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Intro

Battling the rising complexity of web 
application development with Spring
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The Modern Web Dilemma

> Web application requirement complexity continues 
to rise

• How do we manage this complexity?

• How do we expose our services to the largest 
possible audience?

• How do we give users the best possible 
experience?
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The Spring Web Stack - Battling Complexity

> The Spring Web Stack gives you:

• unified programming model

• multiple client types served with the same 
foundation

• adaptability - the right approach (i.e., stateless, 
stateful) for the given use case
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What makes the Spring Web Stack?
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Web Stack Components

> Spring Framework and Spring MVC

• The foundational web MVC platform

> Spring JavaScript

• Ajax and JavaScript / JSON integration

> Spring Web Flow

• Framework for stateful web conversations
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Web Stack Components (cont.)

> Spring Security

• Security framework

> Spring Faces

• Integration with JavaServer Faces

> Spring BlazeDS Integration

• Integration with Adobe Flex™ clients
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Spring Framework / MVC
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RESTful @MVC

> RESTful @MVC is the preferred controller model 
for Spring MVC 3.0

• Promotes organization of services around logical 
resources

• Java™@Controllers control access to resources

• @Controllers delegate to views to render resource representations
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Key Elements of REST in @MVC

> URI Templates

• map unique URLs to resources

> Uniform Interface

• honor the semantics of HTTP verbs

> Content Negotiation

• provide multiple representations of a resource
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URI Templates

> URI templates supported through use of 
@RequestMapping and @PathVariable



12

Uniform Interface

> HTTP verbs supported in @RequestMapping

• GET - retrieves representation of a resource

• POST - creates a new resource as a child of 
another
• Response-Location header returns URI of newly created resource

• PUT - updates a resource or creates a new 
resource when the target URI is known

• DELETE - deletes a resource
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Content Negotiation

• Access resource through representations

• More that one representation possible
• HTML, XML, JSON, PDF, ATOM/RSS, etc

• Content negotiation figures out the right one for a given request

• Desired representation specified in Accept header 
or via file extension

• Delivered representation shown in Content-Type
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Content Negotiation
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Demo

RESTful @MVC
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Spring JavaScript
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Spring JavaScript

> JavaScript abstraction framework

• Use to enhance HTML elements with rich behavior

> Integrates the Dojo Toolkit

> Provides JSON support

• Jackson-based JsonView implementation

> Promoted to top-level project for Spring 3.0
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Goals of Spring JavaScript

> Encapsulate use of Dojo for common enterprise use 
cases
• Ajax
• Rich widgets such as a data grid
• Client-side validation

> Promotes progressive enhancement
• Robust in the face of JavaScript failure
• Maximizes potential audience
• Accessibility
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Working with the Spring JavaScript API

> Use API to apply decorations to HTML elements

> Different types of decorations

• WidgetDecoration

• AjaxEventDecoration

• ValidateAllDecoration
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Ajax with Partial Rendering
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Form Validation

<form:input path="creditCard"/>
<script type="text/javascript">
  Spring.addDecoration(new Spring.ElementDecoration({
    elementId : "creditCard",
    widgetType : "dijit.form.ValidationTextBox",
    widgetAttrs : {
      required : true,
      invalidMessage : "A 16-digit number is required.", 
      regExp : "[0-9]{16}”
    }
  }));
</script>
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Demo

Spring JavaScript Client with JSON-based 
REST interface
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Spring Web Flow
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Spring Web Flow

> For implementing stateful flows

• Reusable multi-step user dialogs

> Plugs into Spring MVC

> Spring Web Flow 2 current release

• Incorporates lessons learned from 1.0

• Offers many new features
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Web Flow Sweet Spot
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New Web Flow 2 Features

• Ajax support
• Partial page re-rendering in flow DSL

• Spring security integration

• Flow-managed persistence

• Convention-over-configuration
• View rendering

• Data binding and validation
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Spring Web Flow 3 - @Flow

• Extends @Controller model

• Define stateful UI flow control using plain Java™

• Builds on Spring Web Flow infrastructure

• Part of Web Flow project
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@Flow Example

@Flow
public class BookHotel {
   private Booking booking;
   @Autowired private transient BookingService booking;

   public State start(@Input Long hotelId, Principal user) {
       booking = bookingService.createBooking(hotelId, user);
       return new EnterBookingDetails();
   }

   private class EnterBookingDetails extends ViewState {
      @Transition
      State next() { return new ReviewBooking() };
   }

   private class ReviewBooking extends ViewState {}
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Demo

Integrating Stateful Web Conversations
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Spring BlazeDS Integration
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Spring BlazeDS Integration

> Spring’s Adobe Flex integration project

• Connects Flex clients to Spring-managed services
• Using BlazeDS MessageBroker boot-strapped by Spring

• Makes Flex natural fit in a Spring environment
• Uses Spring XML namespace for simplified setup 

• Reduces the need for BlazeDS-specific config
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Spring BlazeDS Integration

• Expose Spring beans as Remoting destinations (for 
RPC style interaction)
• <flex:remoting-destination>

• Message-style communication through native 
BlazeDS messaging, JMS, and Spring Integration 
channels
• enables server-side push

• Integrate Spring Security to secure Flex apps
• <flex:secured>
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Demo

Consuming Spring Services with RIA Clients
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Summary

• Apply a REST-ful approach to your web 
application development
• Think about your app as a set of resources
• With potentially multiple representations to 

support different client types

• Spring provides robust web stack for 
implementing REST-ful web apps
• A-la carte open-source components
• Integration with an array of web technologies

• Have fun!
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