
© 2012 SpringOne 2GX 2012. All rights reserved. Do not distribute without permission.

Spring 与 Cloud Foundry —— 天作之合

Josh Long，VMWare 旗下 SpringSource 部門的 Spring 开发人员技术布道师
 http://www.joshlong.com || @starbuxman || josh.long@springsource.com

Sunday, December 9, 12

http://www.joshlong.com
http://www.joshlong.com
mailto:josh.long@springsource.com
mailto:josh.long@springsource.com

Spring 开发人员技术布道师
twitter: @starbuxman
weibo: @springsource
josh.long@springsource.com

2

Josh Long (龙之春) 介绍

Sunday, December 9, 12

mailto:josh.long@springsource.com
mailto:josh.long@springsource.com

Josh Long (龙之春) 介绍

Spring 开发人员技术布道师

twitter: @starbuxman
josh.long@springsource.com

•参与贡献的项目：

• Spring Integration
• Spring Batch
• Spring Hadoop
• Activiti 工作流程引擎
• 使用 Akka Spring 模块

3
Sunday, December 9, 12

mailto:josh.long@springsource.com
mailto:josh.long@springsource.com

© 2012 SpringOne 2GX 2012. All rights reserved. Do not distribute without permission.

为什么选择 Cloud Foundry？

Sunday, December 9, 12

我们有令人惊叹的语言、工具和框架

5

创意 有效代码

Sunday, December 9, 12

但是部署需要多长时间？

6

已部署有效代码

Sunday, December 9, 12

但是部署需要多长时间？

6

已部署有效代码

几小时？

Sunday, December 9, 12

但是部署需要多长时间？

6

已部署有效代码

几天？
几小时？

Sunday, December 9, 12

但是部署需要多长时间？

6

已部署有效代码

几天？
几周？

几小时？

Sunday, December 9, 12

但是部署需要多长时间？

6

已部署有效代码

几天？
几周？

几个月？

几小时？

Sunday, December 9, 12

7

但是如果是开发人员...

设想一下，如果建筑师必须管
理他们所设计的每座建筑，情
况将如何？这就是开发团队在
迁移至 Windows Azure 之前所
面临的情况。Duncan Mackenzie，2011 年 11 月 7 日
http://www.infoq.com/articles/Channel-9-Azure

Sunday, December 9, 12

http://www.infoq.com/author/Duncan-Mackenzie
http://www.infoq.com/author/Duncan-Mackenzie
http://www.infoq.com/articles/Channel-9-Azure
http://www.infoq.com/articles/Channel-9-Azure

云部署面临的难题

• 仍是针对应用程序的另一环境，以便使它们能够在
– 不同的 Java 运行时中运行

– 不同的数据库（有时并非关系数据库）中运行

• 动态环境 ⇒ 服务器名称不固定

• 弹性扩展 ⇒ 服务器来来往往

• 云应用程序必须与非云应用程序相集成

Sunday, December 9, 12

云部署面临的难题

• 仍是针对应用程序的另一环境，以便使它们能够在
– 不同的 Java 运行时中运行

– 不同的数据库（有时并非关系数据库）中运行

• 动态环境 ⇒ 服务器名称不固定

• 弹性扩展 ⇒ 服务器来来往往

• 云应用程序必须与非云应用程序相集成

Spring 框架已解决这些问题

Sunday, December 9, 12

© 2012 SpringOne 2GX 2012. All rights reserved. Do not distribute without permission.

为什么选择 Spring？

Sunday, December 9, 12

10

我们为什么在这里？

软件实体（类、模块、功能等）
应该可以扩展，而不允许修改。

 -Bob Martin

”“

Sunday, December 9, 12

11

千万不要
彻底改造车轮！

我们为什么在这里？

Sunday, December 9, 12

• 企业 Java 的实际标准编程模型

• 两百多万位开发人员

• 快速发展
– Spring 1.0 – 2004 年 3 月

– Spring 2.0 – 2006 年 10 月

– Spring 2.5 – 2007 年 12 月

– Spring 3.0 – 2009 年 12 月

– Spring 3.1 - 2011 年 12 月

– Spring 3.2 - 2012 年 12 月

• 完全向后兼容性

Spring 框架

Sunday, December 9, 12

13

Spring 的目标：

tc Server
Tomcat
Jetty

轻量型

CloudFoundry
Google App Engine
Amazon BeanStalk

云：

WebSphere
JBoss AS
WebLogic

（基于旧版本、工具）

传统

Spring 框架

Web 层
与 服务层 批处理

集成
与

数据访问
 / NoSQL /

移动 安全

Sunday, December 9, 12

14

Spring 框架生态系统
框架 说明
Spring 框架 基础
Spring Security（又称为 Acegi） 提供身份验证、授权和实例级安全的可扩展框架

Spring Web Flow 用于构建多页流的出色 Web 框架

Spring Web Services 契约优先、以文档为中心的 SOAP 和 XML Web 服务

Spring Data 简化 SQL 与 NoSQL 存储的数据访问

Spring Batch 强大的批处理框架

Spring Integration 实施企业级集成模式

Spring Flex 支持 Adobe BlazeDS

Spring HATEOAS 支持符合 HATEOAS 模式的应用程序
Spring AMQP 用于连接 AMQP 消息代理的框架

Sunday, December 9, 12

15

并非所有方面都均衡

Sunday, December 9, 12

NOT CONFIDENTIAL -- TELL EVERYONE 16

Spring 使构建应用程序变得简单...

Sunday, December 9, 12

17

package org.springsource.examples.spring31.services;
...
@Configuration
@ComponentScan(“the.package.with.beans.in.it”)
public class ServicesConfiguration {

...

}

告诉 Spring 您的目标

Sunday, December 9, 12

18

public class Main {
 static public void main (String [] args) throws Throwable {
 ApplicationContext ac = new AnnotationConfigApplicationContext(
 org.springsource.examples.spring31.services.ServicesConfiguration.class);
 ...
 }
}

告诉 Spring 您的目标

Sunday, December 9, 12

19

package the.package.with.beans.in.it;

@Service
public class CustomerService {

 public Customer createCustomer(String firstName,
 String lastName,
 Date signupDate) {

 }

 ...

}

告诉 Spring 您的目标

Sunday, December 9, 12

20

package org.springsource.examples.spring31.services;
...
@Configuration
public class ServicesConfiguration {

 @Bean
 public DataSource dataSource() throws Exception {
 SimpleDriverDataSource simpleDriverDataSource =
 new SimpleDriverDataSource();

 return simpleDriverDataSource;
 }

}

我想要数据库访问...

Sunday, December 9, 12

21

package org.springsource.examples.spring31.services;
...
@Configuration
public class ServicesConfiguration {
 ...

 @Bean
 public SessionFactory sessionFactory() throws Exception {
 Properties props = new Properties();
 // ... show_sql, dialect, etc.
 return new LocalSessionFactoryBuilder(dataSource())
 .addAnnotatedClasses(Customer.class)
 .addProperties(props)
 .buildSessionFactory();
 }

}

我想要数据库访问... 具有 Hibernate 4 支持

Sunday, December 9, 12

22

package the.package.with.beans.in.it;
...
@Service
public class CustomerService {

 @Inject
 private SessionFactory sessionFactory;

 public Customer createCustomer(String firstName,
 String lastName,
 Date signupDate) {
 Customer customer = new Customer();
 customer.setFirstName(firstName);
 customer.setLastName(lastName);
 customer.setSignupDate(signupDate);

 sessionFactory.getCurrentSession().save(customer);
 return customer;
 }

 ...

}

我想要数据库访问... 具有 Hibernate 4 支持

Sunday, December 9, 12

23

package org.springsource.examples.spring31.services;
...
@Configuration
@EnableTransactionManagement
public class ServicesConfiguration {

 ...

 @Bean
 public PlatformTransactionManager transactionManager() throws Exception {
 return new HibernateTransactionManager(this.sessionFactory());
 }
}

我想要公布的事务管理...

Sunday, December 9, 12

24

package the.package.with.beans.in.it;
...
@Service
public class CustomerService {

 @Inject
 private SessionFactory sessionFactory;

 @Transactional
 public Customer createCustomer(String firstName,
 String lastName,
 Date signupDate) {
 Customer customer = new Customer();
 customer.setFirstName(firstName);
 customer.setLastName(lastName);
 customer.setSignupDate(signupDate);

 sessionFactory.getCurrentSession().save(customer);
 return customer;
 }
 ...
}

我想要公布的事务管理...

Sunday, December 9, 12

25

package org.springsource.examples.spring31.services;
...
@Configuration
@EnableTransactionManagement
@EnableCaching
public class ServicesConfiguration {
 ...

 @Bean
 public CacheManager cacheManager() {
 SimpleCacheManager scm = new SimpleCacheManager();
 Cache cache = new ConcurrentMapCache("customers");
 scm.setCaches(Arrays.asList(cache));
 return scm;
 }
}

我想要公布的缓存管理...

Sunday, December 9, 12

26

package the.package.with.beans.in.it;
...
@Service
public class CustomerService {

 @Inject
 private SessionFactory sessionFactory;

 @Transactional
 @Cacheable(“customers”)
 public Customer createCustomer(String firstName,
 String lastName,
 Date signupDate) {
 Customer customer = new Customer();
 customer.setFirstName(firstName);
 customer.setLastName(lastName);
 customer.setSignupDate(signupDate);

 sessionFactory.getCurrentSession().save(customer);
 return customer;
 }
}

我想要公布的缓存管理...

Sunday, December 9, 12

27

package org.springsource.examples.spring31.web;
..

@Controller
public class CustomerController {

 @Inject
 private CustomerService customerService;

 @RequestMapping(value = "/customer/{id}",
 produces = MediaType.APPLICATION_JSON_VALUE)
 public @ResponseBody Customer customerById(@PathVariable("id") Integer id) {
 return customerService.getCustomerById(id);
 }
 ...
}

我想要基于 REST 的终端...

Sunday, December 9, 12

28

可移植性是王道!

• Spring 始终专注于可移植性
– Web 服务器和应用程序服务器之间的可移植性

–云之间的可移植性

–环境之间的可移植性

Sunday, December 9, 12

29

依赖项注入

• 组件不再负责查找它们的依赖项
• 相反，依赖项在实例化时传入

–构造函数注入
–资源库注入
–字段注入

• 也称为控制反转 – 不要呼叫我们（以获取依赖项），
我们将呼叫您（即，传入依赖项）

Sunday, December 9, 12

© 2012 SpringOne 2GX 2012. All rights reserved. Do not distribute without permission.

构建针对 Cloud Foundry 的 Spring 应用程序
了解 CLOUD FOUNDRY 服务

Sunday, December 9, 12

31

Cloud Foundry：服务

• 服务是 Cloud Foundry 中可扩展的其中一个方面
–社区每天还会贡献更多服务！

• MySQL、Redis、MongoDB、RabbitMQ、PostgreSQL

• 服务可在不同应用程序间共享

• Cloud Foundry 通过托管在云控制器中的统一 API 将服务的配置抽象化

• 使用统一方法获取应用程序并将服务添加应用程序非常简单
– Cassandra? COBOL / CICS, Oracle

Sunday, December 9, 12

32

Cloud Foundry：服务

• 利用服务

–设置服务无需成本

–服务能够实现价值

• 它们能够促进实现更出色的体系结构
–需要快速读写缓存？Redis 随时待命！

–需要存储长尾文档？不妨试试 MongoDB

–需要解除应用程序操作内容和操作时间的耦合？
请使用消息传递和 RabbitMQ

Sunday, December 9, 12

Cloud Foundry 通过环境变量公开服务

33

$VCAP_SERVICES:
{"redis-2.2":[{"name":"redis_sample","label":"redis-2.2","plan":"free",
"tags":["redis","redis-2.2","key-value","nosql"],
"credentials":
{"hostname":"172.30.48.40",
"host":"172.30.48.40",
"port":5023,
"password":"8e9a901f-987d-4544-9a9e-ab0c143b5142",
"name":"de82c4bb-bd08-46c0-a850-af6534f71ca3"}
}],
"mongodb-1.8":[{"name":"mongodb-e7d29","label":"mongodb-1.8","plan":"free","tags”:
………………….

Sunday, December 9, 12

34

Spring 是针对您服务的最佳工具包

• Spring Data
–支持高级 JPA、MongoDB、Redis 连接

• Spring AMQP、Spring Integration

–支持消息传递和事件驱动型体系结构

• Spring Core
–可通过 JPA、JDBC、JDO、Hibernate 等实现对 RDBMS 访问的最佳支持

Sunday, December 9, 12

35

自动重新配置：入門

• 无需更改任何代码即可将 Spring 应用程序部署到云

• Cloud Foundry 自动重新配置 Bean 定义以绑定到云服务

• 使用 Spring 和 Grails

Sunday, December 9, 12

36

import org.apache.commons.dbcp.BasicDataSource;
...
@Bean(destroyMethod = "close")
public BasicDataSource dataSource(){

 BasicDataSource bds = new BasicDataSource();
 bds.setUrl("jdbc:h2:mem");
 bds.setPassword("");
 bds.setUsername("sa");
 bds.setDriverClass(Driver.class);
 return bds;
}

<bean class = “...BasicDataSource” id=”dataSource”>
 <property name = “url” value = “jdbc:h2:mem”/>
 <property name =”password” value =””/>
 <property name = “username” value = “sa”/>
 <property name = “driverClass” value = “com.h2.Driver”/>
</bean>

自动重新配置：关系数据库
• 检测类型 javax.sql.DataSource 的 Bean

• 连接到 MySQL 或 PostgreSQL 服务
– 指定驱动程序、URL、用户名、密码、验证查询

• 创建 Commons DBCP 或 Tomcat DataSource

• 替换现有 DataSource

Sunday, December 9, 12

37

@Bean
public LocalContainerEntityManagerFactoryBean entityManager(){
 LocalContainerEntityManagerFactoryBean lcem =
 new LocalContainerEntityManagerFactoryBean();
 lcem.setDataSource(dataSource());
 return lcem;	
}

自动重新配置：ORM

• 调整 Hibernate 方言

• 将 hibernate.dialect 属性更改为
MySQLDialect (MyISAM) 或 PostgreSQLDialect
– org.springframework.orm.jpa.AbstractEntityManagerFactoryBean
– org.springframework.orm.hibernate3.AbstractSessionFactoryBean
（Spring 2.5 和 3.0）

– org.springframework.orm.hibernate3.SessionFactoryBuilderSupport
(Spring 3.1)

Sunday, December 9, 12

• Cloud Foundry 在暂存期间会在您的应用程序上下文中安装
BeanFactoryPostProcessor
–将 jar 添加到您的应用程序

–修改 web.xml 以加载 BFPP

• 将上下文文件添加到 contextConfigLocation

– web-app context-param
– Spring MVC DispatcherServlet init-param

• 添加 DataSource 重新配置所需的 PostgreSQL 和 MySQL 驱动程序

38

自动重新配置：工作原理

Sunday, December 9, 12

http://web.xml
http://web.xml

© 2012 SpringOne 2GX 2012. All rights reserved. Do not distribute without permission.

构建针对 Cloud Foundry 的
Spring 应用程序

明确地通过 java 绑定至服务

Sunday, December 9, 12

• 提问
–您可以反省环境变量 (System.getenv(“..”)), 或...

–从 Java 导入 CloudFoundry 运行时！

• （简单多了）

40

 <dependency>
 <groupId>org.cloudfoundry</groupId>
 <artifactId>cloudfoundry-runtime</artifactId>
 <version>0.8.2</version>
 </dependency>

环境

Sunday, December 9, 12

41

 CloudEnvironment cloudEnvironment = new CloudEnvironment();

 Collection<RedisServiceInfo> serviceInfos =
 cloudEnvironment.getServiceInfos(RedisServiceInfo.class);

 assert serviceInfos.size() > 0 : "there must be at least one bound Redis instance!";

 RedisServiceInfo serviceInfo = serviceInfos.iterator().next(); // get the first one

 RedisServiceCreator serviceCreator = new RedisServiceCreator();
 RedisConnectionFactory cf = serviceCreator.createService(serviceInfo);

通过 Java 访问服务

Sunday, December 9, 12

42

CloudEnvironment e = new CloudEnvironment();

Iterable<RdbmsServiceInfo> dsServiceInformation =
 e.getServiceInfos(RdbmsServiceInfo.class) ;

Iterable<RedisServiceInfo> redisServiceInformation =
 e.getServiceInfos(RedisServiceInfo.class) ;

Iterable<RabbitServiceInfo> rabbitServiceInformation =
 e.getServiceInfos(RabbitServiceInfo.class) ;

Iterable<MongoServiceInfo> mongoServiceInformation =
 e.getServiceInfos(MongoServiceInfo.class) ;

通过 Java 访问服务

Sunday, December 9, 12

43

@Bean public RedisConnectionFactory redis(){

 CloudEnvironment cloudEnvironment = new CloudEnvironment();
 Collection<RedisServiceInfo> serviceInfos =
 cloudEnvironment.getServiceInfos(RedisServiceInfo.class);
 assert serviceInfos.size() > 0 : "there must be at least one bound Redis instance!";
 RedisServiceInfo serviceInfo = serviceInfos.iterator().next(); // get the first one
 RedisServiceCreator serviceCreator = new RedisServiceCreator();
 RedisConnectionFactory cf = serviceCreator.createService(serviceInfo);
 return cf;
 }

通过 Spring Java 配置访问服务

Sunday, December 9, 12

© 2012 SpringOne 2GX 2012. All rights reserved. Do not distribute without permission.

构建针对 Cloud Foundry 的
Spring 应用程序

明确地通过 XML 绑定至服务

Sunday, December 9, 12

• <cloud:> 命名空间在 Spring 应用程序上下文中使用

• 提供 Bean 服务绑定的应用程序级控制

• 推荐用于开发新的云应用程序

• 在以下情况下使用：
–具有相同类型的多个服务

–具有相同类型的多个 Bean

• 例如 DataSource、MongoDBFactory

–具有自定义 Bean 配置
• 例如 DataSource 池大小、连接属性

45

云命名空间简介

Sunday, December 9, 12

<cloud:service-scan>

• 扫描绑定至应用程序的所有服务并为每个服务创建应用程序类型的
–与自动重新配置相同的 Bean 类型

• 在早期开发阶段十分有用

46

<beans	 ...
 xmlns:cloud="http://schema.cloudfoundry.org/spring"
	 xsi:schemaLocation="http://schema.cloudfoundry.org/spring
 http://schema.cloudfoundry.org/spring/cloudfoundry-spring-0.8.xsd
	 ...">

 <cloud:service-scan/>

</beans>

Sunday, December 9, 12

http://schema.cloudfoundry.org/spring
http://schema.cloudfoundry.org/spring
http://schema.cloudfoundry.org/spring
http://schema.cloudfoundry.org/spring
http://schema.cloudfoundry.org/spring/cloudfoundry-spring-0.8.xsd
http://schema.cloudfoundry.org/spring/cloudfoundry-spring-0.8.xsd

<cloud:service-scan> 自动关联依赖项

• 创建可以自动关联为依赖项的 Bean

• 如果有多个相同类型的服务绑定到应用程序，则使用带有服务名称的 @Qualifier

47

@Autowired(required=false)
private ConnectionFactory rabbitConnectionFactory;

@Autowired
private RedisConnectionFactory redisConnectionFactory;

@Autowired
@Qualifier("test_mysql_database")
private DataSource mysqlDataSource;

@Autowired(required=false)
@Qualifier("test_postgres_database")
private DataSource postgresDataSource;

Sunday, December 9, 12

<cloud:data-source>

• 配置 DataSource Bean

– Commons DBCP 或 Tomcat DataSource

• 基本属性：
– ID：服务名称默认值

–服务名称：仅在将多个关系数据库服务绑定到应用程序时需要

48

<cloud:data-source id="dataSource" service-name="mySQLSvc">
<cloud:pool pool-size="1-5"/>
<cloud:connection properties="charset=utf-8"/>

</cloud:data-source>

<bean class="org.sf.orm.jpa.LocalContainerEntityManagerFactoryBean"
id="entityManagerFactory">
 <property name="dataSource" ref="dataSource"/>
</bean>

Sunday, December 9, 12

<cloud:properties>
• 公开有关可通过 Spring 的属性占位符支持使用的服务的基本信息

• 基本属性：
– ID：属性 Bean 的名称

• 属性在部署 Spring 3.1 应用程序时自动可用

49

<cloud:properties id="cloudProperties" />
<context:property-placeholder properties-ref="cloudProperties"/>
@Autowired private Environment environment;

@Bean
public ComboPooledDataSource dataSource() throws Exception {
 String user = this.environment.getProperty
 ("cloud.services.mysql.connection.username");
 ComboPooledDataSource cpds = new ComboPooledDataSource();
 cpds.setUser(user);
 return cpds;
}

Sunday, December 9, 12

© 2012 SpringOne 2GX 2012. All rights reserved. Do not distribute without permission.

构建针对 Cloud Foundry 的
Spring 应用程序

Spring 环境抽象

Sunday, December 9, 12

• 特定环境的 Bean 定义（配置文件）
–例如开发、测试、生产

–可能不同的部署环境

–通过名称激活配置文件
• spring.profiles.active 系统属性

• 部署单元外的其他方式

• 如果未指定配置文件，则将激活“默认”配置文件

• 自定义占位符解析
–取决于实际环境

–有序的属性源

51

Spring 3.1 环境抽象

Sunday, December 9, 12

• 通过配置文件在本地、测试和 Cloud Foundry 部署间切换

• 除非已激活其他配置文件，否则 Spring 自动激活“默认”配置文件

• “云”配置文件自动在 Cloud Foundry 上激活
–云命名空间的使用应在云配置文件块内进行

52

隔离 Cloud Foundry 配置

Sunday, December 9, 12

53

 @Configuration
 @Profile("cloud")
 public class CloudConfiguration {
 private CloudEnvironment cloudEnvironment = new CloudEnvironment();

 @Bean
 public DataSource dataSource() {
 Collection<RdbmsServiceInfo> rdbmsServiceInfo = cloudEnvironment.getServiceInfos(RdbmsServiceInfo.class);
 RdbmsServiceCreator rdbmsServiceCreator = new RdbmsServiceCreator();
 return rdbmsServiceCreator.createService(rdbmsServiceInfo.iterator().next());
 }
 }

 @Configuration
 @Profile("default")
 public class LocalConfiguration {
 @Bean
 public DataSource dataSource() {
 BasicDataSource bds = new BasicDataSource();
 // ...
 return bds;
 }
 }

隔离 Cloud Foundry 配置

Sunday, December 9, 12

54

<bean class="org.sf.orm.jpa.LocalContainerEntityManagerFactoryBean">
 <property name="dataSource" ref="dataSource"/>
</bean>

<beans profile="cloud">
	 <cloud:data-source id="dataSource" />
</beans>
	
<beans profile="default">
	 <bean class="org.a.commons.dbcp.BasicDataSource" id="dataSource">
	 <property name="url" value="jdbc:mysql://localhost/my_db" />
	 </bean>
</beans>

隔离 Cloud Foundry 配置

Sunday, December 9, 12

55

云属性

• Cloud Foundry 使用环境抽象以自动将属性公开至 Spring 3.1 应用程序
–应用程序的基本信息，例如名称和云提供商

–绑定服务的详细连接信息
•cloud.services.{service-name}.connection.{property}
• 根据服务类型创建的服务名称别名

–例如“cloud.services.mysql.connection.{property}”

–仅在存在此类型绑定的单个服务时

Sunday, December 9, 12

• 使用服务属性创建您自己的连接工厂
–例如 c3p0 连接池

56

import com.mchange.v2.c3p0.* ;

@Autowired
private Environment e;

@Bean
public ComboPooledDataSource cpds (){
 ComboPooledDataSource cpds = new ComboPooledDataSource ();

 String host=e.getProperty("cloud.services.mysql.connection.host"),
 port=e.getProperty("cloud.services.mysql.connection.port"),
 name=e.getProperty("cloud.services.mysql.connection.name"),
 pw=e.getProperty("cloud.services.mysql.connection.password");

 cpds.set...(host ...);
 return cpds;
}

云属性示例

Sunday, December 9, 12

© 2012 SpringOne 2GX 2012. All rights reserved. Do not distribute without permission.

构建针对 Cloud Foundry 的
Spring 应用程序

基于 Cloud Foundry 使用 Spring 和 NoSQL

Sunday, December 9, 12

• SQL
–高级别

–排序

–聚合

• ACID 语义
• 良好支持

– JDBC
– Hibernate/JPA
– Spring

• 易于理解

58

关系数据库十分强大...

Sunday, December 9, 12

• 对象/关系阻抗不匹配

• 富域模型与关系架构间的映射较复杂

• 难于处理半结构化数据，例如不断变化的属性

• 架构更改

• 无法/极难扩展

• 某些情形下的性能极低

59

... 但也存在限制

Sunday, December 9, 12

解决方案：加大投入

http://upload.wikimedia.org/wikipedia/commons/e/e5/Rising_Sun_Yacht.JPG

或者

http://www.trekbikes.com/us/en/bikes/road/race_performance/madone_5_series/madone_5_2/#

60

• 雇佣更多的开发运营人员
• 使用应用程序级分区
• 构建您自己的中间件

Sunday, December 9, 12

解决方案：使用 NoSQL

优点
•更高的性能
•更高的可扩展性
•更丰富的数据模型

缺点
•有限的事务
•松弛的一致性
•不受约束的数据

61

Sunday, December 9, 12

日渐流行…

62

Sunday, December 9, 12

63

•Spring Data 键值
•Spring Data 文档
•Spring Data 图形
•Spring Data 列
•Spring Data Blob
•Spring Data JPA 资源库/JDBC 扩展
•Spring Gemfire/Spring Hadoop ...
•Grails iNcOnSeQuentiaL

http://www.springsource.org/spring-data

Sunday, December 9, 12

http://www.springsource.org/spring-data
http://www.springsource.org/spring-data

64

Spring Data 构建基础模块

•低级别数据访问 API
✓MongoTemplate、RedisTemplate ...

•对象映射（Java 和 GORM）
•跨存储持久性编程模型
•通用资源库支持

•Roo 和 Grails 中的高效性支持

Sunday, December 9, 12

Not confidential. Tell everyone. 65

具有 Redis 的 NoSQL

Sunday, December 9, 12

66

列Key-Value

Redis,
Riak

NoSQL 提供几种数据存储类别

文档 图形键值

Sunday, December 9, 12

Not confidential. Tell everyone.

Spring Data Redis

• 使用 Redis
•非常快
• “数据结构服务器”（映射、列表、集、队列等）

• RedisTemplate 将冗长的样板代码减少为单个衬套
• CacheManager 实施

•使用 Spring 3.1 的 CacheManager 实施

• RedisMessageListenerContainer
•提供与 JMS 和 AMQP 相同的队列/发布-订阅功能

67

Sunday, December 9, 12

NOT CONFIDENTIAL -- TELL EVERYONE 68

 @Bean
 public RedisConnectionFactory redisConnectionFactory() {
 return new JedisConnectionFactory();
 }

 @Bean
 public RedisTemplate<String, Object> redisTemplate()
 throws Exception {
 RedisTemplate<String, Object> ro = new RedisTemplate<String, Object>();
 ro.setConnectionFactory(redisConnectionFactory());
 return ro;
 }

配置 Redis 支持

Sunday, December 9, 12

NOT CONFIDENTIAL -- TELL EVERYONE 69

 @Inject RedisTemplate redisTemplate;

 @Override
 public Customer getCustomerById(long id) {
 String ln = (String)redisTemplate.opsForValue().get(lastNameKey(id)) ;
 String fn = (String)redisTemplate.opsForValue().get(firstNameKey(id));
 return new Customer(id, fn, ln);
 }

 private void setCustomerValues(long lid, String fn, String ln) {
 this.redisTemplate.opsForValue().set(lastNameKey(lid), ln);
 this.redisTemplate.opsForValue().set(firstNameKey(lid), fn);
 }

 @Override
 public Customer updateCustomer(long id, String fn, String ln) {
 setCustomerValues(id, fn, ln);
 return getCustomerById(id);
 }

使用 Redis 处理持久性责任...

Sunday, December 9, 12

Not confidential. Tell everyone. 70

具有 MongoDB 的 NoSQL

Sunday, December 9, 12

71

NoSQL 提供几种数据存储类别

列键值 文档 图形

MongoDB
\

Sunday, December 9, 12

Not confidential. Tell everyone. 72

Spring Data MongoDB

§使用 MongoDB
§提供显而易见的 API 集成：
•MongoTemplate

•以 Mongo 为后盾的 MessageStore（Spring 集成）

§同样具有高级 API 集成：
•跨存储持久性
•MongoRepository（基于 Spring Data JPA 构建）

Sunday, December 9, 12

73

简单的域类

Sunday, December 9, 12

74

Mongo 模板

直接使用 Mongo 模板：

Sunday, December 9, 12

74

Mongo 模板

直接使用 Mongo 模板：

插入“Person”
集合

Sunday, December 9, 12

74

Mongo 模板

直接使用 Mongo 模板：

findOne在 db.collection: database.Person 中
使用 query: { "name" : "Joe"}

Sunday, December 9, 12

74

Mongo 模板

直接使用 Mongo 模板：

删除集合 [database.person]

Sunday, December 9, 12

75

通用资源库

在特定类别资源库上进行通用 CRUD 操作的界面

Sunday, December 9, 12

76

切换并排序资源库

用法：

切换并排序资源库： 扩展“CrudRepository”

Sunday, December 9, 12

76

切换并排序资源库

用法：

切换并排序资源库： 扩展“CrudRepository”

Sunday, December 9, 12

77

自定义资源库

自定义资源库：

关键词：

Sunday, December 9, 12

77

关键词 示例 逻辑结果

GreaterThan findByAgeGreaterThan(int age) {"age" : {"$gt" : age}}

LessThan findByAgeLessThan(int age) {"age" : {"$lt" : age}}

Between findByAgeBetween(int from, int to) {"age" : {"$gt" : from, "$lt" : to}}

NotNull findByFirstnameNotNull() {”firstname" : {"$ne" : null}}

Null findByFirstnameNull() {”firstname" : null}

Like findByFirstnameLike(String name) "firstname" : firstname} (regex)

自定义资源库

自定义资源库：

关键词：

Sunday, December 9, 12

78

JPA 和 MongoDB 可在跨存储持久性中使用

具有“SurveyInfo”文档的 JPA“Customer”

Sunday, December 9, 12

79

使用跨存储功能

保存具有 SurveryInfo 的 Customer

Mongo 文档：

Sunday, December 9, 12

79

使用跨存储功能

保存具有 SurveryInfo 的 Customer

Mongo 文档：

Sunday, December 9, 12

79

使用跨存储功能

保存具有 SurveryInfo 的 Customer

Mongo 文档：

创建 Customer

Sunday, December 9, 12

79

使用跨存储功能

保存具有 SurveryInfo 的 Customer

Mongo 文档：

创建 SurveyInfo

Sunday, December 9, 12

79

使用跨存储功能

保存具有 SurveryInfo 的 Customer

Mongo 文档：

将 Survey 分配给 Customer

Sunday, December 9, 12

79

使用跨存储功能

保存具有 SurveryInfo 的 Customer

Mongo 文档：

保存

Sunday, December 9, 12

© 2012 SpringOne 2GX 2012. All rights reserved. Do not distribute without permission.

构建针对 Cloud Foundry 的
Spring 应用程序

基于Cloud Foundry 使用 RabbitMQ传递消息

Sunday, December 9, 12

并非机密。请告诉每个人。. 81

Sunday, December 9, 12

82

原始的“云规模”消息

Sunday, December 9, 12

NOT CONFIDENTIAL -- TELL EVERYONE 83

消息使用情形

生成者 使用者

解耦

购物车向云控制器商家发送请求

Sunday, December 9, 12

NOT CONFIDENTIAL -- TELL EVERYONE
84并非机密 – 请告诉每个人

消息使用情形

生成者 用户

双向解耦

例如：远程过程调用

Sunday, December 9, 12

NOT CONFIDENTIAL -- TELL EVERYONE 85并非机密 – 请告诉每个人

消息使用情形

生成者 生成者

双向解耦

例如：下订单和等待确认

使用者

Sunday, December 9, 12

NOT CONFIDENTIAL -- TELL EVERYONE 86并非机密 – 请告诉每个人

消息使用情形

生成者 使用者 生成者

双向解耦

例如：下订单和等待确认

使用者

Sunday, December 9, 12

NOT CONFIDENTIAL -- TELL EVERYONE 87并非机密 – 请告诉每个人

消息使用情形

分发可以重复或循环：
 - 复制信息（记录、审核等）
 - 循环扩展和负载平衡

生成者 使用者

工作分发和解耦

使用者

Sunday, December 9, 12

@Component
public class MessageSender {

 @Autowired
 private AmqpTemplate amqpTemplate;

 public void send(String message) {
 this.amqpTemplate.convertAndSend(
 "myExchange", "some.routing.key", message);
 }

}

88

@Component
public class MessageReceiver {

 @Autowired
 private RabbitTemplate rabbitTemplate;

 public void read() throws Exception {
 String value = rabbitTemplate.receiveAndConvert("myQueueName");
 }

}

§发送和接收 AMQP 消息

AMQP

Sunday, December 9, 12

 @starbuxman | josh.long@springsource.com

问题？

http://slideshare.net/joshlong

Sunday, December 9, 12

mailto:josh.long@springsource.com
mailto:josh.long@springsource.com
http://slideshare.net/joshlong
http://slideshare.net/joshlong

