
© 2012 SpringOne 2GX 2012. All rights reserved. Do not distribute without permission.

Spring on Cloud Foundry:
 a Marriage Made in Heaven

Josh Long
Spring Developer Advocate, SpringSource, a Division of VMWare
http://www.joshlong.com || @starbuxman || josh.long@springsource.com

Sunday, December 9, 12

http://www.joshlong.com
http://www.joshlong.com
mailto:josh.long@springsource.com
mailto:josh.long@springsource.com

Spring Developer Advocate
twitter: @starbuxman
weibo: @springsource
josh.long@springsource.com

2

About Josh Long (龙之春)

Sunday, December 9, 12

mailto:josh.long@springsource.com
mailto:josh.long@springsource.com

About Josh Long

Spring Developer Advocate
twitter: @starbuxman
josh.long@springsource.com

Contributor To:

•Spring Integration
•Spring Batch
•Spring Hadoop
•Activiti Workflow Engine
•Akka Actor engine

3
Sunday, December 9, 12

mailto:josh.long@springsource.com
mailto:josh.long@springsource.com

© 2012 SpringOne 2GX 2012. All rights reserved. Do not distribute without permission.

Why Cloud Foundry?

Sunday, December 9, 12

We have amazing languages, tools and frameworks

5

Idea Working
Code

Sunday, December 9, 12

But how long to deploy?

6

Deployedworking
code

Sunday, December 9, 12

But how long to deploy?

6

Hours?

Deployedworking
code

Sunday, December 9, 12

But how long to deploy?

6

Days?
Hours?

Deployedworking
code

Sunday, December 9, 12

But how long to deploy?

6

Days?

Weeks?

Hours?

Deployedworking
code

Sunday, December 9, 12

But how long to deploy?

6

Days?

Weeks?

Months?

Hours?

Deployedworking
code

Sunday, December 9, 12

And if it’s the developers...

7

Imagine if architects had to be
the janitor for every building
they designed. This is how the
development team felt prior to
moving to Windows Azure.
Duncan Mackenzie Nov 07, 2011
http://www.infoq.com/articles/Channel-9-Azure

Sunday, December 9, 12

http://www.infoq.com/author/Duncan-Mackenzie
http://www.infoq.com/author/Duncan-Mackenzie
http://www.infoq.com/articles/Channel-9-Azure
http://www.infoq.com/articles/Channel-9-Azure

• Yet another environment for your application to run in
– Different Java runtime
– Different databases – sometimes not relational!

• Dynamic environment ⇒ server names not fixed

• Elastic scaling ⇒ servers come and go

• Cloud applications must integrate with off cloud applications

Challenges of cloud deployment

Sunday, December 9, 12

Challenges of cloud deployment

Sunday, December 9, 12

Challenges of cloud deployment

These are problems
already solved by the
Spring framework

Sunday, December 9, 12

© 2012 SpringOne 2GX 2012. All rights reserved. Do not distribute without permission.

Why Spring?

Sunday, December 9, 12

10

Why Are We Here?

Software entities (classes,
modules, functions, etc.) should
be open for extension, but closed
for modification.

 -Bob Martin

”“

Sunday, December 9, 12

11

do NOT reinvent
the Wheel!

Why Are We Here?

Sunday, December 9, 12

• De-facto standard programming model for enterprise Java
• Two million+ developers
• Rapid evolution

– Spring 1.0 – March 2004
– Spring 2.0 – October 2006
– Spring 2.5 – December 2007
– Spring 3.0 – December 2009
– Spring 3.1 - December 2011
– Spring 3.2 - December 2012

• Complete backward compatibility

The Spring framework

Sunday, December 9, 12

13

Spring’s aim:

bring simplicity to java development

web tier
&

RIA
service tier batch

processing
integration &
messaging

data
access

 / NoSQL / Big
Data

mobile

tc Server
Tomcat

Jetty

lightweight

CloudFoundry
Google App Engine
Amazon BeanStalk

Others

the cloud:

WebSphere
JBoss AS
WebLogic

 (on legacy versions, too!)

traditional

The Spring framework

Sunday, December 9, 12

NOT CONFIDENTIAL -- TELL EVERYONE

Spring Makes Building Applications Easy...

14

Sunday, December 9, 12

Tell Spring About Your Objects

15

package org.springsource.examples.spring31.services;
...
@Configuration
@ComponentScan(“the.package.with.beans.in.it”)
public class ServicesConfiguration {

...

}

Sunday, December 9, 12

Tell Spring About Your Objects

16

public class Main {
 static public void main (String [] args) throws Throwable {
 ApplicationContext ac = new AnnotationConfigApplicationContext(
 org.springsource.examples.spring31.services.ServicesConfiguration.class);
 ...
 }
}

Sunday, December 9, 12

Tell Spring About Your Objects

17

package the.package.with.beans.in.it;

@Service
public class CustomerService {

 public Customer createCustomer(String firstName,
 String lastName,
 Date signupDate) {

 }

 ...

}

Sunday, December 9, 12

I want Database Access ...

18

package org.springsource.examples.spring31.services;
...
@Configuration
public class ServicesConfiguration {

 @Bean
 public DataSource dataSource() throws Exception {
 SimpleDriverDataSource simpleDriverDataSource =
 new SimpleDriverDataSource();

 return simpleDriverDataSource;
 }

}

Sunday, December 9, 12

I want Database Access ... with Hibernate 4 Support

19

package org.springsource.examples.spring31.services;
...
@Configuration
public class ServicesConfiguration {
 ...

 @Bean
 public SessionFactory sessionFactory() throws Exception {
 Properties props = new Properties();
 // ... show_sql, dialect, etc.
 return new LocalSessionFactoryBuilder(dataSource())
 .addAnnotatedClasses(Customer.class)
 .addProperties(props)
 .buildSessionFactory();
 }

}

Sunday, December 9, 12

I want Database Access ... with Hibernate 4 Support

20

package the.package.with.beans.in.it;
...
@Service
public class CustomerService {

 @Inject
 private SessionFactory sessionFactory;

 public Customer createCustomer(String firstName,
 String lastName,
 Date signupDate) {
 Customer customer = new Customer();
 customer.setFirstName(firstName);
 customer.setLastName(lastName);
 customer.setSignupDate(signupDate);

 sessionFactory.getCurrentSession().save(customer);
 return customer;
 }

 ...

}

Sunday, December 9, 12

I want Declarative Transaction Management...

21

package org.springsource.examples.spring31.services;
...
@Configuration
@EnableTransactionManagement
public class ServicesConfiguration {

 ...

 @Bean
 public PlatformTransactionManager transactionManager() throws Exception {
 return new HibernateTransactionManager(this.sessionFactory());
 }
}

Sunday, December 9, 12

I want Declarative Transaction Management...

22

package the.package.with.beans.in.it;
...
@Service
public class CustomerService {

 @Inject
 private SessionFactory sessionFactory;

 @Transactional
 public Customer createCustomer(String firstName,
 String lastName,
 Date signupDate) {
 Customer customer = new Customer();
 customer.setFirstName(firstName);
 customer.setLastName(lastName);
 customer.setSignupDate(signupDate);

 sessionFactory.getCurrentSession().save(customer);
 return customer;
 }
 ...
}

Sunday, December 9, 12

I want Declarative Cache Management...

23

package org.springsource.examples.spring31.services;
...
@Configuration
@EnableTransactionManagement
@EnableCaching
public class ServicesConfiguration {
 ...

 @Bean
 public CacheManager cacheManager() {
 SimpleCacheManager scm = new SimpleCacheManager();
 Cache cache = new ConcurrentMapCache("customers");
 scm.setCaches(Arrays.asList(cache));
 return scm;
 }
}

Sunday, December 9, 12

I want Declarative Cache Management...

24

package the.package.with.beans.in.it;
...
@Service
public class CustomerService {

 @Inject
 private SessionFactory sessionFactory;

 @Transactional
 @Cacheable(“customers”)
 public Customer createCustomer(String firstName,
 String lastName,
 Date signupDate) {
 Customer customer = new Customer();
 customer.setFirstName(firstName);
 customer.setLastName(lastName);
 customer.setSignupDate(signupDate);

 sessionFactory.getCurrentSession().save(customer);
 return customer;
 }
}

Sunday, December 9, 12

I want a RESTful Endpoint...

25

package org.springsource.examples.spring31.web;
..

@Controller
public class CustomerController {

 @Inject
 private CustomerService customerService;

 @RequestMapping(value = "/customer/{id}",
 produces = MediaType.APPLICATION_JSON_VALUE)
 public @ResponseBody Customer customerById(@PathVariable("id") Integer id) {
 return customerService.getCustomerById(id);
 }
 ...
}

Sunday, December 9, 12

© 2012 SpringOne 2GX 2012. All rights reserved. Do not distribute without permission.

Building Spring Applications
Targeting Cloud Foundry

UNDERSTANDING CLOUD FOUNDRY SERVICES

Sunday, December 9, 12

Cloud Foundry: Services

• Services are one of the extensibility planes in Cloud Foundry
– there are more services being contributed by the community daily!

• MySQL, Redis, MongoDB, RabbitMQ, PostgreSQL

• Services may be shared across applications

• Cloud Foundry abstracts the provisioning aspect of services through a uniform
API hosted in the cloud controller

• It’s very easy to take an app and add a service to the app in a uniform way
– Cassandra? COBOL / CICS, Oracle

27
Sunday, December 9, 12

Cloud Foundry: Services

• Take Advantage of Services
– they cost nothing to setup
– they deliver value

• They Encourage Better Architectures
– Need a fast read-write cache? Redis is ready to go!
– Need to store long-tail documents? Give MongoDB a try
– Need to decouple what applications do from when they do it?

Use messaging and RabbitMQ

28
Sunday, December 9, 12

Cloud Foundry Exposes Services Through Environment Variables

29

$VCAP_SERVICES:
{"redis-2.2":[{"name":"redis_sample","label":"redis-2.2","plan":"free",
"tags":["redis","redis-2.2","key-value","nosql"],
"credentials":
{"hostname":"172.30.48.40",
"host":"172.30.48.40",
"port":5023,
"password":"8e9a901f-987d-4544-9a9e-ab0c143b5142",
"name":"de82c4bb-bd08-46c0-a850-af6534f71ca3"}
}],
"mongodb-1.8":[{"name":"mongodb-e7d29","label":"mongodb-1.8","plan":"free","tags”:
………………….

Sunday, December 9, 12

Spring’s the Best Toolkit for Your Services

• Spring Data
– supports advanced JPA, MongoDB, Redis connectivity

• Spring AMQP, Spring Integration
– Supports messaging, and event-driven architectures

• Spring core
– Has best-of-breed support for RDBMS access, be it through JPA, JDBC, JDO, Hibernate,

etc.

30
Sunday, December 9, 12

Auto-Reconfiguration: Getting Started

• Deploy Spring apps to the cloud without changing a single line of code
• Cloud Foundry automatically re-configures bean definitions to bind to cloud

services
• Works with Spring and Grails

31
Sunday, December 9, 12

Auto-Reconfiguration: Relational DB
• Detects beans of type javax.sql.DataSource
• Connects to MySQL or PostgreSQL services

– Specifies driver, url, username, password, validation query
• Creates Commons DBCP or Tomcat DataSource
• Replaces existing DataSource

32

import org.apache.commons.dbcp.BasicDataSource;
...
@Bean(destroyMethod = "close")
public BasicDataSource dataSource(){

 BasicDataSource bds = new BasicDataSource();
 bds.setUrl("jdbc:h2:mem");
 bds.setPassword("");
 bds.setUsername("sa");
 bds.setDriverClass(Driver.class);
 return bds;
}

<bean class = “...BasicDataSource” id=”dataSource”>
 <property name = “url” value = “jdbc:h2:mem”/>
 <property name =”password” value =””/>
 <property name = “username” value = “sa”/>
 <property name = “driverClass” value = “com.h2.Driver”/>
</bean>

Sunday, December 9, 12

Auto-Reconfiguration: ORM

• Adjusts Hibernate Dialect
• Changes hibernate.dialect property to

MySQLDialect (MyISAM) or PostgreSQLDialect
– org.springframework.orm.jpa.AbstractEntityManagerFactoryBean
– org.springframework.orm.hibernate3.AbstractSessionFactoryBean

(Spring 2.5 and 3.0)
– org.springframework.orm.hibernate3.SessionFactoryBuilderSupport

(Spring 3.1)

33

@Bean
public LocalContainerEntityManagerFactoryBean entityManager(){
 LocalContainerEntityManagerFactoryBean lcem =
 new LocalContainerEntityManagerFactoryBean();
 lcem.setDataSource(dataSource());
 return lcem;	
}

Sunday, December 9, 12

Auto-Reconfiguration: How It Works

• Cloud Foundry installs a BeanFactoryPostProcessor in your application
context during staging
– Adds jar to your application
– Modifies web.xml to load BFPP

• Adds context file to contextConfigLocation
– web-app context-param
– Spring MVC DispatcherServlet init-param

• Adds PostgreSQL and MySQL driver jars as needed for DataSource
reconfiguration

34
Sunday, December 9, 12

http://web.xml
http://web.xml

© 2012 SpringOne 2GX 2012. All rights reserved. Do not distribute without permission.

Building Spring Applications
Targeting Cloud Foundry

EXPLICITLY BINDING TO SERVICES FROM JAVA

Sunday, December 9, 12

The Environment
• Asking Questions

– You can introspect the environment variables (System.getenv(“..”)), or...
– import the CloudFoundry runtime API from Java!

• (much simpler)

36

 <dependency>
 <groupId>org.cloudfoundry</groupId>
 <artifactId>cloudfoundry-runtime</artifactId>
 <version>0.8.2</version>
 </dependency>

Sunday, December 9, 12

Accessing Services from Java

37

 CloudEnvironment cloudEnvironment = new CloudEnvironment();

 Collection<RedisServiceInfo> serviceInfos =
 cloudEnvironment.getServiceInfos(RedisServiceInfo.class);

 assert serviceInfos.size() > 0 : "there must be at least one bound Redis instance!";

 RedisServiceInfo serviceInfo = serviceInfos.iterator().next(); // get the first one

 RedisServiceCreator serviceCreator = new RedisServiceCreator();
 RedisConnectionFactory cf = serviceCreator.createService(serviceInfo);

Sunday, December 9, 12

Accessing Services from Java

38

CloudEnvironment e = new CloudEnvironment();

Iterable<RdbmsServiceInfo> dsServiceInformation =
 e.getServiceInfos(RdbmsServiceInfo.class) ;

Iterable<RedisServiceInfo> redisServiceInformation =
 e.getServiceInfos(RedisServiceInfo.class) ;

Iterable<RabbitServiceInfo> rabbitServiceInformation =
 e.getServiceInfos(RabbitServiceInfo.class) ;

Iterable<MongoServiceInfo> mongoServiceInformation =
 e.getServiceInfos(MongoServiceInfo.class) ;

Sunday, December 9, 12

Accessing Services from Spring Java Configuration

39

@Bean public RedisConnectionFactory redis(){

 CloudEnvironment cloudEnvironment = new CloudEnvironment();
 Collection<RedisServiceInfo> serviceInfos =
 cloudEnvironment.getServiceInfos(RedisServiceInfo.class);
 assert serviceInfos.size() > 0 : "there must be at least one bound Redis instance!";
 RedisServiceInfo serviceInfo = serviceInfos.iterator().next(); // get the first one
 RedisServiceCreator serviceCreator = new RedisServiceCreator();
 RedisConnectionFactory cf = serviceCreator.createService(serviceInfo);
 return cf;
 }

Sunday, December 9, 12

© 2012 SpringOne 2GX 2012. All rights reserved. Do not distribute without permission.

Building Spring Applications
Targeting Cloud Foundry

EXPLICITLY BINDING TO SERVICES FROM XML

Sunday, December 9, 12

Introducing... the Cloud Namespace

• <cloud:> namespace for use in Spring app contexts
• Provides application-level control of bean service bindings
• Recommended for development of new cloud apps
• Use when:

– You have multiple services of the same type
– You have multiple connecting beans of the same type

• e.g. DataSource, MongoDBFactory
– You have custom bean configuration

• e.g. DataSource pool size, connection properties

41
Sunday, December 9, 12

<cloud:service-scan>

• Scans all services bound to the application and creates a bean of an appropriate
type for each
– Same bean types as auto-reconfiguration

• Useful during early development phases

42

<beans	 ...
 xmlns:cloud="http://schema.cloudfoundry.org/spring"
	 xsi:schemaLocation="http://schema.cloudfoundry.org/spring
 http://schema.cloudfoundry.org/spring/cloudfoundry-spring-0.8.xsd
	 ...">

 <cloud:service-scan/>

</beans>

Sunday, December 9, 12

http://schema.cloudfoundry.org/spring
http://schema.cloudfoundry.org/spring
http://schema.cloudfoundry.org/spring
http://schema.cloudfoundry.org/spring
http://schema.cloudfoundry.org/spring/cloudfoundry-spring-0.8.xsd
http://schema.cloudfoundry.org/spring/cloudfoundry-spring-0.8.xsd

<cloud:service-scan> Autowire Dependencies

• Created beans can be autowired as dependencies
• Use @Qualifier with service name if multiple services of same type bound to

app

43

@Autowired(required=false)
private ConnectionFactory rabbitConnectionFactory;

@Autowired
private RedisConnectionFactory redisConnectionFactory;

@Autowired
@Qualifier("test_mysql_database")
private DataSource mysqlDataSource;

@Autowired(required=false)
@Qualifier("test_postgres_database")
private DataSource postgresDataSource;

Sunday, December 9, 12

<cloud:data-source>

• Configures a DataSource bean
– Commons DBCP or Tomcat DataSource

• Basic attributes:
– id: defaults to service name
– service-name: only needed if you have multiple relational database services bound to the

app

44

<cloud:data-source id="dataSource" service-name="mySQLSvc">
<cloud:pool pool-size="1-5"/>
<cloud:connection properties="charset=utf-8"/>

</cloud:data-source>

<bean class="org.sf.orm.jpa.LocalContainerEntityManagerFactoryBean"
id="entityManagerFactory">
 <property name="dataSource" ref="dataSource"/>
</bean>

Sunday, December 9, 12

<cloud:properties>
• Exposes basic information about services that can be consumed with Spring’s

property placeholder support
• Basic attributes:

– id: the name of the properties bean
• Properties automatically available when deploying Spring 3.1 applications

45

<cloud:properties id="cloudProperties" />
<context:property-placeholder properties-ref="cloudProperties"/>

@Autowired private Environment environment;

@Bean
public ComboPooledDataSource dataSource() throws Exception {
 String user = this.environment.getProperty
 ("cloud.services.mysql.connection.username");
 ComboPooledDataSource cpds = new ComboPooledDataSource();
 cpds.setUser(user);
 return cpds;
}

Sunday, December 9, 12

© 2012 SpringOne 2GX 2012. All rights reserved. Do not distribute without permission.

Building Spring Applications
Targeting Cloud Foundry

THE SPRING ENVIRONMENT ABSTRACTION

Sunday, December 9, 12

Spring 3.1 Environment Abstraction

• Bean definitions for a specific environment (Profiles)
– e.g. development, testing, production
– Possibly different deployment environments
– Activate profiles by name

• spring.profiles.active system property
• Other means outside deployment unit
• “default” profile activates if no other profiles specified

• Custom resolution of placeholders
– Dependent on the actual environment
– Ordered property sources

• Requires Spring 3.1 (or later)

47
Sunday, December 9, 12

Isolating Cloud Foundry Configuration

• Switch between local, testing and Cloud Foundry deployments with Profiles
• “default” profile automatically activates by Spring unless something else is

activated
• “cloud” profile automatically activates on Cloud Foundry

– usage of the cloud namespace should occur within the cloud profile block

48
Sunday, December 9, 12

Isolating Cloud Foundry Configuration

49

 @Configuration
 @Profile("cloud")
 public class CloudConfiguration {
 private CloudEnvironment cloudEnvironment = new CloudEnvironment();

 @Bean
 public DataSource dataSource() {
 Collection<RdbmsServiceInfo> rdbmsServiceInfo = cloudEnvironment.getServiceInfos(RdbmsServiceInfo.class);
 RdbmsServiceCreator rdbmsServiceCreator = new RdbmsServiceCreator();
 return rdbmsServiceCreator.createService(rdbmsServiceInfo.iterator().next());
 }
 }

 @Configuration
 @Profile("default")
 public class LocalConfiguration {
 @Bean
 public DataSource dataSource() {
 BasicDataSource bds = new BasicDataSource();
 // ...
 return bds;
 }
 }

Sunday, December 9, 12

Isolating Cloud Foundry Configuration

50

<bean class="org.sf.orm.jpa.LocalContainerEntityManagerFactoryBean">
 <property name="dataSource" ref="dataSource"/>
</bean>

<beans profile="cloud">
	 <cloud:data-source id="dataSource" />
</beans>
	
<beans profile="default">
	 <bean class="org.a.commons.dbcp.BasicDataSource" id="dataSource">
	 <property name="url" value="jdbc:mysql://localhost/my_db" />
	 </bean>
</beans>

Sunday, December 9, 12

Cloud Properties

• Cloud Foundry uses Environment abstraction to automatically expose properties
to Spring 3.1 apps
– Basic information about the application, such as its name and the cloud provider
– Detailed connection information for bound services

•cloud.services.{service-name}.connection.{property}
• aliases for service name created based on the service type

– e.g. “cloud.services.mysql.connection.{property}”
– only if there is a single service for that type bound

51
Sunday, December 9, 12

Cloud Properties Example

• Use service properties to create your own connection factories
– e.g. c3p0 connection pool

52

import com.mchange.v2.c3p0.* ;

@Autowired
private Environment e;

@Bean
public ComboPooledDataSource cpds (){
 ComboPooledDataSource cpds = new ComboPooledDataSource ();

 String host=e.getProperty("cloud.services.mysql.connection.host"),
 port=e.getProperty("cloud.services.mysql.connection.port"),
 name=e.getProperty("cloud.services.mysql.connection.name"),
 pw=e.getProperty("cloud.services.mysql.connection.password");

 cpds.set...(host ...);
 return cpds;
}

Sunday, December 9, 12

© 2012 SpringOne 2GX 2012. All rights reserved. Do not distribute without permission.

Building Spring Applications
Targeting Cloud Foundry

NOSQL WITH SPRING ON CLOUD FOUNDRY

Sunday, December 9, 12

Relational databases are great...

• SQL
– High-level
– Sorting
– Aggregation

• ACID semantics
• Well supported

– JDBC
– Hibernate/JPA
– Spring

• Well understood
– Developers
– Operators

54
Sunday, December 9, 12

... but they have limitations

• Object/relational impedance mismatch
• Complicated to map rich domain model to relational schema
• Difficult to handle semi-structured data, e.g. varying attributes
• Schema changes
• Extremely difficult/impossible to scale
• Poor performance for some use cases

55
Sunday, December 9, 12

Solution: Spend Money

http://upload.wikimedia.org/wikipedia/commons/e/e5/Rising_Sun_Yacht.JPG

OR

http://www.trekbikes.com/us/en/bikes/road/race_performance/madone_5_series/madone_5_2/#

56

• Hire more DevOps
• Use application-level sharding
• Build your own middleware
• …

Sunday, December 9, 12

Solution: Use NoSQL

Benefits
• Higher performance
• Higher scalability
• Richer data-model
• Schema-less

Drawbacks
• Limited transactions
• Relaxed consistency
• Unconstrained data

57

Sunday, December 9, 12

Growing in popularity…

58

Sunday, December 9, 12

59

•Spring Data Key-value
•Spring Data Document
•Spring Data Graph
•Spring Data Column
•Spring Data Blob
•Spring Data JPA Repository / JDBC Extensions
•Spring Gemfire / Spring Hadoop ...
•Grails iNcOnSeQuentiaL

http://www.springsource.org/spring-data

Sunday, December 9, 12

http://www.springsource.org/spring-data
http://www.springsource.org/spring-data

60

Spring Data Building Blocks

•Low level data access APIs
✓MongoTemplate, RedisTemplate ...
•Object Mapping (Java and GORM)
•Cross Store Persistence Programming model
•Generic Repository support
•Productivity support in Roo and Grails

Sunday, December 9, 12

Not confidential. Tell everyone.

NoSQL with Redis

61

Sunday, December 9, 12

62

NoSQL offers several data store categories

ColumnKey-Value Document Graph

Redis,
Riak

Sunday, December 9, 12

Not confidential. Tell everyone.

Spring Data Redis

§Works with Redis
• super fast

• “data structure server” (maps, lists, sets, queue, etc.)

§RedisTemplate reduces tedious boilerplate code to one liners
§CacheManager implementation
• works with Spring 3.1’s CacheManager implementation

§RedisMessageListenerContainer
• provides same queue / publish-subscribe features as with JMS and AMQP

63

Sunday, December 9, 12

NOT CONFIDENTIAL -- TELL EVERYONE

Configuring Redis support

64

 @Bean
 public RedisConnectionFactory redisConnectionFactory() {
 return new JedisConnectionFactory();
 }

 @Bean
 public RedisTemplate<String, Object> redisTemplate()
 throws Exception {
 RedisTemplate<String, Object> ro = new RedisTemplate<String, Object>();
 ro.setConnectionFactory(redisConnectionFactory());
 return ro;
 }

Sunday, December 9, 12

NOT CONFIDENTIAL -- TELL EVERYONE

Handling Persistence Duties with Redis...

65

 @Inject RedisTemplate redisTemplate;

 @Override
 public Customer getCustomerById(long id) {
 String ln = (String)redisTemplate.opsForValue().get(lastNameKey(id)) ;
 String fn = (String)redisTemplate.opsForValue().get(firstNameKey(id));
 return new Customer(id, fn, ln);
 }

 private void setCustomerValues(long lid, String fn, String ln) {
 this.redisTemplate.opsForValue().set(lastNameKey(lid), ln);
 this.redisTemplate.opsForValue().set(firstNameKey(lid), fn);
 }

 @Override
 public Customer updateCustomer(long id, String fn, String ln) {
 setCustomerValues(id, fn, ln);
 return getCustomerById(id);
 }

Sunday, December 9, 12

Not confidential. Tell everyone.

NoSQL with MongoDB

66

Sunday, December 9, 12

67

NoSQL offers several data store categories

ColumnKey-Value Document Graph

MongoDB
\

Sunday, December 9, 12

Not confidential. Tell everyone.

Spring Data MongoDB

§works with MongoDB
§provides obvious API integrations:
• MongoTemplate

• Mongo-backed MessageStore (Spring Integration)

§Advanced API integrations, too:
• cross-store persistence

• MongoRepository (built on Spring Data JPA)

68

Sunday, December 9, 12

69

Simple Domain Class

Sunday, December 9, 12

70

Mongo Template

Direct Usage of the Mongo Template:

Sunday, December 9, 12

70

Mongo Template

Direct Usage of the Mongo Template:

Insert into “Person”
Collection

Sunday, December 9, 12

70

Mongo Template

Direct Usage of the Mongo Template:

findOne using query: { "name" : "Joe"}
in db.collection: database.Person

Sunday, December 9, 12

70

Mongo Template

Direct Usage of the Mongo Template:

Dropped collection [database.person]

Sunday, December 9, 12

71

JPA and MongoDB can be used in cross-store persistence

JPA “Customer” with a “SurveyInfo” Document

Sunday, December 9, 12

72

Using a Cross-Store

Saving a Customer with a SurveryInfo

Sunday, December 9, 12

72

Using a Cross-Store

Saving a Customer with a SurveryInfo Create Customer

Sunday, December 9, 12

72

Using a Cross-Store

Saving a Customer with a SurveryInfo

Create SurveyInfo

Sunday, December 9, 12

72

Using a Cross-Store

Saving a Customer with a SurveryInfo

Assign Survey to Customer

Sunday, December 9, 12

72

Using a Cross-Store

Saving a Customer with a SurveryInfo

Save

Sunday, December 9, 12

72

Using a Cross-Store

Saving a Customer with a SurveryInfo

Save

Mongo Document:

Sunday, December 9, 12

© 2012 SpringOne 2GX 2012. All rights reserved. Do not distribute without permission.

Building Spring Applications
Targeting Cloud Foundry

MESSAGING WITH RABBITMQ ON CLOUD FOUNDRY

Sunday, December 9, 12

Not confidential. Tell everyone. 74

Sunday, December 9, 12

75

original “cloud scale” messaging

Sunday, December 9, 12

NOT CONFIDENTIAL -- TELL EVERYONE

Messaging Use Cases

76

producer consumer

Decoupling

shopping cart sending request CC merchant

Sunday, December 9, 12

NOT CONFIDENTIAL -- TELL EVERYONE

Messaging Use Cases

77

producer consumer

Bidirectional Decoupling

eg: remote procedure call

Sunday, December 9, 12

NOT CONFIDENTIAL -- TELL EVERYONE

Messaging Use Cases

78

producer producer

Bidirectional Decoupling

eg: place order and wait for confirmation

consumer

Sunday, December 9, 12

NOT CONFIDENTIAL -- TELL EVERYONE

Messaging Use Cases

79

producer consumer producer

Bidirectional Decoupling

eg: place order and wait for confirmation

consumer

Sunday, December 9, 12

NOT CONFIDENTIAL -- TELL EVERYONE

Messaging Use Cases

80

distribution can be duplicate or round-robin:
 - duplication for information (logging, auditing, etc)
 - round robin for scaling and load balancing

producer consumer

work distribution and decoupling

consumer

Sunday, December 9, 12

@Component
public class MessageSender {

 @Autowired
 private AmqpTemplate amqpTemplate;

 public void send(String message) {
 this.amqpTemplate.convertAndSend(
 "myExchange", "some.routing.key", message);
 }

}

§Sending and Receiving AMQP messages

81

AMQP

@Component
public class MessageReceiver {

 @Autowired
 private RabbitTemplate rabbitTemplate;

 public void read() throws Exception {
 String value = rabbitTemplate.receiveAndConvert("myQueueName");
 }

}

Sunday, December 9, 12

 @starbuxman | josh.long@springsource.com

Questions?

http://slideshare.net/joshlong

Sunday, December 9, 12

mailto:josh.long@springsource.com
mailto:josh.long@springsource.com
http://slideshare.net/joshlong
http://slideshare.net/joshlong

