
Building Next-Gen Web
Applications with the
Spring 3.0 Web Stack

Keith Donald and
Jeremy Grelle
SpringSource
Web Products Team

2

Intro

Battling the rising complexity of web
application development with Spring

3

The Modern Web Dilemma

> Web application requirement complexity continues
to rise

• How do we manage this complexity?

• How do we expose our services to the largest
possible audience?

• How do we give users the best possible
experience?

4

The Spring Web Stack - Battling Complexity

> The Spring Web Stack gives you:

• unified programming model

• multiple client types served with the same
foundation

• adaptability - the right approach (i.e., stateless,
stateful) for the given use case

5

What makes the Spring Web Stack?

6

Web Stack Components

> Spring Framework and Spring MVC

• The foundational web MVC platform

> Spring JavaScript

• Ajax and JavaScript / JSON integration

> Spring Web Flow

• Framework for stateful web conversations

7

Web Stack Components (cont.)

> Spring Security

• Security framework

> Spring Faces

• Integration with JavaServer Faces

> Spring BlazeDS Integration

• Integration with Adobe Flex™ clients

8

Spring Framework / MVC

9

RESTful @MVC

> RESTful @MVC is the preferred controller model
for Spring MVC 3.0

• Promotes organization of services around logical
resources

• Java™@Controllers control access to resources

• @Controllers delegate to views to render resource representations

10

Key Elements of REST in @MVC

> URI Templates

• map unique URLs to resources

> Uniform Interface

• honor the semantics of HTTP verbs

> Content Negotiation

• provide multiple representations of a resource

11

URI Templates

> URI templates supported through use of
@RequestMapping and @PathVariable

12

Uniform Interface

> HTTP verbs supported in @RequestMapping

• GET - retrieves representation of a resource

• POST - creates a new resource as a child of
another
• Response-Location header returns URI of newly created resource

• PUT - updates a resource or creates a new
resource when the target URI is known

• DELETE - deletes a resource

13

Content Negotiation

• Access resource through representations

• More that one representation possible
• HTML, XML, JSON, PDF, ATOM/RSS, etc

• Content negotiation figures out the right one for a given request

• Desired representation specified in Accept header
or via file extension

• Delivered representation shown in Content-Type

14

Content Negotiation

15

Demo

RESTful @MVC

16

Spring JavaScript

17

Spring JavaScript

> JavaScript abstraction framework

• Use to enhance HTML elements with rich behavior

> Integrates the Dojo Toolkit

> Provides JSON support

• Jackson-based JsonView implementation

> Promoted to top-level project for Spring 3.0

18

Goals of Spring JavaScript

> Encapsulate use of Dojo for common enterprise use
cases
• Ajax
• Rich widgets such as a data grid
• Client-side validation

> Promotes progressive enhancement
• Robust in the face of JavaScript failure
• Maximizes potential audience
• Accessibility

19

Working with the Spring JavaScript API

> Use API to apply decorations to HTML elements

> Different types of decorations

• WidgetDecoration

• AjaxEventDecoration

• ValidateAllDecoration

20

Ajax with Partial Rendering

21

Form Validation

<form:input path="creditCard"/>
<script type="text/javascript">
 Spring.addDecoration(new Spring.ElementDecoration({
 elementId : "creditCard",
 widgetType : "dijit.form.ValidationTextBox",
 widgetAttrs : {
 required : true,
 invalidMessage : "A 16-digit number is required.",
 regExp : "[0-9]{16}”
 }
 }));
</script>

22

Demo

Spring JavaScript Client with JSON-based
REST interface

23

Spring Web Flow

24

Spring Web Flow

> For implementing stateful flows

• Reusable multi-step user dialogs

> Plugs into Spring MVC

> Spring Web Flow 2 current release

• Incorporates lessons learned from 1.0

• Offers many new features

25

Web Flow Sweet Spot

26

New Web Flow 2 Features

• Ajax support
• Partial page re-rendering in flow DSL

• Spring security integration

• Flow-managed persistence

• Convention-over-configuration
• View rendering

• Data binding and validation

27

Spring Web Flow 3 - @Flow

• Extends @Controller model

• Define stateful UI flow control using plain Java™

• Builds on Spring Web Flow infrastructure

• Part of Web Flow project

28

@Flow Example

@Flow
public class BookHotel {
 private Booking booking;
 @Autowired private transient BookingService booking;

 public State start(@Input Long hotelId, Principal user) {
 booking = bookingService.createBooking(hotelId, user);
 return new EnterBookingDetails();
 }

 private class EnterBookingDetails extends ViewState {
 @Transition
 State next() { return new ReviewBooking() };
 }

 private class ReviewBooking extends ViewState {}

29

Demo

Integrating Stateful Web Conversations

30

Spring BlazeDS Integration

31

Spring BlazeDS Integration

> Spring’s Adobe Flex integration project

• Connects Flex clients to Spring-managed services
• Using BlazeDS MessageBroker boot-strapped by Spring

• Makes Flex natural fit in a Spring environment
• Uses Spring XML namespace for simplified setup

• Reduces the need for BlazeDS-specific config

32

Spring BlazeDS Integration

• Expose Spring beans as Remoting destinations (for
RPC style interaction)
• <flex:remoting-destination>

• Message-style communication through native
BlazeDS messaging, JMS, and Spring Integration
channels
• enables server-side push

• Integrate Spring Security to secure Flex apps
• <flex:secured>

33

Demo

Consuming Spring Services with RIA Clients

34

Summary

• Apply a REST-ful approach to your web
application development
• Think about your app as a set of resources
• With potentially multiple representations to

support different client types

• Spring provides robust web stack for
implementing REST-ful web apps
• A-la carte open-source components
• Integration with an array of web technologies

• Have fun!

Keith Donald and
Jeremy Grelle

http://www.springsource.org
http://
www.springsource.com

http://www.springsource.org/
http://www.springsource.org/
http://www.springsource.com/
http://www.springsource.com/

	Building Next-Gen Web Applications with the Spring 3.0 Web Stack
	Intro
	The Modern Web Dilemma
	The Spring Web Stack - Battling Complexity
	What makes the Spring Web Stack?
	Web Stack Components
	Web Stack Components (cont.)
	Spring Framework / MVC
	RESTful @MVC
	Key Elements of REST in @MVC
	URI Templates
	Uniform Interface
	Content Negotiation
	Slide 14
	Demo
	Spring JavaScript
	Slide 17
	Goals of Spring JavaScript
	Working with the Spring JavaScript API
	Ajax with Partial Rendering
	Form Validation
	Slide 22
	Spring Web Flow
	Slide 24
	Web Flow Sweet Spot
	New Web Flow 2 Features
	Spring Web Flow 3 - @Flow
	@Flow Example
	Slide 29
	Spring BlazeDS Integration
	Slide 31
	Slide 32
	Slide 33
	Summary
	Slide 35

