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Josh Long (龙之春) 介绍

Spring 开发人员技术布道师 

twitter: @starbuxman
josh.long@springsource.com

•参与贡献的项目：

• Spring Integration
• Spring Batch 
• Spring Hadoop
• Activiti 工作流程引擎
• 使用 Akka Spring 模块
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为什么选择 Cloud Foundry？
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我们有令人惊叹的语言、工具和框架
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创意 有效代码

Sunday, December 9, 12



但是部署需要多长时间？
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已部署有效代码
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但是部署需要多长时间？
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已部署有效代码

几小时？
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但是部署需要多长时间？
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已部署有效代码

几天？
几小时？
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但是部署需要多长时间？
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已部署有效代码

几天？
几周？

几小时？
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但是部署需要多长时间？

6

已部署有效代码

几天？
几周？

几个月？

几小时？
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但是如果是开发人员...

设想一下，如果建筑师必须管
理他们所设计的每座建筑，情
况将如何？这就是开发团队在
迁移至 Windows Azure 之前所
面临的情况。Duncan Mackenzie，2011 年 11 月 7 日
http://www.infoq.com/articles/Channel-9-Azure
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云部署面临的难题

• 仍是针对应用程序的另一环境，以便使它们能够在
– 不同的 Java 运行时中运行

– 不同的数据库（有时并非关系数据库）中运行

• 动态环境 ⇒ 服务器名称不固定

• 弹性扩展 ⇒ 服务器来来往往

• 云应用程序必须与非云应用程序相集成
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云部署面临的难题

• 仍是针对应用程序的另一环境，以便使它们能够在
– 不同的 Java 运行时中运行

– 不同的数据库（有时并非关系数据库）中运行

• 动态环境 ⇒ 服务器名称不固定

• 弹性扩展 ⇒ 服务器来来往往

• 云应用程序必须与非云应用程序相集成

Spring 框架已解决这些问题
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为什么选择 Spring？

Sunday, December 9, 12



10

我们为什么在这里？

软件实体（类、模块、功能等）
应该可以扩展，而不允许修改。 

 -Bob Martin

”“
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千万不要
彻底改造车轮！

我们为什么在这里？

Sunday, December 9, 12



• 企业 Java 的实际标准编程模型

• 两百多万位开发人员

• 快速发展
– Spring 1.0 – 2004 年 3 月

– Spring 2.0 – 2006 年 10 月

– Spring 2.5 – 2007 年 12 月

– Spring 3.0 – 2009 年 12 月

– Spring 3.1 -  2011 年 12 月

– Spring 3.2 -  2012 年 12 月

• 完全向后兼容性

Spring 框架
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Spring 的目标：

tc Server
Tomcat
Jetty

轻量型

CloudFoundry
Google App Engine
Amazon BeanStalk

云： 

WebSphere
JBoss AS
WebLogic

（基于旧版本、工具）

传统

Spring 框架

Web 层 
与 服务层 批处理

集成
与

数据访问
 / NoSQL / 

移动 安全

Sunday, December 9, 12



14

Spring 框架生态系统
框架 说明
Spring 框架 基础
Spring Security（又称为 Acegi） 提供身份验证、授权和实例级安全的可扩展框架

Spring Web Flow 用于构建多页流的出色 Web 框架

Spring Web Services 契约优先、以文档为中心的 SOAP 和 XML Web 服务

Spring Data 简化 SQL 与 NoSQL 存储的数据访问

Spring Batch 强大的批处理框架

Spring Integration 实施企业级集成模式

Spring Flex 支持 Adobe BlazeDS

Spring HATEOAS 支持符合 HATEOAS 模式的应用程序
Spring AMQP 用于连接 AMQP 消息代理的框架
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并非所有方面都均衡
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NOT CONFIDENTIAL -- TELL EVERYONE 16

Spring 使构建应用程序变得简单...
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package org.springsource.examples.spring31.services;
... 
@Configuration
@ComponentScan(“the.package.with.beans.in.it”)
public class ServicesConfiguration {
 
...

} 

告诉 Spring 您的目标
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public class Main { 
  static public void main (String [] args) throws Throwable { 
          ApplicationContext ac = new AnnotationConfigApplicationContext(
                 org.springsource.examples.spring31.services.ServicesConfiguration.class);
          ...
  }
}

告诉 Spring 您的目标
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package the.package.with.beans.in.it;

@Service
public class CustomerService {

    public Customer createCustomer(String firstName, 
                                                                   String lastName, 
                                                                   Date signupDate)    { 

    }

    ...

}

告诉 Spring 您的目标
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package org.springsource.examples.spring31.services;
... 
@Configuration
public class ServicesConfiguration {
 
  
    @Bean
    public DataSource dataSource() throws Exception {
        SimpleDriverDataSource simpleDriverDataSource = 
           new SimpleDriverDataSource();
         ....
        return simpleDriverDataSource;
    }
 
}

我想要数据库访问...
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package org.springsource.examples.spring31.services;
... 
@Configuration
public class ServicesConfiguration {
    ...

    @Bean
    public SessionFactory sessionFactory() throws Exception {
        Properties props = new Properties();
        // ... show_sql, dialect, etc.
        return new LocalSessionFactoryBuilder( dataSource() )
                .addAnnotatedClasses(Customer.class)
                .addProperties(props)
                .buildSessionFactory();
    }

}

我想要数据库访问... 具有 Hibernate 4 支持
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package the.package.with.beans.in.it;
...
@Service
public class CustomerService {

    @Inject
    private SessionFactory sessionFactory;

    public Customer createCustomer(String firstName, 
                                                                   String lastName, 
                                                                   Date signupDate)    { 
        Customer customer = new Customer();
        customer.setFirstName(firstName);
        customer.setLastName(lastName);
        customer.setSignupDate(signupDate);

        sessionFactory.getCurrentSession().save(customer);
        return customer;
    }

    ...

}

我想要数据库访问... 具有 Hibernate 4 支持

Sunday, December 9, 12



23

package org.springsource.examples.spring31.services;
... 
@Configuration
@EnableTransactionManagement
public class ServicesConfiguration {

   ...

   @Bean
    public PlatformTransactionManager transactionManager() throws Exception {
        return new HibernateTransactionManager(this.sessionFactory());
    }
}

我想要公布的事务管理...

Sunday, December 9, 12



24

package the.package.with.beans.in.it;
...
@Service
public class CustomerService {

    @Inject
    private SessionFactory sessionFactory;

    @Transactional
    public Customer createCustomer(String firstName, 
                                                                   String lastName, 
                                                                   Date signupDate)    { 
        Customer customer = new Customer();
        customer.setFirstName(firstName);
        customer.setLastName(lastName);
        customer.setSignupDate(signupDate);

        sessionFactory.getCurrentSession().save(customer);
        return customer;
    }
    ...
}

我想要公布的事务管理...
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package org.springsource.examples.spring31.services;
... 
@Configuration
@EnableTransactionManagement
@EnableCaching
public class ServicesConfiguration {
   ...

    @Bean 
    public CacheManager cacheManager() {
        SimpleCacheManager scm = new SimpleCacheManager();
        Cache cache = new ConcurrentMapCache("customers");
        scm.setCaches(Arrays.asList(cache));
        return scm;
    }
}

我想要公布的缓存管理...
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package the.package.with.beans.in.it;
...
@Service
public class CustomerService {

    @Inject
    private SessionFactory sessionFactory;

    @Transactional
    @Cacheable(“customers”)
    public Customer createCustomer(String firstName, 
                                                                   String lastName, 
                                                                   Date signupDate)    { 
        Customer customer = new Customer();
        customer.setFirstName(firstName);
        customer.setLastName(lastName);
        customer.setSignupDate(signupDate);

        sessionFactory.getCurrentSession().save(customer);
        return customer;
    }
}

我想要公布的缓存管理...
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package org.springsource.examples.spring31.web;
..

@Controller
public class CustomerController {

    @Inject
    private CustomerService customerService;

    @RequestMapping(value = "/customer/{id}",
                                       produces = MediaType.APPLICATION_JSON_VALUE)
    public @ResponseBody Customer customerById(@PathVariable("id") Integer id) {
        return customerService.getCustomerById(id);
    }
     ...
}

我想要基于 REST 的终端...
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可移植性是王道!

• Spring 始终专注于可移植性
– Web 服务器和应用程序服务器之间的可移植性

–云之间的可移植性

–环境之间的可移植性
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依赖项注入

• 组件不再负责查找它们的依赖项
• 相反，依赖项在实例化时传入

–构造函数注入
–资源库注入
–字段注入

• 也称为控制反转 – 不要呼叫我们（以获取依赖项），
我们将呼叫您（即，传入依赖项）
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构建针对 Cloud Foundry 的 Spring 应用程序
了解 CLOUD FOUNDRY 服务
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Cloud Foundry：服务

• 服务是 Cloud Foundry 中可扩展的其中一个方面
–社区每天还会贡献更多服务！

• MySQL、Redis、MongoDB、RabbitMQ、PostgreSQL 

• 服务可在不同应用程序间共享

• Cloud Foundry 通过托管在云控制器中的统一 API 将服务的配置抽象化

• 使用统一方法获取应用程序并将服务添加应用程序非常简单
– Cassandra? COBOL / CICS, Oracle
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Cloud Foundry：服务

• 利用服务 

–设置服务无需成本

–服务能够实现价值

• 它们能够促进实现更出色的体系结构
–需要快速读写缓存？Redis 随时待命！

–需要存储长尾文档？不妨试试 MongoDB

–需要解除应用程序操作内容和操作时间的耦合？
请使用消息传递和 RabbitMQ
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Cloud Foundry 通过环境变量公开服务

33

$VCAP_SERVICES: 
{"redis-2.2":[{"name":"redis_sample","label":"redis-2.2","plan":"free",
"tags":["redis","redis-2.2","key-value","nosql"],
"credentials":
{"hostname":"172.30.48.40",
"host":"172.30.48.40",
"port":5023,
"password":"8e9a901f-987d-4544-9a9e-ab0c143b5142",
"name":"de82c4bb-bd08-46c0-a850-af6534f71ca3"}
}],
"mongodb-1.8":[{"name":"mongodb-e7d29","label":"mongodb-1.8","plan":"free","tags”:
………………….
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Spring 是针对您服务的最佳工具包

• Spring Data
–支持高级 JPA、MongoDB、Redis 连接  

• Spring AMQP、Spring Integration

–支持消息传递和事件驱动型体系结构

• Spring Core
–可通过 JPA、JDBC、JDO、Hibernate 等实现对 RDBMS 访问的最佳支持
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自动重新配置：入門

• 无需更改任何代码即可将 Spring 应用程序部署到云

• Cloud Foundry 自动重新配置 Bean 定义以绑定到云服务

• 使用 Spring 和 Grails
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import org.apache.commons.dbcp.BasicDataSource;
...
@Bean(destroyMethod = "close")
public BasicDataSource dataSource(){ 

   BasicDataSource  bds = new BasicDataSource();
   bds.setUrl( "jdbc:h2:mem");
   bds.setPassword("");
   bds.setUsername("sa");
   bds.setDriverClass( Driver.class);
   return bds;
}

<bean class = “...BasicDataSource” id=”dataSource”>
  <property name = “url” value = “jdbc:h2:mem”/>
  <property name =”password” value =””/>
  <property name = “username” value = “sa”/>
  <property name = “driverClass” value = “com.h2.Driver”/>
</bean> 

自动重新配置：关系数据库
• 检测类型 javax.sql.DataSource 的 Bean

• 连接到 MySQL 或 PostgreSQL 服务
– 指定驱动程序、URL、用户名、密码、验证查询

• 创建 Commons DBCP 或 Tomcat DataSource

• 替换现有 DataSource
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@Bean 
public LocalContainerEntityManagerFactoryBean entityManager(){ 
  LocalContainerEntityManagerFactoryBean lcem =
         new LocalContainerEntityManagerFactoryBean();
  lcem.setDataSource( dataSource());
  return lcem;	
}

自动重新配置：ORM

• 调整 Hibernate 方言

• 将 hibernate.dialect 属性更改为
MySQLDialect (MyISAM) 或 PostgreSQLDialect
– org.springframework.orm.jpa.AbstractEntityManagerFactoryBean
– org.springframework.orm.hibernate3.AbstractSessionFactoryBean 
（Spring 2.5 和 3.0）

– org.springframework.orm.hibernate3.SessionFactoryBuilderSupport
(Spring 3.1)
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• Cloud Foundry 在暂存期间会在您的应用程序上下文中安装
BeanFactoryPostProcessor
–将 jar 添加到您的应用程序

–修改 web.xml 以加载 BFPP

• 将上下文文件添加到 contextConfigLocation

– web-app context-param
– Spring MVC DispatcherServlet init-param

• 添加 DataSource 重新配置所需的 PostgreSQL 和 MySQL 驱动程序

38

自动重新配置：工作原理
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构建针对 Cloud Foundry 的
Spring 应用程序

明确地通过 java 绑定至服务
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• 提问
–您可以反省环境变量 (System.getenv(“..”)), 或...

–从 Java 导入 CloudFoundry 运行时！ 

• （简单多了）

40

 <dependency> 
     <groupId>org.cloudfoundry</groupId>
      <artifactId>cloudfoundry-runtime</artifactId>
      <version>0.8.2</version>
    </dependency>

环境
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        CloudEnvironment cloudEnvironment = new CloudEnvironment();

        Collection<RedisServiceInfo> serviceInfos =   
             cloudEnvironment.getServiceInfos(RedisServiceInfo.class);

        assert serviceInfos.size() > 0 : "there must be at least one bound Redis instance!";

        RedisServiceInfo serviceInfo = serviceInfos.iterator().next(); // get the first one

        RedisServiceCreator serviceCreator = new RedisServiceCreator();
        RedisConnectionFactory cf = serviceCreator.createService(serviceInfo);
 

通过 Java 访问服务
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CloudEnvironment e = new CloudEnvironment();

Iterable<RdbmsServiceInfo> dsServiceInformation = 
     e.getServiceInfos( RdbmsServiceInfo.class) ;

Iterable<RedisServiceInfo> redisServiceInformation = 
     e.getServiceInfos( RedisServiceInfo.class) ;

Iterable<RabbitServiceInfo> rabbitServiceInformation = 
     e.getServiceInfos( RabbitServiceInfo.class) ;

Iterable<MongoServiceInfo> mongoServiceInformation = 
     e.getServiceInfos( MongoServiceInfo.class) ;

通过 Java 访问服务
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@Bean public RedisConnectionFactory redis(){

        CloudEnvironment cloudEnvironment = new CloudEnvironment();
        Collection<RedisServiceInfo> serviceInfos =   
             cloudEnvironment.getServiceInfos(RedisServiceInfo.class);
        assert serviceInfos.size() > 0 : "there must be at least one bound Redis instance!";
        RedisServiceInfo serviceInfo = serviceInfos.iterator().next(); // get the first one
        RedisServiceCreator serviceCreator = new RedisServiceCreator();
        RedisConnectionFactory cf = serviceCreator.createService(serviceInfo);
        return cf;
 }

通过 Spring Java 配置访问服务

Sunday, December 9, 12



© 2012 SpringOne 2GX 2012. All rights reserved. Do not distribute without permission. 

构建针对 Cloud Foundry 的
Spring 应用程序

明确地通过 XML 绑定至服务
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• <cloud:> 命名空间在 Spring 应用程序上下文中使用

• 提供 Bean 服务绑定的应用程序级控制

• 推荐用于开发新的云应用程序

• 在以下情况下使用：
–具有相同类型的多个服务

–具有相同类型的多个 Bean

• 例如 DataSource、MongoDBFactory

–具有自定义 Bean 配置
• 例如 DataSource 池大小、连接属性

45

云命名空间简介

Sunday, December 9, 12



<cloud:service-scan>

• 扫描绑定至应用程序的所有服务并为每个服务创建应用程序类型的
–与自动重新配置相同的 Bean 类型

• 在早期开发阶段十分有用

46

<beans	 ...  
       xmlns:cloud="http://schema.cloudfoundry.org/spring"
	 xsi:schemaLocation="http://schema.cloudfoundry.org/spring 
       http://schema.cloudfoundry.org/spring/cloudfoundry-spring-0.8.xsd
	 ...">

           <cloud:service-scan/>

</beans>
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<cloud:service-scan> 自动关联依赖项

• 创建可以自动关联为依赖项的 Bean

• 如果有多个相同类型的服务绑定到应用程序，则使用带有服务名称的 @Qualifier

47

@Autowired(required=false)
private ConnectionFactory rabbitConnectionFactory;

@Autowired
private RedisConnectionFactory redisConnectionFactory;

@Autowired
@Qualifier("test_mysql_database")
private DataSource mysqlDataSource;

@Autowired(required=false)
@Qualifier("test_postgres_database")
private DataSource postgresDataSource;
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<cloud:data-source>

• 配置 DataSource Bean

– Commons DBCP 或 Tomcat DataSource

• 基本属性：
– ID：服务名称默认值

–服务名称：仅在将多个关系数据库服务绑定到应用程序时需要

48

<cloud:data-source id="dataSource" service-name="mySQLSvc">
<cloud:pool pool-size="1-5"/>
<cloud:connection properties="charset=utf-8"/>

</cloud:data-source>

<bean class="org.sf.orm.jpa.LocalContainerEntityManagerFactoryBean"
id="entityManagerFactory">
        <property name="dataSource" ref="dataSource"/>
</bean>
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<cloud:properties>
• 公开有关可通过 Spring 的属性占位符支持使用的服务的基本信息

• 基本属性：
– ID：属性 Bean 的名称

• 属性在部署 Spring 3.1 应用程序时自动可用

49

<cloud:properties id="cloudProperties" />
<context:property-placeholder properties-ref="cloudProperties"/>
@Autowired private Environment environment;

@Bean
public ComboPooledDataSource dataSource() throws Exception { 
   String user = this.environment.getProperty
            ("cloud.services.mysql.connection.username");
   ComboPooledDataSource cpds  = new  ComboPooledDataSource();
   cpds.setUser(user);
   return cpds; 
}
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构建针对 Cloud Foundry 的
Spring 应用程序 

Spring 环境抽象
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• 特定环境的 Bean 定义（配置文件）
–例如开发、测试、生产

–可能不同的部署环境

–通过名称激活配置文件
• spring.profiles.active 系统属性

• 部署单元外的其他方式

• 如果未指定配置文件，则将激活“默认”配置文件

• 自定义占位符解析
–取决于实际环境 

–有序的属性源

51

Spring 3.1 环境抽象
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• 通过配置文件在本地、测试和 Cloud Foundry 部署间切换

• 除非已激活其他配置文件，否则 Spring 自动激活“默认”配置文件

• “云”配置文件自动在 Cloud Foundry 上激活
–云命名空间的使用应在云配置文件块内进行

52

隔离 Cloud Foundry 配置
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   @Configuration
    @Profile("cloud")
    public class CloudConfiguration {
        private CloudEnvironment cloudEnvironment = new CloudEnvironment();

        @Bean
        public DataSource dataSource() {
            Collection<RdbmsServiceInfo> rdbmsServiceInfo = cloudEnvironment.getServiceInfos(RdbmsServiceInfo.class);
            RdbmsServiceCreator rdbmsServiceCreator = new RdbmsServiceCreator();
            return rdbmsServiceCreator.createService(rdbmsServiceInfo.iterator().next());
        }
    }

    @Configuration
    @Profile("default")
    public class LocalConfiguration {
        @Bean
        public DataSource dataSource() {
            BasicDataSource bds = new BasicDataSource();
            // ... 
            return bds;
        }
    }

隔离 Cloud Foundry 配置
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<bean class="org.sf.orm.jpa.LocalContainerEntityManagerFactoryBean">
          <property name="dataSource" ref="dataSource"/>
</bean>

<beans profile="cloud">
	 <cloud:data-source id="dataSource" />
</beans>
	
<beans profile="default">
	 <bean class="org.a.commons.dbcp.BasicDataSource" id="dataSource">
	           <property name="url" value="jdbc:mysql://localhost/my_db" />
	 </bean>
</beans>

隔离 Cloud Foundry 配置
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云属性

• Cloud Foundry 使用环境抽象以自动将属性公开至 Spring 3.1 应用程序
–应用程序的基本信息，例如名称和云提供商

–绑定服务的详细连接信息
•cloud.services.{service-name}.connection.{property}
• 根据服务类型创建的服务名称别名

–例如“cloud.services.mysql.connection.{property}”

–仅在存在此类型绑定的单个服务时
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• 使用服务属性创建您自己的连接工厂
–例如 c3p0 连接池

56

import com.mchange.v2.c3p0.* ; 

@Autowired 
private Environment  e; 

@Bean 
public ComboPooledDataSource cpds (){
 ComboPooledDataSource cpds = new ComboPooledDataSource ();

 String host=e.getProperty("cloud.services.mysql.connection.host"),
        port=e.getProperty("cloud.services.mysql.connection.port"),
        name=e.getProperty("cloud.services.mysql.connection.name"),
        pw=e.getProperty("cloud.services.mysql.connection.password");

 cpds.set...( host ... );
 return cpds;
} 

云属性示例
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构建针对 Cloud Foundry 的
Spring 应用程序 

基于 Cloud Foundry 使用 Spring 和 NoSQL
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• SQL
–高级别

–排序

–聚合

• ACID 语义
• 良好支持

– JDBC
– Hibernate/JPA
– Spring

• 易于理解

58

关系数据库十分强大...
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• 对象/关系阻抗不匹配

• 富域模型与关系架构间的映射较复杂

• 难于处理半结构化数据，例如不断变化的属性

• 架构更改

• 无法/极难扩展

• 某些情形下的性能极低

59

... 但也存在限制
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解决方案：加大投入

http://upload.wikimedia.org/wikipedia/commons/e/e5/Rising_Sun_Yacht.JPG

或者

http://www.trekbikes.com/us/en/bikes/road/race_performance/madone_5_series/madone_5_2/#

60

• 雇佣更多的开发运营人员
• 使用应用程序级分区
• 构建您自己的中间件

Sunday, December 9, 12



解决方案：使用 NoSQL 

优点
•更高的性能
•更高的可扩展性
•更丰富的数据模型

缺点
•有限的事务
•松弛的一致性
•不受约束的数据

61
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日渐流行…

62
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•Spring Data 键值
•Spring Data 文档
•Spring Data 图形
•Spring Data 列
•Spring Data Blob
•Spring Data JPA 资源库/JDBC 扩展
•Spring Gemfire/Spring Hadoop ...
•Grails iNcOnSeQuentiaL

http://www.springsource.org/spring-data
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Spring Data 构建基础模块

•低级别数据访问 API
✓MongoTemplate、RedisTemplate ...

•对象映射（Java 和 GORM）
•跨存储持久性编程模型
•通用资源库支持 

•Roo 和 Grails 中的高效性支持
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具有 Redis 的 NoSQL
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列Key-Value

Redis, 
Riak

NoSQL 提供几种数据存储类别

文档 图形键值
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Not confidential. Tell everyone.

Spring Data Redis

• 使用 Redis
•非常快
• “数据结构服务器”（映射、列表、集、队列等）

• RedisTemplate 将冗长的样板代码减少为单个衬套
• CacheManager 实施

•使用 Spring 3.1 的 CacheManager 实施

• RedisMessageListenerContainer
•提供与 JMS 和 AMQP 相同的队列/发布-订阅功能

67
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NOT CONFIDENTIAL -- TELL EVERYONE 68

  @Bean
    public RedisConnectionFactory redisConnectionFactory() {
        return new JedisConnectionFactory();
    }

    @Bean
    public RedisTemplate<String, Object> redisTemplate() 
                        throws Exception {
        RedisTemplate<String, Object> ro = new RedisTemplate<String, Object>();
        ro.setConnectionFactory(redisConnectionFactory());
        return ro;
    }

配置 Redis 支持
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NOT CONFIDENTIAL -- TELL EVERYONE 69

    @Inject RedisTemplate redisTemplate; 

    @Override
    public Customer getCustomerById(long id) {
        String ln = (String)redisTemplate.opsForValue().get(lastNameKey(id))  ;
        String fn = (String)redisTemplate.opsForValue().get(firstNameKey(id));
        return new Customer(id, fn, ln);
    }

  private void setCustomerValues(long lid, String fn, String ln) {
        this.redisTemplate.opsForValue().set(lastNameKey(lid), ln);
        this.redisTemplate.opsForValue().set(firstNameKey(lid), fn);
    }

    @Override
    public Customer updateCustomer(long id, String fn, String ln) {
        setCustomerValues(id, fn, ln);
        return getCustomerById(id);
    }

使用 Redis 处理持久性责任...
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具有 MongoDB 的 NoSQL
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NoSQL 提供几种数据存储类别

列键值 文档 图形 

MongoDB 
\
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Spring Data MongoDB

§使用 MongoDB 
§提供显而易见的 API 集成：
•MongoTemplate  

•以 Mongo 为后盾的 MessageStore（Spring 集成）

§同样具有高级 API 集成：
•跨存储持久性
•MongoRepository（基于 Spring Data JPA 构建）
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简单的域类
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Mongo 模板

直接使用 Mongo 模板：
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Mongo 模板

直接使用 Mongo 模板：

插入“Person”
集合
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Mongo 模板

直接使用 Mongo 模板：

findOne在 db.collection: database.Person 中
使用 query: { "name" : "Joe"} 
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Mongo 模板

直接使用 Mongo 模板：

删除集合 [database.person]
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通用资源库 

在特定类别资源库上进行通用 CRUD 操作的界面
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切换并排序资源库

用法：

切换并排序资源库： 扩展“CrudRepository” 
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切换并排序资源库

用法：

切换并排序资源库： 扩展“CrudRepository” 
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自定义资源库 

自定义资源库： 

关键词： 
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关键词 示例 逻辑结果

GreaterThan findByAgeGreaterThan(int age) {"age" : {"$gt" : age}}

LessThan findByAgeLessThan(int age) {"age" : {"$lt" : age}}

Between findByAgeBetween(int from, int to) {"age" : {"$gt" : from, "$lt" : to}}

NotNull findByFirstnameNotNull() {”firstname" : {"$ne" : null}}

Null findByFirstnameNull() {”firstname" : null}

Like findByFirstnameLike(String name) "firstname" : firstname} (regex)

自定义资源库 

自定义资源库： 

关键词： 
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JPA 和 MongoDB 可在跨存储持久性中使用

具有“SurveyInfo”文档的 JPA“Customer”
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使用跨存储功能

保存具有 SurveryInfo 的 Customer

Mongo 文档：
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使用跨存储功能

保存具有 SurveryInfo 的 Customer

Mongo 文档：
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使用跨存储功能

保存具有 SurveryInfo 的 Customer

Mongo 文档：

创建 Customer
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使用跨存储功能

保存具有 SurveryInfo 的 Customer

Mongo 文档：

创建 SurveyInfo

Sunday, December 9, 12



79

使用跨存储功能

保存具有 SurveryInfo 的 Customer

Mongo 文档：

将 Survey 分配给 Customer
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使用跨存储功能

保存具有 SurveryInfo 的 Customer

Mongo 文档：

保存
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构建针对 Cloud Foundry 的
Spring 应用程序 

基于Cloud Foundry 使用 RabbitMQ传递消息
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并非机密。请告诉每个人。. 81
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原始的“云规模”消息
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NOT CONFIDENTIAL -- TELL EVERYONE 83

消息使用情形

生成者 使用者

解耦

购物车向云控制器商家发送请求
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NOT CONFIDENTIAL -- TELL EVERYONE
84并非机密 – 请告诉每个人

消息使用情形

生成者 用户

双向解耦

例如：远程过程调用
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消息使用情形

生成者 生成者

双向解耦

例如：下订单和等待确认

使用者
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消息使用情形

生成者 使用者 生成者

双向解耦

例如：下订单和等待确认

使用者
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NOT CONFIDENTIAL -- TELL EVERYONE 87并非机密 – 请告诉每个人

消息使用情形

分发可以重复或循环：
 - 复制信息（记录、审核等）
 - 循环扩展和负载平衡

生成者 使用者

工作分发和解耦

使用者
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@Component 
public class MessageSender {

  @Autowired
  private AmqpTemplate amqpTemplate;

  public void send(String message) {
    this.amqpTemplate.convertAndSend(
            "myExchange", "some.routing.key", message);
  }

}

88

@Component
public class MessageReceiver {

   @Autowired 
   private RabbitTemplate rabbitTemplate;

    public void read() throws Exception {  
        String value = rabbitTemplate.receiveAndConvert("myQueueName");
    }

} 

§发送和接收 AMQP 消息 

AMQP
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  @starbuxman | josh.long@springsource.com

问题？

http://slideshare.net/joshlong
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