Spring offers the concept of a TargetSource,
expressed in the org.springframework.aop.TargetSource
interface. This interface is responsible for returning the "target object"
implementing the join point. The TargetSource
implementation is asked for a target instance each time the AOP proxy
handles a method invocation.
Developers using Spring AOP don't normally need to work directly with TargetSources, but this provides a powerful means of supporting pooling, hot swappable and other sophisticated targets. For example, a pooling TargetSource can return a different target instance for each invocation, using a pool to manage instances.
If you do not specify a TargetSource, a default implementation is used that wraps a local object. The same target is returned for each invocation (as you would expect).
Let's look at the standard target sources provided with Spring, and how you can use them.
Tip | |
---|---|
When using a custom target source, your target will usually need to be a prototype rather than a singleton bean definition. This allows Spring to create a new target instance when required. |
The
org.springframework.aop.target.HotSwappableTargetSource
exists to allow the target of an AOP proxy to be switched while allowing
callers to keep their references to it.
Changing the target source's target takes effect immediately. The
HotSwappableTargetSource
is threadsafe.
You can change the target via the swap()
method
on HotSwappableTargetSource as follows:
HotSwappableTargetSource swapper =
(HotSwappableTargetSource) beanFactory.getBean("swapper");
Object oldTarget = swapper.swap(newTarget);
The XML definitions required look as follows:
<bean id="initialTarget" class="mycompany.OldTarget"/> <bean id="swapper" class="org.springframework.aop.target.HotSwappableTargetSource"> <constructor-arg ref="initialTarget"/> </bean> <bean id="swappable" class="org.springframework.aop.framework.ProxyFactoryBean"> <property name="targetSource" ref="swapper"/> </bean>
The above swap()
call changes the target of the
swappable bean. Clients who hold a reference to that bean will be
unaware of the change, but will immediately start hitting the new
target.
Although this example doesn't add any advice - and it's not
necessary to add advice to use a TargetSource
- of
course any TargetSource
can be used in conjunction
with arbitrary advice.
Using a pooling target source provides a similar programming model to stateless session EJBs, in which a pool of identical instances is maintained, with method invocations going to free objects in the pool.
A crucial difference between Spring pooling and SLSB pooling is that Spring pooling can be applied to any POJO. As with Spring in general, this service can be applied in a non-invasive way.
Spring provides out-of-the-box support for Jakarta Commons Pool
1.3, which provides a fairly efficient pooling implementation. You'll
need the commons-pool Jar on your application's classpath to use this
feature. It's also possible to subclass
org.springframework.aop.target.AbstractPoolingTargetSource
to support any other pooling API.
Sample configuration is shown below:
<bean id="businessObjectTarget" class="com.mycompany.MyBusinessObject" scope="prototype"> ... properties omitted </bean> <bean id="poolTargetSource" class="org.springframework.aop.target.CommonsPoolTargetSource"> <property name="targetBeanName" value="businessObjectTarget"/> <property name="maxSize" value="25"/> </bean> <bean id="businessObject" class="org.springframework.aop.framework.ProxyFactoryBean"> <property name="targetSource" ref="poolTargetSource"/> <property name="interceptorNames" value="myInterceptor"/> </bean>
Note that the target object - "businessObjectTarget" in the
example - must be a prototype. This allows the
PoolingTargetSource
implementation to create new
instances of the target to grow the pool as necessary. See the havadoc
for AbstractPoolingTargetSource
and the concrete
subclass you wish to use for information about its properties: "maxSize"
is the most basic, and always guaranteed to be present.
In this case, "myInterceptor" is the name of an interceptor that would need to be defined in the same IoC context. However, it isn't necessary to specify interceptors to use pooling. If you want only pooling, and no other advice, don't set the interceptorNames property at all.
It's possible to configure Spring so as to be able to cast any
pooled object to the
org.springframework.aop.target.PoolingConfig
interface, which exposes information about the configuration and current
size of the pool through an introduction. You'll need to define an
advisor like this:
<bean id="poolConfigAdvisor" class="org.springframework.beans.factory.config.MethodInvokingFactoryBean"> <property name="targetObject" ref="poolTargetSource"/> <property name="targetMethod" value="getPoolingConfigMixin"/> </bean>
This advisor is obtained by calling a convenience method on the
AbstractPoolingTargetSource
class, hence the use of
MethodInvokingFactoryBean. This advisor's name ("poolConfigAdvisor"
here) must be in the list of interceptors names in the ProxyFactoryBean
exposing the pooled object.
The cast will look as follows:
PoolingConfig conf = (PoolingConfig) beanFactory.getBean("businessObject"); System.out.println("Max pool size is " + conf.getMaxSize());
Note | |
---|---|
Pooling stateless service objects is not usually necessary. We don't believe it should be the default choice, as most stateless objects are naturally thread safe, and instance pooling is problematic if resources are cached. |
Simpler pooling is available using autoproxying. It's possible to set the TargetSources used by any autoproxy creator.
Setting up a "prototype" target source is similar to a pooling TargetSource. In this case, a new instance of the target will be created on every method invocation. Although the cost of creating a new object isn't high in a modern JVM, the cost of wiring up the new object (satisfying its IoC dependencies) may be more expensive. Thus you shouldn't use this approach without very good reason.
To do this, you could modify the
poolTargetSource
definition shown above as follows.
(I've also changed the name, for clarity.)
<bean id="prototypeTargetSource" class="org.springframework.aop.target.PrototypeTargetSource"> <property name="targetBeanName" ref="businessObjectTarget"/> </bean>
There's only one property: the name of the target bean. Inheritance is used in the TargetSource implementations to ensure consistent naming. As with the pooling target source, the target bean must be a prototype bean definition.
ThreadLocal
target sources are useful if
you need an object to be created for each incoming request (per thread
that is). The concept of a ThreadLocal
provide a
JDK-wide facility to transparently store resource alongside a thread.
Setting up a ThreadLocalTargetSource
is pretty
much the same as was explained for the other types of target
source:
<bean id="threadlocalTargetSource" class="org.springframework.aop.target.ThreadLocalTargetSource"> <property name="targetBeanName" value="businessObjectTarget"/> </bean>
Note | |
---|---|
ThreadLocals come with serious issues (potentially resulting in
memory leaks) when incorrectly using them in a multi-threaded and
multi-classloader environments. One should always consider wrapping a
threadlocal in some other class and never directly use the
|