Let's now look at how Spring AOP handles advice.
Each advice is a Spring bean. An advice instance can be shared across all advised objects, or unique to each advised object. This corresponds to per-class or per-instance advice.
Per-class advice is used most often. It is appropriate for generic advice such as transaction advisors. These do not depend on the state of the proxied object or add new state; they merely act on the method and arguments.
Per-instance advice is appropriate for introductions, to support mixins. In this case, the advice adds state to the proxied object.
It's possible to use a mix of shared and per-instance advice in the same AOP proxy.
Spring provides several advice types out of the box, and is extensible to support arbitrary advice types. Let us look at the basic concepts and standard advice types.
The most fundamental advice type in Spring is interception around advice.
Spring is compliant with the AOP Alliance interface for around advice using method interception. MethodInterceptors implementing around advice should implement the following interface:
public interface MethodInterceptor extends Interceptor { Object invoke(MethodInvocation invocation) throws Throwable; }
The MethodInvocation
argument to the
invoke()
method exposes the method being
invoked; the target join point; the AOP proxy; and the arguments to
the method. The invoke()
method should return
the invocation's result: the return value of the join point.
A simple MethodInterceptor
implementation
looks as follows:
public class DebugInterceptor implements MethodInterceptor { public Object invoke(MethodInvocation invocation) throws Throwable { System.out.println("Before: invocation=[" + invocation + "]"); Object rval = invocation.proceed(); System.out.println("Invocation returned"); return rval; } }
Note the call to the MethodInvocation's
proceed()
method. This proceeds down the
interceptor chain towards the join point. Most interceptors will
invoke this method, and return its return value. However, a
MethodInterceptor, like any around advice, can return a different
value or throw an exception rather than invoke the proceed method.
However, you don't want to do this without good reason!
Note | |
---|---|
MethodInterceptors offer interoperability with other AOP Alliance-compliant AOP implementations. The other advice types discussed in the remainder of this section implement common AOP concepts, but in a Spring-specific way. While there is an advantage in using the most specific advice type, stick with MethodInterceptor around advice if you are likely to want to run the aspect in another AOP framework. Note that pointcuts are not currently interoperable between frameworks, and the AOP Alliance does not currently define pointcut interfaces. |
A simpler advice type is a before
advice. This does not need a
MethodInvocation
object, since it will only be
called before entering the method.
The main advantage of a before advice is that there is no need
to invoke the proceed()
method, and therefore no
possibility of inadvertently failing to proceed down the interceptor
chain.
The MethodBeforeAdvice
interface is shown
below. (Spring's API design would allow for field before advice,
although the usual objects apply to field interception and it's
unlikely that Spring will ever implement it).
public interface MethodBeforeAdvice extends BeforeAdvice { void before(Method m, Object[] args, Object target) throws Throwable; }
Note the return type is void
. Before advice
can insert custom behavior before the join point executes, but cannot
change the return value. If a before advice throws an exception, this
will abort further execution of the interceptor chain. The exception
will propagate back up the interceptor chain. If it is unchecked, or
on the signature of the invoked method, it will be passed directly to
the client; otherwise it will be wrapped in an unchecked exception by
the AOP proxy.
An example of a before advice in Spring, which counts all method invocations:
public class CountingBeforeAdvice implements MethodBeforeAdvice { private int count; public void before(Method m, Object[] args, Object target) throws Throwable { ++count; } public int getCount() { return count; } }
Tip | |
---|---|
Before advice can be used with any pointcut. |
Throws advice is invoked after
the return of the join point if the join point threw an exception.
Spring offers typed throws advice. Note that this means that the
org.springframework.aop.ThrowsAdvice
interface does
not contain any methods: It is a tag interface identifying that the
given object implements one or more typed throws advice methods. These
should be in the form of:
afterThrowing([Method, args, target], subclassOfThrowable)
Only the last argument is required. The method signatures may have either one or four arguments, depending on whether the advice method is interested in the method and arguments. The following classes are examples of throws advice.
The advice below is invoked if a
RemoteException
is thrown (including
subclasses):
public class RemoteThrowsAdvice implements ThrowsAdvice { public void afterThrowing(RemoteException ex) throws Throwable { // Do something with remote exception } }
The following advice is invoked if a
ServletException
is thrown. Unlike the
above advice, it declares 4 arguments, so that it has access to the
invoked method, method arguments and target object:
public class ServletThrowsAdviceWithArguments implements ThrowsAdvice { public void afterThrowing(Method m, Object[] args, Object target, ServletException ex) { // Do something with all arguments } }
The final example illustrates how these two methods could be
used in a single class, which handles both
RemoteException
and
ServletException
. Any number of throws advice
methods can be combined in a single class.
public static class CombinedThrowsAdvice implements ThrowsAdvice { public void afterThrowing(RemoteException ex) throws Throwable { // Do something with remote exception } public void afterThrowing(Method m, Object[] args, Object target, ServletException ex) { // Do something with all arguments } }
Note: If a throws-advice method throws an exception itself, it will override the original exception (i.e. change the exception thrown to the user). The overriding exception will typically be a RuntimeException; this is compatible with any method signature. However, if a throws-advice method throws a checked exception, it will have to match the declared exceptions of the target method and is hence to some degree coupled to specific target method signatures. Do not throw an undeclared checked exception that is incompatible with the target method's signature!
Tip | |
---|---|
Throws advice can be used with any pointcut. |
An after returning advice in Spring must implement the org.springframework.aop.AfterReturningAdvice interface, shown below:
public interface AfterReturningAdvice extends Advice { void afterReturning(Object returnValue, Method m, Object[] args, Object target) throws Throwable; }
An after returning advice has access to the return value (which it cannot modify), invoked method, methods arguments and target.
The following after returning advice counts all successful method invocations that have not thrown exceptions:
public class CountingAfterReturningAdvice implements AfterReturningAdvice { private int count; public void afterReturning(Object returnValue, Method m, Object[] args, Object target) throws Throwable { ++count; } public int getCount() { return count; } }
This advice doesn't change the execution path. If it throws an exception, this will be thrown up the interceptor chain instead of the return value.
Tip | |
---|---|
After returning advice can be used with any pointcut. |
Spring treats introduction advice as a special kind of interception advice.
Introduction requires an IntroductionAdvisor
,
and an IntroductionInterceptor
, implementing the
following interface:
public interface IntroductionInterceptor extends MethodInterceptor { boolean implementsInterface(Class intf); }
The invoke()
method inherited from the AOP
Alliance MethodInterceptor
interface must implement
the introduction: that is, if the invoked method is on an introduced
interface, the introduction interceptor is responsible for handling
the method call - it cannot invoke
proceed()
.
Introduction advice cannot be used with any pointcut, as it
applies only at class, rather than method, level. You can only use
introduction advice with the IntroductionAdvisor
,
which has the following methods:
public interface IntroductionAdvisor extends Advisor, IntroductionInfo { ClassFilter getClassFilter(); void validateInterfaces() throws IllegalArgumentException; } public interface IntroductionInfo { Class[] getInterfaces(); }
There is no MethodMatcher
, and
hence no Pointcut
, associated with
introduction advice. Only class filtering is logical.
The getInterfaces()
method returns the
interfaces introduced by this advisor.
validateInterfaces()
method is used internally to see whether or not the introduced interfaces can be implemented by the configured
IntroductionInterceptor
.
Let's look at a simple example from the Spring test suite. Let's suppose we want to introduce the following interface to one or more objects:
public interface Lockable { void lock(); void unlock(); boolean locked(); }
This illustrates a mixin. We
want to be able to cast advised objects to Lockable, whatever their
type, and call lock and unlock methods. If we call the lock() method,
we want all setter methods to throw a
LockedException
. Thus we can add an aspect that
provides the ability to make objects immutable, without them having
any knowledge of it: a good example of AOP.
Firstly, we'll need an
IntroductionInterceptor
that does the heavy
lifting. In this case, we extend the
org.springframework.aop.support.DelegatingIntroductionInterceptor
convenience class. We could implement IntroductionInterceptor
directly, but using
DelegatingIntroductionInterceptor
is best for most
cases.
The DelegatingIntroductionInterceptor
is
designed to delegate an introduction to an actual implementation of
the introduced interface(s), concealing the use of interception to do
so. The delegate can be set to any object using a constructor
argument; the default delegate (when the no-arg constructor is used)
is this. Thus in the example below, the delegate is the
LockMixin
subclass of
DelegatingIntroductionInterceptor
. Given a delegate
(by default itself), a
DelegatingIntroductionInterceptor
instance looks
for all interfaces implemented by the delegate (other than
IntroductionInterceptor), and will support introductions against any
of them. It's possible for subclasses such as
LockMixin
to call the
suppressInterface(Class intf)
method to suppress
interfaces that should not be exposed. However, no matter how many
interfaces an IntroductionInterceptor
is prepared
to support, the IntroductionAdvisor
used will
control which interfaces are actually exposed. An introduced interface
will conceal any implementation of the same interface by the
target.
Thus LockMixin subclasses
DelegatingIntroductionInterceptor
and implements
Lockable itself. The superclass automatically picks up that Lockable
can be supported for introduction, so we don't need to specify that.
We could introduce any number of interfaces in this way.
Note the use of the locked
instance variable.
This effectively adds additional state to that held in the target
object.
public class LockMixin extends DelegatingIntroductionInterceptor implements Lockable { private boolean locked; public void lock() { this.locked = true; } public void unlock() { this.locked = false; } public boolean locked() { return this.locked; } public Object invoke(MethodInvocation invocation) throws Throwable { if (locked() && invocation.getMethod().getName().indexOf("set") == 0) throw new LockedException(); return super.invoke(invocation); } }
Often it isn't necessary to override the invoke()
method: the
DelegatingIntroductionInterceptor
implementation -
which calls the delegate method if the method is introduced, otherwise
proceeds towards the join point - is usually sufficient. In the
present case, we need to add a check: no setter method can be invoked
if in locked mode.
The introduction advisor required is simple. All it needs to do
is hold a distinct LockMixin
instance, and specify
the introduced interfaces - in this case, just
Lockable
. A more complex example might take a
reference to the introduction interceptor (which would be defined as a
prototype): in this case, there's no configuration relevant for a
LockMixin
, so we simply create it using
new
.
public class LockMixinAdvisor extends DefaultIntroductionAdvisor { public LockMixinAdvisor() { super(new LockMixin(), Lockable.class); } }
We can apply this advisor very simply: it requires no
configuration. (However, it is necessary: It's
impossible to use an IntroductionInterceptor
without an IntroductionAdvisor.) As usual with
introductions, the advisor must be per-instance, as it is stateful. We
need a different instance of LockMixinAdvisor
, and
hence LockMixin
, for each advised object. The
advisor comprises part of the advised object's state.
We can apply this advisor programmatically, using the
Advised.addAdvisor()
method, or (the recommended
way) in XML configuration, like any other advisor. All proxy creation
choices discussed below, including "auto proxy creators," correctly
handle introductions and stateful mixins.