace; a generic prefix

wsp http://www.w3.org/2006/07/ws-policy [WS-Policy]

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 2

Prefixes and Namespaces used in this Specification

Prefix XML Namespace Specification

xs http://www.w3.org/2001/XMLSchema [XML Schema
Datatypes]

 17

1.2 Overview 18

1.2.1 Policies and PolicySets 19

The term Policy is used to describe some capability or constraint that can be applied to service 20
components or to the interactions between service components represented by services and 21
references. An example of a policy is that messages exchanged between a service client and a 22
service provider be encrypted, so that the exchange is confidential and cannot be read by someone 23
who intercepts the conversation. 24

In SCA, services and references can have policies applied to them that affect the form of the 25
interaction that takes place at runtime. These are called interaction policies. 26

Service components can also have other policies applied to them which affect how the components 27
themselves behave within their runtime container. These are called implementation policies. 28

How particular policies are provided varies depending on the type of runtime container for 29
implementation policies and on the binding type for interaction policies. Some policies may be 30
provided as an inherent part of the container or of the binding – for example a binding using the 31
https protocol will always provide encryption of the messages flowing between a reference and a 32
service. Other policies may be provided by a container or by a binding. It is also possible that some 33
kinds of container or kinds of binding may be incapable of providing a particular policy at all. In 34
SCA, policies are held in policySets, which may contain one or many policies, expressed in some 35
concrete form, such as WS-Policy assertions. Each policySet targets a specific binding type or a 36
specific implementation type. 37

PolicySets are used to apply particular policies to a component or to the binding of a service or 38
reference, through configuration information attached to a component or attached to a composite. 39

For example, a service can have a policy applied that requires all interactions (messages) with the 40
service to be encrypted A reference which is wired to that service must be able to support sending 41
and receiving messages using the specified encryption technology if it is going to use the service 42
successfully. 43

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 3

In summary, a service presents a set of interaction policies which it requires the references to use. 44
In turn, each reference has a set of policies which define how it is capable of interacting with any 45
service to which it is wired. An implementation or component can describe its requirements through 46
a set of attached implementation policies. 47

1.2.2 Intents describe the requirements of Components, Services and References 48

SCA intents are used to describe the abstract policy requirements of a component or the 49
requirements of interactions between components represented by services and references. Intents 50
provide a means for the developer and the assembler to state these requirements in a high-level 51
abstract form, independent of the detailed configuration of the runtime and bindings which is the 52
role of application deployer. Intents support the late binding of services and references to particular 53
SCA bindings, since they assist the deployer in choosing appropriate bindings and concrete policies 54
which satisfy the abstract requirements expressed by the intents. 55

It is possible in SCA to directly attach policies to a service, to a reference or to a component at any 56
time during the creation of an assembly, through the configuration of bindings and the attachment 57
of policy sets. Attachment may be done by the developer of a component at the time when the 58
component is written or later at deployment time. SCA recommends a late binding model where the 59
bindings and the concrete policies for a particular assembly are decided at deployment time. SCA 60
favors the late binding approach since it promotes re-use of components. It allows the use of 61
components in new application contexts which may require the use of different bindings and 62
different concrete policies. Forcing early decisions on which bindings and policies to use is likely to 63
limit re-use and limit the ability to use a component in a new context. 64

For example, in the case of authentication, a service which requires its messages to be 65
authenticated can be marked with an intent "authentication". This intent marks the service as 66
requiring message authentication capability without being prescriptive about how it is achieved. At 67
deployment time, when the binding is chosen for the service (say SOAP over HTTP), the deployer 68
can apply suitable policies to the service which provide aspects of WS-Security and which supply a 69
group of one or more authentication technologies. 70

In many ways, intents can be seen as restricting choices at deployment time. If a service is marked 71
with the confidentiality intent, then the deployer must use a policySet that provides for the 72
encryption of the messages. 73

The set of intents available to developers and assemblers can be extended arbitrarily by policy 74
administrators. The SCA Policy Framework specification does define a set of intents which address 75
the infrastructure capabilities relating to security reliable messaging. 76

1.2.3 Determining which policies apply to a particular wire 77

In order for a reference to connect to a particular service, the policies of the reference must 78
intersect with the policies of the service. 79

Multiple policies may be attached to both services and to references. Where there are multiple 80
policies, they may be organized into policy domains, where each domain deals with some particular 81
aspect of the interaction. An example of a policy domain is confidentiality, which covers the 82
encryption of messages sent between a reference and a service. Each policy domain may have one 83
or more policy. Where multiple policies are present for a particular domain, they represent 84
alternative ways of meeting the requirements for that domain. For example, in the case of message 85

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 4

integrity, there could be a set of policies, where each one deals with a particular security token to be 86
used: X509, SAML, Kerberos. Any one of the tokens may be used - they will all ensure that the 87
overall goal of message integrity is achieved. 88

In order for a service to be accessed by a wide range of clients, it is good practice for the service to 89
support multiple alternative policies within a particular domain. So, if a service requires message 90
confidentiality, instead of insisting on one specific encryption technology, the service can have a 91
policySet which has a host of alternative encryption technologies, any of which are acceptable to the 92
service. Equally, a reference can have a policySet attached which defines the range of encryption 93
technologies which it is capable of using. Typically, the set of policies used for a given domain will 94
reflect the capabilities of the binding and of the runtime being used for the service and for the 95
reference. 96

When a service and a reference are wired together, the policies declared by the policySets at each 97
end of the wire are matched to each other. SCA does not define how policy matching is done, but 98
instead delegates this to the policy language (e.g. WS-Policy) used for the binding. For example, 99
where WS-Policy is used as the policy language, the matching procedure looks at each domain in 100
turn within the policy sets and looks for 1 or more policies which are in common between the service 101
and the reference. When only one match is found, that policy is used. Where multiple matches are 102
found, then the SCA runtime can choose to use any one of the matching policies. No match implies 103
that the wire cannot be used - it is an error. 104

 105

1.3 Framework Model 106

The SCA Policy Framework model is comprised of intents and policySets. Intents represent 107
abstract assertions and Policy Sets contain concrete policies that may be applied to SCA bindings 108
and implementations. The framework describes how intents are related to PolicySets. It also 109
describes how intents and Policy Sets are utilized to express the constraints that govern the 110
behavior of SCA bindings and implementations. Both intents and policySets may be used to specify 111
QoS requirements on services and references. 112

The following section describes the Framework Model and illustrates it using Interaction Policies. 113
Implementation Policies follow the same basic model and are discussed later in section 1.5. 114

1.3.1 Intents 115

As discussed earlier, an intent is an abstract assertion about a specific Quality of Service (QoS) 116
characteristic that is expressed independently of any particular implementation technology. An intent 117
is thus used to describe the desired runtime characteristics of an SCA construct. Intents are 118
typically defined by a policy administrator. See section [Policy Administrator] for a more detailed 119
description of the SCA roles with respect to Policy concepts, their definition and their use. The 120
semantics of an intent may not be always available normatively, but could be expressed with 121
documentation that is available and accessible. 122

For example, an intent named integrity may be specified to signify that communications should be 123
protected from possible tampering. This specific intent may be declared as a requirement by some 124
SCA artifacts, i.e. a reference. Note that this intent can be satisfied by a variety of bindings and with 125
many different ways of configuring those bindings. Thus, the reference where the intent is expressed 126

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 5

as a requirement could eventually be wired using either a web service binding (SOAP over HTTP) or 127
with an EJB binding that communicates with an EJB via RMI/IIOP. 128

Intents can be used to express requirements for interaction policies or implementation policies. 129
The integrity intent in the above example is used to express an interaction policy. Interaction 130
policies are intents that are typically applied to a service or reference. They are meant to govern 131
the communication between a client and a service provider. Intents may be applied to SCA 132
component implementations as implementation policies. These intents specify the qualities of 133
service that should be provided by a container as it runs the component. An example of such an 134
intent could be a requirement that the component must run in a transaction. 135

An intent is defined using the following pseudo-schema: 136

<intent name="NCName" 137
 constrains="listOfQNames" 138
 requires="listOfQNames"? > 139
 <description> 140
 <!-- description of the intent --> 141
 </description> 142
</intent> 143

Where 144

• @name attribute defines the name of the intent 145

• @constrains attribute (optional) specifies the SCA constructs (SCA binding or 146
implementation) that this intent is meant to configure. If a value is not specified, it is 147
assumed that this intent is a qualified intent and inherits its constraint list from the qualifiable 148
intent it is qualifying (see below). This attribute does not define the valid attach points of the 149
intent. 150

Note that the “constrains” attribute may name an abstract element type, such as sca:binding 151
in our running example. This means that it will match against any binding used within a 152
SCDL file. A SCDL element may match @constrains if its type is in a substitution group. 153

• @requires attribute (optional) defines the set of all intents that the referring intent requires. 154
In essence, the referring intent requires all the intents named to be satisfied. This attribute is 155
used to compose an intent from a set of other intents. This use is further described in Section 156
1.3.2 below. 157

The confidentiality intent may be defined as: 158

<intent name="confidentiality" constrains="sca:binding"> 159
 <description> 160
 Communication through this binding must prevent 161
 unauthorized users from reading the messages. 162
 </description> 163
</intent> 164

For convenience and conciseness, it is often desirable to declare a single, higher-level intent to 165
denote a requirement that could be satisfied by one of a number of lower-level intents. For example, 166
the confidentiality intent requires either message-level encryption or transport-level encryption. 167

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 6

Both of these are abstract intents because the representation of the configuration necessary to 168
realize these two kinds of encryption could vary from binding to binding, and each would also require 169
additional parameters for configuration. 170

An intent that can be completely satisfied by one of a choice of lower-level intents is referred to as a 171
qualifiable intent. In order to express such intents, an intent name may contain a qualifier, “.”. An 172
intent that includes the name of a qualifiable intent in its name is referred to as a qualified intent, 173
because it is “qualifying” how the qualifiable intent is satisfied. A qualified intent can only qualify 174
one qualifiable intent, so the name of the qualified intent includes the name of the qualifiable intent 175
as a prefix (separated by “.”), for example, authentication.message. See Usage of @requires 176
attribute for specifying intents 177

 178

In general, SCA allows the developer or assembler to attach multiple qualifiers for a single 179
qualifiable intent to the same SCA construct. However, domain-specific constraints may prevent the 180
use of some combinations of qualifiers (from the same qualifiable intent). Because qualified intents 181
include the name of the qualifiable intent, the qualifiable intent definition does not need to list its 182
valid qualifiers. The set of all qualified intents defined for that qualifiable intent determines the list 183
of valid qualifiers. This is illustrated by adding two additional intents to our example called 184
confidentiality.transport and confidentiality.message. Note that the original intent definition 185
for confidentiality does not change. 186

Further, the @constrains attribute of a qualified intent is unnecessary because qualified intents 187
inherit the @constrains attribute from the qualifiable intent. It is an error to specify @constrains in 188
the definition of a qualified intent. The following are definitions of the transport and message 189
qualifiers of the confidentiality intent. 190

<intent name=”confidentiality.transport” /> 191
<intent name=”confidentiality.message” /> 192

All the intents in a SCA Domain are defined in a global, domain-wide file named definitions.xml. 193
Details of this file are described in the SCA Assembly Model [2]. 194

SCA normatively defines a set of core intents that all SCA implementations are expected to support, 195
to ensure a minimum level of portability. Users of SCA may define new intents, or extend the 196
qualifier set of existing intents. 197

1.3.2 Profile Intents 198

An intent that is satisfied only by satisfying all of a set of other intents is called a profile intent. It 199
can be used in the same way as any other intent. 200

The presence of @requires attribute in the intent definition signifies that this is a profile intent. The 201
@requires attribute may include all kinds of intents, including qualified intents and other profile 202
intents. However, while a profile intent can include qualified intents, it cannot BE a qualified intent 203
(so its name must not have “.” in it). 204

Requiring a profile intent is always semantically identical to requiring the list of intents that are listed 205
in its @requires attribute. 206

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 7

An example of a profile intent could be an intent called messageProtection which is a shortcut for 207
specifying both confidentiality and integrity, where integrity means to protect against 208
modification, usually by signing. The intent definition could look like the following: 209

<intent name="messageProtection" 210
 constrains="sca:binding" 211
 requires="confidentiality integrity"> 212
 <description> 213
 Protect messages from unauthorized reading or 214
 modification. 215
 </description> 216
</intent> 217

1.3.3 PolicySets 218

A policySet element is used to define a set of concrete policies that apply to some binding type or 219
implementation type, and which correspond to a set of intents provided by the policySet. 220

The structure of the PolicySet element is as follows: 221

• The @name attribute declares a name for the policySet. The value of the @name attribute is 222
a xs:QName. 223

• The @appliesTo attribute is used to determine which SCA constructs this policySet can 224
configure. The contents of the attribute must match the XPath 1.0 production Expr. 225

• The @provides attribute, whose value is a list of intent names (that may or may not be 226
qualified), designates the intents the PolicySet provides. Members of the list are xs:string 227
values separated by a space character “ “. 228

It contains one or more of the following element children 229

• intentMap element 230

• policySetReference element 231

• wsp:PolicyAttachment element 232

• wsp:Policy element 233

• wsp:PolicyReference element 234

• xs:any extensibility element 235

Any mix of the above types of elements, in any number, can be included as children of the policySet 236
element including extensibility elements. There are likely to be many different policy languages for 237
specific binding technologies and domains. In order to allow the inclusion of any policy language 238
within a policySet, the extensibility elements may be from any namespace and may be intermixed. 239
However, the SCA policy framework expects that WS-Policy will be a common policy language for 240
expressing interaction policies, especially for Web Service bindings. For this reason, 241
wsp:PolicyAttachment is explicitly included in the schema for clarity. 242

http://www.w3.org/TR/xpath#NT-Expr

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 8

The pseudo schema for policySet is shown below: 243

<policySet name="NCName" 244
 provides="listOfQNames"? 245
 appliesTo="xs:string" 246
 xmlns="http://www.osoa.org/xmlns/sca/1.0" 247
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"> 248
 <policySetReference name="xs:QName"/>* 249
 <intentMap/>* 250
 <wsp:PolicyAttachment>* 251
 <wsp:Policy>* 252
 <wsp:PolicyReference>* 253
 <xs:any>* 254
</policySet> 255

For example, the policySet element below declares that it provides authentication.message and 256
reliability for the “binding.ws” SCA binding. 257

<policySet name="SecureReliablePolicy" 258
 provides="authentication.message exactlyOne" 259
 appliesTo="sca:binding.ws" 260
 xmlns="http://www.osoa.org/xmlns/sca/1.0" 261
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"> 262
 <wsp:PolicyAttachment> 263
 <!-- policy expression and policy subject for 264

"basic authentication" --> 265
 … 266
 </wsp:PolicyAttachment> 267
 <wsp:PolicyAttachment> 268
 <!-- policy expression and policy subject for 269

"reliability" --> 270
 … 271
 </wsp:PolicyAttachment> 272
</policySet> 273
 274

PolicySet authors should be aware of the evaluation of the @appliesTo attribute in order to designate 275
meaningful values for this attribute. Although policySets may be attached to any element in the SCA 276
design, the applicability of a policySet is not scoped by where it is attached in the SCA framework. 277
Rather, policySets always apply to either binding instances or implementation elements regardless of 278
where they are attached to. In this regard, the SCA policy framework does not scope the 279
applicability of the policySet to a specific attachment point in contrast to other frameworks, such as 280
WS-Policy. Attachment is a shorthand. 281

With this design principle in mind, an XPath expression that is the value of an @appliesTo attribute 282
designates what a policySet applies to. Note that the XPath expression will always be evaluated 283
within the context of an attachment considering elements where binding instances or 284
implementations are allowed to be present. The expression is evaluated against the parent element 285
of any binding or implementation element. The policySet will apply to any child binding or 286
implementation elements returned from the expression. So, for example, appliesTo=”binding.ws” 287
will match any web service binding. If appliesTo=”binding.ws[@impl=’axis’]” then the policySet 288
would apply only to web service bindings that have an @impl attribute with a value of ‘axis’. 289

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 9

For further discussion on attachment of policySets and the computation of applicable policySets, 290
please refer to Section 1.4. 291

All the policySets in a SCA Domain are defined in a global, domain-wide file named definitions.xml. 292
Details of this file are described in the SCA Assembly Model [2]. 293

SCA may normatively define a set of core policySets that all SCA implementations are expected to 294
support, to ensure a minimum level of portability. Users of SCA may define new policySets as 295
needed. 296

1.3.3.1 IntentMaps 297

Intent maps contain the concrete policies and policy subjects that are used to realize a specific intent 298
that is provided by the policySet. 299

The pseudo-schema for intentMaps is given below: 300

<intentMap provides="xs:QName" 301
 default="xs:string"> 302
 <qualifier name="xs:string">? 303
 <wsp:PolicyAttachment>* 304
 … 305
 </wsp:PolicyAttachment> 306
 <xs:any>* 307
 <intentMap/> ? 308
 </qualifier> 309
</intentMap> 310
 311

When a policySet element contains a set of intentMap elements, the value of the @provides attribute 312
of each intentMap corresponds to an unqualified intent that is listed within the @provides attribute 313
value of the parent policySet element. 314

If a policySet specifies a qualifiable intent in the @provides attribute, then it MUST include an 315
intentMap element that specifies all possible qualifiers for that intent. If a qualified intent can be 316
further qualified, then the qualifier element must also contain an intentMap. 317

For each intent (qualified or unqualified) listed as a member of the @provides attribute list of a 318
policySet element, there may be at most one corresponding intentMap element that declares the 319
unqualified form of that intent in its @provides attribute. In other words, each intentMap within a 320
given policySet must uniquely provide for a specific intent. 321

The @provides attribute value of each intentMap that is an immediate child of a policySet must be 322
included in the @provides attribute of the parent policySet. 323

An intentMap element must contain qualifier element children. Each qualifier element corresponds to 324
a qualified intent where the unqualified form of that intent is the value of the @provides attribute 325
value of the parent intentMap. The qualified intent is either included explicitly in the value of the 326
enclosing policySet’s @provides attribute or implicitly by that @provides attribute including the 327
unqualified form of the intent. 328

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 10

A qualifier element designates a set of concrete policy attachments that correspond to a qualified 329
intent. The concrete policy attachments may be specified using wsp:PolicyAttachment element 330
children or using extensibility elements specific to an environment. 331

The default attribute of an intentMap must correspond to a qualified intent that is named on one of 332
the child qualifier elements. This is used when the unqualified form of the intent has been specified 333
as a requirement. The relationship between intents and policySets, and their use within SCDL is 334
explained in more detail in section 1.5. 335

As an example, the policySet element below declares that it provides confidentiality using the 336
@provides attribute. The alternatives (transport and message) it contains each specify the policy 337
and policy subject they provide. The default is “transport”. 338

<policySet name="SecureMessagingPolicies" 339
 provides="confidentiality" 340
 appliesTo="binding.ws" 341
 xmlns="http://www.osoa.org/xmlns/sca/1.0" 342
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"> 343
 <intentMap provides="confidentiality" 344
 default="transport"> 345
 <qualifier name="transport"> 346
 <wsp:PolicyAttachment> 347
 <!-- policy expression and policy subject for 348

"transport" alternative --> 349
 … 350
 </wsp:PolicyAttachment> 351
 <wsp:PolicyAttachment> 352
 ... 353
 </wsp:PolicyAttachment> 354
 </qualifier> 355
 <qualifier name="message"> 356
 <wsp:PolicyAttachment> 357
 <!-- policy expression and policy subject for 358

"message" alternative” --> 359
 ... 360
 </wsp:PolicyAttachment> 361
 </qualifier> 362
 </intentMap> 363
</policySet> 364

PolicySets can embed policies that are defined in any policy language. Although WS-Policy is the 365
most common language for expressing interaction policies, it is possible to use other policy 366
languages. The following is an example of a policySet that embeds a policy defined in a proprietary 367
language. This policy provides “authentication” for binding.ws. 368

<policySet name="AuthenticationPolicy" 369
 provides="authentication" 370
 appliesTo="binding.ws" 371
 xmlns="http://www.osoa.org/xmlns/sca/1.0"> 372
 373
 <e:policyConfiguration xmlns:e=”http://example.com”> 374
 <e:authentication type = “X509”/> 375
 <e:trustedCAStore type=”JKS”/> 376
 <e:keyStoreFile>Foo.jks</e:keyStoreFile> 377

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 11

 <e:keyStorePassword>123</e:keyStorePassword> 378
 </e:authentication> 379
 </e:policyConfiguration> 380
</policySet> 381

The following example illustrates an intent map that defines policies for an intent with more than 382
one level of qualification. 383

<policySet name=”SecurityPolicy” provides=”confidentiality”> 384

 <intentMap provides=”confidentiality” default=”message”> 385

 <qualifier name=”message”> 386
 <intentMap provides=”message” default=”whole”> 387
 <qualifier name=”body”> 388
 --- policy attachment for body encryption 389
 </qualifier> 390
 <qualifier name=”whole”> 391
 --- policy attachment for whole message encryption 392
 </qualifier> 393
 </intentMap> 394
 </qualifier> 395
 <qualifier name=”transport”> 396
 --- policy attachment for transport encryption 397
 </qualifier> 398
 </intentMap> 399
</policySet> 400
 401

1.3.3.2 Direct Inclusion of Policies within PolicySets 402

In cases where there is no need for defaults or overriding for an intent included in the @provides of 403
a policySet, the policySet element may contain policies or policy attachment elements directly 404
without the use of intentMaps or policy set references. There are two ways of including policies 405
directly within a policySet. Either the policySet contains one or more wsp:policyAttachment elements 406
directly as children or it contains extension elements (using xs:any) that contain concrete policies. 407

When a policySet element directly contains wsp:policyAttachment children or policies using 408
extension elements, it is assumed that the set of policies specified as children satisfy the intents 409
expressed using the @provides attribute value of the policySet element. The intent names in the 410
@provides attribute of the policySet may include names of profile intents. 411

1.3.3.3 Policy Set References 412

A policySet may refer to other policySets by using sca:PolicySetReference element. This provides a 413
recursive inclusion capability for intentMaps, policy attachments or other specific mappings from 414
different domains. 415

When a policySet element contains policySetReference element children, the @name attribute of a 416
policySetReference element designates a policySet defined with the same value for its @name 417
attribute. Therefore, the @name attribute must be a QName. 418

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 12

The @appliesTo attribute of a referenced policySet must be compatible with that of the policySet 419
referring to it. Compatibility, in the simplest case, is string equivalence of the binding names. 420

The @provides attribute of a referenced policySet must include intent values that are compatible 421
with one of the values of the @provides attribute of the referencing policySet. A compatible intent 422
either is a value in the referencing policySet's @provides attribute values or is a qualified value of 423
one of the intents of the referencing policySet's @provides attribute value. 424

The usage of a policySetReference element indicates a copy of the element content children of the 425
policySet that is being referred is included within the referring policySet. If the result of inclusion 426
results in a reference to another policySet, the inclusion step is repeated until the contents of a 427
policySet does not contain any references to other policySets. 428

Note that, since the attributes of a referenced policySet are effectively removed/ignored by this 429
process, it is the responsibility of the author of the referring policySet to include any necessary 430
intents in the @provides attribute if the policySet is to correctly advertise its aggregate capabilities. 431

The default values when using this aggregate policySet come from the defaults in the included 432
policySets. A single intent (or all qualified intents that comprise an intent) in a referencing policySet 433
must only be included once by using references to other policySets. 434

Here is an example to illustrate the inclusion of two other policySets in a policySet element: 435

<policySet name="BasicAuthMsgProtSecurity" 436
 provides="authentication confidentiality" 437
 appliesTo="binding.ws" 438
 xmlns="http://www.osoa.org/xmlns/sca/1.0"> 439
 <policySetReference name="acme:AuthenticationPolicies"/> 440
 <policySetReference name="acme:ConfidentialityPolicies"/> 441
</policySet> 442

The above policySet refers to policySets for authentication and confidentiality and, by reference, 443
provides policies and policy subject alternatives in these domains. 444

If the policySets referred to have the following content: 445

<policySet name="AuthenticationPolicies" 446
 provides="authentication" 447
 appliesTo="binding.ws" 448
 xmlns="http://www.osoa.org/xmlns/sca/1.0"> 449
 <wsp:PolicyAttachment> 450

<!-- policy expression and policy subject for "basic 451
authentication" --> 452

 … 453
 </wsp:PolicyAttachment> 454
</policySet> 455
 456
<policySet name="acme:ConfidentialityPolicies" 457
 provides="confidentiality" 458
 bindings="binding.ws" 459
 xmlns="http://www.osoa.org/xmlns/sca/1.0"> 460
 <intentMap provides="confidentiality" 461
 default="transport"> 462

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 13

 <qualifier name="transport"> 463
 <wsp:PolicyAttachment> 464

<!-- policy expression and policy subject for "transport" 465
alternative --> 466

 … 467
 </wsp:PolicyAttachment> 468
 <wsp:PolicyAttachment> 469
 ... 470
 </wsp:PolicyAttachment> 471
 </qualifier> 472
 <qualifier name="message"> 473
 <wsp:PolicyAttachment> 474

<!-- policy expression and policy subject for "message" 475
alternative” --> 476

 ... 477
 </wsp:PolicyAttachment> 478
 </qualifier> 479
 </intentMap> 480
</policySet> 481

The result of the inclusion of policySets via policySetReferences would be semantically equivalent to 482
the following: 483

<policySet name="BasicAuthMsgProtSecurity" 484
 provides="authentication confidentiality" 485
 appliesTo="binding.ws" 486
 xmlns="http://www.osoa.org/xmlns/sca/1.0"> 487
 <wsp:PolicyAttachment> 488

<!-- policy expression and policy subject for "basic authentication" --> 489
 … 490
 </wsp:PolicyAttachment> 491
 492
 <intentMap provides="confidentiality" 493
 default="transport"> 494
 <qualifier name="transport"> 495
 <wsp:PolicyAttachment> 496

<!-- policy expression and policy subject for "transport" 497
alternative --> 498

 … 499
 </wsp:PolicyAttachment> 500
 <wsp:PolicyAttachment> 501
 ... 502
 </wsp:PolicyAttachment> 503
 </qualifier> 504
 <qualifier name="message"> 505
 <wsp:PolicyAttachment> 506

<!-- policy expression and policy subject for "message" 507
alternative --> 508

 ... 509
 </wsp:PolicyAttachment> 510
 </qualifier> 511
 </intentMap> 512
</policySet> 513

 514

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 14

1.4 Attaching Intents and PolicySets to SCA Constructs 515

This section describes how intents and policySets are associated with SCA constructs. It describes 516
the various attachment points and semantics for intents and policySets and their relationship to 517
other SCA elements and how intents relate to policySets in these contexts. 518

1.4.1 Attachment Rules 519

Intents can be attached to any SCA element used in the definition of components and composites 520
since an intent specifies an abstract requirement. The attachment is specified by using the optional 521
@requires attribute. This attribute takes as its value a list of intent names. 522

For example, 523
 524
<service> or <reference>… 525
 <binding.binding-type requires="listOfQNames" 526
 </binding.binding-type>… 527
</service> or </reference> 528

Similarly, one or more policySets can be attached to any SCA element used in the definition of 529
components and composites. The attachment is specified by using the optional @policySets 530
attribute. This attribute takes as its value a list of policySet names. 531

For example, 532
 533
<service> or <reference>… 534
 <binding.binding-type policySets="listOfQNames" 535
 </binding.binding-type>… 536
</service> or </reference> 537

The SCA Policy framework enables two distinct cases for utilizing intents and PolicySets: 538

• It is possible to specify QoS requirements by specifying abstract intents utilizing the 539
@requires element on an element at the time of development. In this case, it is implied that 540
the concrete bindings and policies that satisfy the abstract intents will not be assigned at 541
development time but the intents will be used to select the concrete Bindings and 542
Policies at deployment time. Concrete policies are encapsulated within policySets that will be 543
available in a deployment environment. The intents associated with a SCA element is the 544
union of intents specified for it and its parent elements subject to the detailed rules below. 545

• It is also possible to specify QoS requirements for an element by using both intents and 546
concrete policies contained in policySets at development time. In this case, it is possible to 547
configure the policySets, by overriding the default settings in the specified 548
policySets using intents. The policySets associated with a SCA element is the union of 549
policySets specified for it and its parent elements subject to the detailed rules below. 550

When computing the policySets that apply to a particular element, the @appliesTo attribute 551
of each relevant policySet is checked against the element. If the policySet is attached 552
directly to the element and does not apply to that element an error is raised. If a policySet 553
that is attached to an ancestor element does not apply to the element in question, it is simply 554
discarded. 555

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 15

These two different approaches of specifying policies will be illustrated in detail below. We also 556
discuss how intents are used to guide the selection and application of specific policySets. 557

1.4.2 Usage of @requires attribute for specifying intents 558

As indicated, a list of intents can be specified for any SCA element by using the optional @requires 559
attribute. 560

Stating intents with the @requires attribute of an element means that those intents are additionally 561
required by every relevant element descendent. For example, specifying 562
requires=”confidentiality” on a <composite> element is the equivalent to adding the same 563
intent to the @requires list of every service and reference that is contained within that composite, 564
including the services and references inside components. Therefore, the computed intents that 565
apply to a specific element is the union of all intents that are present in the @requires attribute 566
values of its ancestors that apply to the specific type of element. This is equivalent to listing an 567
intent in the @requires list of all of descendent elements that match one of the xs:QName values of 568
the @constrains attribute of an intent, taking into account the presence of substitution groups. 569

When computing the intents that apply to a particular element, the @constrains attribute of each 570
relevant intent is checked against the element. If the intent in question does not apply to that 571
element it is simply discarded. 572

When intents are specified with @requires attribute values of an element during development and no 573
policySets are attached to this element, the computed intents for the element are used to select 574
appropriate policySets during deployment. The intents specified for an element are also used to 575
determine a specific mapping/choice other than the default, should the selected policySet contain 576
intentMaps. The developer in this case is not choosing policySets that apply as they will be 577
determined, if possible, during a later deployment step. 578

Both qualified intents and their respective qualifiable intents, and profile intents, can be specified as 579
values of a @requires attribute. In considering the set of intents that are computed for a specific 580
element, however, the following rules must be observed. 581

• When the computed values of a @requires attribute includes both the qualified and 582
unqualified form of a qualifiable intent, the unqualified form is ignored. For example, assume 583
that the confidentiality intent uses confidentiality.transport as its default when specified 584
as part of a PolicySet. Consider the following composite: 585

<composite requires="confidentiality"> 586
 <service name="foo"> 587
 <reference name="bar" 588
 requires="confidentiality.message"/> 589
</composite> 590

In this case, the composite has declared that all of its services and references must guarantee 591
confidentiality in their communication, but the “bar” reference would further qualify that requirement 592
to specifically require message-level security. When the intent is matched with the appropriate 593
policySet (by the assembler or deployer) to generate concrete policies that satisfies the intents, the 594
“foo” service element will use the default qualifier specified by the PolicySet that is used at 595
deployment time while the “bar” reference will use the confidentiality.message intent. 596

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 16

During policySet selection, it is only possible to override a qualifiable intent that doesn’t specify a 597
qualifier. Thus, multiple qualifiers MUST NOT be specified for the same qualifiable intent as part of a 598
computed intent set. 599

Consider this variation where a qualified intent is specified at the composite level: 600

<composite requires="confidentiality.transport"> 601
 <service name="foo" /> 602
 <reference name="bar" 603
 requires="confidentiality.message"/> 604
</composite> 605

In this case, both the confidentiality.transport and the confidentiality.message intent are 606
required for the reference ‘bar’. If there are no bindings that support this combination, an error will 607
be generated. However, since in some cases multiple qualifiers for the same intent may be valid are 608
there may be bindings that support such combinations, the SCA specification allows this. 609

• If a component type includes a list of required intents on a service or reference, it is not 610
possible for a component that uses that component type to remove any of those required 611
intents. However, if any of the intents are qualifiable intents, the component MAY specify a 612
qualifier for that intent. 613

It is also possible for a qualified intent to be further qualified. In our example, the 614
confidentiality.message intent may be further qualified to indicate whether just the body of a 615
message is protected, or the whole message (including headers) is protected. So, the second-level 616
qualifiers might be “body” and “whole”. The default qualifier might be “whole”. If the “bar” 617
reference from the example above wanted only body confidentiality, it would state: 618

<reference name="bar" 619
 requires="acme:confidentiality.message.body"/> 620

The definition of the second level of qualification for an intent follows the same rules. As with other 621
qualified intents, the name of the intent is constructed using the name of the qualifiable intent, the 622
delimiter “.”, and the name of the qualifier. 623

1.4.3 Usage of @requires and @policySet attributes together 624

As indicated above, it is possible to attach both intents and policySets to an SCA element during 625
development. The most common use cases for attaching both intents and concrete policySets to an 626
element are with binding and reference elements. 627

When the @requires attribute and the @policySets attributes are used together during development, 628
it indicates the intention of the developer to configure the element, such as a binding, by the 629
application of specific policySet(s) that are in scope for this element. 630

Developers using @requires and @policySet attributes in conjunction with each other must be aware 631
of the implications of how the policySets are selected and how the intents are utilized to select 632
specific intentMaps, override defaults, etc. The details are provided in the Section Guided Selection 633
of PolicySets using Intents. The same algorithm applies whether the intents guide the selection of 634
policySets during deployment or whether a developer uses intents to choose the best alternative in a 635
set of policySets that may apply by configuring policySets. 636

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 17

1.4.4 Operation-Level Intents and PolicySets on Services & References 637

It is possible to specify intents and policySets for a single service or reference operation in a way 638
that applies to all the bindings of a service or reference. In this case, the syntax is to specify the 639
operation directly under the <sca:service> or <sca:reference> element. The following example 640
illustrates the placement of the <sca:operation> element: 641

<service> or <reference> 642
 <operation name = "xs:string" 643
 policySet="xs:QName"? 644
 requires="="listOfQNames"? /> 645
</service> or </reference> 646

 647

1.4.5 Operation-Level Intents and PolicySets on Bindings 648

The above mechanism for specifying operation specific required intents and policySets may also be 649
applied to bindings. In this case, the syntax would be: 650

<service> or <reference> 651
<binding.binding-type 652
 requires="list of intent QNames" policySets="listOfQNames"> 653

 <operation name = "xs:string" 654
 policySets="xs:QName" ? 655
 requires="listOfQNames"? />* 656
 </binding.binding-type> 657
</service> or </reference> 658

This makes it possible to specify required intents that are specific to one operation for a single 659
binding. Similar to operations on implementations, the intents required for the operation are added 660
to the effective list of required intents on the binding, and operation-level policySets override 661
corresponding policySets specified for the binding (where a “corresponding” policySet @provides at 662
least one common intent). 663

1.4.6 Intents and PolicySets on Implementations and Component Types 664

It is possible to specify required intents and policySets for a component’s implementation, which get 665
exposed to SCA through the corresponding component type. How the intents or policies are 666
specified within an implementation depends on the implementation technology. For example, Java 667
can use the @requires annotation to specify intents. 668

The required intents and policySets specified within an implementation can be found on the 669
<sca:implementation.*> and the various <sca:service> and <sca:reference> elements of the 670
component type, for example: 671

<omponentType> 672
 <implementation.* requires="listOfQNames" 673
 policySets="="listOfQNames"> 674
 … 675
 </implementation> 676
 <service name="myService" requires="listOfQNames" 677

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 18

 policySets="listOfQNames"> 678
 … 679
 </service> 680
 <reference name="myReference" requires="listOfQNames" 681
 policySets="="listOfQNames"> 682
 … 683
 </reference> 684
 … 685
</componentType> 686

When applying policies, the intents required by the component type are added to the intents 687
required by the using component. For the explicitly listed policySets, the list in the component may 688
override policySets from the component type. More precisely, a policySet on the componentType is 689
considered to be overridden, and is not used, if it has a @provides list that includes an intent that is 690
also listed in any component policySet @provides list. 691

1.4.7 BindingTypes and Related Intents 692

SCA Binding types implement particular communication mechanisms for connecting components 693
together. See detailed discussion in the SCA Assembly specification [1]. Some binding types may 694
realize intents inherently by virtue of the kind of protocol technology they implement (e.g. an SSL 695
binding would natively support confidentiality). For these kinds of binding types, it may be the case 696
that using that binding type, without any additional configuration, will provide a concrete realization 697
of a required intent. In addition, binding instances which are created by configuring a bindingType 698
may be able to provide some intents by virtue of its configuration. It is important to know, when 699
selecting a binding to satisfy a set of intents, just what the binding types themselves can provide 700
and what they can be configured to provide. 701

The bindingType element is used to declare a class of binding available in a SCA Domain. It declares 702
the QName of the binding type, and the set of intents that are natively provided using the optional 703
@alwaysProvides attribute. The intents listed by this attribute are always concretely realized by use 704
of the given binding type. The binding type also declares the intents that it may provide by using 705
the optional @mayProvide attribute. Intents listed as the value of this attribute can be provided by 706
a binding instance configured from this binding type. 707

The pseudo-schema for the bindingType element is as follows: 708

<bindingType type="NCName" 709
 alwaysProvides="listOfQNames"? 710
 mayProvide="listOfQNames"?/> 711

The kind of intents a given binding might be capable of providing, beyond these inherent intents, are 712
implied by the presence of policySets that declare the given binding in their @appliesTo attribute. An 713
exception is binding.sca which is configured entirely by the intents listed in its @mayProvide and 714
@alwaysProvides lists. There are no policySets with appliesTo="binding.sca". 715

For example, if the following policySet is available in a SCA Domain it says that the sca:binding.ssl 716
can provide “reliability” in addition to any other intents it may provide inherently. 717

<policySet name="ReliableSSL" provides="exactlyOnce" 718
 appliesTo="binding.ssl"> 719
 ... 720

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 19

</policySet> 721

 722

1.4.8 Treatment of Components with Internal Wiring 723

This section discusses the steps involved in the development and deployment of a component and its 724
relationship to selection of bindings and policies for wiring services and references. 725

The SCA developer starts by defining a component. Typically, this will contain services and 726
references. It may also have required intents defined at various locations within composite and 727
component types as well as policySets defined at various locations. 728

Both for ease of development as well as for deployment, the wiring constraints to relate services and 729
references need to be determined. This is accomplished by matching constraints of the services and 730
references to those of corresponding references and services in other components. 731

In this process, the required intents, the binding instances, and the policySets that may apply to 732
both sides of a wire play an important role. It must be possible to find binding instances on each 733
side of a wire that are compatible with one another. In addition, concrete policies must be 734
determined that satisfy the required intents for the service and the reference and are also 735
compatible with each other. For services and references that make use of bidirectional interfaces, 736
the same determination of matching bindings and policySets must also take place for the 737
callbackReference and callbackService. 738

Determining compatibility of wiring plays an important role prior to deployment as well as during the 739
deployment phases of a component. For example, during development, it helps a developer to 740
determine whether it is possible to wire services and references when the bindings and policySets 741
are available in the development environment. During deployment, the wiring constraints determine 742
whether wiring can be achievable. It does also aid in adding additional concrete policies or making 743
adjustments to concrete policies in order to deliver the constraints. Here are the concepts that are 744
needed in making wiring decisions: 745

• The set of required wiring intents that individually apply to each service or reference. 746

• When possible the intents that are required by the service, the reference and callback (if any) 747
at the other end of the wire. This set is called the required intent set and is computed and 748
MAY be used only when dealing with a wire connecting two components within the SCA 749
Domain. When external connections are involved, from clients or to services that are outside 750
the SCA domain, intents are only available for the end of the connection that is inside the 751
domain. See Section "Preparing Services and References for External Connection" for more 752
details. 753

• The binding instances that apply to each side of the wire. 754

• The policySets that apply to each service or reference. 755

There may be many binding instances specified for a reference/service. If there are no binding 756
instances specified on a service or a reference, then <sca:binding.sca> is assumed. 757

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 20

The set of provided intents for a binding instance is the union of the intents listed in the 758
“alwaysProvides” attribute and the “mayProvides” list of of its binding type (although the capabilities 759
represented by the “mayProvides” intents will only be present if the intent is in the list of required 760
intents for the binding instance). When an intent is directly provided by the binding type, there is no 761
need to use policy set that provides that intent. 762

The policySets that apply to a service or reference are determined by starting with the policySets 763
that are explicitly specified on that service or reference, adding in the policy sets for any ancestor 764
element, and then finding the smallest set of additional policySets that provide the required wiring 765
intents that have not already been satisfied inherently by the binding instances. (Please refer to the 766
Guided Selection of PolicySets using Intents for specifics of how the final set of policySets are 767
determined. Selection of the policySets utilize the required wiring intents that are computed above.) 768

When bidirectional interfaces are in use, the same selection of binding instances and policySets that 769
provide the required intent are also performed for the callback bindings. Determining Wire Validity 770
and Configuration 771

The above approach determines the policySets that should be used in conjunction with the binding 772
instances listed for services and references. For services and references that are resolved using SCA 773
wires, the bindings and policySets chosen on each side of the wire may or may not be compatible. 774
The following approach is used to determine whether they are compatible and the wire is valid. If 775
the wire uses a bidirectional interface, then the following technique must find that valid configured 776
bindings can be found for both directions of the bidirectional interface. 777

Note that there may be many binding instances present at each side of the wire. The wiring 778
compatibility algorithm below determines the compatibility of a wire by a pairwise choice of a 779
binding instance and the corresponding policySets on each side of the wire. 780

A potential binding pair is a pair of binding instances, one on each end of the wire, that have the 781
same binding type. Each binding instance in the pair has a set of policy sets that were determined 782
by the algorithm of the last section. If any potential binding pair has policySets on each end that 783
are incompatible, then that pair of binding instances is removed as an option. The compatibility of 784
policySets is determined by the policy language contained in the policySets. However, there are 785
some special cases worth mentioning: 786

• If both sides of the wire use the identical policySet (by referring to the same policySet by its 787
QName in both sides of the wire), then they are compatible. 788

• If the policySets contain WS-Policy attachments, then the following steps are used to 789
determine their compatibility: 790

1) The sca:policySet 791

2) Reference elements within the policySet elements are removed recursively by 792
replacing each reference with an equivalent policy expression encapsulated with 793
sca:policySet element. 794

3) The policy expressions within each policy set are normalized using WS-Policy 795
normalization rules to obtain a set of alternatives on each side of the wire. 796

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 21

4) The resulting policy alternatives from each side of the wire are pairwise tested for 797
compatibility using the WS-Policy intersection algorithm. WS-Policy’s strict 798
compatibility should be used by default. 799

5) If the result of the WS-Policy intersection algorithm is non-empty, then the policy sets 800
are considered compatible. 801

For other policy languages, the policy language defines the comparison semantics. Where such 802
policy languages are standardized by the SCA specifications, the SCA specifications will reference the 803
definition of the comparison semantics or, if no such definition exists, the SCA specifications will 804
provide a definition. 805

 806

1.4.9 Preparing Services and References for External Connection 807

Services and references are sometimes not intended for SCA wiring, but for communication with 808
software that is outside of the SCA domain. References may contain bindings that specify the 809
endpoint address of a service that exists outside of the current SCA domain. Composite services 810
that are deployed to the virtual domain composite specify bindings that can be exposed to clients 811
that are outside of the SCA domain. When web service bindings are used, these services also may 812
generate WSDL with attached policies that can be accessed by external clients (as described in the 813
SCA Web Service Binding specification) 814

Component services and references that have been promoted to composite services and references 815
may connect to references and services in another SCA Domain or a non-SCA Domain. This section 816
discusses the steps involved in the preparing such a service or reference for external connection. 817

Essentially, this involves generating a WSDL interface for the service/reference and attaching to it 818
policies that reflect abstract QoS requirements specified using intents and specific requirements 819
using attached policySets. This section will discuss only the generation of policies. Generation of 820
the WSDL interface is discussed in specifications for the various bindings, for example, binding.ws. 821

Matching service/reference policies across the SCA Domain boundary will use WS-Policy compatibility 822
(strict WS-Policy intersection) if the policies are expressed in WS-Policy syntax. For other policy 823
languages, the policy language defines the comparison semantics. Where such policy languages are 824
standardized by the SCA specifications, the SCA specifications will reference the definition of the 825
comparison semantics or, if no such definition exists, the SCA specifications will provide a definition. 826

For external services and references that make use of bidirectional interfaces, the same 827
determination of matching policies must also take place for the callback. 828

The policies that apply to the service/reference are now computed as discussed in Guided Selection 829
of PolicySets using Intents. 830

1.4.10 Guided Selection of PolicySets using Intents 831

This section describes the selection of concrete policies that satisfy a set of required intents 832
expressed for an element. The purpose of the algorithm is to construct the set of concrete policies 833
that apply to an element taking into account the explicitly declared policySets that may be attached 834

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 22

to an element as well as the policySets available in the SCA Domain that are selected to match a 835
required intent. 836

Note: In the following algorithm, the following rule is observed whenever an intent set is 837
computed. 838

When a profile intent is encountered in either a @requires or @provides attribute, it is 839
assumed that the profile intent is immediately replaced by the intents that it is composed by, 840
namely by all the intents that appear in the profile intent’s @requires attribute. This rule is 841
recursively applied until profile intents do not appear in an intent set. [This is stated 842
generally, in order to not have to restate this processing step at multiple places in the 843
algorithm]. 844

Algorithm for Matching Intents and PolicySets: 845

For each element in the composite definition document that is a subtype of the abstract XSD 846
elements <sca:binding> or <sca:implementation>, including any <sca:binding.sca> elements that 847
are implied by the lack of other service or reference bindings: 848

 A. Calculate the required intent set that applies to the target element as follows: 849

1. Start with the list of intents specified in the element's @requires attribute. 850
2. Add intents found in the @requires attribute of each ancestor element. 851
3. If the element is a binding instance and its parent element (service, reference or callback) is 852

wired, the required intents of the other side of the wire may be added to the intent set when 853
they are available. This may simplify, or eliminate, the policy matching step later described in 854
step C. 855

4. Remove any intents that do not include the target element's type in their @constrains 856
attribute. 857

5. If the set of intents includes both a qualified version of an intent and an unqualified version of 858
the same intent, remove the unqualified version from the set. 859

 860
* The required intent set now contains all intents that must be provided for the target element. 861
 862
B. Remove all directly supported intents from the required intent set. Directly supported intents 863
are: 864

• For a binding instance, the intents listed in the @alwaysProvides attribute of the binding type 865
definition as well as the intents listed in the binding type’s @mayProvides attribute that are 866
selected when the binding instance is configured. 867

• For a implementation instance, the intents listed in the @alwaysProvides attribute of the 868
implementation type definition as well as the intents listed in the implementation type’s 869
@mayProvides attribute that are selected when the implementation instance is configured. 870

. 871
 872

 873
* The remaining required intents must be provided by policySets. 874

 875
C. Calculate the list of explicitly specified policySets that apply to the target element. 876
 877
In this calculation, a policySet applies to a target element if the XPath expression contained in the 878
policySet’s @appliesTo attribute is evaluated against the parent of the target element and the result 879
of the XPath expression includes the target element. For example, 880

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 23

@appliesTo=”binding.ws[@impl=’axis’]” will match any binding.ws element that has an @impl 881
attribute value of ‘axis’. 882
 883
 The list of explicitly specified policySets is calculated as follows: 884

1. Start with the list of policySets specified in the element's @policySets attribute. 885
2. If any of these explicitly listed policySets does not apply to the target element (binding or 886

implementation) then the composite is invalid. The point of this rule is that it must have 887
been a mistake to have explicitly listed a policySet on a binding or implementation element 888
that cannot apply to that element. 889

3. Include the values of @policySets attributes from ancestor elements. 890
4. Remove any policySet where the XPath expression in that policySet’s @appliesTo attribute 891

does not match the target element. It is not an error for an element to inherit a policySet 892
from an ancestor element which doesn’t apply 893

D. Remove all required intents that are provided by the specified policySets (i.e. all intents from 894
each policySets’ respective @provides attribute.) 895

* The remaining required intents, if any, are provided by finding additional matching policySets 896
within the SCA Domain. 897

E. Choose the smallest collection of additional policySets that match all remaining required intents. 898

A policySet matches a required intent if any of the following are true: 899

1. The required intent matches a provides intent in a policySet exactly. 900

2. The provides intent is a parent (e.g. prefix) of the required intent (in this case the policySet 901
must have an intentMap entry for the requested qualifier) 902

3. The provides intent is more qualified than the required intent 903

* All intents should now be satisfied. 904

F. If no collection of policySets covers all required intents, the configuration is not valid. 905

G. If there is not one unique smallest collection of policySets that satisfy all required intents, then 906
the composite definition document is not valid. The composite definition must be changed so that 907
either it has enough explicit policySets declared that the ambiguity is removed or additional intents 908
are added to remove the ambiguity. 909

H. If a required intent is unqualified and matches a policySet that is also unqualified, then the 910
intentMap entry for the qualifier that is marked with default=”true” should be used. 911

When the configuration is not valid, it means that the required intents are not being correctly 912
satisfied. However, an SCA Domain may allow a deployer to force deployment even in the presence 913
of such errors. The behaviors and options enforced by a deployer is not specified. 914

 915

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 24

1.5 Implementation Policies 916

The basic model for Implementation Policies is very similar to the model for interaction policies 917
described above. Abstract QoS requirements, in the form of intents, may be associated with SCA 918
component implementations to indicate implementation policy requirements. These abstract 919
capabilities are mapped to concrete policies via policySets at deployment time. Alternatively, 920
policies can be associated directly with component implementations. 921

The following example shows how intents can be associated with an implementation: 922

< component name="xs:NCName" … > 923
 <implementation.* … 924
 requires="listOfQNames"> 925
 … 926
 </implementation> 927
 … 928
</component> 929

If, for example, one of the intent names in the value of the @requires attribute is ‘logging’, this 930
indicates that all messages to and from the component must be logged. The technology used to 931
implement the logging is unspecified. Specific technology is selected when the intent is mapped to 932
a policySet (unless the implementation type has native support for the intent, as described in the 933
next section). A list of required implementation intents may also be specified by any ancestor 934
element of the <sca:implementation> element. The effective list of required implementation intents 935
is the union of intents specified on the implementation element and all its ancestors. 936

In addition, one or more policySets may be specified directly by associating them with the 937
implementation of a component. 938

<component name="xs:NCName" … > 939
 <implementation.* 940
 policySets="="listOfQNames"> 941
 … 942
 </implementation> 943
 … 944
</component> 945

If any of the explicitly listed policy sets includes an intent map, then the intent map entry used will 946
be the one for the appropriate intent qualifier(s) listed in the effective list of required intents. If no 947
qualifier is specified for an intent map’s qualifiable intent, then the default qualifier is used. 948

The above example shows how intents and policySets may be specified on a component. It is also 949
possible to specify required intents and policySets within the implementation. How this is done is 950
defined by the implementation type. 951

The required intents and policy sets are specified on the <sca:implementation.*> element within the 952
component type. This is important because intent and policy set definitions need to be able to 953
specify that they constrain an appropriate implementation type. 954

<componentType> 955
 <implementation.* requires="listOfQNames" 956
 policySets="listOfQNames"> 957

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 25

 … 958
 </implementation> 959
 … 960
</componentType> 961

When applying policies, the intents required by the implementation are added to the intents required 962
by the using component. For the explicitly listed policySets, the list in the component may override 963
policySets from the component type. More precisely, a policySet on the componentType is 964
considered to be overridden, and is not used, if it has a @provides list that includes an intent that is 965
also listed in any component policySet @provides list. 966

1.5.1 Natively Supported Intents 967

Each implementation type (e.g. <sca.implementation.java> or <sca.implementation.bpel>)has an 968
implementation type definition within the SCA Domain The form of the implementation type 969
definition is as follows: 970

<implementationType type="NCName" 971
 alwaysProvides="listOfQNames"? 972
mayProvide="listOfQNames"?/> 973

The @type attribute should specify the QName of an XSD global element definition that will be used 974
for implementation elements with of that type (e.g. sca:implementation.java). There are two lists of 975
intents. The intents in the @mayProvide list are provided only for components that require them 976
(they are present in the effective list of required intents). The intents in the @alwaysProvides list 977
are provided irrespective of the list of required intents. 978

1.5.2 Operation-Level Intents and PolicySets on Implementations 979

It is also possible to declare implementation policies that apply only to specific operations of a 980
service, rather than all of them, by associating intents and policySets with individual operations 981
contained within implementations. The syntax is analogous to that proposed above. See the 982
pseudo-schema below: 983

<component name="xs:NCName"> 984
 <implementation.* policySets="listOfQNames" 985
 requires="list of intent xs:QNames"> 986
 … 987
 <operation name="xs:string" service="xs:string"? 988
 policySets="listOfQNames"? 989
 requires="listOfQNames"?/>* 990
 … 991
 </implementation> 992
 … 993
</component> 994

As in the pseudo-schema displayed earlier, the intents associated with the operation appear as the 995
value of the optional @requires attribute. PolicySets may also be explicitly associated with the 996
operation by using the optional @policySets attribute. If a policySet that is listed in @policySets 997
provides a qualifiable intent that also is listed in the effective required intent list, then the qualifier is 998
used to override the default qualifier in the policySet. 999

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 26

Operations are identified by names which are xs:string values. The operation names will be names 1000
defined by the interface definition language. For example, for Java interfaces they will be Java 1001
names. For WSDL, they will be WSDL1.1 [See WSDL 1.1 Identifiers] or WSDL 2.0 [See WSDL 2.0 1002
Component Identifiers] names. If more than one service implemented by this implementation has an 1003
operation with the same name, then the @service attribute is required in order to disambiguate 1004
them. However, if more than one operation within a single service has the same name (i.e. it is 1005
overloaded) then the values of the attributes @requires and @policySet are associated with all 1006
operations with that name. SCA does not currently provide a means for disambiguating overloaded 1007
operations. 1008

The algorithm for mapping of intents to policySets is described in Section Guided Selection of 1009
PolicySets using Intents. 1010

1.5.3 Writing PolicySets for Implementation Policies 1011

The @appliesTo attribute for a policySet takes an XPath expression that is applied to a binding or an 1012
implementation element. For implementation policies, in most cases, all that is needed is the 1013
QName of the implementation type. Implementation policies may be expressed using any policy 1014
language (which is to say, any configuration language). For example, XACML or EJB-style 1015
annotations may be used to declare authorization policies. Other capabilities could be configured 1016
using completely proprietary configuration formats. For example, a policySet declared to turn on 1017
trace-level logging for some fictional BPEL executions engine would be declared as follows: 1018

<policySet name=”loggingPolicy” provides="acme:logging.trace" 1019
 appliesTo="sca:implementation.bpel" …> 1020
 <acme:processLogging level="3"/> 1021
</policySet> 1022

PolicySets or intent map entries may include PolicyAttachment elements. A PolicyAttachment 1023
element has a child-element called AppliesTo followed by a policy expression. The AppliesTo 1024
indicates the subject that the policy applies to. In the SCA case, the policy subject is indicated by 1025
where the policySet is attached and so, this will generally be omitted. (This AppliesTo element 1026
should not be confused with the @appliesTo attribute for a policySet. They have quite different 1027
meanings.) 1028

Following the AppliesTo is a policy expression. In WS-Policy[6] this can be a WS-Policy expression 1029
or a WS-PolicyReference, For SCA, we need to generalize this to contain policy expressions in other 1030
policy languages. 1031

1.5.3.1. Non WS-Policy Examples 1032
 1033
Authorization policies expressed in XACML could be used in the framework in two ways: 1034
1. Embed XACML expressions directly in the PolicyAttachment element using the extensibility 1035
elements discussed above, or 1036
2. Define WS-Policy assertions to wrap XACML expressions. 1037

 1038
For EJB-style authorization policy, the same approach could be used: 1039
1. Embed EJB-annotations in the PolicyAttachment element using the extensibility elements 1040
discussed above, or 1041
2. Use the WS-Policy assertions defined as wrappers for EJB annotations. 1042

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 27

 1043

1.6 Roles and Responsibilities 1044

There are 4 roles that are significant for the SCA Policy Framework. The following is a list of the roles 1045
and the artifacts that the role creates: 1046

• Policy Administrator – policySet definitions and intent definitions 1047

• Developer – Implementations and component types 1048

• Assembler - Composites 1049

• Deployer – Composites and the SCA Domain (including the logical Domain-level composite) 1050

1.6.1 Policy Administrator 1051

An intent represents a requirement that a developer or assembler can make, which ultimately must 1052
be satisfied at runtime. The full definition of the requirement is the informal text description in the 1053
intent definition. 1054

The policy administrator’s job is to both define the intents that are available and to define the 1055
policySets that represent the concrete realization of those informal descriptions for some set of 1056
binding type or implementation types. See the sections on intent and policySet definitions for the 1057
details of those definitions. 1058

1.6.2 Developer 1059

When it is possible for a component to be written without assuming a specific binding type for its 1060
services and references, then the developer uses intents to specify requirements in a binding 1061
neutral way. 1062

If the developer requires a specific binding type for a component, then the developer can specify 1063
bindings and policySets with the implementation of the component. Those bindings and policySets 1064
will be represented in the component type for the implementation (although that component type 1065
might be generated from the implementation). 1066

If any of the policySets used for the implementation include intentMaps, then the default choice for 1067
the intentMap can be overridden by an assembler or deployer by requiring a qualified intent that is 1068
present in the intentMap. 1069

1.6.3 Assembler 1070

An assembler creates composites. Because composites are implementations, an assembler is like a 1071
developer, except that the implementations created by an assembler are composites made up of 1072
other components wired together. So, like other developers, the assembler can specify required 1073
intents or bindings or policySets on any service or reference of the composite. 1074

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 28

However, in addition the definition of composite-level services and references, it is also possible for 1075
the assembler to use the policy framework to further configure components within the composite. 1076
The assembler may add additional requirements to any component’s services or references or to the 1077
component itself (for implementation policies). The assembler may also override the bindings or 1078
policySets used for the component. See the assembly specification’s description of overriding rules 1079
for details on overriding. 1080

As a shortcut, an assembler can also specify intents and policySets on any element in the composite 1081
definition, which has the same effect as specifying those intents and policySets on every applicable 1082
binding or implementation below that element (where applicability is determined by the @appliesTo 1083
attribute of the policySet definition or the @constrains attribute of the intent definition). 1084

1.6.4 Deployer 1085

A deployer deploys implementations (typically composites) into the SCA Domain. It is the 1086
deployers job to make the final decisions about all configurable aspects of an implementation that is 1087
to be deployed and to make sure that all required intents are satisfied. 1088

If the deployer determines that an implementation is correctly configured as it is, then the 1089
implementation may be deployed directly. However, more typically, the deployer will create a new 1090
composite, which contains a component for each implementation to be deployed along with any 1091
changes to the bindings or policySets that the deployer desires. 1092

When the deployer is determining whether the existing list of policySets is correct for a component, 1093
the deployer needs to consider both the explicitly listed policySets as well as the policySets that will 1094
be chosen according to the algorithm specified in Guided Selection of PolicySets using Intents. 1095

. 1096

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 29

 1097

1.7 Security Policy 1098

The SCA Security Model provides SCA developers the flexibility to specify the required level of 1099
security protection for their components to satisfy business requirements without the burden of 1100
understanding detailed security mechanisms. 1101

The SCA Policy framework distinguishes between two types of policies: interaction policy and 1102
implementation policy. Interaction policy governs the communications between clients and 1103
service providers and typically applies to Services and References. In the security space, interaction 1104
policy is concerned with client and service provider authentication and message protection 1105
requirements. Implementation policy governs security constraints on service implementations and 1106
typically applies to Components. In the security space, implementation policy concerns include 1107
access control, identity delegation, and other security quality of service characteristics that are 1108
pertinent to the service implementations. 1109

The SCA security interaction policy can be specified via intents or policySets. Intents represent 1110
security quality of service requirements at a high abstraction level, independent from security 1111
protocols, while policySets specify concrete policies at a detailed level which are typically security 1112
protocol specific. 1113

The SCA security policy can be specified either in the SCDL or annotatively in the implementation 1114
code. Language-specific annotations are described in the respective language Client and 1115
Implementation specifications. 1116

1.7.1 SCA Security Intents 1117

The SCA security specification defines the following intents to specify interaction policy: 1118
authentication, confidentiality, and integrity. 1119

authentication – the authentication intent is used to indicate that a client must authenticate itself 1120
in order to use an SCA service. Typically, the client security infrastructure is responsible for the 1121
server authentication in order to guard against a "man in the middle" attack. 1122

confidentiality – the confidentiality intent is used to indicate that the contents of a message are 1123
accessible only to those authorized to have access (typically the service client and the service 1124
provider). A common approach is to encrypt the message, although other methods are possible. 1125

integrity – the integrity intent is used to indicate that assurance is required that the contents of a 1126
message have not been tampered with and altered between sender and receiver. A common 1127
approach is to digitally sign the message, although other methods are possible. 1128

1.7.2 Interaction Security Policy 1129

Any one of the three security intents may be further qualified to specify more specific business 1130
requirements. Two qualifiers are defined by the SCA security specification: transport and message, 1131
which can be applied to any of the above three intent’s. 1132

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 30

1.7.2.1 Qualifiers 1133

transport – the transport qualifier specifies the qualified intent should be realized at the transport 1134
layer of the communication protocol. 1135

message – the message qualifier specifies that the qualified intent should be realized at the 1136
message level of the communication protocol. 1137

The following example snippet shows the usage of intents and qualified intents. 1138

<composite name="example" requires="confidentiality"> 1139
 <service name="foo"/> 1140
 … 1141
 <reference name="bar" requires="confidentiality.message"/> 1142
</composite> 1143

In this case, the composite declares that all of its services and references must guarantee 1144
confidentiality in their communication by setting requires="confidentiality". This applies to the "foo" 1145
service. However, the “bar” reference further qualifies that requirement to specifically require 1146
message-level security by setting requires="confidentiality.message". 1147

1.7.2.2 Operation Level Intents 1148

Intents may be specified at operation level. The operation element does not distinguish operations 1149
with different arguments. Operation level intents override the service level intents of the same 1150
type. For example an operation level “confidentiality.message” intent would override service level 1151
“confidentiality” intent, but would not override other types of intents at service level such as 1152
“integrity” and “authentication” intents. 1153

Use the following implementation as an example. 1154

public interface HelloService { 1155
 String hello(String message); 1156
} 1157
 1158
import org.osoa.sca.annotations.*; 1159
 1160
@Service(HelloServiceImpl.class) 1161
public class HelloServiceImpl implements HelloService { 1162
 public String hello(String message) { 1163
... 1164
} 1165

Consider the following composite document: 1166

<service name="HelloServiceImpl" 1167
 requires="authentication integrity.transport confidentiality.transport"> 1168
 <interface.wsdl interface="…#wsdl.interface(HelloService)"/> 1169
 <operation name="hello" 1170

 requires="authentication.message integrity.message"/> 1171
 <binding.ws/> 1172
</service> 1173

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 31

The effective QoS intent’s on the “hello” operation of the HelloService are “authentication.message”, 1174
“integrity.message”, and “confidentiality.transport”. 1175

1.7.2.3 References to Concrete Policies 1176

In addition to the SCA intent model’s late binding approach, developers can reference concrete 1177
policy explicitly by attaching policySets directly, as shown below 1178

<service name="foo"> 1179
 <interface.wsdl interface="..." /> 1180
 <binding.ws policySets="acme:CorporatePolicySet3"/> 1181
</service> 1182

It is possible to use the @requires attribute and the @policySets attributes together during 1183
development, it indicates the intention of the developer to configure the element, such as a binding, 1184
by the application of specific @policySets that are in scope for this element using the computed 1185
intents that apply to this element. The @requires attribute designates a configuration of concrete 1186
policies specified by the policySets overiding the defaults specified in the policySets. 1187

1.7.3 Implementation Security Policy 1188

SCA security model provides a policy reference mechanism which can specify security 1189
implementation policy files external to the SCA composite document. Security implementation policy 1190
of component implementation such as EJB can be defined in J2EE deployment descriptor ejb-jar.xml 1191
which can be referred to by the policy reference document. Additionally SCA security model defines 1192
a security implementation policy that may be used by POJO component implementation as well as 1193
other type of component implementations. 1194

1.7.3.1 Authorization and Security Identity Policy 1195

Two policy assertions are defined which apply to implementations – Authorization and Security 1196
Identity. Authorization controls who can access the protected SCA resources. A security role is an 1197
abstract concept that represents a set of access control constraints on SCA resources such as 1198
composites, components, and operations. The approach and scope of the mapping of role names to 1199
security principals is SCA runtime implementation dependent. Scope implies the set of artifacts 1200
contained by some higher-level artifact, so that a composite contains components, a component 1201
contains services and references, services and reference contain an interface, an interface contains 1202
operations. 1203

Security Identity declares the security identity under which an operation will be executed. Both are 1204
represented as policy assertions that would be used within policySets created for implementations 1205
(i.e. implementation policies). The following policy assertions are defined: 1206

<allow roles="listOfNCNames"> 1207

When the <allow> element is included in a policySet used on a component, then that component 1208
can only be accessed by principals whose role corresponds to one of the role names listed in the 1209
@roles attribute. How role names are mapped to security principals is implementation dependent 1210
(SCA does not define this). 1211

<permitAll/> 1212

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 32

<denyAll/> 1213

The <permitAll/> and </denyAll> policy assertions grant or deny access to all principals, 1214
respectively. 1215

<runAs role="xs:NCName"> 1216

The <runAs> policy assertion specifies the name of a security role. Any code so annotated will run 1217
with the permissions of that role. How runAs role names are mapped to security principals is 1218
implementation dependent. 1219

1.7.3.2 Implementation Policy Example 1220

The following is an example implementation, written in Java, The AccountServiceImpl implements 1221
the AccountService interface, which is defined via a Java interface: 1222

package services.account; 1223

@Remotable 1224

public interface AccountService{ 1225

 public AccountReport getAccountReport(String customerID); 1226

} 1227

The following is a composite that contains an AccountServiceComponent, which should be accessible 1228
by anyone with the “customer” role. 1229

<composite xmlns="http://www.osoa.org/xmlns/sca/1.0" 1230
 name="AccountService"> 1231
 <component name="AccountServiceComponent">* 1232
 <implementation.java class="services.account.AccountServiceImpl" 1233
 policySets="acme:allow_customers"/> 1234
 </component> 1235
</composite> 1236

The following is what the policySet definition looks like for this case. 1237

<policySet name="allow_customers"> 1238
 <allow roles="customers"> 1239
</policySet> 1240
 1241

1.7.3.3 SCA Component Container Requirements 1242

SCA component containers MUST support the SCA policy intent model including annotated intent and 1243
policySets reference. Additionally SCA component containers MUST satisfy the following security 1244
management requirements. 1245

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 33

1.7.3.4 Security Identity Propagation 1246

SCA container MUST establish security identity when authentication is required based on the security 1247
intents before executing the SCA component implementation. The security identity under which the 1248
operation is executed is determined by the run-as security policy. It is either the user identity who 1249
invokes the SCA operation or the identity that represents the run-as security role. When an SCA 1250
operation invokes other SCA services, SCA component container must propagate the security 1251
identity along with the SCA request. 1252

1.7.3.5 Security Identity Of Async Callback 1253

In SCA async programming model, the security identity that executes the callback operation by 1254
default should be the same as security identity under which the original operation was executed. 1255

1.7.3.6 Default Authorization Policy 1256

It may happen that some operations are not assigned any security roles and are not marked as 1257
DenyAll or PermitAll. In the SCA deployment process, those operations must be assigned security 1258
roles or marked as DenyAll or PermitAll. At runtime time if any operations are not associated with 1259
any explicit authorization policy, no access control will be enforced on those operations, i.e., 1260
PermitAll. 1261

1.7.3.7 Default RunAs Policy 1262

Operations will be executed under authentication user identity if no RunAs role policy is explicitly 1263
specified. 1264

 1265

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 34

 1266

1.8 Reliability Policy 1267

Failures can affect the communication between a service consumer and a service provider. 1268
Depending on the characteristics of the binding, these failures could cause messages to be 1269
redelivered, delivered in a different order than they were originally sent out or even worse, could 1270
cause messages to be lost. Some transports like JMS provide built-in reliability features such as at 1271
least once and exactly once message delivery. Other transports like HTTP need to have additional 1272
layers built on top of them to provide some of these features. 1273

The events that occur due to failures in communication may affect the outcome of the service 1274
invocation. For an implementation of a stock trade service, a message redelivery could result in a 1275
new trade. A client (i.e. consumer) of the same service could receive a fault message if trade orders 1276
are not delivered to the service implementation in the order they were sent out. In some cases, 1277
these failures could have dramatic consequences. 1278

An SCA developer can anticipate some types of failures and work around them in service 1279
implementations. For example, the implementation of a stock trade service could be designed to 1280
support duplicate message detection. An implementation of a purchase order service could have 1281
built in logic that orders the incoming messages. In these cases, service implementations don’t need 1282
the binding layers to provide these reliability features (e.g. duplicate message detection, message 1283
ordering). However, this comes at a cost: extra complexity is built in the service implementation. 1284
Along with business logic, the service implementation has additional logic that handles these 1285
failures. 1286

Although service implementations can work around some of these types of failures, it is worth noting 1287
that is not always possible. A message may be lost or expire even before it is delivered to the 1288
service implementation. 1289

Instead of handling some of these issues in the service implementation, a better way of doing it is to 1290
use a binding or a protocol that supports reliable messaging. This is better, not just because it 1291
simplifies application development, it may also lead to better throughput. For example, there is less 1292
need for application-level acknowledgement messages. A binding supports reliable messaging if it 1293
provides features such as message delivery guarantees, duplicate message detection and message 1294
ordering. 1295

It is very important for the SCA developer to be able to require, at design-time, a binding or protocol 1296
that supports reliable messaging. SCA defines a set of policy intents that can be used for specifying 1297
reliable messaging Quality of Service requirements. These reliable messaging intents establish a 1298
contract between the binding layer and the application layer (i.e. service implementation or the 1299
service consumer implementation) (see bellow). 1300

1.8.1 Policy Intents 1301

Based on the use-cases described above, we define the following policy intents. It’s worth noting 1302
that SCA does not provide support for attaching an intent at a message level. Therefore, an intent 1303
attached at an operation level applies to all the messages in the operation (e.g. both request and 1304
response messages for a request/response message exchange pattern). 1305

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 35

1) atLeastOnce - The binding implementation guarantees that a message that is successfully sent 1306
by a service consumer is delivered to the destination (i.e. service implementation). The message 1307
could be delivered more than once to the service implementation. 1308

The binding implementation guarantees that a message that is successfully sent by a service 1309
implementation is delivered to the destination (i.e. service consumer). The message could be 1310
delivered more than once to the service consumer. 1311

2) atMostOnce - The binding implementation guarantees that a message that is successfully sent 1312
by a service consumer is not delivered more than once to the service implementation. The binding 1313
implementation does not guarantee that the message is delivered to the service implementation. 1314

The binding implementation guarantees that a message that is successfully sent by a service 1315
implementation is not delivered more than once to the service consumer. The binding 1316
implementation does not guarantee that the message is delivered to the service consumer. 1317

3) ordered – The binding implementation guarantees that the messages are delivered to the service 1318
implementation in the order in which they were sent by the service consumer. This intent does not 1319
guarantee that messages that are sent by a service consumer are delivered to the service 1320
implementation. 1321

The binding implementation guarantees that the messages are delivered to the service consumer in 1322
the order in which they were sent by the service implementation. This intent does not guarantee 1323
that messages that are sent by the service implementation are delivered to the service consumer. 1324

4) exactlyOnce - The binding implementation guarantees that a message sent by a service 1325
consumer is delivered to the service implementation. Also, the binding implementation guarantees 1326
that the message is not delivered more than once to the service implementation. 1327

The binding implementation guarantees that a message sent by a service implementation is 1328
delivered to the service consumer. Also, the binding implementation guarantees that the message is 1329
not delivered more than once to the service consumer. 1330

NOTE: This is a profile intent which is composed of atLeastOnce and atMostOnce. 1331

This is the most reliable intent since it guarantees the following: 1332

• message delivery – all the messages sent by a sender are delivered to the service 1333
implementation (i.e. Java class, BPEL process, etc.). 1334

• duplicate message detection and elimination – a message sent by a sender is not 1335
processed more than once by the service implementation 1336

How can a binding implementation guarantee that a message that it receives is delivered to the 1337
service implementation? One way to do it is by persisting the message and keeping redelivering it 1338
until it is processed by the service implementation. That way, if the system crashes after delivery 1339
but while processing it, the message will be redelivered on restart and processed again. Since a 1340
message could be delivered multiple times to the service implementation, this technique usually 1341
requires the service implementation to perform duplicate message detection. However, that is not 1342
always possible. Often times service implementations that perform critical operations are designed 1343
without having support for duplicate message detection. Therefore, they cannot process an incoming 1344
message more than once. 1345

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 36

Also, consider the scenario where a message is delivered to a service implementation that does not 1346
handle duplicates - the system crashes after a message is delivered to the service implementation 1347
but before it is completely processed. Should the underlying layer redeliver the message on restart? 1348
If it did that, there is a risk that some critical operations (e.g. sending out a JMS message or 1349
updating a DB table) will be executed again when the message is processed. On the other hand, if 1350
the underlying layer does not redeliver the message, there is a risk that the message is never 1351
completely processed. 1352

This issue cannot be safely solved unless all the critical operations performed by the service 1353
implementation are running in a transaction. Therefore, exactlyOnce cannot be assured without 1354
involving the service implementation. In other words, an exactlyOnce message delivery does not 1355
guarantee exactlyOnce message processing unless the service implementation is transactional. It’s 1356
worth noting that this is a necessary condition but not sufficient. The underlying layer (e.g. binding 1357
implementation, container) would have to ensure that a message is not redelivered to the service 1358
implementation after the transaction is committed. As an example, a way to ensure it when the 1359
binding uses JMS is by making sure the operation that acknowledges the message is executed in the 1360
same transaction the service implementation is running in. 1361

1.8.2 End to end Reliable Messaging 1362

Failures can occur at different points in the message path: in the binding layer on the sender side, in 1363
the transport layer or in the binding layer on the receiver side. The SCA service developer doesn’t 1364
really care where the failure occurs. Whether a message was lost due to a network failure or due to 1365
a crash of the machine where the service is deployed, is not that much important. What is important 1366
though, is that the contract between the application layer (i.e. service implementation or service 1367
consumer) and the binding layer is not violated (e.g. a message that was successfully transmitted by 1368
a sender is always delivered to the destination; a message that was successfully transmitted by a 1369
sender is not delivered more than once to the service implementation, etc). It is worth noting that 1370
the binding layer could throw an exception when a sender (e.g. service consumer, service 1371
implementation) sends a message out. This is not considered a successful message transmission. 1372

In order to ensure the semantics of the reliable messaging intents, the entire message path, which is 1373
composed of the binding layer on the client side, the transport layer and the binding layer on the 1374
service side, must be reliable. 1375

1.8.3 Intent definitions 1376
<?xml version="1.0" encoding="ASCII"?> 1377
<definitions xmlns="http://www.osoa.org/xmlns/sca/1.0" > 1378
 <intent name="atLeastOnce" 1379
 appliesTo="sca:binding"> 1380
 <description> 1381
 This intent is used to indicate that a message sent 1382

by a client is always delivered to the component. 1383
 </description> 1384
 </intent> 1385
 1386
 <intent name="atMostOnce" 1387
 appliesTo="sca:binding"> 1388
 <description> 1389

This intent is used to indicate that a message that was 1390
successfully sent by a client is not delivered more than once to 1391
the component. 1392

 </description> 1393

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 37

 </intent> 1394
 1395
 <intent name="ordered" 1396
 appliesTo="sca:binding"> 1397
 <description> 1398
 This intent is used to indicate that all the messages 1399
 are delivered to the component in the order they were 1400
 sent by the client. 1401
 </description> 1402
 </intent> 1403
 1404
 <intent name="exactlyOnce" 1405
 appliesTo="sca:binding" 1406
 requires="atLeastOnce atMostOnce"> 1407
 <description> 1408
 This profile intent is used to indicate that a message 1409
 sent by a client is always delivered to the component. 1410
 It also indicates that duplicate messages are not 1411
 delivered to the component. 1412
 </description> 1413
 </intent> 1414
</definitions> 1415

 1416

1.9 Miscellaneous Intents 1417

The following are standard intents that apply to bindings and are not related to either security or 1418
reliable messaging 1419

SOAP – The SOAP intent specifies that the SOAP messaging model should be used for delivering 1420
messages. It does not require the use of any specific transport technology for delivering the 1421
messages, so for example, this intent can be supported by a binding that sends SOAP messages 1422
over HTTP, bare TCP or even JMS. If the intent is required in an unqualified form then any version 1423
of SOAP is acceptable. Standard qualified intents also exist for SOAP.1_1 and SOAP.1_2, which 1424
specify the use of versions 1.1 or 1.2 of SOAP respectively. 1425
 1426
JMS – The JMS intent does not specify a wire-level transport protocol, but instead requires that 1427
whatever binding technology is used, the messages should be able to be delivered and received via 1428
the JMS API. 1429
 1430
NoListener – This intent may only be used within the @requires attribute of a reference. It states 1431
that the client is not able to handle new inbound connections. It requires that the binding and 1432
callback binding be configured so that any response (or callback) comes either through a back-1433
channel of the connection from the client to the server or by having the client poll the server for 1434
messages. An example policy assertion that would guarantee this is a WS-Policy assertion that 1435
applies to the <binding.ws> binding, which requires the use of WS-Addressing with anonymous 1436
responses (e.g. “<wsaw:Anonymous>required</wsaw:Anonymous>” – see 1437
http://www.w3.org/TR/ws-addr-wsdl/#anonelement). 1438
 1439
BP.1_1 – This intent specifies the use of a binding that conforms to the WS-I Basic Profile version 1440
1.1. Any binding or policySet that provides this intent should also provide the SOAP intent. 1441

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 38

However, the BP intent is not a profile intent, since it is not completely satisfied by the lower-level 1442
SOAP– there are additional semantic requirements. 1443
 1444

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 39

2 Appendix 1 1445

2.1 XML Schemas 1446
 1447
<?xml version="1.0" encoding="UTF-8"?> 1448
<!-- (c) Copyright SCA Collaboration 2006, 2007 --> 1449
<schema xmlns="http://www.w3.org/2001/XMLSchema" 1450
 targetNamespace="http://www.osoa.org/xmlns/sca/1.0" 1451
 xmlns:sca="http://www.osoa.org/xmlns/sca/1.0" 1452
 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" 1453
 elementFormDefault="qualified"> 1454
 1455
 <include schemaLocation="sca-core.xsd"/> 1456
 <import namespace="http://schemas.xmlsoap.org/ws/2004/09/policy" 1457
 schemaLocation="http://schemas.xmlsoap.org/ws/2004/09/ws-policy.xsd"/> 1458
 1459
 <element name="intent" type="sca:Intent"/> 1460
 <complexType name="Intent"> 1461
 <sequence> 1462
 <element name="description" type="string" minOccurs="0" 1463
maxOccurs="1" /> 1464
 <any namespace="##other" processContents="lax" 1465
 minOccurs="0" maxOccurs="unbounded"/> 1466
 </sequence> 1467
 <attribute name="name" type="NCName" use="required"/> 1468
 <attribute name="constrains" type="sca:listOfQNames" use="required"/> 1469
 <attribute name="requires" type="sca:listOfQNames" use="optional"/> 1470
 <anyAttribute namespace="##any" processContents="lax"/> 1471
 </complexType> 1472
 1473
 <element name="policySet" type="sca:PolicySet"/> 1474
 <complexType name="PolicySet"> 1475
 <choice minOccurs="0" maxOccurs="unbounded"> 1476
 <element name="policySetReference" type="sca:PolicySetReference"/> 1477
 <element name="intentMap" type="sca:IntentMap"/> 1478
 <element ref="wsp:PolicyAttachment"/> 1479
 <element ref="wsp:Policy"/> 1480
 <element ref="wsp:PolicyReference"/> 1481
 <any namespace="##other" processContents="lax"/> 1482
 </choice> 1483
 <attribute name="name" type="NCName" use="required"/> 1484
 <attribute name="provides" type="sca:listOfQNames" use="optional"/> 1485
 <attribute name="appliesTo" type="string" use="required"/> 1486
 <anyAttribute namespace="##any" processContents="lax"/> 1487
 </complexType> 1488
 1489
 <complexType name="PolicySetReference"> 1490
 <attribute name="name" type="QName" use="required"/> 1491
 <anyAttribute namespace="##any" processContents="lax"/> 1492
 </complexType> 1493
 1494
 <complexType name="IntentMap"> 1495
 <choice minOccurs="1" maxOccurs="unbounded"> 1496
 <element name="qualifier" type="sca:Qualifier"/> 1497

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 40

 <any namespace="##other" processContents="lax"/> 1498
 </choice> 1499
 <attribute name="provides" type="QName" use="required"/> 1500
 <attribute name="default" type="string" use="optional"/> 1501
 <anyAttribute namespace="##any" processContents="lax"/> 1502
 </complexType> 1503
 1504
 <complexType name="Qualifier"> 1505
 <choice minOccurs="1" maxOccurs="unbounded"> 1506
 <element name="intentMap" type="sca:IntentMap"/> 1507
 <element ref="wsp:PolicyAttachment"/> 1508
 <any namespace="##other" processContents="lax"/> 1509
 </choice> 1510
 <attribute name="name" type="string" use="required"/> 1511
 <anyAttribute namespace="##any" processContents="lax"/> 1512
 </complexType> 1513
 1514
 <element name="allow" type="sca:Allow"/> 1515
 <complexType name="Allow"> 1516
 <attribute name="roles" type="string" use="required"/> 1517
 </complexType> 1518
 1519
 <element name="permitAll" type="sca:PermitAll"/> 1520
 <complexType name="PermitAll"/> 1521
 1522
 <element name="denyAll" type="sca:DenyAll"/> 1523
 <complexType name="DenyAll"/> 1524
 1525
 <element name="runAs" type="sca:RunAs"/> 1526
 <complexType name="RunAs"> 1527
 <attribute name="role" type="string" use="required"/> 1528
 </complexType> 1529

 <simpleType name="listOfNCNames"> 1530

 <list itemType="NCName"/> 1531

 </simpleType> 1532

 1533
 1534
</schema> 1535
 1536

SCA Service Component Architecture

SCA Policy Framework V1.00 March 2007 41

3 References 1537

[1] Service Component Architecture (SCA) 1538
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications 1539

[2] SCA Assembly Model 1540
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications 1541

[3] SCA Detailed Example 1542
http://www.osoa.org/download/attachments/35/SCA_DetailedExample.pdf 1543

[4] Web Services Description Language (WSDL) Version 2.0 Part 1: Core Language – Appendix 1544
http://www.w3.org/TR/2006/CR-wsdl20-20060327/ 1545

[5] SCA WSDL 1.1 Element Identifiers – forthcoming W3C Note 1546
http://dev.w3.org/cvsweb/~checkout~/2006/ws/policy/wsdl11elementidentifiers.html 1547

[6] Web Services Policy (WS-Policy) 1548
http://www.w3.org/TR/ws-policy 1549

[7] Web Services Policy Attachment (WS-PolicyAttachment) 1550
http://www.w3.org/TR/ws-policy-attach 1551

[8] XML Schema Part 2: Datatypes Second Edition XML Schema Part 2: Datatypes Second Edition, 1552
Oct. 28 2004. 1553
http://www.w3.org/TR/xmlschema-2/ 1554

http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://www.osoa.org/download/attachments/35/SCA_DetailedExample.pdf
http://www.w3.org/TR/2006/CR-wsdl20-20060327/
http://dev.w3.org/cvsweb/~checkout~/2006/ws/policy/wsdl11elementidentifiers.html
http://www.w3.org/TR/ws-policy
http://www.w3.org/TR/ws-policy-attach
http://www.w3.org/TR/xmlschema-2/

	XML Namespaces
	Policies and PolicySets
	Intents describe the requirements of Components, Services an
	Determining which policies apply to a particular wire
	Intents
	Profile Intents
	PolicySets
	Attachment Rules
	Usage of @requires attribute for specifying intents
	Usage of @requires and @policySet attributes together
	Operation-Level Intents and PolicySets on Services & Referen
	Operation-Level Intents and PolicySets on Bindings
	Intents and PolicySets on Implementations and Component Type
	BindingTypes and Related Intents
	Treatment of Components with Internal Wiring
	Preparing Services and References for External Connection
	Guided Selection of PolicySets using Intents
	Natively Supported Intents
	Operation-Level Intents and PolicySets on Implementations
	Writing PolicySets for Implementation Policies
	Policy Administrator
	Developer
	Assembler
	Deployer

