SPRING & CLOUD FOUNDRY
FEEXR

vmware

Spring on Cloud Foundry:

a Marriage Made in Heaven
Josh Long

Spring Developer Advocate, SpringSource, a Division of VMWare

http.//www.joshlong.com || @starbuxman || josh.long@springsource.com

http://www.joshlong.com
http://www.joshlong.com
mailto:josh.long@springsource.com
mailto:josh.long@springsource.com

About Josh Long (JE 2 &)

Spring Developer Advocate
twitter: @starbuxman

weibo: @springsource
josh.long@springsource.com

THE EXFERTS YOICE™ N OFEN SOURCE

/'>

Spring

Recipes

A Problem-Solution Approach

SECOND EDITION

L I

Gary Max, Josh Long, ang Daniel Rubi

Apress

Getting Started with

O’REILLY"

Josh Long & Steve Mayzak

Sunday, December 9, 12

mailto:josh.long@springsource.com
mailto:josh.long@springsource.com

About Josh Long

Spring Developer Advocate
twitter: @starbuxman

josh.long@springsource.com

Contributor To:

eSpring Integration
eSpring Batch

eSpring Hadoop
eActiviti Workflow Engine
*Akka Actor engine

Visit our blog

NEWS & EVENTS

THIS WEEK IN SPRING, APRI

Submitted by Josh Long on Tue, 2012-04-1
In News and Announcements

What a great week! The Cloud Foundry
Asian and US legs of the tour. Now, onw
secure your spot!)

Sunday, December 9, 12

mailto:josh.long@springsource.com
mailto:josh.long@springsource.com

® | SPRING & CLOUD FOUNDRY
VIMWare' | 5ixss

Why Cloud Foundry?

We have amazing languages, tools and frameworks

Working

Idea Code

Sunday, December 9, 12

But how long to deploy?

working Deployed
code

Sunday, December 9, 12

But how long to deploy?

working Deployed
code

Sunday, December 9, 12

But how long to deploy?

working Deployed
code

Sunday, December 9, 12

But how long to deploy?

working
code

Deployed

unday, December 9, 12

But how long to deploy?

working Deployed
code

Months?

And if it’s the developers...

Imagine if architects had to be
the janitor for every building
they designed. This is how the
development team felt prior to
moving to Windows Azure.

Duncan Mackenzie Nov 07, 2011
http://www.infog.com/articles/Channel-9-Azure

Sunday, December 9, 12

http://www.infoq.com/author/Duncan-Mackenzie
http://www.infoq.com/author/Duncan-Mackenzie
http://www.infoq.com/articles/Channel-9-Azure
http://www.infoq.com/articles/Channel-9-Azure

Challenges of cloud deployment

* Yet another environment for your application to run in
— Different Java runtime
— Different databases — sometimes not relational!

- Dynamic environment = server names not fixed

Elastic scaling = servers come and go

Cloud applications must integrate with off cloud applications

Sunday, December 9, 12

Challenges of cloud deployment

Sunday, December 9, 12

Challenges of cloud deployment

These are problems
already solved by the
Spring framework

SPRING & CLOUD FOUNDRY
FEEXS

vmware

Why Spring?

Sunday, December 9, 12

Why Are We Here?

Software entities (classes,
modules, functions, etc.) should
be open for extension, but closed
for modification.

-Bob Martin

eeeeeeeeeeeeeeeeeee

Why Are We Here?

do NOT reinvent
the Wheel!

Sunday, December 9, 12

The Spring framework

» De-facto standard programming model for enterprise Java
- Two million+ developers

» Rapid evolution
— Spring 1.0 — March 2004
— Spring 2.0 — October 2006
— Spring 2.5 — December 2007
— Spring 3.0 — December 2009
— Spring 3.1 - December 2011
— Spring 3.2 - December 2012

« Complete backward compatibility

Sunday, December 9, 12

web tier
&

RIA

the cloud:

data

batch integration & access

. . mobile
processing messaging

service tier

/ NoSQL / Big
Data

1'he Spring rramework

lightweight traditional

Sunday, December 9, 12

Spring Makes Building Applications Easy...

Sunday, December 9, 12

Tell Spring About Your Objects

package org.springsource.examples.springsl.services;

@Configuration

@ComponentScan (“the.package.with.beans.in.it”)
public class ServicesConfiguration {

Sunday, December 9, 12

Tell Spring About Your Objects

public class Main {
static public void main (String [] args) throws Throwable {
ApplicationContext ac = new AnnotationConfigApplicationContext(
org.springsource.examples.spring3l.services.ServicesConfiguration.class);

Sunday, December 9, 12

Tell Spring About Your Objects

package the.package.with.beans.in.it;

@Service
public class CustomerService {

public Customer createCustomer(String firstName,
String lastName,
Date signupDate)

Sunday, December 9, 12

| want Database Access ...

package org.springsource.examples.springsl.services;

@Configuration
public class ServicesConfiguration {

@Bean
public DataSource dataSource () throws Exception {
SimpleDriverDataSource simpleDriverDataSource =
new SimpleDriverDataSource();

return simpleDriverDataSource;

}

Sunday, December 9, 12

| want Database Access ... with Hibernate 4 Support

package org.springsource.examples.springsl.services;

@Configuration
public class ServicesConfiguration {

@Bean
public SessionFactory sessionFactory () throws Exception {
Properties props = new Properties();
// ... show_sql, dialect, etc.
return new LocalSessionFactoryBuilder(dataSource())
.addAnnotatedClasses(Customer.class)
.addProperties(props)
JbuildSessionFactory();

Sunday, December 9, 12

| want Database Access ... with Hibernate 4 Support

package the.package.with.beans.in.it;

@Service
public class CustomerService {

@Inject
private SessionFactory sessionFactory,

public Customer createCustomer(String firstName,
String lastName,
Date signupDate) {
Customer customer = new Customer();
customer.setFirstName(firstName);,
customer.setLastName(lastName);
customer.setSignupDate(signupDate);

sessionFactory.getCurrentSession () .save (customer);
return customer;

Sunday, December 9, 12

| want Declarative Transaction Management...

package org.springsource.examples.springsl.services;

@Configuration
@EnableTransactionManagement
public class ServicesConfiguration {

@Bean

public PlatformTransactionManager transactionManager () throws Exception {
return new HibernateTransactionManager(this.sessionFactory());

}
}

Sunday, December 9, 12

| want Declarative Transaction Management...

package the.package.with.beans.in.it;

@Service
public class CustomerService {

@Inject
private SessionFactory sessionFactory;

@Transactional
public Customer createCustomer(String firstName,
String lastName,
Date signupDate) {
Customer customer = new Customer();
customer.setFirstName(firstName);,
customer.setLastName(lastName);
customer.setSignupDate(signupDate);

sessionFactory.getCurrentSession().save(customer);
return customer;

Sunday, December 9, 12

| want Declarative Cache Management...

package org.springsource.examples.springsl.services;

@Configuration
@EnableTransactionManagement
@EnableCaching

public class ServicesConfiguration {

@Bean

public CacheManager cacheManager () {
SimpleCacheManager scm = new SimpleCacheManager();
Cache cache = new ConcurrentMapCache("customers");

scm.setCaches(Arrays.asList(cache));
return scm;

}
}

Sunday, December 9, 12

| want Declarative Cache Management...

package the.package.with.beans.in.it;

@Service
public class CustomerService {

@Inject
private SessionFactory sessionFactory;

@Transactional
@Cacheable (“customers”)
public Customer createCustomer(String firstName,
String lastName,
Date signupDate) {
Customer customer = new Customer();
customer.setFirstName(firstName);
customer.setLastName(lastName);
customer.setSignupDate(signupDate);

sessionFactory.getCurrentSession().save(customer);
return customer;

Sunday, December 9, 12

| want a RESTful Endpoint...

package org.springsource.examples.spring3l.web;

@Controller
public class CustomerController {

@Inject
private CustomerService customerService;

@RequestMapping(value ="/customer/ {id}",
produces = MediaType.APPLICATION_JSON_VALUE)

public @ResponseBody Customer customerByld(@PathVariable("id") Integer id) {
return customersService.getCustomerById(id);

}

Sunday, December 9, 12

® | SPRING & CLOUD FOUNDRY
VIMWare' | 5ixss

Building Spring Applications
Targeting Cloud Foundry

UNDERSTANDING CLOUD FOUNDRY SERVICES

Cloud Foundry: Services

» Services are one of the extensibility planes in Cloud Foundry
— there are more services being contributed by the community daily!

- MySQL, Redis, MongoDB, RabbitMQ, PostgreSQL

Services may be shared across applications

Cloud Foundry abstracts the provisioning aspect of services through a uniform
API hosted in the cloud controller

It’s very easy to take an app and add a service to the app in a uniform way
— Cassandra? COBOL / CICS, Oracle

Sunday, December 9, 12

Cloud Foundry: Services

- Take Advantage of Services
— they cost nothing to setup
— they deliver value

» They Encourage Better Architectures
— Need a fast read-write cache? Redis is ready to go!
— Need to store long-tail documents? Give MongoDB a try

— Need to decouple what applications do from when they do it?
Use messaging and RabbitMQ

Sunday, December 9, 12

Cloud Foundry Exposes Services Through Environment Variables

$VCAP_SERVICES:

{"redis-2.2":[{"mame":"redis_sample","label":"redis-2.2","plan":"free",
"tags":["redis”,"redis-2.2","key-value","nosql"],

"credentials":

{"nostname":"172.50.48.40",

"host"."172.50.48.40",

"port":5023,
"password":"8e9a901f-987d-4544-9a9e-ab0c143b5142",
"name":"de82c4bb-bd08-46¢c0-a850-af6534171caid"}

H,
"mongodb-1.8":[{"name":"mongodb-e7d29","label":"mongodb-1.8","plan":"free","tags”:

Sunday, December 9, 12

Spring’s the Best Toolkit for Your Services

 Spring Data

— supports advanced JPA, MongoDB, Redis connectivity
» Spring AMQP, Spring Integration

— Supports messaging, and event-driven architectures
» Spring core

— Has best-of-breed support for RDBMS access, be it through JPA, JDBC, JDO, Hibernate,
etc.

Sunday, December 9, 12

Auto-Reconfiguration: Getting Started

 Deploy Spring apps to the cloud without changing a single line of code

 Cloud Foundry automatically re-configures bean definitions to bind to cloud
services

» Works with Spring and Grails

Sunday, December 9, 12

Auto-Reconfiguration: Relational DB

Detects beans of type javax.sgl.DataSource

Connects to MySQL or PostgreSQL services
— Specifies driver, url, username, password, validation query

Creates Commons DBCP or Tomcat DataSource
Replaces existing DataSource

<bean class = “...BasicDataSource” id="dataSource”>
<property name = “url” value = “jdbc:h2:mem”/>
<property name ="password” value =""/>
<property name = “username” value = “sa”/>
<property name = “driverClass” value = “com.h&.Driver”/>
</bean>

import org.apache.commons.dbcp.BasicDataSource;

@Bean(destroyMethod = "close")
public BasicDataSource dataSource() {

BasicDataSource bds = new BasicDataSource();
bds.setUrl("jdbc:hQ:mem");
bds.setPassword("");

bds.setUsername("sa");

bds.setDriverClass(Driver.class);

return bds;

Sunday, December 9, 12

Auto-Reconfiguration: ORM

» Adjusts Hibernate Dialect

- Changes hibernate.dialect property to
MySQLDialect (MylISAM) or PostgreSQLDialect

— org.springframework.orm.jpa.AbstractEntityManagerFactoryBean

— org.springframework.orm.hibernate3.AbstractSessionFactoryBean
(Spring 2.5 and 3.0)

— org.springframework.orm.hibernate3.SessionFactoryBuilderSupport
(Spring 3.1)

@Bean
public LocalContainerEntityManagerFactoryBean entityManager(){
LocalContainerEntityManagerFactoryBean lcem =
new LocalContainerEntityManagerFactoryBean();
lcem.setDataSource(dataSource());
return lcem;

}

Sunday, December 9, 12

Auto-Reconfiguration: How It Works

 Cloud Foundry installs a BeanFactoryPostProcessor in your application
context during staging

— Adds jar to your application

— Modifies web.xml to load BFPP
- Adds context file to contextConfigLocation
—web-app context-param
— Spring MVC DispatcherServlet init-param
 Adds PostgreSQL and MySQL driver jars as needed for DataSource

reconfiguration

Sunday, December 9, 12

http://web.xml
http://web.xml

® | SPRING & CLOUD FOUNDRY
VIMWare' | 5ixss

Building Spring Applications
Targeting Cloud Foundry

EXPLICITLY BINDING TO SERVICES FROM JAVA

The Environment

» Asking Questions
— You can introspect the environment variables (system.getenv(«..”)), OF...

— import the CloudFoundry runtime API from Java!
 (much simpler)

<dependency>

<groupld>org.cloudfoundry</groupld>
<artifactIld>cloudfoundry-runtime</artifactld>
<version>0.8.2&</version>

</dependency>

Sunday, December 9, 12

Accessing Services from Java

CloudEnvironment cloudEnvironment = new CloudEnvironment();

Collection<RedisServicelnfo> servicelnfos =
cloudEnvironment.getServicelnfos(RedisServicelnfo.class);

assert servicelnfos.size() > O : "there must be at least one bound Redis instance!";
RedisServicelnfo servicelnfo = servicelnfos.iterator().next(); // get the first one

RedisServiceCreator serviceCreator = new RedisServiceCreator();
RedisConnectionFactory cf = serviceCreator.createService(servicelnfo);

Sunday, December 9, 12

Accessing Services from Java

Cloud]

invironment e = new CloudEnvironment();

Iterable<RdbmsServiceInfo> dsServicelnformation =
e.getServiceInfos(RdbmsServiceInfo.class) ;

Iterable<RedisServiceInfo> redisServicelnformation =
e.getServicelnfos(RedisServiceInfo.class) ;

Iterable<RabbitServiceInfo> rabbitServiceInformation =
e.getServicelnfos(RabbitServiceInfo.class) ;

Iterable<MongoServiceInfo> mongoServiceInformation =
e.getServicelnfos(MongoServicelInfo.class) ;

Sunday, December 9, 12

Accessing Services from Spring Java Configuration

@Bean public RedisConnectionFactory redis () {

CloudEnvironment cloudEnvironment = new CloudEnvironment();

Collection<RedisServicelnfo> servicelnfos =
cloudEnvironment.getServiceInfos(RedisServicelnfo.class);

assert servicelnfos.size() > O : "there must be at least one bound Redis instance!";

RedisServicelnfo servicelnfo = servicelnfos.iterator().next(); // get the first one

RedisServiceCreator serviceCreator = new RedisServiceCreator();

RedisConnectionFactory cf = serviceCreator.createService(servicelnfo);

return cf;

Sunday, December 9, 12

® | SPRING & CLOUD FOUNDRY
VIMWare' | 5ixss

Building Spring Applications
Targeting Cloud Foundry

EXPLICITLY BINDING TO SERVICES FROM XML

Introducing... the Cloud Namespace

<cloud:> namespace for use in Spring app contexts
Provides application-level control of bean service bindings
- Recommended for development of new cloud apps

- Use when:

— You have multiple services of the same type

— You have multiple connecting beans of the same type
- e.g. DataSource, MongoDBFactory

— You have custom bean configuration
- e.g. DataSource pool size, connection properties

Sunday, December 9, 12

<cloud:service-scan>

« Scans all services bound to the application and creates a bean of an appropriate
type for each

— Same bean types as auto-reconfiguration
» Useful during early development phases

<beans ...

xmlns:cloud="http://schema.cloudfoundry.org/spring"
xsi:schemal.ocation="http://schema.cloudfoundry.org/spring

http://schema.cloudfoundry.org/spring/cloudfoundry-spring-0.8.xsd
L

<cloud:service-scan/>

</beans>

Sunday, December 9, 12

http://schema.cloudfoundry.org/spring
http://schema.cloudfoundry.org/spring
http://schema.cloudfoundry.org/spring
http://schema.cloudfoundry.org/spring
http://schema.cloudfoundry.org/spring/cloudfoundry-spring-0.8.xsd
http://schema.cloudfoundry.org/spring/cloudfoundry-spring-0.8.xsd

<cloud:service-scan> Autowire Dependencies

- Created beans can be autowired as dependencies
- Use @Qualifier with service name if multiple services of same type bound to
app

@Autowired(required=false)
private ConnectionFactory rabbitConnectionFactory;

@Autowired
private RedisConnectionFactory redisConnectionFactory;

@Autowired
@Qualifier("test_mysql_database")
private DataSource mysqglDataSource;

@Autowired(required=false)
@Qualifier("test_postgres_database")

private DataSource postgresDataSource;

Sunday, December 9, 12

<cloud:data-source>

» Configures a DataSource bean
— Commons DBCP or Tomcat DataSource

« Basic attributes:
— id: defaults to service name

— service-name: only needed if you have multiple relational database services bound to the
app

<cloud:data-source id="dataSource" service-name="mySQLSvc">
<cloud:pool pool-size="1-5"/>
<cloud:connection properties="charset=utf-8"/>
</cloud:data-source>

<bean class="org.sf.orm.jpa.LocalContainerEntityManagerFactoryBean"
id="entityManagerFactory">

<property name="dataSource" ref="dataSource"/>
</bean>

Sunday, December 9, 12

<cloud:properties>

- EXxposes basic information about services that can be consumed with Spring’s
property placeholder support

» Basic attributes:
— id: the name of the properties bean

 Properties automatically available when deploying Spring 3.1 applications

<cloud:properties id="cloudProperties" />
<context:property-placeholder properties-ref="cloudProperties"/>

@Autowired private Environment environment;

@Bean

public ComboPooledDataSource dataSource() throws Exception {
String user = this.environment.getProperty
("cloud.services.mysql.connection.username");
ComboPooledDataSource cpds =new ComboPooledDataSource();
cpds.setUser(user);

return cpds;
]

Sunday, December 9, 12

® | SPRING & CLOUD FOUNDRY
VIMWare' | 5ixss

Building Spring Applications
Targeting Cloud Foundry

THE SPRING ENVIRONMENT ABSTRACTION

Spring 3.1 Environment Abstraction

- Bean definitions for a specific environment (Profiles)
— e.g. development, testing, production
— Possibly different deployment environments
— Activate profiles by name
- spring.profiles.active system property
- Other means outside deployment unit
- “default” profile activates if no other profiles specified
» Custom resolution of placeholders
— Dependent on the actual environment
— Ordered property sources

« Requires Spring 3.1 (or later)

Sunday, December 9, 12

Isolating Cloud Foundry Configuration

» Switch between local, testing and Cloud Foundry deployments with Profiles

- “default” profile automatically activates by Spring unless something else is
activated

- “cloud” profile automatically activates on Cloud Foundry
— usage of the cloud namespace should occur within the cloud profile block

Sunday, December 9, 12

Isolating Cloud Foundry Configuration

@Configuration
@Profile ("default")
public class LocalConfiguration {
@Bean
public DataSource dataSource() {
BasicDataSource bds = new BasicDataSource();

// ...

return bds;

}
}

@Configuration
@Profile ("cloud")

public class CloudConfiguration {
private CloudEnvironment cloudEnvironment = new CloudEnvironment();

@Bean

public DataSource dataSource() {
Collection<RdbmsServiceInfo> rdbmsServicelnfo = cloudEnvironment.getServiceInfos(RdbmsServiceInfo.class);
RdbmsServiceCreator rdbmsServiceCreator = new RdbmsServiceCreator();
return rdbmsServiceCreator.createService(rdbmsServicelnfo.iterator().next());

}
}

Sunday, December 9, 12

Isolating Cloud Foundry Configuration

<bean class="org.sf.orm.jpa.LocalContainerEntityManagerFactoryBean">
<property name="dataSource" ref="dataSource"/>
</bean>

<beans profile="cloud">
<cloud:data-source id="dataSource" />
</beans>

<beans profile="default">
<bean class="org.a.commons.dbcp.BasicDataSource" id="dataSource">
<property name="url" value="jdbc:mysql://localhost/my_db" />
</bean>
</beans>

Sunday, December 9, 12

Cloud Properties

 Cloud Foundry uses Environment abstraction to automatically expose properties
to Spring 3.1 apps
— Basic information about the application, such as its name and the cloud provider
— Detailed connection information for bound services
e cloud.services.{service-name}.connection.{property}

- aliases for service name created based on the service type
—e.g. “cloud.services.mysqgl.connection.{property}”
—only if there is a single service for that type bound

Sunday, December 9, 12

Cloud Properties Example

» Use service properties to create your own connection factories

— e.g. c3p0 connection pool
import com.mchange.v2.c3p0.* ;

@Autowired
private Environment e;

@Bean
public ComboPooledDataSource epds (){
ComboPooledDataSource cpds = new ComboPooledDataSource ();

String host=e.getProperty("cloud.services.mysql.connection.host"),
port=e.getProperty("cloud.services.mysql.connection.port"),
name=e.getProperty("cloud.services.mysql.connection.name"),
pw=e.getProperty("cloud.services.mysql.connection.password");

cpds.set...(host ...);
return cpds;

}

Sunday, December 9, 12

® | SPRING & CLOUD FOUNDRY
VIMWare' | 5ixss

Building Spring Applications
Targeting Cloud Foundry

NOSQL WITH SPRING ON CLOUD FOUNDRY

Relational databases are great...

» SQL
— High-level
— Sorting
— Aggregation
» ACID semantics
» Well supported
—JDBC
— Hibernate/JPA
— Spring
- Well understood
— Developers
— Operators

Sunday, December 9, 12

... but they have limitations

 Object/relational impedance mismatch

« Complicated to map rich domain model to relational schema
- Difficult to handle semi-structured data, e.g. varying attributes
« Schema changes

- Extremely difficult/impossible to scale

» Poor performance for some use cases

Sunday, December 9, 12

Solution: Spend Money

http://upload.wikimedia.org/wikipedia/commons/e/e5/Rising_Sun_Yacht.JPG

Hire more DevOps
Use application-level sharding
Build your own middleware

http://www.trekbikes.com/us/en/bikes/road/race performance/madone_5 series/madone 5 2/#

Sunday, December 9, 12

Solution: Use NoSQL

Benefits

e Higher performance
e Higher scalability

e Richer data-model
e Schema-less

Drawbacks

e Limited transactions
e Relaxed consistency
e Unconstrained data

Sunday, December 9, 12

Growing in popularity...

Job Trends from Indeed.com
~=mongodb ==redis - cassandra ==couchdb ==simpledb

0.04 -

0.02

Percentage of Matching Job Postings

Jan"OG Jan"O? Jan"08 Jan'09 Jan'10 Jan"ll

Sunday, December 9, 12

data

http://www.springsource.org/spring-data

9

eSpring Data Key-value

eSpring Data Document

eSpring Data Graph

eSpring Data Column

eSpring Data Blob

eSpring Data JPA Repository / JDBC Extensions
eSpring Gemfire / Spring Hadoop ...

e Grails iINcOnSeQuential

Sunday, December 9, 12

http://www.springsource.org/spring-data
http://www.springsource.org/spring-data

Spring Data Building Blocks

e| ow level data access APls
v MongoTemplate, RedisTemplate ...

eObject Mapping (Java and GORM)

eCross Store Persistence Programming model

e Generic Repository support
eProductivity support in Roo and Grails

Sunday, December 9, 12

NoSQL with Redis

Sunday, December 9, 12

NoSQL offers several data store categories

Key-Value Column Document
, : A

1 1 e

- = ||-\

2 1 ——
1 1 B

Redis,
Riak

Graph

Sunday, December 9, 12

Spring Data Redis

= Works with Redis

e super fast

e “data structure server” (maps, lists, sets, queue, etc.)
= RedisTemplate reduces tedious boilerplate code to one liners
= CacheManager implementation

e works with Spring 3.1's CacheManager implementation
= RedisMessageListenerContainer

o provides same queue / publish-subscribe features as with JMS and AMQP

Sunday, December 9, 12

Configuring Redis support

@Bean
public RedisConnectionFactory redisConnectionFactory() {
return new JedisConnectionFactory();

}

@Bean
public RedisTemplate<String, Object> redisTemplate)
throws Exception {
RedisTemplate<String, Object> ro = new RedisTemplate<String, Object>();
ro.setConnectionFactory(redisConnectionFactory());
return ro;

}

Sunday, December 9, 12

Handling Persistence Duties with Redis...

@Inject RedisTemplate redisTemplate;

@QOverride

public Customer getCustomerByld(long id) {
String In = (String)redisTemplate.opsForValue () .get (lastNameKey (id)) ;
String fn = (String)redisTemplate.opsForValue () .get (firstNameKey (id));
return new Customer(id, fn, In);

}

orivate void setCustomerValues(long lid, String fn, String In) {
this.redisTemplate.opsForValue () .set (lastNameKey (lid), In);
this.redisTemplate.opsForValue () .set (firstNameKey (lid), fn);

}

@Qverride

public Customer updateCustomer(long id, String fn, String In) {
setCustomerValues(id, fn, In);
return getCustomerByld(id);

}

Sunday, December 9, 12

NoSQL with MongoDB

Sunday, December 9, 12

NoSQL offers several data store categories

Key-Value

Column

1

Document

e,//’””!él

MongoDB
\

Graph

Sunday, December 9, 12

Spring Data MongoDB

= works with MongoDB

= provides obvious API integrations:
 MongoTemplate

» Mongo-backed MessageStore (Spring Integration)
= Advanced API integrations, too:

e Cross-store persistence

» MongoRepository (built on Spring Data JPA)

Sunday, December 9, 12

Simple Domain Class

public class Person {

private String id;
private String name;
private int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

}

public String getId() {
return id;

}
public String getName() {

return name;

}
public int getAge() {

return age;

}

Sunday, December 9, 12

Mongo Template

Direct Usage of the Mongo Template:

public class MongoApp {
private static final Log log = LogFactory.getLog(MongoApp.class);
public static void main(String[] args) throws Exception {
MongoOperations mongoOps = new MongoTemplate(new Mongo(), "database");
mongoOps.insert(new Person("Joe", 34));
log.info(mongoOps.findOne (new Query(where("name").is("Joe")), Person.class));

mongoOps .dropCollection("person”);

Sunday, December 9, 12

Mongo Template

Direct Usage of the Mongo Template:

public class MongoApp {

- - | - —_— 1

private static fina) .getLog(MongoApp.class);

public static void 1 Insert into Eerson irows Exception {
Collection

MongoOperations m S plate(new Mongo(), "database");

mongoOps.insert(new Person("Joe", 34));
log.info(mongoOps.findOne (new Query(where("name").is("Joe")), Person.class));

mongoOps .dropCollection(“person”);

Sunday, December 9, 12

Mongo Template

Direct Usage of the Mongo Template:

public class MongoApp {
private static final Log log = LogFactory.getLog(MongoApp.class);

public static void main(String[] args) throws Exception {

MongoOper findOne using query: { "name" : "Joe"} go(), "database");
in db.collection: database.Person

mongoOps .

—
log.info(mongoOps.findOne (new Query(where("name").is("Joe")), Person.class));

mongoOps .dropCollection("person”);

Sunday, December 9, 12

Mongo Template

Direct Usage of the Mongo Template:

public class MongoApp {
private static final Log log = LogFactory.getLog(MongoApp.class);
public static void main(String[] args) throws Exception {

MongoOperations mongoOps = new MongoTemplate(new Mongo(), "database");

mong

Dropped collection [database.person]
log.inf ("Joe")), Person.class));

mongoOps .dropCollection(“person”);

Sunday, December 9, 12

JPA and MongoDB can be used in cross-store persistence

JPA “Customer” with a “Surveylnfo” Document
@Entity
public class Customer {
eId
€GeneratedvValue(strategy = GenerationType.IDENTITY)
private Long id;
private String firstName;

private String lastName;

@RelatedDocument
private SurveyInfo surveyInfo;

// getters and setters omitted

Sunday, December 9, 12

Using a Cross-Store

Saving a Customer with a Surverylinfo

Customer customer = new Customer();

customer.setFirstName("Sven");

customer.setLastName("Olafsen”);

SurveyInfo surveyInfo = new SurveyInfo()
.addQuestionAndAnswer("age”, "22")
.addQuestionAndAnswer("married”, "Yes")
.addQuestionAndAnswer(“citizenship”, "Norwegian");

customer.setSurveyInfo(surveyInfo);

customerRepository.save(customer) ;

Sunday, December 9, 12

Using a Cross-Store

Saving a Customer with a Surverylni Create Customer

Customer customer = new Customer();

customer.setFirstName("Sven");

customer.setLastName("Olafsen”);

SurveyInfo surveyInfo = new SurveyInfo()
.addQuestionAndAnswer("age”, "22")
.addQuestionAndAnswer("married”, "Yes")
.addQuestionAndAnswer(“citizenship”, "Norwegian");

customer.setSurveyInfo(surveyInfo);

customerRepository.save(customer) ;

Sunday, December 9, 12

Using a Cross-Store

Saving a Customer with a Surverylinfo

Customer customer = new
customer.setFirstName("S
customer.setLastName("Olueee.
SurveyInfo surveyInfo = new SurveyInfo()
.addQuestionAndAnswer("age”, "22")
.addQuestionAndAnswer("married”, "Yes")
.addQuestionAndAnswer(“citizenship”, "Norwegian");
customer.setSurveyInfo(surveyInfo);
customerRepository.save(customer);

Create Surveylnfo

Sunday, December 9, 12

Using a Cross-Store

Saving a Customer with a Surverylinfo

Customer customer = new Customer();
customer.setFirstName("Sven");
customer.setLastName("Olafsen"):

-2ddQui Assign Survey to Customer

customer.setSurveyInfo(surveyInfo);
customerRepository.save(customer) ;

()

esll)
; 'Norwegian");

Sunday, December 9, 12

Using a Cross-Store

Saving a Customer with a Surverylinfo

Customer customer = new Customer();
customer.setFirstName("Sven");
customer.setLastName("Olafsen”);
SurveyInfo surveyInfo = new SurveyInfo()

.addQuestion
.addQuestion Save s")
.addQuestion "Norwegian");

customer.setSusveys. ocurveyzuzouy;
customerRepository .sSave(customer) ;

Sunday, December 9, 12

Using a Cross-Store

Saving a Customer with a Surverylinfo

Customer customer = new Customer();
customer.setFirstName("Sven");
customer.setLastName("Olafsen”);
SurveyInfo surveyInfo = new SurveyInfo()

.addQuestion
.addQuestion Save s")
.addQuestion "Norwegian");

customer.setSusveys. ocurveyzuzouy;
customerRepository .sSave(customer) ;

Mongo Document:

{ "_id" : ObjectId("4d9eB8bb6e3c55287£87d4b79%e"),
" entity id" : 1,
_entity class" : "org.springframework.data.mongodb.examples.custsvc.domain.Customer”,
_entity field name" : "surveyInfo",
"questionsAndAnswers” : { "married" : "Yes",
nagen . “22" :
"citizenship" : "Norwegian" },
_entity field class" : "org.springframework.data.mongodb.examples.custsvc.domain.SurveyInfo" }

Sunday, December 9, 12

® | SPRING & CLOUD FOUNDRY
VIMWare' | 5ixss

Building Spring Applications
Targeting Cloud Foundry

MESSAGING WITH RABBITMQ ON CLOUD FOUNDRY

bash — 100x21
Password: srssrsk
Successfully logged into [http://api.cloudfoundry.com)

jlongmbpl7:~ jlong$ vmc services

EEEEEEEEESITIES Systeu Services ssssssssssssss

DS Y G oo e e e e s s e s s e s e e s s s e +

Service | Version | Description
o ——— P B +

| 1.4.1 | Atmos object store

mongodb | 1.8 | MongoDB NoSQL store
mysql | S.1 | MySQL database service
postgresq

rabbitmg | RabbitMQ messaging service

. - -

semesssnsss Provisioned Services sessssssssss

e e ———— +

Not confidential. Tell everyone. 74

Sunday, December 9, 12

original “cloud scale” messaging

4
o |
M
'

Sunday, December 9, 12

Messaging Use Cases

Decoupling

producer

~

consumer

shopping cart sending request CC merchant

Sunday, December 9, 12

Messaging Use Cases

producer

Bidirectional Decoupling

— -

eg. remote procedure call

consumer

Sunday, December 9, 12

Messaging Use Cases

producer

consumer

Bidirectional Decoupling

— —

producer

b

eg. place order and wait for confirmation

Sunday, December 9, 12

Messaging Use Cases

Bidirectional Decoupling

producer

consumer

-

eg. place order and wait for confirmation

consumer producer

Sunday, December 9, 12

Messaging Use Cases

work distribution and decoupling

_ — consumer
producer —_— consumer

distribution can be duplicate or round-robin:
- duplication for information (logging, auditing, etc)
- round robin for scaling and load balancing

Sunday, December 9, 12

AMQP

= Sending and Receiving AMQP messages

@Component @Component
public class MessageSender { public class MessageReceiver {
@Autowired @Autowired
private AmgpTemplate amqgpTemplate; private RabbitTemplate rabbitTemplate;
public void send(String message) { public void read() throws Exception {
this.amqgpTemplate.convertAndSend(

, String value = rabbitTemplate.receiveAndConvert("myQueueName");
"myExchange", "some.routing.key", message);)

}

Sunday, December 9, 12

@starbuxman | josh.long@springsource.com
http://slideshare.net/joshlong

\\\\ ‘\'ﬁ*

Questions?

Sunday, December 9, 12

mailto:josh.long@springsource.com
mailto:josh.long@springsource.com
http://slideshare.net/joshlong
http://slideshare.net/joshlong

