
SQLAlchemy Documentation
Release 0.5.4

Mike Bayer

May 17, 2009

CONTENTS

1 Overview / Installation 1
1.1 Overview . 1
1.2 Tutorials . 1
1.3 Main Documentation . 2
1.4 API Reference . 2
1.5 Installing SQLAlchemy . 2
1.6 Installing a Database API . 2
1.7 Checking the Installed SQLAlchemy Version . 3
1.8 0.4 to 0.5 Migration . 3

2 Object Relational Tutorial 5
2.1 Version Check . 5
2.2 Connecting . 5
2.3 Define and Create a Table . 5
2.4 Define a Python Class to be Mapped . 6
2.5 Setting up the Mapping . 7
2.6 Creating Table, Class and Mapper All at Once Declaratively . 7
2.7 Creating a Session . 8
2.8 Adding new Objects . 9
2.9 Rolling Back . 10
2.10 Querying . 11

2.10.1 Common Filter Operators . 13
2.10.2 Returning Lists and Scalars . 14
2.10.3 Using Literal SQL . 15

2.11 Building a Relation . 15
2.12 Working with Related Objects . 17
2.13 Querying with Joins . 18

2.13.1 Using Aliases . 19
2.13.2 Using Subqueries . 20
2.13.3 Selecting Entities from Subqueries . 21
2.13.4 Using EXISTS . 21
2.13.5 Common Relation Operators . 22

2.14 Deleting . 23
2.14.1 Configuring delete/delete-orphan Cascade . 23

2.15 Building a Many To Many Relation . 25
2.16 Further Reference . 28

3 SQL Expression Language Tutorial 29
3.1 Version Check . 29

i

3.2 Connecting . 29
3.3 Define and Create Tables . 29
3.4 Insert Expressions . 31
3.5 Executing . 31
3.6 Executing Multiple Statements . 32
3.7 Connectionless / Implicit Execution . 33
3.8 Selecting . 33
3.9 Operators . 36
3.10 Conjunctions . 37
3.11 Using Text . 38
3.12 Using Aliases . 39
3.13 Using Joins . 40
3.14 Intro to Generative Selects and Transformations . 41
3.15 Everything Else . 43

3.15.1 Bind Parameter Objects . 43
3.15.2 Functions . 44
3.15.3 Unions and Other Set Operations . 45
3.15.4 Scalar Selects . 46
3.15.5 Correlated Subqueries . 46
3.15.6 Ordering, Grouping, Limiting, Offset...ing... 46

3.16 Updates . 47
3.16.1 Correlated Updates . 47

3.17 Deletes . 48
3.18 Further Reference . 48

4 Mapper Configuration 49
4.1 Mapper Configuration . 49

4.1.1 Customizing Column Properties . 49
4.1.2 Deferred Column Loading . 50
4.1.3 SQL Expressions as Mapped Attributes . 51
4.1.4 Changing Attribute Behavior . 51

Simple Validators . 51
Using Descriptors . 52
Custom Comparators . 53

4.1.5 Composite Column Types . 54
4.1.6 Controlling Ordering . 55
4.1.7 Mapping Class Inheritance Hierarchies . 56

Joined Table Inheritance . 56
Single Table Inheritance . 60
Concrete Table Inheritance . 61
Using Relations with Inheritance . 62

4.1.8 Mapping a Class against Multiple Tables . 64
4.1.9 Mapping a Class against Arbitrary Selects . 64
4.1.10 Multiple Mappers for One Class . 65
4.1.11 Constructors and Object Initialization . 65
4.1.12 Extending Mapper . 66

4.2 Relation Configuration . 66
4.2.1 Basic Relational Patterns . 66

One To Many . 67
Many To One . 67
One To One . 68
Many To Many . 68
Association Object . 69

4.2.2 Adjacency List Relationships . 70

ii

Self-Referential Query Strategies . 71
Configuring Eager Loading . 72

4.2.3 Specifying Alternate Join Conditions to relation() . 72
Specifying Foreign Keys . 73
Building Query-Enabled Properties . 73
Multiple Relations against the Same Parent/Child . 74

4.2.4 Alternate Collection Implementations . 74
Custom Collection Implementations . 74
Annotating Custom Collections via Decorators . 75
Dictionary-Based Collections . 76
Instrumentation and Custom Types . 77

4.2.5 Configuring Loader Strategies: Lazy Loading, Eager Loading 77
Routing Explicit Joins/Statements into Eagerly Loaded Collections 79

4.2.6 Working with Large Collections . 80
Dynamic Relation Loaders . 80
Setting Noload . 81
Using Passive Deletes . 81

4.2.7 Mutable Primary Keys / Update Cascades . 82

5 Using the Session 83
5.1 What does the Session do ? . 83
5.2 Getting a Session . 83

5.2.1 Using a sessionmaker() Configuration . 83
5.2.2 Binding Session to an Engine . 84
5.2.3 Binding Session to a Connection . 84
5.2.4 Using create_session() . 85
5.2.5 Configurational Arguments . 85

5.3 Using the Session . 85
5.3.1 Quickie Intro to Object States . 85
5.3.2 Frequently Asked Questions . 86
5.3.3 Querying . 87
5.3.4 Adding New or Existing Items . 87
5.3.5 Merging . 88
5.3.6 Deleting . 89
5.3.7 Flushing . 89
5.3.8 Committing . 90
5.3.9 Rolling Back . 90
5.3.10 Expunging . 90
5.3.11 Closing . 91
5.3.12 Refreshing / Expiring . 91
5.3.13 Session Attributes . 91

5.4 Cascades . 92
5.5 Managing Transactions . 93

5.5.1 Using SAVEPOINT . 94
5.5.2 Enabling Two-Phase Commit . 94

5.6 Embedding SQL Insert/Update Expressions into a Flush . 95
5.7 Using SQL Expressions with Sessions . 95
5.8 Joining a Session into an External Transaction . 96
5.9 Contextual/Thread-local Sessions . 96

5.9.1 Creating a Thread-local Context . 97
5.9.2 Lifespan of a Contextual Session . 98

5.10 Partitioning Strategies . 99
5.10.1 Vertical Partitioning . 99
5.10.2 Horizontal Partitioning . 99

iii

5.11 Extending Session . 99

6 Database Engines 101
6.1 Supported Databases . 102
6.2 create_engine() URL Arguments . 103

6.2.1 Custom DBAPI connect() arguments . 103
6.3 Database Engine Options . 104
6.4 More On Connections . 104
6.5 Using Transactions with Connection . 105

6.5.1 Understanding Autocommit . 106
6.6 Connectionless Execution, Implicit Execution . 106

6.6.1 Using the Threadlocal Execution Strategy . 107
6.7 Configuring Logging . 109

7 Database Meta Data 111
7.1 Describing Databases with MetaData . 111

7.1.1 Defining Foreign Keys . 111
7.1.2 Accessing Tables and Columns . 112
7.1.3 Binding MetaData to an Engine or Connection . 113
7.1.4 Reflecting Tables . 114

Overriding Reflected Columns . 115
Reflecting All Tables at Once . 115

7.1.5 Specifying the Schema Name . 115
7.1.6 ON UPDATE and ON DELETE . 115
7.1.7 Other Options . 116

7.2 Creating and Dropping Database Tables . 116
7.3 Column Insert/Update Defaults . 117

7.3.1 Pre-Executed Python Functions . 117
7.3.2 Pre-executed and Inline SQL Expressions . 118
7.3.3 DDL-Level Defaults . 119
7.3.4 Triggered Columns . 119
7.3.5 Defining Sequences . 119

7.4 Defining Constraints and Indexes . 120
7.4.1 UNIQUE Constraint . 120
7.4.2 CHECK Constraint . 120
7.4.3 Indexes . 121

7.5 Adapting Tables to Alternate Metadata . 122

8 API Reference 123
8.1 sqlalchemy . 123

8.1.1 Connections . 123
Creating Engines . 123
Connectables . 125
Result Objects . 128
Transactions . 129
Internals . 129

8.1.2 Connection Pooling . 134
Connection Pool Configuration . 134
Custom Pool Construction . 134
Builtin Pool Implementations . 135
Pooling Plain DB-API Connections . 138

8.1.3 SQL Statements and Expressions . 139
Functions . 139
Classes . 146

iv

Generic Functions . 154
8.1.4 Database Schema . 155

Tables and Columns . 155
Constraints . 165
Default Generators and Markers . 168
DDL . 169
Internals . 170

8.1.5 Column and Data Types . 171
Generic Types . 171
SQL Standard Types . 173
Vendor-Specific Types . 174
Custom Types . 175

8.1.6 Interfaces . 178
8.2 sqlalchemy.orm . 180

8.2.1 Class Mapping . 180
Defining Mappings . 180
Mapper Properties . 181
Decorators . 187
Utilities . 187
Attribute Utilities . 188
Internals . 189

8.2.2 Collection Mapping . 190
8.2.3 Querying . 193

The Query Object . 193
ORM-Specific Query Constructs . 199
Query Options . 199

8.2.4 Sessions . 200
8.2.5 Interfaces . 208
8.2.6 Utilities . 212

8.3 sqlalchemy.databases . 213
8.3.1 Access . 213
8.3.2 Firebird . 213

Firebird backend . 213
8.3.3 Informix . 214
8.3.4 MaxDB . 214

Overview . 215
Connecting . 215
Implementation Notes . 215

8.3.5 SQL Server . 215
Driver . 215
Connecting . 216
Auto Increment Behavior . 217
Collation Support . 218
LIMIT/OFFSET Support . 218
Nullability . 218
Date / Time Handling . 218
Compatibility Levels . 219
Known Issues . 219

8.3.6 MySQL . 219
Overview . 219
Supported Versions and Features . 219
Character Sets . 220
Storage Engines . 220
Keys . 220

v

SQL Mode . 221
MySQL SQL Extensions . 221
Troubleshooting . 222
MySQL Column Types . 222

8.3.7 Oracle . 230
Driver . 230
Connecting . 230
Auto Increment Behavior . 231
LOB Objects . 231
LIMIT/OFFSET Support . 231
Two Phase Transaction Support . 231
Oracle 8 Compatibility . 232
Synonym/DBLINK Reflection . 232

8.3.8 PostgreSQL . 232
Driver . 232
Connecting . 232
Sequences/SERIAL . 232
INSERT/UPDATE...RETURNING . 233
Indexes . 233
Transactions . 233

8.3.9 SQLite . 233
Driver . 233
Connect Strings . 234
Threading Behavior . 234
Date and Time Types . 235
Unicode . 235

8.3.10 Sybase . 235
8.4 sqlalchemy.ext . 235

8.4.1 declarative . 235
Synopsis . 235
Defining Attributes . 236
Association of Metadata and Engine . 236
Configuring Relations . 237
Configuring Many-to-Many Relations . 238
Defining Synonyms . 238
Table Configuration . 239
Mapper Configuration . 239
Inheritance Configuration . 240
Class Usage . 242

8.4.2 associationproxy . 243
Simplifying Relations . 243
Simplifying Association Object Relations . 245
Building Complex Views . 247
API . 248

8.4.3 orderinglist . 249
8.4.4 serializer . 252
8.4.5 SqlSoup . 253

Introduction . 253
Loading objects . 254
Modifying objects . 255
Joins . 255
Relations . 256
Advanced Use . 256
Extra tests . 258

vi

8.4.6 compiler . 258
Synopsis . 259

9 Indices and tables 261

Module Index 263

Index 265

vii

viii

CHAPTER

ONE

OVERVIEW / INSTALLATION

1.1 Overview

The SQLAlchemy SQL Toolkit and Object Relational Mapper is a comprehensive set of tools for working with
databases and Python. It has several distinct areas of functionality which can be used individually or combined
together. Its major API components, all public-facing, are illustrated below:

+---+
| Object Relational Mapper (ORM) |
+---+
+---------+ +------------------------------------+ +--------+
| | | SQL Expression Language | | |
| | +------------------------------------+ | |
| +-----------------------+ +--------------+ |
| Dialect/Execution | | Schema Management |
+---------------------------------+ +-----------------------+
+----------------------+ +----------------------------------+
| Connection Pooling | | Types |
+----------------------+ +----------------------------------+

Above, the two most significant front-facing portions of SQLAlchemy are the Object Relational Mapper and the
SQL Expression Language. These are two separate toolkits, one building off the other. SQL Expressions can be used
independently of the ORM. When using the ORM, the SQL Expression language is used to establish object-relational
configurations as well as in querying.

1.2 Tutorials

• Object Relational Tutorial - This describes the richest feature of SQLAlchemy, its object relational mapper. If
you want to work with higher-level SQL which is constructed automatically for you, as well as management of
Python objects, proceed to this tutorial.

• SQL Expression Language Tutorial - The core of SQLAlchemy is its SQL expression language. The SQL
Expression Language is a toolkit all its own, independent of the ORM package, which can be used to construct
manipulable SQL expressions which can be programmatically constructed, modified, and executed, returning
cursor-like result sets. It’s a lot more lightweight than the ORM and is appropriate for higher scaling SQL
operations. It’s also heavily present within the ORM’s public facing API, so advanced ORM users will want to
master this language as well.

1

SQLAlchemy Documentation, Release 0.5.4

1.3 Main Documentation

• Mapper Configuration - A comprehensive walkthrough of major ORM patterns and techniques.

• Using the Session - A detailed description of SQLAlchemy’s Session object

• Database Engines - Describes SQLAlchemy’s database-connection facilities, including connection documenta-
tion and working with connections and transactions.

• Database Meta Data - All about schema management using MetaData and Table objects; reading database
schemas into your application, creating and dropping tables, constraints, defaults, sequences, indexes.

• Connection Pooling - Further detail about SQLAlchemy’s connection pool library.

• Column and Data Types - Datatypes included with SQLAlchemy, their functions, as well as how to create your
own types.

• sqlalchemy.ext - Included addons for SQLAlchemy

1.4 API Reference

An organized section of all SQLAlchemy APIs is at API Reference.

1.5 Installing SQLAlchemy

Installing SQLAlchemy from scratch is most easily achieved with setuptools. Assuming it’s installed, just run this
from the command-line:

easy_install SQLAlchemy

This command will download the latest version of SQLAlchemy from the Python Cheese Shop and install it to your
system.

• setuptools

• install setuptools

• pypi

Otherwise, you can install from the distribution using the setup.py script:

python setup.py install

1.6 Installing a Database API

SQLAlchemy is designed to operate with a DB-API implementation built for a particular database, and includes
support for the most popular databases. The current list is at Supported Databases.

2 Chapter 1. Overview / Installation

http://pypi.python.org/pypi/setuptools/
http://pypi.python.org/pypi/SQLAlchemy
http://peak.telecommunity.com/DevCenter/setuptools
http://peak.telecommunity.com/DevCenter/EasyInstall#installation-instructions
http://pypi.python.org/pypi/SQLAlchemy
http://www.python.org/doc/peps/pep-0249/

SQLAlchemy Documentation, Release 0.5.4

1.7 Checking the Installed SQLAlchemy Version

This documentation covers SQLAlchemy version 0.5. If you’re working on a system that already has SQLAlchemy
installed, check the version from your Python prompt like this:

>>> import sqlalchemy
>>> sqlalchemy.__version__
0.5.0

1.8 0.4 to 0.5 Migration

Notes on what’s changed from 0.4 to 0.5 is available on the SQLAlchemy wiki at 05Migration.

1.7. Checking the Installed SQLAlchemy Version 3

http://www.sqlalchemy.org/trac/wiki/05Migration

SQLAlchemy Documentation, Release 0.5.4

4 Chapter 1. Overview / Installation

CHAPTER

TWO

OBJECT RELATIONAL TUTORIAL

In this tutorial we will cover a basic SQLAlchemy object-relational mapping scenario, where we store and retrieve
Python objects from a database representation. The tutorial is in doctest format, meaning each >>> line represents
something you can type at a Python command prompt, and the following text represents the expected return value.

2.1 Version Check

A quick check to verify that we are on at least version 0.5 of SQLAlchemy:

>>> import sqlalchemy
>>> sqlalchemy.__version__
0.5.0

2.2 Connecting

For this tutorial we will use an in-memory-only SQLite database. To connect we use create_engine():

>>> from sqlalchemy import create_engine
>>> engine = create_engine(’sqlite:///:memory:’, echo=True)

The echo flag is a shortcut to setting up SQLAlchemy logging, which is accomplished via Python’s standard
logging module. With it enabled, we’ll see all the generated SQL produced. If you are working through this
tutorial and want less output generated, set it to False. This tutorial will format the SQL behind a popup window so
it doesn’t get in our way; just click the “SQL” links to see what’s being generated.

2.3 Define and Create a Table

Next we want to tell SQLAlchemy about our tables. We will start with just a single table called users, which will
store records for the end-users using our application (lets assume it’s a website). We define our tables within a catalog
called MetaData, using the Table construct, which is used in a manner similar to SQL’s CREATE TABLE syntax:

>>> from sqlalchemy import Table, Column, Integer, String, MetaData, ForeignKey
>>> metadata = MetaData()
>>> users_table = Table(’users’, metadata,
... Column(’id’, Integer, primary_key=True),

5

SQLAlchemy Documentation, Release 0.5.4

... Column(’name’, String),

... Column(’fullname’, String),

... Column(’password’, String)

...)

All about how to define Table objects, as well as how to load their definition from an existing database (known as
reflection), is described in Database Meta Data.

Next, we can issue CREATE TABLE statements derived from our table metadata, by calling create_all() and
passing it the engine instance which points to our database. This will check for the presence of a table first before
creating, so it’s safe to call multiple times:

>>> metadata.create_all(engine)
PRAGMA table_info("users")
()
CREATE TABLE users (

id INTEGER NOT NULL,
name VARCHAR,
fullname VARCHAR,
password VARCHAR,
PRIMARY KEY (id)

)
()
COMMIT

Users familiar with the syntax of CREATE TABLE may notice that the VARCHAR columns were generated without
a length; on SQLite, this is a valid datatype, but on most databases it’s not allowed. So if running this tutorial on a
database such as Postgres or MySQL, and you wish to use SQLAlchemy to generate the tables, a “length” may be
provided to the String type as below:

Column(’name’, String(50))

The length field on String, as well as similar precision/scale fields available on Integer, Numeric, etc. are not
referenced by SQLAlchemy other than when creating tables.

2.4 Define a Python Class to be Mapped

While the Table object defines information about our database, it does not say anything about the definition or
behavior of the business objects used by our application; SQLAlchemy views this as a separate concern. To correspond
to our users table, let’s create a rudimentary User class. It only need subclass Python’s built-in object class (i.e.
it’s a new style class):

>>> class User(object):
... def __init__(self, name, fullname, password):
... self.name = name
... self.fullname = fullname
... self.password = password
...
... def __repr__(self):
... return "<User(’%s’,’%s’, ’%s’)>" % (self.name, self.fullname, self.password)

The class has an __init__() and a __repr__() method for convenience. These methods are both entirely
optional, and can be of any form. SQLAlchemy never calls __init__() directly.

6 Chapter 2. Object Relational Tutorial

SQLAlchemy Documentation, Release 0.5.4

2.5 Setting up the Mapping

With our users_table and User class, we now want to map the two together. That’s where the SQLAlchemy
ORM package comes in. We’ll use the mapper function to create a mapping between users_table and User:

>>> from sqlalchemy.orm import mapper
>>> mapper(User, users_table)
<Mapper at 0x...; User>

The mapper() function creates a new Mapper object and stores it away for future reference, associated with our
class. Let’s now create and inspect a User object:

>>> ed_user = User(’ed’, ’Ed Jones’, ’edspassword’)
>>> ed_user.name
’ed’
>>> ed_user.password
’edspassword’
>>> str(ed_user.id)
’None’

The id attribute, which while not defined by our __init__() method, exists due to the id column present within
the users_table object. By default, the mapper creates class attributes for all columns present within the Table.
These class attributes exist as Python descriptors, and define instrumentation for the mapped class. The functionality
of this instrumentation is very rich and includes the ability to track modifications and automatically load new data
from the database when needed.

Since we have not yet told SQLAlchemy to persist Ed Jones within the database, its id is None. When we persist
the object later, this attribute will be populated with a newly generated value.

2.6 Creating Table, Class and Mapper All at Once Declaratively

The preceding approach to configuration involving a Table, user-defined class, and mapper() call illustrate clas-
sical SQLAlchemy usage, which values the highest separation of concerns possible. A large number of applications
don’t require this degree of separation, and for those SQLAlchemy offers an alternate “shorthand” configurational
style called declarative. For many applications, this is the only style of configuration needed. Our above example
using this style is as follows:

>>> from sqlalchemy.ext.declarative import declarative_base

>>> Base = declarative_base()
>>> class User(Base):
... __tablename__ = ’users’
...
... id = Column(Integer, primary_key=True)
... name = Column(String)
... fullname = Column(String)
... password = Column(String)
...
... def __init__(self, name, fullname, password):
... self.name = name
... self.fullname = fullname

2.5. Setting up the Mapping 7

SQLAlchemy Documentation, Release 0.5.4

... self.password = password

...

... def __repr__(self):

... return "<User(’%s’,’%s’, ’%s’)>" % (self.name, self.fullname, self.password)

Above, the declarative_base() function defines a new class which we name Base, from which all of our
ORM-enabled classes will derive. Note that we define Column objects with no “name” field, since it’s inferred from
the given attribute name.

The underlying Table object created by our declarative_base() version of User is accessible via the
__table__ attribute:

>>> users_table = User.__table__

and the owning MetaData object is available as well:

>>> metadata = Base.metadata

Yet another “declarative” method is available for SQLAlchemy as a third party library called Elixir. This is a full-
featured configurational product which also includes many higher level mapping configurations built in. Like declara-
tive, once classes and mappings are defined, ORM usage is the same as with a classical SQLAlchemy configuration.

2.7 Creating a Session

We’re now ready to start talking to the database. The ORM’s “handle” to the database is the Session. When we first
set up the application, at the same level as our create_engine() statement, we define a Session class which
will serve as a factory for new Session objects:

>>> from sqlalchemy.orm import sessionmaker
>>> Session = sessionmaker(bind=engine)

In the case where your application does not yet have an Engine when you define your module-level objects, just set
it up like this:

>>> Session = sessionmaker()

Later, when you create your engine with create_engine(), connect it to the Session using configure():

>>> Session.configure(bind=engine) # once engine is available

This custom-made Session class will create new Session objects which are bound to our database. Other transac-
tional characteristics may be defined when calling sessionmaker() as well; these are described in a later chapter.
Then, whenever you need to have a conversation with the database, you instantiate a Session:

>>> session = Session()

The above Session is associated with our SQLite engine, but it hasn’t opened any connections yet. When it’s
first used, it retrieves a connection from a pool of connections maintained by the engine, and holds onto it until we
commit all changes and/or close the session object.

8 Chapter 2. Object Relational Tutorial

http://elixir.ematia.de/

SQLAlchemy Documentation, Release 0.5.4

2.8 Adding new Objects

To persist our User object, we add() it to our Session:

>>> ed_user = User(’ed’, ’Ed Jones’, ’edspassword’)
>>> session.add(ed_user)

At this point, the instance is pending; no SQL has yet been issued. The Session will issue the SQL to persist Ed
Jones as soon as is needed, using a process known as a flush. If we query the database for Ed Jones, all pending
information will first be flushed, and the query is issued afterwards.

For example, below we create a new Query object which loads instances of User. We “filter by” the name attribute
of ed, and indicate that we’d like only the first result in the full list of rows. A User instance is returned which is
equivalent to that which we’ve added:

>>> our_user = session.query(User).filter_by(name=’ed’).first()
BEGIN
INSERT INTO users (name, fullname, password) VALUES (?, ?, ?)
[’ed’, ’Ed Jones’, ’edspassword’]
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password
FROM users
WHERE users.name = ?
LIMIT 1 OFFSET 0

[’ed’]>>> our_user
<User(’ed’,’Ed Jones’, ’edspassword’)>

In fact, the Session has identified that the row returned is the same row as one already represented within its internal
map of objects, so we actually got back the identical instance as that which we just added:

>>> ed_user is our_user
True

The ORM concept at work here is known as an identity map and ensures that all operations upon a particular row
within a Session operate upon the same set of data. Once an object with a particular primary key is present in the
Session, all SQL queries on that Session will always return the same Python object for that particular primary
key; it also will raise an error if an attempt is made to place a second, already-persisted object with the same primary
key within the session.

We can add more User objects at once using add_all():

>>> session.add_all([
... User(’wendy’, ’Wendy Williams’, ’foobar’),
... User(’mary’, ’Mary Contrary’, ’xxg527’),
... User(’fred’, ’Fred Flinstone’, ’blah’)])

Also, Ed has already decided his password isn’t too secure, so lets change it:

>>> ed_user.password = ’f8s7ccs’

The Session is paying attention. It knows, for example, that Ed Jones has been modified:

>>> session.dirty
IdentitySet([<User(’ed’,’Ed Jones’, ’f8s7ccs’)>])

2.8. Adding new Objects 9

SQLAlchemy Documentation, Release 0.5.4

and that three new User objects are pending:

>>> session.new
IdentitySet([<User(’wendy’,’Wendy Williams’, ’foobar’)>,
<User(’mary’,’Mary Contrary’, ’xxg527’)>,
<User(’fred’,’Fred Flinstone’, ’blah’)>])

We tell the Session that we’d like to issue all remaining changes to the database and commit the transaction, which
has been in progress throughout. We do this via commit():

>>> session.commit()
UPDATE users SET password=? WHERE users.id = ?
[’f8s7ccs’, 1]
INSERT INTO users (name, fullname, password) VALUES (?, ?, ?)
[’wendy’, ’Wendy Williams’, ’foobar’]
INSERT INTO users (name, fullname, password) VALUES (?, ?, ?)
[’mary’, ’Mary Contrary’, ’xxg527’]
INSERT INTO users (name, fullname, password) VALUES (?, ?, ?)
[’fred’, ’Fred Flinstone’, ’blah’]
COMMIT

commit() flushes whatever remaining changes remain to the database, and commits the transaction. The connection
resources referenced by the session are now returned to the connection pool. Subsequent operations with this session
will occur in a new transaction, which will again re-acquire connection resources when first needed.

If we look at Ed’s id attribute, which earlier was None, it now has a value:

>>> ed_user.id
BEGIN
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password
FROM users
WHERE users.id = ?
[1]1

After the Session inserts new rows in the database, all newly generated identifiers and database-generated defaults
become available on the instance, either immediately or via load-on-first-access. In this case, the entire row was re-
loaded on access because a new transaction was begun after we issued commit(). SQLAlchemy by default refreshes
data from a previous transaction the first time it’s accessed within a new transaction, so that the most recent state is
available. The level of reloading is configurable as is described in the chapter on Sessions.

2.9 Rolling Back

Since the Session works within a transaction, we can roll back changes made too. Let’s make two changes that
we’ll revert; ed_user‘s user name gets set to Edwardo:

>>> ed_user.name = ’Edwardo’

and we’ll add another erroneous user, fake_user:

>>> fake_user = User(’fakeuser’, ’Invalid’, ’12345’)
>>> session.add(fake_user)

10 Chapter 2. Object Relational Tutorial

SQLAlchemy Documentation, Release 0.5.4

Querying the session, we can see that they’re flushed into the current transaction:

>>> session.query(User).filter(User.name.in_([’Edwardo’, ’fakeuser’])).all()
UPDATE users SET name=? WHERE users.id = ?
[’Edwardo’, 1]
INSERT INTO users (name, fullname, password) VALUES (?, ?, ?)
[’fakeuser’, ’Invalid’, ’12345’]
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password
FROM users
WHERE users.name IN (?, ?)
[’Edwardo’, ’fakeuser’][<User(’Edwardo’,’Ed Jones’, ’f8s7ccs’)>, <User(’fakeuser’,’Invalid’, ’12345’)>]

Rolling back, we can see that ed_user‘s name is back to ed, and fake_user has been kicked out of the session:

>>> session.rollback()
ROLLBACK>>> ed_user.name
BEGIN
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password
FROM users
WHERE users.id = ?
[1]u’ed’
>>> fake_user in session
False

issuing a SELECT illustrates the changes made to the database:

>>> session.query(User).filter(User.name.in_([’ed’, ’fakeuser’])).all()
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password
FROM users
WHERE users.name IN (?, ?)
[’ed’, ’fakeuser’][<User(’ed’,’Ed Jones’, ’f8s7ccs’)>]

2.10 Querying

A Query is created using the query() function on Session. This function takes a variable number of arguments,
which can be any combination of classes and class-instrumented descriptors. Below, we indicate a Querywhich loads
User instances. When evaluated in an iterative context, the list of User objects present is returned:

>>> for instance in session.query(User).order_by(User.id):
... print instance.name, instance.fullname
SELECT users.id AS users_id, users.name AS users_name,
users.fullname AS users_fullname, users.password AS users_password
FROM users ORDER BY users.id
[]ed Ed Jones
wendy Wendy Williams
mary Mary Contrary
fred Fred Flinstone

The Query also accepts ORM-instrumented descriptors as arguments. Any time multiple class entities or column-
based entities are expressed as arguments to the query() function, the return result is expressed as tuples:

2.10. Querying 11

SQLAlchemy Documentation, Release 0.5.4

>>> for name, fullname in session.query(User.name, User.fullname):
... print name, fullname
SELECT users.name AS users_name, users.fullname AS users_fullname
FROM users
[]ed Ed Jones
wendy Wendy Williams
mary Mary Contrary
fred Fred Flinstone

The tuples returned by Query are named tuples, and can be treated much like an ordinary Python object. The names
are the same as the attribute’s name for an attribute, and the class name for a class:

>>> for row in session.query(User, User.name).all():
... print row.User, row.name
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password
FROM users
[]<User(’ed’,’Ed Jones’, ’f8s7ccs’)> ed
<User(’wendy’,’Wendy Williams’, ’foobar’)> wendy
<User(’mary’,’Mary Contrary’, ’xxg527’)> mary
<User(’fred’,’Fred Flinstone’, ’blah’)> fred

You can control the names using the label() construct for scalar attributes and aliased() for class constructs:

>>> from sqlalchemy.orm import aliased
>>> user_alias = aliased(User, name=’user_alias’)
>>> for row in session.query(user_alias, user_alias.name.label(’name_label’)).all():
... print row.user_alias, row.name_label
SELECT users_1.id AS users_1_id, users_1.name AS users_1_name, users_1.fullname AS users_1_fullname, users_1.password AS users_1_password, users_1.name AS name_label
FROM users AS users_1
[]
<User(’ed’,’Ed Jones’, ’f8s7ccs’)> ed
<User(’wendy’,’Wendy Williams’, ’foobar’)> wendy
<User(’mary’,’Mary Contrary’, ’xxg527’)> mary
<User(’fred’,’Fred Flinstone’, ’blah’)> fred

Basic operations with Query include issuing LIMIT and OFFSET, most conveniently using Python array slices and
typically in conjunction with ORDER BY:

>>> for u in session.query(User).order_by(User.id)[1:3]:
... print u
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password
FROM users ORDER BY users.id
LIMIT 2 OFFSET 1
[]<User(’wendy’,’Wendy Williams’, ’foobar’)>
<User(’mary’,’Mary Contrary’, ’xxg527’)>

and filtering results, which is accomplished either with filter_by(), which uses keyword arguments:

>>> for name, in session.query(User.name).filter_by(fullname=’Ed Jones’):
... print name
SELECT users.name AS users_name FROM users
WHERE users.fullname = ?
[’Ed Jones’]ed

12 Chapter 2. Object Relational Tutorial

SQLAlchemy Documentation, Release 0.5.4

...or filter(), which uses more flexible SQL expression language constructs. These allow you to use regular
Python operators with the class-level attributes on your mapped class:

>>> for name, in session.query(User.name).filter(User.fullname==’Ed Jones’):
... print name
SELECT users.name AS users_name FROM users
WHERE users.fullname = ?
[’Ed Jones’]ed

The Query object is fully generative, meaning that most method calls return a new Query object upon which further
criteria may be added. For example, to query for users named “ed” with a full name of “Ed Jones”, you can call
filter() twice, which joins criteria using AND:

>>> for user in session.query(User).filter(User.name==’ed’).filter(User.fullname==’Ed Jones’):
... print user
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password
FROM users
WHERE users.name = ? AND users.fullname = ?
[’ed’, ’Ed Jones’]<User(’ed’,’Ed Jones’, ’f8s7ccs’)>

2.10.1 Common Filter Operators

Here’s a rundown of some of the most common operators used in filter():

• equals:

query.filter(User.name == ’ed’)

• not equals:

query.filter(User.name != ’ed’)

• LIKE:

query.filter(User.name.like(’%ed%’))

• IN:

query.filter(User.name.in_([’ed’, ’wendy’, ’jack’]))

• IS NULL:

filter(User.name == None)

• AND:

from sqlalchemy import and_
filter(and_(User.name == ’ed’, User.fullname == ’Ed Jones’))

or call filter()/filter_by() multiple times
filter(User.name == ’ed’).filter(User.fullname == ’Ed Jones’)

• OR:

2.10. Querying 13

SQLAlchemy Documentation, Release 0.5.4

from sqlalchemy import or_
filter(or_(User.name == ’ed’, User.name == ’wendy’))

• match:

query.filter(User.name.match(’wendy’))

The contents of the match parameter are database backend specific.

2.10.2 Returning Lists and Scalars

The all(), one(), and first() methods of Query immediately issue SQL and return a non-iterator value.
all() returns a list:

>>> query = session.query(User).filter(User.name.like(’%ed’)).order_by(User.id)
>>> query.all()
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password
FROM users
WHERE users.name LIKE ? ORDER BY users.id
[’%ed’][<User(’ed’,’Ed Jones’, ’f8s7ccs’)>, <User(’fred’,’Fred Flinstone’, ’blah’)>]

first() applies a limit of one and returns the first result as a scalar:

>>> query.first()
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password
FROM users
WHERE users.name LIKE ? ORDER BY users.id
LIMIT 1 OFFSET 0

[’%ed’]<User(’ed’,’Ed Jones’, ’f8s7ccs’)>

one(), applies a limit of two, and if not exactly one row returned, raises an error:

>>> from sqlalchemy.orm.exc import MultipleResultsFound
>>> try:
... user = query.one()
... except MultipleResultsFound, e:
... print e
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password
FROM users
WHERE users.name LIKE ? ORDER BY users.id
LIMIT 2 OFFSET 0

[’%ed’]Multiple rows were found for one()

>>> from sqlalchemy.orm.exc import NoResultFound
>>> try:
... user = query.filter(User.id == 99).one()
... except NoResultFound, e:
... print e
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password
FROM users
WHERE users.name LIKE ? AND users.id = ? ORDER BY users.id
LIMIT 2 OFFSET 0

[’%ed’, 99]No row was found for one()

14 Chapter 2. Object Relational Tutorial

SQLAlchemy Documentation, Release 0.5.4

2.10.3 Using Literal SQL

Literal strings can be used flexibly with Query. Most methods accept strings in addition to SQLAlchemy clause
constructs. For example, filter() and order_by():

>>> for user in session.query(User).filter("id<224").order_by("id").all():
... print user.name
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password
FROM users
WHERE id<224 ORDER BY id
[]ed
wendy
mary
fred

Bind parameters can be specified with string-based SQL, using a colon. To specify the values, use the params()
method:

>>> session.query(User).filter("id<:value and name=:name").\
... params(value=224, name=’fred’).order_by(User.id).one()
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password
FROM users
WHERE id<? and name=? ORDER BY users.id
LIMIT 2 OFFSET 0
[224, ’fred’]<User(’fred’,’Fred Flinstone’, ’blah’)>

To use an entirely string-based statement, using from_statement(); just ensure that the columns clause of the
statement contains the column names normally used by the mapper (below illustrated using an asterisk):

>>> session.query(User).from_statement("SELECT * FROM users where name=:name").params(name=’ed’).all()
SELECT * FROM users where name=?
[’ed’][<User(’ed’,’Ed Jones’, ’f8s7ccs’)>]

2.11 Building a Relation

Now let’s consider a second table to be dealt with. Users in our system also can store any number of email addresses
associated with their username. This implies a basic one to many association from the users_table to a new table
which stores email addresses, which we will call addresses. Using declarative, we define this table along with its
mapped class, Address:

>>> from sqlalchemy import ForeignKey
>>> from sqlalchemy.orm import relation, backref
>>> class Address(Base):
... __tablename__ = ’addresses’
... id = Column(Integer, primary_key=True)
... email_address = Column(String, nullable=False)
... user_id = Column(Integer, ForeignKey(’users.id’))
...
... user = relation(User, backref=backref(’addresses’, order_by=id))
...
... def __init__(self, email_address):

2.11. Building a Relation 15

SQLAlchemy Documentation, Release 0.5.4

... self.email_address = email_address

...

... def __repr__(self):

... return "<Address(’%s’)>" % self.email_address

The above class introduces a foreign key constraint which references the users table. This defines for SQLAlchemy
the relationship between the two tables at the database level. The relationship between the User and Address
classes is defined separately using the relation() function, which defines an attribute user to be placed on the
Address class, as well as an addresses collection to be placed on the User class. Such a relation is known as a
bidirectional relationship. Because of the placement of the foreign key, from Address to User it is many to one,
and from User to Address it is one to many. SQLAlchemy is automatically aware of many-to-one/one-to-many
based on foreign keys.

The relation() function is extremely flexible, and could just have easily been defined on the User class:

class User(Base):
....
addresses = relation(Address, order_by=Address.id, backref="user")

We are also free to not define a backref, and to define the relation() only on one class and not the other. It is also
possible to define two separate relation() constructs for either direction, which is generally safe for many-to-one
and one-to-many relations, but not for many-to-many relations.

When using the declarative extension, relation() gives us the option to use strings for most arguments that
concern the target class, in the case that the target class has not yet been defined. This only works in conjunction with
declarative:

class User(Base):
....
addresses = relation("Address", order_by="Address.id", backref="user")

When declarative is not in use, you typically define your mapper() well after the target classes and Table
objects have been defined, so string expressions are not needed.

We’ll need to create the addresses table in the database, so we will issue another CREATE from our metadata,
which will skip over tables which have already been created:

>>> metadata.create_all(engine)
PRAGMA table_info("users")
()
PRAGMA table_info("addresses")
()
CREATE TABLE addresses (

id INTEGER NOT NULL,
email_address VARCHAR NOT NULL,
user_id INTEGER,
PRIMARY KEY (id),
FOREIGN KEY(user_id) REFERENCES users (id)

)
()
COMMIT

16 Chapter 2. Object Relational Tutorial

SQLAlchemy Documentation, Release 0.5.4

2.12 Working with Related Objects

Now when we create a User, a blank addresses collection will be present. Various collection types, such as sets
and dictionaries, are possible here (see Custom Collection Implementations for details), but by default, the collection
is a Python list.

>>> jack = User(’jack’, ’Jack Bean’, ’gjffdd’)
>>> jack.addresses
[]

We are free to add Address objects on our User object. In this case we just assign a full list directly:

>>> jack.addresses = [Address(email_address=’jack@google.com’), Address(email_address=’j25@yahoo.com’)]

When using a bidirectional relationship, elements added in one direction automatically become visible in the other
direction. This is the basic behavior of the backref keyword, which maintains the relationship purely in memory,
without using any SQL:

>>> jack.addresses[1]
<Address(’j25@yahoo.com’)>

>>> jack.addresses[1].user
<User(’jack’,’Jack Bean’, ’gjffdd’)>

Let’s add and commit Jack Bean to the database. jack as well as the two Address members in his addresses
collection are both added to the session at once, using a process known as cascading:

>>> session.add(jack)
>>> session.commit()
INSERT INTO users (name, fullname, password) VALUES (?, ?, ?)
[’jack’, ’Jack Bean’, ’gjffdd’]
INSERT INTO addresses (email_address, user_id) VALUES (?, ?)
[’jack@google.com’, 5]
INSERT INTO addresses (email_address, user_id) VALUES (?, ?)
[’j25@yahoo.com’, 5]
COMMIT

Querying for Jack, we get just Jack back. No SQL is yet issued for Jack’s addresses:

>>> jack = session.query(User).filter_by(name=’jack’).one()
BEGIN
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password
FROM users
WHERE users.name = ?
LIMIT 2 OFFSET 0

[’jack’]>>> jack
<User(’jack’,’Jack Bean’, ’gjffdd’)>

Let’s look at the addresses collection. Watch the SQL:

2.12. Working with Related Objects 17

SQLAlchemy Documentation, Release 0.5.4

>>> jack.addresses
SELECT addresses.id AS addresses_id, addresses.email_address AS addresses_email_address, addresses.user_id AS addresses_user_id
FROM addresses
WHERE ? = addresses.user_id ORDER BY addresses.id
[5][<Address(’jack@google.com’)>, <Address(’j25@yahoo.com’)>]

When we accessed the addresses collection, SQL was suddenly issued. This is an example of a lazy loading
relation. The addresses collection is now loaded and behaves just like an ordinary list.

If you want to reduce the number of queries (dramatically, in many cases), we can apply an eager load to the query
operation. With the same query, we may apply an option to the query, indicating that we’d like addresses to load
“eagerly”. SQLAlchemy then constructs an outer join between the users and addresses tables, and loads them
at once, populating the addresses collection on each User object if it’s not already populated:

>>> from sqlalchemy.orm import eagerload

>>> jack = session.query(User).options(eagerload(’addresses’)).filter_by(name=’jack’).one()
SELECT anon_1.users_id AS anon_1_users_id, anon_1.users_name AS anon_1_users_name,
anon_1.users_fullname AS anon_1_users_fullname, anon_1.users_password AS anon_1_users_password,
addresses_1.id AS addresses_1_id, addresses_1.email_address AS addresses_1_email_address,
addresses_1.user_id AS addresses_1_user_id
FROM (SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname,
users.password AS users_password
FROM users WHERE users.name = ?
LIMIT 2 OFFSET 0) AS anon_1 LEFT OUTER JOIN addresses AS addresses_1
ON anon_1.users_id = addresses_1.user_id ORDER BY addresses_1.id
[’jack’]>>> jack
<User(’jack’,’Jack Bean’, ’gjffdd’)>

>>> jack.addresses
[<Address(’jack@google.com’)>, <Address(’j25@yahoo.com’)>]

SQLAlchemy has the ability to control exactly which attributes and how many levels deep should be joined together
in a single SQL query. More information on this feature is available in advdatamapping_relation.

2.13 Querying with Joins

While the eager load created a JOIN specifically to populate a collection, we can also work explicitly with joins in
many ways. For example, to construct a simple inner join between User and Address, we can just filter() their
related columns together. Below we load the User and Address entities at once using this method:

>>> for u, a in session.query(User, Address).filter(User.id==Address.user_id).\
... filter(Address.email_address==’jack@google.com’).all():
... print u, a
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname,
users.password AS users_password, addresses.id AS addresses_id,
addresses.email_address AS addresses_email_address, addresses.user_id AS addresses_user_id
FROM users, addresses
WHERE users.id = addresses.user_id AND addresses.email_address = ?
[’jack@google.com’]<User(’jack’,’Jack Bean’, ’gjffdd’)> <Address(’jack@google.com’)>

Or we can make a real JOIN construct; one way to do so is to use the ORM join() function, and tell Query to
“select from” this join:

18 Chapter 2. Object Relational Tutorial

SQLAlchemy Documentation, Release 0.5.4

>>> from sqlalchemy.orm import join
>>> session.query(User).select_from(join(User, Address)).\
... filter(Address.email_address==’jack@google.com’).all()
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password
FROM users JOIN addresses ON users.id = addresses.user_id
WHERE addresses.email_address = ?
[’jack@google.com’][<User(’jack’,’Jack Bean’, ’gjffdd’)>]

join() knows how to join between User and Address because there’s only one foreign key between them. If
there were no foreign keys, or several, join() would require a third argument indicating the ON clause of the join,
in one of the following forms:

join(User, Address, User.id==Address.user_id) # explicit condition
join(User, Address, User.addresses) # specify relation from left to right
join(User, Address, ’addresses’) # same, using a string

The functionality of join() is also available generatively from Query itself using Query.join. This is most
easily used with just the “ON” clause portion of the join, such as:

>>> session.query(User).join(User.addresses).\
... filter(Address.email_address==’jack@google.com’).all()
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password
FROM users JOIN addresses ON users.id = addresses.user_id
WHERE addresses.email_address = ?
[’jack@google.com’][<User(’jack’,’Jack Bean’, ’gjffdd’)>]

To explicitly specify the target of the join, use tuples to form an argument list similar to the standalone join. This
becomes more important when using aliases and similar constructs:

session.query(User).join((Address, User.addresses))

Multiple joins can be created by passing a list of arguments:

session.query(Foo).join(Foo.bars, Bar.bats, (Bat, ’widgets’))

The above would produce SQL something like foo JOIN bars ON <onclause> JOIN bats ON
<onclause> JOIN widgets ON <onclause>.

2.13.1 Using Aliases

When querying across multiple tables, if the same table needs to be referenced more than once, SQL typically requires
that the table be aliased with another name, so that it can be distinguished against other occurrences of that table. The
Query supports this most explicitly using the aliased construct. Below we join to the Address entity twice, to
locate a user who has two distinct email addresses at the same time:

>>> from sqlalchemy.orm import aliased
>>> adalias1 = aliased(Address)
>>> adalias2 = aliased(Address)
>>> for username, email1, email2 in \
... session.query(User.name, adalias1.email_address, adalias2.email_address).\
... join((adalias1, User.addresses), (adalias2, User.addresses)).\

2.13. Querying with Joins 19

SQLAlchemy Documentation, Release 0.5.4

... filter(adalias1.email_address==’jack@google.com’).\

... filter(adalias2.email_address==’j25@yahoo.com’):

... print username, email1, email2
SELECT users.name AS users_name, addresses_1.email_address AS addresses_1_email_address,
addresses_2.email_address AS addresses_2_email_address
FROM users JOIN addresses AS addresses_1 ON users.id = addresses_1.user_id
JOIN addresses AS addresses_2 ON users.id = addresses_2.user_id
WHERE addresses_1.email_address = ? AND addresses_2.email_address = ?
[’jack@google.com’, ’j25@yahoo.com’]jack jack@google.com j25@yahoo.com

2.13.2 Using Subqueries

The Query is suitable for generating statements which can be used as subqueries. Suppose we wanted to load User
objects along with a count of how many Address records each user has. The best way to generate SQL like this is to
get the count of addresses grouped by user ids, and JOIN to the parent. In this case we use a LEFT OUTER JOIN so
that we get rows back for those users who don’t have any addresses, e.g.:

SELECT users.*, adr_count.address_count FROM users LEFT OUTER JOIN
(SELECT user_id, count(*) AS address_count FROM addresses GROUP BY user_id) AS adr_count
ON users.id=adr_count.user_id

Using the Query, we build a statement like this from the inside out. The statement accessor returns a SQL
expression representing the statement generated by a particular Query - this is an instance of a select() construct,
which are described in sql:

>>> from sqlalchemy.sql import func
>>> stmt = session.query(Address.user_id, func.count(’*’).label(’address_count’)).group_by(Address.user_id).subquery()

The func keyword generates SQL functions, and the subquery() method on Query produces a SQL
expression construct representing a SELECT statement embedded within an alias (it’s actually shorthand for
query.statement.alias()).

Once we have our statement, it behaves like a Table construct, such as the one we created for users at the start of
this tutorial. The columns on the statement are accessible through an attribute called c:

>>> for u, count in session.query(User, stmt.c.address_count).\
... outerjoin((stmt, User.id==stmt.c.user_id)).order_by(User.id):
... print u, count
SELECT users.id AS users_id, users.name AS users_name,
users.fullname AS users_fullname, users.password AS users_password,
anon_1.address_count AS anon_1_address_count
FROM users LEFT OUTER JOIN (SELECT addresses.user_id AS user_id, count(?) AS address_count
FROM addresses GROUP BY addresses.user_id) AS anon_1 ON users.id = anon_1.user_id
ORDER BY users.id
[’*’]<User(’ed’,’Ed Jones’, ’f8s7ccs’)> None
<User(’wendy’,’Wendy Williams’, ’foobar’)> None
<User(’mary’,’Mary Contrary’, ’xxg527’)> None
<User(’fred’,’Fred Flinstone’, ’blah’)> None
<User(’jack’,’Jack Bean’, ’gjffdd’)> 2

20 Chapter 2. Object Relational Tutorial

SQLAlchemy Documentation, Release 0.5.4

2.13.3 Selecting Entities from Subqueries

Above, we just selected a result that included a column from a subquery. What if we wanted our subquery to map to
an entity ? For this we use aliased() to associate an “alias” of a mapped class to a subquery:

>>> stmt = session.query(Address).filter(Address.email_address != ’j25@yahoo.com’).subquery()
>>> adalias = aliased(Address, stmt)
>>> for user, address in session.query(User, adalias).join((adalias, User.addresses)):
... print user, address
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname,
users.password AS users_password, anon_1.id AS anon_1_id,
anon_1.email_address AS anon_1_email_address, anon_1.user_id AS anon_1_user_id
FROM users JOIN (SELECT addresses.id AS id, addresses.email_address AS email_address, addresses.user_id AS user_id
FROM addresses
WHERE addresses.email_address != ?) AS anon_1 ON users.id = anon_1.user_id
[’j25@yahoo.com’]<User(’jack’,’Jack Bean’, ’gjffdd’)> <Address(’jack@google.com’)>

2.13.4 Using EXISTS

The EXISTS keyword in SQL is a boolean operator which returns True if the given expression contains any rows. It
may be used in many scenarios in place of joins, and is also useful for locating rows which do not have a corresponding
row in a related table.

There is an explicit EXISTS construct, which looks like this:

>>> from sqlalchemy.sql import exists
>>> stmt = exists().where(Address.user_id==User.id)
>>> for name, in session.query(User.name).filter(stmt):
... print name
SELECT users.name AS users_name
FROM users
WHERE EXISTS (SELECT *
FROM addresses
WHERE addresses.user_id = users.id)
[]jack

The Query features several operators which make usage of EXISTS automatically. Above, the statement can be
expressed along the User.addresses relation using any():

>>> for name, in session.query(User.name).filter(User.addresses.any()):
... print name
SELECT users.name AS users_name
FROM users
WHERE EXISTS (SELECT 1
FROM addresses
WHERE users.id = addresses.user_id)
[]jack

any() takes criterion as well, to limit the rows matched:

>>> for name, in session.query(User.name).\
... filter(User.addresses.any(Address.email_address.like(’%google%’))):

2.13. Querying with Joins 21

SQLAlchemy Documentation, Release 0.5.4

... print name
SELECT users.name AS users_name
FROM users
WHERE EXISTS (SELECT 1
FROM addresses
WHERE users.id = addresses.user_id AND addresses.email_address LIKE ?)
[’%google%’]jack

has() is the same operator as any() for many-to-one relations (note the ~ operator here too, which means “NOT”):

>>> session.query(Address).filter(~Address.user.has(User.name==’jack’)).all()
SELECT addresses.id AS addresses_id, addresses.email_address AS addresses_email_address,
addresses.user_id AS addresses_user_id
FROM addresses
WHERE NOT (EXISTS (SELECT 1
FROM users
WHERE users.id = addresses.user_id AND users.name = ?))
[’jack’][]

2.13.5 Common Relation Operators

Here’s all the operators which build on relations:

• equals (used for many-to-one):

query.filter(Address.user == someuser)

• not equals (used for many-to-one):

query.filter(Address.user != someuser)

• IS NULL (used for many-to-one):

query.filter(Address.user == None)

• contains (used for one-to-many and many-to-many collections):

query.filter(User.addresses.contains(someaddress))

• any (used for one-to-many and many-to-many collections):

query.filter(User.addresses.any(Address.email_address == ’bar’))

also takes keyword arguments:
query.filter(User.addresses.any(email_address=’bar’))

• has (used for many-to-one):

query.filter(Address.user.has(name=’ed’))

• with_parent (used for any relation):

session.query(Address).with_parent(someuser, ’addresses’)

22 Chapter 2. Object Relational Tutorial

SQLAlchemy Documentation, Release 0.5.4

2.14 Deleting

Let’s try to delete jack and see how that goes. We’ll mark as deleted in the session, then we’ll issue a count query
to see that no rows remain:

>>> session.delete(jack)
>>> session.query(User).filter_by(name=’jack’).count()
UPDATE addresses SET user_id=? WHERE addresses.id = ?
[None, 1]
UPDATE addresses SET user_id=? WHERE addresses.id = ?
[None, 2]
DELETE FROM users WHERE users.id = ?
[5]
SELECT count(1) AS count_1
FROM users
WHERE users.name = ?
[’jack’]0

So far, so good. How about Jack’s Address objects ?

>>> session.query(Address).filter(
... Address.email_address.in_([’jack@google.com’, ’j25@yahoo.com’])
...).count()
SELECT count(1) AS count_1
FROM addresses
WHERE addresses.email_address IN (?, ?)
[’jack@google.com’, ’j25@yahoo.com’]2

Uh oh, they’re still there ! Analyzing the flush SQL, we can see that the user_id column of each address was set to
NULL, but the rows weren’t deleted. SQLAlchemy doesn’t assume that deletes cascade, you have to tell it to do so.

2.14.1 Configuring delete/delete-orphan Cascade

We will configure cascade options on the User.addresses relation to change the behavior. While SQLAlchemy
allows you to add new attributes and relations to mappings at any point in time, in this case the existing relation needs
to be removed, so we need to tear down the mappings completely and start again. This is not a typical operation and
is here just for illustrative purposes.

Removing all ORM state is as follows:

>>> session.close() # roll back and close the transaction
>>> from sqlalchemy.orm import clear_mappers
>>> clear_mappers() # clear mappers

Below, we use mapper() to reconfigure an ORM mapping for User and Address, on our existing but currently
un-mapped classes. The User.addresses relation now has delete, delete-orphan cascade on it, which
indicates that DELETE operations will cascade to attached Address objects as well as Address objects which are
removed from their parent:

>>> mapper(User, users_table, properties={
... ’addresses’:relation(Address, backref=’user’, cascade="all, delete, delete-orphan")

2.14. Deleting 23

SQLAlchemy Documentation, Release 0.5.4

... })
<Mapper at 0x...; User>

>>> addresses_table = Address.__table__
>>> mapper(Address, addresses_table)
<Mapper at 0x...; Address>

Now when we load Jack (below using get(), which loads by primary key), removing an address from his
addresses collection will result in that Address being deleted:

load Jack by primary key
>>> jack = session.query(User).get(5)
BEGIN
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password
FROM users
WHERE users.id = ?
[5]# remove one Address (lazy load fires off)
>>> del jack.addresses[1]
SELECT addresses.id AS addresses_id, addresses.email_address AS addresses_email_address, addresses.user_id AS addresses_user_id
FROM addresses
WHERE ? = addresses.user_id
[5]# only one address remains
>>> session.query(Address).filter(
... Address.email_address.in_([’jack@google.com’, ’j25@yahoo.com’])
...).count()
DELETE FROM addresses WHERE addresses.id = ?
[2]
SELECT count(1) AS count_1
FROM addresses
WHERE addresses.email_address IN (?, ?)
[’jack@google.com’, ’j25@yahoo.com’]1

Deleting Jack will delete both Jack and his remaining Address:

>>> session.delete(jack)

>>> session.query(User).filter_by(name=’jack’).count()
DELETE FROM addresses WHERE addresses.id = ?
[1]
DELETE FROM users WHERE users.id = ?
[5]
SELECT count(1) AS count_1
FROM users
WHERE users.name = ?
[’jack’]0

>>> session.query(Address).filter(
... Address.email_address.in_([’jack@google.com’, ’j25@yahoo.com’])
...).count()
SELECT count(1) AS count_1
FROM addresses
WHERE addresses.email_address IN (?, ?)
[’jack@google.com’, ’j25@yahoo.com’]0

24 Chapter 2. Object Relational Tutorial

SQLAlchemy Documentation, Release 0.5.4

2.15 Building a Many To Many Relation

We’re moving into the bonus round here, but lets show off a many-to-many relationship. We’ll sneak in some other
features too, just to take a tour. We’ll make our application a blog application, where users can write BlogPost
items, which have Keyword items associated with them.

The declarative setup is as follows:

>>> from sqlalchemy import Text

>>> # association table
>>> post_keywords = Table(’post_keywords’, metadata,
... Column(’post_id’, Integer, ForeignKey(’posts.id’)),
... Column(’keyword_id’, Integer, ForeignKey(’keywords.id’))
...)

>>> class BlogPost(Base):
... __tablename__ = ’posts’
...
... id = Column(Integer, primary_key=True)
... user_id = Column(Integer, ForeignKey(’users.id’))
... headline = Column(String(255), nullable=False)
... body = Column(Text)
...
... # many to many BlogPost<->Keyword
... keywords = relation(’Keyword’, secondary=post_keywords, backref=’posts’)
...
... def __init__(self, headline, body, author):
... self.author = author
... self.headline = headline
... self.body = body
...
... def __repr__(self):
... return "BlogPost(%r, %r, %r)" % (self.headline, self.body, self.author)

>>> class Keyword(Base):
... __tablename__ = ’keywords’
...
... id = Column(Integer, primary_key=True)
... keyword = Column(String(50), nullable=False, unique=True)
...
... def __init__(self, keyword):
... self.keyword = keyword

Above, the many-to-many relation is BlogPost.keywords. The defining feature of a many-to-many relation is the
secondary keyword argument which references a Table object representing the association table. This table only
contains columns which reference the two sides of the relation; if it has any other columns, such as its own primary
key, or foreign keys to other tables, SQLAlchemy requires a different usage pattern called the “association object”,
described at Association Object.

The many-to-many relation is also bi-directional using the backref keyword. This is the one case where usage of
backref is generally required, since if a separate posts relation were added to the Keyword entity, both relations
would independently add and remove rows from the post_keywords table and produce conflicts.

We would also like our BlogPost class to have an author field. We will add this as another bidirectional relation-

2.15. Building a Many To Many Relation 25

SQLAlchemy Documentation, Release 0.5.4

ship, except one issue we’ll have is that a single user might have lots of blog posts. When we access User.posts,
we’d like to be able to filter results further so as not to load the entire collection. For this we use a setting accepted by
relation() called lazy=’dynamic’, which configures an alternate loader strategy on the attribute. To use it
on the “reverse” side of a relation(), we use the backref() function:

>>> from sqlalchemy.orm import backref
>>> # "dynamic" loading relation to User
>>> BlogPost.author = relation(User, backref=backref(’posts’, lazy=’dynamic’))

Create new tables:

>>> metadata.create_all(engine)
PRAGMA table_info("users")
()
PRAGMA table_info("addresses")
()
PRAGMA table_info("posts")
()
PRAGMA table_info("keywords")
()
PRAGMA table_info("post_keywords")
()
CREATE TABLE posts (

id INTEGER NOT NULL,
user_id INTEGER,
headline VARCHAR(255) NOT NULL,
body TEXT,
PRIMARY KEY (id),
FOREIGN KEY(user_id) REFERENCES users (id)

)
()
COMMIT
CREATE TABLE keywords (

id INTEGER NOT NULL,
keyword VARCHAR(50) NOT NULL,
PRIMARY KEY (id),
UNIQUE (keyword)

)
()
COMMIT
CREATE TABLE post_keywords (

post_id INTEGER,
keyword_id INTEGER,
FOREIGN KEY(post_id) REFERENCES posts (id),
FOREIGN KEY(keyword_id) REFERENCES keywords (id)

)
()
COMMIT

Usage is not too different from what we’ve been doing. Let’s give Wendy some blog posts:

>>> wendy = session.query(User).filter_by(name=’wendy’).one()
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, users.password AS users_password

26 Chapter 2. Object Relational Tutorial

SQLAlchemy Documentation, Release 0.5.4

FROM users
WHERE users.name = ?
LIMIT 2 OFFSET 0

[’wendy’]>>> post = BlogPost("Wendy’s Blog Post", "This is a test", wendy)
>>> session.add(post)

We’re storing keywords uniquely in the database, but we know that we don’t have any yet, so we can just create them:

>>> post.keywords.append(Keyword(’wendy’))
>>> post.keywords.append(Keyword(’firstpost’))

We can now look up all blog posts with the keyword ‘firstpost’. We’ll use the any operator to locate “blog posts where
any of its keywords has the keyword string ‘firstpost”’:

>>> session.query(BlogPost).filter(BlogPost.keywords.any(keyword=’firstpost’)).all()
INSERT INTO keywords (keyword) VALUES (?)
[’wendy’]
INSERT INTO keywords (keyword) VALUES (?)
[’firstpost’]
INSERT INTO posts (user_id, headline, body) VALUES (?, ?, ?)
[2, "Wendy’s Blog Post", ’This is a test’]
INSERT INTO post_keywords (post_id, keyword_id) VALUES (?, ?)
[[1, 2], [1, 1]]
SELECT posts.id AS posts_id, posts.user_id AS posts_user_id, posts.headline AS posts_headline, posts.body AS posts_body
FROM posts
WHERE EXISTS (SELECT 1
FROM post_keywords, keywords
WHERE posts.id = post_keywords.post_id AND keywords.id = post_keywords.keyword_id AND keywords.keyword = ?)
[’firstpost’][BlogPost("Wendy’s Blog Post", ’This is a test’, <User(’wendy’,’Wendy Williams’, ’foobar’)>)]

If we want to look up just Wendy’s posts, we can tell the query to narrow down to her as a parent:

>>> session.query(BlogPost).filter(BlogPost.author==wendy).\
... filter(BlogPost.keywords.any(keyword=’firstpost’)).all()
SELECT posts.id AS posts_id, posts.user_id AS posts_user_id, posts.headline AS posts_headline, posts.body AS posts_body
FROM posts
WHERE ? = posts.user_id AND (EXISTS (SELECT 1
FROM post_keywords, keywords
WHERE posts.id = post_keywords.post_id AND keywords.id = post_keywords.keyword_id AND keywords.keyword = ?))
[2, ’firstpost’][BlogPost("Wendy’s Blog Post", ’This is a test’, <User(’wendy’,’Wendy Williams’, ’foobar’)>)]

Or we can use Wendy’s own posts relation, which is a “dynamic” relation, to query straight from there:

>>> wendy.posts.filter(BlogPost.keywords.any(keyword=’firstpost’)).all()
SELECT posts.id AS posts_id, posts.user_id AS posts_user_id, posts.headline AS posts_headline, posts.body AS posts_body
FROM posts
WHERE ? = posts.user_id AND (EXISTS (SELECT 1
FROM post_keywords, keywords
WHERE posts.id = post_keywords.post_id AND keywords.id = post_keywords.keyword_id AND keywords.keyword = ?))
[2, ’firstpost’][BlogPost("Wendy’s Blog Post", ’This is a test’, <User(’wendy’,’Wendy Williams’, ’foobar’)>)]

2.15. Building a Many To Many Relation 27

SQLAlchemy Documentation, Release 0.5.4

2.16 Further Reference

Query Reference: Querying

Further information on mapping setups are in Mapper Configuration.

Further information on working with Sessions: Using the Session.

28 Chapter 2. Object Relational Tutorial

CHAPTER

THREE

SQL EXPRESSION LANGUAGE
TUTORIAL

This tutorial will cover SQLAlchemy SQL Expressions, which are Python constructs that represent SQL statements.
The tutorial is in doctest format, meaning each >>> line represents something you can type at a Python command
prompt, and the following text represents the expected return value. The tutorial has no prerequisites.

3.1 Version Check

A quick check to verify that we are on at least version 0.5 of SQLAlchemy:

>>> import sqlalchemy
>>> sqlalchemy.__version__
0.5.0

3.2 Connecting

For this tutorial we will use an in-memory-only SQLite database. This is an easy way to test things without needing
to have an actual database defined anywhere. To connect we use create_engine():

>>> from sqlalchemy import create_engine
>>> engine = create_engine(’sqlite:///:memory:’, echo=True)

The echo flag is a shortcut to setting up SQLAlchemy logging, which is accomplished via Python’s standard
logging module. With it enabled, we’ll see all the generated SQL produced. If you are working through this
tutorial and want less output generated, set it to False. This tutorial will format the SQL behind a popup window so
it doesn’t get in our way; just click the “SQL” links to see what’s being generated.

3.3 Define and Create Tables

The SQL Expression Language constructs its expressions in most cases against table columns. In SQLAlchemy, a
column is most often represented by an object called Column, and in all cases a Column is associated with a Table.
A collection of Table objects and their associated child objects is referred to as database metadata. In this tutorial
we will explicitly lay out several Table objects, but note that SA can also “import” whole sets of Table objects
automatically from an existing database (this process is called table reflection).

29

SQLAlchemy Documentation, Release 0.5.4

We define our tables all within a catalog called MetaData, using the Table construct, which resembles regular SQL
CREATE TABLE statements. We’ll make two tables, one of which represents “users” in an application, and another
which represents zero or more “email addreses” for each row in the “users” table:

>>> from sqlalchemy import Table, Column, Integer, String, MetaData, ForeignKey
>>> metadata = MetaData()
>>> users = Table(’users’, metadata,
... Column(’id’, Integer, primary_key=True),
... Column(’name’, String),
... Column(’fullname’, String),
...)

>>> addresses = Table(’addresses’, metadata,
... Column(’id’, Integer, primary_key=True),
... Column(’user_id’, None, ForeignKey(’users.id’)),
... Column(’email_address’, String, nullable=False)
...)

All about how to define Table objects, as well as how to create them from an existing database automatically, is
described in Database Meta Data.

Next, to tell the MetaData we’d actually like to create our selection of tables for real inside the SQLite database, we
use create_all(), passing it the engine instance which points to our database. This will check for the presence
of each table first before creating, so it’s safe to call multiple times:

>>> metadata.create_all(engine)
PRAGMA table_info("users")
{}
PRAGMA table_info("addresses")
{}
CREATE TABLE users (

id INTEGER NOT NULL,
name VARCHAR,
fullname VARCHAR,
PRIMARY KEY (id)

)
{}
COMMIT
CREATE TABLE addresses (

id INTEGER NOT NULL,
user_id INTEGER,
email_address VARCHAR NOT NULL,
PRIMARY KEY (id),
FOREIGN KEY(user_id) REFERENCES users (id)

)
{}
COMMIT

Users familiar with the syntax of CREATE TABLE may notice that the VARCHAR columns were generated without
a length; on SQLite, this is a valid datatype, but on most databases it’s not allowed. So if running this tutorial on a
database such as PostgreSQL or MySQL, and you wish to use SQLAlchemy to generate the tables, a “length” may be
provided to the String type as below:

Column(’name’, String(50))

30 Chapter 3. SQL Expression Language Tutorial

SQLAlchemy Documentation, Release 0.5.4

The length field on String, as well as similar fields available on Integer, Numeric, etc. are not referenced by
SQLAlchemy other than when creating tables.

3.4 Insert Expressions

The first SQL expression we’ll create is the Insert construct, which represents an INSERT statement. This is
typically created relative to its target table:

>>> ins = users.insert()

To see a sample of the SQL this construct produces, use the str() function:

>>> str(ins)
’INSERT INTO users (id, name, fullname) VALUES (:id, :name, :fullname)’

Notice above that the INSERT statement names every column in the users table. This can be limited by using the
values() method, which establishes the VALUES clause of the INSERT explicitly:

>>> ins = users.insert().values(name=’jack’, fullname=’Jack Jones’)
>>> str(ins)
’INSERT INTO users (name, fullname) VALUES (:name, :fullname)’

Above, while the values method limited the VALUES clause to just two columns, the actual data we placed in
values didn’t get rendered into the string; instead we got named bind parameters. As it turns out, our data is stored
within our Insert construct, but it typically only comes out when the statement is actually executed; since the data
consists of literal values, SQLAlchemy automatically generates bind parameters for them. We can peek at this data
for now by looking at the compiled form of the statement:

>>> ins.compile().params
{’fullname’: ’Jack Jones’, ’name’: ’jack’}

3.5 Executing

The interesting part of an Insert is executing it. In this tutorial, we will generally focus on the most explicit method
of executing a SQL construct, and later touch upon some “shortcut” ways to do it. The engine object we created
is a repository for database connections capable of issuing SQL to the database. To acquire a connection, we use the
connect() method:

>>> conn = engine.connect()
>>> conn
<sqlalchemy.engine.base.Connection object at 0x...>

The Connection object represents an actively checked out DBAPI connection resource. Lets feed it our Insert
object and see what happens:

>>> result = conn.execute(ins)
INSERT INTO users (name, fullname) VALUES (?, ?)
[’jack’, ’Jack Jones’]
COMMIT

3.4. Insert Expressions 31

SQLAlchemy Documentation, Release 0.5.4

So the INSERT statement was now issued to the database. Although we got positional “qmark” bind parameters
instead of “named” bind parameters in the output. How come ? Because when executed, the Connection used the
SQLite dialect to help generate the statement; when we use the str() function, the statement isn’t aware of this
dialect, and falls back onto a default which uses named parameters. We can view this manually as follows:

>>> ins.bind = engine
>>> str(ins)
’INSERT INTO users (name, fullname) VALUES (?, ?)’

What about the result variable we got when we called execute() ? As the SQLAlchemy Connection object
references a DBAPI connection, the result, known as a ResultProxy object, is analogous to the DBAPI cursor
object. In the case of an INSERT, we can get important information from it, such as the primary key values which
were generated from our statement:

>>> result.last_inserted_ids()
[1]

The value of 1 was automatically generated by SQLite, but only because we did not specify the id column in our
Insert statement; otherwise, our explicit value would have been used. In either case, SQLAlchemy always knows
how to get at a newly generated primary key value, even though the method of generating them is different across
different databases; each databases’ Dialect knows the specific steps needed to determine the correct value (or
values; note that last_inserted_ids() returns a list so that it supports composite primary keys).

3.6 Executing Multiple Statements

Our insert example above was intentionally a little drawn out to show some various behaviors of expression language
constructs. In the usual case, an Insert statement is usually compiled against the parameters sent to the execute()
method on Connection, so that there’s no need to use the values keyword with Insert. Lets create a generic
Insert statement again and use it in the “normal” way:

>>> ins = users.insert()
>>> conn.execute(ins, id=2, name=’wendy’, fullname=’Wendy Williams’)
INSERT INTO users (id, name, fullname) VALUES (?, ?, ?)
[2, ’wendy’, ’Wendy Williams’]
COMMIT<sqlalchemy.engine.base.ResultProxy object at 0x...>

Above, because we specified all three columns in the the execute() method, the compiled Insert included all
three columns. The Insert statement is compiled at execution time based on the parameters we specified; if we
specified fewer parameters, the Insert would have fewer entries in its VALUES clause.

To issue many inserts using DBAPI’s executemany() method, we can send in a list of dictionaries each containing
a distinct set of parameters to be inserted, as we do here to add some email addresses:

>>> conn.execute(addresses.insert(), [
... {’user_id’: 1, ’email_address’ : ’jack@yahoo.com’},
... {’user_id’: 1, ’email_address’ : ’jack@msn.com’},
... {’user_id’: 2, ’email_address’ : ’www@www.org’},
... {’user_id’: 2, ’email_address’ : ’wendy@aol.com’},
...])
INSERT INTO addresses (user_id, email_address) VALUES (?, ?)
[[1, ’jack@yahoo.com’], [1, ’jack@msn.com’], [2, ’www@www.org’], [2, ’wendy@aol.com’]]
COMMIT<sqlalchemy.engine.base.ResultProxy object at 0x...>

32 Chapter 3. SQL Expression Language Tutorial

SQLAlchemy Documentation, Release 0.5.4

Above, we again relied upon SQLite’s automatic generation of primary key identifiers for each addresses row.

When executing multiple sets of parameters, each dictionary must have the same set of keys; i.e. you cant have fewer
keys in some dictionaries than others. This is because the Insert statement is compiled against the first dictionary
in the list, and it’s assumed that all subsequent argument dictionaries are compatible with that statement.

3.7 Connectionless / Implicit Execution

We’re executing our Insert using a Connection. There’s two options that allow you to not have to deal with the
connection part. You can execute in the connectionless style, using the engine, which opens and closes a connection
for you:

>>> result = engine.execute(users.insert(), name=’fred’, fullname="Fred Flintstone")
INSERT INTO users (name, fullname) VALUES (?, ?)
[’fred’, ’Fred Flintstone’]
COMMIT

and you can save even more steps than that, if you connect the Engine to the MetaData object we created earlier.
When this is done, all SQL expressions which involve tables within the MetaData object will be automatically
bound to the Engine. In this case, we call it implicit execution:

>>> metadata.bind = engine
>>> result = users.insert().execute(name="mary", fullname="Mary Contrary")
INSERT INTO users (name, fullname) VALUES (?, ?)
[’mary’, ’Mary Contrary’]
COMMIT

When the MetaData is bound, statements will also compile against the engine’s dialect. Since a lot of the examples
here assume the default dialect, we’ll detach the engine from the metadata which we just attached:

>>> metadata.bind = None

Detailed examples of connectionless and implicit execution are available in the “Engines” chapter: dbengine_implicit.

3.8 Selecting

We began with inserts just so that our test database had some data in it. The more interesting part of the data is selecting
it ! We’ll cover UPDATE and DELETE statements later. The primary construct used to generate SELECT statements
is the select() function:

>>> from sqlalchemy.sql import select
>>> s = select([users])
>>> result = conn.execute(s)
SELECT users.id, users.name, users.fullname
FROM users
[]

Above, we issued a basic select() call, placing the users table within the COLUMNS clause of the select, and
then executing. SQLAlchemy expanded the users table into the set of each of its columns, and also generated a
FROM clause for us. The result returned is again a ResultProxy object, which acts much like a DBAPI cursor,
including methods such as fetchone() and fetchall(). The easiest way to get rows from it is to just iterate:

3.7. Connectionless / Implicit Execution 33

SQLAlchemy Documentation, Release 0.5.4

>>> for row in result:
... print row
(1, u’jack’, u’Jack Jones’)
(2, u’wendy’, u’Wendy Williams’)
(3, u’fred’, u’Fred Flintstone’)
(4, u’mary’, u’Mary Contrary’)

Above, we see that printing each row produces a simple tuple-like result. We have more options at accessing the data
in each row. One very common way is through dictionary access, using the string names of columns:

>>> result = conn.execute(s)
SELECT users.id, users.name, users.fullname
FROM users
[]>>> row = result.fetchone()
>>> print "name:", row[’name’], "; fullname:", row[’fullname’]
name: jack ; fullname: Jack Jones

Integer indexes work as well:

>>> row = result.fetchone()
>>> print "name:", row[1], "; fullname:", row[2]
name: wendy ; fullname: Wendy Williams

But another way, whose usefulness will become apparent later on, is to use the Column objects directly as keys:

>>> for row in conn.execute(s):
... print "name:", row[users.c.name], "; fullname:", row[users.c.fullname]
SELECT users.id, users.name, users.fullname
FROM users
[]name: jack ; fullname: Jack Jones
name: wendy ; fullname: Wendy Williams
name: fred ; fullname: Fred Flintstone
name: mary ; fullname: Mary Contrary

Result sets which have pending rows remaining should be explicitly closed before discarding. While the resources
referenced by the ResultProxy will be closed when the object is garbage collected, it’s better to make it explicit as
some database APIs are very picky about such things:

>>> result.close()

If we’d like to more carefully control the columns which are placed in the COLUMNS clause of the select, we reference
individual Column objects from our Table. These are available as named attributes off the c attribute of the Table
object:

>>> s = select([users.c.name, users.c.fullname])
>>> result = conn.execute(s)
SELECT users.name, users.fullname
FROM users
[]>>> for row in result:
... print row
(u’jack’, u’Jack Jones’)
(u’wendy’, u’Wendy Williams’)
(u’fred’, u’Fred Flintstone’)
(u’mary’, u’Mary Contrary’)

34 Chapter 3. SQL Expression Language Tutorial

SQLAlchemy Documentation, Release 0.5.4

Lets observe something interesting about the FROM clause. Whereas the generated statement contains two distinct
sections, a “SELECT columns” part and a “FROM table” part, our select() construct only has a list containing
columns. How does this work ? Let’s try putting two tables into our select() statement:

>>> for row in conn.execute(select([users, addresses])):
... print row
SELECT users.id, users.name, users.fullname, addresses.id, addresses.user_id, addresses.email_address
FROM users, addresses
[](1, u’jack’, u’Jack Jones’, 1, 1, u’jack@yahoo.com’)
(1, u’jack’, u’Jack Jones’, 2, 1, u’jack@msn.com’)
(1, u’jack’, u’Jack Jones’, 3, 2, u’www@www.org’)
(1, u’jack’, u’Jack Jones’, 4, 2, u’wendy@aol.com’)
(2, u’wendy’, u’Wendy Williams’, 1, 1, u’jack@yahoo.com’)
(2, u’wendy’, u’Wendy Williams’, 2, 1, u’jack@msn.com’)
(2, u’wendy’, u’Wendy Williams’, 3, 2, u’www@www.org’)
(2, u’wendy’, u’Wendy Williams’, 4, 2, u’wendy@aol.com’)
(3, u’fred’, u’Fred Flintstone’, 1, 1, u’jack@yahoo.com’)
(3, u’fred’, u’Fred Flintstone’, 2, 1, u’jack@msn.com’)
(3, u’fred’, u’Fred Flintstone’, 3, 2, u’www@www.org’)
(3, u’fred’, u’Fred Flintstone’, 4, 2, u’wendy@aol.com’)
(4, u’mary’, u’Mary Contrary’, 1, 1, u’jack@yahoo.com’)
(4, u’mary’, u’Mary Contrary’, 2, 1, u’jack@msn.com’)
(4, u’mary’, u’Mary Contrary’, 3, 2, u’www@www.org’)
(4, u’mary’, u’Mary Contrary’, 4, 2, u’wendy@aol.com’)

It placed both tables into the FROM clause. But also, it made a real mess. Those who are familiar with SQL joins know
that this is a Cartesian product; each row from the users table is produced against each row from the addresses
table. So to put some sanity into this statement, we need a WHERE clause. Which brings us to the second argument
of select():

>>> s = select([users, addresses], users.c.id==addresses.c.user_id)
>>> for row in conn.execute(s):
... print row
SELECT users.id, users.name, users.fullname, addresses.id, addresses.user_id, addresses.email_address
FROM users, addresses
WHERE users.id = addresses.user_id
[](1, u’jack’, u’Jack Jones’, 1, 1, u’jack@yahoo.com’)
(1, u’jack’, u’Jack Jones’, 2, 1, u’jack@msn.com’)
(2, u’wendy’, u’Wendy Williams’, 3, 2, u’www@www.org’)
(2, u’wendy’, u’Wendy Williams’, 4, 2, u’wendy@aol.com’)

So that looks a lot better, we added an expression to our select() which had the effect of adding WHERE
users.id = addresses.user_id to our statement, and our results were managed down so that the join of
users and addresses rows made sense. But let’s look at that expression? It’s using just a Python equality opera-
tor between two different Column objects. It should be clear that something is up. Saying 1==1 produces True, and
1==2 produces False, not a WHERE clause. So lets see exactly what that expression is doing:

>>> users.c.id==addresses.c.user_id
<sqlalchemy.sql.expression._BinaryExpression object at 0x...>

Wow, surprise ! This is neither a True nor a False. Well what is it ?

>>> str(users.c.id==addresses.c.user_id)
’users.id = addresses.user_id’

3.8. Selecting 35

SQLAlchemy Documentation, Release 0.5.4

As you can see, the == operator is producing an object that is very much like the Insert and select() objects
we’ve made so far, thanks to Python’s __eq__() builtin; you call str() on it and it produces SQL. By now, one
can that everything we are working with is ultimately the same type of object. SQLAlchemy terms the base class of
all of these expressions as sqlalchemy.sql.ClauseElement.

3.9 Operators

Since we’ve stumbled upon SQLAlchemy’s operator paradigm, let’s go through some of its capabilities. We’ve seen
how to equate two columns to each other:

>>> print users.c.id==addresses.c.user_id
users.id = addresses.user_id

If we use a literal value (a literal meaning, not a SQLAlchemy clause object), we get a bind parameter:

>>> print users.c.id==7
users.id = :id_1

The 7 literal is embedded in ClauseElement; we can use the same trick we did with the Insert object to see it:

>>> (users.c.id==7).compile().params
{u’id_1’: 7}

Most Python operators, as it turns out, produce a SQL expression here, like equals, not equals, etc.:

>>> print users.c.id != 7
users.id != :id_1

>>> # None converts to IS NULL
>>> print users.c.name == None
users.name IS NULL

>>> # reverse works too
>>> print ’fred’ > users.c.name
users.name < :name_1

If we add two integer columns together, we get an addition expression:

>>> print users.c.id + addresses.c.id
users.id + addresses.id

Interestingly, the type of the Column is important ! If we use + with two string based columns (recall we put types
like Integer and String on our Column objects at the beginning), we get something different:

>>> print users.c.name + users.c.fullname
users.name || users.fullname

Where || is the string concatenation operator used on most databases. But not all of them. MySQL users, fear not:

36 Chapter 3. SQL Expression Language Tutorial

SQLAlchemy Documentation, Release 0.5.4

>>> print (users.c.name + users.c.fullname).compile(bind=create_engine(’mysql://’))
concat(users.name, users.fullname)

The above illustrates the SQL that’s generated for an Engine that’s connected to a MySQL database; the || operator
now compiles as MySQL’s concat() function.

If you have come across an operator which really isn’t available, you can always use the op() method; this generates
whatever operator you need:

>>> print users.c.name.op(’tiddlywinks’)(’foo’)
users.name tiddlywinks :name_1

3.10 Conjunctions

We’d like to show off some of our operators inside of select() constructs. But we need to lump them together a little
more, so let’s first introduce some conjunctions. Conjunctions are those little words like AND and OR that put things
together. We’ll also hit upon NOT. AND, OR and NOT can work from the corresponding functions SQLAlchemy
provides (notice we also throw in a LIKE):

>>> from sqlalchemy.sql import and_, or_, not_
>>> print and_(users.c.name.like(’j%’), users.c.id==addresses.c.user_id,
... or_(addresses.c.email_address==’wendy@aol.com’, addresses.c.email_address==’jack@yahoo.com’),
... not_(users.c.id>5))
users.name LIKE :name_1 AND users.id = addresses.user_id AND
(addresses.email_address = :email_address_1 OR addresses.email_address = :email_address_2)
AND users.id <= :id_1

And you can also use the re-jiggered bitwise AND, OR and NOT operators, although because of Python operator
precedence you have to watch your parenthesis:

>>> print users.c.name.like(’j%’) & (users.c.id==addresses.c.user_id) & \
... ((addresses.c.email_address==’wendy@aol.com’) | (addresses.c.email_address==’jack@yahoo.com’)) \
... & ~(users.c.id>5)
users.name LIKE :name_1 AND users.id = addresses.user_id AND
(addresses.email_address = :email_address_1 OR addresses.email_address = :email_address_2)
AND users.id <= :id_1

So with all of this vocabulary, let’s select all users who have an email address at AOL or MSN, whose name starts with
a letter between “m” and “z”, and we’ll also generate a column containing their full name combined with their email
address. We will add two new constructs to this statement, between() and label(). between() produces
a BETWEEN clause, and label() is used in a column expression to produce labels using the AS keyword; it’s
recommended when selecting from expressions that otherwise would not have a name:

>>> s = select([(users.c.fullname + ", " + addresses.c.email_address).label(’title’)],
... and_(
... users.c.id==addresses.c.user_id,
... users.c.name.between(’m’, ’z’),
... or_(
... addresses.c.email_address.like(’%@aol.com’),
... addresses.c.email_address.like(’%@msn.com’)
...)

3.10. Conjunctions 37

SQLAlchemy Documentation, Release 0.5.4

...)

...)
>>> print conn.execute(s).fetchall()
SELECT users.fullname || ? || addresses.email_address AS title
FROM users, addresses
WHERE users.id = addresses.user_id AND users.name BETWEEN ? AND ? AND
(addresses.email_address LIKE ? OR addresses.email_address LIKE ?)
[’, ’, ’m’, ’z’, ’%@aol.com’, ’%@msn.com’]
[(u’Wendy Williams, wendy@aol.com’,)]

Once again, SQLAlchemy figured out the FROM clause for our statement. In fact it will determine the FROM clause
based on all of its other bits; the columns clause, the where clause, and also some other elements which we haven’t
covered yet, which include ORDER BY, GROUP BY, and HAVING.

3.11 Using Text

Our last example really became a handful to type. Going from what one understands to be a textual SQL expres-
sion into a Python construct which groups components together in a programmatic style can be hard. That’s why
SQLAlchemy lets you just use strings too. The text() construct represents any textual statement. To use bind
parameters with text(), always use the named colon format. Such as below, we create a text() and execute it,
feeding in the bind parameters to the execute() method:

>>> from sqlalchemy.sql import text
>>> s = text("""SELECT users.fullname || ’, ’ || addresses.email_address AS title
... FROM users, addresses
... WHERE users.id = addresses.user_id AND users.name BETWEEN :x AND :y AND
... (addresses.email_address LIKE :e1 OR addresses.email_address LIKE :e2)
... """)
>>> print conn.execute(s, x=’m’, y=’z’, e1=’%@aol.com’, e2=’%@msn.com’).fetchall()
SELECT users.fullname || ’, ’ || addresses.email_address AS title
FROM users, addresses
WHERE users.id = addresses.user_id AND users.name BETWEEN ? AND ? AND
(addresses.email_address LIKE ? OR addresses.email_address LIKE ?)
[’m’, ’z’, ’%@aol.com’, ’%@msn.com’][(u’Wendy Williams, wendy@aol.com’,)]

To gain a “hybrid” approach, any of SA’s SQL constructs can have text freely intermingled wherever you like - the
text() construct can be placed within any other ClauseElement construct, and when used in a non-operator
context, a direct string may be placed which converts to text() automatically. Below we combine the usage of
text() and strings with our constructed select() object, by using the select() object to structure the state-
ment, and the text()/strings to provide all the content within the structure. For this example, SQLAlchemy is not
given any Column or Table objects in any of its expressions, so it cannot generate a FROM clause. So we also
give it the from_obj keyword argument, which is a list of ClauseElements (or strings) to be placed within the
FROM clause:

>>> s = select([text("users.fullname || ’, ’ || addresses.email_address AS title")],
... and_(
... "users.id = addresses.user_id",
... "users.name BETWEEN ’m’ AND ’z’",
... "(addresses.email_address LIKE :x OR addresses.email_address LIKE :y)"
...),
... from_obj=[’users’, ’addresses’]
...)

38 Chapter 3. SQL Expression Language Tutorial

SQLAlchemy Documentation, Release 0.5.4

>>> print conn.execute(s, x=’%@aol.com’, y=’%@msn.com’).fetchall()
SELECT users.fullname || ’, ’ || addresses.email_address AS title
FROM users, addresses
WHERE users.id = addresses.user_id AND users.name BETWEEN ’m’ AND ’z’ AND (addresses.email_address LIKE ? OR addresses.email_address LIKE ?)
[’%@aol.com’, ’%@msn.com’][(u’Wendy Williams, wendy@aol.com’,)]

Going from constructed SQL to text, we lose some capabilities. We lose the capability for SQLAlchemy to compile our
expression to a specific target database; above, our expression won’t work with MySQL since it has no || construct.
It also becomes more tedious for SQLAlchemy to be made aware of the datatypes in use; for example, if our bind
parameters required UTF-8 encoding before going in, or conversion from a Python datetime into a string (as is
required with SQLite), we would have to add extra information to our text() construct. Similar issues arise on the
result set side, where SQLAlchemy also performs type-specific data conversion in some cases; still more information
can be added to text() to work around this. But what we really lose from our statement is the ability to manipulate
it, transform it, and analyze it. These features are critical when using the ORM, which makes heavy usage of relational
transformations. To show off what we mean, we’ll first introduce the ALIAS construct and the JOIN construct, just so
we have some juicier bits to play with.

3.12 Using Aliases

The alias corresponds to a “renamed” version of a table or arbitrary relation, which occurs anytime you say “SELECT
.. FROM sometable AS someothername”. The AS creates a new name for the table. Aliases are super important
in SQL as they allow you to reference the same table more than once. Scenarios where you need to do this include
when you self-join a table to itself, or more commonly when you need to join from a parent table to a child table
multiple times. For example, we know that our user jack has two email addresses. How can we locate jack based
on the combination of those two addresses? We need to join twice to it. Let’s construct two distinct aliases for the
addresses table and join:

>>> a1 = addresses.alias(’a1’)
>>> a2 = addresses.alias(’a2’)
>>> s = select([users], and_(
... users.c.id==a1.c.user_id,
... users.c.id==a2.c.user_id,
... a1.c.email_address==’jack@msn.com’,
... a2.c.email_address==’jack@yahoo.com’
...))
>>> print conn.execute(s).fetchall()
SELECT users.id, users.name, users.fullname
FROM users, addresses AS a1, addresses AS a2
WHERE users.id = a1.user_id AND users.id = a2.user_id AND a1.email_address = ? AND a2.email_address = ?
[’jack@msn.com’, ’jack@yahoo.com’][(1, u’jack’, u’Jack Jones’)]

Easy enough. One thing that we’re going for with the SQL Expression Language is the melding of programmatic
behavior with SQL generation. Coming up with names like a1 and a2 is messy; we really didn’t need to use those
names anywhere, it’s just the database that needed them. Plus, we might write some code that uses alias objects that
came from several different places, and it’s difficult to ensure that they all have unique names. So instead, we just let
SQLAlchemy make the names for us, using “anonymous” aliases:

>>> a1 = addresses.alias()
>>> a2 = addresses.alias()
>>> s = select([users], and_(
... users.c.id==a1.c.user_id,
... users.c.id==a2.c.user_id,

3.12. Using Aliases 39

SQLAlchemy Documentation, Release 0.5.4

... a1.c.email_address==’jack@msn.com’,

... a2.c.email_address==’jack@yahoo.com’

...))
>>> print conn.execute(s).fetchall()
SELECT users.id, users.name, users.fullname
FROM users, addresses AS addresses_1, addresses AS addresses_2
WHERE users.id = addresses_1.user_id AND users.id = addresses_2.user_id AND addresses_1.email_address = ? AND addresses_2.email_address = ?
[’jack@msn.com’, ’jack@yahoo.com’][(1, u’jack’, u’Jack Jones’)]

One super-huge advantage of anonymous aliases is that not only did we not have to guess up a random name, but we
can also be guaranteed that the above SQL string is deterministically generated to be the same every time. This is
important for databases such as Oracle which cache compiled “query plans” for their statements, and need to see the
same SQL string in order to make use of it.

Aliases can of course be used for anything which you can SELECT from, including SELECT statements themselves.
We can self-join the users table back to the select() we’ve created by making an alias of the entire statement.
The correlate(None) directive is to avoid SQLAlchemy’s attempt to “correlate” the inner users table with the
outer one:

>>> a1 = s.correlate(None).alias()
>>> s = select([users.c.name], users.c.id==a1.c.id)
>>> print conn.execute(s).fetchall()
SELECT users.name
FROM users, (SELECT users.id AS id, users.name AS name, users.fullname AS fullname
FROM users, addresses AS addresses_1, addresses AS addresses_2
WHERE users.id = addresses_1.user_id AND users.id = addresses_2.user_id AND addresses_1.email_address = ? AND addresses_2.email_address = ?) AS anon_1
WHERE users.id = anon_1.id
[’jack@msn.com’, ’jack@yahoo.com’][(u’jack’,)]

3.13 Using Joins

We’re halfway along to being able to construct any SELECT expression. The next cornerstone of the SELECT is the
JOIN expression. We’ve already been doing joins in our examples, by just placing two tables in either the columns
clause or the where clause of the select() construct. But if we want to make a real “JOIN” or “OUTERJOIN”
construct, we use the join() and outerjoin() methods, most commonly accessed from the left table in the join:

>>> print users.join(addresses)
users JOIN addresses ON users.id = addresses.user_id

The alert reader will see more surprises; SQLAlchemy figured out how to JOIN the two tables ! The ON condition
of the join, as it’s called, was automatically generated based on the ForeignKey object which we placed on the
addresses table way at the beginning of this tutorial. Already the join() construct is looking like a much better
way to join tables.

Of course you can join on whatever expression you want, such as if we want to join on all users who use the same
name in their email address as their username:

>>> print users.join(addresses, addresses.c.email_address.like(users.c.name + ’%’))
users JOIN addresses ON addresses.email_address LIKE users.name || :name_1

When we create a select() construct, SQLAlchemy looks around at the tables we’ve mentioned and then places
them in the FROM clause of the statement. When we use JOINs however, we know what FROM clause we want, so
here we make usage of the from_obj keyword argument:

40 Chapter 3. SQL Expression Language Tutorial

SQLAlchemy Documentation, Release 0.5.4

>>> s = select([users.c.fullname], from_obj=[
... users.join(addresses, addresses.c.email_address.like(users.c.name + ’%’))
...])
>>> print conn.execute(s).fetchall()
SELECT users.fullname
FROM users JOIN addresses ON addresses.email_address LIKE users.name || ?
[’%’][(u’Jack Jones’,), (u’Jack Jones’,), (u’Wendy Williams’,)]

The outerjoin() function just creates LEFT OUTER JOIN constructs. It’s used just like join():

>>> s = select([users.c.fullname], from_obj=[users.outerjoin(addresses)])
>>> print s
SELECT users.fullname
FROM users LEFT OUTER JOIN addresses ON users.id = addresses.user_id

That’s the output outerjoin() produces, unless, of course, you’re stuck in a gig using Oracle prior to version 9,
and you’ve set up your engine (which would be using OracleDialect) to use Oracle-specific SQL:

>>> from sqlalchemy.databases.oracle import OracleDialect
>>> print s.compile(dialect=OracleDialect(use_ansi=False))
SELECT users.fullname
FROM users, addresses
WHERE users.id = addresses.user_id(+)

If you don’t know what that SQL means, don’t worry ! The secret tribe of Oracle DBAs don’t want their black magic
being found out ;).

3.14 Intro to Generative Selects and Transformations

We’ve now gained the ability to construct very sophisticated statements. We can use all kinds of operators, table
constructs, text, joins, and aliases. The point of all of this, as mentioned earlier, is not that it’s an “easier” or “better”
way to write SQL than just writing a SQL statement yourself; the point is that it’s better for writing programmatically
generated SQL which can be morphed and adapted as needed in automated scenarios.

To support this, the select() construct we’ve been working with supports piecemeal construction, in addition to the
“all at once” method we’ve been doing. Suppose you’re writing a search function, which receives criterion and then
must construct a select from it. To accomplish this, upon each criterion encountered, you apply “generative” criterion
to an existing select() construct with new elements, one at a time. We start with a basic select() constructed
with the shortcut method available on the users table:

>>> query = users.select()
>>> print query
SELECT users.id, users.name, users.fullname
FROM users

We encounter search criterion of “name=’jack”’. So we apply WHERE criterion stating such:

>>> query = query.where(users.c.name==’jack’)

Next, we encounter that they’d like the results in descending order by full name. We apply ORDER BY, using an extra
modifier desc:

3.14. Intro to Generative Selects and Transformations 41

SQLAlchemy Documentation, Release 0.5.4

>>> query = query.order_by(users.c.fullname.desc())

We also come across that they’d like only users who have an address at MSN. A quick way to tack this on is by using
an EXISTS clause, which we correlate to the users table in the enclosing SELECT:

>>> from sqlalchemy.sql import exists
>>> query = query.where(
... exists([addresses.c.id],
... and_(addresses.c.user_id==users.c.id, addresses.c.email_address.like(’%@msn.com’))
...).correlate(users))

And finally, the application also wants to see the listing of email addresses at once; so to save queries, we outerjoin the
addresses table (using an outer join so that users with no addresses come back as well; since we’re programmatic,
we might not have kept track that we used an EXISTS clause against the addresses table too...). Additionally,
since the users and addresses table both have a column named id, let’s isolate their names from each other in
the COLUMNS clause by using labels:

>>> query = query.column(addresses).select_from(users.outerjoin(addresses)).apply_labels()

Let’s bake for .0001 seconds and see what rises:

>>> conn.execute(query).fetchall()
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, addresses.id AS addresses_id, addresses.user_id AS addresses_user_id, addresses.email_address AS addresses_email_address
FROM users LEFT OUTER JOIN addresses ON users.id = addresses.user_id
WHERE users.name = ? AND (EXISTS (SELECT addresses.id
FROM addresses
WHERE addresses.user_id = users.id AND addresses.email_address LIKE ?)) ORDER BY users.fullname DESC
[’jack’, ’%@msn.com’][(1, u’jack’, u’Jack Jones’, 1, 1, u’jack@yahoo.com’), (1, u’jack’, u’Jack Jones’, 2, 1, u’jack@msn.com’)]

So we started small, added one little thing at a time, and at the end we have a huge statement..which actually works.
Now let’s do one more thing; the searching function wants to add another email_address criterion on, however it
doesn’t want to construct an alias of the addresses table; suppose many parts of the application are written to deal
specifically with the addresses table, and to change all those functions to support receiving an arbitrary alias of the
address would be cumbersome. We can actually convert the addresses table within the existing statement to be an
alias of itself, using replace_selectable():

>>> a1 = addresses.alias()
>>> query = query.replace_selectable(addresses, a1)
>>> print query
SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, addresses_1.id AS addresses_1_id, addresses_1.user_id AS addresses_1_user_id, addresses_1.email_address AS addresses_1_email_address
FROM users LEFT OUTER JOIN addresses AS addresses_1 ON users.id = addresses_1.user_id
WHERE users.name = :name_1 AND (EXISTS (SELECT addresses_1.id
FROM addresses AS addresses_1
WHERE addresses_1.user_id = users.id AND addresses_1.email_address LIKE :email_address_1)) ORDER BY users.fullname DESC

One more thing though, with automatic labeling applied as well as anonymous aliasing, how do we retrieve the
columns from the rows for this thing ? The label for the email_addresses column is now the generated name
addresses_1_email_address; and in another statement might be something different ! This is where accessing
by result columns by Column object becomes very useful:

>>> for row in conn.execute(query):
... print "Name:", row[users.c.name], "; Email Address", row[a1.c.email_address]

42 Chapter 3. SQL Expression Language Tutorial

SQLAlchemy Documentation, Release 0.5.4

SELECT users.id AS users_id, users.name AS users_name, users.fullname AS users_fullname, addresses_1.id AS addresses_1_id, addresses_1.user_id AS addresses_1_user_id, addresses_1.email_address AS addresses_1_email_address
FROM users LEFT OUTER JOIN addresses AS addresses_1 ON users.id = addresses_1.user_id
WHERE users.name = ? AND (EXISTS (SELECT addresses_1.id
FROM addresses AS addresses_1
WHERE addresses_1.user_id = users.id AND addresses_1.email_address LIKE ?)) ORDER BY users.fullname DESC
[’jack’, ’%@msn.com’]Name: jack ; Email Address jack@yahoo.com
Name: jack ; Email Address jack@msn.com

The above example, by its end, got significantly more intense than the typical end-user constructed SQL will usually
be. However when writing higher-level tools such as ORMs, they become more significant. SQLAlchemy’s ORM
relies very heavily on techniques like this.

3.15 Everything Else

The concepts of creating SQL expressions have been introduced. What’s left are more variants of the same themes.
So now we’ll catalog the rest of the important things we’ll need to know.

3.15.1 Bind Parameter Objects

Throughout all these examples, SQLAlchemy is busy creating bind parameters wherever literal expressions occur. You
can also specify your own bind parameters with your own names, and use the same statement repeatedly. The database
dialect converts to the appropriate named or positional style, as here where it converts to positional for SQLite:

>>> from sqlalchemy.sql import bindparam
>>> s = users.select(users.c.name==bindparam(’username’))
>>> conn.execute(s, username=’wendy’).fetchall()
SELECT users.id, users.name, users.fullname
FROM users
WHERE users.name = ?
[’wendy’][(2, u’wendy’, u’Wendy Williams’)]

Another important aspect of bind parameters is that they may be assigned a type. The type of the bind parameter will
determine its behavior within expressions and also how the data bound to it is processed before being sent off to the
database:

>>> s = users.select(users.c.name.like(bindparam(’username’, type_=String) + text("’%’")))
>>> conn.execute(s, username=’wendy’).fetchall()
SELECT users.id, users.name, users.fullname
FROM users
WHERE users.name LIKE ? || ’%’
[’wendy’][(2, u’wendy’, u’Wendy Williams’)]

Bind parameters of the same name can also be used multiple times, where only a single named value is needed in the
execute parameters:

>>> s = select([users, addresses],
... users.c.name.like(bindparam(’name’, type_=String) + text("’%’")) |
... addresses.c.email_address.like(bindparam(’name’, type_=String) + text("’@%’")),
... from_obj=[users.outerjoin(addresses)])
>>> conn.execute(s, name=’jack’).fetchall()

3.15. Everything Else 43

SQLAlchemy Documentation, Release 0.5.4

SELECT users.id, users.name, users.fullname, addresses.id, addresses.user_id, addresses.email_address
FROM users LEFT OUTER JOIN addresses ON users.id = addresses.user_id
WHERE users.name LIKE ? || ’%’ OR addresses.email_address LIKE ? || ’@%’
[’jack’, ’jack’][(1, u’jack’, u’Jack Jones’, 1, 1, u’jack@yahoo.com’), (1, u’jack’, u’Jack Jones’, 2, 1, u’jack@msn.com’)]

3.15.2 Functions

SQL functions are created using the func keyword, which generates functions using attribute access:

>>> from sqlalchemy.sql import func
>>> print func.now()
now()

>>> print func.concat(’x’, ’y’)
concat(:param_1, :param_2)

Certain functions are marked as “ANSI” functions, which mean they don’t get the parenthesis added after them, such
as CURRENT_TIMESTAMP:

>>> print func.current_timestamp()
CURRENT_TIMESTAMP

Functions are most typically used in the columns clause of a select statement, and can also be labeled as well as given
a type. Labeling a function is recommended so that the result can be targeted in a result row based on a string name,
and assigning it a type is required when you need result-set processing to occur, such as for Unicode conversion and
date conversions. Below, we use the result function scalar() to just read the first column of the first row and then
close the result; the label, even though present, is not important in this case:

>>> print conn.execute(
... select([func.max(addresses.c.email_address, type_=String).label(’maxemail’)])
...).scalar()
SELECT max(addresses.email_address) AS maxemail
FROM addresses
[]www@www.org

Databases such as PostgreSQL and Oracle which support functions that return whole result sets can be assembled
into selectable units, which can be used in statements. Such as, a database function calculate() which takes the
parameters x and y, and returns three columns which we’d like to name q, z and r, we can construct using “lexical”
column objects as well as bind parameters:

>>> from sqlalchemy.sql import column
>>> calculate = select([column(’q’), column(’z’), column(’r’)],
... from_obj=[func.calculate(bindparam(’x’), bindparam(’y’))])

>>> print select([users], users.c.id > calculate.c.z)
SELECT users.id, users.name, users.fullname
FROM users, (SELECT q, z, r
FROM calculate(:x, :y))
WHERE users.id > z

If we wanted to use our calculate statement twice with different bind parameters, the unique_params()
function will create copies for us, and mark the bind parameters as “unique” so that conflicting names are isolated.
Note we also make two separate aliases of our selectable:

44 Chapter 3. SQL Expression Language Tutorial

SQLAlchemy Documentation, Release 0.5.4

>>> s = select([users], users.c.id.between(
... calculate.alias(’c1’).unique_params(x=17, y=45).c.z,
... calculate.alias(’c2’).unique_params(x=5, y=12).c.z))

>>> print s
SELECT users.id, users.name, users.fullname
FROM users, (SELECT q, z, r
FROM calculate(:x_1, :y_1)) AS c1, (SELECT q, z, r
FROM calculate(:x_2, :y_2)) AS c2
WHERE users.id BETWEEN c1.z AND c2.z

>>> s.compile().params
{u’x_2’: 5, u’y_2’: 12, u’y_1’: 45, u’x_1’: 17}

See also sqlalchemy.sql.expression.func.

3.15.3 Unions and Other Set Operations

Unions come in two flavors, UNION and UNION ALL, which are available via module level functions:

>>> from sqlalchemy.sql import union
>>> u = union(
... addresses.select(addresses.c.email_address==’foo@bar.com’),
... addresses.select(addresses.c.email_address.like(’%@yahoo.com’)),
...).order_by(addresses.c.email_address)

>>> print conn.execute(u).fetchall()
SELECT addresses.id, addresses.user_id, addresses.email_address
FROM addresses
WHERE addresses.email_address = ? UNION SELECT addresses.id, addresses.user_id, addresses.email_address
FROM addresses
WHERE addresses.email_address LIKE ? ORDER BY addresses.email_address
[’foo@bar.com’, ’%@yahoo.com’][(1, 1, u’jack@yahoo.com’)]

Also available, though not supported on all databases, are intersect(), intersect_all(), except_(), and
except_all():

>>> from sqlalchemy.sql import except_
>>> u = except_(
... addresses.select(addresses.c.email_address.like(’%@%.com’)),
... addresses.select(addresses.c.email_address.like(’%@msn.com’))
...)

>>> print conn.execute(u).fetchall()
SELECT addresses.id, addresses.user_id, addresses.email_address
FROM addresses
WHERE addresses.email_address LIKE ? EXCEPT SELECT addresses.id, addresses.user_id, addresses.email_address
FROM addresses
WHERE addresses.email_address LIKE ?
[’%@%.com’, ’%@msn.com’][(1, 1, u’jack@yahoo.com’), (4, 2, u’wendy@aol.com’)]

3.15. Everything Else 45

SQLAlchemy Documentation, Release 0.5.4

3.15.4 Scalar Selects

To embed a SELECT in a column expression, use as_scalar():

>>> print conn.execute(select([
... users.c.name,
... select([func.count(addresses.c.id)], users.c.id==addresses.c.user_id).as_scalar()
...])).fetchall()
SELECT users.name, (SELECT count(addresses.id) AS count_1
FROM addresses
WHERE users.id = addresses.user_id) AS anon_1
FROM users
[][(u’jack’, 2), (u’wendy’, 2), (u’fred’, 0), (u’mary’, 0)]

Alternatively, applying a label() to a select evaluates it as a scalar as well:

>>> print conn.execute(select([
... users.c.name,
... select([func.count(addresses.c.id)], users.c.id==addresses.c.user_id).label(’address_count’)
...])).fetchall()
SELECT users.name, (SELECT count(addresses.id) AS count_1
FROM addresses
WHERE users.id = addresses.user_id) AS address_count
FROM users
[][(u’jack’, 2), (u’wendy’, 2), (u’fred’, 0), (u’mary’, 0)]

3.15.5 Correlated Subqueries

Notice in the examples on “scalar selects”, the FROM clause of each embedded select did not contain the users table
in its FROM clause. This is because SQLAlchemy automatically attempts to correlate embedded FROM objects to
that of an enclosing query. To disable this, or to specify explicit FROM clauses to be correlated, use correlate():

>>> s = select([users.c.name], users.c.id==select([users.c.id]).correlate(None))
>>> print s
SELECT users.name
FROM users
WHERE users.id = (SELECT users.id
FROM users)

>>> s = select([users.c.name, addresses.c.email_address], users.c.id==
... select([users.c.id], users.c.id==addresses.c.user_id).correlate(addresses)
...)
>>> print s
SELECT users.name, addresses.email_address
FROM users, addresses
WHERE users.id = (SELECT users.id
FROM users
WHERE users.id = addresses.user_id)

3.15.6 Ordering, Grouping, Limiting, Offset...ing...

The select() function can take keyword arguments order_by, group_by (as well as having), limit, and
offset. There’s also distinct=True. These are all also available as generative functions. order_by()

46 Chapter 3. SQL Expression Language Tutorial

SQLAlchemy Documentation, Release 0.5.4

expressions can use the modifiers asc() or desc() to indicate ascending or descending.

>>> s = select([addresses.c.user_id, func.count(addresses.c.id)]).\
... group_by(addresses.c.user_id).having(func.count(addresses.c.id)>1)
>>> print conn.execute(s).fetchall()
SELECT addresses.user_id, count(addresses.id) AS count_1
FROM addresses GROUP BY addresses.user_id
HAVING count(addresses.id) > ?
[1][(1, 2), (2, 2)]

>>> s = select([addresses.c.email_address, addresses.c.id]).distinct().\
... order_by(addresses.c.email_address.desc(), addresses.c.id)
>>> conn.execute(s).fetchall()
SELECT DISTINCT addresses.email_address, addresses.id
FROM addresses ORDER BY addresses.email_address DESC, addresses.id
[][(u’www@www.org’, 3), (u’wendy@aol.com’, 4), (u’jack@yahoo.com’, 1), (u’jack@msn.com’, 2)]

>>> s = select([addresses]).offset(1).limit(1)
>>> print conn.execute(s).fetchall()
SELECT addresses.id, addresses.user_id, addresses.email_address
FROM addresses
LIMIT 1 OFFSET 1
[][(2, 1, u’jack@msn.com’)]

3.16 Updates

Finally, we’re back to UPDATE. Updates work a lot like INSERTS, except there is an additional WHERE clause that
can be specified.

>>> # change ’jack’ to ’ed’
>>> conn.execute(users.update().where(users.c.name==’jack’).values(name=’ed’))
UPDATE users SET name=? WHERE users.name = ?
[’ed’, ’jack’]
COMMIT<sqlalchemy.engine.base.ResultProxy object at 0x...>

>>> # use bind parameters
>>> u = users.update().where(users.c.name==bindparam(’oldname’)).values(name=bindparam(’newname’))
>>> conn.execute(u, oldname=’jack’, newname=’ed’)
UPDATE users SET name=? WHERE users.name = ?
[’ed’, ’jack’]
COMMIT<sqlalchemy.engine.base.ResultProxy object at 0x...>

>>> # update a column to an expression. Send a dictionary to values():
>>> conn.execute(users.update().values({users.c.fullname:"Fullname: " + users.c.name}))
UPDATE users SET fullname=(? || users.name)
[’Fullname: ’]
COMMIT<sqlalchemy.engine.base.ResultProxy object at 0x...>

3.16.1 Correlated Updates

A correlated update lets you update a table using selection from another table, or the same table:

3.16. Updates 47

SQLAlchemy Documentation, Release 0.5.4

>>> s = select([addresses.c.email_address], addresses.c.user_id==users.c.id).limit(1)
>>> conn.execute(users.update().values({users.c.fullname:s}))
UPDATE users SET fullname=(SELECT addresses.email_address
FROM addresses
WHERE addresses.user_id = users.id
LIMIT 1 OFFSET 0)
[]
COMMIT<sqlalchemy.engine.base.ResultProxy object at 0x...>

3.17 Deletes

Finally, a delete. Easy enough:

>>> conn.execute(addresses.delete())
DELETE FROM addresses
[]
COMMIT<sqlalchemy.engine.base.ResultProxy object at 0x...>

>>> conn.execute(users.delete().where(users.c.name > ’m’))
DELETE FROM users WHERE users.name > ?
[’m’]
COMMIT<sqlalchemy.engine.base.ResultProxy object at 0x...>

3.18 Further Reference

API docs: sqlalchemy.sql.expression

Table Metadata Reference: Database Meta Data

Engine/Connection/Execution Reference: Database Engines

SQL Types: Column and Data Types

48 Chapter 3. SQL Expression Language Tutorial

CHAPTER

FOUR

MAPPER CONFIGURATION

This section references most major configurational patterns involving the mapper() and relation() functions. It
assumes you’ve worked through Object Relational Tutorial and know how to construct and use rudimentary mappers
and relations.

4.1 Mapper Configuration

4.1.1 Customizing Column Properties

The default behavior of a mapper is to assemble all the columns in the mapped Table into mapped object attributes.
This behavior can be modified in several ways, as well as enhanced by SQL expressions.

To load only a part of the columns referenced by a table as attributes, use the include_properties and
exclude_properties arguments:

mapper(User, users_table, include_properties=[’user_id’, ’user_name’])

mapper(Address, addresses_table, exclude_properties=[’street’, ’city’, ’state’, ’zip’])

To change the name of the attribute mapped to a particular column, place the Column object in the properties
dictionary with the desired key:

mapper(User, users_table, properties={
’id’: users_table.c.user_id,
’name’: users_table.c.user_name,

})

To change the names of all attributes using a prefix, use the column_prefix option. This is useful for classes which
wish to add their own property accessors:

mapper(User, users_table, column_prefix=’_’)

The above will place attribute names such as _user_id, _user_name, _password etc. on the mapped User
class.

To place multiple columns which are known to be “synonymous” based on foreign key relationship or join condition
into the same mapped attribute, put them together using a list, as below where we map to a Join:

join users and addresses
usersaddresses = sql.join(users_table, addresses_table, \

49

SQLAlchemy Documentation, Release 0.5.4

users_table.c.user_id == addresses_table.c.user_id)

mapper(User, usersaddresses, properties={
’id’:[users_table.c.user_id, addresses_table.c.user_id],

})

4.1.2 Deferred Column Loading

This feature allows particular columns of a table to not be loaded by default, instead being loaded later on when first
referenced. It is essentially “column-level lazy loading”. This feature is useful when one wants to avoid loading a
large text or binary field into memory when it’s not needed. Individual columns can be lazy loaded by themselves or
placed into groups that lazy-load together:

book_excerpts = Table(’books’, db,
Column(’book_id’, Integer, primary_key=True),
Column(’title’, String(200), nullable=False),
Column(’summary’, String(2000)),
Column(’excerpt’, String),
Column(’photo’, Binary)

)

class Book(object):
pass

define a mapper that will load each of ’excerpt’ and ’photo’ in
separate, individual-row SELECT statements when each attribute
is first referenced on the individual object instance
mapper(Book, book_excerpts, properties={

’excerpt’: deferred(book_excerpts.c.excerpt),
’photo’: deferred(book_excerpts.c.photo)

})

Deferred columns can be placed into groups so that they load together:

book_excerpts = Table(’books’, db,
Column(’book_id’, Integer, primary_key=True),
Column(’title’, String(200), nullable=False),
Column(’summary’, String(2000)),
Column(’excerpt’, String),
Column(’photo1’, Binary),
Column(’photo2’, Binary),
Column(’photo3’, Binary)

)

class Book(object):
pass

define a mapper with a ’photos’ deferred group. when one photo is referenced,
all three photos will be loaded in one SELECT statement. The ’excerpt’ will
be loaded separately when it is first referenced.
mapper(Book, book_excerpts, properties = {

’excerpt’: deferred(book_excerpts.c.excerpt),
’photo1’: deferred(book_excerpts.c.photo1, group=’photos’),

50 Chapter 4. Mapper Configuration

SQLAlchemy Documentation, Release 0.5.4

’photo2’: deferred(book_excerpts.c.photo2, group=’photos’),
’photo3’: deferred(book_excerpts.c.photo3, group=’photos’)

})

You can defer or undefer columns at the Query level using the defer and undefer options:

query = session.query(Book)
query.options(defer(’summary’)).all()
query.options(undefer(’excerpt’)).all()

And an entire “deferred group”, i.e. which uses the group keyword argument to deferred(), can be undeferred
using undefer_group(), sending in the group name:

query = session.query(Book)
query.options(undefer_group(’photos’)).all()

4.1.3 SQL Expressions as Mapped Attributes

To add a SQL clause composed of local or external columns as a read-only, mapped column attribute, use the
column_property() function. Any scalar-returning ClauseElement may be used, as long as it has a name
attribute; usually, you’ll want to call label() to give it a specific name:

mapper(User, users_table, properties={
’fullname’: column_property(

(users_table.c.firstname + " " + users_table.c.lastname).label(’fullname’)
)

})

Correlated subqueries may be used as well:

mapper(User, users_table, properties={
’address_count’: column_property(

select(
[func.count(addresses_table.c.address_id)],
addresses_table.c.user_id==users_table.c.user_id

).label(’address_count’)
)

})

4.1.4 Changing Attribute Behavior

Simple Validators

A quick way to add a “validation” routine to an attribute is to use the validates() decorator. This is a shortcut
for using the sqlalchemy.orm.util.Validator attribute extension with individual column or relation based
attributes. An attribute validator can raise an exception, halting the process of mutating the attribute’s value, or can
change the given value into something different. Validators, like all attribute extensions, are only called by normal
userland code; they are not issued when the ORM is populating the object.

addresses_table = Table(’addresses’, metadata,
Column(’id’, Integer, primary_key=True),

4.1. Mapper Configuration 51

SQLAlchemy Documentation, Release 0.5.4

Column(’email’, String)
)

class EmailAddress(object):
@validates(’email’)
def validate_email(self, key, address):

assert ’@’ in address
return address

mapper(EmailAddress, addresses_table)

Validators also receive collection events, when items are added to a collection:

class User(object):
@validates(’addresses’)
def validate_address(self, key, address):

assert ’@’ in address.email
return address

Using Descriptors

A more comprehensive way to produce modified behavior for an attribute is to use descriptors. These are commonly
used in Python using the property() function. The standard SQLAlchemy technique for descriptors is to create a
plain descriptor, and to have it read/write from a mapped attribute with a different name. To have the descriptor named
the same as a column, map the column under a different name, i.e.:

class EmailAddress(object):
def _set_email(self, email):

self._email = email
def _get_email(self):

return self._email
email = property(_get_email, _set_email)

mapper(MyAddress, addresses_table, properties={
’_email’: addresses_table.c.email

})

However, the approach above is not complete. While our EmailAddress object will shuttle the value through the
email descriptor and into the _email mapped attribute, the class level EmailAddress.email attribute does not
have the usual expression semantics usable with Query. To provide these, we instead use the synonym() function
as follows:

mapper(EmailAddress, addresses_table, properties={
’email’: synonym(’_email’, map_column=True)

})

The email attribute is now usable in the same way as any other mapped attribute, including filter expressions, get/set
operations, etc.:

address = session.query(EmailAddress).filter(EmailAddress.email == ’some address’).one()

address.email = ’some other address’

52 Chapter 4. Mapper Configuration

SQLAlchemy Documentation, Release 0.5.4

session.flush()

q = session.query(EmailAddress).filter_by(email=’some other address’)

If the mapped class does not provide a property, the synonym() construct will create a default getter/setter object
automatically.

Custom Comparators

The expressions returned by comparison operations, such as User.name==’ed’, can be customized. SQLAlchemy
attributes generate these expressions using PropComparator objects, which provide common Python ex-
pression overrides including __eq__(), __ne__(), __lt__(), and so on. Any mapped attribute can be
passed a user-defined class via the comparator_factory keyword argument, which subclasses the appropriate
PropComparator in use, which can provide any or all of these methods:

from sqlalchemy.orm.properties import ColumnProperty
class MyComparator(ColumnProperty.Comparator):

def __eq__(self, other):
return func.lower(self.__clause_element__()) == func.lower(other)

mapper(EmailAddress, addresses_table, properties={
’email’:column_property(addresses_table.c.email, comparator_factory=MyComparator)

})

Above, comparisons on the email column are wrapped in the SQL lower() function to produce case-insensitive
matching:

>>> str(EmailAddress.email == ’SomeAddress@foo.com’)
lower(addresses.email) = lower(:lower_1)

The __clause_element__() method is provided by the base Comparator class in use, and represents the
SQL element which best matches what this attribute represents. For a column-based attribute, it’s the mapped column.
For a composite attribute, it’s a ClauseList consisting of each column represented. For a relation, it’s the table
mapped by the local mapper (not the remote mapper). __clause_element__() should be honored by the custom
comparator class in most cases since the resulting element will be applied any translations which are in effect, such as
the correctly aliased member when using an aliased() construct or certain with_polymorphic() scenarios.

There are four kinds of Comparator classes which may be subclassed, as according to the type of mapper property
configured:

• column_property() attribute - sqlalchemy.orm.properties.ColumnProperty.Comparator

• composite() attribute - sqlalchemy.orm.properties.CompositeProperty.Comparator

• relation() attribute - sqlalchemy.orm.properties.RelationProperty.Comparator

• comparable_property() attribute - sqlalchemy.orm.interfaces.PropComparator

When using comparable_property(), which is a mapper property that isn’t tied to any column or mapped table,
the __clause_element__() method of PropComparator should also be implemented.

The comparator_factory argument is accepted by all MapperProperty-producing functions:
column_property(), composite(), comparable_property(), synonym(), relation(),
backref(), deferred(), and dynamic_loader().

4.1. Mapper Configuration 53

SQLAlchemy Documentation, Release 0.5.4

4.1.5 Composite Column Types

Sets of columns can be associated with a single datatype. The ORM treats the group of columns like a single col-
umn which accepts and returns objects using the custom datatype you provide. In this example, we’ll create a table
vertices which stores a pair of x/y coordinates, and a custom datatype Point which is a composite type of an x
and y column:

vertices = Table(’vertices’, metadata,
Column(’id’, Integer, primary_key=True),
Column(’x1’, Integer),
Column(’y1’, Integer),
Column(’x2’, Integer),
Column(’y2’, Integer),
)

The requirements for the custom datatype class are that it have a constructor which accepts positional arguments
corresponding to its column format, and also provides a method __composite_values__() which returns
the state of the object as a list or tuple, in order of its column-based attributes. It also should supply ade-
quate __eq__() and __ne__() methods which test the equality of two instances, and may optionally provide
a __set_composite_values__ method which is used to set internal state in some cases (typically when default
values have been generated during a flush):

class Point(object):
def __init__(self, x, y):

self.x = x
self.y = y

def __composite_values__(self):
return [self.x, self.y]

def __set_composite_values__(self, x, y):
self.x = x
self.y = y

def __eq__(self, other):
return other.x == self.x and other.y == self.y

def __ne__(self, other):
return not self.__eq__(other)

If __set_composite_values__() is not provided, the names of the mapped columns are taken as the names of
attributes on the object, and setattr() is used to set data.

Setting up the mapping uses the composite() function:

class Vertex(object):
pass

mapper(Vertex, vertices, properties={
’start’: composite(Point, vertices.c.x1, vertices.c.y1),
’end’: composite(Point, vertices.c.x2, vertices.c.y2)

})

We can now use the Vertex instances as well as querying as though the start and end attributes are regular scalar
attributes:

session = Session()
v = Vertex(Point(3, 4), Point(5, 6))

54 Chapter 4. Mapper Configuration

SQLAlchemy Documentation, Release 0.5.4

session.save(v)

v2 = session.query(Vertex).filter(Vertex.start == Point(3, 4))

The “equals” comparison operation by default produces an AND of all corresponding columns equated to one another.
This can be changed using the comparator_factory, described in Custom Comparators:

from sqlalchemy.orm.properties import CompositeProperty
from sqlalchemy import sql

class PointComparator(CompositeProperty.Comparator):
def __gt__(self, other):

"""define the ’greater than’ operation"""

return sql.and_(*[a>b for a, b in
zip(self.__clause_element__().clauses,

other.__composite_values__())])

maper(Vertex, vertices, properties={
’start’: composite(Point, vertices.c.x1, vertices.c.y1, comparator_factory=PointComparator),
’end’: composite(Point, vertices.c.x2, vertices.c.y2, comparator_factory=PointComparator)

})

4.1.6 Controlling Ordering

As of version 0.5, the ORM does not generate ordering for any query unless explicitly configured.

The “default” ordering for a collection, which applies to list-based collections, can be configured using the order_by
keyword argument on relation():

mapper(Address, addresses_table)

order address objects by address id
mapper(User, users_table, properties={

’addresses’: relation(Address, order_by=addresses_table.c.address_id)
})

Note that when using eager loaders with relations, the tables used by the eager load’s join are anonymously aliased.
You can only order by these columns if you specify it at the relation() level. To control ordering at the query
level based on a related table, you join() to that relation, then order by it:

session.query(User).join(’addresses’).order_by(Address.street)

Ordering for rows loaded through Query is usually specified using the order_by() generative method. There is
also an option to set a default ordering for Queries which are against a single mapped entity and where there was no
explicit order_by() stated, which is the order_by keyword argument to mapper():

order by a column
mapper(User, users_table, order_by=users_table.c.user_id)

order by multiple items
mapper(User, users_table, order_by=[users_table.c.user_id, users_table.c.user_name.desc()])

Above, a Query issued for the User class will use the value of the mapper’s order_by setting if the Query itself
has no ordering specified.

4.1. Mapper Configuration 55

SQLAlchemy Documentation, Release 0.5.4

4.1.7 Mapping Class Inheritance Hierarchies

SQLAlchemy supports three forms of inheritance: single table inheritance, where several types of classes are stored in
one table, concrete table inheritance, where each type of class is stored in its own table, and joined table inheritance,
where the parent/child classes are stored in their own tables that are joined together in a select. Whereas support for
single and joined table inheritance is strong, concrete table inheritance is a less common scenario with some particular
problems so is not quite as flexible.

When mappers are configured in an inheritance relationship, SQLAlchemy has the ability to load elements “polymor-
phically”, meaning that a single query can return objects of multiple types.

For the following sections, assume this class relationship:

class Employee(object):
def __init__(self, name):

self.name = name
def __repr__(self):

return self.__class__.__name__ + " " + self.name

class Manager(Employee):
def __init__(self, name, manager_data):

self.name = name
self.manager_data = manager_data

def __repr__(self):
return self.__class__.__name__ + " " + self.name + " " + self.manager_data

class Engineer(Employee):
def __init__(self, name, engineer_info):

self.name = name
self.engineer_info = engineer_info

def __repr__(self):
return self.__class__.__name__ + " " + self.name + " " + self.engineer_info

Joined Table Inheritance

In joined table inheritance, each class along a particular classes’ list of parents is represented by a unique table. The
total set of attributes for a particular instance is represented as a join along all tables in its inheritance path. Here, we
first define a table to represent the Employee class. This table will contain a primary key column (or columns), and
a column for each attribute that’s represented by Employee. In this case it’s just name:

employees = Table(’employees’, metadata,
Column(’employee_id’, Integer, primary_key=True),
Column(’name’, String(50)),
Column(’type’, String(30), nullable=False)

)

The table also has a column called type. It is strongly advised in both single- and joined- table inheritance scenarios
that the root table contains a column whose sole purpose is that of the discriminator; it stores a value which indicates
the type of object represented within the row. The column may be of any desired datatype. While there are some
“tricks” to work around the requirement that there be a discriminator column, they are more complicated to configure
when one wishes to load polymorphically.

Next we define individual tables for each of Engineer and Manager, which contain columns that represent the
attributes unique to the subclass they represent. Each table also must contain a primary key column (or columns),

56 Chapter 4. Mapper Configuration

SQLAlchemy Documentation, Release 0.5.4

and in most cases a foreign key reference to the parent table. It is standard practice that the same column is used for
both of these roles, and that the column is also named the same as that of the parent table. However this is optional
in SQLAlchemy; separate columns may be used for primary key and parent-relation, the column may be named
differently than that of the parent, and even a custom join condition can be specified between parent and child tables
instead of using a foreign key:

engineers = Table(’engineers’, metadata,
Column(’employee_id’, Integer, ForeignKey(’employees.employee_id’), primary_key=True),
Column(’engineer_info’, String(50)),

)

managers = Table(’managers’, metadata,
Column(’employee_id’, Integer, ForeignKey(’employees.employee_id’), primary_key=True),
Column(’manager_data’, String(50)),

)

One natural effect of the joined table inheritance configuration is that the identity of any mapped object can be de-
termined entirely from the base table. This has obvious advantages, so SQLAlchemy always considers the primary
key columns of a joined inheritance class to be those of the base table only, unless otherwise manually configured.
In other words, the employee_id column of both the engineers and managers table is not used to locate the
Engineer or Manager object itself - only the value in employees.employee_id is considered, and the pri-
mary key in this case is non-composite. engineers.employee_id and managers.employee_id are still of
course critical to the proper operation of the pattern overall as they are used to locate the joined row, once the parent
row has been determined, either through a distinct SELECT statement or all at once within a JOIN.

We then configure mappers as usual, except we use some additional arguments to indicate the inheritance relationship,
the polymorphic discriminator column, and the polymorphic identity of each class; this is the value that will be stored
in the polymorphic discriminator column.

mapper(Employee, employees, polymorphic_on=employees.c.type, polymorphic_identity=’employee’)
mapper(Engineer, engineers, inherits=Employee, polymorphic_identity=’engineer’)
mapper(Manager, managers, inherits=Employee, polymorphic_identity=’manager’)

And that’s it. Querying against Employee will return a combination of Employee, Engineer and
Manager objects. Newly saved Engineer, Manager, and Employee objects will automatically populate the
employees.type column with engineer, manager, or employee, as appropriate.

Controlling Which Tables are Queried

The with_polymorphic() method of Query affects the specific subclass tables which the Query selects from.
Normally, a query such as this:

session.query(Employee).all()

...selects only from the employees table. When loading fresh from the database, our joined-table setup will query
from the parent table only, using SQL such as this:

SELECT employees.employee_id AS employees_employee_id, employees.name AS employees_name, employees.type AS employees_type
FROM employees
[]

4.1. Mapper Configuration 57

SQLAlchemy Documentation, Release 0.5.4

As attributes are requested from those Employee objects which are represented in either the engineers or
managers child tables, a second load is issued for the columns in that related row, if the data was not already
loaded. So above, after accessing the objects you’d see further SQL issued along the lines of:

SELECT managers.employee_id AS managers_employee_id, managers.manager_data AS managers_manager_data
FROM managers
WHERE ? = managers.employee_id
[5]
SELECT engineers.employee_id AS engineers_employee_id, engineers.engineer_info AS engineers_engineer_info
FROM engineers
WHERE ? = engineers.employee_id
[2]

This behavior works well when issuing searches for small numbers of items, such as when using get(), since the
full range of joined tables are not pulled in to the SQL statement unnecessarily. But when querying a larger span of
rows which are known to be of many types, you may want to actively join to some or all of the joined tables. The
with_polymorphic feature of Query and mapper provides this.

Telling our query to polymorphically load Engineer and Manager objects:

query = session.query(Employee).with_polymorphic([Engineer, Manager])

produces a query which joins the employees table to both the engineers and managers tables like the follow-
ing:

query.all()

SELECT employees.employee_id AS employees_employee_id, engineers.employee_id AS engineers_employee_id, managers.employee_id AS managers_employee_id, employees.name AS employees_name, employees.type AS employees_type, engineers.engineer_info AS engineers_engineer_info, managers.manager_data AS managers_manager_data
FROM employees LEFT OUTER JOIN engineers ON employees.employee_id = engineers.employee_id LEFT OUTER JOIN managers ON employees.employee_id = managers.employee_id
[]

with_polymorphic() accepts a single class or mapper, a list of classes/mappers, or the string ’*’ to indicate all
subclasses:

join to the engineers table
query.with_polymorphic(Engineer)

join to the engineers and managers tables
query.with_polymorphic([Engineer, Manager])

join to all subclass tables
query.with_polymorphic(’*’)

It also accepts a second argument selectablewhich replaces the automatic join creation and instead selects directly
from the selectable given. This feature is normally used with “concrete” inheritance, described later, but can be used
with any kind of inheritance setup in the case that specialized SQL should be used to load polymorphically:

custom selectable
query.with_polymorphic([Engineer, Manager], employees.outerjoin(managers).outerjoin(engineers))

with_polymorphic() is also needed when you wish to add filter criterion that is specific to one or more sub-
classes, so that those columns are available to the WHERE clause:

58 Chapter 4. Mapper Configuration

SQLAlchemy Documentation, Release 0.5.4

session.query(Employee).with_polymorphic([Engineer, Manager]).\
filter(or_(Engineer.engineer_info==’w’, Manager.manager_data==’q’))

Note that if you only need to load a single subtype, such as just the Engineer objects, with_polymorphic() is
not needed since you would query against the Engineer class directly.

The mapper also accepts with_polymorphic as a configurational argument so that the joined-style load will be
issued automatically. This argument may be the string ’*’, a list of classes, or a tuple consisting of either, followed
by a selectable.

mapper(Employee, employees, polymorphic_on=employees.c.type, \
polymorphic_identity=’employee’, with_polymorphic=’*’)

mapper(Engineer, engineers, inherits=Employee, polymorphic_identity=’engineer’)
mapper(Manager, managers, inherits=Employee, polymorphic_identity=’manager’)

The above mapping will produce a query similar to that of with_polymorphic(’*’) for every query of
Employee objects.

Using with_polymorphic() with Query will override the mapper-level with_polymorphic setting.

Creating Joins to Specific Subtypes

The of_type() method is a helper which allows the construction of joins along relation paths while narrowing
the criterion to specific subclasses. Suppose the employees table represents a collection of employees which are
associated with a Company object. We’ll add a company_id column to the employees table and a new table
companies:

companies = Table(’companies’, metadata,
Column(’company_id’, Integer, primary_key=True),
Column(’name’, String(50))
)

employees = Table(’employees’, metadata,
Column(’employee_id’, Integer, primary_key=True),
Column(’name’, String(50)),
Column(’type’, String(30), nullable=False),
Column(’company_id’, Integer, ForeignKey(’companies.company_id’))

)

class Company(object):
pass

mapper(Company, companies, properties={
’employees’: relation(Employee)

})

When querying from Company onto the Employee relation, the join() method as well as the any() and has()
operators will create a join from companies to employees, without including engineers or managers in the
mix. If we wish to have criterion which is specifically against the Engineer class, we can tell those methods to join
or subquery against the joined table representing the subclass using the of_type() operator:

session.query(Company).join(Company.employees.of_type(Engineer)).filter(Engineer.engineer_info==’someinfo’)

4.1. Mapper Configuration 59

SQLAlchemy Documentation, Release 0.5.4

A longhand version of this would involve spelling out the full target selectable within a 2-tuple:

session.query(Company).join((employees.join(engineers), Company.employees)).filter(Engineer.engineer_info==’someinfo’)

Currently, of_type() accepts a single class argument. It may be expanded later on to accept multiple classes. For
now, to join to any group of subclasses, the longhand notation allows this flexibility:

session.query(Company).join((employees.outerjoin(engineers).outerjoin(managers), Company.employees)).\
filter(or_(Engineer.engineer_info==’someinfo’, Manager.manager_data==’somedata’))

The any() and has() operators also can be used with of_type() when the embedded criterion is in terms of a
subclass:

session.query(Company).filter(Company.employees.of_type(Engineer).any(Engineer.engineer_info==’someinfo’)).all()

Note that the any() and has() are both shorthand for a correlated EXISTS query. To build one by hand looks like:

session.query(Company).filter(
exists([1],

and_(Engineer.engineer_info==’someinfo’, employees.c.company_id==companies.c.company_id),
from_obj=employees.join(engineers)

)
).all()

The EXISTS subquery above selects from the join of employees to engineers, and also specifies criterion which
correlates the EXISTS subselect back to the parent companies table.

Single Table Inheritance

Single table inheritance is where the attributes of the base class as well as all subclasses are represented within a single
table. A column is present in the table for every attribute mapped to the base class and all subclasses; the columns
which correspond to a single subclass are nullable. This configuration looks much like joined-table inheritance except
there’s only one table. In this case, a type column is required, as there would be no other way to discriminate between
classes. The table is specified in the base mapper only; for the inheriting classes, leave their table parameter blank:

employees_table = Table(’employees’, metadata,
Column(’employee_id’, Integer, primary_key=True),
Column(’name’, String(50)),
Column(’manager_data’, String(50)),
Column(’engineer_info’, String(50)),
Column(’type’, String(20), nullable=False)

)

employee_mapper = mapper(Employee, employees_table, \
polymorphic_on=employees_table.c.type, polymorphic_identity=’employee’)

manager_mapper = mapper(Manager, inherits=employee_mapper, polymorphic_identity=’manager’)
engineer_mapper = mapper(Engineer, inherits=employee_mapper, polymorphic_identity=’engineer’)

Note that the mappers for the derived classes Manager and Engineer omit the specification of their associated table,
as it is inherited from the employee_mapper. Omitting the table specification for derived mappers in single-table
inheritance is required.

60 Chapter 4. Mapper Configuration

SQLAlchemy Documentation, Release 0.5.4

Concrete Table Inheritance

This form of inheritance maps each class to a distinct table, as below:

employees_table = Table(’employees’, metadata,
Column(’employee_id’, Integer, primary_key=True),
Column(’name’, String(50)),

)

managers_table = Table(’managers’, metadata,
Column(’employee_id’, Integer, primary_key=True),
Column(’name’, String(50)),
Column(’manager_data’, String(50)),

)

engineers_table = Table(’engineers’, metadata,
Column(’employee_id’, Integer, primary_key=True),
Column(’name’, String(50)),
Column(’engineer_info’, String(50)),

)

Notice in this case there is no type column. If polymorphic loading is not required, there’s no advantage to using
inherits here; you just define a separate mapper for each class.

mapper(Employee, employees_table)
mapper(Manager, managers_table)
mapper(Engineer, engineers_table)

To load polymorphically, the with_polymorphic argument is required, along with a selectable indicating how
rows should be loaded. In this case we must construct a UNION of all three tables. SQLAlchemy includes a helper
function to create these called polymorphic_union, which will map all the different columns into a structure of
selects with the same numbers and names of columns, and also generate a virtual type column for each subselect:

pjoin = polymorphic_union({
’employee’: employees_table,
’manager’: managers_table,
’engineer’: engineers_table

}, ’type’, ’pjoin’)

employee_mapper = mapper(Employee, employees_table, with_polymorphic=(’*’, pjoin), \
polymorphic_on=pjoin.c.type, polymorphic_identity=’employee’)

manager_mapper = mapper(Manager, managers_table, inherits=employee_mapper, \
concrete=True, polymorphic_identity=’manager’)

engineer_mapper = mapper(Engineer, engineers_table, inherits=employee_mapper, \
concrete=True, polymorphic_identity=’engineer’)

Upon select, the polymorphic union produces a query like this:

session.query(Employee).all()

SELECT pjoin.type AS pjoin_type, pjoin.manager_data AS pjoin_manager_data, pjoin.employee_id AS pjoin_employee_id,
pjoin.name AS pjoin_name, pjoin.engineer_info AS pjoin_engineer_info

4.1. Mapper Configuration 61

SQLAlchemy Documentation, Release 0.5.4

FROM (
SELECT employees.employee_id AS employee_id, CAST(NULL AS VARCHAR(50)) AS manager_data, employees.name AS name,
CAST(NULL AS VARCHAR(50)) AS engineer_info, ’employee’ AS type
FROM employees

UNION ALL
SELECT managers.employee_id AS employee_id, managers.manager_data AS manager_data, managers.name AS name,
CAST(NULL AS VARCHAR(50)) AS engineer_info, ’manager’ AS type
FROM managers

UNION ALL
SELECT engineers.employee_id AS employee_id, CAST(NULL AS VARCHAR(50)) AS manager_data, engineers.name AS name,
engineers.engineer_info AS engineer_info, ’engineer’ AS type
FROM engineers

) AS pjoin
[]

Using Relations with Inheritance

Both joined-table and single table inheritance scenarios produce mappings which are usable in relation() func-
tions; that is, it’s possible to map a parent object to a child object which is polymorphic. Similarly, inheriting mappers
can have relation() objects of their own at any level, which are inherited to each child class. The only requirement
for relations is that there is a table relationship between parent and child. An example is the following modification to
the joined table inheritance example, which sets a bi-directional relationship between Employee and Company:

employees_table = Table(’employees’, metadata,
Column(’employee_id’, Integer, primary_key=True),
Column(’name’, String(50)),
Column(’company_id’, Integer, ForeignKey(’companies.company_id’))

)

companies = Table(’companies’, metadata,
Column(’company_id’, Integer, primary_key=True),
Column(’name’, String(50)))

class Company(object):
pass

mapper(Company, companies, properties={
’employees’: relation(Employee, backref=’company’)

})

SQLAlchemy has a lot of experience in this area; the optimized “outer join” approach can be used freely for parent
and child relationships, eager loads are fully useable, aliased() objects and other techniques are fully supported
as well.

In a concrete inheritance scenario, mapping relations is more difficult since the distinct classes do not share a table.
In this case, you can establish a relationship from parent to child if a join condition can be constructed from parent to
child, if each child table contains a foreign key to the parent:

companies = Table(’companies’, metadata,
Column(’id’, Integer, primary_key=True),
Column(’name’, String(50)))

employees_table = Table(’employees’, metadata,

62 Chapter 4. Mapper Configuration

SQLAlchemy Documentation, Release 0.5.4

Column(’employee_id’, Integer, primary_key=True),
Column(’name’, String(50)),
Column(’company_id’, Integer, ForeignKey(’companies.id’))

)

managers_table = Table(’managers’, metadata,
Column(’employee_id’, Integer, primary_key=True),
Column(’name’, String(50)),
Column(’manager_data’, String(50)),
Column(’company_id’, Integer, ForeignKey(’companies.id’))

)

engineers_table = Table(’engineers’, metadata,
Column(’employee_id’, Integer, primary_key=True),
Column(’name’, String(50)),
Column(’engineer_info’, String(50)),
Column(’company_id’, Integer, ForeignKey(’companies.id’))

)

mapper(Employee, employees_table, with_polymorphic=(’*’, pjoin), polymorphic_on=pjoin.c.type, polymorphic_identity=’employee’)
mapper(Manager, managers_table, inherits=employee_mapper, concrete=True, polymorphic_identity=’manager’)
mapper(Engineer, engineers_table, inherits=employee_mapper, concrete=True, polymorphic_identity=’engineer’)
mapper(Company, companies, properties={

’employees’: relation(Employee)
})

The big limitation with concrete table inheritance is that relation() objects placed on each concrete mapper do not
propagate to child mappers. If you want to have the same relation() objects set up on all concrete mappers, they
must be configured manually on each. To configure back references in such a configuration the back_populates
keyword may be used instead of backref, such as below where both A(object) and B(A) bidirectionally refer-
ence C:

ajoin = polymorphic_union({
’a’:a_table,
’b’:b_table

}, ’type’, ’ajoin’)

mapper(A, a_table, with_polymorphic=(’*’, ajoin),
polymorphic_on=ajoin.c.type, polymorphic_identity=’a’,
properties={

’some_c’:relation(C, back_populates=’many_a’)
})
mapper(B, b_table,inherits=A, concrete=True,

polymorphic_identity=’b’,
properties={

’some_c’:relation(C, back_populates=’many_a’)
})
mapper(C, c_table, properties={

’many_a’:relation(A, collection_class=set, back_populates=’some_c’),
})

4.1. Mapper Configuration 63

SQLAlchemy Documentation, Release 0.5.4

4.1.8 Mapping a Class against Multiple Tables

Mappers can be constructed against arbitrary relational units (called Selectables) as well as plain Tables. For
example, The join keyword from the SQL package creates a neat selectable unit comprised of multiple tables,
complete with its own composite primary key, which can be passed in to a mapper as the table.

a class
class AddressUser(object):

pass

define a Join
j = join(users_table, addresses_table)

map to it - the identity of an AddressUser object will be
based on (user_id, address_id) since those are the primary keys involved
mapper(AddressUser, j, properties={

’user_id’: [users_table.c.user_id, addresses_table.c.user_id]
})

A second example:

many-to-many join on an association table
j = join(users_table, userkeywords,

users_table.c.user_id==userkeywords.c.user_id).join(keywords,
userkeywords.c.keyword_id==keywords.c.keyword_id)

a class
class KeywordUser(object):

pass

map to it - the identity of a KeywordUser object will be
(user_id, keyword_id) since those are the primary keys involved
mapper(KeywordUser, j, properties={

’user_id’: [users_table.c.user_id, userkeywords.c.user_id],
’keyword_id’: [userkeywords.c.keyword_id, keywords.c.keyword_id]

})

In both examples above, “composite” columns were added as properties to the mappers; these are aggregations of
multiple columns into one mapper property, which instructs the mapper to keep both of those columns set at the same
value.

4.1.9 Mapping a Class against Arbitrary Selects

Similar to mapping against a join, a plain select() object can be used with a mapper as well. Below, an example select
which contains two aggregate functions and a group_by is mapped to a class:

s = select([customers,
func.count(orders).label(’order_count’),
func.max(orders.price).label(’highest_order’)],
customers.c.customer_id==orders.c.customer_id,
group_by=[c for c in customers.c]
).alias(’somealias’)

64 Chapter 4. Mapper Configuration

SQLAlchemy Documentation, Release 0.5.4

class Customer(object):
pass

mapper(Customer, s)

Above, the “customers” table is joined against the “orders” table to produce a full row for each customer row, the total
count of related rows in the “orders” table, and the highest price in the “orders” table, grouped against the full set of
columns in the “customers” table. That query is then mapped against the Customer class. New instances of Customer
will contain attributes for each column in the “customers” table as well as an “order_count” and “highest_order”
attribute. Updates to the Customer object will only be reflected in the “customers” table and not the “orders” table.
This is because the primary key columns of the “orders” table are not represented in this mapper and therefore the
table is not affected by save or delete operations.

4.1.10 Multiple Mappers for One Class

The first mapper created for a certain class is known as that class’s “primary mapper.” Other mappers can be created
as well on the “load side” - these are called secondary mappers. This is a mapper that must be constructed with
the keyword argument non_primary=True, and represents a load-only mapper. Objects that are loaded with a
secondary mapper will have their save operation processed by the primary mapper. It is also invalid to add new
relation() objects to a non-primary mapper. To use this mapper with the Session, specify it to the querymethod:

example:

primary mapper
mapper(User, users_table)

make a secondary mapper to load User against a join
othermapper = mapper(User, users_table.join(someothertable), non_primary=True)

select
result = session.query(othermapper).select()

The “non primary mapper” is a rarely needed feature of SQLAlchemy; in most cases, the Query object can produce
any kind of query that’s desired. It’s recommended that a straight Query be used in place of a non-primary mapper
unless the mapper approach is absolutely needed. Current use cases for the “non primary mapper” are when you want
to map the class to a particular select statement or view to which additional query criterion can be added, and for when
the particular mapped select statement or view is to be placed in a relation() of a parent mapper.

Versions of SQLAlchemy previous to 0.5 included another mapper flag called “entity_name”, as of version 0.5.0 this
feature has been removed (it never worked very well).

4.1.11 Constructors and Object Initialization

Mapping imposes no restrictions or requirements on the constructor (__init__) method for the class. You are free
to require any arguments for the function that you wish, assign attributes to the instance that are unknown to the ORM,
and generally do anything else you would normally do when writing a constructor for a Python class.

The SQLAlchemy ORM does not call __init__ when recreating objects from database rows. The ORM’s process
is somewhat akin to the Python standard library’s pickle module, invoking the low level __new__ method and then
quietly restoring attributes directly on the instance rather than calling __init__.

If you need to do some setup on database-loaded instances before they’re ready to use, you can use the
@reconstructor decorator to tag a method as the ORM counterpart to __init__. SQLAlchemy will call this
method with no arguments every time it loads or reconstructs one of your instances. This is useful for recreating
transient properties that are normally assigned in your __init__:

4.1. Mapper Configuration 65

SQLAlchemy Documentation, Release 0.5.4

from sqlalchemy import orm

class MyMappedClass(object):
def __init__(self, data):

self.data = data
we need stuff on all instances, but not in the database.
self.stuff = []

@orm.reconstructor
def init_on_load(self):

self.stuff = []

When obj = MyMappedClass() is executed, Python calls the __init__ method as normal and the data argu-
ment is required. When instances are loaded during a Query operation as in query(MyMappedClass).one(),
init_on_load is called instead.

Any method may be tagged as the reconstructor, even the __init__ method. SQLAlchemy will call the
reconstructor method with no arguments. Scalar (non-collection) database-mapped attributes of the instance will be
available for use within the function. Eagerly-loaded collections are generally not yet available and will usually only
contain the first element. ORM state changes made to objects at this stage will not be recorded for the next flush()
operation, so the activity within a reconstructor should be conservative.

While the ORM does not call your __init__ method, it will modify the class’s __init__ slightly. The method
is lightly wrapped to act as a trigger for the ORM, allowing mappers to be compiled automatically and will fire a
init_instance event that MapperExtension objectss may listen for. MapperExtension objects can also
listen for a reconstruct_instance event, analogous to the reconstructor decorator above.

4.1.12 Extending Mapper

Mappers can have functionality augmented or replaced at many points in its execution via the usage of the MapperEx-
tension class. This class is just a series of “hooks” where various functionality takes place. An application can make
its own MapperExtension objects, overriding only the methods it needs. Methods that are not overridden return the
special value sqlalchemy.orm.EXT_CONTINUE to allow processing to continue to the next MapperExtension or
simply proceed normally if there are no more extensions.

API documentation for MapperExtension: sqlalchemy.orm.interfaces.MapperExtension

To use MapperExtension, make your own subclass of it and just send it off to a mapper:

m = mapper(User, users_table, extension=MyExtension())

Multiple extensions will be chained together and processed in order; they are specified as a list:

m = mapper(User, users_table, extension=[ext1, ext2, ext3])

4.2 Relation Configuration

4.2.1 Basic Relational Patterns

A quick walkthrough of the basic relational patterns.

66 Chapter 4. Mapper Configuration

SQLAlchemy Documentation, Release 0.5.4

One To Many

A one to many relationship places a foreign key in the child table referencing the parent. SQLAlchemy creates the
relationship as a collection on the parent object containing instances of the child object.

parent_table = Table(’parent’, metadata,
Column(’id’, Integer, primary_key=True))

child_table = Table(’child’, metadata,
Column(’id’, Integer, primary_key=True),
Column(’parent_id’, Integer, ForeignKey(’parent.id’)))

class Parent(object):
pass

class Child(object):
pass

mapper(Parent, parent_table, properties={
’children’: relation(Child)

})

mapper(Child, child_table)

To establish a bi-directional relationship in one-to-many, where the “reverse” side is a many to one, specify the
backref option:

mapper(Parent, parent_table, properties={
’children’: relation(Child, backref=’parent’)

})

mapper(Child, child_table)

Child will get a parent attribute with many-to-one semantics.

Many To One

Many to one places a foreign key in the parent table referencing the child. The mapping setup is identical to one-
to-many, however SQLAlchemy creates the relationship as a scalar attribute on the parent object referencing a single
instance of the child object.

parent_table = Table(’parent’, metadata,
Column(’id’, Integer, primary_key=True),
Column(’child_id’, Integer, ForeignKey(’child.id’)))

child_table = Table(’child’, metadata,
Column(’id’, Integer, primary_key=True),
)

class Parent(object):
pass

4.2. Relation Configuration 67

SQLAlchemy Documentation, Release 0.5.4

class Child(object):
pass

mapper(Parent, parent_table, properties={
’child’: relation(Child)

})

mapper(Child, child_table)

Backref behavior is available here as well, where backref="parents" will place a one-to-many collection on the
Child class.

One To One

One To One is essentially a bi-directional relationship with a scalar attribute on both sides. To achieve this, the
uselist=False flag indicates the placement of a scalar attribute instead of a collection on the “many” side of the
relationship. To convert one-to-many into one-to-one:

mapper(Parent, parent_table, properties={
’child’: relation(Child, uselist=False, backref=’parent’)

})

Or to turn many-to-one into one-to-one:

mapper(Parent, parent_table, properties={
’child’: relation(Child, backref=backref(’parent’, uselist=False))

})

Many To Many

Many to Many adds an association table between two classes. The association table is indicated by the secondary
argument to relation().

left_table = Table(’left’, metadata,
Column(’id’, Integer, primary_key=True))

right_table = Table(’right’, metadata,
Column(’id’, Integer, primary_key=True))

association_table = Table(’association’, metadata,
Column(’left_id’, Integer, ForeignKey(’left.id’)),
Column(’right_id’, Integer, ForeignKey(’right.id’)),
)

mapper(Parent, left_table, properties={
’children’: relation(Child, secondary=association_table)

})

mapper(Child, right_table)

For a bi-directional relationship, both sides of the relation contain a collection by default, which can be modified on
either side via the uselist flag to be scalar. The backref keyword will automatically use the same secondary
argument for the reverse relation:

68 Chapter 4. Mapper Configuration

SQLAlchemy Documentation, Release 0.5.4

mapper(Parent, left_table, properties={
’children’: relation(Child, secondary=association_table, backref=’parents’)

})

Association Object

The association object pattern is a variant on many-to-many: it specifically is used when your association table contains
additional columns beyond those which are foreign keys to the left and right tables. Instead of using the secondary
argument, you map a new class directly to the association table. The left side of the relation references the association
object via one-to-many, and the association class references the right side via many-to-one.

left_table = Table(’left’, metadata,
Column(’id’, Integer, primary_key=True))

right_table = Table(’right’, metadata,
Column(’id’, Integer, primary_key=True))

association_table = Table(’association’, metadata,
Column(’left_id’, Integer, ForeignKey(’left.id’), primary_key=True),
Column(’right_id’, Integer, ForeignKey(’right.id’), primary_key=True),
Column(’data’, String(50))
)

mapper(Parent, left_table, properties={
’children’:relation(Association)

})

mapper(Association, association_table, properties={
’child’:relation(Child)

})

mapper(Child, right_table)

The bi-directional version adds backrefs to both relations:

mapper(Parent, left_table, properties={
’children’:relation(Association, backref="parent")

})

mapper(Association, association_table, properties={
’child’:relation(Child, backref="parent_assocs")

})

mapper(Child, right_table)

Working with the association pattern in its direct form requires that child objects are associated with an association
instance before being appended to the parent; similarly, access from parent to child goes through the association object:

create parent, append a child via association
p = Parent()
a = Association()
a.child = Child()

4.2. Relation Configuration 69

SQLAlchemy Documentation, Release 0.5.4

p.children.append(a)

iterate through child objects via association, including association
attributes
for assoc in p.children:

print assoc.data
print assoc.child

To enhance the association object pattern such that direct access to the Association object is optional,
SQLAlchemy provides the associationproxy.

Important Note: it is strongly advised that the secondary table argument not be combined with the Association
Object pattern, unless the relation() which contains the secondary argument is marked viewonly=True.
Otherwise, SQLAlchemy may persist conflicting data to the underlying association table since it is represented by two
conflicting mappings. The Association Proxy pattern should be favored in the case where access to the underlying
association data is only sometimes needed.

4.2.2 Adjacency List Relationships

The adjacency list pattern is a common relational pattern whereby a table contains a foreign key reference to itself.
This is the most common and simple way to represent hierarchical data in flat tables. The other way is the “nested
sets” model, sometimes called “modified preorder”. Despite what many online articles say about modified preorder,
the adjacency list model is probably the most appropriate pattern for the large majority of hierarchical storage needs,
for reasons of concurrency, reduced complexity, and that modified preorder has little advantage over an application
which can fully load subtrees into the application space.

SQLAlchemy commonly refers to an adjacency list relation as a self-referential mapper. In this example, we’ll work
with a single table called treenodes to represent a tree structure:

nodes = Table(’treenodes’, metadata,
Column(’id’, Integer, primary_key=True),
Column(’parent_id’, Integer, ForeignKey(’treenodes.id’)),
Column(’data’, String(50)),
)

A graph such as the following:

root --+---> child1
+---> child2 --+--> subchild1
| +--> subchild2
+---> child3

Would be represented with data such as:

id parent_id data
--- ------- ----
1 NULL root
2 1 child1
3 1 child2
4 3 subchild1
5 3 subchild2
6 1 child3

70 Chapter 4. Mapper Configuration

SQLAlchemy Documentation, Release 0.5.4

SQLAlchemy’s mapper() configuration for a self-referential one-to-many relationship is exactly like a “nor-
mal” one-to-many relationship. When SQLAlchemy encounters the foreign key relation from treenodes to
treenodes, it assumes one-to-many unless told otherwise:

entity class
class Node(object):

pass

mapper(Node, nodes, properties={
’children’: relation(Node)

})

To create a many-to-one relationship from child to parent, an extra indicator of the “remote side” is added, which
contains the Column object or objects indicating the remote side of the relation:

mapper(Node, nodes, properties={
’parent’: relation(Node, remote_side=[nodes.c.id])

})

And the bi-directional version combines both:

mapper(Node, nodes, properties={
’children’: relation(Node, backref=backref(’parent’, remote_side=[nodes.c.id]))

})

There are several examples included with SQLAlchemy illustrating self-referential strategies; these include ba-
sic_tree.py and optimized_al.py, the latter of which illustrates how to persist and search XML documents in con-
junction with ElementTree.

Self-Referential Query Strategies

Querying self-referential structures is done in the same way as any other query in SQLAlchemy, such as below, we
query for any node whose data attribute stores the value child2:

get all nodes named ’child2’
session.query(Node).filter(Node.data==’child2’)

On the subject of joins, i.e. those described in datamapping_joins, self-referential structures require the usage of
aliases so that the same table can be referenced multiple times within the FROM clause of the query. Aliasing can be
done either manually using the nodes Table object as a source of aliases:

get all nodes named ’subchild1’ with a parent named ’child2’
nodealias = nodes.alias()
session.query(Node).filter(Node.data==’subchild1’).\

filter(and_(Node.parent_id==nodealias.c.id, nodealias.c.data==’child2’)).all()
SELECT treenodes.id AS treenodes_id, treenodes.parent_id AS treenodes_parent_id, treenodes.data AS treenodes_data
FROM treenodes, treenodes AS treenodes_1
WHERE treenodes.data = ? AND treenodes.parent_id = treenodes_1.id AND treenodes_1.data = ?
[’subchild1’, ’child2’]

or automatically, using join() with aliased=True:

4.2. Relation Configuration 71

http://www.sqlalchemy.org/trac/browser/sqlalchemy/trunk/examples/adjacencytree/basic_tree.py
http://www.sqlalchemy.org/trac/browser/sqlalchemy/trunk/examples/adjacencytree/basic_tree.py
http://www.sqlalchemy.org/trac/browser/sqlalchemy/trunk/examples/elementtree/optimized_al.py
http://effbot.org/zone/element-index.htm

SQLAlchemy Documentation, Release 0.5.4

get all nodes named ’subchild1’ with a parent named ’child2’
session.query(Node).filter(Node.data==’subchild1’).\

join(’parent’, aliased=True).filter(Node.data==’child2’).all()
SELECT treenodes.id AS treenodes_id, treenodes.parent_id AS treenodes_parent_id, treenodes.data AS treenodes_data
FROM treenodes JOIN treenodes AS treenodes_1 ON treenodes_1.id = treenodes.parent_id
WHERE treenodes.data = ? AND treenodes_1.data = ?
[’subchild1’, ’child2’]

To add criterion to multiple points along a longer join, use from_joinpoint=True:

get all nodes named ’subchild1’ with a parent named ’child2’ and a grandparent ’root’
session.query(Node).filter(Node.data==’subchild1’).\

join(’parent’, aliased=True).filter(Node.data==’child2’).\
join(’parent’, aliased=True, from_joinpoint=True).filter(Node.data==’root’).all()

SELECT treenodes.id AS treenodes_id, treenodes.parent_id AS treenodes_parent_id, treenodes.data AS treenodes_data
FROM treenodes JOIN treenodes AS treenodes_1 ON treenodes_1.id = treenodes.parent_id JOIN treenodes AS treenodes_2 ON treenodes_2.id = treenodes_1.parent_id
WHERE treenodes.data = ? AND treenodes_1.data = ? AND treenodes_2.data = ?
[’subchild1’, ’child2’, ’root’]

Configuring Eager Loading

Eager loading of relations occurs using joins or outerjoins from parent to child table during a normal query operation,
such that the parent and its child collection can be populated from a single SQL statement. SQLAlchemy’s eager
loading uses aliased tables in all cases when joining to related items, so it is compatible with self-referential joining.
However, to use eager loading with a self-referential relation, SQLAlchemy needs to be told how many levels deep it
should join; otherwise the eager load will not take place. This depth setting is configured via join_depth:

mapper(Node, nodes, properties={
’children’: relation(Node, lazy=False, join_depth=2)

})

session.query(Node).all()
SELECT treenodes_1.id AS treenodes_1_id, treenodes_1.parent_id AS treenodes_1_parent_id, treenodes_1.data AS treenodes_1_data, treenodes_2.id AS treenodes_2_id, treenodes_2.parent_id AS treenodes_2_parent_id, treenodes_2.data AS treenodes_2_data, treenodes.id AS treenodes_id, treenodes.parent_id AS treenodes_parent_id, treenodes.data AS treenodes_data
FROM treenodes LEFT OUTER JOIN treenodes AS treenodes_2 ON treenodes.id = treenodes_2.parent_id LEFT OUTER JOIN treenodes AS treenodes_1 ON treenodes_2.id = treenodes_1.parent_id
[]

4.2.3 Specifying Alternate Join Conditions to relation()

The relation() function uses the foreign key relationship between the parent and child tables to formulate the
primary join condition between parent and child; in the case of a many-to-many relationship it also formulates
the secondary join condition. If you are working with a Table which has no ForeignKey objects on it (which
can be the case when using reflected tables with MySQL), or if the join condition cannot be expressed by a simple
foreign key relationship, use the primaryjoin and possibly secondaryjoin conditions to create the appropriate
relationship.

In this example we create a relation boston_addresses which will only load the user addresses with a city of
“Boston”:

class User(object):
pass

class Address(object):
pass

72 Chapter 4. Mapper Configuration

SQLAlchemy Documentation, Release 0.5.4

mapper(Address, addresses_table)
mapper(User, users_table, properties={

’boston_addresses’: relation(Address, primaryjoin=
and_(users_table.c.user_id==addresses_table.c.user_id,
addresses_table.c.city==’Boston’))

})

Many to many relationships can be customized by one or both of primaryjoin and secondaryjoin, shown
below with just the default many-to-many relationship explicitly set:

class User(object):
pass

class Keyword(object):
pass

mapper(Keyword, keywords_table)
mapper(User, users_table, properties={

’keywords’: relation(Keyword, secondary=userkeywords_table,
primaryjoin=users_table.c.user_id==userkeywords_table.c.user_id,
secondaryjoin=userkeywords_table.c.keyword_id==keywords_table.c.keyword_id
)

})

Specifying Foreign Keys

When using primaryjoin and secondaryjoin, SQLAlchemy also needs to be aware of which columns in the
relation reference the other. In most cases, a Table construct will have ForeignKey constructs which take care
of this; however, in the case of reflected tables on a database that does not report FKs (like MySQL ISAM) or when
using join conditions on columns that don’t have foreign keys, the relation() needs to be told specifically which
columns are “foreign” using the foreign_keys collection:

mapper(Address, addresses_table)
mapper(User, users_table, properties={

’addresses’: relation(Address, primaryjoin=
users_table.c.user_id==addresses_table.c.user_id,
foreign_keys=[addresses_table.c.user_id])

})

Building Query-Enabled Properties

Very ambitious custom join conditions may fail to be directly persistable, and in some cases may not even load
correctly. To remove the persistence part of the equation, use the flag viewonly=True on the relation(),
which establishes it as a read-only attribute (data written to the collection will be ignored on flush()). However, in
extreme cases, consider using a regular Python property in conjunction with Query as follows:

class User(object):
def _get_addresses(self):

return object_session(self).query(Address).with_parent(self).filter(...).all()
addresses = property(_get_addresses)

4.2. Relation Configuration 73

SQLAlchemy Documentation, Release 0.5.4

Multiple Relations against the Same Parent/Child

Theres no restriction on how many times you can relate from parent to child. SQLAlchemy can usually figure out what
you want, particularly if the join conditions are straightforward. Below we add a newyork_addresses attribute to
complement the boston_addresses attribute:

mapper(User, users_table, properties={
’boston_addresses’: relation(Address, primaryjoin=

and_(users_table.c.user_id==addresses_table.c.user_id,
addresses_table.c.city==’Boston’)),

’newyork_addresses’: relation(Address, primaryjoin=
and_(users_table.c.user_id==addresses_table.c.user_id,
addresses_table.c.city==’New York’)),

})

4.2.4 Alternate Collection Implementations

Mapping a one-to-many or many-to-many relationship results in a collection of values accessible through an attribute
on the parent instance. By default, this collection is a list:

mapper(Parent, properties={
children = relation(Child)

})

parent = Parent()
parent.children.append(Child())
print parent.children[0]

Collections are not limited to lists. Sets, mutable sequences and almost any other Python object that can act as a
container can be used in place of the default list.

use a set
mapper(Parent, properties={

children = relation(Child, collection_class=set)
})

parent = Parent()
child = Child()
parent.children.add(child)
assert child in parent.children

Custom Collection Implementations

You can use your own types for collections as well. For most cases, simply inherit from list or set and add the
custom behavior.

Collections in SQLAlchemy are transparently instrumented. Instrumentation means that normal operations on the col-
lection are tracked and result in changes being written to the database at flush time. Additionally, collection operations
can fire events which indicate some secondary operation must take place. Examples of a secondary operation include
saving the child item in the parent’s Session (i.e. the save-update cascade), as well as synchronizing the state
of a bi-directional relationship (i.e. a backref).

74 Chapter 4. Mapper Configuration

SQLAlchemy Documentation, Release 0.5.4

The collections package understands the basic interface of lists, sets and dicts and will automatically apply instrumen-
tation to those built-in types and their subclasses. Object-derived types that implement a basic collection interface are
detected and instrumented via duck-typing:

class ListLike(object):
def __init__(self):

self.data = []
def append(self, item):

self.data.append(item)
def remove(self, item):

self.data.remove(item)
def extend(self, items):

self.data.extend(items)
def __iter__(self):

return iter(self.data)
def foo(self):

return ’foo’

append, remove, and extend are known list-like methods, and will be instrumented automatically. __iter__ is
not a mutator method and won’t be instrumented, and foo won’t be either.

Duck-typing (i.e. guesswork) isn’t rock-solid, of course, so you can be explicit about the interface you are implement-
ing by providing an __emulates__ class attribute:

class SetLike(object):
__emulates__ = set

def __init__(self):
self.data = set()

def append(self, item):
self.data.add(item)

def remove(self, item):
self.data.remove(item)

def __iter__(self):
return iter(self.data)

This class looks list-like because of append, but __emulates__ forces it to set-like. remove is known to be part
of the set interface and will be instrumented.

But this class won’t work quite yet: a little glue is needed to adapt it for use by SQLAlchemy. The ORM needs to
know which methods to use to append, remove and iterate over members of the collection. When using a type like
list or set, the appropriate methods are well-known and used automatically when present. This set-like class does
not provide the expected add method, so we must supply an explicit mapping for the ORM via a decorator.

Annotating Custom Collections via Decorators

Decorators can be used to tag the individual methods the ORM needs to manage collections. Use them when your
class doesn’t quite meet the regular interface for its container type, or you simply would like to use a different method
to get the job done.

from sqlalchemy.orm.collections import collection

class SetLike(object):

4.2. Relation Configuration 75

SQLAlchemy Documentation, Release 0.5.4

__emulates__ = set

def __init__(self):
self.data = set()

@collection.appender
def append(self, item):

self.data.add(item)

def remove(self, item):
self.data.remove(item)

def __iter__(self):
return iter(self.data)

And that’s all that’s needed to complete the example. SQLAlchemy will add instances via the append method.
remove and __iter__ are the default methods for sets and will be used for removing and iteration. Default
methods can be changed as well:

from sqlalchemy.orm.collections import collection

class MyList(list):
@collection.remover
def zark(self, item):

do something special...

@collection.iterator
def hey_use_this_instead_for_iteration(self):

...

There is no requirement to be list-, or set-like at all. Collection classes can be any shape, so long as they have the
append, remove and iterate interface marked for SQLAlchemy’s use. Append and remove methods will be called with
a mapped entity as the single argument, and iterator methods are called with no arguments and must return an iterator.

Dictionary-Based Collections

A dict can be used as a collection, but a keying strategy is needed to map entities loaded by the ORM to key, value
pairs. The sqlalchemy.orm.collections package provides several built-in types for dictionary-based collections:

from sqlalchemy.orm.collections import column_mapped_collection, attribute_mapped_collection, mapped_collection

mapper(Item, items_table, properties={
key by column
’notes’: relation(Note, collection_class=column_mapped_collection(notes_table.c.keyword)),
or named attribute
’notes2’: relation(Note, collection_class=attribute_mapped_collection(’keyword’)),
or any callable
’notes3’: relation(Note, collection_class=mapped_collection(lambda entity: entity.a + entity.b))

})

...
item = Item()

76 Chapter 4. Mapper Configuration

SQLAlchemy Documentation, Release 0.5.4

item.notes[’color’] = Note(’color’, ’blue’)
print item.notes[’color’]

These functions each provide a dict subclass with decorated set and remove methods and the keying strategy of
your choice.

The sqlalchemy.orm.collections.MappedCollection class can be used as a base class for your custom types or as a mix-
in to quickly add dict collection support to other classes. It uses a keying function to delegate to __setitem__
and __delitem__:

from sqlalchemy.util import OrderedDict
from sqlalchemy.orm.collections import MappedCollection

class NodeMap(OrderedDict, MappedCollection):
"""Holds ’Node’ objects, keyed by the ’name’ attribute with insert order maintained."""

def __init__(self, *args, **kw):
MappedCollection.__init__(self, keyfunc=lambda node: node.name)
OrderedDict.__init__(self, *args, **kw)

The ORM understands the dict interface just like lists and sets, and will automatically instrument all dict-like meth-
ods if you choose to subclass dict or provide dict-like collection behavior in a duck-typed class. You must deco-
rate appender and remover methods, however- there are no compatible methods in the basic dictionary interface for
SQLAlchemy to use by default. Iteration will go through itervalues() unless otherwise decorated.

Instrumentation and Custom Types

Many custom types and existing library classes can be used as a entity collection type as-is without further ado.
However, it is important to note that the instrumentation process _will_ modify the type, adding decorators around
methods automatically.

The decorations are lightweight and no-op outside of relations, but they do add unneeded overhead when triggered
elsewhere. When using a library class as a collection, it can be good practice to use the “trivial subclass” trick to
restrict the decorations to just your usage in relations. For example:

class MyAwesomeList(some.great.library.AwesomeList):
pass

... relation(..., collection_class=MyAwesomeList)

The ORM uses this approach for built-ins, quietly substituting a trivial subclass when a list, set or dict is used
directly.

The collections package provides additional decorators and support for authoring custom types. See the
sqlalchemy.orm.collections for more information and discussion of advanced usage and Python 2.3-compatible deco-
ration options.

4.2.5 Configuring Loader Strategies: Lazy Loading, Eager Loading

In the datamapping, we introduced the concept of Eager Loading. We used an option in conjunction with the
Query object in order to indicate that a relation should be loaded at the same time as the parent, within a single SQL
query:

4.2. Relation Configuration 77

SQLAlchemy Documentation, Release 0.5.4

>>> jack = session.query(User).options(eagerload(’addresses’)).filter_by(name=’jack’).all()
SELECT addresses_1.id AS addresses_1_id, addresses_1.email_address AS addresses_1_email_address,
addresses_1.user_id AS addresses_1_user_id, users.id AS users_id, users.name AS users_name,
users.fullname AS users_fullname, users.password AS users_password
FROM users LEFT OUTER JOIN addresses AS addresses_1 ON users.id = addresses_1.user_id
WHERE users.name = ?
[’jack’]

By default, all relations are lazy loading. The scalar or collection attribute associated with a relation() contains
a trigger which fires the first time the attribute is accessed, which issues a SQL call at that point:

>>> jack.addresses
SELECT addresses.id AS addresses_id, addresses.email_address AS addresses_email_address, addresses.user_id AS addresses_user_id
FROM addresses
WHERE ? = addresses.user_id
[5][<Address(u’jack@google.com’)>, <Address(u’j25@yahoo.com’)>]

The default loader strategy for any relation() is configured by the lazy keyword argument, which defaults to
True. Below we set it as False so that the children relation is eager loading:

eager load ’children’ attribute
mapper(Parent, parent_table, properties={

’children’: relation(Child, lazy=False)
})

The loader strategy can be changed from lazy to eager as well as eager to lazy using the eagerload() and
lazyload() query options:

set children to load lazily
session.query(Parent).options(lazyload(’children’)).all()

set children to load eagerly
session.query(Parent).options(eagerload(’children’)).all()

To reference a relation that is deeper than one level, separate the names by periods:

session.query(Parent).options(eagerload(’foo.bar.bat’)).all()

When using dot-separated names with eagerload(), option applies only to the actual attribute named, and not its
ancestors. For example, suppose a mapping from A to B to C, where the relations, named atob and btoc, are both
lazy-loading. A statement like the following:

session.query(A).options(eagerload(’atob.btoc’)).all()

will load only A objects to start. When the atob attribute on each A is accessed, the returned B objects will eagerly
load their C objects.

Therefore, to modify the eager load to load both atob as well as btoc, place eagerloads for both:

session.query(A).options(eagerload(’atob’), eagerload(’atob.btoc’)).all()

or more simply just use eagerload_all():

78 Chapter 4. Mapper Configuration

SQLAlchemy Documentation, Release 0.5.4

session.query(A).options(eagerload_all(’atob.btoc’)).all()

There are two other loader strategies available, dynamic loading and no loading; these are described in Working with
Large Collections.

Routing Explicit Joins/Statements into Eagerly Loaded Collections

The behavior of eagerload() is such that joins are created automatically, the results of which are routed into
collections and scalar references on loaded objects. It is often the case that a query already includes the necessary
joins which represent a particular collection or scalar reference, and the joins added by the eagerload feature are
redundant - yet you’d still like the collections/references to be populated.

For this SQLAlchemy supplies the contains_eager() option. This option is used in the same manner as the
eagerload() option except it is assumed that the Query will specify the appropriate joins explicitly. Below it’s
used with a from_statement load:

mapping is the users->addresses mapping
mapper(User, users_table, properties={

’addresses’: relation(Address, addresses_table)
})

define a query on USERS with an outer join to ADDRESSES
statement = users_table.outerjoin(addresses_table).select().apply_labels()

construct a Query object which expects the "addresses" results
query = session.query(User).options(contains_eager(’addresses’))

get results normally
r = query.from_statement(statement)

It works just as well with an inline Query.join() or Query.outerjoin():

session.query(User).outerjoin(User.addresses).options(contains_eager(User.addresses)).all()

If the “eager” portion of the statement is “aliased”, the alias keyword argument to contains_eager() may be
used to indicate it. This is a string alias name or reference to an actual Alias (or other selectable) object:

use an alias of the Address entity
adalias = aliased(Address)

construct a Query object which expects the "addresses" results
query = session.query(User).\

outerjoin((adalias, User.addresses)).\
options(contains_eager(User.addresses, alias=adalias))

get results normally
r = query.all()
SELECT users.user_id AS users_user_id, users.user_name AS users_user_name, adalias.address_id AS adalias_address_id,
adalias.user_id AS adalias_user_id, adalias.email_address AS adalias_email_address, (...other columns...)
FROM users LEFT OUTER JOIN email_addresses AS email_addresses_1 ON users.user_id = email_addresses_1.user_id

The alias argument is used only as a source of columns to match up to the result set. You can use it even to match
up the result to arbitrary label names in a string SQL statement, by passing a selectable() which links those labels to
the mapped Table:

4.2. Relation Configuration 79

SQLAlchemy Documentation, Release 0.5.4

label the columns of the addresses table
eager_columns = select([

addresses.c.address_id.label(’a1’),
addresses.c.email_address.label(’a2’),
addresses.c.user_id.label(’a3’)])

select from a raw SQL statement which uses those label names for the
addresses table. contains_eager() matches them up.
query = session.query(User).\

from_statement("select users.*, addresses.address_id as a1, "
"addresses.email_address as a2, addresses.user_id as a3 "
"from users left outer join addresses on users.user_id=addresses.user_id").\

options(contains_eager(User.addresses, alias=eager_columns))

The path given as the argument to contains_eager() needs to be a full path from the starting entity. For example
if we were loading Users->orders->Order->items->Item, the string version would look like:

query(User).options(contains_eager(’orders’, ’items’))

Or using the class-bound descriptor:

query(User).options(contains_eager(User.orders, Order.items))

A variant on contains_eager() is the contains_alias() option, which is used in the rare case that the
parent object is loaded from an alias within a user-defined SELECT statement:

define an aliased UNION called ’ulist’
statement = users.select(users.c.user_id==7).union(users.select(users.c.user_id>7)).alias(’ulist’)

add on an eager load of "addresses"
statement = statement.outerjoin(addresses).select().apply_labels()

create query, indicating "ulist" is an alias for the main table, "addresses" property should
be eager loaded
query = session.query(User).options(contains_alias(’ulist’), contains_eager(’addresses’))

results
r = query.from_statement(statement)

4.2.6 Working with Large Collections

The default behavior of relation() is to fully load the collection of items in, as according to the loading strategy
of the relation. Additionally, the Session by default only knows how to delete objects which are actually present within
the session. When a parent instance is marked for deletion and flushed, the Session loads its full list of child items
in so that they may either be deleted as well, or have their foreign key value set to null; this is to avoid constraint
violations. For large collections of child items, there are several strategies to bypass full loading of child items both at
load time as well as deletion time.

Dynamic Relation Loaders

The most useful by far is the dynamic_loader() relation. This is a variant of relation() which returns a
Query object in place of a collection when accessed. filter() criterion may be applied as well as limits and
offsets, either explicitly or via array slices:

80 Chapter 4. Mapper Configuration

SQLAlchemy Documentation, Release 0.5.4

mapper(User, users_table, properties={
’posts’: dynamic_loader(Post)

})

jack = session.query(User).get(id)

filter Jack’s blog posts
posts = jack.posts.filter(Post.headline==’this is a post’)

apply array slices
posts = jack.posts[5:20]

The dynamic relation supports limited write operations, via the append() and remove() methods. Since the read
side of the dynamic relation always queries the database, changes to the underlying collection will not be visible until
the data has been flushed:

oldpost = jack.posts.filter(Post.headline==’old post’).one()
jack.posts.remove(oldpost)

jack.posts.append(Post(’new post’))

To place a dynamic relation on a backref, use lazy=’dynamic’:

mapper(Post, posts_table, properties={
’user’: relation(User, backref=backref(’posts’, lazy=’dynamic’))

})

Note that eager/lazy loading options cannot be used in conjunction dynamic relations at this time.

Setting Noload

The opposite of the dynamic relation is simply “noload”, specified using lazy=None:

mapper(MyClass, table, properties={
’children’: relation(MyOtherClass, lazy=None)

})

Above, the children collection is fully writeable, and changes to it will be persisted to the database as well as
locally available for reading at the time they are added. However when instances of MyClass are freshly loaded from
the database, the children collection stays empty.

Using Passive Deletes

Use passive_deletes=True to disable child object loading on a DELETE operation, in conjunction with “ON
DELETE (CASCADE|SET NULL)” on your database to automatically cascade deletes to child objects. Note that
“ON DELETE” is not supported on SQLite, and requires InnoDB tables when using MySQL:

mytable = Table(’mytable’, meta,
Column(’id’, Integer, primary_key=True),
)

4.2. Relation Configuration 81

SQLAlchemy Documentation, Release 0.5.4

myothertable = Table(’myothertable’, meta,
Column(’id’, Integer, primary_key=True),
Column(’parent_id’, Integer),
ForeignKeyConstraint([’parent_id’], [’mytable.id’], ondelete="CASCADE"),
)

mapper(MyOtherClass, myothertable)

mapper(MyClass, mytable, properties={
’children’: relation(MyOtherClass, cascade="all, delete-orphan", passive_deletes=True)

})

When passive_deletes is applied, the children relation will not be loaded into memory when an instance
of MyClass is marked for deletion. The cascade="all, delete-orphan" will take effect for instances of
MyOtherClass which are currently present in the session; however for instances of MyOtherClass which are
not loaded, SQLAlchemy assumes that “ON DELETE CASCADE” rules will ensure that those rows are deleted by
the database and that no foreign key violation will occur.

4.2.7 Mutable Primary Keys / Update Cascades

As of SQLAlchemy 0.4.2, the primary key attributes of an instance can be changed freely, and will be persisted upon
flush. When the primary key of an entity changes, related items which reference the primary key must also be updated
as well. For databases which enforce referential integrity, it’s required to use the database’s ON UPDATE CASCADE
functionality in order to propagate primary key changes. For those which don’t, the passive_cascades flag can be
set to False which instructs SQLAlchemy to issue UPDATE statements individually. The passive_cascades
flag can also be False in conjunction with ON UPDATE CASCADE functionality, although in that case it issues
UPDATE statements unnecessarily.

A typical mutable primary key setup might look like:

users = Table(’users’, metadata,
Column(’username’, String(50), primary_key=True),
Column(’fullname’, String(100)))

addresses = Table(’addresses’, metadata,
Column(’email’, String(50), primary_key=True),
Column(’username’, String(50), ForeignKey(’users.username’, onupdate="cascade")))

class User(object):
pass

class Address(object):
pass

mapper(User, users, properties={
’addresses’: relation(Address, passive_updates=False)

})
mapper(Address, addresses)

passive_updates is set to True by default. Foreign key references to non-primary key columns are supported as well.

82 Chapter 4. Mapper Configuration

CHAPTER

FIVE

USING THE SESSION

The Mapper is the entrypoint to the configurational API of the SQLAlchemy object relational mapper. But the primary
object one works with when using the ORM is the Session.

5.1 What does the Session do ?

In the most general sense, the Session establishes all conversations with the database and represents a “holding
zone” for all the mapped instances which you’ve loaded or created during its lifespan. It implements the Unit of
Work pattern, which means it keeps track of all changes which occur, and is capable of flushing those changes to the
database as appropriate. Another important facet of the Session is that it’s also maintaining unique copies of each
instance, where “unique” means “only one object with a particular primary key” - this pattern is called the Identity
Map.

Beyond that, the Session implements an interface which lets you move objects in or out of the session in a variety
of ways, it provides the entryway to a Query object which is used to query the database for data, and it also pro-
vides a transactional context for SQL operations which rides on top of the transactional capabilities of Engine and
Connection objects.

5.2 Getting a Session

Session is a regular Python class which can be directly instantiated. However, to standardize how sessions are con-
figured and acquired, the sessionmaker() function is normally used to create a top level Session configuration
which can then be used throughout an application without the need to repeat the configurational arguments.

5.2.1 Using a sessionmaker() Configuration

The usage of sessionmaker() is illustrated below:

from sqlalchemy.orm import sessionmaker

create a configured "Session" class
Session = sessionmaker(bind=some_engine)

create a Session
session = Session()

work with sess
myobject = MyObject(’foo’, ’bar’)

83

http://martinfowler.com/eaaCatalog/unitOfWork.html
http://martinfowler.com/eaaCatalog/unitOfWork.html
http://martinfowler.com/eaaCatalog/identityMap.html
http://martinfowler.com/eaaCatalog/identityMap.html

SQLAlchemy Documentation, Release 0.5.4

session.add(myobject)
session.commit()

close when finished
session.close()

Above, the sessionmaker call creates a class for us, which we assign to the name Session. This class is a
subclass of the actual sqlalchemy.orm.session.Session class, which will instantiate with a particular bound
engine.

When you write your application, place the call to sessionmaker() somewhere global, and then make your new
Session class available to the rest of your application.

5.2.2 Binding Session to an Engine

In our previous example regarding sessionmaker(), we specified a bind for a particular Engine. If we’d like
to construct a sessionmaker() without an engine available and bind it later on, or to specify other options to an
existing sessionmaker(), we may use the configure() method:

configure Session class with desired options
Session = sessionmaker()

later, we create the engine
engine = create_engine(’postgres://...’)

associate it with our custom Session class
Session.configure(bind=engine)

work with the session
session = Session()

It’s actually entirely optional to bind a Session to an engine. If the underlying mapped Table objects use “bound”
metadata, the Session will make use of the bound engine instead (or will even use multiple engines if multiple
binds are present within the mapped tables). “Bound” metadata is described at Binding MetaData to an Engine or
Connection.

The Session also has the ability to be bound to multiple engines explicitly. Descriptions of these scenarios are
described in Partitioning Strategies.

5.2.3 Binding Session to a Connection

The Session can also be explicitly bound to an individual database Connection. Reasons for doing this may in-
clude to join a Sessionwith an ongoing transaction local to a specific Connection object, or to bypass connection
pooling by just having connections persistently checked out and associated with distinct, long running sessions:

global application scope. create Session class, engine
Session = sessionmaker()

engine = create_engine(’postgres://...’)

...

local scope, such as within a controller function

84 Chapter 5. Using the Session

SQLAlchemy Documentation, Release 0.5.4

connect to the database
connection = engine.connect()

bind an individual Session to the connection
session = Session(bind=connection)

5.2.4 Using create_session()

As an alternative to sessionmaker(), create_session() is a function which calls the normal Session
constructor directly. All arguments are passed through and the new Session object is returned:

session = create_session(bind=myengine, autocommit=True, autoflush=False)

Note that create_session() disables all optional “automation” by default. Called with no arguments, the session
produced is not autoflushing, does not auto-expire, and does not maintain a transaction (i.e. it begins and commits a
new transaction for each flush()). SQLAlchemy uses create_session() extensively within its own unit tests.

5.2.5 Configurational Arguments

Configurational arguments accepted by sessionmaker() and create_session() are the same as that of the
Session class itself, and are described at sqlalchemy.orm.sessionmaker().

Note that the defaults of create_session() are the opposite of that of sessionmaker(): autoflush and ex-
pire_on_commit are False, autocommit is True. It is recommended to use the sessionmaker() function instead of
create_session(). create_session() is used to get a session with no automation turned on and is useful
for testing.

5.3 Using the Session

5.3.1 Quickie Intro to Object States

It’s helpful to know the states which an instance can have within a session:

• Transient - an instance that’s not in a session, and is not saved to the database; i.e. it has no database identity.
The only relationship such an object has to the ORM is that its class has a mapper() associated with it.

• Pending - when you add() a transient instance, it becomes pending. It still wasn’t actually flushed to the
database yet, but it will be when the next flush occurs.

• Persistent - An instance which is present in the session and has a record in the database. You get persistent
instances by either flushing so that the pending instances become persistent, or by querying the database for
existing instances (or moving persistent instances from other sessions into your local session).

• Detached - an instance which has a record in the database, but is not in any session. There’s nothing wrong with
this, and you can use objects normally when they’re detached, except they will not be able to issue any SQL in
order to load collections or attributes which are not yet loaded, or were marked as “expired”.

Knowing these states is important, since the Session tries to be strict about ambiguous operations (such as trying to
save the same object to two different sessions at the same time).

5.3. Using the Session 85

SQLAlchemy Documentation, Release 0.5.4

5.3.2 Frequently Asked Questions

• When do I make a sessionmaker ?

Just one time, somewhere in your application’s global scope. It should be looked upon as part of
your application’s configuration. If your application has three .py files in a package, you could, for
example, place the sessionmaker line in your __init__.py file; from that point on your other
modules say “from mypackage import Session”. That way, everyone else just uses Session(),
and the configuration of that session is controlled by that central point.
If your application starts up, does imports, but does not know what database it’s going to be connect-
ing to, you can bind the Session at the “class” level to the engine later on, using configure().
In the examples in this section, we will frequently show the sessionmaker being created right
above the line where we actually invoke Session(). But that’s just for example’s sake ! In reality,
the sessionmaker would be somewhere at the module level, and your individual Session()
calls would be sprinkled all throughout your app, such as in a web application within each controller
method.

• When do I make a Session ?

You typically invoke Session() when you first need to talk to your database, and want to save
some objects or load some existing ones. Then, you work with it, save your changes, and then dispose
of it....or at the very least close() it. It’s not a “global” kind of object, and should be handled more
like a “local variable”, as it’s generally not safe to use with concurrent threads. Sessions are very
inexpensive to make, and don’t use any resources whatsoever until they are first used...so create some
!
There is also a pattern whereby you’re using a contextual session, this is described later in unitof-
work_contextual. In this pattern, a helper object is maintaining a Session for you, most com-
monly one that is local to the current thread (and sometimes also local to an application instance).
SQLAlchemy has worked this pattern out such that it still looks like you’re creating a new session as
you need one...so in that case, it’s still a guaranteed win to just say Session() whenever you want
a session.

• Is the Session a cache ?

Yeee...no. It’s somewhat used as a cache, in that it implements the identity map pattern, and stores
objects keyed to their primary key. However, it doesn’t do any kind of query caching. This means, if
you say session.query(Foo).filter_by(name=’bar’), even if Foo(name=’bar’)
is right there, in the identity map, the session has no idea about that. It has to issue SQL to the
database, get the rows back, and then when it sees the primary key in the row, then it can look in the lo-
cal identity map and see that the object is already there. It’s only when you say query.get({some
primary key}) that the Session doesn’t have to issue a query.
Additionally, the Session stores object instances using a weak reference by default. This also defeats
the purpose of using the Session as a cache, unless the weak_identity_map flag is set to False.
The Session is not designed to be a global object from which everyone consults as a “registry”
of objects. That is the job of a second level cache. A good library for implementing second level
caching is Memcached. It is possible to “sort of” use the Session in this manner, if you set it to
be non-transactional and it never flushes any SQL, but it’s not a terrific solution, since if concurrent
threads load the same objects at the same time, you may have multiple copies of the same objects
present in collections.

• How can I get the Session for a certain object ?

Use the object_session() classmethod available on Session:

session = Session.object_session(someobject)

86 Chapter 5. Using the Session

http://www.danga.com/memcached/

SQLAlchemy Documentation, Release 0.5.4

• Is the session thread-safe?

Nope. It has no thread synchronization of any kind built in, and particularly when you do a flush
operation, it definitely is not open to concurrent threads accessing it, because it holds onto a single
database connection at that point. If you use a session which is non-transactional for read operations
only, it’s still not thread-“safe”, but you also wont get any catastrophic failures either, since it opens
and closes connections on an as-needed basis; it’s just that different threads might load the same
objects independently of each other, but only one will wind up in the identity map (however, the
other one might still live in a collection somewhere).
But the bigger point here is, you should not want to use the session with multiple concurrent threads.
That would be like having everyone at a restaurant all eat from the same plate. The session is a local
“workspace” that you use for a specific set of tasks; you don’t want to, or need to, share that session
with other threads who are doing some other task. If, on the other hand, there are other threads
participating in the same task you are, such as in a desktop graphical application, then you would be
sharing the session with those threads, but you also will have implemented a proper locking scheme
(or your graphical framework does) so that those threads do not collide.

5.3.3 Querying

The query() function takes one or more entities and returns a new Query object which will issue mapper queries
within the context of this Session. An entity is defined as a mapped class, a Mapper object, an orm-enabled descriptor,
or an AliasedClass object:

query from a class
session.query(User).filter_by(name=’ed’).all()

query with multiple classes, returns tuples
session.query(User, Address).join(’addresses’).filter_by(name=’ed’).all()

query using orm-enabled descriptors
session.query(User.name, User.fullname).all()

query from a mapper
user_mapper = class_mapper(User)
session.query(user_mapper)

When Query returns results, each object instantiated is stored within the identity map. When a row matches an
object which is already present, the same object is returned. In the latter case, whether or not the row is populated
onto an existing object depends upon whether the attributes of the instance have been expired or not. As of 0.5, a
default-configured Session automatically expires all instances along transaction boundaries, so that with a normally
isolated transaction, there shouldn’t be any issue of instances representing data which is stale with regards to the
current transaction.

5.3.4 Adding New or Existing Items

add() is used to place instances in the session. For transient (i.e. brand new) instances, this will have the effect of
an INSERT taking place for those instances upon the next flush. For instances which are persistent (i.e. were loaded
by this session), they are already present and do not need to be added. Instances which are detached (i.e. have been
removed from a session) may be re-associated with a session using this method:

user1 = User(name=’user1’)
user2 = User(name=’user2’)

5.3. Using the Session 87

SQLAlchemy Documentation, Release 0.5.4

session.add(user1)
session.add(user2)

session.commit() # write changes to the database

To add a list of items to the session at once, use add_all():

session.add_all([item1, item2, item3])

The add() operation cascades along the save-update cascade. For more details see the section unitof-
work_cascades.

5.3.5 Merging

merge() reconciles the current state of an instance and its associated children with existing data in the database, and
returns a copy of the instance associated with the session. Usage is as follows:

merged_object = session.merge(existing_object)

When given an instance, it follows these steps:

• It examines the primary key of the instance. If it’s present, it attempts to load an instance with that primary key
(or pulls from the local identity map).

• If there’s no primary key on the given instance, or the given primary key does not exist in the database, a new
instance is created.

• The state of the given instance is then copied onto the located/newly created instance.

• The operation is cascaded to associated child items along the merge cascade. Note that all changes present on
the given instance, including changes to collections, are merged.

• The new instance is returned.

With merge(), the given instance is not placed within the session, and can be associated with a different session or
detached. merge() is very useful for taking the state of any kind of object structure without regard for its origins or
current session associations and placing that state within a session. Here’s two examples:

• An application which reads an object structure from a file and wishes to save it to the database might parse the
file, build up the structure, and then use merge() to save it to the database, ensuring that the data within the
file is used to formulate the primary key of each element of the structure. Later, when the file has changed, the
same process can be re-run, producing a slightly different object structure, which can then be merged() in
again, and the Session will automatically update the database to reflect those changes.

• A web application stores mapped entities within an HTTP session object. When each request starts up, the
serialized data can be merged into the session, so that the original entity may be safely shared among requests
and threads.

merge() is frequently used by applications which implement their own second level caches. This refers to an
application which uses an in memory dictionary, or an tool like Memcached to store objects over long running spans
of time. When such an object needs to exist within a Session, merge() is a good choice since it leaves the original
cached object untouched. For this use case, merge provides a keyword option called dont_load=True. When this
boolean flag is set to True, merge() will not issue any SQL to reconcile the given object against the current state
of the database, thereby reducing query overhead. The limitation is that the given object and all of its children may
not contain any pending changes, and it’s also of course possible that newer information in the database will not be
present on the merged object, since no load is issued.

88 Chapter 5. Using the Session

SQLAlchemy Documentation, Release 0.5.4

5.3.6 Deleting

The delete method places an instance into the Session’s list of objects to be marked as deleted:

mark two objects to be deleted
session.delete(obj1)
session.delete(obj2)

commit (or flush)
session.commit()

The big gotcha with delete() is that nothing is removed from collections. Such as, if a User has a collection of
three Addresses, deleting an Address will not remove it from user.addresses:

>>> address = user.addresses[1]
>>> session.delete(address)
>>> session.flush()
>>> address in user.addresses
True

The solution is to use proper cascading:

mapper(User, users_table, properties={
’addresses’:relation(Address, cascade="all, delete, delete-orphan")

})
del user.addresses[1]
session.flush()

5.3.7 Flushing

When the Session is used with its default configuration, the flush step is nearly always done transparently.
Specifically, the flush occurs before any individual Query is issued, as well as within the commit() call before
the transaction is committed. It also occurs before a SAVEPOINT is issued when begin_nested() is used.
The “flush-on-Query” aspect of the behavior can be disabled by constructing sessionmaker() with the flag
autoflush=False.

Regardless of the autoflush setting, a flush can always be forced by issuing flush():

session.flush()

flush() also supports the ability to flush a subset of objects which are present in the session, by passing a list of
objects:

saves only user1 and address2. all other modified
objects remain present in the session.
session.flush([user1, address2])

This second form of flush should be used carefully as it currently does not cascade, meaning that it will not necessarily
affect other objects directly associated with the objects given.

The flush process always occurs within a transaction, even if the Session has been configured with
autocommit=True, a setting that disables the session’s persistent transactional state. If no transaction is present,
flush() creates its own transaction and commits it. Any failures during flush will always result in a rollback of
whatever transaction is present.

5.3. Using the Session 89

SQLAlchemy Documentation, Release 0.5.4

5.3.8 Committing

commit() is used to commit the current transaction. It always issues flush() beforehand to flush any remaining
state to the database; this is independent of the “autoflush” setting. If no transaction is present, it raises an error. Note
that the default behavior of the Session is that a transaction is always present; this behavior can be disabled by
setting autocommit=True. In autocommit mode, a transaction can be initiated by calling the begin() method.

Another behavior of commit() is that by default it expires the state of all instances present after the commit is
complete. This is so that when the instances are next accessed, either through attribute access or by them being present
in a Query result set, they receive the most recent state. To disable this behavior, configure sessionmaker() with
expire_on_commit=False.

Normally, instances loaded into the Session are never changed by subsequent queries; the assumption is that the
current transaction is isolated so the state most recently loaded is correct as long as the transaction continues. Setting
autocommit=True works against this model to some degree since the Session behaves in exactly the same way
with regard to attribute state, except no transaction is present.

5.3.9 Rolling Back

rollback() rolls back the current transaction. With a default configured session, the post-rollback state of the
session is as follows:

• All connections are rolled back and returned to the connection pool, unless the Session was bound directly to a
Connection, in which case the connection is still maintained (but still rolled back).

• Objects which were initially in the pending state when they were added to the Session within the lifespan
of the transaction are expunged, corresponding to their INSERT statement being rolled back. The state of their
attributes remains unchanged.

• Objects which were marked as deleted within the lifespan of the transaction are promoted back to the persistent
state, corresponding to their DELETE statement being rolled back. Note that if those objects were first pending
within the transaction, that operation takes precedence instead.

• All objects not expunged are fully expired.

With that state understood, the Session may safely continue usage after a rollback occurs (note that this is a new
feature as of version 0.5).

When a flush() fails, typically for reasons like primary key, foreign key, or “not nullable” constraint violations,
a rollback() is issued automatically (it’s currently not possible for a flush to continue after a partial failure).
However, the flush process always uses its own transactional demarcator called a subtransaction, which is described
more fully in the docstrings for Session. What it means here is that even though the database transaction has been
rolled back, the end user must still issue rollback() to fully reset the state of the Session.

5.3.10 Expunging

Expunge removes an object from the Session, sending persistent instances to the detached state, and pending instances
to the transient state:

session.expunge(obj1)

To remove all items, call session.expunge_all() (this method was formerly known as clear()).

90 Chapter 5. Using the Session

SQLAlchemy Documentation, Release 0.5.4

5.3.11 Closing

The close() method issues a expunge_all(), and releases any transactional/connection resources. When con-
nections are returned to the connection pool, transactional state is rolled back as well.

5.3.12 Refreshing / Expiring

To assist with the Session’s “sticky” behavior of instances which are present, individual objects can have all of their
attributes immediately re-loaded from the database, or marked as “expired” which will cause a re-load to occur upon
the next access of any of the object’s mapped attributes. This includes all relationships, so lazy-loaders will be re-
initialized, eager relationships will be repopulated. Any changes marked on the object are discarded:

immediately re-load attributes on obj1, obj2
session.refresh(obj1)
session.refresh(obj2)

expire objects obj1, obj2, attributes will be reloaded
on the next access:
session.expire(obj1)
session.expire(obj2)

refresh() and expire() also support being passed a list of individual attribute names in which to be refreshed.
These names can reference any attribute, column-based or relation based:

immediately re-load the attributes ’hello’, ’world’ on obj1, obj2
session.refresh(obj1, [’hello’, ’world’])
session.refresh(obj2, [’hello’, ’world’])

expire the attributes ’hello’, ’world’ objects obj1, obj2, attributes will be reloaded
on the next access:
session.expire(obj1, [’hello’, ’world’])
session.expire(obj2, [’hello’, ’world’])

The full contents of the session may be expired at once using expire_all():

session.expire_all()

refresh() and expire() are usually not needed when working with a default-configured Session.
The usual need is when an UPDATE or DELETE has been issued manually within the transaction using
Session.execute().

5.3.13 Session Attributes

The Session itself acts somewhat like a set-like collection. All items present may be accessed using the iterator
interface:

for obj in session:
print obj

And presence may be tested for using regular “contains” semantics:

5.3. Using the Session 91

SQLAlchemy Documentation, Release 0.5.4

if obj in session:
print "Object is present"

The session is also keeping track of all newly created (i.e. pending) objects, all objects which have had changes since
they were last loaded or saved (i.e. “dirty”), and everything that’s been marked as deleted:

pending objects recently added to the Session
session.new

persistent objects which currently have changes detected
(this collection is now created on the fly each time the property is called)
session.dirty

persistent objects that have been marked as deleted via session.delete(obj)
session.deleted

Note that objects within the session are by default weakly referenced. This means that when they are dereferenced in
the outside application, they fall out of scope from within the Session as well and are subject to garbage collection by
the Python interpreter. The exceptions to this include objects which are pending, objects which are marked as deleted,
or persistent objects which have pending changes on them. After a full flush, these collections are all empty, and all
objects are again weakly referenced. To disable the weak referencing behavior and force all objects within the ses-
sion to remain until explicitly expunged, configure sessionmaker() with the weak_identity_map=False
setting.

5.4 Cascades

Mappers support the concept of configurable cascade behavior on relation() constructs. This behavior controls
how the Session should treat the instances that have a parent-child relationship with another instance that is operated
upon by the Session. Cascade is indicated as a comma-separated list of string keywords, with the possible values all,
delete, save-update, refresh-expire, merge, expunge, and delete-orphan.

Cascading is configured by setting the cascade keyword argument on a relation():

mapper(Order, order_table, properties={
’items’ : relation(Item, items_table, cascade="all, delete-orphan"),
’customer’ : relation(User, users_table, user_orders_table, cascade="save-update"),

})

The above mapper specifies two relations, items and customer. The items relationship specifies “all, delete-
orphan” as its cascade value, indicating that all add, merge, expunge, refresh delete and expire oper-
ations performed on a parent Order instance should also be performed on the child Item instances attached to it.
The delete-orphan cascade value additionally indicates that if an Item instance is no longer associated with an
Order, it should also be deleted. The “all, delete-orphan” cascade argument allows a so-called lifecycle relationship
between an Order and an Item object.

The customer relationship specifies only the “save-update” cascade value, indicating most operations will not be
cascaded from a parent Order instance to a child User instance except for the add() operation. “save-update”
cascade indicates that an add() on the parent will cascade to all child items, and also that items added to a parent
which is already present in the session will also be added.

Note that the delete-orphan cascade only functions for relationships where the target object can have a single
parent at a time, meaning it is only appropriate for one-to-one or one-to-many relationships. For a relation()

92 Chapter 5. Using the Session

SQLAlchemy Documentation, Release 0.5.4

which establishes one-to-one via a local foreign key, i.e. a many-to-one that stores only a single parent, or one-to-
one/one-to-many via a “secondary” (association) table, a warning will be issued if delete-orphan is configured.
To disable this warning, also specify the single_parent=True flag on the relationship, which constrains objects
to allow attachment to only one parent at a time.

The default value for cascade on relation() is save-update, merge.

5.5 Managing Transactions

The Session manages transactions across all engines associated with it. As the Session receives requests to
execute SQL statements using a particular Engine or Connection, it adds each individual Engine encountered
to its transactional state and maintains an open connection for each one (note that a simple application normally has
just one Engine). At commit time, all unflushed data is flushed, and each individual transaction is committed. If the
underlying databases support two-phase semantics, this may be used by the Session as well if two-phase transactions
are enabled.

Normal operation ends the transactional state using the rollback() or commit() methods. After either is called,
the Session starts a new transaction:

Session = sessionmaker()
session = Session()
try:

item1 = session.query(Item).get(1)
item2 = session.query(Item).get(2)
item1.foo = ’bar’
item2.bar = ’foo’

commit- will immediately go into a new transaction afterwards
session.commit()

except:
rollback - will immediately go into a new transaction afterwards.
session.rollback()

A session which is configured with autocommit=True may be placed into a transaction using begin(). With an
autocommit=True session that’s been placed into a transaction using begin(), the session releases all connection
resources after a commit() or rollback() and remains transaction-less (with the exception of flushes) until the
next begin() call:

Session = sessionmaker(autocommit=True)
session = Session()
session.begin()
try:

item1 = session.query(Item).get(1)
item2 = session.query(Item).get(2)
item1.foo = ’bar’
item2.bar = ’foo’
session.commit()

except:
session.rollback()
raise

The begin() method also returns a transactional token which is compatible with the Python 2.6 with statement:

5.5. Managing Transactions 93

SQLAlchemy Documentation, Release 0.5.4

Session = sessionmaker(autocommit=True)
session = Session()
with session.begin():

item1 = session.query(Item).get(1)
item2 = session.query(Item).get(2)
item1.foo = ’bar’
item2.bar = ’foo’

5.5.1 Using SAVEPOINT

SAVEPOINT transactions, if supported by the underlying engine, may be delineated using the begin_nested()
method:

Session = sessionmaker()
session = Session()
session.add(u1)
session.add(u2)

session.begin_nested() # establish a savepoint
session.add(u3)
session.rollback() # rolls back u3, keeps u1 and u2

session.commit() # commits u1 and u2

begin_nested() may be called any number of times, which will issue a new SAVEPOINT with a unique identifier
for each call. For each begin_nested() call, a corresponding rollback() or commit() must be issued.

When begin_nested() is called, a flush() is unconditionally issued (regardless of the autoflush setting).
This is so that when a rollback() occurs, the full state of the session is expired, thus causing all subsequent
attribute/instance access to reference the full state of the Session right before begin_nested() was called.

5.5.2 Enabling Two-Phase Commit

Finally, for MySQL, PostgreSQL, and soon Oracle as well, the session can be instructed to use two-phase commit
semantics. This will coordinate the committing of transactions across databases so that the transaction is either com-
mitted or rolled back in all databases. You can also prepare() the session for interacting with transactions not
managed by SQLAlchemy. To use two phase transactions set the flag twophase=True on the session:

engine1 = create_engine(’postgres://db1’)
engine2 = create_engine(’postgres://db2’)

Session = sessionmaker(twophase=True)

bind User operations to engine 1, Account operations to engine 2
Session.configure(binds={User:engine1, Account:engine2})

session = Session()

.... work with accounts and users

commit. session will issue a flush to all DBs, and a prepare step to all DBs,
before committing both transactions
session.commit()

94 Chapter 5. Using the Session

SQLAlchemy Documentation, Release 0.5.4

5.6 Embedding SQL Insert/Update Expressions into a Flush

This feature allows the value of a database column to be set to a SQL expression instead of a literal value. It’s especially
useful for atomic updates, calling stored procedures, etc. All you do is assign an expression to an attribute:

class SomeClass(object):
pass

mapper(SomeClass, some_table)

someobject = session.query(SomeClass).get(5)

set ’value’ attribute to a SQL expression adding one
someobject.value = some_table.c.value + 1

issues "UPDATE some_table SET value=value+1"
session.commit()

This technique works both for INSERT and UPDATE statements. After the flush/commit operation, the value
attribute on someobject above is expired, so that when next accessed the newly generated value will be loaded
from the database.

5.7 Using SQL Expressions with Sessions

SQL expressions and strings can be executed via the Session within its transactional context. This is most easily
accomplished using the execute() method, which returns a ResultProxy in the same manner as an Engine or
Connection:

Session = sessionmaker(bind=engine)
session = Session()

execute a string statement
result = session.execute("select * from table where id=:id", {’id’:7})

execute a SQL expression construct
result = session.execute(select([mytable]).where(mytable.c.id==7))

The current Connection held by the Session is accessible using the connection() method:

connection = session.connection()

The examples above deal with a Session that’s bound to a single Engine or Connection. To execute statements
using a Session which is bound either to multiple engines, or none at all (i.e. relies upon bound metadata), both
execute() and connection() accept a mapper keyword argument, which is passed a mapped class or Mapper
instance, which is used to locate the proper context for the desired engine:

Session = sessionmaker()
session = Session()

need to specify mapper or class when executing
result = session.execute("select * from table where id=:id", {’id’:7}, mapper=MyMappedClass)

5.6. Embedding SQL Insert/Update Expressions into a Flush 95

SQLAlchemy Documentation, Release 0.5.4

result = session.execute(select([mytable], mytable.c.id==7), mapper=MyMappedClass)

connection = session.connection(MyMappedClass)

5.8 Joining a Session into an External Transaction

If a Connection is being used which is already in a transactional state (i.e. has a Transaction), a Session can
be made to participate within that transaction by just binding the Session to that Connection:

Session = sessionmaker()

non-ORM connection + transaction
conn = engine.connect()
trans = conn.begin()

create a Session, bind to the connection
session = Session(bind=conn)

... work with session

session.commit() # commit the session
session.close() # close it out, prohibit further actions

trans.commit() # commit the actual transaction

Note that above, we issue a commit() both on the Session as well as the Transaction. This is an example of
where we take advantage of Connection‘s ability to maintain subtransactions, or nested begin/commit pairs. The
Session is used exactly as though it were managing the transaction on its own; its commit() method issues its
flush(), and commits the subtransaction. The subsequent transaction the Session starts after commit will not
begin until it’s next used. Above we issue a close() to prevent this from occurring. Finally, the actual transaction
is committed using Transaction.commit().

When using the threadlocal engine context, the process above is simplified; the Session uses the same connec-
tion/transaction as everyone else in the current thread, whether or not you explicitly bind it:

engine = create_engine(’postgres://mydb’, strategy="threadlocal")
engine.begin()

session = Session() # session takes place in the transaction like everyone else

... go nuts

engine.commit() # commit the transaction

5.9 Contextual/Thread-local Sessions

A common need in applications, particularly those built around web frameworks, is the ability to “share” a Session
object among disparate parts of an application, without needing to pass the object explicitly to all method and function
calls. What you’re really looking for is some kind of “global” session object, or at least “global” to all the parts
of an application which are tasked with servicing the current request. For this pattern, SQLAlchemy provides the

96 Chapter 5. Using the Session

SQLAlchemy Documentation, Release 0.5.4

ability to enhance the Session class generated by sessionmaker() to provide auto-contextualizing support.
This means that whenever you create a Session instance with its constructor, you get an existing Session object
which is bound to some “context”. By default, this context is the current thread. This feature is what previously was
accomplished using the sessioncontext SQLAlchemy extension.

5.9.1 Creating a Thread-local Context

The scoped_session() function wraps around the sessionmaker() function, and produces an object which
behaves the same as the Session subclass returned by sessionmaker():

from sqlalchemy.orm import scoped_session, sessionmaker
Session = scoped_session(sessionmaker())

However, when you instantiate this Session “class”, in reality the object is pulled from a threadlocal variable, or if
it doesn’t exist yet, it’s created using the underlying class generated by sessionmaker():

>>> # call Session() the first time. the new Session instance is created.
>>> session = Session()

>>> # later, in the same application thread, someone else calls Session()
>>> session2 = Session()

>>> # the two Session objects are *the same* object
>>> session is session2
True

Since the Session() constructor now returns the same Session object every time within the current thread, the
object returned by scoped_session() also implements most of the Session methods and properties at the
“class” level, such that you don’t even need to instantiate Session():

create some objects
u1 = User()
u2 = User()

save to the contextual session, without instantiating
Session.add(u1)
Session.add(u2)

view the "new" attribute
assert u1 in Session.new

commit changes
Session.commit()

The contextual session may be disposed of by calling Session.remove():

remove current contextual session
Session.remove()

After remove() is called, the next operation with the contextual session will start a new Session for the current
thread.

5.9. Contextual/Thread-local Sessions 97

SQLAlchemy Documentation, Release 0.5.4

5.9.2 Lifespan of a Contextual Session

A (really, really) common question is when does the contextual session get created, when does it get disposed ? We’ll
consider a typical lifespan as used in a web application:

Web Server Web Framework User-defined Controller Call
-------------- -------------- ------------------------------
web request ->

call controller -> # call Session(). this establishes a new,
contextual Session.
session = Session()

load some objects, save some changes
objects = session.query(MyClass).all()

some other code calls Session, it’s the
same contextual session as "sess"
session2 = Session()
session2.add(foo)
session2.commit()

generate content to be returned
return generate_content()

Session.remove() <-
web response <-

The above example illustrates an explicit call to Session.remove(). This has the effect such that each web request
starts fresh with a brand new session. When integrating with a web framework, there’s actually many options on how
to proceed for this step, particularly as of version 0.5:

• Session.remove() - this is the most cut and dry approach; the Session is thrown away, all of its transac-
tional/connection resources are closed out, everything within it is explicitly gone. A new Session will be
used on the next request.

• Session.close() - Similar to calling remove(), in that all objects are explicitly expunged and all transac-
tional/connection resources closed, except the actual Session object hangs around. It doesn’t make too much
difference here unless the start of the web request would like to pass specific options to the initial construction
of Session(), such as a specific Engine to bind to.

• Session.commit() - In this case, the behavior is that any remaining changes pending are flushed, and the trans-
action is committed. The full state of the session is expired, so that when the next web request is started, all data
will be reloaded. In reality, the contents of the Session are weakly referenced anyway so its likely that it will
be empty on the next request in any case.

• Session.rollback() - Similar to calling commit, except we assume that the user would have called commit ex-
plicitly if that was desired; the rollback() ensures that no transactional state remains and expires all data, in
the case that the request was aborted and did not roll back itself.

• do nothing - this is a valid option as well. The controller code is responsible for doing one of the above steps at
the end of the request.

Scoped Session API docs: sqlalchemy.orm.scoped_session()

98 Chapter 5. Using the Session

SQLAlchemy Documentation, Release 0.5.4

5.10 Partitioning Strategies

5.10.1 Vertical Partitioning

Vertical partitioning places different kinds of objects, or different tables, across multiple databases:

engine1 = create_engine(’postgres://db1’)
engine2 = create_engine(’postgres://db2’)

Session = sessionmaker(twophase=True)

bind User operations to engine 1, Account operations to engine 2
Session.configure(binds={User:engine1, Account:engine2})

session = Session()

5.10.2 Horizontal Partitioning

Horizontal partitioning partitions the rows of a single table (or a set of tables) across multiple databases.

See the “sharding” example in attribute_shard.py

5.11 Extending Session

Extending the session can be achieved through subclassing as well as through a simple extension class, which resem-
bles the style of Extending Mapper called SessionExtension. See the docstrings for more information on this
class’ methods.

Basic usage is similar to MapperExtension:

class MySessionExtension(SessionExtension):
def before_commit(self, session):

print "before commit!"

Session = sessionmaker(extension=MySessionExtension())

or with create_session():

session = create_session(extension=MySessionExtension())

The same SessionExtension instance can be used with any number of sessions.

5.10. Partitioning Strategies 99

http://www.sqlalchemy.org/trac/browser/sqlalchemy/trunk/examples/sharding/attribute_shard.py

SQLAlchemy Documentation, Release 0.5.4

100 Chapter 5. Using the Session

CHAPTER

SIX

DATABASE ENGINES

The Engine is the starting point for any SQLAlchemy application. It’s “home base” for the actual database and its
DBAPI, delivered to the SQLAlchemy application through a connection pool and a Dialect, which describes how to
talk to a specific kind of database/DBAPI combination.

The general structure is this:

+-----------+ __________
/---| Pool |---\ (__________)

+-------------+ / +-----------+ \ +--------+ | |
connect() <--| Engine |---x x----| DBAPI |---| database |

+-------------+ \ +-----------+ / +--------+ | |
\---| Dialect |---/ |__________|

+-----------+ (__________)

Where above, a Engine references both a Dialect and Pool, which together interpret the DBAPI’s module
functions as well as the behavior of the database.

Creating an engine is just a matter of issuing a single call, create_engine():

engine = create_engine(’postgres://scott:tiger@localhost:5432/mydatabase’)

The above engine invokes the postgres dialect and a connection pool which references localhost:5432.

The engine can be used directly to issue SQL to the database. The most generic way is to use connections, which you
get via the connect() method:

connection = engine.connect()
result = connection.execute("select username from users")
for row in result:

print "username:", row[’username’]
connection.close()

The connection is an instance of Connection, which is a proxy object for an actual DBAPI connection. The
returned result is an instance of ResultProxy, which acts very much like a DBAPI cursor.

When you say engine.connect(), a new Connection object is created, and a DBAPI connection is retrieved
from the connection pool. Later, when you call connection.close(), the DBAPI connection is returned to the
pool; nothing is actually “closed” from the perspective of the database.

To execute some SQL more quickly, you can skip the Connection part and just say:

101

SQLAlchemy Documentation, Release 0.5.4

result = engine.execute("select username from users")
for row in result:

print "username:", row[’username’]
result.close()

Where above, the execute() method on the Engine does the connect() part for you, and returns the
ResultProxy directly. The actual Connection is inside the ResultProxy, waiting for you to finish read-
ing the result. In this case, when you close() the ResultProxy, the underlying Connection is closed, which
returns the DBAPI connection to the pool.

To summarize the above two examples, when you use a Connection object, it’s known as explicit execution. When
you don’t see the Connection object, but you still use the execute() method on the Engine, it’s called explicit,
connectionless execution. A third variant of execution also exists called implicit execution; this will be described
later.

The Engine and Connection can do a lot more than what we illustrated above; SQL strings are only its most
rudimentary function. Later chapters will describe how “constructed SQL” expressions can be used with engines; in
many cases, you don’t have to deal with the Engine at all after it’s created. The Object Relational Mapper (ORM),
an optional feature of SQLAlchemy, also uses the Engine in order to get at connections; that’s also a case where you
can often create the engine once, and then forget about it.

6.1 Supported Databases

Recall that the Dialect is used to describe how to talk to a specific kind of database. Dialects are included with
SQLAlchemy for SQLite, Postgres, MySQL, MS-SQL, Firebird, Informix, and Oracle; these can each be seen as a
Python module present in the :mod:~sqlalchemy.databases package. Each dialect requires the appropriate
DBAPI drivers to be installed separately.

Downloads for each DBAPI at the time of this writing are as follows:

• Postgres: psycopg2

• SQLite: sqlite3 (included in Python 2.5 or greater) pysqlite

• MySQL: MySQLDB

• Oracle: cx_Oracle

• MS-SQL, MSAccess: pyodbc (recommended) adodbapi pymssql

• Firebird: kinterbasdb

• Informix: informixdb

• DB2/Informix IDS: ibm-db

• Sybase: TODO

• MAXDB: TODO

The SQLAlchemy Wiki contains a page of database notes, describing whatever quirks and behaviors have been ob-
served. Its a good place to check for issues with specific databases. Database Notes

102 Chapter 6. Database Engines

http://www.initd.org/tracker/psycopg/wiki/PsycopgTwo
http://www.python.org/doc/2.5.2/lib/module-sqlite3.html
http://initd.org/tracker/pysqlite
http://sourceforge.net/projects/mysql-python
http://cx-oracle.sourceforge.net/
http://pyodbc.sourceforge.net/
http://adodbapi.sourceforge.net/
http://pymssql.sourceforge.net/
http://kinterbasdb.sourceforge.net/
http://informixdb.sourceforge.net/
http://code.google.com/p/ibm-db/
http://www.sqlalchemy.org/trac/wiki/DatabaseNotes

SQLAlchemy Documentation, Release 0.5.4

6.2 create_engine() URL Arguments

SQLAlchemy indicates the source of an Engine strictly via RFC-1738 style URLs, combined with optional keyword
arguments to specify options for the Engine. The form of the URL is:

driver://username:password@host:port/database

Available drivernames are sqlite, mysql, postgres, oracle, mssql, and firebird. For sqlite, the database
name is the filename to connect to, or the special name “:memory:” which indicates an in-memory database. The URL
is typically sent as a string to the create_engine() function:

postgres
pg_db = create_engine(’postgres://scott:tiger@localhost:5432/mydatabase’)

sqlite (note the four slashes for an absolute path)
sqlite_db = create_engine(’sqlite:////absolute/path/to/database.txt’)
sqlite_db = create_engine(’sqlite:///relative/path/to/database.txt’)
sqlite_db = create_engine(’sqlite://’) # in-memory database
sqlite_db = create_engine(’sqlite://:memory:’) # the same

mysql
mysql_db = create_engine(’mysql://localhost/foo’)

oracle
oracle_db = create_engine(’oracle://scott:tiger@host:port/dbname?key1=value1&key2=value2’)

oracle via TNS name
oracle_db = create_engine(’oracle://scott:tiger@tnsname’)
oracle_db = create_engine(’oracle://scott:tiger@tnsname/?key1=value1&key2=value2’)

oracle will feed host/port/SID into cx_oracle.makedsn
oracle_db = create_engine(’oracle://scott:tiger@127.0.0.1:1521/sidname’)

mssql
mssql_db = create_engine(’mssql://username:password@localhost/database’)

mssql via a DSN connection
mssql_db = create_engine(’mssql://mydsn’)
mssql_db = create_engine(’mssql://username:password@mydsn’)

The Engine will ask the connection pool for a connection when the connect() or execute() methods are
called. The default connection pool, QueuePool, as well as the default connection pool used with SQLite,
SingletonThreadPool, will open connections to the database on an as-needed basis. As concurrent statements
are executed, QueuePool will grow its pool of connections to a default size of five, and will allow a default “over-
flow” of ten. Since the Engine is essentially “home base” for the connection pool, it follows that you should keep a
single Engine per database established within an application, rather than creating a new one for each connection.

6.2.1 Custom DBAPI connect() arguments

Custom arguments used when issuing the connect() call to the underlying DBAPI may be issued in three distinct
ways. String-based arguments can be passed directly from the URL string as query arguments:

db = create_engine(’postgres://scott:tiger@localhost/test?argument1=foo&argument2=bar’)

6.2. create_engine() URL Arguments 103

http://rfc.net/rfc1738.html

SQLAlchemy Documentation, Release 0.5.4

If SQLAlchemy’s database connector is aware of a particular query argument, it may convert its type from string to its
proper type.

create_engine also takes an argument connect_args which is an additional dictionary that will be passed to
connect(). This can be used when arguments of a type other than string are required, and SQLAlchemy’s database
connector has no type conversion logic present for that parameter:

db = create_engine(’postgres://scott:tiger@localhost/test’, connect_args = {’argument1’:17, ’argument2’:’bar’})

The most customizable connection method of all is to pass a creator argument, which specifies a callable that
returns a DBAPI connection:

def connect():
return psycopg.connect(user=’scott’, host=’localhost’)

db = create_engine(’postgres://’, creator=connect)

6.3 Database Engine Options

Keyword options can also be specified to create_engine(), following the string URL as follows:

db = create_engine(’postgres://...’, encoding=’latin1’, echo=True)

Options common to all database dialects are described at create_engine().

6.4 More On Connections

Recall from the beginning of this section that the Engine provides a connect() method which returns a
Connection object. Connection is a proxy object which maintains a reference to a DBAPI connection instance.
The close() method on Connection does not actually close the DBAPI connection, but instead returns it to the
connection pool referenced by the Engine. Connection will also automatically return its resources to the con-
nection pool when the object is garbage collected, i.e. its __del__() method is called. When using the standard C
implementation of Python, this method is usually called immediately as soon as the object is dereferenced. With other
Python implementations such as Jython, this is not so guaranteed.

The execute() methods on both Engine and Connection can also receive SQL clause constructs as well:

connection = engine.connect()
result = connection.execute(select([table1], table1.c.col1==5))
for row in result:

print row[’col1’], row[’col2’]
connection.close()

The above SQL construct is known as a select(). The full range of SQL constructs available are described in sql.

Both Connection and Engine fulfill an interface known as Connectable which specifies common functional-
ity between the two objects, namely being able to call connect() to return a Connection object (Connection
just returns itself), and being able to call execute() to get a result set. Following this, most SQLAlchemy func-
tions and objects which accept an Engine as a parameter or attribute with which to execute SQL will also accept a
Connection. As of SQLAlchemy 0.3.9, this argument is named bind:

104 Chapter 6. Database Engines

SQLAlchemy Documentation, Release 0.5.4

engine = create_engine(’sqlite:///:memory:’)

specify some Table metadata
metadata = MetaData()
table = Table(’sometable’, metadata, Column(’col1’, Integer))

create the table with the Engine
table.create(bind=engine)

drop the table with a Connection off the Engine
connection = engine.connect()
table.drop(bind=connection)

Connection facts:

• the Connection object is not thread-safe. While a Connection can be shared among threads using properly
synchronized access, this is also not recommended as many DBAPIs have issues with, if not outright disallow,
sharing of connection state between threads.

• The Connection object represents a single dbapi connection checked out from the connection pool. In this
state, the connection pool has no affect upon the connection, including its expiration or timeout state. For the
connection pool to properly manage connections, connections should be returned to the connection pool (i.e.
‘‘connection.close()‘‘) whenever the connection is not in use. If your application has a need for management
of multiple connections or is otherwise long running (this includes all web applications, threaded or not), don’t
hold a single connection open at the module level.

6.5 Using Transactions with Connection

The Connection object provides a begin()method which returns a Transaction object. This object is usually
used within a try/except clause so that it is guaranteed to rollback() or commit():

trans = connection.begin()
try:

r1 = connection.execute(table1.select())
connection.execute(table1.insert(), col1=7, col2=’this is some data’)
trans.commit()

except:
trans.rollback()
raise

The Transaction object also handles “nested” behavior by keeping track of the outermost begin/commit pair.
In this example, two functions both issue a transaction on a Connection, but only the outermost Transaction object
actually takes effect when it is committed.

method_a starts a transaction and calls method_b
def method_a(connection):

trans = connection.begin() # open a transaction
try:

method_b(connection)
trans.commit() # transaction is committed here

except:
trans.rollback() # this rolls back the transaction unconditionally

6.5. Using Transactions with Connection 105

SQLAlchemy Documentation, Release 0.5.4

raise

method_b also starts a transaction
def method_b(connection):

trans = connection.begin() # open a transaction - this runs in the context of method_a’s transaction
try:

connection.execute("insert into mytable values (’bat’, ’lala’)")
connection.execute(mytable.insert(), col1=’bat’, col2=’lala’)
trans.commit() # transaction is not committed yet

except:
trans.rollback() # this rolls back the transaction unconditionally
raise

open a Connection and call method_a
conn = engine.connect()
method_a(conn)
conn.close()

Above, method_a is called first, which calls connection.begin(). Then it calls method_b. When
method_b calls connection.begin(), it just increments a counter that is decremented when it calls
commit(). If either method_a or method_b calls rollback(), the whole transaction is rolled back. The trans-
action is not committed until method_a calls the commit() method. This “nesting” behavior allows the creation
of functions which “guarantee” that a transaction will be used if one was not already available, but will automatically
participate in an enclosing transaction if one exists.

Note that SQLAlchemy’s Object Relational Mapper also provides a way to control transaction scope at a higher level;
this is described in unitofwork_transaction. Transaction Facts:

• the Transaction object, just like its parent Connection, is not thread-safe.

• SQLAlchemy 0.4 will feature transactions with two-phase commit capability as well as SAVEPOINT capability.

6.5.1 Understanding Autocommit

The above transaction example illustrates how to use Transaction so that several executions can take part
in the same transaction. What happens when we issue an INSERT, UPDATE or DELETE call without using
Transaction? The answer is autocommit. While many DBAPIs implement a flag called autocommit, the
current SQLAlchemy behavior is such that it implements its own autocommit. This is achieved by detecting state-
ments which represent data-changing operations, i.e. INSERT, UPDATE, DELETE, etc., and then issuing a COMMIT
automatically if no transaction is in progress. The detection is based on compiled statement attributes, or in the case
of a text-only statement via regular expressions.

conn = engine.connect()
conn.execute("INSERT INTO users VALUES (1, ’john’)") # autocommits

6.6 Connectionless Execution, Implicit Execution

Recall from the first section we mentioned executing with and without a Connection. Connectionless exe-
cution refers to calling the execute() method on an object which is not a Connection, which could be on the
Engine itself, or could be a constructed SQL object. When we say “implicit”, we mean that we are calling the
execute() method on an object which is neither a Connection nor an Engine object; this can only be used

106 Chapter 6. Database Engines

SQLAlchemy Documentation, Release 0.5.4

with constructed SQL objects which have their own execute() method, and can be “bound” to an Engine. A
description of “constructed SQL objects” may be found in sql.

A summary of all three methods follows below. First, assume the usage of the following MetaData and Table
objects; while we haven’t yet introduced these concepts, for now you only need to know that we are representing a
database table, and are creating an “executable” SQL construct which issues a statement to the database. These objects
are described in metadata.

meta = MetaData()
users_table = Table(’users’, meta,

Column(’id’, Integer, primary_key=True),
Column(’name’, String(50))

)

Explicit execution delivers the SQL text or constructed SQL expression to the execute()method of Connection:

engine = create_engine(’sqlite:///file.db’)
connection = engine.connect()
result = connection.execute(users_table.select())
for row in result:

....
connection.close()

Explicit, connectionless execution delivers the expression to the execute() method of Engine:

engine = create_engine(’sqlite:///file.db’)
result = engine.execute(users_table.select())
for row in result:

....
result.close()

Implicit execution is also connectionless, and calls the execute() method on the expression itself, utilizing the fact
that either an Engine or Connection has been bound to the expression object (binding is discussed further in the
next section, metadata):

engine = create_engine(’sqlite:///file.db’)
meta.bind = engine
result = users_table.select().execute()
for row in result:

....
result.close()

In both “connectionless” examples, the Connection is created behind the scenes; the ResultProxy returned by
the execute() call references the Connection used to issue the SQL statement. When we issue close() on the
ResultProxy, or if the result set object falls out of scope and is garbage collected, the underlying Connection
is closed for us, resulting in the DBAPI connection being returned to the pool.

6.6.1 Using the Threadlocal Execution Strategy

The “threadlocal” engine strategy is used by non-ORM applications which wish to bind a transaction to the current
thread, such that all parts of the application can participate in that transaction implicitly without the need to explicitly
reference a Connection. “threadlocal” is designed for a very specific pattern of use, and is not appropriate unless

6.6. Connectionless Execution, Implicit Execution 107

SQLAlchemy Documentation, Release 0.5.4

this very specfic pattern, described below, is what’s desired. It has no impact on the “thread safety” of SQLAlchemy
components or one’s application. It also should not be used when using an ORM Session object, as the Session it-
self represents an ongoing transaction and itself handles the job of maintaining connection and transactional resources.

Enabling threadlocal is achieved as follows:

db = create_engine(’mysql://localhost/test’, strategy=’threadlocal’)

When the engine above is used in a “connectionless” style, meaning engine.execute() is called, a DBAPI
connection is retrieved from the connection pool and then associated with the current thread. Subsequent operations on
the Engine while the DBAPI connection remains checked out will make use of the same DBAPI connection object.
The connection stays allocated until all returned ResultProxy objects are closed, which occurs for a particular
ResultProxy after all pending results are fetched, or immediately for an operation which returns no rows (such as
an INSERT).

execute one statement and receive results. r1 now references a DBAPI connection resource.
r1 = db.execute("select * from table1")

execute a second statement and receive results. r2 now references the *same* resource as r1
r2 = db.execute("select * from table2")

fetch a row on r1 (assume more results are pending)
row1 = r1.fetchone()

fetch a row on r2 (same)
row2 = r2.fetchone()

close r1. the connection is still held by r2.
r1.close()

close r2. with no more references to the underlying connection resources, they
are returned to the pool.
r2.close()

The above example does not illustrate any pattern that is particularly useful, as it is not a frequent occurence that
two execute/result fetching operations “leapfrog” one another. There is a slight savings of connection pool checkout
overhead between the two operations, and an implicit sharing of the same transactional context, but since there is no
explicitly declared transaction, this association is short lived.

The real usage of “threadlocal” comes when we want several operations to occur within the scope of a shared trans-
action. The Engine now has begin(), commit() and rollback() methods which will retrieve a connection
resource from the pool and establish a new transaction, maintaining the connection against the current thread until the
transaction is committed or rolled back:

db.begin()
try:

call_operation1()
call_operation2()
db.commit()

except:
db.rollback()

call_operation1() and call_operation2() can make use of the Engine as a global variable, using the
“connectionless” execution style, and their operations will participate in the same transaction:

108 Chapter 6. Database Engines

SQLAlchemy Documentation, Release 0.5.4

def call_operation1():
engine.execute("insert into users values (?, ?)", 1, "john")

def call_operation2():
users.update(users.c.user_id==5).execute(name=’ed’)

When using threadlocal, operations that do call upon the engine.connect()method will receive a Connection
that is outside the scope of the transaction. This can be used for operations such as logging the status of an operation
regardless of transaction success:

db.begin()
conn = db.connect()
try:

conn.execute(log_table.insert(), message="Operation started")
call_operation1()
call_operation2()
db.commit()
conn.execute(log_table.insert(), message="Operation succeeded")

except:
db.rollback()
conn.execute(log_table.insert(), message="Operation failed")

finally:
conn.close()

Functions which are written to use an explicit Connection object, but wish to participate in the threadlocal
transaction, can receive their Connection object from the contextual_connect() method, which returns
a Connection that is inside the scope of the transaction:

conn = db.contextual_connect()
call_operation3(conn)
conn.close()

Calling close() on the “contextual” connection does not release the connection resources to the pool if other re-
sources are making use of it. A resource-counting mechanism is employed so that the connection is released back to
the pool only when all users of that connection, including the transaction established by engine.begin(), have
been completed.

So remember - if you’re not sure if you need to use strategy="threadlocal" or not, the answer is no ! It’s
driven by a specific programming pattern that is generally not the norm.

6.7 Configuring Logging

Python’s standard logging module is used to implement informational and debug log output with SQLAlchemy. This
allows SQLAlchemy’s logging to integrate in a standard way with other applications and libraries. The echo and
echo_pool flags that are present on create_engine(), as well as the echo_uow flag used on Session, all
interact with regular loggers.

This section assumes familiarity with the above linked logging module. All logging performed by SQLAlchemy exists
underneath the sqlalchemy namespace, as used by logging.getLogger(’sqlalchemy’). When logging
has been configured (i.e. such as via logging.basicConfig()), the general namespace of SA loggers that can
be turned on is as follows:

6.7. Configuring Logging 109

http://www.python.org/doc/lib/module-logging.html

SQLAlchemy Documentation, Release 0.5.4

• sqlalchemy.engine - controls SQL echoing. set to logging.INFO for SQL query output,
logging.DEBUG for query + result set output.

• sqlalchemy.pool - controls connection pool logging. set to logging.INFO or lower to log connection
pool checkouts/checkins.

• sqlalchemy.orm - controls logging of various ORM functions. set to logging.INFO for configurational logging as well as unit of work dumps, logging.DEBUG for extensive logging during query and flush() operations. Subcategories of sqlalchemy.orm include: –
sqlalchemy.orm.attributes - logs certain instrumented attribute operations, such as trig-
gered callables

– sqlalchemy.orm.mapper - logs Mapper configuration and operations
– sqlalchemy.orm.unitofwork - logs flush() operations, including dependency sort graphs and

other operations
– sqlalchemy.orm.strategies - logs relation loader operations (i.e. lazy and eager loads)
– sqlalchemy.orm.sync - logs synchronization of attributes from parent to child instances during

a flush()

For example, to log SQL queries as well as unit of work debugging:

import logging

logging.basicConfig()
logging.getLogger(’sqlalchemy.engine’).setLevel(logging.INFO)
logging.getLogger(’sqlalchemy.orm.unitofwork’).setLevel(logging.DEBUG)

By default, the log level is set to logging.ERROR within the entire sqlalchemy namespace so that no log opera-
tions occur, even within an application that has logging enabled otherwise.

The echo flags present as keyword arguments to create_engine() and others as well as the echo property
on Engine, when set to True, will first attempt to ensure that logging is enabled. Unfortunately, the logging
module provides no way of determining if output has already been configured (note we are referring to if a logging
configuration has been set up, not just that the logging level is set). For this reason, any echo=True flags will result
in a call to logging.basicConfig() using sys.stdout as the destination. It also sets up a default format using the
level name, timestamp, and logger name. Note that this configuration has the affect of being configured in addition to
any existing logger configurations. Therefore, when using Python logging, ensure all echo flags are set to False at
all times, to avoid getting duplicate log lines.

110 Chapter 6. Database Engines

CHAPTER

SEVEN

DATABASE META DATA

7.1 Describing Databases with MetaData

The core of SQLAlchemy’s query and object mapping operations are supported by database metadata, which is
comprised of Python objects that describe tables and other schema-level objects. These objects can be created by
explicitly naming the various components and their properties, using the Table, Column, ForeignKey, Index, and
Sequence objects imported from sqlalchemy.schema. There is also support for reflection of some entities,
which means you only specify the name of the entities and they are recreated from the database automatically.

A collection of metadata entities is stored in an object aptly named MetaData:

from sqlalchemy import *

metadata = MetaData()

To represent a Table, use the Table class:

users = Table(’users’, metadata,
Column(’user_id’, Integer, primary_key = True),
Column(’user_name’, String(16), nullable = False),
Column(’email_address’, String(60), key=’email’),
Column(’password’, String(20), nullable = False)

)

user_prefs = Table(’user_prefs’, metadata,
Column(’pref_id’, Integer, primary_key=True),
Column(’user_id’, Integer, ForeignKey("users.user_id"), nullable=False),
Column(’pref_name’, String(40), nullable=False),
Column(’pref_value’, String(100))

)

The specific datatypes for each Column, such as Integer, String, etc. are described in types, and exist within the module
sqlalchemy.types as well as the global sqlalchemy namespace.

7.1.1 Defining Foreign Keys

Foreign keys are most easily specified by the ForeignKey object within a Column object. For a composite foreign
key, i.e. a foreign key that contains multiple columns referencing multiple columns to a composite primary key, an
explicit syntax is provided which allows the correct table CREATE statements to be generated:

111

SQLAlchemy Documentation, Release 0.5.4

a table with a composite primary key
invoices = Table(’invoices’, metadata,

Column(’invoice_id’, Integer, primary_key=True),
Column(’ref_num’, Integer, primary_key=True),
Column(’description’, String(60), nullable=False)

)

a table with a composite foreign key referencing the parent table
invoice_items = Table(’invoice_items’, metadata,

Column(’item_id’, Integer, primary_key=True),
Column(’item_name’, String(60), nullable=False),
Column(’invoice_id’, Integer, nullable=False),
Column(’ref_num’, Integer, nullable=False),
ForeignKeyConstraint([’invoice_id’, ’ref_num’], [’invoices.invoice_id’, ’invoices.ref_num’])

)

Above, the invoice_items table will have ForeignKey objects automatically added to the invoice_id and
ref_num Column objects as a result of the additional ForeignKeyConstraint object.

7.1.2 Accessing Tables and Columns

The MetaData object supports some handy methods, such as getting a list of Tables in the order (or reverse) of their
dependency:

>>> for t in metadata.table_iterator(reverse=False):
... print t.name
users
user_prefs

And Table provides an interface to the table’s properties as well as that of its columns:

employees = Table(’employees’, metadata,
Column(’employee_id’, Integer, primary_key=True),
Column(’employee_name’, String(60), nullable=False, key=’name’),
Column(’employee_dept’, Integer, ForeignKey("departments.department_id"))

)

access the column "EMPLOYEE_ID":
employees.columns.employee_id

or just
employees.c.employee_id

via string
employees.c[’employee_id’]

iterate through all columns
for c in employees.c:

print c

get the table’s primary key columns
for primary_key in employees.primary_key:

112 Chapter 7. Database Meta Data

SQLAlchemy Documentation, Release 0.5.4

print primary_key

get the table’s foreign key objects:
for fkey in employees.foreign_keys:

print fkey

access the table’s MetaData:
employees.metadata

access the table’s bound Engine or Connection, if its MetaData is bound:
employees.bind

access a column’s name, type, nullable, primary key, foreign key
employees.c.employee_id.name
employees.c.employee_id.type
employees.c.employee_id.nullable
employees.c.employee_id.primary_key
employees.c.employee_dept.foreign_key

get the "key" of a column, which defaults to its name, but can
be any user-defined string:
employees.c.name.key

access a column’s table:
employees.c.employee_id.table is employees

get the table related by a foreign key
fcolumn = employees.c.employee_dept.foreign_key.column.table

7.1.3 Binding MetaData to an Engine or Connection

A MetaData object can be associated with an Engine or an individual Connection; this process is called bind-
ing. The term used to describe “an engine or a connection” is often referred to as a connectable. Binding allows the
MetaData and the elements which it contains to perform operations against the database directly, using the connec-
tion resources to which it’s bound. Common operations which are made more convenient through binding include
being able to generate SQL constructs which know how to execute themselves, creating Table objects which query
the database for their column and constraint information, and issuing CREATE or DROP statements.

To bind MetaData to an Engine, use the bind attribute:

engine = create_engine(’sqlite://’, **kwargs)

create MetaData
meta = MetaData()

bind to an engine
meta.bind = engine

Once this is done, the MetaData and its contained Table objects can access the database directly:

meta.create_all() # issue CREATE statements for all tables

describe a table called ’users’, query the database for its columns

7.1. Describing Databases with MetaData 113

SQLAlchemy Documentation, Release 0.5.4

users_table = Table(’users’, meta, autoload=True)

generate a SELECT statement and execute
result = users_table.select().execute()

Note that the feature of binding engines is completely optional. All of the operations which take advantage of
“bound” MetaData also can be given an Engine or Connection explicitly with which to perform the operation.
The equivalent “non-bound” of the above would be:

meta.create_all(engine) # issue CREATE statements for all tables

describe a table called ’users’, query the database for its columns
users_table = Table(’users’, meta, autoload=True, autoload_with=engine)

generate a SELECT statement and execute
result = engine.execute(users_table.select())

7.1.4 Reflecting Tables

A Table object can be created without specifying any of its contained attributes, using the argument
autoload=True in conjunction with the table’s name and possibly its schema (if not the databases “default”
schema). (You can also specify a list or set of column names to autoload as the kwarg include_columns, if you only
want to load a subset of the columns in the actual database.) This will issue the appropriate queries to the database in
order to locate all properties of the table required for SQLAlchemy to use it effectively, including its column names
and datatypes, foreign and primary key constraints, and in some cases its default-value generating attributes. To use
autoload=True, the table’s MetaData object need be bound to an Engine or Connection, or alternatively
the autoload_with=<some connectable> argument can be passed. Below we illustrate autoloading a table
and then iterating through the names of its columns:

>>> messages = Table(’messages’, meta, autoload=True)
>>> [c.name for c in messages.columns]
[’message_id’, ’message_name’, ’date’]

Note that if a reflected table has a foreign key referencing another table, the related Table object will be automatically
created within the MetaData object if it does not exist already. Below, suppose table shopping_cart_items
references a table shopping_carts. After reflecting, the shopping carts table is present:

>>> shopping_cart_items = Table(’shopping_cart_items’, meta, autoload=True)
>>> ’shopping_carts’ in meta.tables:
True

To get direct access to ‘shopping_carts’, simply instantiate it via the Table constructor. Table uses a special
constructor that will return the already created Table instance if it’s already present:

shopping_carts = Table(’shopping_carts’, meta)

Of course, it’s a good idea to use autoload=True with the above table regardless. This is so that if it hadn’t been
loaded already, the operation will load the table. The autoload operation only occurs for the table if it hasn’t already
been loaded; once loaded, new calls to Table will not re-issue any reflection queries.

114 Chapter 7. Database Meta Data

SQLAlchemy Documentation, Release 0.5.4

Overriding Reflected Columns

Individual columns can be overridden with explicit values when reflecting tables; this is handy for specifying custom
datatypes, constraints such as primary keys that may not be configured within the database, etc.:

>>> mytable = Table(’mytable’, meta,
... Column(’id’, Integer, primary_key=True), # override reflected ’id’ to have primary key
... Column(’mydata’, Unicode(50)), # override reflected ’mydata’ to be Unicode
... autoload=True)

Reflecting All Tables at Once

The MetaData object can also get a listing of tables and reflect the full set. This is achieved by using the reflect()
method. After calling it, all located tables are present within the MetaData object’s dictionary of tables:

meta = MetaData()
meta.reflect(bind=someengine)
users_table = meta.tables[’users’]
addresses_table = meta.tables[’addresses’]

metadata.reflect() is also a handy way to clear or drop all tables in a database:

meta = MetaData()
meta.reflect(bind=someengine)
for table in reversed(meta.sorted_tables):

someengine.execute(table.delete())

7.1.5 Specifying the Schema Name

Some databases support the concept of multiple schemas. A Table can reference this by specifying the schema
keyword argument:

financial_info = Table(’financial_info’, meta,
Column(’id’, Integer, primary_key=True),
Column(’value’, String(100), nullable=False),
schema=’remote_banks’

)

Within the MetaData collection, this table will be identified by the combination of financial_info and
remote_banks. If another table called financial_info is referenced without the remote_banks schema,
it will refer to a different Table. ForeignKey objects can reference columns in this table using the form
remote_banks.financial_info.id.

7.1.6 ON UPDATE and ON DELETE

ON UPDATE and ON DELETE clauses to a table create are specified within the ForeignKeyConstraint object,
using the onupdate and ondelete keyword arguments:

foobar = Table(’foobar’, meta,
Column(’id’, Integer, primary_key=True),
Column(’lala’, String(40)),
ForeignKeyConstraint([’lala’],[’hoho.lala’], onupdate="CASCADE", ondelete="CASCADE"))

7.1. Describing Databases with MetaData 115

SQLAlchemy Documentation, Release 0.5.4

Note that these clauses are not supported on SQLite, and require InnoDB tables when used with MySQL. They may
also not be supported on other databases.

7.1.7 Other Options

Tables may support database-specific options, such as MySQL’s engine option that can specify “MyISAM”,
“InnoDB”, and other backends for the table:

addresses = Table(’engine_email_addresses’, meta,
Column(’address_id’, Integer, primary_key = True),
Column(’remote_user_id’, Integer, ForeignKey(users.c.user_id)),
Column(’email_address’, String(20)),
mysql_engine=’InnoDB’

)

7.2 Creating and Dropping Database Tables

Creating and dropping individual tables can be done via the create() and drop() methods of Table; these
methods take an optional bind parameter which references an Engine or a Connection. If not supplied, the
Engine bound to the MetaData will be used, else an error is raised:

meta = MetaData()
meta.bind = ’sqlite:///:memory:’

employees = Table(’employees’, meta,
Column(’employee_id’, Integer, primary_key=True),
Column(’employee_name’, String(60), nullable=False, key=’name’),
Column(’employee_dept’, Integer, ForeignKey("departments.department_id"))

)
employees.create()
CREATE TABLE employees(
employee_id SERIAL NOT NULL PRIMARY KEY,
employee_name VARCHAR(60) NOT NULL,
employee_dept INTEGER REFERENCES departments(department_id)
)

drop() method:

employees.drop(bind=e)
DROP TABLE employee

The create() and drop() methods also support an optional keyword argument checkfirst which will issue
the database’s appropriate pragma statements to check if the table exists before creating or dropping:

employees.create(bind=e, checkfirst=True)
employees.drop(checkfirst=False)

Entire groups of Tables can be created and dropped directly from the MetaData object with create_all() and
drop_all(). These methods always check for the existence of each table before creating or dropping. Each method
takes an optional bind keyword argument which can reference an Engine or a Connection. If no engine is
specified, the underlying bound Engine, if any, is used:

116 Chapter 7. Database Meta Data

SQLAlchemy Documentation, Release 0.5.4

engine = create_engine(’sqlite:///:memory:’)

metadata = MetaData()

users = Table(’users’, metadata,
Column(’user_id’, Integer, primary_key = True),
Column(’user_name’, String(16), nullable = False),
Column(’email_address’, String(60), key=’email’),
Column(’password’, String(20), nullable = False)

)

user_prefs = Table(’user_prefs’, metadata,
Column(’pref_id’, Integer, primary_key=True),
Column(’user_id’, Integer, ForeignKey("users.user_id"), nullable=False),
Column(’pref_name’, String(40), nullable=False),
Column(’pref_value’, String(100))

)

metadata.create_all(bind=engine)
PRAGMA table_info(users){}
CREATE TABLE users(

user_id INTEGER NOT NULL PRIMARY KEY,
user_name VARCHAR(16) NOT NULL,
email_address VARCHAR(60),
password VARCHAR(20) NOT NULL

)
PRAGMA table_info(user_prefs){}
CREATE TABLE user_prefs(

pref_id INTEGER NOT NULL PRIMARY KEY,
user_id INTEGER NOT NULL REFERENCES users(user_id),
pref_name VARCHAR(40) NOT NULL,
pref_value VARCHAR(100)

)

7.3 Column Insert/Update Defaults

SQLAlchemy includes several constructs which provide default values provided during INSERT and UPDATE state-
ments. The defaults may be provided as Python constants, Python functions, or SQL expressions, and the SQL
expressions themselves may be “pre-executed”, executed inline within the insert/update statement itself, or can be
created as a SQL level “default” placed on the table definition itself. A “default” value by definition is only invoked if
no explicit value is passed into the INSERT or UPDATE statement.

7.3.1 Pre-Executed Python Functions

The “default” keyword argument on Column can reference a Python value or callable which is invoked at the time of
an insert:

a function which counts upwards
i = 0
def mydefault():

global i

7.3. Column Insert/Update Defaults 117

SQLAlchemy Documentation, Release 0.5.4

i += 1
return i

t = Table("mytable", meta,
function-based default
Column(’id’, Integer, primary_key=True, default=mydefault),

a scalar default
Column(’key’, String(10), default="default")

)

Similarly, the “onupdate” keyword does the same thing for update statements:

import datetime

t = Table("mytable", meta,
Column(’id’, Integer, primary_key=True),

define ’last_updated’ to be populated with datetime.now()
Column(’last_updated’, DateTime, onupdate=datetime.datetime.now),

)

7.3.2 Pre-executed and Inline SQL Expressions

The “default” and “onupdate” keywords may also be passed SQL expressions, including select statements or direct
function calls:

t = Table("mytable", meta,
Column(’id’, Integer, primary_key=True),

define ’create_date’ to default to now()
Column(’create_date’, DateTime, default=func.now()),

define ’key’ to pull its default from the ’keyvalues’ table
Column(’key’, String(20), default=keyvalues.select(keyvalues.c.type=’type1’, limit=1))

define ’last_modified’ to use the current_timestamp SQL function on update
Column(’last_modified’, DateTime, onupdate=func.current_timestamp())
)

The above SQL functions are usually executed “inline” with the INSERT or UPDATE statement being executed. In
some cases, the function is “pre-executed” and its result pre-fetched explicitly. This happens under the following
circumstances:

• the column is a primary key column

• the database dialect does not support a usable cursor.lastrowid accessor (or equivalent); this currently
includes Postgres, Oracle, and Firebird.

• the statement is a single execution, i.e. only supplies one set of parameters and doesn’t use “executemany”
behavior

• the inline=True flag is not set on the Insert() or Update() construct.

118 Chapter 7. Database Meta Data

SQLAlchemy Documentation, Release 0.5.4

For a statement execution which is not an executemany, the returned ResultProxy will contain a collection acces-
sible via result.postfetch_cols() which contains a list of all Column objects which had an inline-executed
default. Similarly, all parameters which were bound to the statement, including all Python and SQL expressions which
were pre-executed, are present in the last_inserted_params() or last_updated_params() collections
on ResultProxy. The last_inserted_ids() collection contains a list of primary key values for the row
inserted.

7.3.3 DDL-Level Defaults

A variant on a SQL expression default is the server_default, which gets placed in the CREATE TABLE state-
ment during a create() operation:

t = Table(’test’, meta,
Column(’abc’, String(20), server_default=’abc’),
Column(’created_at’, DateTime, server_default=text("sysdate"))

)

A create call for the above table will produce:

CREATE TABLE test (
abc varchar(20) default ’abc’,
created_at datetime default sysdate

)

The behavior of server_default is similar to that of a regular SQL default; if it’s placed on a primary key column
for a database which doesn’t have a way to “postfetch” the ID, and the statement is not “inlined”, the SQL expression
is pre-executed; otherwise, SQLAlchemy lets the default fire off on the database side normally.

7.3.4 Triggered Columns

Columns with values set by a database trigger or other external process may be called out with a marker:

t = Table(’test’, meta,
Column(’abc’, String(20), server_default=FetchedValue())
Column(’def’, String(20), server_onupdate=FetchedValue())

)

These markers do not emit a ‘‘default‘‘ clause when the table is created, however they do set the same internal
flags as a static server_default clause, providing hints to higher-level tools that a “post-fetch” of these rows
should be performed after an insert or update.

7.3.5 Defining Sequences

A table with a sequence looks like:

table = Table("cartitems", meta,
Column("cart_id", Integer, Sequence(’cart_id_seq’), primary_key=True),
Column("description", String(40)),
Column("createdate", DateTime())

)

7.3. Column Insert/Update Defaults 119

SQLAlchemy Documentation, Release 0.5.4

The Sequence object works a lot like the default keyword on Column, except that it only takes effect on a
database which supports sequences. When used with a database that does not support sequences, the Sequence
object has no effect; therefore it’s safe to place on a table which is used against multiple database backends. The same
rules for pre- and inline execution apply.

When the Sequence is associated with a table, CREATE and DROP statements issued for that table will also issue
CREATE/DROP for the sequence object as well, thus “bundling” the sequence object with its parent table.

The flag optional=True on Sequence will produce a sequence that is only used on databases which have
no “autoincrementing” capability. For example, Postgres supports primary key generation using the SERIAL key-
word, whereas Oracle has no such capability. Therefore, a Sequence placed on a primary key column with
optional=True will only be used with an Oracle backend but not Postgres.

A sequence can also be executed standalone, using an Engine or Connection, returning its next value in a
database-independent fashion:

seq = Sequence(’some_sequence’)
nextid = connection.execute(seq)

7.4 Defining Constraints and Indexes

7.4.1 UNIQUE Constraint

Unique constraints can be created anonymously on a single column using the unique keyword on Column. Ex-
plicitly named unique constraints and/or those with multiple columns are created via the UniqueConstraint
table-level construct.

meta = MetaData()
mytable = Table(’mytable’, meta,

per-column anonymous unique constraint
Column(’col1’, Integer, unique=True),

Column(’col2’, Integer),
Column(’col3’, Integer),

explicit/composite unique constraint. ’name’ is optional.
UniqueConstraint(’col2’, ’col3’, name=’uix_1’)
)

7.4.2 CHECK Constraint

Check constraints can be named or unnamed and can be created at the Column or Table level, using the
CheckConstraint construct. The text of the check constraint is passed directly through to the database, so there
is limited “database independent” behavior. Column level check constraints generally should only refer to the column
to which they are placed, while table level constraints can refer to any columns in the table.

Note that some databases do not actively support check constraints such as MySQL and SQLite.

meta = MetaData()
mytable = Table(’mytable’, meta,

per-column CHECK constraint

120 Chapter 7. Database Meta Data

SQLAlchemy Documentation, Release 0.5.4

Column(’col1’, Integer, CheckConstraint(’col1>5’)),

Column(’col2’, Integer),
Column(’col3’, Integer),

table level CHECK constraint. ’name’ is optional.
CheckConstraint(’col2 > col3 + 5’, name=’check1’)
)

7.4.3 Indexes

Indexes can be created anonymously (using an auto-generated name “ix_<column label>”) for a single column
using the inline index keyword on Column, which also modifies the usage of unique to apply the uniqueness to
the index itself, instead of adding a separate UNIQUE constraint. For indexes with specific names or which encompass
more than one column, use the Index construct, which requires a name.

Note that the Index construct is created externally to the table which it corresponds, using Column objects and not
strings.

meta = MetaData()
mytable = Table(’mytable’, meta,

an indexed column, with index "ix_mytable_col1"
Column(’col1’, Integer, index=True),

a uniquely indexed column with index "ix_mytable_col2"
Column(’col2’, Integer, index=True, unique=True),

Column(’col3’, Integer),
Column(’col4’, Integer),

Column(’col5’, Integer),
Column(’col6’, Integer),
)

place an index on col3, col4
Index(’idx_col34’, mytable.c.col3, mytable.c.col4)

place a unique index on col5, col6
Index(’myindex’, mytable.c.col5, mytable.c.col6, unique=True)

The Index objects will be created along with the CREATE statements for the table itself. An index can also be
created on its own independently of the table:

create a table
sometable.create()

define an index
i = Index(’someindex’, sometable.c.col5)

create the index, will use the table’s bound connectable if the ‘‘bind‘‘ keyword argument not specified
i.create()

7.4. Defining Constraints and Indexes 121

SQLAlchemy Documentation, Release 0.5.4

7.5 Adapting Tables to Alternate Metadata

A Table object created against a specific MetaData object can be re-created against a new MetaData using the
tometadata method:

create two metadata
meta1 = MetaData(’sqlite:///querytest.db’)
meta2 = MetaData()

load ’users’ from the sqlite engine
users_table = Table(’users’, meta1, autoload=True)

create the same Table object for the plain metadata
users_table_2 = users_table.tometadata(meta2)

122 Chapter 7. Database Meta Data

CHAPTER

EIGHT

API REFERENCE

8.1 sqlalchemy

8.1.1 Connections

Creating Engines

create_engine(*args, **kwargs)
Create a new Engine instance.

The standard method of specifying the engine is via URL as the first positional argument, to indicate the ap-
propriate database dialect and connection arguments, with additional keyword arguments sent as options to the
dialect and resulting Engine.

The URL is a string in the form dialect://user:password@host/dbname[?key=value..],
where dialect is a name such as mysql, oracle, postgres, etc. Alternatively, the URL can be an
instance of URL.

**kwargs takes a wide variety of options which are routed towards their appropriate components. Arguments
may be specific to the Engine, the underlying Dialect, as well as the Pool. Specific dialects also accept key-
word arguments that are unique to that dialect. Here, we describe the parameters that are common to most
create_engine() usage.

Parameters • assert_unicode=False – When set to True alongside convert_unicode=‘‘True‘‘,
asserts that incoming string bind parameters are instances of unicode, otherwise raises an
error. Only takes effect when convert_unicode==True. This flag is also available on
the String type and its descendants. New in 0.4.2.

• connect_args – a dictionary of options which will be passed directly to the DBAPI’s
connect() method as additional keyword arguments.

• convert_unicode=False – if set to True, all String/character based types will convert Unicode
values to raw byte values going into the database, and all raw byte values to Python Unicode
coming out in result sets. This is an engine-wide method to provide unicode conversion
across the board. For unicode conversion on a column-by-column level, use the Unicode
column type instead, described in types.

• creator – a callable which returns a DBAPI connection. This creation function will be
passed to the underlying connection pool and will be used to create all new database connec-
tions. Usage of this function causes connection parameters specified in the URL argument
to be bypassed.

• echo=False – if True, the Engine will log all statements as well as a repr() of their parameter
lists to the engines logger, which defaults to sys.stdout. The echo attribute of Engine can
be modified at any time to turn logging on and off. If set to the string "debug", result rows
will be printed to the standard output as well. This flag ultimately controls a Python logger;

123

SQLAlchemy Documentation, Release 0.5.4

see dbengine_logging at the end of this chapter for information on how to configure logging
directly.

• echo_pool=False – if True, the connection pool will log all checkouts/checkins to the log-
ging stream, which defaults to sys.stdout. This flag ultimately controls a Python logger; see
dbengine_logging for information on how to configure logging directly.

• encoding=’utf-8’ – the encoding to use for all Unicode translations, both by engine-wide
unicode conversion as well as the Unicode type object.

• label_length=None – optional integer value which limits the size of dynamically generated
column labels to that many characters. If less than 6, labels are generated as “_(counter)”.
If None, the value of dialect.max_identifier_length is used instead.

• module=None – used by database implementations which support multiple DBAPI modules,
this is a reference to a DBAPI2 module to be used instead of the engine’s default module.
For Postgres, the default is psycopg2. For Oracle, it’s cx_Oracle.

• pool=None – an already-constructed instance of Pool, such as a QueuePool instance. If
non-None, this pool will be used directly as the underlying connection pool for the engine,
bypassing whatever connection parameters are present in the URL argument. For informa-
tion on constructing connection pools manually, see pooling.

• poolclass=None – a Pool subclass, which will be used to create a connection pool instance
using the connection parameters given in the URL. Note this differs from pool in that you
don’t actually instantiate the pool in this case, you just indicate what type of pool to be used.

• max_overflow=10 – the number of connections to allow in connection pool “overflow”, that
is connections that can be opened above and beyond the pool_size setting, which defaults to
five. this is only used with QueuePool.

• pool_size=5 – the number of connections to keep open inside the connection pool. This
used with QueuePool as well as SingletonThreadPool.

• pool_recycle=-1 – this setting causes the pool to recycle connections after the given num-
ber of seconds has passed. It defaults to -1, or no timeout. For example, setting to 3600
means connections will be recycled after one hour. Note that MySQL in particular will
disconnect automatically if no activity is detected on a connection for eight hours
(although this is configurable with the MySQLDB connection itself and the server configu-
ration as well).

• pool_timeout=30 – number of seconds to wait before giving up on getting a connection from
the pool. This is only used with QueuePool.

• strategy=’plain’ – used to invoke alternate implementations. Currently available is the
threadlocal strategy, which is described in Using the Threadlocal Execution Strategy.

engine_from_config(configuration, prefix=’sqlalchemy.’, **kwargs)
Create a new Engine instance using a configuration dictionary.

The dictionary is typically produced from a config file where keys are prefixed, such as sqlalchemy.url,
sqlalchemy.echo, etc. The ‘prefix’ argument indicates the prefix to be searched for.

A select set of keyword arguments will be “coerced” to their expected type based on string values. In a future
release, this functionality will be expanded and include dialect-specific arguments.

class URL(drivername, username=None, password=None, host=None, port=None, database=None, query=None)
Represent the components of a URL used to connect to a database.

This object is suitable to be passed directly to a create_engine() call. The fields of the URL are parsed
from a string by the module-level make_url() function. the string format of the URL is an RFC-1738-
style string.

All initialization parameters are available as public attributes.

Parameters • drivername – the name of the database backend. This name will correspond to a
module in sqlalchemy/databases or a third party plug-in.

124 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

• username – The user name.
• password – database password.
• host – The name of the host.
• port – The port number.
• database – The database name.
• query – A dictionary of options to be passed to the dialect and/or the DBAPI upon connect.

__init__(drivername, username=None, password=None, host=None, port=None, database=None, query=None)

get_dialect()
Return the SQLAlchemy database dialect class corresponding to this URL’s driver name.

translate_connect_args(names=, [], **kw)
Translate url attributes into a dictionary of connection arguments.
Returns attributes of this url (host, database, username, password, port) as a plain dictionary. The attribute
names are used as the keys by default. Unset or false attributes are omitted from the final dictionary.

Parameters • **kw – Optional, alternate key names for url attributes.
• names – Deprecated. Same purpose as the keyword-based alternate names, but correlates

the name to the original positionally.

Connectables

class Engine(pool, dialect, url, echo=None, proxy=None)
Connects a Pool and Dialect together to provide a source of database connectivity and behavior.

__init__(pool, dialect, url, echo=None, proxy=None)

connect(**kwargs)
Return a newly allocated Connection object.

contextual_connect(close_with_result=False, **kwargs)
Return a Connection object which may be newly allocated, or may be part of some ongoing context.
This Connection is meant to be used by the various “auto-connecting” operations.

create(entity, connection=None, **kwargs)
Create a table or index within this engine’s database connection given a schema.Table object.

drop(entity, connection=None, **kwargs)
Drop a table or index within this engine’s database connection given a schema.Table object.

echo
When True, enable log output for this element.
This has the effect of setting the Python logging level for the namespace of this element’s class and object
reference. A value of boolean True indicates that the loglevel logging.INFO will be set for the logger,
whereas the string value debug will set the loglevel to logging.DEBUG.

name
String name of the Dialect in use by this Engine.

raw_connection()
Return a DB-API connection.

reflecttable(table, connection=None, include_columns=None)
Given a Table object, reflects its columns and properties from the database.

table_names(schema=None, connection=None)
Return a list of all table names available in the database.

schema: Optional, retrieve names from a non-default schema.
connection: Optional, use a specified connection. Default is the contextual_connect for this

Engine.

8.1. sqlalchemy 125

SQLAlchemy Documentation, Release 0.5.4

text(text, *args, **kwargs)
Return a sql.text() object for performing literal queries.

transaction(callable_, connection=None, *args, **kwargs)
Execute the given function within a transaction boundary.
This is a shortcut for explicitly calling begin() and commit() and optionally rollback() when exceptions are
raised. The given *args and **kwargs will be passed to the function, as well as the Connection used in the
transaction.

class Connection(engine, connection=None, close_with_result=False, _branch=False)
Provides high-level functionality for a wrapped DB-API connection.

Provides execution support for string-based SQL statements as well as ClauseElement, Compiled and Default-
Generator objects. Provides a begin method to return Transaction objects.

The Connection object is not thread-safe.

__init__(engine, connection=None, close_with_result=False, _branch=False)
Construct a new Connection.
Connection objects are typically constructed by an Engine, see the connect() and
contextual_connect() methods of Engine.

begin()
Begin a transaction and return a Transaction handle.
Repeated calls to begin on the same Connection will create a lightweight, emulated nested transaction.
Only the outermost transaction may commit. Calls to commit on inner transactions are ignored. Any
transaction in the hierarchy may rollback, however.

begin_nested()
Begin a nested transaction and return a Transaction handle.
Nested transactions require SAVEPOINT support in the underlying database. Any transaction in the hier-
archy may commit and rollback, however the outermost transaction still controls the overall commit
or rollback of the transaction of a whole.

begin_twophase(xid=None)
Begin a two-phase or XA transaction and return a Transaction handle.

xid the two phase transaction id. If not supplied, a random id will be generated.

close()
Close this Connection.

closed
return True if this connection is closed.

connect()
Returns self.
This Connectable interface method returns self, allowing Connections to be used interchangably with
Engines in most situations that require a bind.

connection
The underlying DB-API connection managed by this Connection.

contextual_connect(**kwargs)
Returns self.
This Connectable interface method returns self, allowing Connections to be used interchangably with
Engines in most situations that require a bind.

create(entity, **kwargs)
Create a Table or Index given an appropriate Schema object.

detach()
Detach the underlying DB-API connection from its connection pool.

126 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

This Connection instance will remain useable. When closed, the DB-API connection will be literally
closed and not returned to its pool. The pool will typically lazily create a new connection to replace the
detached connection.
This method can be used to insulate the rest of an application from a modified state on a connection (such as
a transaction isolation level or similar). Also see PoolListener for a mechanism to modify connection
state when connections leave and return to their connection pool.

dialect
Dialect used by this Connection.

drop(entity, **kwargs)
Drop a Table or Index given an appropriate Schema object.

execute(object, *multiparams, **params)
Executes and returns a ResultProxy.

in_transaction()
Return True if a transaction is in progress.

info
A collection of per-DB-API connection instance properties.

invalidate(exception=None)
Invalidate the underlying DBAPI connection associated with this Connection.
The underlying DB-API connection is literally closed (if possible), and is discarded. Its source connection
pool will typically lazily create a new connection to replace it.
Upon the next usage, this Connection will attempt to reconnect to the pool with a new connection.
Transactions in progress remain in an “opened” state (even though the actual transaction is gone); these
must be explicitly rolled back before a reconnect on this Connection can proceed. This is to prevent
applications from accidentally continuing their transactional operations in a non-transactional state.

invalidated
return True if this connection was invalidated.

reflecttable(table, include_columns=None)
Reflect the columns in the given string table name from the database.

scalar(object, *multiparams, **params)
Executes and returns the first column of the first row.
The underlying result/cursor is closed after execution.

should_close_with_result
Indicates if this Connection should be closed when a corresponding ResultProxy is closed; this is essen-
tially an auto-release mode.

class Connectable()
Interface for an object which supports execution of SQL constructs.

The two implementations of Connectable are Connection and Engine.

contextual_connect()
Return a Connection object which may be part of an ongoing context.

create(entity, **kwargs)
Create a table or index given an appropriate schema object.

drop(entity, **kwargs)
Drop a table or index given an appropriate schema object.

execute(object, *multiparams, **params)

8.1. sqlalchemy 127

SQLAlchemy Documentation, Release 0.5.4

Result Objects

class ResultProxy(context)
Wraps a DB-API cursor object to provide easier access to row columns.

Individual columns may be accessed by their integer position, case-insensitive column name, or by
schema.Column object. e.g.:

row = fetchone()

col1 = row[0] # access via integer position

col2 = row[’col2’] # access via name

col3 = row[mytable.c.mycol] # access via Column object.

ResultProxy also contains a map of TypeEngine objects and will invoke the appropriate
result_processor() method before returning columns, as well as the ExecutionContext corre-
sponding to the statement execution. It provides several methods for which to obtain information from the
underlying ExecutionContext.

__init__(context)
ResultProxy objects are constructed via the execute() method on SQLEngine.

close()
Close this ResultProxy.
Closes the underlying DBAPI cursor corresponding to the execution.
If this ResultProxy was generated from an implicit execution, the underlying Connection will also be
closed (returns the underlying DBAPI connection to the connection pool.)
This method is called automatically when:

•all result rows are exhausted using the fetchXXX() methods.
•cursor.description is None.

fetchall()
Fetch all rows, just like DB-API cursor.fetchall().

fetchmany(size=None)
Fetch many rows, just like DB-API cursor.fetchmany(size=cursor.arraysize).

fetchone()
Fetch one row, just like DB-API cursor.fetchone().

last_inserted_ids()
Return last_inserted_ids() from the underlying ExecutionContext.
See ExecutionContext for details.

last_inserted_params()
Return last_inserted_params() from the underlying ExecutionContext.
See ExecutionContext for details.

last_updated_params()
Return last_updated_params() from the underlying ExecutionContext.
See ExecutionContext for details.

lastrow_has_defaults()
Return lastrow_has_defaults() from the underlying ExecutionContext.
See ExecutionContext for details.

postfetch_cols()
Return postfetch_cols() from the underlying ExecutionContext.
See ExecutionContext for details.

128 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

scalar()
Fetch the first column of the first row, and close the result set.

supports_sane_multi_rowcount()
Return supports_sane_multi_rowcount from the dialect.

supports_sane_rowcount()
Return supports_sane_rowcount from the dialect.

class RowProxy(parent, row)
Proxy a single cursor row for a parent ResultProxy.

Mostly follows “ordered dictionary” behavior, mapping result values to the string-based column name, the
integer position of the result in the row, as well as Column instances which can be mapped to the original
Columns that produced this result set (for results that correspond to constructed SQL expressions).

__init__(parent, row)
RowProxy objects are constructed by ResultProxy objects.

close()
Close the parent ResultProxy.

has_key(key)
Return True if this RowProxy contains the given key.

items()
Return a list of tuples, each tuple containing a key/value pair.

keys()
Return the list of keys as strings represented by this RowProxy.

values()
Return the values represented by this RowProxy as a list.

Transactions

class Transaction(connection, parent)
Represent a Transaction in progress.

The Transaction object is not threadsafe.

__init__(connection, parent)

close()
Close this transaction.
If this transaction is the base transaction in a begin/commit nesting, the transaction will rollback(). Other-
wise, the method returns.
This is used to cancel a Transaction without affecting the scope of an enclosing transaction.

commit()

rollback()

Internals

connection_memoize(key)
Decorator, memoize a function in a connection.info stash.

Only applicable to functions which take no arguments other than a connection. The memo will be stored in
connection.info[key].

class Dialect()
Define the behavior of a specific database and DB-API combination.

8.1. sqlalchemy 129

SQLAlchemy Documentation, Release 0.5.4

Any aspect of metadata definition, SQL query generation, execution, result-set handling, or anything else which
varies between databases is defined under the general category of the Dialect. The Dialect acts as a factory for
other database-specific object implementations including ExecutionContext, Compiled, DefaultGenerator, and
TypeEngine.

All Dialects implement the following attributes:

name identifying name for the dialect (i.e. ‘sqlite’)

positional True if the paramstyle for this Dialect is positional.

paramstyle the paramstyle to be used (some DB-APIs support multiple paramstyles).

convert_unicode True if Unicode conversion should be applied to all str types.

encoding type of encoding to use for unicode, usually defaults to ‘utf-8’.

schemagenerator a SchemaVisitor class which generates schemas.

schemadropper a SchemaVisitor class which drops schemas.

defaultrunner a SchemaVisitor class which executes defaults.

statement_compiler a Compiled class used to compile SQL statements

preparer a IdentifierPreparer class used to quote identifiers.

supports_alter True if the database supports ALTER TABLE.

max_identifier_length The maximum length of identifier names.

supports_unicode_statements Indicate whether the DB-API can receive SQL statements as Python unicode
strings

supports_sane_rowcount Indicate whether the dialect properly implements rowcount for UPDATE and
DELETE statements.

supports_sane_multi_rowcount Indicate whether the dialect properly implements rowcount for UPDATE and
DELETE statements when executed via executemany.

preexecute_pk_sequences Indicate if the dialect should pre-execute sequences on primary key columns during
an INSERT, if it’s desired that the new row’s primary key be available after execution.

supports_pk_autoincrement Indicates if the dialect should allow the database to passively assign a primary
key column value.

dbapi_type_map A mapping of DB-API type objects present in this Dialect’s DB-API implmentation mapped
to TypeEngine implementations used by the dialect.
This is used to apply types to result sets based on the DB-API types present in cursor.description; it only
takes effect for result sets against textual statements where no explicit typemap was present.

supports_default_values Indicates if the construct INSERT INTO tablename DEFAULT VALUES is
supported

description_encoding type of encoding to use for unicode when working with metadata descriptions. If set to
None no encoding will be done. This usually defaults to ‘utf-8’.

create_connect_args(url)
Build DB-API compatible connection arguments.
Given a URL object, returns a tuple consisting of a *args/**kwargs suitable to send directly to the dbapi’s
connect function.

create_xid()
Create a two-phase transaction ID.
This id will be passed to do_begin_twophase(), do_rollback_twophase(), do_commit_twophase(). Its for-
mat is unspecified.

do_begin(connection)
Provide an implementation of connection.begin(), given a DB-API connection.

130 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

do_begin_twophase(connection, xid)
Begin a two phase transaction on the given connection.

do_commit(connection)
Provide an implementation of connection.commit(), given a DB-API connection.

do_commit_twophase(connection, xid, is_prepared=True, recover=False)
Commit a two phase transaction on the given connection.

do_execute(cursor, statement, parameters, context=None)
Provide an implementation of cursor.execute(statement, parameters).

do_executemany(cursor, statement, parameters, context=None)
Provide an implementation of cursor.executemany(statement, parameters).

do_prepare_twophase(connection, xid)
Prepare a two phase transaction on the given connection.

do_recover_twophase(connection)
Recover list of uncommited prepared two phase transaction identifiers on the given connection.

do_release_savepoint(connection, name)
Release the named savepoint on a SQL Alchemy connection.

do_rollback(connection)
Provide an implementation of connection.rollback(), given a DB-API connection.

do_rollback_to_savepoint(connection, name)
Rollback a SQL Alchemy connection to the named savepoint.

do_rollback_twophase(connection, xid, is_prepared=True, recover=False)
Rollback a two phase transaction on the given connection.

do_savepoint(connection, name)
Create a savepoint with the given name on a SQLAlchemy connection.

get_default_schema_name(connection)
Return the string name of the currently selected schema given a Connection.

has_sequence(connection, sequence_name, schema=None)
Check the existence of a particular sequence in the database.
Given a Connection object and a string sequence_name, return True if the given sequence exists in the
database, False otherwise.

has_table(connection, table_name, schema=None)
Check the existence of a particular table in the database.
Given a Connection object and a string table_name, return True if the given table (possibly within the
specified schema) exists in the database, False otherwise.

is_disconnect(e)
Return True if the given DB-API error indicates an invalid connection

reflecttable(connection, table, include_columns=None)
Load table description from the database.
Given a Connection and a Table object, reflect its columns and properties from the database. If
include_columns (a list or set) is specified, limit the autoload to the given column names.

server_version_info(connection)
Return a tuple of the database’s version number.

type_descriptor(typeobj)
Transform a generic type to a database-specific type.
Transforms the given TypeEngine instance from generic to database-specific.
Subclasses will usually use the adapt_type() method in the types module to make this job easy.

8.1. sqlalchemy 131

SQLAlchemy Documentation, Release 0.5.4

class DefaultDialect(convert_unicode=False, assert_unicode=False, encoding=’utf-8’, paramstyle=None,
dbapi=None, label_length=None, **kwargs)

Bases: sqlalchemy.engine.base.Dialect

Default implementation of Dialect

__init__(convert_unicode=False, assert_unicode=False, encoding=’utf-8’, paramstyle=None, dbapi=None, la-
bel_length=None, **kwargs)

create_xid()
Create a random two-phase transaction ID.
This id will be passed to do_begin_twophase(), do_rollback_twophase(), do_commit_twophase(). Its for-
mat is unspecified.

defaultrunner
alias of DefaultRunner

do_begin(connection)
Implementations might want to put logic here for turning autocommit on/off, etc.

do_commit(connection)
Implementations might want to put logic here for turning autocommit on/off, etc.

do_rollback(connection)
Implementations might want to put logic here for turning autocommit on/off, etc.

preparer
alias of IdentifierPreparer

statement_compiler
alias of DefaultCompiler

type_descriptor(typeobj)
Provide a database-specific TypeEngine object, given the generic object which comes from the types
module.
Subclasses will usually use the adapt_type() method in the types module to make this job easy.

class DefaultExecutionContext(dialect, connection, compiled=None, statement=None, parameters=None)
Bases: sqlalchemy.engine.base.ExecutionContext

__init__(dialect, connection, compiled=None, statement=None, parameters=None)

set_input_sizes()
Given a cursor and ClauseParameters, call the appropriate style of setinputsizes() on the cursor,
using DB-API types from the bind parameter’s TypeEngine objects.

class DefaultRunner(context)
Bases: sqlalchemy.schema.SchemaVisitor

A visitor which accepts ColumnDefault objects, produces the dialect-specific SQL corresponding to their exe-
cution, and executes the SQL, returning the result value.

DefaultRunners are used internally by Engines and Dialects. Specific database modules should provide their
own subclasses of DefaultRunner to allow database-specific behavior.

__init__(context)

execute_string(stmt, params=None)
execute a string statement, using the raw cursor, and return a scalar result.

class ExecutionContext()
A messenger object for a Dialect that corresponds to a single execution.

ExecutionContext should have these datamembers:

connection Connection object which can be freely used by default value generators to execute SQL. This
Connection should reference the same underlying connection/transactional resources of root_connection.

132 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

root_connection Connection object which is the source of this ExecutionContext. This Connection may have
close_with_result=True set, in which case it can only be used once.

dialect dialect which created this ExecutionContext.

cursor DB-API cursor procured from the connection,

compiled if passed to constructor, sqlalchemy.engine.base.Compiled object being executed,

statement string version of the statement to be executed. Is either passed to the constructor, or must be created
from the sql.Compiled object by the time pre_exec() has completed.

parameters bind parameters passed to the execute() method. For compiled statements, this is a dictionary or
list of dictionaries. For textual statements, it should be in a format suitable for the dialect’s paramstyle (i.e.
dict or list of dicts for non positional, list or list of lists/tuples for positional).

isinsert True if the statement is an INSERT.

isupdate True if the statement is an UPDATE.

should_autocommit True if the statement is a “committable” statement

postfetch_cols a list of Column objects for which a server-side default or inline SQL expression value was fired
off. applies to inserts and updates.

create_cursor()
Return a new cursor generated from this ExecutionContext’s connection.
Some dialects may wish to change the behavior of connection.cursor(), such as postgres which may return
a PG “server side” cursor.

handle_dbapi_exception(e)
Receive a DBAPI exception which occured upon execute, result fetch, etc.

last_inserted_ids()
Return the list of the primary key values for the last insert statement executed.
This does not apply to straight textual clauses; only to sql.Insert objects compiled against a
schema.Table object. The order of items in the list is the same as that of the Table’s ‘primary_key’
attribute.

last_inserted_params()
Return a dictionary of the full parameter dictionary for the last compiled INSERT statement.
Includes any ColumnDefaults or Sequences that were pre-executed.

last_updated_params()
Return a dictionary of the full parameter dictionary for the last compiled UPDATE statement.
Includes any ColumnDefaults that were pre-executed.

lastrow_has_defaults()
Return True if the last INSERT or UPDATE row contained inlined or database-side defaults.

post_exec()
Called after the execution of a compiled statement.
If a compiled statement was passed to this ExecutionContext, the last_insert_ids, last_inserted_params,
etc. datamembers should be available after this method completes.

pre_exec()
Called before an execution of a compiled statement.
If a compiled statement was passed to this ExecutionContext, the statement and parameters datamembers
must be initialized after this statement is complete.

result()
Return a result object corresponding to this ExecutionContext.
Returns a ResultProxy.

should_autocommit_text(statement)
Parse the given textual statement and return True if it refers to a “committable” statement

8.1. sqlalchemy 133

SQLAlchemy Documentation, Release 0.5.4

class SchemaIterator(connection)
Bases: sqlalchemy.schema.SchemaVisitor

A visitor that can gather text into a buffer and execute the contents of the buffer.

__init__(connection)
Construct a new SchemaIterator.

append(s)
Append content to the SchemaIterator’s query buffer.

execute()
Execute the contents of the SchemaIterator’s buffer.

8.1.2 Connection Pooling

SQLAlchemy ships with a connection pooling framework that integrates with the Engine system and can also be used
on its own to manage plain DB-API connections.

At the base of any database helper library is a system for efficiently acquiring connections to the database. Since the
establishment of a database connection is typically a somewhat expensive operation, an application needs a way to
get at database connections repeatedly without incurring the full overhead each time. Particularly for server-side web
applications, a connection pool is the standard way to maintain a group or “pool” of active database connections which
are reused from request to request in a single server process.

Connection Pool Configuration

The Engine returned by the create_engine() function in most cases has a QueuePool integrated, pre-
configured with reasonable pooling defaults. If you’re reading this section to simply enable pooling- congratulations!
You’re already done.

The most common QueuePool tuning parameters can be passed directly to create_engine() as keyword argu-
ments: pool_size, max_overflow, pool_recycle and pool_timeout. For example:

engine = create_engine(’postgres://me@localhost/mydb’,
pool_size=20, max_overflow=0)

In the case of SQLite, a SingletonThreadPool is provided instead, to provide compatibility with SQLite’s
restricted threading model.

Custom Pool Construction

Pool instances may be created directly for your own use or to supply to sqlalchemy.create_engine() via
the pool= keyword argument.

Constructing your own pool requires supplying a callable function the Pool can use to create new connections. The
function will be called with no arguments.

Through this method, custom connection schemes can be made, such as a using connections from another library’s
pool, or making a new connection that automatically executes some initialization commands:

import sqlalchemy.pool as pool
import psycopg2

def getconn():
c = psycopg2.connect(username=’ed’, host=’127.0.0.1’, dbname=’test’)

134 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

execute an initialization function on the connection before returning
c.cursor.execute("setup_encodings()")
return c

p = pool.QueuePool(getconn, max_overflow=10, pool_size=5)

Or with SingletonThreadPool:

import sqlalchemy.pool as pool
import sqlite

p = pool.SingletonThreadPool(lambda: sqlite.connect(filename=’myfile.db’))

Builtin Pool Implementations

class AssertionPool(creator, **params)
Bases: sqlalchemy.pool.Pool

A Pool that allows at most one checked out connection at any given time.

This will raise an exception if more than one connection is checked out at a time. Useful for debugging code
that is using more connections than desired.

__init__(creator, **params)
Construct an AssertionPool.

Parameters • creator – a callable function that returns a DB-API connection object. The func-
tion will be called with parameters.

• recycle – If set to non -1, number of seconds between connection recycling, which means
upon checkout, if this timeout is surpassed the connection will be closed and replaced with
a newly opened connection. Defaults to -1.

• echo – If True, connections being pulled and retrieved from the pool will be logged to
the standard output, as well as pool sizing information. Echoing can also be achieved by
enabling logging for the “sqlalchemy.pool” namespace. Defaults to False.

• use_threadlocal – If set to True, repeated calls to connect()within the same application
thread will be guaranteed to return the same connection object, if one has already been re-
trieved from the pool and has not been returned yet. Offers a slight performance advantage
at the cost of individual transactions by default. The unique_connection() method
is provided to bypass the threadlocal behavior installed into connect().

• reset_on_return – If true, reset the database state of connections returned to the pool. This
is typically a ROLLBACK to release locks and transaction resources. Disable at your own
peril. Defaults to True.

• listeners – A list of PoolListener-like objects or dictionaries of callables that receive
events when DB-API connections are created, checked out and checked in to the pool.

class NullPool(creator, recycle=-1, echo=None, use_threadlocal=False, reset_on_return=True, listeners=None)
Bases: sqlalchemy.pool.Pool

A Pool which does not pool connections.

Instead it literally opens and closes the underlying DB-API connection per each connection open/close.

Reconnect-related functions such as recycle and connection invalidation are not supported by this Pool im-
plementation, since no connections are held persistently.

class Pool(creator, recycle=-1, echo=None, use_threadlocal=False, reset_on_return=True, listeners=None)
Bases: object

Abstract base class for connection pools.

8.1. sqlalchemy 135

SQLAlchemy Documentation, Release 0.5.4

__init__(creator, recycle=-1, echo=None, use_threadlocal=False, reset_on_return=True, listeners=None)
Construct a Pool.

Parameters • creator – a callable function that returns a DB-API connection object. The func-
tion will be called with parameters.

• recycle – If set to non -1, number of seconds between connection recycling, which means
upon checkout, if this timeout is surpassed the connection will be closed and replaced with
a newly opened connection. Defaults to -1.

• echo – If True, connections being pulled and retrieved from the pool will be logged to
the standard output, as well as pool sizing information. Echoing can also be achieved by
enabling logging for the “sqlalchemy.pool” namespace. Defaults to False.

• use_threadlocal – If set to True, repeated calls to connect()within the same application
thread will be guaranteed to return the same connection object, if one has already been re-
trieved from the pool and has not been returned yet. Offers a slight performance advantage
at the cost of individual transactions by default. The unique_connection() method
is provided to bypass the threadlocal behavior installed into connect().

• reset_on_return – If true, reset the database state of connections returned to the pool. This
is typically a ROLLBACK to release locks and transaction resources. Disable at your own
peril. Defaults to True.

• listeners – A list of PoolListener-like objects or dictionaries of callables that receive
events when DB-API connections are created, checked out and checked in to the pool.

add_listener(listener)
Add a PoolListener-like object to this pool.
listener may be an object that implements some or all of PoolListener, or a dictionary of callables
containing implementations of some or all of the named methods in PoolListener.

connect()

create_connection()

dispose()
Dispose of this pool.
This method leaves the possibility of checked-out connections remaining open, It is advised to not reuse
the pool once dispose() is called, and to instead use a new pool constructed by the recreate() method.

do_get()

do_return_conn(conn)

get()

log(msg)

recreate()
Return a new instance with identical creation arguments.

return_conn(record)

status()

unique_connection()

class QueuePool(creator, pool_size=5, max_overflow=10, timeout=30, **params)
Bases: sqlalchemy.pool.Pool

A Pool that imposes a limit on the number of open connections.

__init__(creator, pool_size=5, max_overflow=10, timeout=30, **params)
Construct a QueuePool.

Parameters • creator – a callable function that returns a DB-API connection object. The func-
tion will be called with parameters.

136 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

• pool_size – The size of the pool to be maintained. This is the largest number of connections
that will be kept persistently in the pool. Note that the pool begins with no connections;
once this number of connections is requested, that number of connections will remain.
Defaults to 5.

• max_overflow – The maximum overflow size of the pool. When the number of checked-
out connections reaches the size set in pool_size, additional connections will be returned
up to this limit. When those additional connections are returned to the pool, they are
disconnected and discarded. It follows then that the total number of simultaneous connec-
tions the pool will allow is pool_size + max_overflow, and the total number of “sleeping”
connections the pool will allow is pool_size. max_overflow can be set to -1 to indicate
no overflow limit; no limit will be placed on the total number of concurrent connections.
Defaults to 10.

• timeout – The number of seconds to wait before giving up on returning a connection.
Defaults to 30.

• recycle – If set to non -1, number of seconds between connection recycling, which means
upon checkout, if this timeout is surpassed the connection will be closed and replaced with
a newly opened connection. Defaults to -1.

• echo – If True, connections being pulled and retrieved from the pool will be logged to
the standard output, as well as pool sizing information. Echoing can also be achieved by
enabling logging for the “sqlalchemy.pool” namespace. Defaults to False.

• use_threadlocal – If set to True, repeated calls to connect()within the same application
thread will be guaranteed to return the same connection object, if one has already been re-
trieved from the pool and has not been returned yet. Offers a slight performance advantage
at the cost of individual transactions by default. The unique_connection() method
is provided to bypass the threadlocal behavior installed into connect().

• reset_on_return – If true, reset the database state of connections returned to the pool. This
is typically a ROLLBACK to release locks and transaction resources. Disable at your own
peril. Defaults to True.

• listeners – A list of PoolListener-like objects or dictionaries of callables that receive
events when DB-API connections are created, checked out and checked in to the pool.

class SingletonThreadPool(creator, pool_size=5, **params)
Bases: sqlalchemy.pool.Pool

A Pool that maintains one connection per thread.

Maintains one connection per each thread, never moving a connection to a thread other than the one which it
was created in.

This is used for SQLite, which both does not handle multithreading by default, and also requires a singleton
connection if a :memory: database is being used.

Options are the same as those of Pool, as well as:

Parameter pool_size – The number of threads in which to maintain connections at once. Defaults
to five.

__init__(creator, pool_size=5, **params)

dispose()
Dispose of this pool.

class StaticPool(creator, **params)
Bases: sqlalchemy.pool.Pool

A Pool of exactly one connection, used for all requests.

Reconnect-related functions such as recycle and connection invalidation (which is also used to support auto-
reconnect) are not currently supported by this Pool implementation but may be implemented in a future release.

8.1. sqlalchemy 137

SQLAlchemy Documentation, Release 0.5.4

__init__(creator, **params)
Construct a StaticPool.

Parameters • creator – a callable function that returns a DB-API connection object. The func-
tion will be called with parameters.

• echo – If True, connections being pulled and retrieved from the pool will be logged to
the standard output, as well as pool sizing information. Echoing can also be achieved by
enabling logging for the “sqlalchemy.pool” namespace. Defaults to False.

• reset_on_return – If true, reset the database state of connections returned to the pool. This
is typically a ROLLBACK to release locks and transaction resources. Disable at your own
peril. Defaults to True.

• listeners – A list of PoolListener-like objects or dictionaries of callables that receive
events when DB-API connections are created, checked out and checked in to the pool.

Pooling Plain DB-API Connections

Any PEP 249 DB-API module can be “proxied” through the connection pool transparently. Usage of the DB-API is
exactly as before, except the connect() method will consult the pool. Below we illustrate this with psycopg2:

import sqlalchemy.pool as pool
import psycopg2 as psycopg

psycopg = pool.manage(psycopg)

then connect normally
connection = psycopg.connect(database=’test’, username=’scott’,

password=’tiger’)

This produces a _DBProxy object which supports the same connect() function as the original DB-API module.
Upon connection, a connection proxy object is returned, which delegates its calls to a real DB-API connection object.
This connection object is stored persistently within a connection pool (an instance of Pool) that corresponds to the
exact connection arguments sent to the connect() function.

The connection proxy supports all of the methods on the original connection object, most of which are proxied via
__getattr__(). The close()method will return the connection to the pool, and the cursor()method will re-
turn a proxied cursor object. Both the connection proxy and the cursor proxy will also return the underlying connection
to the pool after they have both been garbage collected, which is detected via the __del__() method.

Additionally, when connections are returned to the pool, a rollback() is issued on the connection unconditionally.
This is to release any locks still held by the connection that may have resulted from normal activity.

By default, the connect() method will return the same connection that is already checked out in the current thread.
This allows a particular connection to be used in a given thread without needing to pass it around between functions.
To disable this behavior, specify use_threadlocal=False to the manage() function.

manage(module, **params)
Return a proxy for a DB-API module that automatically pools connections.

Given a DB-API 2.0 module and pool management parameters, returns a proxy for the module that will auto-
matically pool connections, creating new connection pools for each distinct set of connection arguments sent to
the decorated module’s connect() function.

Parameters • module – a DB-API 2.0 database module
• poolclass – the class used by the pool module to provide pooling. Defaults to QueuePool.
• **params – will be passed through to poolclass

138 Chapter 8. API Reference

http://www.python.org/dev/peps/pep-0249

SQLAlchemy Documentation, Release 0.5.4

clear_managers()
Remove all current DB-API 2.0 managers.

All pools and connections are disposed.

8.1.3 SQL Statements and Expressions

Functions

The expression package uses functions to construct SQL expressions. The return value of each function is an object
instance which is a subclass of ClauseElement.

alias(selectable, alias=None)
Return an Alias object.

An Alias represents any FromClause with an alternate name assigned within SQL, typically using the AS
clause when generated, e.g. SELECT * FROM table AS aliasname.

Similar functionality is available via the alias() method available on all FromClause subclasses.

selectable any FromClause subclass, such as a table, select statement, etc..
alias string name to be assigned as the alias. If None, a random name will be generated.

and_(*clauses)
Join a list of clauses together using the AND operator.

The & operator is also overloaded on all _CompareMixin subclasses to produce the same result.

asc(column)
Return an ascending ORDER BY clause element.

e.g.:

order_by = [asc(table1.mycol)]

between(ctest, cleft, cright)
Return a BETWEEN predicate clause.

Equivalent of SQL clausetest BETWEEN clauseleft AND clauseright.

The between() method on all _CompareMixin subclasses provides similar functionality.

bindparam(key, value=None, shortname=None, type_=None, unique=False)
Create a bind parameter clause with the given key.

value a default value for this bind parameter. a bindparam with a value is called a value-based
bindparam.

type_ a sqlalchemy.types.TypeEngine object indicating the type of this bind param, will invoke type-specific
bind parameter processing

shortname deprecated.

unique if True, bind params sharing the same name will have their underlying key modified to a uniquely
generated name. mostly useful with value-based bind params.

case(whens, value=None, else_=None)
Produce a CASE statement.

whens A sequence of pairs, or alternatively a dict, to be translated into “WHEN / THEN” clauses.

value Optional for simple case statements, produces a column expression as in “CASE <expr> WHEN ...”

else_ Optional as well, for case defaults produces the “ELSE” portion of the “CASE” statement.

8.1. sqlalchemy 139

SQLAlchemy Documentation, Release 0.5.4

The expressions used for THEN and ELSE, when specified as strings, will be interpreted as bound values. To
specify textual SQL expressions for these, use the text(<string>) construct.

The expressions used for the WHEN criterion may only be literal strings when “value” is present, i.e. CASE
table.somecol WHEN “x” THEN “y”. Otherwise, literal strings are not accepted in this position, and either the
text(<string>) or literal(<string>) constructs must be used to interpret raw string values.

Usage examples:

case([(orderline.c.qty > 100, item.c.specialprice),
(orderline.c.qty > 10, item.c.bulkprice)

], else_=item.c.regularprice)
case(value=emp.c.type, whens={

’engineer’: emp.c.salary * 1.1,
’manager’: emp.c.salary * 3,

})

cast(clause, totype, **kwargs)
Return a CAST function.

Equivalent of SQL CAST(clause AS totype).

Use with a TypeEngine subclass, i.e:

cast(table.c.unit_price * table.c.qty, Numeric(10,4))

or:

cast(table.c.timestamp, DATE)

column(text, type_=None)
Return a textual column clause, as would be in the columns clause of a SELECT statement.

The object returned is an instance of ColumnClause, which represents the “syntactical” portion of the
schema-level Column object.

text the name of the column. Quoting rules will be applied to the clause like any other column name. For
textual column constructs that are not to be quoted, use the literal_column() function.

type_ an optional TypeEngine object which will provide result-set translation for this column.

collate(expression, collation)
Return the clause expression COLLATE collation.

delete(table, whereclause=None, **kwargs)
Return a Delete clause element.

Similar functionality is available via the delete() method on Table.

Parameters • table – The table to be updated.
• whereclause – A ClauseElement describing the WHERE condition of the UPDATE state-

ment. Note that the where() generative method may be used instead.

desc(column)
Return a descending ORDER BY clause element.

e.g.:

order_by = [desc(table1.mycol)]

140 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

distinct(expr)
Return a DISTINCT clause.

except_(*selects, **kwargs)
Return an EXCEPT of multiple selectables.

The returned object is an instance of CompoundSelect.

*selects a list of Select instances.

**kwargs available keyword arguments are the same as those of select().

except_all(*selects, **kwargs)
Return an EXCEPT ALL of multiple selectables.

The returned object is an instance of CompoundSelect.

*selects a list of Select instances.

**kwargs available keyword arguments are the same as those of select().

exists(*args, **kwargs)
Return an EXISTS clause as applied to a Select object.

Calling styles are of the following forms:

use on an existing select()
s = select([table.c.col1]).where(table.c.col2==5)
s = exists(s)

construct a select() at once
exists([’*’], **select_arguments).where(criterion)

columns argument is optional, generates "EXISTS (SELECT *)"
by default.
exists().where(table.c.col2==5)

extract(field, expr)
Return the clause extract(field FROM expr).

func
Generate SQL function expressions.

func is a special object instance which generates SQL functions based on name-based attributes, e.g.:

>>> print func.count(1)
count(:param_1)

Any name can be given to func. If the function name is unknown to SQLAlchemy, it will be rendered exactly
as is. For common SQL functions which SQLAlchemy is aware of, the name may be interpreted as a generic
function which will be compiled appropriately to the target database:

>>> print func.current_timestamp()
CURRENT_TIMESTAMP

To call functions which are present in dot-separated packages, specify them in the same manner:

>>> print func.stats.yield_curve(5, 10)
stats.yield_curve(:yield_curve_1, :yield_curve_2)

8.1. sqlalchemy 141

SQLAlchemy Documentation, Release 0.5.4

SQLAlchemy can be made aware of the return type of functions to enable type-specific lexical and result-based
behavior. For example, to ensure that a string-based function returns a Unicode value and is similarly treated as
a string in expressions, specify Unicode as the type:

>>> print func.my_string(u’hi’, type_=Unicode) + ’ ’ + \
... func.my_string(u’there’, type_=Unicode)
my_string(:my_string_1) || :my_string_2 || my_string(:my_string_3)

Functions which are interpreted as “generic” functions know how to calculate their return type automatically.
For a listing of known generic functions, see Generic Functions.

insert(table, values=None, inline=False, **kwargs)
Return an Insert clause element.

Similar functionality is available via the insert() method on Table.

Parameters • table – The table to be inserted into.
• values – A dictionary which specifies the column specifications of the INSERT, and is

optional. If left as None, the column specifications are determined from the bind parameters
used during the compile phase of the INSERT statement. If the bind parameters also are
None during the compile phase, then the column specifications will be generated from the
full list of table columns. Note that the values() generative method may also be used for
this.

• prefixes – A list of modifier keywords to be inserted between INSERT and INTO. Alterna-
tively, the prefix_with() generative method may be used.

• inline – if True, SQL defaults will be compiled ‘inline’ into the statement and not pre-
executed.

If both values and compile-time bind parameters are present, the compile-time bind parameters override the
information specified within values on a per-key basis.

The keys within values can be either Column objects or their string identifiers. Each key may reference one of:

•a literal data value (i.e. string, number, etc.);

•a Column object;

•a SELECT statement.

If a SELECT statement is specified which references this INSERT statement’s table, the statement will be
correlated against the INSERT statement.

intersect(*selects, **kwargs)
Return an INTERSECT of multiple selectables.

The returned object is an instance of CompoundSelect.

*selects a list of Select instances.

**kwargs available keyword arguments are the same as those of select().

intersect_all(*selects, **kwargs)
Return an INTERSECT ALL of multiple selectables.

The returned object is an instance of CompoundSelect.

*selects a list of Select instances.

**kwargs available keyword arguments are the same as those of select().

142 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

join(left, right, onclause=None, isouter=False)
Return a JOIN clause element (regular inner join).

The returned object is an instance of Join.

Similar functionality is also available via the join() method on any FromClause.

left The left side of the join.

right The right side of the join.

onclause Optional criterion for the ON clause, is derived from foreign key relationships established between
left and right otherwise.

To chain joins together, use the join() or outerjoin() methods on the resulting Join object.

label(name, obj)
Return a _Label object for the given ColumnElement.

A label changes the name of an element in the columns clause of a SELECT statement, typically via the AS SQL
keyword.

This functionality is more conveniently available via the label() method on ColumnElement.

name label name

obj a ColumnElement.

literal(value, type_=None)
Return a literal clause, bound to a bind parameter.

Literal clauses are created automatically when non- ClauseElement objects (such as strings, ints, dates,
etc.) are used in a comparison operation with a _CompareMixin subclass, such as a Column object. Use
this function to force the generation of a literal clause, which will be created as a _BindParamClause with
a bound value.

value the value to be bound. Can be any Python object supported by the underlying DB-API, or is translatable
via the given type argument.

type_ an optional TypeEngine which will provide bind-parameter translation for this literal.

literal_column(text, type_=None)
Return a textual column expression, as would be in the columns clause of a SELECT statement.

The object returned supports further expressions in the same way as any other column object, including com-
parison, math and string operations. The type_ parameter is important to determine proper expression behavior
(such as, ‘+’ means string concatenation or numerical addition based on the type).

text the text of the expression; can be any SQL expression. Quoting rules will not be applied. To specify a
column-name expression which should be subject to quoting rules, use the column() function.

type_ an optional TypeEngine object which will provide result-set translation and additional expression
semantics for this column. If left as None the type will be NullType.

not_(clause)
Return a negation of the given clause, i.e. NOT(clause).

The ~ operator is also overloaded on all _CompareMixin subclasses to produce the same result.

null()
Return a _Null object, which compiles to NULL in a sql statement.

or_(*clauses)
Join a list of clauses together using the OR operator.

The | operator is also overloaded on all _CompareMixin subclasses to produce the same result.

8.1. sqlalchemy 143

SQLAlchemy Documentation, Release 0.5.4

outparam(key, type_=None)
Create an ‘OUT’ parameter for usage in functions (stored procedures), for databases which support them.

The outparam can be used like a regular function parameter. The “output” value will be available from the
ResultProxy object via its out_parameters attribute, which returns a dictionary containing the values.

outerjoin(left, right, onclause=None)
Return an OUTER JOIN clause element.

The returned object is an instance of Join.

Similar functionality is also available via the outerjoin() method on any FromClause.

left The left side of the join.

right The right side of the join.

onclause Optional criterion for the ON clause, is derived from foreign key relationships established between
left and right otherwise.

To chain joins together, use the join() or outerjoin() methods on the resulting Join object.

select(columns=None, whereclause=None, from_obj=, [], **kwargs)
Returns a SELECT clause element.

Similar functionality is also available via the select() method on any FromClause.

The returned object is an instance of Select.

All arguments which accept ClauseElement arguments also accept string arguments, which will be con-
verted as appropriate into either text() or literal_column() constructs.

columns A list of ClauseElement objects, typically ColumnElement objects or subclasses, which will
form the columns clause of the resulting statement. For all members which are instances of Selectable,
the individual ColumnElement members of the Selectable will be added individually to the
columns clause. For example, specifying a Table instance will result in all the contained Column
objects within to be added to the columns clause.
This argument is not present on the form of select() available on Table.

whereclause A ClauseElement expression which will be used to form the WHERE clause.

from_obj A list of ClauseElement objects which will be added to the FROM clause of the resulting state-
ment. Note that “from” objects are automatically located within the columns and whereclause ClauseEle-
ments. Use this parameter to explicitly specify “from” objects which are not automatically locatable. This
could include Table objects that aren’t otherwise present, or Join objects whose presence will supercede
that of the Table objects already located in the other clauses.

**kwargs Additional parameters include:

autocommit indicates this SELECT statement modifies the database, and should be subject to autocommit
behavior if no transaction has been started.

prefixes a list of strings or ClauseElement objects to include directly after the SELECT keyword in
the generated statement, for dialect-specific query features.

distinct=False when True, applies a DISTINCT qualifier to the columns clause of the resulting state-
ment.

use_labels=False when True, the statement will be generated using labels for each column in the
columns clause, which qualify each column with its parent table’s (or aliases) name so that name
conflicts between columns in different tables don’t occur. The format of the label is <table-
name>_<column>. The “c” collection of the resulting Select object will use these names as well
for targeting column members.

for_update=False when True, applies FOR UPDATE to the end of the resulting statement. Certain
database dialects also support alternate values for this parameter, for example mysql supports “read”
which translates to LOCK IN SHARE MODE, and oracle supports “nowait” which translates to FOR
UPDATE NOWAIT.

144 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

correlate=True indicates that this Select object should have its contained FromClause elements
“correlated” to an enclosing Select object. This means that any ClauseElement instance within
the “froms” collection of this Select which is also present in the “froms” collection of an enclosing
select will not be rendered in the FROM clause of this select statement.

group_by a list of ClauseElement objects which will comprise the GROUP BY clause of the resulting
select.

having a ClauseElement that will comprise the HAVING clause of the resulting select when GROUP
BY is used.

order_by a scalar or list of ClauseElement objects which will comprise the ORDER BY clause of the
resulting select.

limit=None a numerical value which usually compiles to a LIMIT expression in the resulting select.
Databases that don’t support LIMIT will attempt to provide similar functionality.

offset=None a numeric value which usually compiles to an OFFSET expression in the resulting select.
Databases that don’t support OFFSET will attempt to provide similar functionality.

bind=None an Engine or Connection instance to which the resulting Select ‘ object
will be bound. The ‘‘Select object will otherwise automatically bind to whatever
Connectable instances can be located within its contained ClauseElement members.

scalar=False deprecated. Use select(...).as_scalar() to create a “scalar column” proxy for an existing
Select object.

subquery(alias, *args, **kwargs)
Return an Alias object derived from a Select.

name alias name

*args, **kwargs

all other arguments are delivered to the select() function.

table(name, *columns)
Return a TableClause object.

This is a primitive version of the Table object, which is a subclass of this object.

text(text, bind=None, *args, **kwargs)
Create literal text to be inserted into a query.

When constructing a query from a select(), update(), insert() or delete(), using plain strings for
argument values will usually result in text objects being created automatically. Use this function when creating
textual clauses outside of other ClauseElement objects, or optionally wherever plain text is to be used.

text the text of the SQL statement to be created. use :<param> to specify bind parameters; they will be
compiled to their engine-specific format.

bind an optional connection or engine to be used for this text query.
autocommit=True indicates this SELECT statement modifies the database, and should be subject to autocom-

mit behavior if no transaction has been started.
bindparams a list of bindparam() instances which can be used to define the types and/or initial values for

the bind parameters within the textual statement; the keynames of the bindparams must match those within
the text of the statement. The types will be used for pre-processing on bind values.

typemap a dictionary mapping the names of columns represented in the SELECT clause of the textual statement
to type objects, which will be used to perform post-processing on columns within the result set (for textual
statements that produce result sets).

union(*selects, **kwargs)
Return a UNION of multiple selectables.

The returned object is an instance of CompoundSelect.

A similar union() method is available on all FromClause subclasses.

8.1. sqlalchemy 145

SQLAlchemy Documentation, Release 0.5.4

*selects a list of Select instances.

**kwargs available keyword arguments are the same as those of select().

union_all(*selects, **kwargs)
Return a UNION ALL of multiple selectables.

The returned object is an instance of CompoundSelect.

A similar union_all() method is available on all FromClause subclasses.

*selects a list of Select instances.

**kwargs available keyword arguments are the same as those of select().

update(table, whereclause=None, values=None, inline=False, **kwargs)
Return an Update clause element.

Similar functionality is available via the update() method on Table.

Parameters • table – The table to be updated.
• whereclause – A ClauseElement describing the WHERE condition of the UPDATE state-

ment. Note that the where() generative method may also be used for this.
• values – A dictionary which specifies the SET conditions of the UPDATE, and is optional.

If left as None, the SET conditions are determined from the bind parameters used during the
compile phase of the UPDATE statement. If the bind parameters also are None during the
compile phase, then the SET conditions will be generated from the full list of table columns.
Note that the values() generative method may also be used for this.

• inline – if True, SQL defaults will be compiled ‘inline’ into the statement and not pre-
executed.

If both values and compile-time bind parameters are present, the compile-time bind parameters override the
information specified within values on a per-key basis.

The keys within values can be either Column objects or their string identifiers. Each key may reference one of:

•a literal data value (i.e. string, number, etc.);

•a Column object;

•a SELECT statement.

If a SELECT statement is specified which references this UPDATE statement’s table, the statement will be
correlated against the UPDATE statement.

Classes

class Alias(selectable, alias=None)
Bases: sqlalchemy.sql.expression.FromClause

Represents an table or selectable alias (AS).

Represents an alias, as typically applied to any table or sub-select within a SQL statement using the AS keyword
(or without the keyword on certain databases such as Oracle).

This object is constructed from the alias() module level function as well as the alias() method available
on all FromClause subclasses.

__init__(selectable, alias=None)

class ClauseElement()
Bases: sqlalchemy.sql.visitors.Visitable

Base class for elements of a programmatically constructed SQL expression.

146 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

bind
Returns the Engine or Connection to which this ClauseElement is bound, or None if none found.

compare(other)
Compare this ClauseElement to the given ClauseElement.
Subclasses should override the default behavior, which is a straight identity comparison.

compile(bind=None, column_keys=None, compiler=None, dialect=None, inline=False)
Compile this SQL expression.
The return value is a Compiled object. Calling str() or unicode() on the returned value will yield a string
representation of the result. The Compiled object also can return a dictionary of bind parameter names
and values using the params accessor.

Parameters • bind – An Engine or Connection from which a Compiledwill be acquired.
This argument takes precedence over this ClauseElement‘s bound engine, if any.

• column_keys – Used for INSERT and UPDATE statements, a list of column names which
should be present in the VALUES clause of the compiled statement. If None, all columns
from the target table object are rendered.

• compiler – A Compiled instance which will be used to compile this expression.
This argument takes precedence over the bind and dialect arguments as well as this
ClauseElement‘s bound engine, if any.

• dialect – A Dialect instance frmo which a Compiled will be acquired. This argu-
ment takes precedence over the bind argument as well as this ClauseElement‘s bound
engine, if any.

• inline – Used for INSERT statements, for a dialect which does not support inline retrieval
of newly generated primary key columns, will force the expression used to create the new
primary key value to be rendered inline within the INSERT statement’s VALUES clause.
This typically refers to Sequence execution but may also refer to any server-side default
generation function associated with a primary key Column.

execute(*multiparams, **params)
Compile and execute this ClauseElement.

get_children(**kwargs)
Return immediate child elements of this ClauseElement.
This is used for visit traversal.
**kwargs may contain flags that change the collection that is returned, for example to return a subset of
items in order to cut down on larger traversals, or to return child items from a different context (such as
schema-level collections instead of clause-level).

params(*optionaldict, **kwargs)
Return a copy with bindparam() elments replaced.
Returns a copy of this ClauseElement with bindparam() elements replaced with values taken from the
given dictionary:

>>> clause = column(’x’) + bindparam(’foo’)
>>> print clause.compile().params
{’foo’:None}
>>> print clause.params({’foo’:7}).compile().params
{’foo’:7}

scalar(*multiparams, **params)
Compile and execute this ClauseElement, returning the result’s scalar representation.

unique_params(*optionaldict, **kwargs)
Return a copy with bindparam() elments replaced.
Same functionality as params(), except adds unique=True to affected bind parameters so that multiple
statements can be used.

8.1. sqlalchemy 147

SQLAlchemy Documentation, Release 0.5.4

class ColumnClause(text, selectable=None, type_=None, is_literal=False)
Bases: sqlalchemy.sql.expression._Immutable, sqlalchemy.sql.expression.ColumnElement

Represents a generic column expression from any textual string.

This includes columns associated with tables, aliases and select statements, but also any arbitrary text. May
or may not be bound to an underlying Selectable. ColumnClause is usually created publically via the
column() function or the literal_column() function.

text the text of the element.

selectable parent selectable.

type TypeEngine object which can associate this ColumnClause with a type.

is_literal if True, the ColumnClause is assumed to be an exact expression that will be delivered to the output
with no quoting rules applied regardless of case sensitive settings. the literal_column() function is
usually used to create such a ColumnClause.

__init__(text, selectable=None, type_=None, is_literal=False)

class ColumnCollection(*cols)
Bases: sqlalchemy.util.OrderedProperties

An ordered dictionary that stores a list of ColumnElement instances.

Overrides the __eq__() method to produce SQL clauses between sets of correlated columns.

__init__(*cols)

add(column)
Add a column to this collection.
The key attribute of the column will be used as the hash key for this dictionary.

replace(column)
add the given column to this collection, removing unaliased versions of this column as well as existing
columns with the same key.

e.g.:
t = Table(’sometable’, metadata, Column(’col1’, Integer))
t.columns.replace(Column(’col1’, Integer, key=’columnone’))

will remove the original ‘col1’ from the collection, and add the new column under the name
‘columnname’.

Used by schema.Column to override columns during table reflection.

class ColumnElement()
Bases: sqlalchemy.sql.expression.ClauseElement, sqlalchemy.sql.expression._CompareMixin

Represent an element that is usable within the “column clause” portion of a SELECT statement.

This includes columns associated with tables, aliases, and subqueries, expressions, function calls, SQL keywords
such as NULL, literals, etc. ColumnElement is the ultimate base class for all such elements.

ColumnElement supports the ability to be a proxy element, which indicates that the ColumnElement may
be associated with a Selectable which was derived from another Selectable. An example of a “derived”
Selectable is an Alias of a Table.

A ColumnElement, by subclassing the _CompareMixin mixin class, provides the ability to generate new
ClauseElement objects using Python expressions. See the _CompareMixin docstring for more details.

shares_lineage(othercolumn)
Return True if the given ColumnElement has a common ancestor to this ColumnElement.

class _CompareMixin()
Bases: sqlalchemy.sql.expression.ColumnOperators

Defines comparison and math operations for ClauseElement instances.

148 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

asc()
Produce a ASC clause, i.e. <columnname> ASC

between(cleft, cright)
Produce a BETWEEN clause, i.e. <column> BETWEEN <cleft> AND <cright>

collate(collation)
Produce a COLLATE clause, i.e. <column> COLLATE utf8_bin

contains(other, escape=None)
Produce the clause LIKE ’%<other>%’

desc()
Produce a DESC clause, i.e. <columnname> DESC

distinct()
Produce a DISTINCT clause, i.e. DISTINCT <columnname>

endswith(other, escape=None)
Produce the clause LIKE ’%<other>’

in_(other)

label(name)
Produce a column label, i.e. <columnname> AS <name>.
if ‘name’ is None, an anonymous label name will be generated.

match(other)
Produce a MATCH clause, i.e. MATCH ’<other>’

The allowed contents of other are database backend specific.

op(operator)
produce a generic operator function.
e.g.:

somecolumn.op("*")(5)

produces:

somecolumn * 5

operator a string which will be output as the infix operator between this ClauseElement and the
expression passed to the generated function.

operate(op, *other, **kwargs)

reverse_operate(op, other, **kwargs)

startswith(other, escape=None)
Produce the clause LIKE ’<other>%’

class ColumnOperators()
Defines comparison and math operations.

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

asc()

between(cleft, cright)

collate(collation)

concat(other)

contains(other, **kwargs)

desc()

distinct()

8.1. sqlalchemy 149

SQLAlchemy Documentation, Release 0.5.4

endswith(other, **kwargs)

ilike(other, escape=None)

in_(other)

like(other, escape=None)

match(other, **kwargs)

op(opstring)

operate(op, *other, **kwargs)

reverse_operate(op, other, **kwargs)

startswith(other, **kwargs)

timetuple
Hack, allows datetime objects to be compared on the LHS.

class CompoundSelect(keyword, *selects, **kwargs)
Bases: sqlalchemy.sql.expression._SelectBaseMixin, sqlalchemy.sql.expression.FromClause

Forms the basis of UNION, UNION ALL, and other SELECT-based set operations.

__init__(keyword, *selects, **kwargs)

class Delete(table, whereclause, bind=None, **kwargs)
Bases: sqlalchemy.sql.expression._UpdateBase

Represent a DELETE construct.

The Delete object is created using the delete() function.

where(whereclause)
Add the given WHERE clause to a newly returned delete construct.

class FromClause()
Bases: sqlalchemy.sql.expression.Selectable

Represent an element that can be used within the FROM clause of a SELECT statement.

alias(name=None)
return an alias of this FromClause.
For table objects, this has the effect of the table being rendered as tablename AS aliasname in a
SELECT statement. For select objects, the effect is that of creating a named subquery, i.e. (select
...) AS aliasname. The alias() method is the general way to create a “subquery” out of an
existing SELECT.
The name parameter is optional, and if left blank an “anonymous” name will be generated at compile
time, guaranteed to be unique against other anonymous constructs used in the same statement.

c
Return the collection of Column objects contained by this FromClause.

columns
Return the collection of Column objects contained by this FromClause.

correspond_on_equivalents(column, equivalents)
Return corresponding_column for the given column, or if None search for a match in the given dictionary.

corresponding_column(column, require_embedded=False)
Given a ColumnElement, return the exported ColumnElement object from this Selectablewhich
corresponds to that original Column via a common anscestor column.

Parameters • column – the target ColumnElement to be matched
• require_embedded – only return corresponding columns for the given ColumnElement,

if the given ColumnElement is actually present within a sub-element of this
FromClause. Normally the column will match if it merely shares a common ansces-
tor with one of the exported columns of this FromClause.

150 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

count(whereclause=None, **params)
return a SELECT COUNT generated against this FromClause.

description
a brief description of this FromClause.
Used primarily for error message formatting.

foreign_keys
Return the collection of ForeignKey objects which this FromClause references.

is_derived_from(fromclause)
Return True if this FromClause is ‘derived’ from the given FromClause.
An example would be an Alias of a Table is derived from that Table.

join(right, onclause=None, isouter=False)
return a join of this FromClause against another FromClause.

outerjoin(right, onclause=None)
return an outer join of this FromClause against another FromClause.

primary_key
Return the collection of Column objects which comprise the primary key of this FromClause.

replace_selectable(old, alias)
replace all occurences of FromClause ‘old’ with the given Alias object, returning a copy of this
FromClause.

select(whereclause=None, **params)
return a SELECT of this FromClause.

class Insert(table, values=None, inline=False, bind=None, prefixes=None, **kwargs)
Bases: sqlalchemy.sql.expression._ValuesBase

Represent an INSERT construct.

The Insert object is created using the insert() function.

prefix_with(clause)
Add a word or expression between INSERT and INTO. Generative.
If multiple prefixes are supplied, they will be separated with spaces.

values(*args, **kwargs)
specify the VALUES clause for an INSERT statement, or the SET clause for an UPDATE.

**kwargs key=<somevalue> arguments
*args A single dictionary can be sent as the first positional argument. This allows non-string based keys,

such as Column objects, to be used.

class Join(left, right, onclause=None, isouter=False)
Bases: sqlalchemy.sql.expression.FromClause

represent a JOIN construct between two FromClause elements.

The public constructor function for Join is the module-level join() function, as well as the join() method
available off all FromClause subclasses.

__init__(left, right, onclause=None, isouter=False)

alias(name=None)
Create a Select out of this Join clause and return an Alias of it.
The Select is not correlating.

select(whereclause=None, fold_equivalents=False, **kwargs)
Create a Select from this Join.

Parameters • whereclause – the WHERE criterion that will be sent to the select() function

8.1. sqlalchemy 151

SQLAlchemy Documentation, Release 0.5.4

• fold_equivalents – based on the join criterion of this Join, do not include repeat column
names in the column list of the resulting select, for columns that are calculated to be
“equivalent” based on the join criterion of this Join. This will recursively apply to any
joins directly nested by this one as well. This flag is specific to a particular use case by the
ORM and will be deprecated in 0.6.

• **kwargs – all other kwargs are sent to the underlying select() function.

class Select(columns, whereclause=None, from_obj=None, distinct=False, having=None, correlate=True, pre-
fixes=None, **kwargs)

Bases: sqlalchemy.sql.expression._SelectBaseMixin, sqlalchemy.sql.expression.FromClause

Represents a SELECT statement.

Select statements support appendable clauses, as well as the ability to execute themselves and return a result set.

__init__(columns, whereclause=None, from_obj=None, distinct=False, having=None, correlate=True, pre-
fixes=None, **kwargs)

Construct a Select object.
The public constructor for Select is the select() function; see that function for argument descriptions.
Additional generative and mutator methods are available on the _SelectBaseMixin superclass.

append_column(column)
append the given column expression to the columns clause of this select() construct.

append_correlation(fromclause)
append the given correlation expression to this select() construct.

append_from(fromclause)
append the given FromClause expression to this select() construct’s FROM clause.

append_having(having)
append the given expression to this select() construct’s HAVING criterion.
The expression will be joined to existing HAVING criterion via AND.

append_prefix(clause)
append the given columns clause prefix expression to this select() construct.

append_whereclause(whereclause)
append the given expression to this select() construct’s WHERE criterion.
The expression will be joined to existing WHERE criterion via AND.

column(column)
return a new select() construct with the given column expression added to its columns clause.

correlate(*fromclauses)
return a new select() construct which will correlate the given FROM clauses to that of an enclosing select(),
if a match is found.
By “match”, the given fromclause must be present in this select’s list of FROM objects and also present in
an enclosing select’s list of FROM objects.
Calling this method turns off the select’s default behavior of “auto-correlation”. Normally, select() auto-
correlates all of its FROM clauses to those of an embedded select when compiled.
If the fromclause is None, correlation is disabled for the returned select().

distinct()
return a new select() construct which will apply DISTINCT to its columns clause.

except_(other, **kwargs)
return a SQL EXCEPT of this select() construct against the given selectable.

except_all(other, **kwargs)
return a SQL EXCEPT ALL of this select() construct against the given selectable.

152 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

froms
Return the displayed list of FromClause elements.

get_children(column_collections=True, **kwargs)
return child elements as per the ClauseElement specification.

having(having)
return a new select() construct with the given expression added to its HAVING clause, joined to the existing
clause via AND, if any.

inner_columns
an iterator of all ColumnElement expressions which would be rendered into the columns clause of the
resulting SELECT statement.

intersect(other, **kwargs)
return a SQL INTERSECT of this select() construct against the given selectable.

intersect_all(other, **kwargs)
return a SQL INTERSECT ALL of this select() construct against the given selectable.

prefix_with(clause)
return a new select() construct which will apply the given expression to the start of its columns clause, not
using any commas.

select_from(fromclause)
return a new select() construct with the given FROM expression applied to its list of FROM objects.

self_group(against=None)
return a ‘grouping’ construct as per the ClauseElement specification.
This produces an element that can be embedded in an expression. Note that this method is called automat-
ically as needed when constructing expressions.

union(other, **kwargs)
return a SQL UNION of this select() construct against the given selectable.

union_all(other, **kwargs)
return a SQL UNION ALL of this select() construct against the given selectable.

where(whereclause)
return a new select() construct with the given expression added to its WHERE clause, joined to the existing
clause via AND, if any.

with_only_columns(columns)
return a new select() construct with its columns clause replaced with the given columns.

class Selectable()
Bases: sqlalchemy.sql.expression.ClauseElement

mark a class as being selectable

class TableClause(name, *columns)
Bases: sqlalchemy.sql.expression._Immutable, sqlalchemy.sql.expression.FromClause

Represents a “table” construct.

Note that this represents tables only as another syntactical construct within SQL expressions; it does not provide
schema-level functionality.

__init__(name, *columns)

delete(whereclause=None, **kwargs)
Generate a delete() construct.

insert(values=None, inline=False, **kwargs)
Generate an insert() construct.

update(whereclause=None, values=None, inline=False, **kwargs)
Generate an update() construct.

8.1. sqlalchemy 153

SQLAlchemy Documentation, Release 0.5.4

class Update(table, whereclause, values=None, inline=False, bind=None, **kwargs)
Bases: sqlalchemy.sql.expression._ValuesBase

Represent an Update construct.

The Update object is created using the update() function.

where(whereclause)
return a new update() construct with the given expression added to its WHERE clause, joined to the existing
clause via AND, if any.

values(*args, **kwargs)
specify the VALUES clause for an INSERT statement, or the SET clause for an UPDATE.

**kwargs key=<somevalue> arguments
*args A single dictionary can be sent as the first positional argument. This allows non-string based keys,

such as Column objects, to be used.

Generic Functions

SQL functions which are known to SQLAlchemy with regards to database-specific rendering, return types and argu-
ment behavior. Generic functions are invoked like all SQL functions, using the func attribute:

select([func.count()]).select_from(sometable)

class AnsiFunction(**kwargs)
Bases: sqlalchemy.sql.functions.GenericFunction

__init__(**kwargs)

class GenericFunction(type_=None, args=(), **kwargs)
Bases: sqlalchemy.sql.expression.Function

__init__(type_=None, args=(), **kwargs)

class ReturnTypeFromArgs(*args, **kwargs)
Bases: sqlalchemy.sql.functions.GenericFunction

Define a function whose return type is the same as its arguments.

__init__(*args, **kwargs)

class char_length(arg, **kwargs)
Bases: sqlalchemy.sql.functions.GenericFunction

__init__(arg, **kwargs)

class coalesce(*args, **kwargs)
Bases: sqlalchemy.sql.functions.ReturnTypeFromArgs

class concat(*args, **kwargs)
Bases: sqlalchemy.sql.functions.GenericFunction

__init__(*args, **kwargs)

class count(expression=None, **kwargs)
Bases: sqlalchemy.sql.functions.GenericFunction

The ANSI COUNT aggregate function. With no arguments, emits COUNT *.

__init__(expression=None, **kwargs)

class current_date(**kwargs)
Bases: sqlalchemy.sql.functions.AnsiFunction

154 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

class current_time(**kwargs)
Bases: sqlalchemy.sql.functions.AnsiFunction

class current_timestamp(**kwargs)
Bases: sqlalchemy.sql.functions.AnsiFunction

class current_user(**kwargs)
Bases: sqlalchemy.sql.functions.AnsiFunction

class localtime(**kwargs)
Bases: sqlalchemy.sql.functions.AnsiFunction

class localtimestamp(**kwargs)
Bases: sqlalchemy.sql.functions.AnsiFunction

class max(*args, **kwargs)
Bases: sqlalchemy.sql.functions.ReturnTypeFromArgs

class min(*args, **kwargs)
Bases: sqlalchemy.sql.functions.ReturnTypeFromArgs

class now(type_=None, args=(), **kwargs)
Bases: sqlalchemy.sql.functions.GenericFunction

class random(*args, **kwargs)
Bases: sqlalchemy.sql.functions.GenericFunction

__init__(*args, **kwargs)

class session_user(**kwargs)
Bases: sqlalchemy.sql.functions.AnsiFunction

class sum(*args, **kwargs)
Bases: sqlalchemy.sql.functions.ReturnTypeFromArgs

class sysdate(**kwargs)
Bases: sqlalchemy.sql.functions.AnsiFunction

class user(**kwargs)
Bases: sqlalchemy.sql.functions.AnsiFunction

8.1.4 Database Schema

SQLAlchemy schema definition language. For more usage examples, see Database Meta Data.

Tables and Columns

class Column(*args, **kwargs)
Bases: sqlalchemy.schema.SchemaItem, sqlalchemy.sql.expression.ColumnClause

Represents a column in a database table.

__init__(*args, **kwargs)
Construct a new Column object.

Parameters • name – The name of this column as represented in the database. This argument
may be the first positional argument, or specified via keyword.
Names which contain no upper case characters will be treated as case insensitive names,
and will not be quoted unless they are a reserved word. Names with any number of upper
case characters will be quoted and sent exactly. Note that this behavior applies even for
databases which standardize upper case names as case insensitive such as Oracle.

8.1. sqlalchemy 155

SQLAlchemy Documentation, Release 0.5.4

The name field may be omitted at construction time and applied later, at any time before
the Column is associated with a Table. This is to support convenient usage within the
declarative extension.

• type_ – The column’s type, indicated using an instance which subclasses
AbstractType. If no arguments are required for the type, the class of the type
can be sent as well, e.g.:
use a type with arguments
Column(’data’, String(50))

use no arguments
Column(’level’, Integer)

The type argument may be the second positional argument or specified by keyword.
If this column also contains a ForeignKey, the type argument may be left as None in
which case the type assigned will be that of the referenced column.

• *args – Additional positional arguments include various SchemaItem derived constructs
which will be applied as options to the column. These include instances of Constraint,
ForeignKey, ColumnDefault, and Sequence. In some cases an equivalent key-
word argument is available such as server_default, default and unique.

• autoincrement – This flag may be set to False to disable SQLAlchemy indicating at the
DDL level that an integer primary key column should have autoincrementing behavior.
This is an oft misunderstood flag and has no effect whatsoever unless all of the following
conditions are met:
– The column is of the Integer datatype.
– The column has the primary_key flag set, or is otherwise a member of a
PrimaryKeyConstraint on this table.

– a CREATE TABLE statement is being issued via create() or create_all(). The
flag has no relevance at any other time.

– The database supports autoincrementing behavior, such as Postgres or MySQL, and this
behavior can be disabled (which does not include SQLite).

• default – A scalar, Python callable, or ClauseElement representing the default value
for this column, which will be invoked upon insert if this column is otherwise not specified
in the VALUES clause of the insert. This is a shortcut to using ColumnDefault as a
positional argument.
Contrast this argument to server_default which creates a default generator on the
database side.

• key – An optional string identifier which will identify this Column object on the Table.
When a key is provided, this is the only identifier referencing the Column within the
application, including ORM attribute mapping; the name field is used only when rendering
SQL.

• index – When True, indicates that the column is indexed. This is a shortcut for using
a Index construct on the table. To specify indexes with explicit names or indexes that
contain multiple columns, use the Index construct instead.

• info – A dictionary which defaults to {}. A space to store application specific data. This
must be a dictionary.

• nullable – If set to the default of True, indicates the column will be rendered as allow-
ing NULL, else it’s rendered as NOT NULL. This parameter is only used when issuing
CREATE TABLE statements.

• onupdate – A scalar, Python callable, or ClauseElement representing a default value
to be applied to the column within UPDATE statements, which wil be invoked upon update
if this column is not present in the SET clause of the update. This is a shortcut to using
ColumnDefault as a positional argument with for_update=True.

156 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

• primary_key – If True, marks this column as a primary key column. Multiple columns
can have this flag set to specify composite primary keys. As an alternative, the primary
key of a Table can be specified via an explicit PrimaryKeyConstraint object.

• server_default – A FetchedValue instance, str, Unicode or text() construct repre-
senting the DDL DEFAULT value for the column.
String types will be emitted as-is, surrounded by single quotes:
Column(’x’, Text, server_default="val")

x TEXT DEFAULT ’val’

A text() expression will be rendered as-is, without quotes:
Column(’y’, DateTime, server_default=text(’NOW()’))0

y DATETIME DEFAULT NOW()

Strings and text() will be converted into a DefaultClause object upon initialization.
Use FetchedValue to indicate that an already-existing column will generate a default
value on the database side which will be available to SQLAlchemy for post-fetch after
inserts. This construct does not specify any DDL and the implementation is left to the
database, such as via a trigger.

• server_onupdate – A FetchedValue instance representing a database-side default gen-
eration function. This indicates to SQLAlchemy that a newly generated value will be
available after updates. This construct does not specify any DDL and the implementation
is left to the database, such as via a trigger.

• quote – Force quoting of this column’s name on or off, corresponding to True or False.
When left at its default of None, the column identifier will be quoted according to whether
the name is case sensitive (identifiers with at least one upper case character are treated as
case sensitive), or if it’s a reserved word. This flag is only needed to force quoting of a
reserved word which is not known by the SQLAlchemy dialect.

• unique – When True, indicates that this column contains a unique constraint, or if index
is True as well, indicates that the Index should be created with the unique flag. To
specify multiple columns in the constraint/index or to specify an explicit name, use the
UniqueConstraint or Index constructs explicitly.

append_foreign_key(fk)

asc()
Produce a ASC clause, i.e. <columnname> ASC

between(cleft, cright)
Produce a BETWEEN clause, i.e. <column> BETWEEN <cleft> AND <cright>

bind

collate(collation)
Produce a COLLATE clause, i.e. <column> COLLATE utf8_bin

compare(other)
Compare this ClauseElement to the given ClauseElement.
Subclasses should override the default behavior, which is a straight identity comparison.

compile(bind=None, column_keys=None, compiler=None, dialect=None, inline=False)
Compile this SQL expression.
The return value is a Compiled object. Calling str() or unicode() on the returned value will yield a string
representation of the result. The Compiled object also can return a dictionary of bind parameter names
and values using the params accessor.

Parameters • bind – An Engine or Connection from which a Compiledwill be acquired.
This argument takes precedence over this ClauseElement‘s bound engine, if any.

8.1. sqlalchemy 157

SQLAlchemy Documentation, Release 0.5.4

• column_keys – Used for INSERT and UPDATE statements, a list of column names which
should be present in the VALUES clause of the compiled statement. If None, all columns
from the target table object are rendered.

• compiler – A Compiled instance which will be used to compile this expression.
This argument takes precedence over the bind and dialect arguments as well as this
ClauseElement‘s bound engine, if any.

• dialect – A Dialect instance frmo which a Compiled will be acquired. This argu-
ment takes precedence over the bind argument as well as this ClauseElement‘s bound
engine, if any.

• inline – Used for INSERT statements, for a dialect which does not support inline retrieval
of newly generated primary key columns, will force the expression used to create the new
primary key value to be rendered inline within the INSERT statement’s VALUES clause.
This typically refers to Sequence execution but may also refer to any server-side default
generation function associated with a primary key Column.

concat(other)

contains(other, escape=None)
Produce the clause LIKE ’%<other>%’

copy(**kw)
Create a copy of this Column, unitialized.
This is used in Table.tometadata.

desc()
Produce a DESC clause, i.e. <columnname> DESC

distinct()
Produce a DISTINCT clause, i.e. DISTINCT <columnname>

endswith(other, escape=None)
Produce the clause LIKE ’%<other>’

execute(*multiparams, **params)
Compile and execute this ClauseElement.

get_children(schema_visitor=False, **kwargs)

ilike(other, escape=None)

in_(other)

info

label(name)

like(other, escape=None)

match(other)
Produce a MATCH clause, i.e. MATCH ’<other>’

The allowed contents of other are database backend specific.

op(operator)
produce a generic operator function.
e.g.:

somecolumn.op("*")(5)

produces:

somecolumn * 5

operator a string which will be output as the infix operator between this ClauseElement and the
expression passed to the generated function.

operate(op, *other, **kwargs)

158 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

params(*optionaldict, **kwargs)
Return a copy with bindparam() elments replaced.
Returns a copy of this ClauseElement with bindparam() elements replaced with values taken from the
given dictionary:

>>> clause = column(’x’) + bindparam(’foo’)
>>> print clause.compile().params
{’foo’:None}
>>> print clause.params({’foo’:7}).compile().params
{’foo’:7}

references(column)
Return True if this Column references the given column via foreign key.

reverse_operate(op, other, **kwargs)

scalar(*multiparams, **params)
Compile and execute this ClauseElement, returning the result’s scalar representation.

self_group(against=None)

shares_lineage(othercolumn)
Return True if the given ColumnElement has a common ancestor to this ColumnElement.

startswith(other, escape=None)
Produce the clause LIKE ’<other>%’

unique_params(*optionaldict, **kwargs)
Return a copy with bindparam() elments replaced.
Same functionality as params(), except adds unique=True to affected bind parameters so that multiple
statements can be used.

class MetaData(bind=None, reflect=False)
Bases: sqlalchemy.schema.SchemaItem

A collection of Tables and their associated schema constructs.

Holds a collection of Tables and an optional binding to an Engine or Connection. If bound, the Table
objects in the collection and their columns may participate in implicit SQL execution.

The Table objects themselves are stored in the metadata.tables dictionary.

The bind property may be assigned to dynamically. A common pattern is to start unbound and then bind later
when an engine is available:

metadata = MetaData()
define tables
Table(’mytable’, metadata, ...)
connect to an engine later, perhaps after loading a URL from a
configuration file
metadata.bind = an_engine

MetaData is a thread-safe object after tables have been explicitly defined or loaded via reflection.

__init__(bind=None, reflect=False)
Create a new MetaData object.

bind An Engine or Connection to bind to. May also be a string or URL instance, these are passed to
create_engine() and this MetaData will be bound to the resulting engine.

reflect Optional, automatically load all tables from the bound database. Defaults to False. bind is
required when this option is set. For finer control over loaded tables, use the reflect method of
MetaData.

8.1. sqlalchemy 159

SQLAlchemy Documentation, Release 0.5.4

append_ddl_listener(event, listener)
Append a DDL event listener to this MetaData.
The listener callable will be triggered when this MetaData is involved in DDL creates or drops, and
will be invoked either before all Table-related actions or after.
Arguments are:

event One of MetaData.ddl_events; ‘before-create’, ‘after-create’, ‘before-drop’ or ‘after-drop’.
listener A callable, invoked with three positional arguments:

event The event currently being handled
schema_item The MetaData object being operated upon
bind The Connection bueing used for DDL execution.

Listeners are added to the MetaData’s ddl_listeners attribute.
Note: MetaData listeners are invoked even when Tables are created in isolation. This may change in a
future release. I.e.:

triggers all MetaData and Table listeners:
metadata.create_all()

triggers MetaData listeners too:
some.table.create()

bind
An Engine or Connection to which this MetaData is bound.
This property may be assigned an Engine or Connection, or assigned a string or URL to automatically
create a basic Engine for this bind with create_engine().

clear()
Clear all Table objects from this MetaData.

connect(bind, **kwargs)
Bind this MetaData to an Engine.
Deprecated. Use metadata.bind = <engine> or metadata.bind = <url>.

bind A string, URL, Engine or Connection instance. If a string or URL, will be passed to
create_engine() along with **kwargs to produce the engine which to connect to. Other-
wise connects directly to the given Engine.

create_all(bind=None, tables=None, checkfirst=True)
Create all tables stored in this metadata.
Conditional by default, will not attempt to recreate tables already present in the target database.

bind A Connectable used to access the database; if None, uses the existing bind on this MetaData,
if any.

tables Optional list of Table objects, which is a subset of the total tables in the MetaData (others are
ignored).

checkfirst Defaults to True, don’t issue CREATEs for tables already present in the target database.

drop_all(bind=None, tables=None, checkfirst=True)
Drop all tables stored in this metadata.
Conditional by default, will not attempt to drop tables not present in the target database.

bind A Connectable used to access the database; if None, uses the existing bind on this MetaData,
if any.

tables Optional list of Table objects, which is a subset of the total tables in the MetaData (others are
ignored).

checkfirst Defaults to True, only issue DROPs for tables confirmed to be present in the target database.

is_bound()
True if this MetaData is bound to an Engine or Connection.

160 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

reflect(bind=None, schema=None, only=None)
Load all available table definitions from the database.
Automatically creates Table entries in this MetaData for any table available in the database but not yet
present in the MetaData. May be called multiple times to pick up tables recently added to the database,
however no special action is taken if a table in this MetaData no longer exists in the database.
bind A Connectable used to access the database; if None, uses the existing bind on this MetaData,

if any.
schema Optional, query and reflect tables from an alterate schema.
only Optional. Load only a sub-set of available named tables. May be specified as a sequence of names

or a callable.
If a sequence of names is provided, only those tables will be reflected. An error is raised if a table is
requested but not available. Named tables already present in this MetaData are ignored.
If a callable is provided, it will be used as a boolean predicate to filter the list of potential table names.
The callable is called with a table name and this MetaData instance as positional arguments and
should return a true value for any table to reflect.

remove(table)
Remove the given Table object from this MetaData.

sorted_tables
Returns a list of Table objects sorted in order of dependency.

table_iterator(reverse=True, tables=None)
Deprecated - use metadata.sorted_tables().
Deprecated. Use metadata.sorted_tables

class Table(name, metadata, *args, **kwargs)
Bases: sqlalchemy.schema.SchemaItem, sqlalchemy.sql.expression.TableClause

Represent a table in a database.

__init__(name, metadata, *args, **kwargs)
Construct a Table.

Parameters • name – The name of this table as represented in the database.
This property, along with the schema, indicates the singleton identity of this table in rela-
tion to its parent MetaData. Additional calls to Table with the same name, metadata,
and schema name will return the same Table object.
Names which contain no upper case characters will be treated as case insensitive names,
and will not be quoted unless they are a reserved word. Names with any number of upper
case characters will be quoted and sent exactly. Note that this behavior applies even for
databases which standardize upper case names as case insensitive such as Oracle.

• metadata – a MetaData object which will contain this table. The metadata is used as a
point of association of this table with other tables which are referenced via foreign key. It
also may be used to associate this table with a particular Connectable.

• *args – Additional positional arguments are used primarily to add the list of
Column objects contained within this table. Similar to the style of a CREATE
TABLE statement, other SchemaItem constructs may be added here, including
PrimaryKeyConstraint, and ForeignKeyConstraint.

• autoload – Defaults to False: the Columns for this table should be reflected from the
database. Usually there will be no Column objects in the constructor if this property is set.

• autoload_with – If autoload==True, this is an optional Engine or Connection instance to
be used for the table reflection. If None, the underlying MetaData’s bound connectable
will be used.

• include_columns – A list of strings indicating a subset of columns to be loaded via the
autoload operation; table columns who aren’t present in this list will not be represented
on the resulting Table object. Defaults to None which indicates all columns should be
reflected.

8.1. sqlalchemy 161

SQLAlchemy Documentation, Release 0.5.4

• info – A dictionary which defaults to {}. A space to store application specific data. This
must be a dictionary.

• mustexist – When True, indicates that this Table must already be present in the given
MetaData‘ collection.

• prefixes – A list of strings to insert after CREATE in the CREATE TABLE statement. They
will be separated by spaces.

• quote – Force quoting of this table’s name on or off, corresponding to True or False.
When left at its default of None, the column identifier will be quoted according to whether
the name is case sensitive (identifiers with at least one upper case character are treated as
case sensitive), or if it’s a reserved word. This flag is only needed to force quoting of a
reserved word which is not known by the SQLAlchemy dialect.

• quote_schema – same as ‘quote’ but applies to the schema identifier.
• schema – The schema name for this table, which is required if the table resides in a schema

other than the default selected schema for the engine’s database connection. Defaults to
None.

• useexisting – When True, indicates that if this Table is already present in the given
MetaData, apply further arguments within the constructor to the existing Table. If
this flag is not set, an error is raised when the parameters of an existing Table are over-
written.

alias(name=None)
return an alias of this FromClause.
For table objects, this has the effect of the table being rendered as tablename AS aliasname in a
SELECT statement. For select objects, the effect is that of creating a named subquery, i.e. (select
...) AS aliasname. The alias() method is the general way to create a “subquery” out of an
existing SELECT.
The name parameter is optional, and if left blank an “anonymous” name will be generated at compile
time, guaranteed to be unique against other anonymous constructs used in the same statement.

append_column(column)
Append a Column to this Table.

append_constraint(constraint)
Append a Constraint to this Table.

append_ddl_listener(event, listener)
Append a DDL event listener to this Table.
The listener callable will be triggered when this Table is created or dropped, either directly before
or after the DDL is issued to the database. The listener may modify the Table, but may not abort the event
itself.
Arguments are:

event One of Table.ddl_events; e.g. ‘before-create’, ‘after-create’, ‘before-drop’ or ‘after-drop’.
listener A callable, invoked with three positional arguments:

event The event currently being handled
schema_item The Table object being created or dropped
bind The Connection bueing used for DDL execution.

Listeners are added to the Table’s ddl_listeners attribute.

bind
Return the connectable associated with this SchemaItem.

c
Return the collection of Column objects contained by this FromClause.

columns
Return the collection of Column objects contained by this FromClause.

162 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

compare(other)
Compare this ClauseElement to the given ClauseElement.
Subclasses should override the default behavior, which is a straight identity comparison.

compile(bind=None, column_keys=None, compiler=None, dialect=None, inline=False)
Compile this SQL expression.
The return value is a Compiled object. Calling str() or unicode() on the returned value will yield a string
representation of the result. The Compiled object also can return a dictionary of bind parameter names
and values using the params accessor.

Parameters • bind – An Engine or Connection from which a Compiledwill be acquired.
This argument takes precedence over this ClauseElement‘s bound engine, if any.

• column_keys – Used for INSERT and UPDATE statements, a list of column names which
should be present in the VALUES clause of the compiled statement. If None, all columns
from the target table object are rendered.

• compiler – A Compiled instance which will be used to compile this expression.
This argument takes precedence over the bind and dialect arguments as well as this
ClauseElement‘s bound engine, if any.

• dialect – A Dialect instance frmo which a Compiled will be acquired. This argu-
ment takes precedence over the bind argument as well as this ClauseElement‘s bound
engine, if any.

• inline – Used for INSERT statements, for a dialect which does not support inline retrieval
of newly generated primary key columns, will force the expression used to create the new
primary key value to be rendered inline within the INSERT statement’s VALUES clause.
This typically refers to Sequence execution but may also refer to any server-side default
generation function associated with a primary key Column.

correspond_on_equivalents(column, equivalents)
Return corresponding_column for the given column, or if None search for a match in the given dictionary.

corresponding_column(column, require_embedded=False)
Given a ColumnElement, return the exported ColumnElement object from this Selectablewhich
corresponds to that original Column via a common anscestor column.

Parameters • column – the target ColumnElement to be matched
• require_embedded – only return corresponding columns for the given ColumnElement,

if the given ColumnElement is actually present within a sub-element of this
FromClause. Normally the column will match if it merely shares a common ansces-
tor with one of the exported columns of this FromClause.

count(whereclause=None, **params)

create(bind=None, checkfirst=False)
Issue a CREATE statement for this table.
See also metadata.create_all().

delete(whereclause=None, **kwargs)
Generate a delete() construct.

drop(bind=None, checkfirst=False)
Issue a DROP statement for this table.
See also metadata.drop_all().

execute(*multiparams, **params)
Compile and execute this ClauseElement.

exists(bind=None)
Return True if this table exists.

foreign_keys
Return the collection of ForeignKey objects which this FromClause references.

8.1. sqlalchemy 163

SQLAlchemy Documentation, Release 0.5.4

get_children(column_collections=True, schema_visitor=False, **kwargs)

info

insert(values=None, inline=False, **kwargs)
Generate an insert() construct.

is_derived_from(fromclause)
Return True if this FromClause is ‘derived’ from the given FromClause.
An example would be an Alias of a Table is derived from that Table.

join(right, onclause=None, isouter=False)
return a join of this FromClause against another FromClause.

key

outerjoin(right, onclause=None)
return an outer join of this FromClause against another FromClause.

params(*optionaldict, **kwargs)
Return a copy with bindparam() elments replaced.
Returns a copy of this ClauseElement with bindparam() elements replaced with values taken from the
given dictionary:

>>> clause = column(’x’) + bindparam(’foo’)
>>> print clause.compile().params
{’foo’:None}
>>> print clause.params({’foo’:7}).compile().params
{’foo’:7}

primary_key

replace_selectable(old, alias)
replace all occurences of FromClause ‘old’ with the given Alias object, returning a copy of this
FromClause.

scalar(*multiparams, **params)
Compile and execute this ClauseElement, returning the result’s scalar representation.

select(whereclause=None, **params)
return a SELECT of this FromClause.

self_group(against=None)

tometadata(metadata, schema=None)
Return a copy of this Table associated with a different MetaData.

unique_params(*optionaldict, **kwargs)
Return a copy with bindparam() elments replaced.
Same functionality as params(), except adds unique=True to affected bind parameters so that multiple
statements can be used.

update(whereclause=None, values=None, inline=False, **kwargs)
Generate an update() construct.

class ThreadLocalMetaData()
Bases: sqlalchemy.schema.MetaData

A MetaData variant that presents a different bind in every thread.

Makes the bind property of the MetaData a thread-local value, allowing this collection of tables to be bound
to different Engine implementations or connections in each thread.

The ThreadLocalMetaData starts off bound to None in each thread. Binds must be made explicitly by assigning
to the bind property or using connect(). You can also re-bind dynamically multiple times per thread, just
like a regular MetaData.

164 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

__init__()
Construct a ThreadLocalMetaData.

bind
The bound Engine or Connection for this thread.
This property may be assigned an Engine or Connection, or assigned a string or URL to automatically
create a basic Engine for this bind with create_engine().

connect(bind, **kwargs)
Bind to an Engine in the caller’s thread.
Deprecated. Use metadata.bind = <engine> or metadata.bind = <url>.

bind A string, URL, Engine or Connection instance. If a string or URL, will be passed to
create_engine() along with **kwargs to produce the engine which to connect to. Other-
wise connects directly to the given Engine.

dispose()
Dispose all bound engines, in all thread contexts.

is_bound()
True if there is a bind for this thread.

Constraints

class CheckConstraint(sqltext, name=None, deferrable=None, initially=None)
Bases: sqlalchemy.schema.Constraint

A table- or column-level CHECK constraint.

Can be included in the definition of a Table or Column.

__init__(sqltext, name=None, deferrable=None, initially=None)
Construct a CHECK constraint.

sqltext A string containing the constraint definition. Will be used verbatim.
name Optional, the in-database name of the constraint.
deferrable Optional bool. If set, emit DEFERRABLE or NOT DEFERRABLE when issuing DDL for

this constraint.
initially Optional string. If set, emit INITIALLY <value> when issuing DDL for this constraint.

copy(**kw)

class Constraint(name=None, deferrable=None, initially=None)
Bases: sqlalchemy.schema.SchemaItem

A table-level SQL constraint, such as a KEY.

Implements a hybrid of dict/setlike behavior with regards to the list of underying columns.

__init__(name=None, deferrable=None, initially=None)
Create a SQL constraint.

name Optional, the in-database name of this Constraint.
deferrable Optional bool. If set, emit DEFERRABLE or NOT DEFERRABLE when issuing DDL for

this constraint.
initially Optional string. If set, emit INITIALLY <value> when issuing DDL for this constraint.

contains_column(col)

copy(**kw)

keys()

8.1. sqlalchemy 165

SQLAlchemy Documentation, Release 0.5.4

class ForeignKey(column, constraint=None, use_alter=False, name=None, onupdate=None, ondelete=None, de-
ferrable=None, initially=None, link_to_name=False)

Bases: sqlalchemy.schema.SchemaItem

Defines a column-level FOREIGN KEY constraint between two columns.

ForeignKey is specified as an argument to a Column object, e.g.:

t = Table("remote_table", metadata,
Column("remote_id", ForeignKey("main_table.id"))

)

For a composite (multiple column) FOREIGN KEY, use a ForeignKeyConstraint object specified at the
level of the Table.

Further examples of foreign key configuration are in Defining Foreign Keys.

__init__(column, constraint=None, use_alter=False, name=None, onupdate=None, ondelete=None, de-
ferrable=None, initially=None, link_to_name=False)

Construct a column-level FOREIGN KEY.

Parameters • column – A single target column for the key relationship. A
Column object or a column name as a string: tablename.columnkey or
schema.tablename.columnkey. columnkey is the key which has been
assigned to the column (defaults to the column name itself), unless link_to_name is
True in which case the rendered name of the column is used.

• constraint – Optional. A parent ForeignKeyConstraint object. If not supplied, a
ForeignKeyConstraint will be automatically created and added to the parent table.

• name – Optional string. An in-database name for the key if constraint is not provided.
• onupdate – Optional string. If set, emit ON UPDATE <value> when issuing DDL for this

constraint. Typical values include CASCADE, DELETE and RESTRICT.
• ondelete – Optional string. If set, emit ON DELETE <value> when issuing DDL for this

constraint. Typical values include CASCADE, DELETE and RESTRICT.
• deferrable – Optional bool. If set, emit DEFERRABLE or NOT DEFERRABLE when

issuing DDL for this constraint.
• initially – Optional string. If set, emit INITIALLY <value> when issuing DDL for this

constraint.
• link_to_name – if True, the string name given in column is the rendered name of the

referenced column, not its locally assigned key.
• use_alter – If True, do not emit this key as part of the CREATE TABLE definition. Instead,

use ALTER TABLE after table creation to add the key. Useful for circular dependencies.

copy(schema=None)
Produce a copy of this ForeignKey object.

get_referent(table)
Return the column in the given table referenced by this ForeignKey.
Returns None if this ForeignKey does not reference the given table.

references(table)
Return True if the given table is referenced by this ForeignKey.

target_fullname

class ForeignKeyConstraint(columns, refcolumns, name=None, onupdate=None, ondelete=None,
use_alter=False, deferrable=None, initially=None, link_to_name=False)

Bases: sqlalchemy.schema.Constraint

A table-level FOREIGN KEY constraint.

166 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

Defines a single column or composite FOREIGN KEY ... REFERENCES constraint. For a no-frills, single
column foreign key, adding a ForeignKey to the definition of a Column is a shorthand equivalent for an
unnamed, single column ForeignKeyConstraint.

Examples of foreign key configuration are in Defining Foreign Keys.

__init__(columns, refcolumns, name=None, onupdate=None, ondelete=None, use_alter=False, de-
ferrable=None, initially=None, link_to_name=False)

Construct a composite-capable FOREIGN KEY.

Parameters • columns – A sequence of local column names. The named columns must be
defined and present in the parent Table. The names should match the key given to each
column (defaults to the name) unless link_to_name is True.

• refcolumns – A sequence of foreign column names or Column objects. The columns must
all be located within the same Table.

• name – Optional, the in-database name of the key.
• onupdate – Optional string. If set, emit ON UPDATE <value> when issuing DDL for this

constraint. Typical values include CASCADE, DELETE and RESTRICT.
• ondelete – Optional string. If set, emit ON DELETE <value> when issuing DDL for this

constraint. Typical values include CASCADE, DELETE and RESTRICT.
• deferrable – Optional bool. If set, emit DEFERRABLE or NOT DEFERRABLE when

issuing DDL for this constraint.
• initially – Optional string. If set, emit INITIALLY <value> when issuing DDL for this

constraint.
• link_to_name – if True, the string name given in column is the rendered name of the

referenced column, not its locally assigned key.
• use_alter – If True, do not emit this key as part of the CREATE TABLE definition. Instead,

use ALTER TABLE after table creation to add the key. Useful for circular dependencies.

append_element(col, refcol)

copy(**kw)

class Index(name, *columns, **kwargs)
Bases: sqlalchemy.schema.SchemaItem

A table-level INDEX.

Defines a composite (one or more column) INDEX. For a no-frills, single column index, adding index=True
to the Column definition is a shorthand equivalent for an unnamed, single column Index.

__init__(name, *columns, **kwargs)
Construct an index object.
Arguments are:

name The name of the index
*columns Columns to include in the index. All columns must belong to the same table, and no column

may appear more than once.
**kwargs Keyword arguments include:

unique Defaults to False: create a unique index.
postgres_where Defaults to None: create a partial index when using PostgreSQL

append_column(column)

create(bind=None)

drop(bind=None)

class PrimaryKeyConstraint(*columns, **kwargs)
Bases: sqlalchemy.schema.Constraint

A table-level PRIMARY KEY constraint.

8.1. sqlalchemy 167

SQLAlchemy Documentation, Release 0.5.4

Defines a single column or composite PRIMARY KEY constraint. For a no-frills primary key, adding
primary_key=True to one or more Column definitions is a shorthand equivalent for an unnamed single- or
multiple-column PrimaryKeyConstraint.

__init__(*columns, **kwargs)
Construct a composite-capable PRIMARY KEY.

*columns A sequence of column names. All columns named must be defined and present within the
parent Table.

name Optional, the in-database name of the key.
deferrable Optional bool. If set, emit DEFERRABLE or NOT DEFERRABLE when issuing DDL for

this constraint.
initially Optional string. If set, emit INITIALLY <value> when issuing DDL for this constraint.

add(col)

append_column(col)

copy(**kw)

remove(col)

replace(col)

class UniqueConstraint(*columns, **kwargs)
Bases: sqlalchemy.schema.Constraint

A table-level UNIQUE constraint.

Defines a single column or composite UNIQUE constraint. For a no-frills, single column constraint, adding
unique=True to the Column definition is a shorthand equivalent for an unnamed, single column Unique-
Constraint.

__init__(*columns, **kwargs)
Construct a UNIQUE constraint.

*columns A sequence of column names. All columns named must be defined and present within the
parent Table.

name Optional, the in-database name of the key.
deferrable Optional bool. If set, emit DEFERRABLE or NOT DEFERRABLE when issuing DDL for

this constraint.
initially Optional string. If set, emit INITIALLY <value> when issuing DDL for this constraint.

append_column(col)

copy(**kw)

Default Generators and Markers

class ColumnDefault(arg, **kwargs)
Bases: sqlalchemy.schema.DefaultGenerator

A plain default value on a column.

This could correspond to a constant, a callable function, or a SQL clause.

__init__(arg, **kwargs)

class DefaultClause(arg, for_update=False)
Bases: sqlalchemy.schema.FetchedValue

A DDL-specified DEFAULT column value.

class DefaultGenerator(for_update=False, metadata=None)
Bases: sqlalchemy.schema.SchemaItem

Base class for column default values.

168 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

__init__(for_update=False, metadata=None)

execute(bind=None, **kwargs)

class FetchedValue(for_update=False)
Bases: object

A default that takes effect on the database side.

__init__(for_update=False)

PassiveDefault
alias of DefaultClause

class Sequence(name, start=None, increment=None, schema=None, optional=False, quote=None, **kwargs)
Bases: sqlalchemy.schema.DefaultGenerator

Represents a named database sequence.

__init__(name, start=None, increment=None, schema=None, optional=False, quote=None, **kwargs)

create(bind=None, checkfirst=True)
Creates this sequence in the database.

drop(bind=None, checkfirst=True)
Drops this sequence from the database.

DDL

class DDL(statement, on=None, context=None, bind=None)
Bases: object

A literal DDL statement.

Specifies literal SQL DDL to be executed by the database. DDL objects can be attached to Tables or
MetaData instances, conditionally executing SQL as part of the DDL lifecycle of those schema items. Basic
templating support allows a single DDL instance to handle repetitive tasks for multiple tables.

Examples:

tbl = Table(’users’, metadata, Column(’uid’, Integer)) # ...
DDL(’DROP TRIGGER users_trigger’).execute_at(’before-create’, tbl)

spow = DDL(’ALTER TABLE %(table)s SET secretpowers TRUE’, on=’somedb’)
spow.execute_at(’after-create’, tbl)

drop_spow = DDL(’ALTER TABLE users SET secretpowers FALSE’)
connection.execute(drop_spow)

__init__(statement, on=None, context=None, bind=None)
Create a DDL statement.

statement A string or unicode string to be executed. Statements will be processed with Python’s string
formatting operator. See the context argument and the execute_at method.
A literal ‘%’ in a statement must be escaped as ‘%%’.
SQL bind parameters are not available in DDL statements.

on Optional filtering criteria. May be a string or a callable predicate. If a string, it will be compared to the
name of the executing database dialect:
DDL(’something’, on=’postgres’)

If a callable, it will be invoked with three positional arguments:
event The name of the event that has triggered this DDL, such as ‘after-create’ Will be None

if the DDL is executed explicitly.

8.1. sqlalchemy 169

SQLAlchemy Documentation, Release 0.5.4

schema_item A SchemaItem instance, such as Table or MetaData. May be None if the
DDL is executed explicitly.

connection The Connection being used for DDL execution
If the callable returns a true value, the DDL statement will be executed.

context Optional dictionary, defaults to None. These values will be available for use in string substitutions
on the DDL statement.

bind Optional. A Connectable, used by default when execute() is invoked without a bind argu-
ment.

bind
An Engine or Connection to which this DDL is bound.
This property may be assigned an Engine or Connection, or assigned a string or URL to automatically
create a basic Engine for this bind with create_engine().

execute(bind=None, schema_item=None)
Execute this DDL immediately.
Executes the DDL statement in isolation using the supplied Connectable or Connectable assigned
to the .bind property, if not supplied. If the DDL has a conditional on criteria, it will be invoked with
None as the event.

bind Optional, an Engine or Connection. If not supplied, a valid Connectable must be present
in the .bind property.

schema_item Optional, defaults to None. Will be passed to the on callable criteria, if any, and may
provide string expansion data for the statement. See execute_at for more information.

execute_at(event, schema_item)
Link execution of this DDL to the DDL lifecycle of a SchemaItem.
Links this DDL to a Table or MetaData instance, executing it when that schema item is created or
dropped. The DDL statement will be executed using the same Connection and transactional context as the
Table create/drop itself. The .bind property of this statement is ignored.

event One of the events defined in the schema item’s .ddl_events; e.g. ‘before-create’, ‘after-create’,
‘before-drop’ or ‘after-drop’

schema_item A Table or MetaData instance

When operating on Table events, the following additional statement string substitions are available:

%(table)s - the Table name, with any required quoting applied
%(schema)s - the schema name, with any required quoting applied
%(fullname)s - the Table name including schema, quoted if needed

The DDL’s context, if any, will be combined with the standard substutions noted above. Keys present
in the context will override the standard substitutions.
A DDL instance can be linked to any number of schema items. The statement subsitution support allows
for DDL instances to be used in a template fashion.
execute_at builds on the append_ddl_listener interface of MetaDta and Table objects.
Caveat: Creating or dropping a Table in isolation will also trigger any DDL set to execute_at that
Table’s MetaData. This may change in a future release.

Internals

class SchemaItem()
Bases: sqlalchemy.sql.visitors.Visitable

Base class for items that define a database schema.

bind
Return the connectable associated with this SchemaItem.

170 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

get_children(**kwargs)
used to allow SchemaVisitor access

info

class SchemaVisitor()
Bases: sqlalchemy.sql.visitors.ClauseVisitor

Define the visiting for SchemaItem objects.

8.1.5 Column and Data Types

SQLAlchemy provides abstractions for most common database data types, and a mechanism for specifying your own
custom data types.

The methods and attributes of type objects are rarely used directly. Type objects are supplied to Table definitions
and can be supplied as type hints to functions for occasions where the database driver returns an incorrect type.

>>> users = Table(’users’, metadata,
... Column(’id’, Integer, primary_key=True)
... Column(’login’, String(32))
...)

SQLAlchemy will use the Integer and String(32) type information when issuing a CREATE TABLE state-
ment and will use it again when reading back rows SELECTed from the database. Functions that accept a type
(such as Column()) will typically accept a type class or instance; Integer is equivalent to Integer() with no
construction arguments in this case.

Generic Types

Generic types specify a column that can read, write and store a particular type of Python data. SQLAlchemy will
choose the best database column type available on the target database when issuing a CREATE TABLE statement. For
complete control over which column type is emitted in CREATE TABLE, such as VARCHAR see SQL Standard Types
and the other sections of this chapter.

class String(length=None, convert_unicode=False, assert_unicode=None)
Bases: sqlalchemy.types.Concatenable, sqlalchemy.types.TypeEngine

The base for all string and character types.

In SQL, corresponds to VARCHAR. Can also take Python unicode objects and encode to the database’s encoding
in bind params (and the reverse for result sets.)

The length field is usually required when the String type is used within a CREATE TABLE statement, as VAR-
CHAR requires a length on most databases.

class Unicode(length=None, **kwargs)
Bases: sqlalchemy.types.String

A variable length Unicode string.

The Unicode type is a String which converts Python unicode objects (i.e., strings that are defined as
u’somevalue’) into encoded bytestrings when passing the value to the database driver, and similarly decodes
values from the database back into Python unicode objects.

When using the Unicode type, it is only appropriate to pass Python unicode objects, and not plain str. If
a bytestring (str) is passed, a runtime warning is issued. If you notice your application raising these warnings
but you’re not sure where, the Python warnings filter can be used to turn these warnings into exceptions which
will illustrate a stack trace:

8.1. sqlalchemy 171

SQLAlchemy Documentation, Release 0.5.4

import warnings
warnings.simplefilter(’error’)

Bytestrings sent to and received from the database are encoded using the dialect’s encoding, which defaults
to utf-8.

A synonym for String(length, convert_unicode=True, assert_unicode=’warn’).

class Text(length=None, convert_unicode=False, assert_unicode=None)
Bases: sqlalchemy.types.String

A variably sized string type.

In SQL, usually corresponds to CLOB or TEXT. Can also take Python unicode objects and encode to the
database’s encoding in bind params (and the reverse for result sets.)

class UnicodeText(length=None, **kwargs)
Bases: sqlalchemy.types.Text

A synonym for Text(convert_unicode=True, assert_unicode=’warn’).

class Integer(*args, **kwargs)
Bases: sqlalchemy.types.TypeEngine

A type for int integers.

class SmallInteger(*args, **kwargs)
Bases: sqlalchemy.types.Integer

A type for smaller int integers.

Typically generates a SMALLINT in DDL, and otherwise acts like a normal Integer on the Python side.

class Numeric(precision=10, scale=2, asdecimal=True, length=None)
Bases: sqlalchemy.types.TypeEngine

A type for fixed precision numbers.

Typically generates DECIMAL or NUMERIC. Returns decimal.Decimal objects by default.

class Float(precision=10, asdecimal=False, **kwargs)
Bases: sqlalchemy.types.Numeric

A type for float numbers.

class DateTime(timezone=False)
Bases: sqlalchemy.types.TypeEngine

A type for datetime.datetime() objects.

Date and time types return objects from the Python datetime module. Most DBAPIs have built in support for
the datetime module, with the noted exception of SQLite. In the case of SQLite, date and time types are stored
as strings which are then converted back to datetime objects when rows are returned.

class Date(*args, **kwargs)
Bases: sqlalchemy.types.TypeEngine

A type for datetime.date() objects.

class Time(timezone=False)
Bases: sqlalchemy.types.TypeEngine

A type for datetime.time() objects.

class Interval()
Bases: sqlalchemy.types.TypeDecorator

A type for datetime.timedelta() objects.

The Interval type deals with datetime.timedelta objects. In PostgreSQL, the native INTERVAL type is
used; for others, the value is stored as a date which is relative to the “epoch” (Jan. 1, 1970).

172 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

class Boolean(*args, **kwargs)
Bases: sqlalchemy.types.TypeEngine

A bool datatype.

Boolean typically uses BOOLEAN or SMALLINT on the DDL side, and on the Python side deals in True or
False.

class Binary(length=None)
Bases: sqlalchemy.types.TypeEngine

A type for binary byte data.

The Binary type generates BLOB or BYTEA when tables are created, and also converts incoming values using
the Binary callable provided by each DB-API.

class PickleType(protocol=2, pickler=None, mutable=True, comparator=None)
Bases: sqlalchemy.types.MutableType, sqlalchemy.types.TypeDecorator

Holds Python objects.

PickleType builds upon the Binary type to apply Python’s pickle.dumps() to incoming objects, and
pickle.loads() on the way out, allowing any pickleable Python object to be stored as a serialized binary
field.

SQL Standard Types

The SQL standard types always create database column types of the same name when CREATE TABLE is issued.
Some types may not be supported on all databases.

class INT(*args, **kwargs)
Bases: sqlalchemy.types.Integer

The SQL INT or INTEGER type.

INTEGER
alias of INT

class CHAR(length=None, convert_unicode=False, assert_unicode=None)
Bases: sqlalchemy.types.String

The SQL CHAR type.

class VARCHAR(length=None, convert_unicode=False, assert_unicode=None)
Bases: sqlalchemy.types.String

The SQL VARCHAR type.

class NCHAR(length=None, **kwargs)
Bases: sqlalchemy.types.Unicode

The SQL NCHAR type.

TEXT
alias of Text

class FLOAT(precision=10, asdecimal=False, **kwargs)
Bases: sqlalchemy.types.Float

The SQL FLOAT type.

class NUMERIC(precision=10, scale=2, asdecimal=True, length=None)
Bases: sqlalchemy.types.Numeric

The SQL NUMERIC type.

8.1. sqlalchemy 173

SQLAlchemy Documentation, Release 0.5.4

class DECIMAL(precision=10, scale=2, asdecimal=True, length=None)
Bases: sqlalchemy.types.Numeric

The SQL DECIMAL type.

class TIMESTAMP(timezone=False)
Bases: sqlalchemy.types.DateTime

The SQL TIMESTAMP type.

class DATETIME(timezone=False)
Bases: sqlalchemy.types.DateTime

The SQL DATETIME type.

class CLOB(length=None, convert_unicode=False, assert_unicode=None)
Bases: sqlalchemy.types.Text

The SQL CLOB type.

class BLOB(length=None)
Bases: sqlalchemy.types.Binary

The SQL BLOB type.

class BOOLEAN(*args, **kwargs)
Bases: sqlalchemy.types.Boolean

The SQL BOOLEAN type.

class SMALLINT(*args, **kwargs)
Bases: sqlalchemy.types.SmallInteger

The SQL SMALLINT type.

class DATE(*args, **kwargs)
Bases: sqlalchemy.types.Date

The SQL DATE type.

class TIME(timezone=False)
Bases: sqlalchemy.types.Time

The SQL TIME type.

Vendor-Specific Types

Database-specific types are also available for import from each database’s dialect module. See the
sqlalchemy.databases reference for the database you’re interested in.

For example, MySQL has a BIGINTEGER type and PostgreSQL has an INET type. To use these, import them from
the module explicitly:

from sqlalchemy.databases.mysql import MSBigInteger, MSEnum

table = Table(’foo’, meta,
Column(’id’, MSBigInteger),
Column(’enumerates’, MSEnum(’a’, ’b’, ’c’))

)

Or some PostgreSQL types:

from sqlalchemy.databases.postgres import PGInet, PGArray

174 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

table = Table(’foo’, meta,
Column(’ipaddress’, PGInet),
Column(’elements’, PGArray(str))
)

Custom Types

User-defined types may be created to match special capabilities of a particular database or simply for implementing
custom processing logic in Python.

The simplest method is implementing a TypeDecorator, a helper class that makes it easy to augment the bind
parameter and result processing capabilities of one of the built in types.

To build a type object from scratch, subclass :class:TypeEngine.

class TypeDecorator(*args, **kwargs)
Bases: sqlalchemy.types.AbstractType

Allows the creation of types which add additional functionality to an existing type.

Typical usage:

import sqlalchemy.types as types

class MyType(types.TypeDecorator):
Prefixes Unicode values with "PREFIX:" on the way in and
strips it off on the way out.

impl = types.Unicode

def process_bind_param(self, value, dialect):
return "PREFIX:" + value

def process_result_value(self, value, dialect):
return value[7:]

def copy(self):
return MyType(self.impl.length)

The class-level “impl” variable is required, and can reference any TypeEngine class. Alternatively, the
load_dialect_impl() method can be used to provide different type classes based on the dialect given; in this
case, the “impl” variable can reference TypeEngine as a placeholder.

The reason that type behavior is modified using class decoration instead of subclassing is due to the way dialect
specific types are used. Such as with the example above, when using the mysql dialect, the actual type in use will
be a sqlalchemy.databases.mysql.MSString instance. TypeDecorator handles the mechanics
of passing the values between user-defined process_ methods and the current dialect-specific type in use.

__init__(*args, **kwargs)

adapt_operator(op)
Given an operator from the sqlalchemy.sql.operators package, translate it to a new operator based on the
semantics of this type.
By default, returns the operator unchanged.

bind_processor(dialect)

compare_values(x, y)

copy()

8.1. sqlalchemy 175

SQLAlchemy Documentation, Release 0.5.4

copy_value(value)

dialect_impl(dialect, **kwargs)

get_col_spec()

get_dbapi_type(dbapi)

is_mutable()

load_dialect_impl(dialect)
Loads the dialect-specific implementation of this type.
by default calls dialect.type_descriptor(self.impl), but can be overridden to provide different behavior.

process_bind_param(value, dialect)

process_result_value(value, dialect)

result_processor(dialect)

class TypeEngine(*args, **kwargs)
Bases: sqlalchemy.types.AbstractType

Base for built-in types.

May be sub-classed to create entirely new types. Example:

import sqlalchemy.types as types

class MyType(types.TypeEngine):
def __init__(self, precision = 8):

self.precision = precision

def get_col_spec(self):
return "MYTYPE(%s)" % self.precision

def bind_processor(self, dialect):
def process(value):

return value
return process

def result_processor(self, dialect):
def process(value):

return value
return process

Once the type is made, it’s immediately usable:

table = Table(’foo’, meta,
Column(’id’, Integer, primary_key=True),
Column(’data’, MyType(16))
)

__init__(*args, **kwargs)

adapt(cls)

adapt_operator(op)
Given an operator from the sqlalchemy.sql.operators package, translate it to a new operator based on the
semantics of this type.
By default, returns the operator unchanged.

176 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

bind_processor(dialect)
Return a conversion function for processing bind values.
Returns a callable which will receive a bind parameter value as the sole positional argument and will return
a value to send to the DB-API.
If processing is not necessary, the method should return None.

compare_values(x, y)
Compare two values for equality.

copy_value(value)

dialect_impl(dialect, **kwargs)

get_col_spec()
Return the DDL representation for this type.

get_dbapi_type(dbapi)
Return the corresponding type object from the underlying DB-API, if any.
This can be useful for calling setinputsizes(), for example.

get_search_list()
return a list of classes to test for a match when adapting this type to a dialect-specific type.

is_mutable()
Return True if the target Python type is ‘mutable’.
This allows systems like the ORM to know if a column value can be considered ‘not changed’ by compar-
ing the identity of objects alone.
Use the MutableType mixin or override this method to return True in custom types that hold mutable
values such as dict, list and custom objects.

result_processor(dialect)
Return a conversion function for processing result row values.
Returns a callable which will receive a result row column value as the sole positional argument and will
return a value to return to the user.
If processing is not necessary, the method should return None.

class AbstractType(*args, **kwargs)
Bases: object

__init__(*args, **kwargs)

adapt_operator(op)
Given an operator from the sqlalchemy.sql.operators package, translate it to a new operator based on the
semantics of this type.
By default, returns the operator unchanged.

bind_processor(dialect)
Defines a bind parameter processing function.

compare_values(x, y)
Compare two values for equality.

copy_value(value)

get_dbapi_type(dbapi)
Return the corresponding type object from the underlying DB-API, if any.
This can be useful for calling setinputsizes(), for example.

is_mutable()
Return True if the target Python type is ‘mutable’.
This allows systems like the ORM to know if a column value can be considered ‘not changed’ by compar-
ing the identity of objects alone.
Use the MutableType mixin or override this method to return True in custom types that hold mutable
values such as dict, list and custom objects.

8.1. sqlalchemy 177

SQLAlchemy Documentation, Release 0.5.4

result_processor(dialect)
Defines a result-column processing function.

class MutableType()
Bases: object

A mixin that marks a Type as holding a mutable object.

copy_value() and compare_values() should be customized as needed to match the needs of the object.

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

compare_values(x, y)
Compare x == y.

copy_value(value)
Unimplemented.

is_mutable()
Return True, mutable.

class Concatenable()
Bases: object

A mixin that marks a type as supporting ‘concatenation’, typically strings.

__init__()
x.__init__(...) initializes x; see x.__class__.__doc__ for signature

adapt_operator(op)
Converts an add operator to concat.

class NullType(*args, **kwargs)
Bases: sqlalchemy.types.TypeEngine

An unknown type.

NullTypes will stand in if Table reflection encounters a column data type unknown to SQLAlchemy. The
resulting columns are nearly fully usable: the DB-API adapter will handle all translation to and from the database
data type.

NullType does not have sufficient information to particpate in a CREATE TABLE statement and will raise an
exception if encountered during a create() operation.

8.1.6 Interfaces

Interfaces and abstract types.

class ConnectionProxy()
Allows interception of statement execution by Connections.

Either or both of the execute() and cursor_execute() may be implemented to intercept compiled
statement and cursor level executions, e.g.:

class MyProxy(ConnectionProxy):
def execute(self, conn, execute, clauseelement, *multiparams, **params):

print "compiled statement:", clauseelement
return execute(clauseelement, *multiparams, **params)

def cursor_execute(self, execute, cursor, statement, parameters, context, executemany):
print "raw statement:", statement
return execute(cursor, statement, parameters, context)

178 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

The execute argument is a function that will fulfill the default execution behavior for the operation. The
signature illustrated in the example should be used.

The proxy is installed into an Engine via the proxy argument:

e = create_engine(’someurl://’, proxy=MyProxy())

cursor_execute(execute, cursor, statement, parameters, context, executemany)
Intercept low-level cursor execute() events.

execute(conn, execute, clauseelement, *multiparams, **params)
Intercept high level execute() events.

class PoolListener()
Hooks into the lifecycle of connections in a Pool.

Usage:

class MyListener(PoolListener):
def connect(self, dbapi_con, con_record):

’’’perform connect operations’’’
etc.

create a new pool with a listener
p = QueuePool(..., listeners=[MyListener()])

add a listener after the fact
p.add_listener(MyListener())

usage with create_engine()
e = create_engine("url://", listeners=[MyListener()])

All of the standard connection Pool types can accept event listeners for key connection lifecycle events: cre-
ation, pool check-out and check-in. There are no events fired when a connection closes.

For any given DB-API connection, there will be one connect event, n number of checkout events, and
either n or n - 1 checkin events. (If a Connection is detached from its pool via the detach() method, it
won’t be checked back in.)

These are low-level events for low-level objects: raw Python DB-API connections, without the conveniences of
the SQLAlchemy Connection wrapper, Dialect services or ClauseElement execution. If you execute
SQL through the connection, explicitly closing all cursors and other resources is recommended.

Events also receive a _ConnectionRecord, a long-lived internal Pool object that basically represents a
“slot” in the connection pool. _ConnectionRecord objects have one public attribute of note: info, a
dictionary whose contents are scoped to the lifetime of the DB-API connection managed by the record. You can
use this shared storage area however you like.

There is no need to subclass PoolListener to handle events. Any class that implements one or more of these
methods can be used as a pool listener. The Pool will inspect the methods provided by a listener object and add
the listener to one or more internal event queues based on its capabilities. In terms of efficiency and function
call overhead, you’re much better off only providing implementations for the hooks you’ll be using.

checkin(dbapi_con, con_record)
Called when a connection returns to the pool.
Note that the connection may be closed, and may be None if the connection has been invalidated.
checkin will not be called for detached connections. (They do not return to the pool.)

dbapi_con A raw DB-API connection
con_record The _ConnectionRecord that persistently manages the connection

8.1. sqlalchemy 179

SQLAlchemy Documentation, Release 0.5.4

checkout(dbapi_con, con_record, con_proxy)
Called when a connection is retrieved from the Pool.

dbapi_con A raw DB-API connection
con_record The _ConnectionRecord that persistently manages the connection
con_proxy The _ConnectionFairy which manages the connection for the span of the current check-

out.

If you raise an exc.DisconnectionError, the current connection will be disposed and a fresh con-
nection retrieved. Processing of all checkout listeners will abort and restart using the new connection.

connect(dbapi_con, con_record)
Called once for each new DB-API connection or Pool’s creator().

dbapi_con A newly connected raw DB-API connection (not a SQLAlchemy Connection wrapper).
con_record The _ConnectionRecord that persistently manages the connection

8.2 sqlalchemy.orm

8.2.1 Class Mapping

Defining Mappings

Python classes are mapped to the database using the mapper() function.

mapper(class_, local_table=None, *args, **params)
Return a new Mapper object.

class_ The class to be mapped.

local_table The table to which the class is mapped, or None if this mapper inherits from another mapper using
concrete table inheritance.

always_refresh If True, all query operations for this mapped class will overwrite all data within object in-
stances that already exist within the session, erasing any in-memory changes with whatever information
was loaded from the database. Usage of this flag is highly discouraged; as an alternative, see the method
populate_existing() on Query.

allow_null_pks Indicates that composite primary keys where one or more (but not all) columns contain NULL
is a valid primary key. Primary keys which contain NULL values usually indicate that a result row does
not contain an entity and should be skipped.

batch Indicates that save operations of multiple entities can be batched together for efficiency. setting to
False indicates that an instance will be fully saved before saving the next instance, which includes in-
serting/updating all table rows corresponding to the entity as well as calling all MapperExtension
methods corresponding to the save operation.

column_prefix A string which will be prepended to the key name of all Columns when creating column-based
properties from the given Table. Does not affect explicitly specified column-based properties

concrete If True, indicates this mapper should use concrete table inheritance with its parent mapper.

extension A MapperExtension instance or list of MapperExtension instances which will be applied to
all operations by this Mapper.

inherits Another Mapper for which this Mapper will have an inheritance relationship with.

inherit_condition For joined table inheritance, a SQL expression (constructed ClauseElement) which will
define how the two tables are joined; defaults to a natural join between the two tables.

inherit_foreign_keys when inherit_condition is used and the condition contains no ForeignKey columns, spec-
ify the “foreign” columns of the join condition in this list. else leave as None.

180 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

order_by A single Column or list of Columns for which selection operations should use as the default or-
dering for entities. Defaults to the OID/ROWID of the table if any, or the first primary key column of the
table.

non_primary Construct a Mapper that will define only the selection of instances, not their persistence. Any
number of non_primary mappers may be created for a particular class.

polymorphic_on Used with mappers in an inheritance relationship, a Column which will identify the
class/mapper combination to be used with a particular row. Requires the polymorphic_identity
value to be set for all mappers in the inheritance hierarchy. The column specified by polymorphic_on
is usually a column that resides directly within the base mapper’s mapped table; alternatively, it may be a
column that is only present within the <selectable> portion of the with_polymorphic argument.

_polymorphic_map Used internally to propagate the full map of polymorphic identifiers to surrogate mappers.

polymorphic_identity A value which will be stored in the Column denoted by polymorphic_on, corresponding
to the class identity of this mapper.

polymorphic_fetch Deprecated. Unloaded columns load as deferred in all cases; loading can be controlled
using the “with_polymorphic” option.

properties A dictionary mapping the string names of object attributes to MapperProperty instances, which
define the persistence behavior of that attribute. Note that the columns in the mapped table are automati-
cally converted into ColumnProperty instances based on the key property of each Column (although
they can be overridden using this dictionary).

include_properties An inclusive list of properties to map. Columns present in the mapped table but not present
in this list will not be automatically converted into properties.

exclude_properties A list of properties not to map. Columns present in the mapped table and present in this list
will not be automatically converted into properties. Note that neither this option nor include_properties
will allow an end-run around Python inheritance. If mapped class B inherits from mapped class A, no
combination of includes or excludes will allow B to have fewer properties than its superclass, A.

primary_key A list of Column objects which define the primary key to be used against this mapper’s selectable
unit. This is normally simply the primary key of the local_table, but can be overridden here.

with_polymorphic A tuple in the form (<classes>, <selectable>) indicating the default style of
“polymorphic” loading, that is, which tables are queried at once. <classes> is any single or list of mappers
and/or classes indicating the inherited classes that should be loaded at once. The special value ’*’ may
be used to indicate all descending classes should be loaded immediately. The second tuple argument
<selectable> indicates a selectable that will be used to query for multiple classes. Normally, it is left
as None, in which case this mapper will form an outer join from the base mapper’s table to that of all
desired sub-mappers. When specified, it provides the selectable to be used for polymorphic loading.
When with_polymorphic includes mappers which load from a “concrete” inheriting table, the <selectable>
argument is required, since it usually requires more complex UNION queries.

select_table Deprecated. Synonymous with with_polymorphic=(’*’, <selectable>).

version_id_col A Column which must have an integer type that will be used to keep a running version id of
mapped entities in the database. this is used during save operations to ensure that no other thread or process
has updated the instance during the lifetime of the entity, else a ConcurrentModificationError
exception is thrown.

Mapper Properties

A basic mapping of a class will simply make the columns of the database table or selectable available as attributes
on the class. Mapper properties allow you to customize and add additional properties to your classes, for example
making the results one-to-many join available as a Python list of related objects.

Mapper properties are most commonly included in the mapper() call:

8.2. sqlalchemy.orm 181

SQLAlchemy Documentation, Release 0.5.4

mapper(Parent, properties={
’children’: relation(Children)

}

backref(name, **kwargs)
Create a BackRef object with explicit arguments, which are the same arguments one can send to relation().

Used with the backref keyword argument to relation() in place of a string argument.

column_property(*args, **kwargs)
Provide a column-level property for use with a Mapper.

Column-based properties can normally be applied to the mapper’s properties dictionary using the
schema.Column element directly. Use this function when the given column is not directly present within
the mapper’s selectable; examples include SQL expressions, functions, and scalar SELECT queries.

Columns that aren’t present in the mapper’s selectable won’t be persisted by the mapper and are effectively
“read-only” attributes.

*cols list of Column objects to be mapped.
comparator_factory a class which extends sqlalchemy.orm.properties.ColumnProperty.Comparator

which provides custom SQL clause generation for comparison operations.
group a group name for this property when marked as deferred.
deferred when True, the column property is “deferred”, meaning that it does not load immediately,

and is instead loaded when the attribute is first accessed on an instance. See also deferred().
extension an AttributeExtension instance, or list of extensions, which will be prepended

to the list of attribute listeners for the resulting descriptor placed on the class. These listeners
will receive append and set events before the operation proceeds, and may be used to halt (via
exception throw) or change the value used in the operation.

comparable_property(comparator_factory, descriptor=None)
Provide query semantics for an unmanaged attribute.

Allows a regular Python @property (descriptor) to be used in Queries and SQL constructs like a managed at-
tribute. comparable_property wraps a descriptor with a proxy that directs operator overrides such as == (__eq__)
to the supplied comparator but proxies everything else through to the original descriptor:

class MyClass(object):
@property
def myprop(self):

return ’foo’

class MyComparator(sqlalchemy.orm.interfaces.PropComparator):
def __eq__(self, other):

....

mapper(MyClass, mytable, properties=dict(
’myprop’: comparable_property(MyComparator)))

Used with the properties dictionary sent to mapper().

comparator_factory A PropComparator subclass or factory that defines operator behavior for this property.

descriptor Optional when used in a properties={} declaration. The Python descriptor or property to layer
comparison behavior on top of.
The like-named descriptor will be automatically retreived from the mapped class if left blank in a
properties declaration.

182 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

composite(class_, *cols, **kwargs)
Return a composite column-based property for use with a Mapper.

This is very much like a column-based property except the given class is used to represent “composite” values
composed of one or more columns.

The class must implement a constructor with positional arguments matching the order of columns supplied here,
as well as a __composite_values__() method which returns values in the same order.

A simple example is representing separate two columns in a table as a single, first-class “Point” object:

class Point(object):
def __init__(self, x, y):

self.x = x
self.y = y

def __composite_values__(self):
return self.x, self.y

def __eq__(self, other):
return other is not None and self.x == other.x and self.y == other.y

and then in the mapping:
... composite(Point, mytable.c.x, mytable.c.y) ...

The composite object may have its attributes populated based on the names of the mapped columns. To override
the way internal state is set, additionally implement __set_composite_values__:

class Point(object):
def __init__(self, x, y):

self.some_x = x
self.some_y = y

def __composite_values__(self):
return self.some_x, self.some_y

def __set_composite_values__(self, x, y):
self.some_x = x
self.some_y = y

def __eq__(self, other):
return other is not None and self.some_x == other.x and self.some_y == other.y

Arguments are:

class_ The “composite type” class.
*cols List of Column objects to be mapped.
group A group name for this property when marked as deferred.
deferred When True, the column property is “deferred”, meaning that it does not load immediately, and is

instead loaded when the attribute is first accessed on an instance. See also deferred().
comparator_factory a class which extends sqlalchemy.orm.properties.CompositeProperty.Comparator

which provides custom SQL clause generation for comparison operations.
extension an AttributeExtension instance, or list of extensions, which will be prepended to the list of

attribute listeners for the resulting descriptor placed on the class. These listeners will receive append and
set events before the operation proceeds, and may be used to halt (via exception throw) or change the value
used in the operation.

deferred(*columns, **kwargs)
Return a DeferredColumnProperty, which indicates this object attributes should only be loaded from its
corresponding table column when first accessed.

Used with the properties dictionary sent to mapper().

8.2. sqlalchemy.orm 183

SQLAlchemy Documentation, Release 0.5.4

dynamic_loader(argument, secondary=None, primaryjoin=None, secondaryjoin=None, foreign_keys=None,
backref=None, post_update=False, cascade=False, remote_side=None, en-
able_typechecks=True, passive_deletes=False, order_by=None, comparator_factory=None,
query_class=None)

Construct a dynamically-loading mapper property.

This property is similar to relation(), except read operations return an active Query object which reads
from the database when accessed. Items may be appended to the attribute via append(), or removed via
remove(); changes will be persisted to the database during a Sesion.flush(). However, no other Python
list or collection mutation operations are available.

A subset of arguments available to relation() are available here.

Parameters • argument – a class or Mapper instance, representing the target of the relation.
• secondary – for a many-to-many relationship, specifies the intermediary table. The sec-

ondary keyword argument should generally only be used for a table that is not otherwise
expressed in any class mapping. In particular, using the Association Object Pattern is gen-
erally mutually exclusive with the use of the secondary keyword argument.

• query_class – Optional, a custom Query subclass to be used as the basis for dynamic col-
lection.

relation(argument, secondary=None, **kwargs)
Provide a relationship of a primary Mapper to a secondary Mapper.

This corresponds to a parent-child or associative table relationship. The constructed class is an instance of
RelationProperty.

A typical relation():

mapper(Parent, properties={
’children’: relation(Children)

})

Parameters • argument – a class or Mapper instance, representing the target of the relation.
• secondary – for a many-to-many relationship, specifies the intermediary table. The sec-

ondary keyword argument should generally only be used for a table that is not otherwise
expressed in any class mapping. In particular, using the Association Object Pattern is gen-
erally mutually exclusive with the use of the secondary keyword argument.

• backref – indicates the string name of a property to be placed on the related mapper’s class
that will handle this relationship in the other direction. The other property will be created
automatically when the mappers are configured. Can also be passed as a backref()
object to control the configuration of the new relation.

• back_populates – Takes a string name and has the same meaning as backref, except
the complementing property is not created automatically, and instead must be config-
ured explicitly on the other mapper. The complementing property should also indicate
back_populates to this relation to ensure proper functioning.

• cascade – a comma-separated list of cascade rules which determines how Session operations
should be “cascaded” from parent to child. This defaults to False, which means the default
cascade should be used. The default value is "save-update, merge".
Available cascades are:
save-update - cascade the “add()” operation (formerly known as save() and up-
date())
merge - cascade the “merge()” operation
expunge - cascade the “expunge()” operation
delete - cascade the “delete()” operation

184 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

delete-orphan - if an item of the child’s type with no parent is detected, mark it
for deletion. Note that this option prevents a pending item of the child’s class from
being persisted without a parent present.
refresh-expire - cascade the expire() and refresh() operations
all - shorthand for “save-update,merge, refresh-expire, expunge, delete”

• collection_class – a class or callable that returns a new list-holding object. will be used in
place of a plain list for storing elements.

• comparator_factory – a class which extends RelationProperty.Comparatorwhich
provides custom SQL clause generation for comparison operations.

• extension – an AttributeExtension instance, or list of extensions, which will be
prepended to the list of attribute listeners for the resulting descriptor placed on the class.
These listeners will receive append and set events before the operation proceeds, and may
be used to halt (via exception throw) or change the value used in the operation.

• foreign_keys – a list of columns which are to be used as “foreign key” columns. this param-
eter should be used in conjunction with explicit primaryjoin and secondaryjoin
(if needed) arguments, and the columns within the foreign_keys list should be present
within those join conditions. Normally, relation() will inspect the columns within the
join conditions to determine which columns are the “foreign key” columns, based on infor-
mation in the Table metadata. Use this argument when no ForeignKey’s are present in the
join condition, or to override the table-defined foreign keys.

• join_depth – when non-None, an integer value indicating how many levels deep eagerload
joins should be constructed on a self-referring or cyclical relationship. The number counts
how many times the same Mapper shall be present in the loading condition along a particular
join branch. When left at its default of None, eager loads will automatically stop chaining
joins when they encounter a mapper which is already higher up in the chain.

• lazy=(True|False|None|’dynamic’) – specifies how the related items should be loaded. Val-
ues include:
True - items should be loaded lazily when the property is first accessed.
False - items should be loaded “eagerly” in the same query as that of the parent, using a

JOIN or LEFT OUTER JOIN.
None - no loading should occur at any time. This is to support “write-only” attributes,

or attributes which are populated in some manner specific to the application.
‘dynamic’ - a DynaLoader will be attached, which returns a Query object for all

read operations. The dynamic- collection supports only append() and remove()
for write operations; changes to the dynamic property will not be visible until the data is
flushed to the database.

• order_by – indicates the ordering that should be applied when loading these items.
• passive_deletes=False – Indicates loading behavior during delete operations.

A value of True indicates that unloaded child items should not be loaded during a delete
operation on the parent. Normally, when a parent item is deleted, all child items are loaded
so that they can either be marked as deleted, or have their foreign key to the parent set
to NULL. Marking this flag as True usually implies an ON DELETE <CASCADE|SET
NULL> rule is in place which will handle updating/deleting child rows on the database
side.
Additionally, setting the flag to the string value ‘all’ will disable the “nulling out” of the child
foreign keys, when there is no delete or delete-orphan cascade enabled. This is typically
used when a triggering or error raise scenario is in place on the database side. Note that the
foreign key attributes on in-session child objects will not be changed after a flush occurs so
this is a very special use-case setting.

• passive_updates=True – Indicates loading and INSERT/UPDATE/DELETE behavior when
the source of a foreign key value changes (i.e. an “on update” cascade), which are typically
the primary key columns of the source row.

8.2. sqlalchemy.orm 185

SQLAlchemy Documentation, Release 0.5.4

When True, it is assumed that ON UPDATE CASCADE is configured on the foreign key in
the database, and that the database will handle propagation of an UPDATE from a source
column to dependent rows. Note that with databases which enforce referential integrity
(i.e. Postgres, MySQL with InnoDB tables), ON UPDATE CASCADE is required for this
operation. The relation() will update the value of the attribute on related items which are
locally present in the session during a flush.
When False, it is assumed that the database does not enforce referential integrity and will
not be issuing its own CASCADE operation for an update. The relation() will issue the
appropriate UPDATE statements to the database in response to the change of a referenced
key, and items locally present in the session during a flush will also be refreshed.
This flag should probably be set to False if primary key changes are expected and the
database in use doesn’t support CASCADE (i.e. SQLite, MySQL MyISAM tables).

• post_update – this indicates that the relationship should be handled by a second UPDATE
statement after an INSERT or before a DELETE. Currently, it also will issue an UPDATE
after the instance was UPDATEd as well, although this technically should be improved.
This flag is used to handle saving bi-directional dependencies between two individual rows
(i.e. each row references the other), where it would otherwise be impossible to INSERT
or DELETE both rows fully since one row exists before the other. Use this flag when a
particular mapping arrangement will incur two rows that are dependent on each other, such
as a table that has a one-to-many relationship to a set of child rows, and also has a column
that references a single child row within that list (i.e. both tables contain a foreign key to
each other). If a flush() operation returns an error that a “cyclical dependency” was
detected, this is a cue that you might want to use post_update to “break” the cycle.

• primaryjoin – a ClauseElement that will be used as the primary join of this child object
against the parent object, or in a many-to-many relationship the join of the primary object to
the association table. By default, this value is computed based on the foreign key relation-
ships of the parent and child tables (or association table).

• remote_side – used for self-referential relationships, indicates the column or list of columns
that form the “remote side” of the relationship.

• secondaryjoin – a ClauseElement that will be used as the join of an association table to the
child object. By default, this value is computed based on the foreign key relationships of the
association and child tables.

• single_parent=(True|False) – when True, installs a validator which will prevent objects from
being associated with more than one parent at a time. This is used for many-to-one or many-
to-many relationships that should be treated either as one-to-one or one-to-many. Its usage is
optional unless delete-orphan cascade is also set on this relation(), in which case its required
(new in 0.5.2).

• uselist=(True|False) – a boolean that indicates if this property should be loaded as a list or
a scalar. In most cases, this value is determined automatically by relation(), based on
the type and direction of the relationship - one to many forms a list, many to one forms a
scalar, many to many is a list. If a scalar is desired where normally a list would be present,
such as a bi-directional one-to-one relationship, set uselist to False.

• viewonly=False – when set to True, the relation is used only for loading objects within
the relationship, and has no effect on the unit-of-work flush process. Relationships with
viewonly can specify any kind of join conditions to provide additional views of related
objects onto a parent object. Note that the functionality of a viewonly relationship has its
limits - complicated join conditions may not compile into eager or lazy loaders properly. If
this is the case, use an alternative method.

synonym(name, map_column=False, descriptor=None, comparator_factory=None, proxy=False)
Set up name as a synonym to another mapped property.

Used with the properties dictionary sent to mapper().

186 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

Any existing attributes on the class which map the key name sent to the properties dictionary will be used
by the synonym to provide instance-attribute behavior (that is, any Python property object, provided by the
property builtin or providing a __get__(), __set__() and __del__() method). If no name exists for
the key, the synonym() creates a default getter/setter object automatically and applies it to the class.

name refers to the name of the existing mapped property, which can be any other MapperProperty including
column-based properties and relations.

If map_column is True, an additional ColumnProperty is created on the mapper automatically, using the
synonym’s name as the keyname of the property, and the keyname of this synonym() as the name of the
column to map. For example, if a table has a column named status:

class MyClass(object):
def _get_status(self):

return self._status
def _set_status(self, value):

self._status = value
status = property(_get_status, _set_status)

mapper(MyClass, sometable, properties={
"status":synonym("_status", map_column=True)

})

The column named status will be mapped to the attribute named _status, and the status attribute on
MyClass will be used to proxy access to the column-based attribute.

The proxy keyword argument is deprecated and currently does nothing; synonyms now always establish an
attribute getter/setter function if one is not already available.

Decorators

reconstructor(fn)
Decorate a method as the ‘reconstructor’ hook.

Designates a method as the “reconstructor”, an __init__-like method that will be called by the ORM after
the instance has been loaded from the database or otherwise reconstituted.

The reconstructor will be invoked with no arguments. Scalar (non-collection) database-mapped attributes of the
instance will be available for use within the function. Eagerly-loaded collections are generally not yet available
and will usually only contain the first element. ORM state changes made to objects at this stage will not be
recorded for the next flush() operation, so the activity within a reconstructor should be conservative.

validates(*names)
Decorate a method as a ‘validator’ for one or more named properties.

Designates a method as a validator, a method which receives the name of the attribute as well as a value to be
assigned, or in the case of a collection to be added to the collection. The function can then raise validation
exceptions to halt the process from continuing, or can modify or replace the value before proceeding. The
function should otherwise return the given value.

Utilities

object_mapper(instance)
Given an object, return the primary Mapper associated with the object instance.

Raises UnmappedInstanceError if no mapping is configured.

8.2. sqlalchemy.orm 187

SQLAlchemy Documentation, Release 0.5.4

class_mapper(class_, compile=True)
Given a class, return the primary Mapper associated with the key.

Raises UnmappedClassError if no mapping is configured.

compile_mappers()
Compile all mappers that have been defined.

This is equivalent to calling compile() on any individual mapper.

clear_mappers()
Remove all mappers that have been created thus far.

The mapped classes will return to their initial “unmapped” state and can be re-mapped with new mappers.

Attribute Utilities

del_attribute(instance, key)
Delete the value of an attribute, firing history events.

This function may be used regardless of instrumentation applied directly to the class, i.e. no descriptors are
required. Custom attribute management schemes will need to make usage of this method to establish attribute
state as understood by SQLAlchemy.

get_attribute(instance, key)
Get the value of an attribute, firing any callables required.

This function may be used regardless of instrumentation applied directly to the class, i.e. no descriptors are
required. Custom attribute management schemes will need to make usage of this method to make usage of
attribute state as understood by SQLAlchemy.

get_history(obj, key, **kwargs)
Return a History record for the given object and attribute key.

obj is an instrumented object instance. An InstanceState is accepted directly for backwards compatibility but
this usage is deprecated.

init_collection(obj, key)
Initialize a collection attribute and return the collection adapter.

This function is used to provide direct access to collection internals for a previously unloaded attribute. e.g.:

collection_adapter = init_collection(someobject, ’elements’)
for elem in values:

collection_adapter.append_without_event(elem)

For an easier way to do the above, see set_committed_value().

obj is an instrumented object instance. An InstanceState is accepted directly for backwards compatibility but
this usage is deprecated.

instance_state()
Return the InstanceState for a given object.

is_instrumented(instance, key)
Return True if the given attribute on the given instance is instrumented by the attributes package.

This function may be used regardless of instrumentation applied directly to the class, i.e. no descriptors are
required.

manager_of_class()
Return the ClassManager for a given class.

188 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

set_attribute(instance, key, value)
Set the value of an attribute, firing history events.

This function may be used regardless of instrumentation applied directly to the class, i.e. no descriptors are
required. Custom attribute management schemes will need to make usage of this method to establish attribute
state as understood by SQLAlchemy.

set_committed_value(instance, key, value)
Set the value of an attribute with no history events.

Cancels any previous history present. The value should be a scalar value for scalar-holding attributes, or an
iterable for any collection-holding attribute.

This is the same underlying method used when a lazy loader fires off and loads additional data from the database.
In particular, this method can be used by application code which has loaded additional attributes or collections
through separate queries, which can then be attached to an instance as though it were part of its original loaded
state.

Internals

class Mapper(class_, local_table, properties=None, primary_key=None, non_primary=False, inherits=None,
inherit_condition=None, inherit_foreign_keys=None, extension=None, order_by=False, al-
ways_refresh=False, version_id_col=None, polymorphic_on=None, _polymorphic_map=None,
polymorphic_identity=None, polymorphic_fetch=None, concrete=False, select_table=None,
with_polymorphic=None, allow_null_pks=False, batch=True, column_prefix=None, in-
clude_properties=None, exclude_properties=None, eager_defaults=False)

Define the correlation of class attributes to database table columns.

Instances of this class should be constructed via the mapper() function.

__init__(class_, local_table, properties=None, primary_key=None, non_primary=False, inherits=None,
inherit_condition=None, inherit_foreign_keys=None, extension=None, order_by=False, al-
ways_refresh=False, version_id_col=None, polymorphic_on=None, _polymorphic_map=None,
polymorphic_identity=None, polymorphic_fetch=None, concrete=False, select_table=None,
with_polymorphic=None, allow_null_pks=False, batch=True, column_prefix=None, in-
clude_properties=None, exclude_properties=None, eager_defaults=False)

Construct a new mapper.
Mappers are normally constructed via the mapper() function. See for details.

add_properties(dict_of_properties)
Add the given dictionary of properties to this mapper, using add_property.

add_property(key, prop)
Add an individual MapperProperty to this mapper.
If the mapper has not been compiled yet, just adds the property to the initial properties dictionary sent to
the constructor. If this Mapper has already been compiled, then the given MapperProperty is compiled
immediately.

cascade_iterator(type_, state, halt_on=None)
Iterate each element and its mapper in an object graph, for all relations that meet the given cascade rule.

type_: The name of the cascade rule (i.e. save-update, delete, etc.)
state: The lead InstanceState. child items will be processed per the relations defined for this object’s

mapper.

the return value are object instances; this provides a strong reference so that they don’t fall out of scope
immediately.

common_parent(other)
Return true if the given mapper shares a common inherited parent as this mapper.

8.2. sqlalchemy.orm 189

SQLAlchemy Documentation, Release 0.5.4

compile()
Compile this mapper and all other non-compiled mappers.
This method checks the local compiled status as well as for any new mappers that have been defined, and
is safe to call repeatedly.

get_property(key, resolve_synonyms=False, raiseerr=True)
return a MapperProperty associated with the given key.

identity_key_from_instance(instance)
Return the identity key for the given instance, based on its primary key attributes.
This value is typically also found on the instance state under the attribute name key.

identity_key_from_primary_key(primary_key)
Return an identity-map key for use in storing/retrieving an item from an identity map.

primary_key A list of values indicating the identifier.

identity_key_from_row(row, adapter=None)
Return an identity-map key for use in storing/retrieving an item from the identity map.

row A sqlalchemy.engine.base.RowProxy instance or a dictionary corresponding result-set
ColumnElement instances to their values within a row.

isa(other)
Return True if the this mapper inherits from the given mapper.

iterate_properties
return an iterator of all MapperProperty objects.

polymorphic_iterator()
Iterate through the collection including this mapper and all descendant mappers.
This includes not just the immediately inheriting mappers but all their inheriting mappers as well.
To iterate through an entire hierarchy, use mapper.base_mapper.polymorphic_iterator().

primary_key_from_instance(instance)
Return the list of primary key values for the given instance.

primary_mapper()
Return the primary mapper corresponding to this mapper’s class key (class).

8.2.2 Collection Mapping

This is an in-depth discussion of collection mechanics. For simple examples, see Alternate Collection Implementa-
tions. Support for collections of mapped entities.

The collections package supplies the machinery used to inform the ORM of collection membership changes. An
instrumentation via decoration approach is used, allowing arbitrary types (including built-ins) to be used as entity
collections without requiring inheritance from a base class.

Instrumentation decoration relays membership change events to the InstrumentedCollectionAttribute
that is currently managing the collection. The decorators observe function call arguments and return values, track-
ing entities entering or leaving the collection. Two decorator approaches are provided. One is a bundle of generic
decorators that map function arguments and return values to events:

from sqlalchemy.orm.collections import collection
class MyClass(object):

...

@collection.adds(1)
def store(self, item):

self.data.append(item)

190 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

@collection.removes_return()
def pop(self):

return self.data.pop()

The second approach is a bundle of targeted decorators that wrap appropriate append and remove notifiers around the
mutation methods present in the standard Python list, set and dict interfaces. These could be specified in terms
of generic decorator recipes, but are instead hand-tooled for increased efficiency. The targeted decorators occasionally
implement adapter-like behavior, such as mapping bulk-set methods (extend, update, __setslice__, etc.) into
the series of atomic mutation events that the ORM requires.

The targeted decorators are used internally for automatic instrumentation of entity collection classes. Every collection
class goes through a transformation process roughly like so:

1. If the class is a built-in, substitute a trivial sub-class

2. Is this class already instrumented?

3. Add in generic decorators

4. Sniff out the collection interface through duck-typing

5. Add targeted decoration to any undecorated interface method

This process modifies the class at runtime, decorating methods and adding some bookkeeping properties. This isn’t
possible (or desirable) for built-in classes like list, so trivial sub-classes are substituted to hold decoration:

class InstrumentedList(list):
pass

Collection classes can be specified in relation(collection_class=) as types or a function that returns an
instance. Collection classes are inspected and instrumented during the mapper compilation phase. The collection_class
callable will be executed once to produce a specimen instance, and the type of that specimen will be instrumented.
Functions that return built-in types like lists will be adapted to produce instrumented instances.

When extending a known type like list, additional decorations are not generally not needed. Odds are, the extension
method will delegate to a method that’s already instrumented. For example:

class QueueIsh(list):
def push(self, item):

self.append(item)
def shift(self):

return self.pop(0)

There’s no need to decorate these methods. append and pop are already instrumented as part of the list interface.
Decorating them would fire duplicate events, which should be avoided.

The targeted decoration tries not to rely on other methods in the underlying collection class, but some are unavoidable.
Many depend on ‘read’ methods being present to properly instrument a ‘write’, for example, __setitem__ needs
__getitem__. “Bulk” methods like update and extend may also reimplemented in terms of atomic appends
and removes, so the extend decoration will actually perform many append operations and not call the underlying
method at all.

Tight control over bulk operation and the firing of events is also possible by implementing the instrumentation inter-
nally in your methods. The basic instrumentation package works under the general assumption that collection mutation

8.2. sqlalchemy.orm 191

SQLAlchemy Documentation, Release 0.5.4

will not raise unusual exceptions. If you want to closely orchestrate append and remove events with exception man-
agement, internal instrumentation may be the answer. Within your method, collection_adapter(self) will
retrieve an object that you can use for explicit control over triggering append and remove events.

The owning object and InstrumentedCollectionAttribute are also reachable through the adapter, allowing for some
very sophisticated behavior.

attribute_mapped_collection(attr_name)
A dictionary-based collection type with attribute-based keying.

Returns a MappedCollection factory with a keying based on the ‘attr_name’ attribute of entities in the collection.

The key value must be immutable for the lifetime of the object. You can not, for example, map on foreign key
values if those key values will change during the session, i.e. from None to a database-assigned integer after a
session flush.

class collection()
Decorators for entity collection classes.

The decorators fall into two groups: annotations and interception recipes.

The annotating decorators (appender, remover, iterator, internally_instrumented, on_link) indicate the method’s
purpose and take no arguments. They are not written with parens:

@collection.appender
def append(self, append): ...

The recipe decorators all require parens, even those that take no arguments:

@collection.adds(’entity’):
def insert(self, position, entity): ...

@collection.removes_return()
def popitem(self): ...

Decorators can be specified in long-hand for Python 2.3, or with the class-level dict attribute
‘__instrumentation__’- see the source for details.

collection_adapter(collection)
Fetch the CollectionAdapter for a collection.

column_mapped_collection(mapping_spec)
A dictionary-based collection type with column-based keying.

Returns a MappedCollection factory with a keying function generated from mapping_spec, which may be a
Column or a sequence of Columns.

The key value must be immutable for the lifetime of the object. You can not, for example, map on foreign key
values if those key values will change during the session, i.e. from None to a database-assigned integer after a
session flush.

mapped_collection(keyfunc)
A dictionary-based collection type with arbitrary keying.

Returns a MappedCollection factory with a keying function generated from keyfunc, a callable that takes an
entity and returns a key value.

The key value must be immutable for the lifetime of the object. You can not, for example, map on foreign key
values if those key values will change during the session, i.e. from None to a database-assigned integer after a
session flush.

192 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

8.2.3 Querying

The Query Object

Query is produced in terms of a given Session, using the query() function:

q = session.query(SomeMappedClass)

Following is the full interface for the Query object.

class Query(entities, session=None)
Encapsulates the object-fetching operations provided by Mappers.

__init__(entities, session=None)

add_column(column)
Add a SQL ColumnElement to the list of result columns to be returned.

add_entity(entity, alias=None)
add a mapped entity to the list of result columns to be returned.

all()
Return the results represented by this Query as a list.
This results in an execution of the underlying query.

autoflush(setting)
Return a Query with a specific ‘autoflush’ setting.
Note that a Session with autoflush=False will not autoflush, even if this flag is set to True at the Query
level. Therefore this flag is usually used only to disable autoflush for a specific Query.

correlate(*args)

count()
Apply this query’s criterion to a SELECT COUNT statement.
If column expressions or LIMIT/OFFSET/DISTINCT are present, the query “SELECT count(1) FROM
(SELECT ...)” is issued, so that the result matches the total number of rows this query would return. For
mapped entities, the primary key columns of each is written to the columns clause of the nested SELECT
statement.
For a Query which is only against mapped entities, a simpler “SELECT count(1) FROM table1, table2, ...
WHERE criterion” is issued.

delete(synchronize_session=’fetch’)
Perform a bulk delete query.
Deletes rows matched by this query from the database.

Parameter synchronize_session – chooses the strategy for the removal of matched objects from
the session. Valid values are:
False don’t synchronize the session. This option is the most efficient and is reliable once the

session is expired, which typically occurs after a commit(). Before the expiration, objects
may still remain in the session which were in fact deleted which can lead to confusing
results if they are accessed via get() or already loaded collections.

‘fetch’ performs a select query before the delete to find objects that are matched by the
delete query and need to be removed from the session. Matched objects are removed from
the session. ‘fetch’ is the default strategy.

‘evaluate’ experimental feature. Tries to evaluate the querys criteria in Python straight on
the objects in the session. If evaluation of the criteria isn’t implemented, the ‘fetch’ strat-
egy will be used as a fallback.
The expression evaluator currently doesn’t account for differing string collations between
the database and Python.

8.2. sqlalchemy.orm 193

SQLAlchemy Documentation, Release 0.5.4

Returns the number of rows deleted, excluding any cascades.
The method does not offer in-Python cascading of relations - it is assumed that ON DELETE CASCADE
is configured for any foreign key references which require it. The Session needs to be expired (occurs
automatically after commit(), or call expire_all()) in order for the state of dependent objects subject to
delete or delete-orphan cascade to be correctly represented.
Also, the before_delete() and after_delete() MapperExtension methods are not called
from this method. For a delete hook here, use the after_bulk_delete() MapperExtension
method.

distinct()
Apply a DISTINCT to the query and return the newly resulting Query.

enable_eagerloads(value)
Control whether or not eager joins are rendered.
When set to False, the returned Query will not render eager joins regardless of eagerload() options or
mapper-level lazy=False configurations.
This is used primarily when nesting the Query’s statement into a subquery or other selectable.

except_(*q)
Produce an EXCEPT of this Query against one or more queries.
Works the same way as union(). See that method for usage examples.

except_all(*q)
Produce an EXCEPT ALL of this Query against one or more queries.
Works the same way as union(). See that method for usage examples.

filter(criterion)
apply the given filtering criterion to the query and return the newly resulting Query
the criterion is any sql.ClauseElement applicable to the WHERE clause of a select.

filter_by(**kwargs)
apply the given filtering criterion to the query and return the newly resulting Query.

first()
Return the first result of this Query or None if the result doesn’t contain any row.
This results in an execution of the underlying query.

from_self(*entities)
return a Query that selects from this Query’s SELECT statement.
*entities - optional list of entities which will replace those being selected.

from_statement(statement)
Execute the given SELECT statement and return results.
This method bypasses all internal statement compilation, and the statement is executed without modifica-
tion.
The statement argument is either a string, a select() construct, or a text() construct, and should
return the set of columns appropriate to the entity class represented by this Query.
Also see the instances() method.

get(ident)
Return an instance of the object based on the given identifier, or None if not found.
The ident argument is a scalar or tuple of primary key column values in the order of the table def’s primary
key columns.

group_by(*criterion)
apply one or more GROUP BY criterion to the query and return the newly resulting Query

having(criterion)
apply a HAVING criterion to the query and return the newly resulting Query.

194 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

instances(cursor, _Query__context=None)
Given a ResultProxy cursor as returned by connection.execute(), return an ORM result as an iterator.
e.g.:

result = engine.execute("select * from users")
for u in session.query(User).instances(result):

print u

intersect(*q)
Produce an INTERSECT of this Query against one or more queries.
Works the same way as union(). See that method for usage examples.

intersect_all(*q)
Produce an INTERSECT ALL of this Query against one or more queries.
Works the same way as union(). See that method for usage examples.

iterate_instances(cursor, _Query__context=None)
Given a ResultProxy cursor as returned by connection.execute(), return an ORM result as an iterator.
Deprecated.
e.g.:

result = engine.execute("select * from users")
for u in session.query(User).instances(result):

print u

join(*props, **kwargs)
Create a join against this Query object’s criterion and apply generatively, returning the newly resulting
Query.
Each element in *props may be:

•a string property name, i.e. “rooms”. This will join along the relation of the same name from this
Query’s “primary” mapper, if one is present.

•a class-mapped attribute, i.e. Houses.rooms. This will create a join from “Houses” table to that of the
“rooms” relation.

•a 2-tuple containing a target class or selectable, and an “ON” clause. The ON clause can be the
property name/ attribute like above, or a SQL expression.

e.g.:

join along string attribute names
session.query(Company).join(’employees’)
session.query(Company).join(’employees’, ’tasks’)

join the Person entity to an alias of itself,
along the "friends" relation
PAlias = aliased(Person)
session.query(Person).join((Palias, Person.friends))

join from Houses to the "rooms" attribute on the
"Colonials" subclass of Houses, then join to the
"closets" relation on Room
session.query(Houses).join(Colonials.rooms, Room.closets)

join from Company entities to the "employees" collection,
using "people JOIN engineers" as the target. Then join
to the "computers" collection on the Engineer entity.
session.query(Company).join((people.join(engineers), ’employees’), Engineer.computers)

join from Articles to Keywords, using the "keywords" attribute.

8.2. sqlalchemy.orm 195

SQLAlchemy Documentation, Release 0.5.4

assume this is a many-to-many relation.
session.query(Article).join(Article.keywords)

same thing, but spelled out entirely explicitly
including the association table.
session.query(Article).join(

(article_keywords, Articles.id==article_keywords.c.article_id),
(Keyword, Keyword.id==article_keywords.c.keyword_id)
)

**kwargs include:
aliased - when joining, create anonymous aliases of each table. This is used for self-referential
joins or multiple joins to the same table. Consider usage of the aliased(SomeClass) construct as
a more explicit approach to this.
from_joinpoint - when joins are specified using string property names, locate the property from
the mapper found in the most recent previous join() call, instead of from the root entity.

limit(limit)
Apply a LIMIT to the query and return the newly resulting
Query.

offset(offset)
Apply an OFFSET to the query and return the newly resulting Query.

one()
Return exactly one result or raise an exception.
Raises sqlalchemy.orm.exc.NoResultFound if the query selects no rows. Raises
sqlalchemy.orm.exc.MultipleResultsFound if multiple rows are selected.
This results in an execution of the underlying query.

options(*args)
Return a new Query object, applying the given list of MapperOptions.

order_by(*criterion)
apply one or more ORDER BY criterion to the query and return the newly resulting Query

outerjoin(*props, **kwargs)
Create a left outer join against this Query object’s criterion and apply generatively, retunring the newly
resulting Query.
Usage is the same as the join() method.

params(*args, **kwargs)
add values for bind parameters which may have been specified in filter().
parameters may be specified using **kwargs, or optionally a single dictionary as the first positional argu-
ment. The reason for both is that **kwargs is convenient, however some parameter dictionaries contain
unicode keys in which case **kwargs cannot be used.

populate_existing()
Return a Query that will refresh all instances loaded.
This includes all entities accessed from the database, including secondary entities, eagerly-loaded collec-
tion items.
All changes present on entities which are already present in the session will be reset and the entities will
all be marked “clean”.
An alternative to populate_existing() is to expire the Session fully using session.expire_all().

class query_from_parent(instance, property, **kwargs)
Return a new Query with criterion corresponding to a parent instance.
Deprecated. Use sqlalchemy.orm.with_parent in conjunction with filter().
Return a newly constructed Query object, with criterion corresponding to a relationship to the given parent
instance.

196 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

instance a persistent or detached instance which is related to class represented by this query.
property string name of the property which relates this query’s class to the instance.
**kwargs all extra keyword arguments are propagated to the constructor of Query.

reset_joinpoint()
return a new Query reset the ‘joinpoint’ of this Query reset back to the starting mapper. Subsequent
generative calls will be constructed from the new joinpoint.
Note that each call to join() or outerjoin() also starts from the root.

scalar()
Return the first element of the first result or None.

>>> session.query(Item).scalar()
<Item>
>>> session.query(Item.id).scalar()
1
>>> session.query(Item.id).filter(Item.id < 0).scalar()
None
>>> session.query(Item.id, Item.name).scalar()
1
>>> session.query(func.count(Parent.id)).scalar()
20

This results in an execution of the underlying query.

select_from(from_obj)
Set the from_obj parameter of the query and return the newly resulting Query. This replaces the table
which this Query selects from with the given table.
from_obj is a single table or selectable.

slice(start, stop)
apply LIMIT/OFFSET to the Query based on a range and return the newly resulting Query.

statement
The full SELECT statement represented by this Query.

subquery()
return the full SELECT statement represented by this Query, embedded within an Alias.
Eager JOIN generation within the query is disabled.

union(*q)
Produce a UNION of this Query against one or more queries.
e.g.:

q1 = sess.query(SomeClass).filter(SomeClass.foo==’bar’)
q2 = sess.query(SomeClass).filter(SomeClass.bar==’foo’)

q3 = q1.union(q2)

The method accepts multiple Query objects so as to control the level of nesting. A series of union()
calls such as:

x.union(y).union(z).all()

will nest on each union(), and produces:

SELECT * FROM (SELECT * FROM (SELECT * FROM X UNION SELECT * FROM y) UNION SELECT * FROM Z)

Whereas:

x.union(y, z).all()

produces:

SELECT * FROM (SELECT * FROM X UNION SELECT * FROM y UNION SELECT * FROM Z)

8.2. sqlalchemy.orm 197

SQLAlchemy Documentation, Release 0.5.4

union_all(*q)
Produce a UNION ALL of this Query against one or more queries.
Works the same way as union(). See that method for usage examples.

update(values, synchronize_session=’expire’)
Perform a bulk update query.
Updates rows matched by this query in the database.

Parameters • values – a dictionary with attributes names as keys and literal values or sql ex-
pressions as values.

• synchronize_session – chooses the strategy to update the attributes on objects in the ses-
sion. Valid values are:
False don’t synchronize the session. Use this when you don’t need to use the session after

the update or you can be sure that none of the matched objects are in the session.
‘expire’ performs a select query before the update to find objects that are matched by the

update query. The updated attributes are expired on matched objects.
‘evaluate’ experimental feature. Tries to evaluate the querys criteria in Python straight

on the objects in the session. If evaluation of the criteria isn’t implemented, the ‘expire’
strategy will be used as a fallback.
The expression evaluator currently doesn’t account for differing string collations be-
tween the database and Python.

Returns the number of rows matched by the update.
The method does not offer in-Python cascading of relations - it is assumed that ON UPDATE CASCADE
is configured for any foreign key references which require it. The Session needs to be expired (occurs
automatically after commit(), or call expire_all()) in order for the state of dependent objects subject foreign
key cascade to be correctly represented.
Also, the before_update() and after_update() MapperExtension methods are not called
from this method. For an update hook here, use the after_bulk_update() SessionExtension
method.

value(column)
Return a scalar result corresponding to the given column expression.

values(*columns)
Return an iterator yielding result tuples corresponding to the given list of columns

whereclause
The WHERE criterion for this Query.

with_labels()
Apply column labels to the return value of Query.statement.
Indicates that this Query’s statement accessor should return a SELECT statement that applies labels to all
columns in the form <tablename>_<columnname>; this is commonly used to disambiguate columns from
multiple tables which have the same name.
When the Query actually issues SQL to load rows, it always uses column labeling.

with_lockmode(mode)
Return a new Query object with the specified locking mode.

with_parent(instance, property=None)
Add a join criterion corresponding to a relationship to the given parent instance.

instance a persistent or detached instance which is related to class represented by this query.
property string name of the property which relates this query’s class to the instance. if None, the method

will attempt to find a suitable property.

Currently, this method only works with immediate parent relationships, but in the future may be enhanced
to work across a chain of parent mappers.

198 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

with_polymorphic(cls_or_mappers, selectable=None, discriminator=None)
Load columns for descendant mappers of this Query’s mapper.
Using this method will ensure that each descendant mapper’s tables are included in the FROM clause, and
will allow filter() criterion to be used against those tables. The resulting instances will also have those
columns already loaded so that no “post fetch” of those columns will be required.

Parameters • cls_or_mappers – a single class or mapper, or list of class/mappers, which inherit
from this Query’s mapper. Alternatively, it may also be the string ’*’, in which case all
descending mappers will be added to the FROM clause.

• selectable – a table or select() statement that will be used in place of the generated FROM
clause. This argument is required if any of the desired mappers use concrete table inheri-
tance, since SQLAlchemy currently cannot generate UNIONs among tables automatically.
If used, the selectable argument must represent the full set of tables and columns
mapped by every desired mapper. Otherwise, the unaccounted mapped columns will re-
sult in their table being appended directly to the FROM clause which will usually lead to
incorrect results.

• discriminator – a column to be used as the “discriminator” column for the given selectable.
If not given, the polymorphic_on attribute of the mapper will be used, if any. This is useful
for mappers that don’t have polymorphic loading behavior by default, such as concrete
table mappers.

yield_per(count)
Yield only count rows at a time.
WARNING: use this method with caution; if the same instance is present in more than one batch of rows,
end-user changes to attributes will be overwritten.
In particular, it’s usually impossible to use this setting with eagerly loaded collections (i.e. any lazy=False)
since those collections will be cleared for a new load when encountered in a subsequent result batch.

ORM-Specific Query Constructs

aliased
alias of AliasedClass

join(left, right, onclause=None, isouter=False, join_to_left=True)
Produce an inner join between left and right clauses.

In addition to the interface provided by join(), left and right may be mapped classes or AliasedClass in-
stances. The onclause may be a string name of a relation(), or a class-bound descriptor representing a relation.

join_to_left indicates to attempt aliasing the ON clause, in whatever form it is passed, to the selectable passed
as the left side. If False, the onclause is used as is.

outerjoin(left, right, onclause=None, join_to_left=True)
Produce a left outer join between left and right clauses.

In addition to the interface provided by outerjoin(), left and right may be mapped classes or AliasedClass
instances. The onclause may be a string name of a relation(), or a class-bound descriptor representing a relation.

Query Options

Options which are passed to query.options(), to affect the behavior of loading.

contains_eager(*keys, **kwargs)
Return a MapperOption that will indicate to the query that the given attribute will be eagerly loaded.

Used when feeding SQL result sets directly into query.instances(). Also bundles an
EagerLazyOption to turn on eager loading in case it isn’t already.

8.2. sqlalchemy.orm 199

SQLAlchemy Documentation, Release 0.5.4

alias is the string name of an alias, or an sql.Alias object, which represents the aliased columns in the query.
This argument is optional.

defer(*keys)
Return a MapperOption that will convert the column property of the given name into a deferred load.

Used with query.options()

eagerload(*keys)
Return a MapperOption that will convert the property of the given name into an eager load.

Used with query.options().

eagerload_all(*keys)
Return a MapperOption that will convert all properties along the given dot-separated path into an eager load.

For example, this:

query.options(eagerload_all(’orders.items.keywords’))...

will set all of ‘orders’, ‘orders.items’, and ‘orders.items.keywords’ to load in one eager load.

Used with query.options().

extension(ext)
Return a MapperOption that will insert the given MapperExtension to the beginning of the list of exten-
sions that will be called in the context of the Query.

Used with query.options().

lazyload(*keys)
Return a MapperOption that will convert the property of the given name into a lazy load.

Used with query.options().

undefer(*keys)
Return a MapperOption that will convert the column property of the given name into a non-deferred (regular
column) load.

Used with query.options().

8.2.4 Sessions

create_session(bind=None, **kwargs)
Create a new Session.

Parameters • bind – optional, a single Connectable to use for all database access in the created
Session.

• **kwargs – optional, passed through to the Session constructor.
Returns an Session instance

The defaults of create_session() are the opposite of that of sessionmaker(); autoflush and
expire_on_commit are False, autocommit is True. In this sense the session acts more like the “clas-
sic” SQLAlchemy 0.3 session with these.

Usage:

>>> from sqlalchemy.orm import create_session
>>> session = create_session()

It is recommended to use sessionmaker() instead of create_session().

200 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

scoped_session(session_factory, scopefunc=None)
Provides thread-local management of Sessions.

This is a front-end function to ScopedSession.

Parameters • session_factory – a callable function that produces Session instances, such as
sessionmaker() or create_session().

• scopefunc – optional, TODO
Returns an ScopedSession instance

Usage:

Session = scoped_session(sessionmaker(autoflush=True))

To instantiate a Session object which is part of the scoped context, instantiate normally:

session = Session()

Most session methods are available as classmethods from the scoped session:

Session.commit()
Session.close()

To map classes so that new instances are saved in the current Session automatically, as well as to provide
session-aware class attributes such as “query”, use the mapper classmethod from the scoped session:

mapper = Session.mapper
mapper(Class, table, ...)

sessionmaker(bind=None, class_=None, autoflush=True, autocommit=False, expire_on_commit=True,
**kwargs)

Generate a custom-configured Session class.

The returned object is a subclass of Session, which, when instantiated with no arguments, uses the keyword
arguments configured here as its constructor arguments.

It is intended that the sessionmaker() function be called within the global scope of an application, and the
returned class be made available to the rest of the application as the single class used to instantiate sessions.

e.g.:

global scope
Session = sessionmaker(autoflush=False)

later, in a local scope, create and use a session:
sess = Session()

Any keyword arguments sent to the constructor itself will override the “configured” keywords:

Session = sessionmaker()

bind an individual session to a connection
sess = Session(bind=connection)

The class also includes a special classmethod configure(), which allows additional configurational options
to take place after the custom Session class has been generated. This is useful particularly for defining the
specific Engine (or engines) to which new instances of Session should be bound:

8.2. sqlalchemy.orm 201

SQLAlchemy Documentation, Release 0.5.4

Session = sessionmaker()
Session.configure(bind=create_engine(’sqlite:///foo.db’))

sess = Session()

Options:

autocommit Defaults to False. When True, the Session does not keep a persistent transaction running,
and will acquire connections from the engine on an as-needed basis, returning them immediately after their
use. Flushes will begin and commit (or possibly rollback) their own transaction if no transaction is present.
When using this mode, the session.begin() method may be used to begin a transaction explicitly.
Leaving it on its default value of False means that the Session will acquire a connection and begin a
transaction the first time it is used, which it will maintain persistently until rollback(), commit(),
or close() is called. When the transaction is released by any of these methods, the Session is ready
for the next usage, which will again acquire and maintain a new connection/transaction.

autoflush When True, all query operations will issue a flush() call to this Session before proceeding.
This is a convenience feature so that flush() need not be called repeatedly in order for database queries
to retrieve results. It’s typical that autoflush is used in conjunction with autocommit=False. In
this scenario, explicit calls to flush() are rarely needed; you usually only need to call commit()
(which flushes) to finalize changes.

bind An optional Engine or Connection to which this Session should be bound. When specified, all
SQL operations performed by this session will execute via this connectable.

binds An optional dictionary, which contains more granular “bind” information than the bind parameter pro-
vides. This dictionary can map individual Table instances as well as Mapper instances to individual
Engine or Connection objects. Operations which proceed relative to a particular Mapper will con-
sult this dictionary for the direct Mapper instance as well as the mapper’s mapped_table attribute in
order to locate an connectable to use. The full resolution is described in the get_bind() method of
Session. Usage looks like:

sess = Session(binds={
SomeMappedClass: create_engine(’postgres://engine1’),
somemapper: create_engine(’postgres://engine2’),
some_table: create_engine(’postgres://engine3’),
})

Also see the bind_mapper() and bind_table() methods.

class_ Specify an alternate class other than sqlalchemy.orm.session.Session which should be used
by the returned class. This is the only argument that is local to the sessionmaker() function, and is
not sent directly to the constructor for Session.

echo_uow Deprecated. Use logging.getLogger(’sqlalchemy.orm.unitofwork’).setLevel(logging.DEBUG).

_enable_transaction_accounting Defaults to True. A legacy-only flag which when False disables all 0.5-
style object accounting on transaction boundaries, including auto-expiry of instances on rollback and com-
mit, maintenance of the “new” and “deleted” lists upon rollback, and autoflush of pending changes upon
begin(), all of which are interdependent.

expire_on_commit Defaults to True. When True, all instances will be fully expired after each commit(),
so that all attribute/object access subsequent to a completed transaction will load from the most recent
database state.

extension An optional SessionExtension instance, or a list of such instances, which will receive pre- and
post- commit and flush events, as well as a post-rollback event. User- defined code may be placed within
these hooks using a user-defined subclass of SessionExtension.

query_cls Class which should be used to create new Query objects, as returned by the query() method.
Defaults to Query.

202 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

twophase When True, all transactions will be started using :mod:~sqlalchemy.engine_TwoPhaseTransaction.
During a commit(), after flush() has been issued for all attached databases, the prepare() method
on each database’s TwoPhaseTransaction will be called. This allows each database to roll back the
entire transaction, before each transaction is committed.

weak_identity_map When set to the default value of True, a weak-referencing map is used; instances which
are not externally referenced will be garbage collected immediately. For dereferenced instances which have
pending changes present, the attribute management system will create a temporary strong-reference to the
object which lasts until the changes are flushed to the database, at which point it’s again dereferenced.
Alternatively, when using the value False, the identity map uses a regular Python dictionary to store
instances. The session will maintain all instances present until they are removed using expunge(), clear(),
or purge().

class Session(bind=None, autoflush=True, expire_on_commit=True, _enable_transaction_accounting=True, au-
tocommit=False, twophase=False, echo_uow=None, weak_identity_map=True, binds=None, exten-
sion=None, query_cls=<class ’sqlalchemy.orm.query.Query’>)

Manages persistence operations for ORM-mapped objects.

The Session is the front end to SQLAlchemy’s Unit of Work implementation. The concept behind Unit of Work
is to track modifications to a field of objects, and then be able to flush those changes to the database in a single
operation.

SQLAlchemy’s unit of work includes these functions:

•The ability to track in-memory changes on scalar- and collection-based object attributes, such that database
persistence operations can be assembled based on those changes.

•The ability to organize individual SQL queries and population of newly generated primary and foreign
key-holding attributes during a persist operation such that referential integrity is maintained at all times.

•The ability to maintain insert ordering against the order in which new instances were added to the session.
•An Identity Map, which is a dictionary keying instances to their unique primary key identity. This ensures
that only one copy of a particular entity is ever present within the session, even if repeated load operations
for the same entity occur. This allows many parts of an application to get a handle to a particular object
without any chance of modifications going to two different places.

When dealing with instances of mapped classes, an instance may be attached to a particular Session, else it is
unattached . An instance also may or may not correspond to an actual row in the database. These conditions
break up into four distinct states:

•Transient - an instance that’s not in a session, and is not saved to the database; i.e. it has no database
identity. The only relationship such an object has to the ORM is that its class has a mapper() associated
with it.

•Pending - when you add() a transient instance, it becomes pending. It still wasn’t actually flushed to the
database yet, but it will be when the next flush occurs.

•Persistent - An instance which is present in the session and has a record in the database. You get persistent
instances by either flushing so that the pending instances become persistent, or by querying the database
for existing instances (or moving persistent instances from other sessions into your local session).

•Detached - an instance which has a record in the database, but is not in any session. Theres nothing wrong
with this, and you can use objects normally when they’re detached, except they will not be able to issue
any SQL in order to load collections or attributes which are not yet loaded, or were marked as “expired”.

The session methods which control instance state include add(), delete(), merge(), and expunge().

The Session object is generally not threadsafe. A session which is set to autocommit and is only read from
may be used by concurrent threads if it’s acceptable that some object instances may be loaded twice.

The typical pattern to managing Sessions in a multi-threaded environment is either to use mutexes to limit
concurrent access to one thread at a time, or more commonly to establish a unique session for every thread,
using a threadlocal variable. SQLAlchemy provides a thread-managed Session adapter, provided by the
scoped_session() function.

8.2. sqlalchemy.orm 203

SQLAlchemy Documentation, Release 0.5.4

__init__(bind=None, autoflush=True, expire_on_commit=True, _enable_transaction_accounting=True, auto-
commit=False, twophase=False, echo_uow=None, weak_identity_map=True, binds=None, exten-
sion=None, query_cls=<class ’sqlalchemy.orm.query.Query’>)

Construct a new Session.
Arguments to Session are described using the sessionmaker() function.

add(instance)
Place an object in the Session.
Its state will be persisted to the database on the next flush operation.
Repeated calls to add() will be ignored. The opposite of add() is expunge().

add_all(instances)
Add the given collection of instances to this Session.

begin(subtransactions=False, nested=False)
Begin a transaction on this Session.
If this Session is already within a transaction, either a plain transaction or nested transaction, an error is
raised, unless subtransactions=True or nested=True is specified.
The subtransactions=True flag indicates that this begin() can create a subtransaction if a trans-
action is already in progress. A subtransaction is a non-transactional, delimiting construct that allows
matching begin()/commit() pairs to be nested together, with only the outermost begin/commit pair actually
affecting transactional state. When a rollback is issued, the subtransaction will directly roll back the inner-
most real transaction, however each subtransaction still must be explicitly rolled back to maintain proper
stacking of subtransactions.
If no transaction is in progress, then a real transaction is begun.
The nested flag begins a SAVEPOINT transaction and is equivalent to calling begin_nested().

begin_nested()
Begin a nested transaction on this Session.
The target database(s) must support SQL SAVEPOINTs or a SQLAlchemy-supported vendor implemen-
tation of the idea.
The nested transaction is a real transation, unlike a “subtransaction” which corresponds to multiple
begin() calls. The next rollback() or commit() call will operate upon this nested transaction.

bind_mapper(mapper, bind)
Bind operations for a mapper to a Connectable.

mapper A mapper instance or mapped class
bind Any Connectable: a Engine or Connection.

All subsequent operations involving this mapper will use the given bind.

bind_table(table, bind)
Bind operations on a Table to a Connectable.

table A Table instance
bind Any Connectable: a Engine or Connection.

All subsequent operations involving this Table will use the given bind.

clear()
Remove all object instances from this Session.
Use session.expunge_all()
This is equivalent to calling expunge(obj) on all objects in this Session.

close()
Close this Session.
This clears all items and ends any transaction in progress.
If this session were created with autocommit=False, a new transaction is immediately begun. Note
that this new transaction does not use any connection resources until they are first needed.

204 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

class close_all()
Close all sessions in memory.

commit()
Flush pending changes and commit the current transaction.
If no transaction is in progress, this method raises an InvalidRequestError.
If a subtransaction is in effect (which occurs when begin() is called multiple times), the subtransaction will
be closed, and the next call to commit() will operate on the enclosing transaction.
For a session configured with autocommit=False, a new transaction will be begun immediately after the
commit, but note that the newly begun transaction does not use any connection resources until the first
SQL is actually emitted.

connection(mapper=None, clause=None)
Return the active Connection.
Retrieves the Connectionmanaging the current transaction. Any operations executed on the Connection
will take place in the same transactional context as Session operations.
For autocommit Sessions with no active manual transaction, connection() is a passthrough to
contextual_connect() on the underlying engine.
Ambiguity in multi-bind or unbound Sessions can be resolved through any of the optional keyword argu-
ments. See get_bind() for more information.

mapper Optional, a mapper or mapped class
clause Optional, any ClauseElement

delete(instance)
Mark an instance as deleted.
The database delete operation occurs upon flush().

deleted
The set of all instances marked as ‘deleted’ within this Session

dirty
The set of all persistent instances considered dirty.
Instances are considered dirty when they were modified but not deleted.
Note that this ‘dirty’ calculation is ‘optimistic’; most attribute-setting or collection modification operations
will mark an instance as ‘dirty’ and place it in this set, even if there is no net change to the attribute’s value.
At flush time, the value of each attribute is compared to its previously saved value, and if there’s no net
change, no SQL operation will occur (this is a more expensive operation so it’s only done at flush time).
To check if an instance has actionable net changes to its attributes, use the is_modified() method.

execute(clause, params=None, mapper=None, **kw)
Execute a clause within the current transaction.
Returns a ResultProxy of execution results. autocommit Sessions will create a transaction on the fly.
Connection ambiguity in multi-bind or unbound Sessions will be resolved by inspecting the clause
for binds. The ‘mapper’ and ‘instance’ keyword arguments may be used if this is insufficient, See
get_bind() for more information.

clause A ClauseElement (i.e. select(), text(), etc.) or string SQL statement to be executed
params Optional, a dictionary of bind parameters.
mapper Optional, a mapper or mapped class
**kw Additional keyword arguments are sent to get_bind() which locates a connectable to use for the

execution. Subclasses of Session may override this.

expire(instance, attribute_names=None)
Expire the attributes on an instance.
Marks the attributes of an instance as out of date. When an expired attribute is next accessed, query will
be issued to the database and the attributes will be refreshed with their current database value. expire()
is a lazy variant of refresh().

8.2. sqlalchemy.orm 205

SQLAlchemy Documentation, Release 0.5.4

The attribute_names argument is an iterable collection of attribute names indicating a subset of
attributes to be expired.

expire_all()
Expires all persistent instances within this Session.

expunge(instance)
Remove the instance from this Session.
This will free all internal references to the instance. Cascading will be applied according to the expunge
cascade rule.

expunge_all()
Remove all object instances from this Session.
This is equivalent to calling expunge(obj) on all objects in this Session.

flush(objects=None)
Flush all the object changes to the database.
Writes out all pending object creations, deletions and modifications to the database as INSERTs,
DELETEs, UPDATEs, etc. Operations are automatically ordered by the Session’s unit of work depen-
dency solver..
Database operations will be issued in the current transactional context and do not affect the state of the
transaction. You may flush() as often as you like within a transaction to move changes from Python to the
database’s transaction buffer.
For autocommit Sessions with no active manual transaction, flush() will create a transaction on the fly
that surrounds the entire set of operations int the flush.

objects Optional; a list or tuple collection. Restricts the flush operation to only these objects, rather than
all pending changes. Deprecated - this flag prevents the session from properly maintaining accounting
among inter-object relations and can cause invalid results.

get_bind(mapper, clause=None)
Return an engine corresponding to the given arguments.
All arguments are optional.

mapper Optional, a Mapper or mapped class
clause Optional, A ClauseElement (i.e. select(), text(), etc.)

is_active
True if this Session has an active transaction.

is_modified(instance, include_collections=True, passive=False)
Return True if instance has modified attributes.
This method retrieves a history instance for each instrumented attribute on the instance and performs a
comparison of the current value to its previously committed value. Note that instances present in the
‘dirty’ collection may result in a value of False when tested with this method.
include_collections indicates if multivalued collections should be included in the operation. Setting this to
False is a way to detect only local-column based properties (i.e. scalar columns or many-to-one foreign
keys) that would result in an UPDATE for this instance upon flush.
The passive flag indicates if unloaded attributes and collections should not be loaded in the course of
performing this test.

merge(instance, dont_load=False)
Copy the state an instance onto the persistent instance with the same identifier.
If there is no persistent instance currently associated with the session, it will be loaded. Return the persis-
tent instance. If the given instance is unsaved, save a copy of and return it as a newly persistent instance.
The given instance does not become associated with the session.
This operation cascades to associated instances if the association is mapped with cascade="merge".

new
The set of all instances marked as ‘new’ within this Session.

206 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

class object_session(instance)
Return the Session to which an object belongs.

prepare()
Prepare the current transaction in progress for two phase commit.
If no transaction is in progress, this method raises an InvalidRequestError.
Only root transactions of two phase sessions can be prepared. If the current transaction is not such, an
InvalidRequestError is raised.

prune()
Remove unreferenced instances cached in the identity map.
Note that this method is only meaningful if “weak_identity_map” is set to False. The default weak identity
map is self-pruning.
Removes any object in this Session’s identity map that is not referenced in user code, modified, new or
scheduled for deletion. Returns the number of objects pruned.

query(*entities, **kwargs)
Return a new Query object corresponding to this Session.

refresh(instance, attribute_names=None)
Refresh the attributes on the given instance.
A query will be issued to the database and all attributes will be refreshed with their current database value.
Lazy-loaded relational attributes will remain lazily loaded, so that the instance-wide refresh operation will
be followed immediately by the lazy load of that attribute.
Eagerly-loaded relational attributes will eagerly load within the single refresh operation.
The attribute_names argument is an iterable collection of attribute names indicating a subset of
attributes to be refreshed.

rollback()
Rollback the current transaction in progress.
If no transaction is in progress, this method is a pass-through.
This method rolls back the current transaction or nested transaction regardless of subtransactions being in
effect. All subtrasactions up to the first real transaction are closed. Subtransactions occur when begin() is
called mulitple times.

save(instance)
Add a transient (unsaved) instance to this Session.
Use session.add()
This operation cascades the save_or_update method to associated instances if the relation is mapped with
cascade="save-update".

save_or_update(instance)
Place an object in the Session.
Use session.add()
Its state will be persisted to the database on the next flush operation.
Repeated calls to add() will be ignored. The opposite of add() is expunge().

scalar(clause, params=None, mapper=None, **kw)
Like execute() but return a scalar result.

update(instance)
Bring a detached (saved) instance into this Session.
Use session.add()
If there is a persistent instance with the same instance key, but different identity already associated with
this Session, an InvalidRequestError exception is thrown.
This operation cascades the save_or_update method to associated instances if the relation is mapped with
cascade="save-update".

8.2. sqlalchemy.orm 207

SQLAlchemy Documentation, Release 0.5.4

class ScopedSession(session_factory, scopefunc=None)
Provides thread-local management of Sessions.

Usage:

Session = scoped_session(sessionmaker(autoflush=True))

To map classes so that new instances are saved in the current
Session automatically, as well as to provide session-aware
class attributes such as "query":

mapper = Session.mapper
mapper(Class, table, ...)

__init__(session_factory, scopefunc=None)

configure(**kwargs)
reconfigure the sessionmaker used by this ScopedSession.

mapper(*args, **kwargs)
return a mapper() function which associates this ScopedSession with the Mapper.

query_property(query_cls=None)
return a class property which produces a Query object against the class when called.

e.g.:: Session = scoped_session(sessionmaker())
class MyClass(object): query = Session.query_property()
after mappers are defined result = MyClass.query.filter(MyClass.name==’foo’).all()

Produces instances of the session’s configured query class by default. To override and use a custom im-
plementation, provide a query_cls callable. The callable will be invoked with the class’s mapper as a
positional argument and a session keyword argument.
There is no limit to the number of query properties placed on a class.

8.2.5 Interfaces

Semi-private module containing various base classes used throughout the ORM.

Defines the extension classes MapperExtension, SessionExtension, and AttributeExtension as well
as other user-subclassable extension objects.

class AttributeExtension()
An event handler for individual attribute change events.

AttributeExtension is assembled within the descriptors associated with a mapped class.

append(state, value, initiator)
Receive a collection append event.
The returned value will be used as the actual value to be appended.

remove(state, value, initiator)
Receive a remove event.
No return value is defined.

set(state, value, oldvalue, initiator)
Receive a set event.
The returned value will be used as the actual value to be set.

class InstrumentationManager(class_)
User-defined class instrumentation extension.

The API for this class should be considered as semi-stable, and may change slightly with new releases.

208 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

__init__(class_)

dict_getter(class_)

dispose(class_, manager)

get_instance_dict(class_, instance)

initialize_instance_dict(class_, instance)

install_descriptor(class_, key, inst)

install_member(class_, key, implementation)

install_state(class_, instance, state)

instrument_attribute(class_, key, inst)

instrument_collection_class(class_, key, collection_class)

manage(class_, manager)

manager_getter(class_)

post_configure_attribute(class_, key, inst)

remove_state(class_, instance)

state_getter(class_)

uninstall_descriptor(class_, key)

uninstall_member(class_, key)

class MapperExtension()
Base implementation for customizing Mapper behavior.

For each method in MapperExtension, returning a result of EXT_CONTINUE will allow processing to continue
to the next MapperExtension in line or use the default functionality if there are no other extensions.

Returning EXT_STOP will halt processing of further extensions handling that method. Some methods such as
load have other return requirements, see the individual documentation for details. Other than these excep-
tion cases, any return value other than EXT_CONTINUE or EXT_STOP will be interpreted as equivalent to
EXT_STOP.

after_delete(mapper, connection, instance)
Receive an object instance after that instance is DELETEed.

after_insert(mapper, connection, instance)
Receive an object instance after that instance is INSERTed.

after_update(mapper, connection, instance)
Receive an object instance after that instance is UPDATEed.

append_result(mapper, selectcontext, row, instance, result, **flags)
Receive an object instance before that instance is appended to a result list.
If this method returns EXT_CONTINUE, result appending will proceed normally. if this method returns
any other value or None, result appending will not proceed for this instance, giving this extension an
opportunity to do the appending itself, if desired.

mapper The mapper doing the operation.
selectcontext SelectionContext corresponding to the instances() call.
row The result row from the database.
instance The object instance to be appended to the result.
result List to which results are being appended.
**flags extra information about the row, same as criterion in create_row_processor() method of

MapperProperty

8.2. sqlalchemy.orm 209

SQLAlchemy Documentation, Release 0.5.4

before_delete(mapper, connection, instance)
Receive an object instance before that instance is DELETEed.
Note that no changes to the overall flush plan can be made here; this means any collection modification,
save() or delete() operations which occur within this method will not take effect until the next flush call.

before_insert(mapper, connection, instance)
Receive an object instance before that instance is INSERTed into its table.
This is a good place to set up primary key values and such that aren’t handled otherwise.
Column-based attributes can be modified within this method which will result in the new value being
inserted. However no changes to the overall flush plan can be made; this means any collection modification
or save() operations which occur within this method will not take effect until the next flush call.

before_update(mapper, connection, instance)
Receive an object instance before that instance is UPDATEed.
Note that this method is called for all instances that are marked as “dirty”, even those which have no
net changes to their column-based attributes. An object is marked as dirty when any of its column-based
attributes have a “set attribute” operation called or when any of its collections are modified. If, at update
time, no column-based attributes have any net changes, no UPDATE statement will be issued. This means
that an instance being sent to before_update is not a guarantee that an UPDATE statement will be issued
(although you can affect the outcome here).
To detect if the column-based attributes on the object have net changes, and will therefore gen-
erate an UPDATE statement, use object_session(instance).is_modified(instance,
include_collections=False).
Column-based attributes can be modified within this method which will result in their being updated.
However no changes to the overall flush plan can be made; this means any collection modification or
save() operations which occur within this method will not take effect until the next flush call.

create_instance(mapper, selectcontext, row, class_)
Receive a row when a new object instance is about to be created from that row.
The method can choose to create the instance itself, or it can return EXT_CONTINUE to indicate normal
object creation should take place.

mapper The mapper doing the operation
selectcontext SelectionContext corresponding to the instances() call
row The result row from the database
class_ The class we are mapping.
return value A new object instance, or EXT_CONTINUE

init_failed(mapper, class_, oldinit, instance, args, kwargs)

init_instance(mapper, class_, oldinit, instance, args, kwargs)

instrument_class(mapper, class_)

populate_instance(mapper, selectcontext, row, instance, **flags)
Receive an instance before that instance has its attributes populated.
This usually corresponds to a newly loaded instance but may also correspond to an already-loaded instance
which has unloaded attributes to be populated. The method may be called many times for a single instance,
as multiple result rows are used to populate eagerly loaded collections.
If this method returns EXT_CONTINUE, instance population will proceed normally. If any other value
or None is returned, instance population will not proceed, giving this extension an opportunity to populate
the instance itself, if desired.
As of 0.5, most usages of this hook are obsolete. For a generic “object has been newly created from a row”
hook, use reconstruct_instance(), or the @orm.reconstructor decorator.

reconstruct_instance(mapper, instance)
Receive an object instance after it has been created via __new__, and after initial attribute population has
occurred.

210 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

This typically occurs when the instance is created based on incoming result rows, and is only called once
for that instance’s lifetime.
Note that during a result-row load, this method is called upon the first row received for this instance.
If eager loaders are set to further populate collections on the instance, those will not yet be completely
loaded.

translate_row(mapper, context, row)
Perform pre-processing on the given result row and return a new row instance.
This is called when the mapper first receives a row, before the object identity or the instance itself has been
derived from that row.

class PropComparator(prop, mapper, adapter=None)
defines comparison operations for MapperProperty objects.

PropComparator instances should also define an accessor ‘property’ which returns the MapperProperty associ-
ated with this PropComparator.

__init__(prop, mapper, adapter=None)

adapted(adapter)
Return a copy of this PropComparator which will use the given adaption function on the local side of
generated expressions.

any(criterion=None, **kwargs)
Return true if this collection contains any member that meets the given criterion.

criterion an optional ClauseElement formulated against the member class’ table or attributes.
**kwargs key/value pairs corresponding to member class attribute names which will be compared via

equality to the corresponding values.

static any_op(a, b, **kwargs)

has(criterion=None, **kwargs)
Return true if this element references a member which meets the given criterion.

criterion an optional ClauseElement formulated against the member class’ table or attributes.
**kwargs key/value pairs corresponding to member class attribute names which will be compared via

equality to the corresponding values.

static has_op(a, b, **kwargs)

of_type(class_)
Redefine this object in terms of a polymorphic subclass.
Returns a new PropComparator from which further criterion can be evaluated.
e.g.:

query.join(Company.employees.of_type(Engineer)).\
filter(Engineer.name==’foo’)

class_ a class or mapper indicating that criterion will be against this specific subclass.

static of_type_op(a, class_)

class SessionExtension()
An extension hook object for Sessions. Subclasses may be installed into a Session (or sessionmaker) using the
extension keyword argument.

after_attach(session, instance)
Execute after an instance is attached to a session.
This is called after an add, delete or merge.

after_begin(session, transaction, connection)
Execute after a transaction is begun on a connection
transaction is the SessionTransaction. This method is called after an engine level transaction is begun on
a connection.

8.2. sqlalchemy.orm 211

SQLAlchemy Documentation, Release 0.5.4

after_bulk_delete(session, query, query_context, result)
Execute after a bulk delete operation to the session.
This is called after a session.query(...).delete()
query is the query object that this delete operation was called on. query_context was the query context
object. result is the result object returned from the bulk operation.

after_bulk_update(session, query, query_context, result)
Execute after a bulk update operation to the session.
This is called after a session.query(...).update()
query is the query object that this update operation was called on. query_context was the query context
object. result is the result object returned from the bulk operation.

after_commit(session)
Execute after a commit has occured.
Note that this may not be per-flush if a longer running transaction is ongoing.

after_flush(session, flush_context)
Execute after flush has completed, but before commit has been called.
Note that the session’s state is still in pre-flush, i.e. ‘new’, ‘dirty’, and ‘deleted’ lists still show pre-flush
state as well as the history settings on instance attributes.

after_flush_postexec(session, flush_context)
Execute after flush has completed, and after the post-exec state occurs.
This will be when the ‘new’, ‘dirty’, and ‘deleted’ lists are in their final state. An actual commit() may or
may not have occured, depending on whether or not the flush started its own transaction or participated in
a larger transaction.

after_rollback(session)
Execute after a rollback has occured.
Note that this may not be per-flush if a longer running transaction is ongoing.

before_commit(session)
Execute right before commit is called.
Note that this may not be per-flush if a longer running transaction is ongoing.

before_flush(session, flush_context, instances)
Execute before flush process has started.
instances is an optional list of objects which were passed to the flush() method.

8.2.6 Utilities

identity_key(*args, **kwargs)
Get an identity key.

Valid call signatures:

•identity_key(class, ident)

class mapped class (must be a positional argument)
ident primary key, if the key is composite this is a tuple

•identity_key(instance=instance)

instance object instance (must be given as a keyword arg)

•identity_key(class, row=row)

class mapped class (must be a positional argument)
row result proxy row (must be given as a keyword arg)

212 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

class Validator(key, validator)
Runs a validation method on an attribute value to be set or appended.

The Validator class is used by the validates() decorator, and direct access is usually not needed.

__init__(key, validator)
Construct a new Validator.
key - name of the attribute to be validated; will be passed as the second argument to the validation method
(the first is the object instance itself).
validator - an function or instance method which accepts three arguments; an instance (usually just ‘self’
for a method), the key name of the attribute, and the value. The function should return the same value
given, unless it wishes to modify it.

append(state, value, initiator)

set(state, value, oldvalue, initiator)

with_parent(instance, prop)
Return criterion which selects instances with a given parent.

instance a parent instance, which should be persistent or detached.

property a class-attached descriptor, MapperProperty or string property name attached to the parent instance.

**kwargs all extra keyword arguments are propagated to the constructor of Query.

polymorphic_union(table_map, typecolname, aliasname=’p_union’)
Create a UNION statement used by a polymorphic mapper.

See Concrete Table Inheritance for an example of how this is used.

8.3 sqlalchemy.databases

8.3.1 Access

8.3.2 Firebird

Firebird backend

This module implements the Firebird backend, thru the kinterbasdb DBAPI module.

Firebird dialects

Firebird offers two distinct dialects (not to be confused with the SA Dialect thing):

dialect 1 This is the old syntax and behaviour, inherited from Interbase pre-6.0.

dialect 3 This is the newer and supported syntax, introduced in Interbase 6.0.

From the user point of view, the biggest change is in date/time handling: under dialect 1, there’s a single kind of field,
DATE with a synonim DATETIME, that holds a timestamp value, that is a date with hour, minute, second. Under
dialect 3 there are three kinds, a DATE that holds a date, a TIME that holds a time of the day value and a TIMESTAMP,
equivalent to the old DATE.

The problem is that the dialect of a Firebird database is a property of the database itself 1 (that is, any single database
has been created with one dialect or the other: there is no way to change the after creation). SQLAlchemy has a single

1 Well, that is not the whole story, as the client may still ask a different (lower) dialect...

8.3. sqlalchemy.databases 213

http://sourceforge.net/projects/kinterbasdb
http://mc-computing.com/Databases/Firebird/SQL_Dialect.html

SQLAlchemy Documentation, Release 0.5.4

instance of the class that controls all the connections to a particular kind of database, so it cannot easily differentiate
between the two modes, and in particular it cannot simultaneously talk with two distinct Firebird databases with
different dialects.

By default this module is biased toward dialect 3, but you can easily tweak it to handle dialect 1 if needed:

from sqlalchemy import types as sqltypes
from sqlalchemy.databases.firebird import FBDate, colspecs, ischema_names

Adjust the mapping of the timestamp kind
ischema_names[’TIMESTAMP’] = FBDate
colspecs[sqltypes.DateTime] = FBDate,

Other aspects may be version-specific. You can use the server_version_info() method on the FBDialect
class to do whatever is needed:

from sqlalchemy.databases.firebird import FBCompiler

if engine.dialect.server_version_info(connection) < (2,0):
Change the name of the function ‘‘length‘‘ to use the UDF version
instead of ‘‘char_length‘‘
FBCompiler.LENGTH_FUNCTION_NAME = ’strlen’

Pooling connections

The default strategy used by SQLAlchemy to pool the database connections in particular cases may raise an
OperationalError with a message “object XYZ is in use”. This happens on Firebird when there are two connec-
tions to the database, one is using, or has used, a particular table and the other tries to drop or alter the same table. To
garantee DDL operations success Firebird recommend doing them as the single connected user.

In case your SA application effectively needs to do DDL operations while other connections are active, the following
setting may alleviate the problem:

from sqlalchemy import pool
from sqlalchemy.databases.firebird import dialect

Force SA to use a single connection per thread
dialect.poolclass = pool.SingletonThreadPool

RETURNING support

Firebird 2.0 supports returning a result set from inserts, and 2.1 extends that to deletes and updates.

To use this pass the column/expression list to the firebird_returning parameter when creating the queries:

raises = tbl.update(empl.c.sales > 100, values=dict(salary=empl.c.salary * 1.1),
firebird_returning=[empl.c.id, empl.c.salary]).execute().fetchall()

8.3.3 Informix

8.3.4 MaxDB

214 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

Support for the MaxDB database.

TODO: More module docs! MaxDB support is currently experimental.

Overview

The maxdb dialect is experimental and has only been tested on 7.6.03.007 and 7.6.00.037. Of these, only 7.6.03.007
will work with SQLAlchemy’s ORM. The earlier version has severe LEFT JOIN limitations and will return incorrect
results from even very simple ORM queries.

Only the native Python DB-API is currently supported. ODBC driver support is a future enhancement.

Connecting

The username is case-sensitive. If you usually connect to the database with sqlcli and other tools in lower case, you
likely need to use upper case for DB-API.

Implementation Notes

Also check the DatabaseNotes page on the wiki for detailed information.

With the 7.6.00.37 driver and Python 2.5, it seems that all DB-API generated exceptions are broken and can cause
Python to crash.

For ‘somecol.in_([])’ to work, the IN operator’s generation must be changed to cast ‘NULL’ to a numeric, i.e.
NUM(NULL). The DB-API doesn’t accept a bind parameter there, so that particular generation must inline the NULL
value, which depends on [ticket:807].

The DB-API is very picky about where bind params may be used in queries.

Bind params for some functions (e.g. MOD) need type information supplied. The dialect does not yet do this auto-
matically.

Max will occasionally throw up ‘bad sql, compile again’ exceptions for perfectly valid SQL. The dialect does not
currently handle these, more research is needed.

MaxDB 7.5 and Sap DB <= 7.4 reportedly do not support schemas. A very slightly different version of this dialect
would be required to support those versions, and can easily be added if there is demand. Some other required com-
ponents such as an Max-aware ‘old oracle style’ join compiler (thetas with (+) outer indicators) are already done and
available for integration- email the devel list if you’re interested in working on this.

8.3.5 SQL Server

Support for the Microsoft SQL Server database.

Driver

The MSSQL dialect will work with three different available drivers:

• pyodbc - http://pyodbc.sourceforge.net/. This is the recommeded driver.

• pymssql - http://pymssql.sourceforge.net/

• adodbapi - http://adodbapi.sourceforge.net/

8.3. sqlalchemy.databases 215

http://pyodbc.sourceforge.net/
http://pymssql.sourceforge.net/
http://adodbapi.sourceforge.net/

SQLAlchemy Documentation, Release 0.5.4

Drivers are loaded in the order listed above based on availability.

If you need to load a specific driver pass module_name when creating the engine:

engine = create_engine(’mssql://dsn’, module_name=’pymssql’)

module_name currently accepts: pyodbc, pymssql, and adodbapi.

Currently the pyodbc driver offers the greatest level of compatibility.

Connecting

Connecting with create_engine() uses the standard URL approach of mssql://user:pass@host/dbname[?key=value&key=value...].

If the database name is present, the tokens are converted to a connection string with the specified values. If the database
is not present, then the host token is taken directly as the DSN name.

Examples of pyodbc connection string URLs:

• mssql://mydsn - connects using the specified DSN named mydsn. The connection string that is created will
appear like:

dsn=mydsn;TrustedConnection=Yes

• mssql://user:pass@mydsn - connects using the DSN named mydsn passing in the UID and PWD information.
The connection string that is created will appear like:

dsn=mydsn;UID=user;PWD=pass

• mssql://user:pass@mydsn/?LANGUAGE=us_english - connects using the DSN named mydsn passing in the
UID and PWD information, plus the additional connection configuration option LANGUAGE. The connection
string that is created will appear like:

dsn=mydsn;UID=user;PWD=pass;LANGUAGE=us_english

• mssql://user:pass@host/db - connects using a connection string dynamically created that would appear like:

DRIVER={SQL Server};Server=host;Database=db;UID=user;PWD=pass

• mssql://user:pass@host:123/db - connects using a connection string that is dynamically created, which also
includes the port information using the comma syntax. If your connection string requires the port information
to be passed as a port keyword see the next example. This will create the following connection string:

DRIVER={SQL Server};Server=host,123;Database=db;UID=user;PWD=pass

• mssql://user:pass@host/db?port=123 - connects using a connection string that is dynamically created that in-
cludes the port information as a separate port keyword. This will create the following connection string:

DRIVER={SQL Server};Server=host;Database=db;UID=user;PWD=pass;port=123

If you require a connection string that is outside the options presented above, use the odbc_connect keyword to
pass in a urlencoded connection string. What gets passed in will be urldecoded and passed directly.

For example:

mssql:///?odbc_connect=dsn%3Dmydsn%3BDatabase%3Ddb

216 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

would create the following connection string:

dsn=mydsn;Database=db

Encoding your connection string can be easily accomplished through the python shell. For example:

>>> import urllib
>>> urllib.quote_plus(’dsn=mydsn;Database=db’)
’dsn%3Dmydsn%3BDatabase%3Ddb’

Additional arguments which may be specified either as query string arguments on the URL, or as keyword argument
to create_engine() are:

• auto_identity_insert - enables support for IDENTITY inserts by automatically turning IDENTITY INSERT ON
and OFF as required. Defaults to True.

• query_timeout - allows you to override the default query timeout. Defaults to None. This is only supported on
pymssql.

• text_as_varchar - if enabled this will treat all TEXT column types as their equivalent VARCHAR(max) type.
This is often used if you need to compare a VARCHAR to a TEXT field, which is not supported directly on
MSSQL. Defaults to False.

• use_scope_identity - allows you to specify that SCOPE_IDENTITY should be used in place of the non-scoped
version @@IDENTITY. Defaults to False. On pymssql this defaults to True, and on pyodbc this defaults to
True if the version of pyodbc being used supports it.

• has_window_funcs - indicates whether or not window functions (LIMIT and OFFSET) are supported on the
version of MSSQL being used. If you’re running MSSQL 2005 or later turn this on to get OFFSET support.
Defaults to False.

• max_identifier_length - allows you to se the maximum length of identfiers supported by the database. Defaults
to 128. For pymssql the default is 30.

• schema_name - use to set the schema name. Defaults to dbo.

Auto Increment Behavior

IDENTITY columns are supported by using SQLAlchemy schema.Sequence() objects. In other words:

Table(’test’, mss_engine,
Column(’id’, Integer,

Sequence(’blah’,100,10), primary_key=True),
Column(’name’, String(20))

).create()

would yield:

CREATE TABLE test (
id INTEGER NOT NULL IDENTITY(100,10) PRIMARY KEY,
name VARCHAR(20) NULL,
)

Note that the start and increment values for sequences are optional and will default to 1,1.

• Support for SET IDENTITY_INSERT ON mode (automagic on / off for INSERT s)

• Support for auto-fetching of @@IDENTITY/@@SCOPE_IDENTITY() on INSERT

8.3. sqlalchemy.databases 217

SQLAlchemy Documentation, Release 0.5.4

Collation Support

MSSQL specific string types support a collation parameter that creates a column-level specific collation for the column.
The collation parameter accepts a Windows Collation Name or a SQL Collation Name. Supported types are MSChar,
MSNChar, MSString, MSNVarchar, MSText, and MSNText. For example:

Column(’login’, String(32, collation=’Latin1_General_CI_AS’))

will yield:

login VARCHAR(32) COLLATE Latin1_General_CI_AS NULL

LIMIT/OFFSET Support

MSSQL has no support for the LIMIT or OFFSET keysowrds. LIMIT is supported directly through the TOP Transact
SQL keyword:

select.limit

will yield:

SELECT TOP n

If the has_window_funcs flag is set then LIMIT with OFFSET support is available through the ROW_NUMBER
OVER construct. This construct requires an ORDER BY to be specified as well and is only available on MSSQL 2005
and later.

Nullability

MSSQL has support for three levels of column nullability. The default nullability allows nulls and is explicit in the
CREATE TABLE construct:

name VARCHAR(20) NULL

If nullable=None is specified then no specification is made. In other words the database’s configured default is
used. This will render:

name VARCHAR(20)

If nullable is True or False then the column will be NULL‘ or ‘‘NOT NULL respectively.

Date / Time Handling

For MSSQL versions that support the DATE and TIME types (MSSQL 2008+) the data type is used. For versions
that do not support the DATE and TIME types a DATETIME type is used instead and the MSSQL dialect handles
converting the results properly. This means Date() and Time() are fully supported on all versions of MSSQL. If
you do not desire this behavior then do not use the Date() or Time() types.

218 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

Compatibility Levels

MSSQL supports the notion of setting compatibility levels at the database level. This allows, for instance, to run a
database that is compatibile with SQL2000 while running on a SQL2005 database server. server_version_info
will always retrun the database server version information (in this case SQL2005) and not the compatibiility level
information. Because of this, if running under a backwards compatibility mode SQAlchemy may attempt to use
T-SQL statements that are unable to be parsed by the database server.

Known Issues

• No support for more than one IDENTITY column per table

• pymssql has problems with binary and unicode data that this module does not work around

8.3.6 MySQL

Support for the MySQL database.

Overview

For normal SQLAlchemy usage, importing this module is unnecessary. It will be loaded on-demand when a MySQL
connection is needed. The generic column types like String and Integer will automatically be adapted to the
optimal matching MySQL column type.

But if you would like to use one of the MySQL-specific or enhanced column types when creating tables with your
Table definitions, then you will need to import them from this module:

from sqlalchemy.databases import mysql

Table(’mytable’, metadata,
Column(’id’, Integer, primary_key=True),
Column(’ittybittyblob’, mysql.MSTinyBlob),
Column(’biggy’, mysql.MSBigInteger(unsigned=True)))

All standard MySQL column types are supported. The OpenGIS types are available for use via table reflection but have
no special support or mapping to Python classes. If you’re using these types and have opinions about how OpenGIS
can be smartly integrated into SQLAlchemy please join the mailing list!

Supported Versions and Features

SQLAlchemy supports 6 major MySQL versions: 3.23, 4.0, 4.1, 5.0, 5.1 and 6.0, with capabilities increasing with
more modern servers.

Versions 4.1 and higher support the basic SQL functionality that SQLAlchemy uses in the ORM and SQL expressions.
These versions pass the applicable tests in the suite 100%. No heroic measures are taken to work around major missing
SQL features- if your server version does not support sub-selects, for example, they won’t work in SQLAlchemy either.

Currently, the only DB-API driver supported is MySQL-Python (also referred to as MySQLdb). Either 1.2.1 or 1.2.2
are recommended. The alpha, beta and gamma releases of 1.2.1 and 1.2.2 should be avoided. Support for Jython and
IronPython is planned.

8.3. sqlalchemy.databases 219

SQLAlchemy Documentation, Release 0.5.4

Feature Minimum Version
sqlalchemy.orm 4.1.1
Table Reflection 3.23.x
DDL Generation 4.1.1
utf8/Full Unicode Connections 4.1.1
Transactions 3.23.15
Two-Phase Transactions 5.0.3
Nested Transactions 5.0.3

See the official MySQL documentation for detailed information about features supported in any given server release.

Character Sets

Many MySQL server installations default to a latin1 encoding for client connections. All data sent through the
connection will be converted into latin1, even if you have utf8 or another character set on your tables and columns.
With versions 4.1 and higher, you can change the connection character set either through server configuration or by
including the charset parameter in the URL used for create_engine. The charset option is passed through
to MySQL-Python and has the side-effect of also enabling use_unicode in the driver by default. For regular
encoded strings, also pass use_unicode=0 in the connection arguments:

set client encoding to utf8; all strings come back as unicode
create_engine(’mysql:///mydb?charset=utf8’)

set client encoding to utf8; all strings come back as utf8 str
create_engine(’mysql:///mydb?charset=utf8&use_unicode=0’)

Storage Engines

Most MySQL server installations have a default table type of MyISAM, a non-transactional table type. During a
transaction, non-transactional storage engines do not participate and continue to store table changes in autocommit
mode. For fully atomic transactions, all participating tables must use a transactional engine such as InnoDB, Falcon,
SolidDB, PBXT, etc.

Storage engines can be elected when creating tables in SQLAlchemy by supplying a
mysql_engine=’whatever’ to the Table constructor. Any MySQL table creation option can be speci-
fied in this syntax:

Table(’mytable’, metadata,
Column(’data’, String(32)),
mysql_engine=’InnoDB’,
mysql_charset=’utf8’
)

Keys

Not all MySQL storage engines support foreign keys. For MyISAM and similar engines, the information loaded by
table reflection will not include foreign keys. For these tables, you may supply a ForeignKeyConstraint at
reflection time:

Table(’mytable’, metadata,
ForeignKeyConstraint([’other_id’], [’othertable.other_id’]),
autoload=True

)

220 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

When creating tables, SQLAlchemy will automatically set AUTO_INCREMENT‘ on an integer primary key column:

>>> t = Table(’mytable’, metadata,
... Column(’mytable_id’, Integer, primary_key=True)
...)
>>> t.create()
CREATE TABLE mytable (

id INTEGER NOT NULL AUTO_INCREMENT,
PRIMARY KEY (id)

)

You can disable this behavior by supplying autoincrement=False to the Column. This flag can also be used to
enable auto-increment on a secondary column in a multi-column key for some storage engines:

Table(’mytable’, metadata,
Column(’gid’, Integer, primary_key=True, autoincrement=False),
Column(’id’, Integer, primary_key=True)

)

SQL Mode

MySQL SQL modes are supported. Modes that enable ANSI_QUOTES (such as ANSI) require an engine option to
modify SQLAlchemy’s quoting style. When using an ANSI-quoting mode, supply use_ansiquotes=True when
creating your Engine:

create_engine(’mysql://localhost/test’, use_ansiquotes=True)

This is an engine-wide option and is not toggleable on a per-connection basis. SQLAlchemy does not presume to SET
sql_mode for you with this option. For the best performance, set the quoting style server-wide in my.cnf or by
supplying --sql-mode to mysqld. You can also use a sqlalchemy.pool.Pool listener hook to issue a SET
SESSION sql_mode=’...’ on connect to configure each connection.

If you do not specify use_ansiquotes, the regular MySQL quoting style is used by default.

If you do issue a SET sql_mode through SQLAlchemy, the dialect must be updated if the quoting style is changed.
Again, this change will affect all connections:

connection.execute(’SET sql_mode="ansi"’)
connection.dialect.use_ansiquotes = True

MySQL SQL Extensions

Many of the MySQL SQL extensions are handled through SQLAlchemy’s generic function and operator support:

table.select(table.c.password==func.md5(’plaintext’))
table.select(table.c.username.op(’regexp’)(’^[a-d]’))

And of course any valid MySQL statement can be executed as a string as well.

Some limited direct support for MySQL extensions to SQL is currently available.

• SELECT pragma:

8.3. sqlalchemy.databases 221

SQLAlchemy Documentation, Release 0.5.4

select(..., prefixes=[’HIGH_PRIORITY’, ’SQL_SMALL_RESULT’])

• UPDATE with LIMIT:

update(..., mysql_limit=10)

Troubleshooting

If you have problems that seem server related, first check that you are using the most recent stable MySQL-Python
package available. The Database Notes page on the wiki at http://www.sqlalchemy.org is a good resource for timely
information affecting MySQL in SQLAlchemy.

MySQL Column Types

class MSNumeric(precision=10, scale=2, asdecimal=True, **kw)
Bases: sqlalchemy.types.Numeric, sqlalchemy.databases.mysql._NumericType

MySQL NUMERIC type.

__init__(precision=10, scale=2, asdecimal=True, **kw)
Construct a NUMERIC.

Parameters • precision – Total digits in this number. If scale and precision are both None,
values are stored to limits allowed by the server.

• scale – The number of digits after the decimal point.
• unsigned – a boolean, optional.
• zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that

this does not effect the values returned by the underlying database API, which continue to
be numeric.

class MSDecimal(precision=10, scale=2, asdecimal=True, **kw)
Bases: sqlalchemy.databases.mysql.MSNumeric

MySQL DECIMAL type.

__init__(precision=10, scale=2, asdecimal=True, **kw)
Construct a DECIMAL.

Parameters • precision – Total digits in this number. If scale and precision are both None,
values are stored to limits allowed by the server.

• scale – The number of digits after the decimal point.
• unsigned – a boolean, optional.
• zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that

this does not effect the values returned by the underlying database API, which continue to
be numeric.

class MSDouble(precision=None, scale=None, asdecimal=True, **kw)
Bases: sqlalchemy.types.Float, sqlalchemy.databases.mysql._NumericType

MySQL DOUBLE type.

__init__(precision=None, scale=None, asdecimal=True, **kw)
Construct a DOUBLE.

Parameters • precision – Total digits in this number. If scale and precision are both None,
values are stored to limits allowed by the server.

• scale – The number of digits after the decimal point.
• unsigned – a boolean, optional.

222 Chapter 8. API Reference

http://www.sqlalchemy.org

SQLAlchemy Documentation, Release 0.5.4

• zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that
this does not effect the values returned by the underlying database API, which continue to
be numeric.

class MSReal(precision=None, scale=None, asdecimal=True, **kw)
Bases: sqlalchemy.databases.mysql.MSDouble

MySQL REAL type.

__init__(precision=None, scale=None, asdecimal=True, **kw)
Construct a REAL.

Parameters • precision – Total digits in this number. If scale and precision are both None,
values are stored to limits allowed by the server.

• scale – The number of digits after the decimal point.
• unsigned – a boolean, optional.
• zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that

this does not effect the values returned by the underlying database API, which continue to
be numeric.

class MSFloat(precision=None, scale=None, asdecimal=False, **kw)
Bases: sqlalchemy.types.Float, sqlalchemy.databases.mysql._NumericType

MySQL FLOAT type.

__init__(precision=None, scale=None, asdecimal=False, **kw)
Construct a FLOAT.

Parameters • precision – Total digits in this number. If scale and precision are both None,
values are stored to limits allowed by the server.

• scale – The number of digits after the decimal point.
• unsigned – a boolean, optional.
• zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that

this does not effect the values returned by the underlying database API, which continue to
be numeric.

class MSInteger(display_width=None, **kw)
Bases: sqlalchemy.types.Integer, sqlalchemy.databases.mysql._NumericType

MySQL INTEGER type.

__init__(display_width=None, **kw)
Construct an INTEGER.

Parameters • display_width – Optional, maximum display width for this number.
• unsigned – a boolean, optional.
• zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that

this does not effect the values returned by the underlying database API, which continue to
be numeric.

class MSBigInteger(display_width=None, **kw)
Bases: sqlalchemy.databases.mysql.MSInteger

MySQL BIGINTEGER type.

__init__(display_width=None, **kw)
Construct a BIGINTEGER.

Parameters • display_width – Optional, maximum display width for this number.
• unsigned – a boolean, optional.
• zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that

this does not effect the values returned by the underlying database API, which continue to
be numeric.

8.3. sqlalchemy.databases 223

SQLAlchemy Documentation, Release 0.5.4

class MSMediumInteger(display_width=None, **kw)
Bases: sqlalchemy.databases.mysql.MSInteger

MySQL MEDIUMINTEGER type.

__init__(display_width=None, **kw)
Construct a MEDIUMINTEGER

Parameters • display_width – Optional, maximum display width for this number.
• unsigned – a boolean, optional.
• zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that

this does not effect the values returned by the underlying database API, which continue to
be numeric.

class MSTinyInteger(display_width=None, **kw)
Bases: sqlalchemy.databases.mysql.MSInteger

MySQL TINYINT type.

__init__(display_width=None, **kw)
Construct a TINYINT.
Note: following the usual MySQL conventions, TINYINT(1) columns reflected during Table(..., au-
toload=True) are treated as Boolean columns.

Parameters • display_width – Optional, maximum display width for this number.
• unsigned – a boolean, optional.
• zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that

this does not effect the values returned by the underlying database API, which continue to
be numeric.

class MSSmallInteger(display_width=None, **kw)
Bases: sqlalchemy.types.SmallInteger, sqlalchemy.databases.mysql.MSInteger

MySQL SMALLINTEGER type.

__init__(display_width=None, **kw)
Construct a SMALLINTEGER.

Parameters • display_width – Optional, maximum display width for this number.
• unsigned – a boolean, optional.
• zerofill – Optional. If true, values will be stored as strings left-padded with zeros. Note that

this does not effect the values returned by the underlying database API, which continue to
be numeric.

class MSBit(length=None)
Bases: sqlalchemy.types.TypeEngine

MySQL BIT type.

This type is for MySQL 5.0.3 or greater for MyISAM, and 5.0.5 or greater for MyISAM, MEMORY, InnoDB
and BDB. For older versions, use a MSTinyInteger() type.

__init__(length=None)
Construct a BIT.

Parameter length – Optional, number of bits.

class MSDateTime(timezone=False)
Bases: sqlalchemy.types.DateTime

MySQL DATETIME type.

__init__(timezone=False)

class MSDate(*args, **kwargs)
Bases: sqlalchemy.types.Date

MySQL DATE type.

224 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

__init__(*args, **kwargs)

class MSTime(timezone=False)
Bases: sqlalchemy.types.Time

MySQL TIME type.

__init__(timezone=False)

class MSTimeStamp(timezone=False)
Bases: sqlalchemy.types.TIMESTAMP

MySQL TIMESTAMP type.

To signal the orm to automatically re-select modified rows to retrieve the updated timestamp, add a
server_default to your Column specification:

from sqlalchemy.databases import mysql
Column(’updated’, mysql.MSTimeStamp,

server_default=sql.text(’CURRENT_TIMESTAMP’)
)

The full range of MySQL 4.1+ TIMESTAMP defaults can be specified in the the default:

server_default=sql.text(’CURRENT TIMESTAMP ON UPDATE CURRENT_TIMESTAMP’)

__init__(timezone=False)

class MSYear(display_width=None)
Bases: sqlalchemy.types.TypeEngine

MySQL YEAR type, for single byte storage of years 1901-2155.

__init__(display_width=None)

class MSText(length=None, **kwargs)
Bases: sqlalchemy.databases.mysql._StringType, sqlalchemy.types.Text

MySQL TEXT type, for text up to 2^16 characters.

__init__(length=None, **kwargs)
Construct a TEXT.

Parameters • length – Optional, if provided the server may optimize storage by substituting
the smallest TEXT type sufficient to store length characters.

• charset – Optional, a column-level character set for this string value. Takes precedence to
‘ascii’ or ‘unicode’ short-hand.

• collation – Optional, a column-level collation for this string value. Takes precedence to
‘binary’ short-hand.

• ascii – Defaults to False: short-hand for the latin1 character set, generates ASCII in
schema.

• unicode – Defaults to False: short-hand for the ucs2 character set, generates UNICODE
in schema.

• national – Optional. If true, use the server’s configured national character set.
• binary – Defaults to False: short-hand, pick the binary collation type that matches the

column’s character set. Generates BINARY in schema. This does not affect the type of
data stored, only the collation of character data.

class MSTinyText(**kwargs)
Bases: sqlalchemy.databases.mysql.MSText

MySQL TINYTEXT type, for text up to 2^8 characters.

8.3. sqlalchemy.databases 225

SQLAlchemy Documentation, Release 0.5.4

__init__(**kwargs)
Construct a TINYTEXT.

Parameters • charset – Optional, a column-level character set for this string value. Takes
precedence to ‘ascii’ or ‘unicode’ short-hand.

• collation – Optional, a column-level collation for this string value. Takes precedence to
‘binary’ short-hand.

• ascii – Defaults to False: short-hand for the latin1 character set, generates ASCII in
schema.

• unicode – Defaults to False: short-hand for the ucs2 character set, generates UNICODE
in schema.

• national – Optional. If true, use the server’s configured national character set.
• binary – Defaults to False: short-hand, pick the binary collation type that matches the

column’s character set. Generates BINARY in schema. This does not affect the type of
data stored, only the collation of character data.

class MSMediumText(**kwargs)
Bases: sqlalchemy.databases.mysql.MSText

MySQL MEDIUMTEXT type, for text up to 2^24 characters.

__init__(**kwargs)
Construct a MEDIUMTEXT.

Parameters • charset – Optional, a column-level character set for this string value. Takes
precedence to ‘ascii’ or ‘unicode’ short-hand.

• collation – Optional, a column-level collation for this string value. Takes precedence to
‘binary’ short-hand.

• ascii – Defaults to False: short-hand for the latin1 character set, generates ASCII in
schema.

• unicode – Defaults to False: short-hand for the ucs2 character set, generates UNICODE
in schema.

• national – Optional. If true, use the server’s configured national character set.
• binary – Defaults to False: short-hand, pick the binary collation type that matches the

column’s character set. Generates BINARY in schema. This does not affect the type of
data stored, only the collation of character data.

class MSLongText(**kwargs)
Bases: sqlalchemy.databases.mysql.MSText

MySQL LONGTEXT type, for text up to 2^32 characters.

__init__(**kwargs)
Construct a LONGTEXT.

Parameters • charset – Optional, a column-level character set for this string value. Takes
precedence to ‘ascii’ or ‘unicode’ short-hand.

• collation – Optional, a column-level collation for this string value. Takes precedence to
‘binary’ short-hand.

• ascii – Defaults to False: short-hand for the latin1 character set, generates ASCII in
schema.

• unicode – Defaults to False: short-hand for the ucs2 character set, generates UNICODE
in schema.

• national – Optional. If true, use the server’s configured national character set.
• binary – Defaults to False: short-hand, pick the binary collation type that matches the

column’s character set. Generates BINARY in schema. This does not affect the type of
data stored, only the collation of character data.

226 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

class MSString(length=None, **kwargs)
Bases: sqlalchemy.databases.mysql._StringType, sqlalchemy.types.String

MySQL VARCHAR type, for variable-length character data.

__init__(length=None, **kwargs)
Construct a VARCHAR.

Parameters • charset – Optional, a column-level character set for this string value. Takes
precedence to ‘ascii’ or ‘unicode’ short-hand.

• collation – Optional, a column-level collation for this string value. Takes precedence to
‘binary’ short-hand.

• ascii – Defaults to False: short-hand for the latin1 character set, generates ASCII in
schema.

• unicode – Defaults to False: short-hand for the ucs2 character set, generates UNICODE
in schema.

• national – Optional. If true, use the server’s configured national character set.
• binary – Defaults to False: short-hand, pick the binary collation type that matches the

column’s character set. Generates BINARY in schema. This does not affect the type of
data stored, only the collation of character data.

class MSChar(length, **kwargs)
Bases: sqlalchemy.databases.mysql._StringType, sqlalchemy.types.CHAR

MySQL CHAR type, for fixed-length character data.

__init__(length, **kwargs)
Construct an NCHAR.

Parameters • length – Maximum data length, in characters.
• binary – Optional, use the default binary collation for the national character set. This does

not affect the type of data stored, use a BINARY type for binary data.
• collation – Optional, request a particular collation. Must be compatible with the national

character set.

class MSNVarChar(length=None, **kwargs)
Bases: sqlalchemy.databases.mysql._StringType, sqlalchemy.types.String

MySQL NVARCHAR type.

For variable-length character data in the server’s configured national character set.

__init__(length=None, **kwargs)
Construct an NVARCHAR.

Parameters • length – Maximum data length, in characters.
• binary – Optional, use the default binary collation for the national character set. This does

not affect the type of data stored, use a BINARY type for binary data.
• collation – Optional, request a particular collation. Must be compatible with the national

character set.

class MSNChar(length=None, **kwargs)
Bases: sqlalchemy.databases.mysql._StringType, sqlalchemy.types.CHAR

MySQL NCHAR type.

For fixed-length character data in the server’s configured national character set.

__init__(length=None, **kwargs)
Construct an NCHAR. Arguments are:

Parameters • length – Maximum data length, in characters.
• binary – Optional, use the default binary collation for the national character set. This does

not affect the type of data stored, use a BINARY type for binary data.

8.3. sqlalchemy.databases 227

SQLAlchemy Documentation, Release 0.5.4

• collation – Optional, request a particular collation. Must be compatible with the national
character set.

class MSVarBinary(length=None, **kw)
Bases: sqlalchemy.databases.mysql._BinaryType

MySQL VARBINARY type, for variable length binary data.

__init__(length=None, **kw)
Construct a VARBINARY. Arguments are:

Parameter length – Maximum data length, in characters.

class MSBinary(length=None, **kw)
Bases: sqlalchemy.databases.mysql._BinaryType

MySQL BINARY type, for fixed length binary data

__init__(length=None, **kw)
Construct a BINARY.
This is a fixed length type, and short values will be right-padded with a server-version-specific pad value.

Parameter length – Maximum data length, in bytes. If length is not specified, this will generate
a BLOB. This usage is deprecated.

class MSBlob(length=None, **kw)
Bases: sqlalchemy.databases.mysql._BinaryType

MySQL BLOB type, for binary data up to 2^16 bytes

__init__(length=None, **kw)
Construct a BLOB. Arguments are:

Parameter length – Optional, if provided the server may optimize storage by substituting the
smallest TEXT type sufficient to store length characters.

class MSTinyBlob(length=None, **kw)
Bases: sqlalchemy.databases.mysql.MSBlob

MySQL TINYBLOB type, for binary data up to 2^8 bytes.

__init__(length=None, **kw)
Construct a BLOB. Arguments are:

Parameter length – Optional, if provided the server may optimize storage by substituting the
smallest TEXT type sufficient to store length characters.

class MSMediumBlob(length=None, **kw)
Bases: sqlalchemy.databases.mysql.MSBlob

MySQL MEDIUMBLOB type, for binary data up to 2^24 bytes.

__init__(length=None, **kw)
Construct a BLOB. Arguments are:

Parameter length – Optional, if provided the server may optimize storage by substituting the
smallest TEXT type sufficient to store length characters.

class MSLongBlob(length=None, **kw)
Bases: sqlalchemy.databases.mysql.MSBlob

MySQL LONGBLOB type, for binary data up to 2^32 bytes.

__init__(length=None, **kw)
Construct a BLOB. Arguments are:

Parameter length – Optional, if provided the server may optimize storage by substituting the
smallest TEXT type sufficient to store length characters.

228 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

class MSEnum(*enums, **kw)
Bases: sqlalchemy.databases.mysql.MSString

MySQL ENUM type.

__init__(*enums, **kw)
Construct an ENUM.
Example:

Column(‘myenum’, MSEnum(“foo”, “bar”, “baz”))

Arguments are:

Parameters • enums – The range of valid values for this ENUM. Values will be quoted when
generating the schema according to the quoting flag (see below).

• strict – Defaults to False: ensure that a given value is in this ENUM’s range of permissible
values when inserting or updating rows. Note that MySQL will not raise a fatal error if
you attempt to store an out of range value- an alternate value will be stored instead. (See
MySQL ENUM documentation.)

• charset – Optional, a column-level character set for this string value. Takes precedence to
‘ascii’ or ‘unicode’ short-hand.

• collation – Optional, a column-level collation for this string value. Takes precedence to
‘binary’ short-hand.

• ascii – Defaults to False: short-hand for the latin1 character set, generates ASCII in
schema.

• unicode – Defaults to False: short-hand for the ucs2 character set, generates UNICODE
in schema.

• binary – Defaults to False: short-hand, pick the binary collation type that matches the
column’s character set. Generates BINARY in schema. This does not affect the type of
data stored, only the collation of character data.

• quoting – Defaults to ‘auto’: automatically determine enum value quoting. If all enum
values are surrounded by the same quoting character, then use ‘quoted’ mode. Otherwise,
use ‘unquoted’ mode.
‘quoted’: values in enums are already quoted, they will be used directly when generating
the schema.
‘unquoted’: values in enums are not quoted, they will be escaped and surrounded by single
quotes when generating the schema.
Previous versions of this type always required manually quoted values to be supplied;
future versions will always quote the string literals for you. This is a transitional option.

class MSSet(*values, **kw)
Bases: sqlalchemy.databases.mysql.MSString

MySQL SET type.

__init__(*values, **kw)
Construct a SET.
Example:

Column(’myset’, MSSet("’foo’", "’bar’", "’baz’"))

Arguments are:

Parameters • values – The range of valid values for this SET. Values will be used exactly as
they appear when generating schemas. Strings must be quoted, as in the example above.
Single-quotes are suggested for ANSI compatibility and are required for portability to
servers with ANSI_QUOTES enabled.

• charset – Optional, a column-level character set for this string value. Takes precedence to
‘ascii’ or ‘unicode’ short-hand.

8.3. sqlalchemy.databases 229

SQLAlchemy Documentation, Release 0.5.4

• collation – Optional, a column-level collation for this string value. Takes precedence to
‘binary’ short-hand.

• ascii – Defaults to False: short-hand for the latin1 character set, generates ASCII in
schema.

• unicode – Defaults to False: short-hand for the ucs2 character set, generates UNICODE
in schema.

• binary – Defaults to False: short-hand, pick the binary collation type that matches the
column’s character set. Generates BINARY in schema. This does not affect the type of
data stored, only the collation of character data.

class MSBoolean(*args, **kwargs)
Bases: sqlalchemy.types.Boolean

MySQL BOOLEAN type.

__init__(*args, **kwargs)

8.3.7 Oracle

Support for the Oracle database.

Oracle version 8 through current (11g at the time of this writing) are supported.

Driver

The Oracle dialect uses the cx_oracle driver, available at http://cx-oracle.sourceforge.net/ . The dialect has several
behaviors which are specifically tailored towards compatibility with this module.

Connecting

Connecting with create_engine() uses the standard URL approach of oracle://user:pass@host:port/dbname[?key=value&key=value...].
If dbname is present, the host, port, and dbname tokens are converted to a TNS name using the cx_oracle makedsn()
function. Otherwise, the host token is taken directly as a TNS name.

Additional arguments which may be specified either as query string arguments on the URL, or as keyword arguments
to create_engine() are:

• allow_twophase - enable two-phase transactions. Defaults to True.

• auto_convert_lobs - defaults to True, see the section on LOB objects.

• auto_setinputsizes - the cx_oracle.setinputsizes() call is issued for all bind parameters. This is required for LOB
datatypes but can be disabled to reduce overhead. Defaults to True.

• mode - This is given the string value of SYSDBA or SYSOPER, or alternatively an integer value. This value is
only available as a URL query string argument.

• threaded - enable multithreaded access to cx_oracle connections. Defaults to True. Note that this is the
opposite default of cx_oracle itself.

• use_ansi - Use ANSI JOIN constructs (see the section on Oracle 8). Defaults to True. If False, Oracle-8
compatible constructs are used for joins.

• optimize_limits - defaults to False. see the section on LIMIT/OFFSET.

230 Chapter 8. API Reference

http://cx-oracle.sourceforge.net/

SQLAlchemy Documentation, Release 0.5.4

Auto Increment Behavior

SQLAlchemy Table objects which include integer primary keys are usually assumed to have “autoincrementing”
behavior, meaning they can generate their own primary key values upon INSERT. Since Oracle has no “autoincrement”
feature, SQLAlchemy relies upon sequences to produce these values. With the Oracle dialect, a sequence must always
be explicitly specified to enable autoincrement. This is divergent with the majority of documentation examples which
assume the usage of an autoincrement-capable database. To specify sequences, use the sqlalchemy.schema.Sequence
object which is passed to a Column construct:

t = Table(’mytable’, metadata,
Column(’id’, Integer, Sequence(’id_seq’), primary_key=True),
Column(...), ...

)

This step is also required when using table reflection, i.e. autoload=True:

t = Table(’mytable’, metadata,
Column(’id’, Integer, Sequence(’id_seq’), primary_key=True),
autoload=True

)

LOB Objects

cx_oracle presents some challenges when fetching LOB objects. A LOB object in a result set is presented by cx_oracle
as a cx_oracle.LOB object which has a read() method. By default, SQLAlchemy converts these LOB objects into
Python strings. This is for two reasons. First, the LOB object requires an active cursor association, meaning if you
were to fetch many rows at once such that cx_oracle had to go back to the database and fetch a new batch of rows, the
LOB objects in the already-fetched rows are now unreadable and will raise an error. SQLA “pre-reads” all LOBs so
that their data is fetched before further rows are read. The size of a “batch of rows” is controlled by the cursor.arraysize
value, which SQLAlchemy defaults to 50 (cx_oracle normally defaults this to one).

Secondly, the LOB object is not a standard DBAPI return value so SQLAlchemy seeks to “normalize” the results to
look more like other DBAPIs.

The conversion of LOB objects by this dialect is unique in SQLAlchemy in that it takes place for all statement
executions, even plain string-based statements for which SQLA has no awareness of result typing. This is so that
calls like fetchmany() and fetchall() can work in all cases without raising cursor errors. The conversion of LOB in all
cases, as well as the “prefetch” of LOB objects, can be disabled using auto_convert_lobs=False.

LIMIT/OFFSET Support

Oracle has no support for the LIMIT or OFFSET keywords. Whereas previous versions of SQLAlchemy
used the “ROW NUMBER OVER...” construct to simulate LIMIT/OFFSET, SQLAlchemy 0.5 now uses
a wrapped subquery approach in conjunction with ROWNUM. The exact methodology is taken from
http://www.oracle.com/technology/oramag/oracle/06-sep/o56asktom.html . Note that the “FIRST ROWS()” optimiza-
tion keyword mentioned is not used by default, as the user community felt this was stepping into the bounds of opti-
mization that is better left on the DBA side, but this prefix can be added by enabling the optimize_limits=True flag on
create_engine().

Two Phase Transaction Support

Two Phase transactions are implemented using XA transactions. Success has been reported of them working success-
fully but this should be regarded as an experimental feature.

8.3. sqlalchemy.databases 231

http://www.oracle.com/technology/oramag/oracle/06-sep/o56asktom.html

SQLAlchemy Documentation, Release 0.5.4

Oracle 8 Compatibility

When using Oracle 8, a “use_ansi=False” flag is available which converts all JOIN phrases into the WHERE clause,
and in the case of LEFT OUTER JOIN makes use of Oracle’s (+) operator.

Synonym/DBLINK Reflection

When using reflection with Table objects, the dialect can optionally search for tables indicated by synonyms that
reference DBLINK-ed tables by passing the flag oracle_resolve_synonyms=True as a keyword argument to the Table
construct. If DBLINK is not in use this flag should be left off.

8.3.8 PostgreSQL

Support for the PostgreSQL database.

Driver

The psycopg2 driver is supported, available at http://pypi.python.org/pypi/psycopg2/ . The dialect has several behav-
iors which are specifically tailored towards compatibility with this module.

Note that psycopg1 is not supported.

Connecting

URLs are of the form postgres://user:password@host:port/dbname[?key=value&key=value...].

Postgres-specific keyword arguments which are accepted by create_engine() are:

• server_side_cursors - Enable the usage of “server side cursors” for SQL statements which support this feature.
What this essentially means from a psycopg2 point of view is that the cursor is created using a name, e.g.
connection.cursor(‘some name’), which has the effect that result rows are not immediately pre-fetched and
buffered after statement execution, but are instead left on the server and only retrieved as needed. SQLAlchemy’s
ResultProxy uses special row-buffering behavior when this feature is enabled, such that groups of 100 rows
at a time are fetched over the wire to reduce conversational overhead.

Sequences/SERIAL

Postgres supports sequences, and SQLAlchemy uses these as the default means of creating new primary key values for
integer-based primary key columns. When creating tables, SQLAlchemy will issue the SERIAL datatype for integer-
based primary key columns, which generates a sequence corresponding to the column and associated with it based on
a naming convention.

To specify a specific named sequence to be used for primary key generation, use the Sequence() construct:

Table(’sometable’, metadata,
Column(’id’, Integer, Sequence(’some_id_seq’), primary_key=True)

)

Currently, when SQLAlchemy issues a single insert statement, to fulfill the contract of having the “last insert identi-
fier” available, the sequence is executed independently beforehand and the new value is retrieved, to be used in the
subsequent insert. Note that when an insert() construct is executed using “executemany” semantics, the sequence
is not pre-executed and normal PG SERIAL behavior is used.

232 Chapter 8. API Reference

http://pypi.python.org/pypi/psycopg2/

SQLAlchemy Documentation, Release 0.5.4

Postgres 8.3 supports an INSERT...RETURNING syntax which SQLAlchemy supports as well. A future release of
SQLA will use this feature by default in lieu of sequence pre-execution in order to retrieve new primary key values,
when available.

INSERT/UPDATE...RETURNING

The dialect supports PG 8.3’s INSERT..RETURNING and UPDATE..RETURNING syntaxes, but must be explicitly
enabled on a per-statement basis:

INSERT..RETURNING
result = table.insert(postgres_returning=[table.c.col1, table.c.col2]).\

values(name=’foo’)
print result.fetchall()

UPDATE..RETURNING
result = table.update(postgres_returning=[table.c.col1, table.c.col2]).\

where(table.c.name==’foo’).values(name=’bar’)
print result.fetchall()

Indexes

PostgreSQL supports partial indexes. To create them pass a postgres_where option to the Index constructor:

Index(’my_index’, my_table.c.id, postgres_where=tbl.c.value > 10)

Transactions

The Postgres dialect fully supports SAVEPOINT and two-phase commit operations.

8.3.9 SQLite

Support for the SQLite database.

Driver

When using Python 2.5 and above, the built in sqlite3 driver is already installed and no additional installation is
needed. Otherwise, the pysqlite2 driver needs to be present. This is the same driver as sqlite3, just with a
different name.

The pysqlite2 driver will be loaded first, and if not found, sqlite3 is loaded. This allows an explicitly installed
pysqlite driver to take precedence over the built in one. As with all dialects, a specific DBAPI module may be provided
to create_engine() to control this explicitly:

from sqlite3 import dbapi2 as sqlite
e = create_engine(’sqlite:///file.db’, module=sqlite)

Full documentation on pysqlite is available at: http://www.initd.org/pub/software/pysqlite/doc/usage-guide.html

8.3. sqlalchemy.databases 233

http://www.initd.org/pub/software/pysqlite/doc/usage-guide.html

SQLAlchemy Documentation, Release 0.5.4

Connect Strings

The file specification for the SQLite database is taken as the “database” portion of the URL. Note that the format of a
url is:

driver://user:pass@host/database

This means that the actual filename to be used starts with the characters to the right of the third slash. So connecting
to a relative filepath looks like:

relative path
e = create_engine(’sqlite:///path/to/database.db’)

An absolute path, which is denoted by starting with a slash, means you need four slashes:

absolute path
e = create_engine(’sqlite:////path/to/database.db’)

To use a Windows path, regular drive specifications and backslashes can be used. Double backslashes are probably
needed:

absolute path on Windows
e = create_engine(’sqlite:///C:\\path\\to\\database.db’)

The sqlite :memory: identifier is the default if no filepath is present. Specify sqlite:// and nothing else:

in-memory database
e = create_engine(’sqlite://’)

Threading Behavior

Pysqlite connections do not support being moved between threads, unless the check_same_thread Pysqlite flag
is set to False. In addition, when using an in-memory SQLite database, the full database exists only within the
scope of a single connection. It is reported that an in-memory database does not support being shared between threads
regardless of the check_same_thread flag - which means that a multithreaded application cannot share data
from a :memory: database across threads unless access to the connection is limited to a single worker thread which
communicates through a queueing mechanism to concurrent threads.

To provide a default which accomodates SQLite’s default threading capabilities somewhat reasonably, the SQLite
dialect will specify that the SingletonThreadPool be used by default. This pool maintains a single SQLite
connection per thread that is held open up to a count of five concurrent threads. When more than five threads are used,
a cleanup mechanism will dispose of excess unused connections.

Two optional pool implementations that may be appropriate for particular SQLite usage scenarios:

• the sqlalchemy.pool.StaticPool might be appropriate for a multithreaded application using an in-
memory database, assuming the threading issues inherent in pysqlite are somehow accomodated for. This pool
holds persistently onto a single connection which is never closed, and is returned for all requests.

• the sqlalchemy.pool.NullPool might be appropriate for an application that makes use of a file-
based sqlite database. This pool disables any actual “pooling” behavior, and simply opens and closes real
connections corresonding to the connect() and close() methods. SQLite can “connect” to a particu-
lar file with very high efficiency, so this option may actually perform better without the extra overhead of
SingletonThreadPool. NullPool will of course render a :memory: connection useless since the database
would be lost as soon as the connection is “returned” to the pool.

234 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

Date and Time Types

SQLite does not have built-in DATE, TIME, or DATETIME types, and pysqlite does not provide out of the box func-
tionality for translating values between Python datetime objects and a SQLite-supported format. SQLAlchemy’s own
DateTime and related types provide date formatting and parsing functionality when SQlite is used. The implemen-
tation classes are SLDateTime, SLDate and SLTime. These types represent dates and times as ISO formatted
strings, which also nicely support ordering. There’s no reliance on typical “libc” internals for these functions so
historical dates are fully supported.

Unicode

In contrast to SQLAlchemy’s active handling of date and time types for pysqlite, pysqlite’s default behavior regarding
Unicode is that all strings are returned as Python unicode objects in all cases. So even if the Unicode type is not
used, you will still always receive unicode data back from a result set. It is strongly recommended that you do use
the Unicode type to represent strings, since it will raise a warning if a non-unicode Python string is passed from the
user application. Mixing the usage of non-unicode objects with returned unicode objects can quickly create confusion,
particularly when using the ORM as internal data is not always represented by an actual database result string.

8.3.10 Sybase

Sybase database backend.

Known issues / TODO:

• Uses the mx.ODBC driver from egenix (version 2.1.0)

• The current version of sqlalchemy.databases.sybase only supports mx.ODBC.Windows (other platforms such as
mx.ODBC.unixODBC still need some development)

• Support for pyodbc has been built in but is not yet complete (needs further development)

• Results of running tests/alltests.py: Ran 934 tests in 287.032s FAILED (failures=3, errors=1)

• Tested on ‘Adaptive Server Anywhere 9’ (version 9.0.1.1751)

8.4 sqlalchemy.ext

SQLAlchemy has a variety of extensions available which provide extra functionality to SA, either via explicit usage
or by augmenting the core behavior.

8.4.1 declarative

A simple declarative layer for SQLAlchemy ORM.

Synopsis

SQLAlchemy object-relational configuration involves the usage of Table, mapper(), and class objects to define
the three areas of configuration. declarative moves these three types of configuration underneath the individual
mapped class. Regular SQLAlchemy schema and ORM constructs are used in most cases:

8.4. sqlalchemy.ext 235

SQLAlchemy Documentation, Release 0.5.4

from sqlalchemy.ext.declarative import declarative_base

Base = declarative_base()

class SomeClass(Base):
__tablename__ = ’some_table’
id = Column(Integer, primary_key=True)
name = Column(String(50))

Above, the declarative_base() callable produces a new base class from which all mapped classes inherit
from. When the class definition is completed, a new Table and mapper have been generated, accessible via the
__table__ and __mapper__ attributes on the SomeClass class.

Defining Attributes

Column objects may be explicitly named, including using a different name than the attribute in which they are
associated. The column will be assigned to the Table using the given name, and mapped to the class using the
attribute name:

class SomeClass(Base):
__tablename__ = ’some_table’
id = Column("some_table_id", Integer, primary_key=True)
name = Column("name", String(50))

Otherwise, you may omit the names from the Column definitions. Declarative will set the name attribute on the
column when the class is initialized:

class SomeClass(Base):
__tablename__ = ’some_table’
id = Column(Integer, primary_key=True)
name = Column(String(50))

Attributes may be added to the class after its construction, and they will be added to the underlying Table and
mapper() definitions as appropriate:

SomeClass.data = Column(’data’, Unicode)
SomeClass.related = relation(RelatedInfo)

Classes which are mapped explicitly using mapper() can interact freely with declarative classes. It is recom-
mended, though not required, that all tables share the same underlying MetaData object, so that string-configured
ForeignKey references can be resolved without issue.

Association of Metadata and Engine

The declarative_base() base class contains a MetaData object where newly defined Table objects are
collected. This is accessed via the MetaData class level accessor, so to create tables we can say:

engine = create_engine(’sqlite://’)
Base.metadata.create_all(engine)

236 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

The Engine created above may also be directly associated with the declarative base class using the bind keyword
argument, where it will be associated with the underlying MetaData object and allow SQL operations involving that
metadata and its tables to make use of that engine automatically:

Base = declarative_base(bind=create_engine(’sqlite://’))

Or, as MetaData allows, at any time using the bind attribute:

Base.metadata.bind = create_engine(’sqlite://’)

The declarative_base() can also receive a pre-created MetaData object, which allows a declarative setup to
be associated with an already existing traditional collection of Table objects:

mymetadata = MetaData()
Base = declarative_base(metadata=mymetadata)

Configuring Relations

Relations to other classes are done in the usual way, with the added feature that the class specified to relation()
may be a string name. The “class registry” associated with Base is used at mapper compilation time to resolve the
name into the actual class object, which is expected to have been defined once the mapper configuration is used:

class User(Base):
__tablename__ = ’users’

id = Column(Integer, primary_key=True)
name = Column(String(50))
addresses = relation("Address", backref="user")

class Address(Base):
__tablename__ = ’addresses’

id = Column(Integer, primary_key=True)
email = Column(String(50))
user_id = Column(Integer, ForeignKey(’users.id’))

Column constructs, since they are just that, are immediately usable, as below where we define a primary join condition
on the Address class using them:

class Address(Base):
__tablename__ = ’addresses’

id = Column(Integer, primary_key=True)
email = Column(String(50))
user_id = Column(Integer, ForeignKey(’users.id’))
user = relation(User, primaryjoin=user_id == User.id)

In addition to the main argument for relation(), other arguments which depend upon the columns present on an
as-yet undefined class may also be specified as strings. These strings are evaluated as Python expressions. The full
namespace available within this evaluation includes all classes mapped for this declarative base, as well as the contents
of the sqlalchemy package, including expression functions like desc() and func:

8.4. sqlalchemy.ext 237

SQLAlchemy Documentation, Release 0.5.4

class User(Base):
....
addresses = relation("Address", order_by="desc(Address.email)",

primaryjoin="Address.user_id==User.id")

As an alternative to string-based attributes, attributes may also be defined after all classes have been created. Just add
them to the target class after the fact:

User.addresses = relation(Address, primaryjoin=Address.user_id == User.id)

Configuring Many-to-Many Relations

There’s nothing special about many-to-many with declarative. The secondary argument to relation() still
requires a Table object, not a declarative class. The Table should share the same MetaData object used by the
declarative base:

keywords = Table(’keywords’, Base.metadata,
Column(’author_id’, Integer, ForeignKey(’authors.id’)),
Column(’keyword_id’, Integer, ForeignKey(’keywords.id’))

)

class Author(Base):
__tablename__ = ’authors’
id = Column(Integer, primary_key=True)
keywords = relation("Keyword", secondary=keywords)

You should generally not map a class and also specify its table in a many-to-many relation, since the ORM may issue
duplicate INSERT and DELETE statements.

Defining Synonyms

Synonyms are introduced in Using Descriptors. To define a getter/setter which proxies to an underlying attribute, use
synonym() with the descriptor argument:

class MyClass(Base):
__tablename__ = ’sometable’

_attr = Column(’attr’, String)

def _get_attr(self):
return self._some_attr

def _set_attr(self, attr):
self._some_attr = attr

attr = synonym(’_attr’, descriptor=property(_get_attr, _set_attr))

The above synonym is then usable as an instance attribute as well as a class-level expression construct:

x = MyClass()
x.attr = "some value"
session.query(MyClass).filter(MyClass.attr == ’some other value’).all()

238 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

For simple getters, the synonym_for() decorator can be used in conjunction with @property:

class MyClass(Base):
__tablename__ = ’sometable’

_attr = Column(’attr’, String)

@synonym_for(’_attr’)
@property
def attr(self):

return self._some_attr

Similarly, comparable_using() is a front end for the comparable_property() ORM function:

class MyClass(Base):
__tablename__ = ’sometable’

name = Column(’name’, String)

@comparable_using(MyUpperCaseComparator)
@property
def uc_name(self):

return self.name.upper()

Table Configuration

As an alternative to __tablename__, a direct Table construct may be used. The Column objects, which in this
case require their names, will be added to the mapping just like a regular mapping to a table:

class MyClass(Base):
__table__ = Table(’my_table’, Base.metadata,

Column(’id’, Integer, primary_key=True),
Column(’name’, String(50))

)

Other table-based attributes include __table_args__, which is either a dictionary as in:

class MyClass(Base):
__tablename__ = ’sometable’
__table_args__ = {’mysql_engine’:’InnoDB’}

or a dictionary-containing tuple in the form (arg1, arg2, ..., {kwarg1:value, ...}), as in:

class MyClass(Base):
__tablename__ = ’sometable’
__table_args__ = (ForeignKeyConstraint([’id’], [’remote_table.id’]), {’autoload’:True})

Mapper Configuration

Mapper arguments are specified using the __mapper_args__ class variable, which is a dictionary that accepts the
same names as the mapper function accepts as keywords:

8.4. sqlalchemy.ext 239

SQLAlchemy Documentation, Release 0.5.4

class Widget(Base):
__tablename__ = ’widgets’
id = Column(Integer, primary_key=True)

__mapper_args__ = {’extension’: MyWidgetExtension()}

Inheritance Configuration

Declarative supports all three forms of inheritance as intuitively as possible. The inherits mapper keyword ar-
gument is not needed, as declarative will determine this from the class itself. The various “polymorphic” keyword
arguments are specified using __mapper_args__.

Joined Table Inheritance

Joined table inheritance is defined as a subclass that defines its own table:

class Person(Base):
__tablename__ = ’people’
id = Column(Integer, primary_key=True)
discriminator = Column(’type’, String(50))
__mapper_args__ = {’polymorphic_on’: discriminator}

class Engineer(Person):
__tablename__ = ’engineers’
__mapper_args__ = {’polymorphic_identity’: ’engineer’}
id = Column(Integer, ForeignKey(’people.id’), primary_key=True)
primary_language = Column(String(50))

Note that above, the Engineer.id attribute, since it shares the same attribute name as the Person.id attribute,
will in fact represent the people.id and engineers.id columns together, and will render inside a query as
"people.id". To provide the Engineer class with an attribute that represents only the engineers.id column,
give it a different attribute name:

class Engineer(Person):
__tablename__ = ’engineers’
__mapper_args__ = {’polymorphic_identity’: ’engineer’}
engineer_id = Column(’id’, Integer, ForeignKey(’people.id’), primary_key=True)
primary_language = Column(String(50))

Single Table Inheritance

Single table inheritance is defined as a subclass that does not have its own table; you just leave out the __table__
and __tablename__ attributes:

class Person(Base):
__tablename__ = ’people’
id = Column(Integer, primary_key=True)
discriminator = Column(’type’, String(50))
__mapper_args__ = {’polymorphic_on’: discriminator}

240 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

class Engineer(Person):
__mapper_args__ = {’polymorphic_identity’: ’engineer’}
primary_language = Column(String(50))

When the above mappers are configured, the Person class is mapped to the people table before the
primary_language column is defined, and this column will not be included in its own mapping. When
Engineer then defines the primary_language column, the column is added to the people table so that
it is included in the mapping for Engineer and is also part of the table’s full set of columns. Columns
which are not mapped to Person are also excluded from any other single or joined inheriting classes using the
exclude_propertiesmapper argument. Below, Managerwill have all the attributes of Person and Manager
but not the primary_language attribute of Engineer:

class Manager(Person):
__mapper_args__ = {’polymorphic_identity’: ’manager’}
golf_swing = Column(String(50))

The attribute exclusion logic is provided by the exclude_properties mapper argument, and declarative’s default
behavior can be disabled by passing an explicit exclude_properties collection (empty or otherwise) to the
__mapper_args__.

Concrete Table Inheritance

Concrete is defined as a subclass which has its own table and sets the concrete keyword argument to True:

class Person(Base):
__tablename__ = ’people’
id = Column(Integer, primary_key=True)
name = Column(String(50))

class Engineer(Person):
__tablename__ = ’engineers’
__mapper_args__ = {’concrete’:True}
id = Column(Integer, primary_key=True)
primary_language = Column(String(50))
name = Column(String(50))

Usage of an abstract base class is a little less straightforward as it requires usage of polymorphic_union():

engineers = Table(’engineers’, Base.metadata,
Column(’id’, Integer, primary_key=True),
Column(’name’, String(50)),
Column(’primary_language’, String(50))

)
managers = Table(’managers’, Base.metadata,

Column(’id’, Integer, primary_key=True),
Column(’name’, String(50)),
Column(’golf_swing’, String(50))

)

punion = polymorphic_union({
’engineer’:engineers,
’manager’:managers

8.4. sqlalchemy.ext 241

SQLAlchemy Documentation, Release 0.5.4

}, ’type’, ’punion’)

class Person(Base):
__table__ = punion
__mapper_args__ = {’polymorphic_on’:punion.c.type}

class Engineer(Person):
__table__ = engineers
__mapper_args__ = {’polymorphic_identity’:’engineer’, ’concrete’:True}

class Manager(Person):
__table__ = managers
__mapper_args__ = {’polymorphic_identity’:’manager’, ’concrete’:True}

Class Usage

As a convenience feature, the declarative_base() sets a default constructor on classes which takes keyword
arguments, and assigns them to the named attributes:

e = Engineer(primary_language=’python’)

Note that declarative has no integration built in with sessions, and is only intended as an optional syntax for the
regular usage of mappers and Table objects. A typical application setup using scoped_session() might look like:

engine = create_engine(’postgres://scott:tiger@localhost/test’)
Session = scoped_session(sessionmaker(autocommit=False,

autoflush=False,
bind=engine))

Base = declarative_base()

Mapped instances then make usage of Session in the usual way.

declarative_base(bind=None, metadata=None, mapper=None, cls=<type ’object’>, name=’Base’,
constructor=<function __init__ at 0x533adb0>, metaclass=<class
’sqlalchemy.ext.declarative.DeclarativeMeta’>, engine=None)

Construct a base class for declarative class definitions.

The new base class will be given a metaclass that invokes instrument_declarative() upon each sub-
class definition, and routes later Column- and Mapper-related attribute assignments made on the class into Table
and Mapper assignments.

Parameters • bind – An optional Connectable, will be assigned the bind attribute on the
MetaData instance. The engine keyword argument is a deprecated synonym for bind.

• metadata – An optional MetaData instance. All Table objects implicitly declared by
subclasses of the base will share this MetaData. A MetaData instance will be create if
none is provided. The MetaData instance will be available via the metadata attribute of the
generated declarative base class.

• mapper – An optional callable, defaults to mapper(). Will be used to map subclasses to
their Tables.

• cls – Defaults to object. A type to use as the base for the generated declarative base class.
May be a type or tuple of types.

• name – Defaults to Base. The display name for the generated class. Customizing this is
not required, but can improve clarity in tracebacks and debugging.

242 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

• constructor – Defaults to declarative._declarative_constructor, an __init__ implementation
that assigns **kwargs for declared fields and relations to an instance. If None is supplied, no
__init__ will be installed and construction will fall back to cls.__init__ with normal Python
semantics.

• metaclass – Defaults to DeclarativeMeta. A metaclass or __metaclass__ compatible
callable to use as the meta type of the generated declarative base class.

synonym_for(name, map_column=False)
Decorator, make a Python @property a query synonym for a column.

A decorator version of synonym(). The function being decorated is the ‘descriptor’, otherwise passes its
arguments through to synonym():

@synonym_for(’col’)
@property
def prop(self):

return ’special sauce’

The regular synonym() is also usable directly in a declarative setting and may be convenient for read/write
properties:

prop = synonym(’col’, descriptor=property(_read_prop, _write_prop))

comparable_using(comparator_factory)
Decorator, allow a Python @property to be used in query criteria.

A decorator front end to comparable_property(), passes through the comparator_factory and the func-
tion being decorated:

@comparable_using(MyComparatorType)
@property
def prop(self):

return ’special sauce’

The regular comparable_property() is also usable directly in a declarative setting and may be convenient
for read/write properties:

prop = comparable_property(MyComparatorType)

instrument_declarative(cls, registry, metadata)
Given a class, configure the class declaratively, using the given registry (any dictionary) and MetaData object.
This operation does not assume any kind of class hierarchy.

8.4.2 associationproxy

associationproxy is used to create a simplified, read/write view of a relationship. It can be used to cherry-
pick fields from a collection of related objects or to greatly simplify access to associated objects in an association
relationship.

Simplifying Relations

Consider this “association object” mapping:

8.4. sqlalchemy.ext 243

SQLAlchemy Documentation, Release 0.5.4

users_table = Table(’users’, metadata,
Column(’id’, Integer, primary_key=True),
Column(’name’, String(64)),

)

keywords_table = Table(’keywords’, metadata,
Column(’id’, Integer, primary_key=True),
Column(’keyword’, String(64))

)

userkeywords_table = Table(’userkeywords’, metadata,
Column(’user_id’, Integer, ForeignKey("users.id"),

primary_key=True),
Column(’keyword_id’, Integer, ForeignKey("keywords.id"),

primary_key=True)
)

class User(object):
def __init__(self, name):

self.name = name

class Keyword(object):
def __init__(self, keyword):

self.keyword = keyword

mapper(User, users_table, properties={
’kw’: relation(Keyword, secondary=userkeywords_table)
})

mapper(Keyword, keywords_table)

Above are three simple tables, modeling users, keywords and a many-to-many relationship between the two. These
Keyword objects are little more than a container for a name, and accessing them via the relation is awkward:

user = User(’jek’)
user.kw.append(Keyword(’cheese inspector’))
print user.kw
[<__main__.Keyword object at 0xb791ea0c>]
print user.kw[0].keyword
’cheese inspector’
print [keyword.keyword for keyword in user.kw]
[’cheese inspector’]

With association_proxy you have a “view” of the relation that contains just the .keyword of the related
objects. The proxy is a Python property, and unlike the mapper relation, is defined in your class:

from sqlalchemy.ext.associationproxy import association_proxy

class User(object):
def __init__(self, name):

self.name = name

proxy the ’keyword’ attribute from the ’kw’ relation
keywords = association_proxy(’kw’, ’keyword’)

244 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

...
>>> user.kw
[<__main__.Keyword object at 0xb791ea0c>]
>>> user.keywords
[’cheese inspector’]
>>> user.keywords.append(’snack ninja’)
>>> user.keywords
[’cheese inspector’, ’snack ninja’]
>>> user.kw
[<__main__.Keyword object at 0x9272a4c>, <__main__.Keyword object at 0xb7b396ec>]

The proxy is read/write. New associated objects are created on demand when values are added to the proxy, and
modifying or removing an entry through the proxy also affects the underlying collection.

• The association proxy property is backed by a mapper-defined relation, either a collection or scalar.

• You can access and modify both the proxy and the backing relation. Changes in one are immediate in the other.

• The proxy acts like the type of the underlying collection. A list gets a list-like proxy, a dict a dict-like proxy,
and so on.

• Multiple proxies for the same relation are fine.

• Proxies are lazy, and won’t trigger a load of the backing relation until they are accessed.

• The relation is inspected to determine the type of the related objects.

• To construct new instances, the type is called with the value being assigned, or key and value for dicts.

• A ‘‘creator‘‘ function can be used to create instances instead.

Above, the Keyword.__init__ takes a single argument keyword, which maps conveniently to the value being
set through the proxy. A creator function could have been used instead if more flexibility was required.

Because the proxies are backed by a regular relation collection, all of the usual hooks and patterns for using collections
are still in effect. The most convenient behavior is the automatic setting of “parent”-type relationships on assignment.
In the example above, nothing special had to be done to associate the Keyword to the User. Simply adding it to the
collection is sufficient.

Simplifying Association Object Relations

Association proxies are also useful for keeping association objects out the way during regular use. For
example, the userkeywords table might have a bunch of auditing columns that need to get updated when changes
are made- columns that are updated but seldom, if ever, accessed in your application. A proxy can provide a very
natural access pattern for the relation.

from sqlalchemy.ext.associationproxy import association_proxy

users_table and keywords_table tables as above, then:

def get_current_uid():
"""Return the uid of the current user."""
return 1 # hardcoded for this example

userkeywords_table = Table(’userkeywords’, metadata,

8.4. sqlalchemy.ext 245

SQLAlchemy Documentation, Release 0.5.4

Column(’user_id’, Integer, ForeignKey("users.id"), primary_key=True),
Column(’keyword_id’, Integer, ForeignKey("keywords.id"), primary_key=True),
add some auditing columns
Column(’updated_at’, DateTime, default=datetime.now),
Column(’updated_by’, Integer, default=get_current_uid, onupdate=get_current_uid),

)

def _create_uk_by_keyword(keyword):
"""A creator function."""
return UserKeyword(keyword=keyword)

class User(object):
def __init__(self, name):

self.name = name
keywords = association_proxy(’user_keywords’, ’keyword’, creator=_create_uk_by_keyword)

class Keyword(object):
def __init__(self, keyword):

self.keyword = keyword
def __repr__(self):

return ’Keyword(%s)’ % repr(self.keyword)

class UserKeyword(object):
def __init__(self, user=None, keyword=None):

self.user = user
self.keyword = keyword

mapper(User, users_table)
mapper(Keyword, keywords_table)
mapper(UserKeyword, userkeywords_table, properties={

’user’: relation(User, backref=’user_keywords’),
’keyword’: relation(Keyword),

})

user = User(’log’)
kw1 = Keyword(’new_from_blammo’)

Adding a Keyword requires creating a UserKeyword association object
user.user_keywords.append(UserKeyword(user, kw1))

And accessing Keywords requires traversing UserKeywords
print user.user_keywords[0]
<__main__.UserKeyword object at 0xb79bbbec>

print user.user_keywords[0].keyword
Keyword(’new_from_blammo’)

Lots of work.

It’s much easier to go through the association proxy!
for kw in (Keyword(’its_big’), Keyword(’its_heavy’), Keyword(’its_wood’)):

user.keywords.append(kw)

print user.keywords

246 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

[Keyword(’new_from_blammo’), Keyword(’its_big’), Keyword(’its_heavy’), Keyword(’its_wood’)]

Building Complex Views

stocks_table = Table("stocks", meta,
Column(’symbol’, String(10), primary_key=True),
Column(’last_price’, Numeric)

)

brokers_table = Table("brokers", meta,
Column(’id’, Integer,primary_key=True),
Column(’name’, String(100), nullable=False)

)

holdings_table = Table("holdings", meta,
Column(’broker_id’, Integer, ForeignKey(’brokers.id’), primary_key=True),
Column(’symbol’, String(10), ForeignKey(’stocks.symbol’), primary_key=True),
Column(’shares’, Integer)

)

Above are three tables, modeling stocks, their brokers and the number of shares of a stock held by each broker. This
situation is quite different from the association example above. shares is a property of the relation, an important
one that we need to use all the time.

For this example, it would be very convenient if Broker objects had a dictionary collection that mapped Stock
instances to the shares held for each. That’s easy:

from sqlalchemy.ext.associationproxy import association_proxy
from sqlalchemy.orm.collections import attribute_mapped_collection

def _create_holding(stock, shares):
"""A creator function, constructs Holdings from Stock and share quantity."""
return Holding(stock=stock, shares=shares)

class Broker(object):
def __init__(self, name):

self.name = name

holdings = association_proxy(’by_stock’, ’shares’, creator=_create_holding)

class Stock(object):
def __init__(self, symbol):

self.symbol = symbol
self.last_price = 0

class Holding(object):
def __init__(self, broker=None, stock=None, shares=0):

self.broker = broker
self.stock = stock
self.shares = shares

mapper(Stock, stocks_table)
mapper(Broker, brokers_table, properties={

’by_stock’: relation(Holding,

8.4. sqlalchemy.ext 247

SQLAlchemy Documentation, Release 0.5.4

collection_class=attribute_mapped_collection(’stock’))
})
mapper(Holding, holdings_table, properties={

’stock’: relation(Stock),
’broker’: relation(Broker)

})

Above, we’ve set up the by_stock relation collection to act as a dictionary, using the .stock property of each
Holding as a key.

Populating and accessing that dictionary manually is slightly inconvenient because of the complexity of the Holdings
association object:

stock = Stock(’ZZK’)
broker = Broker(’paj’)

broker.by_stock[stock] = Holding(broker, stock, 10)
print broker.by_stock[stock].shares
10

The holdings proxy we’ve added to the Broker class hides the details of the Holding while also giving access
to .shares:

for stock in (Stock(’JEK’), Stock(’STPZ’)):
broker.holdings[stock] = 123

for stock, shares in broker.holdings.items():
print stock, shares

session.add(broker)
session.commit()

lets take a peek at that holdings_table after committing changes to the db
print list(holdings_table.select().execute())
[(1, ’ZZK’, 10), (1, ’JEK’, 123), (1, ’STEPZ’, 123)]

Further examples can be found in the examples/ directory in the SQLAlchemy distribution.

API

association_proxy(target_collection, attr, **kw)
Return a Python property implementing a view of attr over a collection.

Implements a read/write view over an instance’s target_collection, extracting attr from each member of the
collection. The property acts somewhat like this list comprehension:

[getattr(member, *attr*)
for member in getattr(instance, *target_collection*)]

Unlike the list comprehension, the collection returned by the property is always in sync with target_collection,
and mutations made to either collection will be reflected in both.

Implements a Python property representing a relation as a collection of simpler values. The proxied property
will mimic the collection type of the target (list, dict or set), or, in the case of a one to one relation, a simple
scalar value.

248 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

Parameters • target_collection – Name of the relation attribute we’ll proxy to, usually created
with relation().

• attr – Attribute on the associated instances we’ll proxy for.
For example, given a target collection of [obj1, obj2], a list created by this proxy property
would look like [getattr(obj1, attr), getattr(obj2, attr)]
If the relation is one-to-one or otherwise uselist=False, then simply: getattr(obj, attr)

• creator – optional.
When new items are added to this proxied collection, new instances of the class collected by
the target collection will be created. For list and set collections, the target class constructor
will be called with the ‘value’ for the new instance. For dict types, two arguments are
passed: key and value.
If you want to construct instances differently, supply a creator function that takes arguments
as above and returns instances.
For scalar relations, creator() will be called if the target is None. If the target is present, set
operations are proxied to setattr() on the associated object.
If you have an associated object with multiple attributes, you may set up multiple association
proxies mapping to different attributes. See the unit tests for examples, and for examples
of how creator() functions can be used to construct the scalar relation on-demand in this
situation.

• **kw – Passes along any other keyword arguments to AssociationProxy.

class AssociationProxy(target_collection, attr, creator=None, getset_factory=None, proxy_factory=None,
proxy_bulk_set=None)

A descriptor that presents a read/write view of an object attribute.

__init__(target_collection, attr, creator=None, getset_factory=None, proxy_factory=None,
proxy_bulk_set=None)

Arguments are:
target_collection Name of the collection we’ll proxy to, usually created with ‘relation()’ in a mapper

setup.
attr Attribute on the collected instances we’ll proxy for. For example, given a target collection of [obj1,

obj2], a list created by this proxy property would look like [getattr(obj1, attr), getattr(obj2, attr)]
creator Optional. When new items are added to this proxied collection, new instances of the class col-

lected by the target collection will be created. For list and set collections, the target class constructor
will be called with the ‘value’ for the new instance. For dict types, two arguments are passed: key and
value.
If you want to construct instances differently, supply a ‘creator’ function that takes arguments as above
and returns instances.

getset_factory Optional. Proxied attribute access is automatically handled by routines that get and set
values based on the attr argument for this proxy.
If you would like to customize this behavior, you may supply a getset_factory callable that produces
a tuple of getter and setter functions. The factory is called with two arguments, the abstract type of
the underlying collection and this proxy instance.

proxy_factory Optional. The type of collection to emulate is determined by sniffing the target collection.
If your collection type can’t be determined by duck typing or you’d like to use a different collection
implementation, you may supply a factory function to produce those collections. Only applicable to
non-scalar relations.

proxy_bulk_set Optional, use with proxy_factory. See the _set() method for details.
target_class

The class the proxy is attached to.

8.4.3 orderinglist

author Jason Kirtland

8.4. sqlalchemy.ext 249

SQLAlchemy Documentation, Release 0.5.4

orderinglist is a helper for mutable ordered relations. It will intercept list operations performed on a relation
collection and automatically synchronize changes in list position with an attribute on the related objects. (See Custom
Collection Implementations for more information on the general pattern.)

Example: Two tables that store slides in a presentation. Each slide has a number of bullet points, displayed in order
by the ‘position’ column on the bullets table. These bullets can be inserted and re-ordered by your end users, and you
need to update the ‘position’ column of all affected rows when changes are made.

slides_table = Table(’Slides’, metadata,
Column(’id’, Integer, primary_key=True),
Column(’name’, String))

bullets_table = Table(’Bullets’, metadata,
Column(’id’, Integer, primary_key=True),
Column(’slide_id’, Integer, ForeignKey(’Slides.id’)),
Column(’position’, Integer),
Column(’text’, String))

class Slide(object):
pass

class Bullet(object):
pass

mapper(Slide, slides_table, properties={
’bullets’: relation(Bullet, order_by=[bullets_table.c.position])

})
mapper(Bullet, bullets_table)

The standard relation mapping will produce a list-like attribute on each Slide containing all related Bullets, but coping
with changes in ordering is totally your responsibility. If you insert a Bullet into that list, there is no magic- it won’t
have a position attribute unless you assign it it one, and you’ll need to manually renumber all the subsequent Bullets
in the list to accommodate the insert.

An orderinglist can automate this and manage the ‘position’ attribute on all related bullets for you.

mapper(Slide, slides_table, properties={
’bullets’: relation(Bullet,

collection_class=ordering_list(’position’),
order_by=[bullets_table.c.position])

})
mapper(Bullet, bullets_table)

s = Slide()
s.bullets.append(Bullet())
s.bullets.append(Bullet())
s.bullets[1].position
>>> 1
s.bullets.insert(1, Bullet())
s.bullets[2].position
>>> 2

Use the ordering_list function to set up the collection_class on relations (as in the mapper example
above). This implementation depends on the list starting in the proper order, so be SURE to put an order_by on your
relation.

250 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

ordering_list takes the name of the related object’s ordering attribute as an argument. By default, the zero-based
integer index of the object’s position in the ordering_list is synchronized with the ordering attribute: index 0
will get position 0, index 1 position 1, etc. To start numbering at 1 or some other integer, provide count_from=1.

Ordering values are not limited to incrementing integers. Almost any scheme can implemented by supplying a
custom ordering_func that maps a Python list index to any value you require. See the [module documenta-
tion](rel:docstrings_sqlalchemy.ext.orderinglist) for more information, and also check out the unit tests for examples
of stepped numbering, alphabetical and Fibonacci numbering. A custom list that manages index/position
information for its children.

orderinglist is a custom list collection implementation for mapped relations that keeps an arbitrary “position”
attribute on contained objects in sync with each object’s position in the Python list.

The collection acts just like a normal Python list, with the added behavior that as you manipulate the list (via
insert, pop, assignment, deletion, what have you), each of the objects it contains is updated as needed to reflect its
position. This is very useful for managing ordered relations which have a user-defined, serialized order:

>>> from sqlalchemy import MetaData, Table, Column, Integer, String, ForeignKey
>>> from sqlalchemy.orm import mapper, relation
>>> from sqlalchemy.ext.orderinglist import ordering_list

A simple model of users their “top 10” things:

>>> metadata = MetaData()
>>> users = Table(’users’, metadata,
... Column(’id’, Integer, primary_key=True))
>>> blurbs = Table(’user_top_ten_list’, metadata,
... Column(’id’, Integer, primary_key=True),
... Column(’user_id’, Integer, ForeignKey(’users.id’)),
... Column(’position’, Integer),
... Column(’blurb’, String(80)))
>>> class User(object):
... pass
...
>>> class Blurb(object):
... def __init__(self, blurb):
... self.blurb = blurb
...
>>> mapper(User, users, properties={
... ’topten’: relation(Blurb, collection_class=ordering_list(’position’),
... order_by=[blurbs.c.position])})
<Mapper ...>
>>> mapper(Blurb, blurbs)
<Mapper ...>

Acts just like a regular list:

>>> u = User()
>>> u.topten.append(Blurb(’Number one!’))
>>> u.topten.append(Blurb(’Number two!’))

But the .position attibute is set automatically behind the scenes:

>>> assert [blurb.position for blurb in u.topten] == [0, 1]

8.4. sqlalchemy.ext 251

SQLAlchemy Documentation, Release 0.5.4

The objects will be renumbered automaticaly after any list-changing operation, for example an insert():

>>> u.topten.insert(1, Blurb(’I am the new Number Two.’))
>>> assert [blurb.position for blurb in u.topten] == [0, 1, 2]
>>> assert u.topten[1].blurb == ’I am the new Number Two.’
>>> assert u.topten[1].position == 1

Numbering and serialization are both highly configurable. See the docstrings in this module and the main
SQLAlchemy documentation for more information and examples.

The ordering_list factory function is the ORM-compatible constructor for OrderingList instances.

ordering_list(attr, count_from=None, **kw)
Prepares an OrderingList factory for use in mapper definitions.

Returns an object suitable for use as an argument to a Mapper relation’s collection_class option. Argu-
ments are:

attr Name of the mapped attribute to use for storage and retrieval of ordering information

count_from (optional) Set up an integer-based ordering, starting at count_from. For example,
ordering_list(’pos’, count_from=1) would create a 1-based list in SQL, storing the value
in the ‘pos’ column. Ignored if ordering_func is supplied.

Passes along any keyword arguments to OrderingList constructor.

8.4.4 serializer

author Mike Bayer

Serializer/Deserializer objects for usage with SQLAlchemy structures.

Any SQLAlchemy structure, including Tables, Columns, expressions, mappers, Query objects etc. can be serialized
in a minimally-sized format, and deserialized when given a Metadata and optional ScopedSession object to use as
context on the way out.

Usage is nearly the same as that of the standard Python pickle module:

from sqlalchemy.ext.serializer import loads, dumps
metadata = MetaData(bind=some_engine)
Session = scoped_session(sessionmaker())

... define mappers

query = Session.query(MyClass).filter(MyClass.somedata==’foo’).order_by(MyClass.sortkey)

pickle the query
serialized = dumps(query)

unpickle. Pass in metadata + scoped_session
query2 = loads(serialized, metadata, Session)

print query2.all()

Similar restrictions as when using raw pickle apply; mapped classes must be themselves be pickleable, meaning they
are importable from a module-level namespace.

252 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

Note that instances of user-defined classes do not require this extension in order to be pickled; these contain no
references to engines, sessions or expression constructs in the typical case and can be serialized directly. This module
is specifically for ORM and expression constructs.

Serializer(*args, **kw)

Deserializer(file, metadata=None, scoped_session=None, engine=None)

dumps(obj)

loads(data, metadata=None, scoped_session=None, engine=None)

8.4.5 SqlSoup

author Jonathan Ellis

SqlSoup creates mapped classes on the fly from tables, which are automatically reflected from the database based on
name. It is essentially a nicer version of the “row data gateway” pattern.

>>> from sqlalchemy.ext.sqlsoup import SqlSoup
>>> soup = SqlSoup(’sqlite:///’)

>>> db.users.select(order_by=[db.users.c.name])
[MappedUsers(name=’Bhargan Basepair’,email=’basepair@example.edu’,password=’basepair’,classname=None,admin=1),
MappedUsers(name=’Joe Student’,email=’student@example.edu’,password=’student’,classname=None,admin=0)]

Full SqlSoup documentation is on the SQLAlchemy Wiki.

Introduction

SqlSoup provides a convenient way to access database tables without having to declare table or mapper classes ahead
of time.

Suppose we have a database with users, books, and loans tables (corresponding to the PyWebOff dataset, if you’re
curious). For testing purposes, we’ll create this db as follows:

>>> from sqlalchemy import create_engine
>>> e = create_engine(’sqlite:///:memory:’)
>>> for sql in _testsql: e.execute(sql)
<...

Creating a SqlSoup gateway is just like creating an SQLAlchemy engine:

>>> from sqlalchemy.ext.sqlsoup import SqlSoup
>>> db = SqlSoup(’sqlite:///:memory:’)

or, you can re-use an existing metadata or engine:

>>> db = SqlSoup(MetaData(e))

You can optionally specify a schema within the database for your SqlSoup:

>>> db.schema = myschemaname

8.4. sqlalchemy.ext 253

http://www.sqlalchemy.org/trac/wiki/SqlSoup

SQLAlchemy Documentation, Release 0.5.4

Loading objects

Loading objects is as easy as this:

>>> users = db.users.all()
>>> users.sort()
>>> users
[MappedUsers(name=u’Joe Student’,email=u’student@example.edu’,password=u’student’,classname=None,admin=0), MappedUsers(name=u’Bhargan Basepair’,email=u’basepair@example.edu’,password=u’basepair’,classname=None,admin=1)]

Of course, letting the database do the sort is better:

>>> db.users.order_by(db.users.name).all()
[MappedUsers(name=u’Bhargan Basepair’,email=u’basepair@example.edu’,password=u’basepair’,classname=None,admin=1), MappedUsers(name=u’Joe Student’,email=u’student@example.edu’,password=u’student’,classname=None,admin=0)]

Field access is intuitive:

>>> users[0].email
u’student@example.edu’

Of course, you don’t want to load all users very often. Let’s add a WHERE clause. Let’s also switch the order_by to
DESC while we’re at it:

>>> from sqlalchemy import or_, and_, desc
>>> where = or_(db.users.name==’Bhargan Basepair’, db.users.email==’student@example.edu’)
>>> db.users.filter(where).order_by(desc(db.users.name)).all()
[MappedUsers(name=u’Joe Student’,email=u’student@example.edu’,password=u’student’,classname=None,admin=0), MappedUsers(name=u’Bhargan Basepair’,email=u’basepair@example.edu’,password=u’basepair’,classname=None,admin=1)]

You can also use .first() (to retrieve only the first object from a query) or .one() (like .first when you expect exactly one
user – it will raise an exception if more were returned):

>>> db.users.filter(db.users.name==’Bhargan Basepair’).one()
MappedUsers(name=u’Bhargan Basepair’,email=u’basepair@example.edu’,password=u’basepair’,classname=None,admin=1)

Since name is the primary key, this is equivalent to

>>> db.users.get(’Bhargan Basepair’)
MappedUsers(name=u’Bhargan Basepair’,email=u’basepair@example.edu’,password=u’basepair’,classname=None,admin=1)

This is also equivalent to

>>> db.users.filter_by(name=’Bhargan Basepair’).one()
MappedUsers(name=u’Bhargan Basepair’,email=u’basepair@example.edu’,password=u’basepair’,classname=None,admin=1)

filter_by is like filter, but takes kwargs instead of full clause expressions. This makes it more concise for simple queries
like this, but you can’t do complex queries like the or_ above or non-equality based comparisons this way.

Full query documentation

Get, filter, filter_by, order_by, limit, and the rest of the query methods are explained in detail in the SQLAlchemy
documentation.

254 Chapter 8. API Reference

http://www.sqlalchemy.org/docs/04/ormtutorial.html#datamapping_querying
http://www.sqlalchemy.org/docs/04/ormtutorial.html#datamapping_querying

SQLAlchemy Documentation, Release 0.5.4

Modifying objects

Modifying objects is intuitive:

>>> user = _
>>> user.email = ’basepair+nospam@example.edu’
>>> db.flush()

(SqlSoup leverages the sophisticated SQLAlchemy unit-of-work code, so multiple updates to a single object will be
turned into a single UPDATE statement when you flush.)

To finish covering the basics, let’s insert a new loan, then delete it:

>>> book_id = db.books.filter_by(title=’Regional Variation in Moss’).first().id
>>> db.loans.insert(book_id=book_id, user_name=user.name)
MappedLoans(book_id=2,user_name=u’Bhargan Basepair’,loan_date=None)
>>> db.flush()

>>> loan = db.loans.filter_by(book_id=2, user_name=’Bhargan Basepair’).one()
>>> db.delete(loan)
>>> db.flush()

You can also delete rows that have not been loaded as objects. Let’s do our insert/delete cycle once more, this time
using the loans table’s delete method. (For SQLAlchemy experts: note that no flush() call is required since this delete
acts at the SQL level, not at the Mapper level.) The same where-clause construction rules apply here as to the select
methods.

>>> db.loans.insert(book_id=book_id, user_name=user.name)
MappedLoans(book_id=2,user_name=u’Bhargan Basepair’,loan_date=None)
>>> db.flush()
>>> db.loans.delete(db.loans.book_id==2)

You can similarly update multiple rows at once. This will change the book_id to 1 in all loans whose book_id is 2:

>>> db.loans.update(db.loans.book_id==2, book_id=1)
>>> db.loans.filter_by(book_id=1).all()
[MappedLoans(book_id=1,user_name=u’Joe Student’,loan_date=datetime.datetime(2006, 7, 12, 0, 0))]

Joins

Occasionally, you will want to pull out a lot of data from related tables all at once. In this situation, it is far more
efficient to have the database perform the necessary join. (Here we do not have a lot of data but hopefully the concept
is still clear.) SQLAlchemy is smart enough to recognize that loans has a foreign key to users, and uses that as the join
condition automatically.

>>> join1 = db.join(db.users, db.loans, isouter=True)
>>> join1.filter_by(name=’Joe Student’).all()
[MappedJoin(name=u’Joe Student’,email=u’student@example.edu’,password=u’student’,classname=None,admin=0,book_id=1,user_name=u’Joe Student’,loan_date=datetime.datetime(2006, 7, 12, 0, 0))]

If you’re unfortunate enough to be using MySQL with the default MyISAM storage engine, you’ll have to specify
the join condition manually, since MyISAM does not store foreign keys. Here’s the same join again, with the join
condition explicitly specified:

8.4. sqlalchemy.ext 255

SQLAlchemy Documentation, Release 0.5.4

>>> db.join(db.users, db.loans, db.users.name==db.loans.user_name, isouter=True)
<class ’sqlalchemy.ext.sqlsoup.MappedJoin’>

You can compose arbitrarily complex joins by combining Join objects with tables or other joins. Here we combine our
first join with the books table:

>>> join2 = db.join(join1, db.books)
>>> join2.all()
[MappedJoin(name=u’Joe Student’,email=u’student@example.edu’,password=u’student’,classname=None,admin=0,book_id=1,user_name=u’Joe Student’,loan_date=datetime.datetime(2006, 7, 12, 0, 0),id=1,title=u’Mustards I Have Known’,published_year=u’1989’,authors=u’Jones’)]

If you join tables that have an identical column name, wrap your join with with_labels, to disambiguate columns with
their table name (.c is short for .columns):

>>> db.with_labels(join1).c.keys()
[u’users_name’, u’users_email’, u’users_password’, u’users_classname’, u’users_admin’, u’loans_book_id’, u’loans_user_name’, u’loans_loan_date’]

You can also join directly to a labeled object:

>>> labeled_loans = db.with_labels(db.loans)
>>> db.join(db.users, labeled_loans, isouter=True).c.keys()
[u’name’, u’email’, u’password’, u’classname’, u’admin’, u’loans_book_id’, u’loans_user_name’, u’loans_loan_date’]

Relations

You can define relations on SqlSoup classes:

>>> db.users.relate(’loans’, db.loans)

These can then be used like a normal SA property:

>>> db.users.get(’Joe Student’).loans
[MappedLoans(book_id=1,user_name=u’Joe Student’,loan_date=datetime.datetime(2006, 7, 12, 0, 0))]

>>> db.users.filter(~db.users.loans.any()).all()
[MappedUsers(name=u’Bhargan Basepair’,email=’basepair+nospam@example.edu’,password=u’basepair’,classname=None,admin=1)]

relate can take any options that the relation function accepts in normal mapper definition:

>>> del db._cache[’users’]
>>> db.users.relate(’loans’, db.loans, order_by=db.loans.loan_date, cascade=’all, delete-orphan’)

Advanced Use

Accessing the Session

SqlSoup uses a ScopedSession to provide thread-local sessions. You can get a reference to the current one like this:

>>> from sqlalchemy.ext.sqlsoup import Session
>>> session = Session()

Now you have access to all the standard session-based SA features, such as transactions. (SqlSoup’s flush() is
normally transactionalized, but you can perform manual transaction management if you need a transaction to span
multiple flushes.)

256 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

Mapping arbitrary Selectables

SqlSoup can map any SQLAlchemy Selectable with the map method. Let’s map a Select object that uses
an aggregate function; we’ll use the SQLAlchemy Table that SqlSoup introspected as the basis. (Since we’re not
mapping to a simple table or join, we need to tell SQLAlchemy how to find the primary key which just needs to be
unique within the select, and not necessarily correspond to a real PK in the database.)

>>> from sqlalchemy import select, func
>>> b = db.books._table
>>> s = select([b.c.published_year, func.count(’*’).label(’n’)], from_obj=[b], group_by=[b.c.published_year])
>>> s = s.alias(’years_with_count’)
>>> years_with_count = db.map(s, primary_key=[s.c.published_year])
>>> years_with_count.filter_by(published_year=’1989’).all()
[MappedBooks(published_year=u’1989’,n=1)]

Obviously if we just wanted to get a list of counts associated with book years once, raw SQL is going to be less work.
The advantage of mapping a Select is reusability, both standalone and in Joins. (And if you go to full SQLAlchemy,
you can perform mappings like this directly to your object models.)

An easy way to save mapped selectables like this is to just hang them on your db object:

>>> db.years_with_count = years_with_count

Python is flexible like that!

Raw SQL

SqlSoup works fine with SQLAlchemy’s text block support.

You can also access the SqlSoup’s engine attribute to compose SQL directly. The engine’s execute method corre-
sponds to the one of a DBAPI cursor, and returns a ResultProxy that has fetch methods you would also see on
a cursor:

>>> rp = db.bind.execute(’select name, email from users order by name’)
>>> for name, email in rp.fetchall(): print name, email
Bhargan Basepair basepair+nospam@example.edu
Joe Student student@example.edu

You can also pass this engine object to other SQLAlchemy constructs.

Dynamic table names

You can load a table whose name is specified at runtime with the entity() method:

>>> tablename = ’loans’
>>> db.entity(tablename) == db.loans
True

entity() also takes an optional schema argument. If none is specified, the default schema is used.

8.4. sqlalchemy.ext 257

http://www.sqlalchemy.org/docs/04/sqlexpression.html#sql_text

SQLAlchemy Documentation, Release 0.5.4

Extra tests

Boring tests here. Nothing of real expository value.

>>> db.users.filter_by(classname=None).order_by(db.users.name).all()
[MappedUsers(name=u’Bhargan Basepair’,email=u’basepair+nospam@example.edu’,password=u’basepair’,classname=None,admin=1), MappedUsers(name=u’Joe Student’,email=u’student@example.edu’,password=u’student’,classname=None,admin=0)]

>>> db.nopk
...
PKNotFoundError: table ’nopk’ does not have a primary key defined [columns: i]

>>> db.nosuchtable
...
NoSuchTableError: nosuchtable

>>> years_with_count.insert(published_year=’2007’, n=1)
...
InvalidRequestError: SQLSoup can only modify mapped Tables (found: Alias)

[tests clear()]
>>> db.loans.count()
1
>>> _ = db.loans.insert(book_id=1, user_name=’Bhargan Basepair’)
>>> db.expunge_all()
>>> db.flush()
>>> db.loans.count()
1

exception PKNotFoundError

class SqlSoup(*args, **kwargs)

__init__(*args, **kwargs)
Initialize a new SqlSoup.
args may either be an SQLEngine or a set of arguments suitable for passing to create_engine.

bind

clear()

delete(*args, **kwargs)

engine

entity(attr, schema=None)

expunge_all()

flush()

join(*args, **kwargs)

map(selectable, **kwargs)

with_labels(item)

8.4.6 compiler

Provides an API for creation of custom ClauseElements and compilers.

258 Chapter 8. API Reference

SQLAlchemy Documentation, Release 0.5.4

Synopsis

Usage involves the creation of one or more ClauseElement subclasses and one or more callables defining its
compilation:

from sqlalchemy.ext.compiler import compiles
from sqlalchemy.sql.expression import ColumnClause

class MyColumn(ColumnClause):
pass

@compiles(MyColumn)
def compile_mycolumn(element, compiler, **kw):

return "[%s]" % element.name

Above, MyColumn extends ColumnClause, the base expression element for column objects. The compiles
decorator registers itself with the MyColumn class so that it is invoked when the object is compiled to a string:

from sqlalchemy import select

s = select([MyColumn(’x’), MyColumn(’y’)])
print str(s)

Produces:

SELECT [x], [y]

Compilers can also be made dialect-specific. The appropriate compiler will be invoked for the dialect in use:

from sqlalchemy.schema import DDLElement # this is a SQLA 0.6 construct

class AlterColumn(DDLElement):

def __init__(self, column, cmd):
self.column = column
self.cmd = cmd

@compiles(AlterColumn)
def visit_alter_column(element, compiler, **kw):

return "ALTER COLUMN %s ..." % element.column.name

@compiles(AlterColumn, ’postgres’)
def visit_alter_column(element, compiler, **kw):

return "ALTER TABLE %s ALTER COLUMN %s ..." % (element.table.name, element.column.name)

The second visit_alter_table will be invoked when any postgres dialect is used.

The compiler argument is the Compiled object in use. This object can be inspected for any information about the
in-progress compilation, including compiler.dialect, compiler.statement etc. The SQLCompiler and
DDLCompiler (DDLCompiler is 0.6. only) both include a process() method which can be used for compilation
of embedded attributes:

8.4. sqlalchemy.ext 259

SQLAlchemy Documentation, Release 0.5.4

class InsertFromSelect(ClauseElement):
def __init__(self, table, select):

self.table = table
self.select = select

@compiles(InsertFromSelect)
def visit_insert_from_select(element, compiler, **kw):

return "INSERT INTO %s (%s)" % (
compiler.process(element.table, asfrom=True),
compiler.process(element.select)

)

insert = InsertFromSelect(t1, select([t1]).where(t1.c.x>5))
print insert

Produces:

"INSERT INTO mytable (SELECT mytable.x, mytable.y, mytable.z FROM mytable WHERE mytable.x > :x_1)"

260 Chapter 8. API Reference

CHAPTER

NINE

INDICES AND TABLES

• Index

• Search Page

261

SQLAlchemy Documentation, Release 0.5.4

262 Chapter 9. Indices and tables

MODULE INDEX

S
sqlalchemy.databases.access, 213
sqlalchemy.databases.firebird, 213
sqlalchemy.databases.informix, 214
sqlalchemy.databases.maxdb, 214
sqlalchemy.databases.mssql, 215
sqlalchemy.databases.mysql, 219
sqlalchemy.databases.oracle, 230
sqlalchemy.databases.postgres, 232
sqlalchemy.databases.sqlite, 233
sqlalchemy.databases.sybase, 235
sqlalchemy.ext.associationproxy, 243
sqlalchemy.ext.compiler, 258
sqlalchemy.ext.declarative, 235
sqlalchemy.ext.orderinglist, 251
sqlalchemy.ext.serializer, 252
sqlalchemy.ext.sqlsoup, 253
sqlalchemy.interfaces, 178
sqlalchemy.orm, 180, 193, 200
sqlalchemy.orm.collections, 190
sqlalchemy.orm.interfaces, 208
sqlalchemy.orm.util, 212
sqlalchemy.pool, 134
sqlalchemy.schema, 155
sqlalchemy.sql.expression, 139
sqlalchemy.sql.functions, 154
sqlalchemy.types, 171

263

SQLAlchemy Documentation, Release 0.5.4

264 Module Index

INDEX

Symbols
_CompareMixin (class in sqlalchemy.sql.expression), 148
__init__() (sqlalchemy.databases.mysql.MSBigInteger

method), 223
__init__() (sqlalchemy.databases.mysql.MSBinary

method), 228
__init__() (sqlalchemy.databases.mysql.MSBit method),

224
__init__() (sqlalchemy.databases.mysql.MSBlob

method), 228
__init__() (sqlalchemy.databases.mysql.MSBoolean

method), 230
__init__() (sqlalchemy.databases.mysql.MSChar

method), 227
__init__() (sqlalchemy.databases.mysql.MSDate

method), 224
__init__() (sqlalchemy.databases.mysql.MSDateTime

method), 224
__init__() (sqlalchemy.databases.mysql.MSDecimal

method), 222
__init__() (sqlalchemy.databases.mysql.MSDouble

method), 222
__init__() (sqlalchemy.databases.mysql.MSEnum

method), 229
__init__() (sqlalchemy.databases.mysql.MSFloat

method), 223
__init__() (sqlalchemy.databases.mysql.MSInteger

method), 223
__init__() (sqlalchemy.databases.mysql.MSLongBlob

method), 228
__init__() (sqlalchemy.databases.mysql.MSLongText

method), 226
__init__() (sqlalchemy.databases.mysql.MSMediumBlob

method), 228
__init__() (sqlalchemy.databases.mysql.MSMediumInteger

method), 224
__init__() (sqlalchemy.databases.mysql.MSMediumText

method), 226
__init__() (sqlalchemy.databases.mysql.MSNChar

method), 227

__init__() (sqlalchemy.databases.mysql.MSNVarChar
method), 227

__init__() (sqlalchemy.databases.mysql.MSNumeric
method), 222

__init__() (sqlalchemy.databases.mysql.MSReal
method), 223

__init__() (sqlalchemy.databases.mysql.MSSet method),
229

__init__() (sqlalchemy.databases.mysql.MSSmallInteger
method), 224

__init__() (sqlalchemy.databases.mysql.MSString
method), 227

__init__() (sqlalchemy.databases.mysql.MSText
method), 225

__init__() (sqlalchemy.databases.mysql.MSTime
method), 225

__init__() (sqlalchemy.databases.mysql.MSTimeStamp
method), 225

__init__() (sqlalchemy.databases.mysql.MSTinyBlob
method), 228

__init__() (sqlalchemy.databases.mysql.MSTinyInteger
method), 224

__init__() (sqlalchemy.databases.mysql.MSTinyText
method), 225

__init__() (sqlalchemy.databases.mysql.MSVarBinary
method), 228

__init__() (sqlalchemy.databases.mysql.MSYear
method), 225

__init__() (sqlalchemy.engine.base.Connection method),
126

__init__() (sqlalchemy.engine.base.DefaultRunner
method), 132

__init__() (sqlalchemy.engine.base.Engine method), 125
__init__() (sqlalchemy.engine.base.ResultProxy method),

128
__init__() (sqlalchemy.engine.base.RowProxy method),

129
__init__() (sqlalchemy.engine.base.SchemaIterator

method), 134
__init__() (sqlalchemy.engine.base.Transaction method),

129

265

SQLAlchemy Documentation, Release 0.5.4

__init__() (sqlalchemy.engine.default.DefaultDialect
method), 132

__init__() (sqlalchemy.engine.default.DefaultExecutionContext
method), 132

__init__() (sqlalchemy.engine.url.URL method), 125
__init__() (sqlalchemy.ext.associationproxy.AssociationProxy

method), 249
__init__() (sqlalchemy.ext.sqlsoup.SqlSoup method), 258
__init__() (sqlalchemy.orm.interfaces.InstrumentationManager

method), 208
__init__() (sqlalchemy.orm.interfaces.PropComparator

method), 211
__init__() (sqlalchemy.orm.mapper.Mapper method), 189
__init__() (sqlalchemy.orm.query.Query method), 193
__init__() (sqlalchemy.orm.scoping.ScopedSession

method), 208
__init__() (sqlalchemy.orm.session.Session method), 203
__init__() (sqlalchemy.orm.util.Validator method), 213
__init__() (sqlalchemy.pool.AssertionPool method), 135
__init__() (sqlalchemy.pool.Pool method), 135
__init__() (sqlalchemy.pool.QueuePool method), 136
__init__() (sqlalchemy.pool.SingletonThreadPool

method), 137
__init__() (sqlalchemy.pool.StaticPool method), 137
__init__() (sqlalchemy.schema.CheckConstraint

method), 165
__init__() (sqlalchemy.schema.Column method), 155
__init__() (sqlalchemy.schema.ColumnDefault method),

168
__init__() (sqlalchemy.schema.Constraint method), 165
__init__() (sqlalchemy.schema.DDL method), 169
__init__() (sqlalchemy.schema.DefaultGenerator

method), 168
__init__() (sqlalchemy.schema.FetchedValue method),

169
__init__() (sqlalchemy.schema.ForeignKey method), 166
__init__() (sqlalchemy.schema.ForeignKeyConstraint

method), 167
__init__() (sqlalchemy.schema.Index method), 167
__init__() (sqlalchemy.schema.MetaData method), 159
__init__() (sqlalchemy.schema.PrimaryKeyConstraint

method), 168
__init__() (sqlalchemy.schema.Sequence method), 169
__init__() (sqlalchemy.schema.Table method), 161
__init__() (sqlalchemy.schema.ThreadLocalMetaData

method), 164
__init__() (sqlalchemy.schema.UniqueConstraint

method), 168
__init__() (sqlalchemy.sql.expression.Alias method), 146
__init__() (sqlalchemy.sql.expression.ColumnClause

method), 148
__init__() (sqlalchemy.sql.expression.ColumnCollection

method), 148

__init__() (sqlalchemy.sql.expression.ColumnOperators
method), 149

__init__() (sqlalchemy.sql.expression.CompoundSelect
method), 150

__init__() (sqlalchemy.sql.expression.Join method), 151
__init__() (sqlalchemy.sql.expression.Select method),

152
__init__() (sqlalchemy.sql.expression.TableClause

method), 153
__init__() (sqlalchemy.sql.functions.AnsiFunction

method), 154
__init__() (sqlalchemy.sql.functions.GenericFunction

method), 154
__init__() (sqlalchemy.sql.functions.ReturnTypeFromArgs

method), 154
__init__() (sqlalchemy.sql.functions.char_length

method), 154
__init__() (sqlalchemy.sql.functions.concat method), 154
__init__() (sqlalchemy.sql.functions.count method), 154
__init__() (sqlalchemy.sql.functions.random method),

155
__init__() (sqlalchemy.types.AbstractType method), 177
__init__() (sqlalchemy.types.Concatenable method), 178
__init__() (sqlalchemy.types.MutableType method), 178
__init__() (sqlalchemy.types.TypeDecorator method),

175
__init__() (sqlalchemy.types.TypeEngine method), 176

A
AbstractType (class in sqlalchemy.types), 177
adapt() (sqlalchemy.types.TypeEngine method), 176
adapt_operator() (sqlalchemy.types.AbstractType

method), 177
adapt_operator() (sqlalchemy.types.Concatenable

method), 178
adapt_operator() (sqlalchemy.types.TypeDecorator

method), 175
adapt_operator() (sqlalchemy.types.TypeEngine method),

176
adapted() (sqlalchemy.orm.interfaces.PropComparator

method), 211
add() (sqlalchemy.orm.session.Session method), 204
add() (sqlalchemy.schema.PrimaryKeyConstraint

method), 168
add() (sqlalchemy.sql.expression.ColumnCollection

method), 148
add_all() (sqlalchemy.orm.session.Session method), 204
add_column() (sqlalchemy.orm.query.Query method),

193
add_entity() (sqlalchemy.orm.query.Query method), 193
add_listener() (sqlalchemy.pool.Pool method), 136
add_properties() (sqlalchemy.orm.mapper.Mapper

method), 189

266 Index

SQLAlchemy Documentation, Release 0.5.4

add_property() (sqlalchemy.orm.mapper.Mapper
method), 189

after_attach() (sqlalchemy.orm.interfaces.SessionExtension
method), 211

after_begin() (sqlalchemy.orm.interfaces.SessionExtension
method), 211

after_bulk_delete() (sqlalchemy.orm.interfaces.SessionExtension
method), 211

after_bulk_update() (sqlalchemy.orm.interfaces.SessionExtension
method), 212

after_commit() (sqlalchemy.orm.interfaces.SessionExtension
method), 212

after_delete() (sqlalchemy.orm.interfaces.MapperExtension
method), 209

after_flush() (sqlalchemy.orm.interfaces.SessionExtension
method), 212

after_flush_postexec() (sqlalchemy.orm.interfaces.SessionExtension
method), 212

after_insert() (sqlalchemy.orm.interfaces.MapperExtension
method), 209

after_rollback() (sqlalchemy.orm.interfaces.SessionExtension
method), 212

after_update() (sqlalchemy.orm.interfaces.MapperExtension
method), 209

Alias (class in sqlalchemy.sql.expression), 146
alias() (in module sqlalchemy.sql.expression), 139
alias() (sqlalchemy.schema.Table method), 162
alias() (sqlalchemy.sql.expression.FromClause method),

150
alias() (sqlalchemy.sql.expression.Join method), 151
aliased (in module sqlalchemy.orm), 199
all() (sqlalchemy.orm.query.Query method), 193
and_() (in module sqlalchemy.sql.expression), 139
AnsiFunction (class in sqlalchemy.sql.functions), 154
any() (sqlalchemy.orm.interfaces.PropComparator

method), 211
any_op() (sqlalchemy.orm.interfaces.PropComparator

static method), 211
append() (sqlalchemy.engine.base.SchemaIterator

method), 134
append() (sqlalchemy.orm.interfaces.AttributeExtension

method), 208
append() (sqlalchemy.orm.util.Validator method), 213
append_column() (sqlalchemy.schema.Index method),

167
append_column() (sqlalchemy.schema.PrimaryKeyConstraint

method), 168
append_column() (sqlalchemy.schema.Table method),

162
append_column() (sqlalchemy.schema.UniqueConstraint

method), 168
append_column() (sqlalchemy.sql.expression.Select

method), 152

append_constraint() (sqlalchemy.schema.Table method),
162

append_correlation() (sqlalchemy.sql.expression.Select
method), 152

append_ddl_listener() (sqlalchemy.schema.MetaData
method), 159

append_ddl_listener() (sqlalchemy.schema.Table
method), 162

append_element() (sqlalchemy.schema.ForeignKeyConstraint
method), 167

append_foreign_key() (sqlalchemy.schema.Column
method), 157

append_from() (sqlalchemy.sql.expression.Select
method), 152

append_having() (sqlalchemy.sql.expression.Select
method), 152

append_prefix() (sqlalchemy.sql.expression.Select
method), 152

append_result() (sqlalchemy.orm.interfaces.MapperExtension
method), 209

append_whereclause() (sqlalchemy.sql.expression.Select
method), 152

asc() (in module sqlalchemy.sql.expression), 139
asc() (sqlalchemy.schema.Column method), 157
asc() (sqlalchemy.sql.expression._CompareMixin

method), 148
asc() (sqlalchemy.sql.expression.ColumnOperators

method), 149
AssertionPool (class in sqlalchemy.pool), 135
association_proxy() (in module

sqlalchemy.ext.associationproxy), 248
AssociationProxy (class in

sqlalchemy.ext.associationproxy), 249
attribute_mapped_collection() (in module

sqlalchemy.orm.collections), 192
AttributeExtension (class in sqlalchemy.orm.interfaces),

208
autoflush() (sqlalchemy.orm.query.Query method), 193

B
backref() (in module sqlalchemy.orm), 182
before_commit() (sqlalchemy.orm.interfaces.SessionExtension

method), 212
before_delete() (sqlalchemy.orm.interfaces.MapperExtension

method), 209
before_flush() (sqlalchemy.orm.interfaces.SessionExtension

method), 212
before_insert() (sqlalchemy.orm.interfaces.MapperExtension

method), 210
before_update() (sqlalchemy.orm.interfaces.MapperExtension

method), 210
begin() (sqlalchemy.engine.base.Connection method),

126
begin() (sqlalchemy.orm.session.Session method), 204

Index 267

SQLAlchemy Documentation, Release 0.5.4

begin_nested() (sqlalchemy.engine.base.Connection
method), 126

begin_nested() (sqlalchemy.orm.session.Session
method), 204

begin_twophase() (sqlalchemy.engine.base.Connection
method), 126

between() (in module sqlalchemy.sql.expression), 139
between() (sqlalchemy.schema.Column method), 157
between() (sqlalchemy.sql.expression._CompareMixin

method), 149
between() (sqlalchemy.sql.expression.ColumnOperators

method), 149
Binary (class in sqlalchemy.types), 173
bind (sqlalchemy.ext.sqlsoup.SqlSoup attribute), 258
bind (sqlalchemy.schema.Column attribute), 157
bind (sqlalchemy.schema.DDL attribute), 170
bind (sqlalchemy.schema.MetaData attribute), 160
bind (sqlalchemy.schema.SchemaItem attribute), 170
bind (sqlalchemy.schema.Table attribute), 162
bind (sqlalchemy.schema.ThreadLocalMetaData at-

tribute), 165
bind (sqlalchemy.sql.expression.ClauseElement at-

tribute), 146
bind_mapper() (sqlalchemy.orm.session.Session

method), 204
bind_processor() (sqlalchemy.types.AbstractType

method), 177
bind_processor() (sqlalchemy.types.TypeDecorator

method), 175
bind_processor() (sqlalchemy.types.TypeEngine method),

176
bind_table() (sqlalchemy.orm.session.Session method),

204
bindparam() (in module sqlalchemy.sql.expression), 139
BLOB (class in sqlalchemy.types), 174
BOOLEAN (class in sqlalchemy.types), 174
Boolean (class in sqlalchemy.types), 173

C
c (sqlalchemy.schema.Table attribute), 162
c (sqlalchemy.sql.expression.FromClause attribute), 150
cascade_iterator() (sqlalchemy.orm.mapper.Mapper

method), 189
case() (in module sqlalchemy.sql.expression), 139
cast() (in module sqlalchemy.sql.expression), 140
CHAR (class in sqlalchemy.types), 173
char_length (class in sqlalchemy.sql.functions), 154
CheckConstraint (class in sqlalchemy.schema), 165
checkin() (sqlalchemy.interfaces.PoolListener method),

179
checkout() (sqlalchemy.interfaces.PoolListener method),

179
class_mapper() (in module sqlalchemy.orm), 187
ClauseElement (class in sqlalchemy.sql.expression), 146

clear() (sqlalchemy.ext.sqlsoup.SqlSoup method), 258
clear() (sqlalchemy.orm.session.Session method), 204
clear() (sqlalchemy.schema.MetaData method), 160
clear_managers() (in module sqlalchemy.pool), 138
clear_mappers() (in module sqlalchemy.orm), 188
CLOB (class in sqlalchemy.types), 174
close() (sqlalchemy.engine.base.Connection method),

126
close() (sqlalchemy.engine.base.ResultProxy method),

128
close() (sqlalchemy.engine.base.RowProxy method), 129
close() (sqlalchemy.engine.base.Transaction method),

129
close() (sqlalchemy.orm.session.Session method), 204
close_all() (sqlalchemy.orm.session.Session class

method), 204
closed (sqlalchemy.engine.base.Connection attribute),

126
coalesce (class in sqlalchemy.sql.functions), 154
collate() (in module sqlalchemy.sql.expression), 140
collate() (sqlalchemy.schema.Column method), 157
collate() (sqlalchemy.sql.expression._CompareMixin

method), 149
collate() (sqlalchemy.sql.expression.ColumnOperators

method), 149
collection (class in sqlalchemy.orm.collections), 192
collection_adapter() (in module

sqlalchemy.orm.collections), 192
Column (class in sqlalchemy.schema), 155
column() (in module sqlalchemy.sql.expression), 140
column() (sqlalchemy.sql.expression.Select method), 152
column_mapped_collection() (in module

sqlalchemy.orm.collections), 192
column_property() (in module sqlalchemy.orm), 182
ColumnClause (class in sqlalchemy.sql.expression), 147
ColumnCollection (class in sqlalchemy.sql.expression),

148
ColumnDefault (class in sqlalchemy.schema), 168
ColumnElement (class in sqlalchemy.sql.expression), 148
ColumnOperators (class in sqlalchemy.sql.expression),

149
columns (sqlalchemy.schema.Table attribute), 162
columns (sqlalchemy.sql.expression.FromClause at-

tribute), 150
commit() (sqlalchemy.engine.base.Transaction method),

129
commit() (sqlalchemy.orm.session.Session method), 205
common_parent() (sqlalchemy.orm.mapper.Mapper

method), 189
comparable_property() (in module sqlalchemy.orm), 182
comparable_using() (in module

sqlalchemy.ext.declarative), 243
compare() (sqlalchemy.schema.Column method), 157
compare() (sqlalchemy.schema.Table method), 162

268 Index

SQLAlchemy Documentation, Release 0.5.4

compare() (sqlalchemy.sql.expression.ClauseElement
method), 147

compare_values() (sqlalchemy.types.AbstractType
method), 177

compare_values() (sqlalchemy.types.MutableType
method), 178

compare_values() (sqlalchemy.types.TypeDecorator
method), 175

compare_values() (sqlalchemy.types.TypeEngine
method), 177

compile() (sqlalchemy.orm.mapper.Mapper method), 189
compile() (sqlalchemy.schema.Column method), 157
compile() (sqlalchemy.schema.Table method), 163
compile() (sqlalchemy.sql.expression.ClauseElement

method), 147
compile_mappers() (in module sqlalchemy.orm), 188
composite() (in module sqlalchemy.orm), 182
CompoundSelect (class in sqlalchemy.sql.expression),

150
concat (class in sqlalchemy.sql.functions), 154
concat() (sqlalchemy.schema.Column method), 158
concat() (sqlalchemy.sql.expression.ColumnOperators

method), 149
Concatenable (class in sqlalchemy.types), 178
configure() (sqlalchemy.orm.scoping.ScopedSession

method), 208
connect() (sqlalchemy.engine.base.Connection method),

126
connect() (sqlalchemy.engine.base.Engine method), 125
connect() (sqlalchemy.interfaces.PoolListener method),

180
connect() (sqlalchemy.pool.Pool method), 136
connect() (sqlalchemy.schema.MetaData method), 160
connect() (sqlalchemy.schema.ThreadLocalMetaData

method), 165
Connectable (class in sqlalchemy.engine.base), 127
Connection (class in sqlalchemy.engine.base), 126
connection (sqlalchemy.engine.base.Connection at-

tribute), 126
connection() (sqlalchemy.orm.session.Session method),

205
connection_memoize() (in module

sqlalchemy.engine.base), 129
ConnectionProxy (class in sqlalchemy.interfaces), 178
Constraint (class in sqlalchemy.schema), 165
contains() (sqlalchemy.schema.Column method), 158
contains() (sqlalchemy.sql.expression._CompareMixin

method), 149
contains() (sqlalchemy.sql.expression.ColumnOperators

method), 149
contains_column() (sqlalchemy.schema.Constraint

method), 165
contains_eager() (in module sqlalchemy.orm), 199

contextual_connect() (sqlalchemy.engine.base.Connectable
method), 127

contextual_connect() (sqlalchemy.engine.base.Connection
method), 126

contextual_connect() (sqlalchemy.engine.base.Engine
method), 125

copy() (sqlalchemy.schema.CheckConstraint method),
165

copy() (sqlalchemy.schema.Column method), 158
copy() (sqlalchemy.schema.Constraint method), 165
copy() (sqlalchemy.schema.ForeignKey method), 166
copy() (sqlalchemy.schema.ForeignKeyConstraint

method), 167
copy() (sqlalchemy.schema.PrimaryKeyConstraint

method), 168
copy() (sqlalchemy.schema.UniqueConstraint method),

168
copy() (sqlalchemy.types.TypeDecorator method), 175
copy_value() (sqlalchemy.types.AbstractType method),

177
copy_value() (sqlalchemy.types.MutableType method),

178
copy_value() (sqlalchemy.types.TypeDecorator method),

175
copy_value() (sqlalchemy.types.TypeEngine method),

177
correlate() (sqlalchemy.orm.query.Query method), 193
correlate() (sqlalchemy.sql.expression.Select method),

152
correspond_on_equivalents() (sqlalchemy.schema.Table

method), 163
correspond_on_equivalents()

(sqlalchemy.sql.expression.FromClause
method), 150

corresponding_column() (sqlalchemy.schema.Table
method), 163

corresponding_column() (sqlalchemy.sql.expression.FromClause
method), 150

count (class in sqlalchemy.sql.functions), 154
count() (sqlalchemy.orm.query.Query method), 193
count() (sqlalchemy.schema.Table method), 163
count() (sqlalchemy.sql.expression.FromClause method),

151
create() (sqlalchemy.engine.base.Connectable method),

127
create() (sqlalchemy.engine.base.Connection method),

126
create() (sqlalchemy.engine.base.Engine method), 125
create() (sqlalchemy.schema.Index method), 167
create() (sqlalchemy.schema.Sequence method), 169
create() (sqlalchemy.schema.Table method), 163
create_all() (sqlalchemy.schema.MetaData method), 160
create_connect_args() (sqlalchemy.engine.base.Dialect

method), 130

Index 269

SQLAlchemy Documentation, Release 0.5.4

create_connection() (sqlalchemy.pool.Pool method), 136
create_cursor() (sqlalchemy.engine.base.ExecutionContext

method), 133
create_engine() (in module sqlalchemy), 123
create_instance() (sqlalchemy.orm.interfaces.MapperExtension

method), 210
create_session() (in module sqlalchemy.orm), 200
create_xid() (sqlalchemy.engine.base.Dialect method),

130
create_xid() (sqlalchemy.engine.default.DefaultDialect

method), 132
current_date (class in sqlalchemy.sql.functions), 154
current_time (class in sqlalchemy.sql.functions), 154
current_timestamp (class in sqlalchemy.sql.functions),

155
current_user (class in sqlalchemy.sql.functions), 155
cursor_execute() (sqlalchemy.interfaces.ConnectionProxy

method), 179

D
DATE (class in sqlalchemy.types), 174
Date (class in sqlalchemy.types), 172
DATETIME (class in sqlalchemy.types), 174
DateTime (class in sqlalchemy.types), 172
DDL (class in sqlalchemy.schema), 169
DECIMAL (class in sqlalchemy.types), 173
declarative_base() (in module

sqlalchemy.ext.declarative), 242
DefaultClause (class in sqlalchemy.schema), 168
DefaultDialect (class in sqlalchemy.engine.default), 131
DefaultExecutionContext (class in

sqlalchemy.engine.default), 132
DefaultGenerator (class in sqlalchemy.schema), 168
DefaultRunner (class in sqlalchemy.engine.base), 132
defaultrunner (sqlalchemy.engine.default.DefaultDialect

attribute), 132
defer() (in module sqlalchemy.orm), 200
deferred() (in module sqlalchemy.orm), 183
del_attribute() (in module sqlalchemy.orm.attributes), 188
Delete (class in sqlalchemy.sql.expression), 150
delete() (in module sqlalchemy.sql.expression), 140
delete() (sqlalchemy.ext.sqlsoup.SqlSoup method), 258
delete() (sqlalchemy.orm.query.Query method), 193
delete() (sqlalchemy.orm.session.Session method), 205
delete() (sqlalchemy.schema.Table method), 163
delete() (sqlalchemy.sql.expression.TableClause method),

153
deleted (sqlalchemy.orm.session.Session attribute), 205
desc() (in module sqlalchemy.sql.expression), 140
desc() (sqlalchemy.schema.Column method), 158
desc() (sqlalchemy.sql.expression._CompareMixin

method), 149
desc() (sqlalchemy.sql.expression.ColumnOperators

method), 149

description (sqlalchemy.sql.expression.FromClause at-
tribute), 151

Deserializer() (in module sqlalchemy.ext.serializer), 253
detach() (sqlalchemy.engine.base.Connection method),

126
Dialect (class in sqlalchemy.engine.base), 129
dialect (sqlalchemy.engine.base.Connection attribute),

127
dialect_impl() (sqlalchemy.types.TypeDecorator

method), 176
dialect_impl() (sqlalchemy.types.TypeEngine method),

177
dict_getter() (sqlalchemy.orm.interfaces.InstrumentationManager

method), 209
dirty (sqlalchemy.orm.session.Session attribute), 205
dispose() (sqlalchemy.orm.interfaces.InstrumentationManager

method), 209
dispose() (sqlalchemy.pool.Pool method), 136
dispose() (sqlalchemy.pool.SingletonThreadPool

method), 137
dispose() (sqlalchemy.schema.ThreadLocalMetaData

method), 165
distinct() (in module sqlalchemy.sql.expression), 140
distinct() (sqlalchemy.orm.query.Query method), 194
distinct() (sqlalchemy.schema.Column method), 158
distinct() (sqlalchemy.sql.expression._CompareMixin

method), 149
distinct() (sqlalchemy.sql.expression.ColumnOperators

method), 149
distinct() (sqlalchemy.sql.expression.Select method), 152
do_begin() (sqlalchemy.engine.base.Dialect method), 130
do_begin() (sqlalchemy.engine.default.DefaultDialect

method), 132
do_begin_twophase() (sqlalchemy.engine.base.Dialect

method), 130
do_commit() (sqlalchemy.engine.base.Dialect method),

131
do_commit() (sqlalchemy.engine.default.DefaultDialect

method), 132
do_commit_twophase() (sqlalchemy.engine.base.Dialect

method), 131
do_execute() (sqlalchemy.engine.base.Dialect method),

131
do_executemany() (sqlalchemy.engine.base.Dialect

method), 131
do_get() (sqlalchemy.pool.Pool method), 136
do_prepare_twophase() (sqlalchemy.engine.base.Dialect

method), 131
do_recover_twophase() (sqlalchemy.engine.base.Dialect

method), 131
do_release_savepoint() (sqlalchemy.engine.base.Dialect

method), 131
do_return_conn() (sqlalchemy.pool.Pool method), 136

270 Index

SQLAlchemy Documentation, Release 0.5.4

do_rollback() (sqlalchemy.engine.base.Dialect method),
131

do_rollback() (sqlalchemy.engine.default.DefaultDialect
method), 132

do_rollback_to_savepoint()
(sqlalchemy.engine.base.Dialect method),
131

do_rollback_twophase() (sqlalchemy.engine.base.Dialect
method), 131

do_savepoint() (sqlalchemy.engine.base.Dialect method),
131

drop() (sqlalchemy.engine.base.Connectable method),
127

drop() (sqlalchemy.engine.base.Connection method), 127
drop() (sqlalchemy.engine.base.Engine method), 125
drop() (sqlalchemy.schema.Index method), 167
drop() (sqlalchemy.schema.Sequence method), 169
drop() (sqlalchemy.schema.Table method), 163
drop_all() (sqlalchemy.schema.MetaData method), 160
dumps() (in module sqlalchemy.ext.serializer), 253
dynamic_loader() (in module sqlalchemy.orm), 184

E
eagerload() (in module sqlalchemy.orm), 200
eagerload_all() (in module sqlalchemy.orm), 200
echo (sqlalchemy.engine.base.Engine attribute), 125
enable_eagerloads() (sqlalchemy.orm.query.Query

method), 194
endswith() (sqlalchemy.schema.Column method), 158
endswith() (sqlalchemy.sql.expression._CompareMixin

method), 149
endswith() (sqlalchemy.sql.expression.ColumnOperators

method), 149
Engine (class in sqlalchemy.engine.base), 125
engine (sqlalchemy.ext.sqlsoup.SqlSoup attribute), 258
engine_from_config() (in module sqlalchemy), 124
entity() (sqlalchemy.ext.sqlsoup.SqlSoup method), 258
except_() (in module sqlalchemy.sql.expression), 141
except_() (sqlalchemy.orm.query.Query method), 194
except_() (sqlalchemy.sql.expression.Select method), 152
except_all() (in module sqlalchemy.sql.expression), 141
except_all() (sqlalchemy.orm.query.Query method), 194
except_all() (sqlalchemy.sql.expression.Select method),

152
execute() (sqlalchemy.engine.base.Connectable method),

127
execute() (sqlalchemy.engine.base.Connection method),

127
execute() (sqlalchemy.engine.base.SchemaIterator

method), 134
execute() (sqlalchemy.interfaces.ConnectionProxy

method), 179
execute() (sqlalchemy.orm.session.Session method), 205
execute() (sqlalchemy.schema.Column method), 158

execute() (sqlalchemy.schema.DDL method), 170
execute() (sqlalchemy.schema.DefaultGenerator method),

169
execute() (sqlalchemy.schema.Table method), 163
execute() (sqlalchemy.sql.expression.ClauseElement

method), 147
execute_at() (sqlalchemy.schema.DDL method), 170
execute_string() (sqlalchemy.engine.base.DefaultRunner

method), 132
ExecutionContext (class in sqlalchemy.engine.base), 132
exists() (in module sqlalchemy.sql.expression), 141
exists() (sqlalchemy.schema.Table method), 163
expire() (sqlalchemy.orm.session.Session method), 205
expire_all() (sqlalchemy.orm.session.Session method),

206
expunge() (sqlalchemy.orm.session.Session method), 206
expunge_all() (sqlalchemy.ext.sqlsoup.SqlSoup method),

258
expunge_all() (sqlalchemy.orm.session.Session method),

206
extension() (in module sqlalchemy.orm), 200
extract() (in module sqlalchemy.sql.expression), 141

F
fetchall() (sqlalchemy.engine.base.ResultProxy method),

128
FetchedValue (class in sqlalchemy.schema), 169
fetchmany() (sqlalchemy.engine.base.ResultProxy

method), 128
fetchone() (sqlalchemy.engine.base.ResultProxy

method), 128
filter() (sqlalchemy.orm.query.Query method), 194
filter_by() (sqlalchemy.orm.query.Query method), 194
first() (sqlalchemy.orm.query.Query method), 194
FLOAT (class in sqlalchemy.types), 173
Float (class in sqlalchemy.types), 172
flush() (sqlalchemy.ext.sqlsoup.SqlSoup method), 258
flush() (sqlalchemy.orm.session.Session method), 206
foreign_keys (sqlalchemy.schema.Table attribute), 163
foreign_keys (sqlalchemy.sql.expression.FromClause at-

tribute), 151
ForeignKey (class in sqlalchemy.schema), 165
ForeignKeyConstraint (class in sqlalchemy.schema), 166
from_self() (sqlalchemy.orm.query.Query method), 194
from_statement() (sqlalchemy.orm.query.Query method),

194
FromClause (class in sqlalchemy.sql.expression), 150
froms (sqlalchemy.sql.expression.Select attribute), 152
func (in module sqlalchemy.sql.expression), 141

G
GenericFunction (class in sqlalchemy.sql.functions), 154
get() (sqlalchemy.orm.query.Query method), 194
get() (sqlalchemy.pool.Pool method), 136

Index 271

SQLAlchemy Documentation, Release 0.5.4

get_attribute() (in module sqlalchemy.orm.attributes), 188
get_bind() (sqlalchemy.orm.session.Session method), 206
get_children() (sqlalchemy.schema.Column method), 158
get_children() (sqlalchemy.schema.SchemaItem method),

170
get_children() (sqlalchemy.schema.Table method), 163
get_children() (sqlalchemy.sql.expression.ClauseElement

method), 147
get_children() (sqlalchemy.sql.expression.Select

method), 153
get_col_spec() (sqlalchemy.types.TypeDecorator

method), 176
get_col_spec() (sqlalchemy.types.TypeEngine method),

177
get_dbapi_type() (sqlalchemy.types.AbstractType

method), 177
get_dbapi_type() (sqlalchemy.types.TypeDecorator

method), 176
get_dbapi_type() (sqlalchemy.types.TypeEngine

method), 177
get_default_schema_name()

(sqlalchemy.engine.base.Dialect method),
131

get_dialect() (sqlalchemy.engine.url.URL method), 125
get_history() (in module sqlalchemy.orm.attributes), 188
get_instance_dict() (sqlalchemy.orm.interfaces.InstrumentationManager

method), 209
get_property() (sqlalchemy.orm.mapper.Mapper method),

190
get_referent() (sqlalchemy.schema.ForeignKey method),

166
get_search_list() (sqlalchemy.types.TypeEngine method),

177
group_by() (sqlalchemy.orm.query.Query method), 194

H
handle_dbapi_exception()

(sqlalchemy.engine.base.ExecutionContext
method), 133

has() (sqlalchemy.orm.interfaces.PropComparator
method), 211

has_key() (sqlalchemy.engine.base.RowProxy method),
129

has_op() (sqlalchemy.orm.interfaces.PropComparator
static method), 211

has_sequence() (sqlalchemy.engine.base.Dialect
method), 131

has_table() (sqlalchemy.engine.base.Dialect method),
131

having() (sqlalchemy.orm.query.Query method), 194
having() (sqlalchemy.sql.expression.Select method), 153

I
identity_key() (in module sqlalchemy.orm.util), 212

identity_key_from_instance()
(sqlalchemy.orm.mapper.Mapper method),
190

identity_key_from_primary_key()
(sqlalchemy.orm.mapper.Mapper method),
190

identity_key_from_row()
(sqlalchemy.orm.mapper.Mapper method),
190

ilike() (sqlalchemy.schema.Column method), 158
ilike() (sqlalchemy.sql.expression.ColumnOperators

method), 150
in_() (sqlalchemy.schema.Column method), 158
in_() (sqlalchemy.sql.expression._CompareMixin

method), 149
in_() (sqlalchemy.sql.expression.ColumnOperators

method), 150
in_transaction() (sqlalchemy.engine.base.Connection

method), 127
Index (class in sqlalchemy.schema), 167
info (sqlalchemy.engine.base.Connection attribute), 127
info (sqlalchemy.schema.Column attribute), 158
info (sqlalchemy.schema.SchemaItem attribute), 171
info (sqlalchemy.schema.Table attribute), 164
init_collection() (in module sqlalchemy.orm.attributes),

188
init_failed() (sqlalchemy.orm.interfaces.MapperExtension

method), 210
init_instance() (sqlalchemy.orm.interfaces.MapperExtension

method), 210
initialize_instance_dict() (sqlalchemy.orm.interfaces.InstrumentationManager

method), 209
inner_columns (sqlalchemy.sql.expression.Select at-

tribute), 153
Insert (class in sqlalchemy.sql.expression), 151
insert() (in module sqlalchemy.sql.expression), 142
insert() (sqlalchemy.schema.Table method), 164
insert() (sqlalchemy.sql.expression.TableClause method),

153
install_descriptor() (sqlalchemy.orm.interfaces.InstrumentationManager

method), 209
install_member() (sqlalchemy.orm.interfaces.InstrumentationManager

method), 209
install_state() (sqlalchemy.orm.interfaces.InstrumentationManager

method), 209
instances() (sqlalchemy.orm.query.Query method), 194
instrument_attribute() (sqlalchemy.orm.interfaces.InstrumentationManager

method), 209
instrument_class() (sqlalchemy.orm.interfaces.MapperExtension

method), 210
instrument_collection_class()

(sqlalchemy.orm.interfaces.InstrumentationManager
method), 209

272 Index

SQLAlchemy Documentation, Release 0.5.4

instrument_declarative() (in module
sqlalchemy.ext.declarative), 243

InstrumentationManager (class in
sqlalchemy.orm.interfaces), 208

INT (class in sqlalchemy.types), 173
Integer (class in sqlalchemy.types), 172
INTEGER (in module sqlalchemy.types), 173
intersect() (in module sqlalchemy.sql.expression), 142
intersect() (sqlalchemy.orm.query.Query method), 195
intersect() (sqlalchemy.sql.expression.Select method),

153
intersect_all() (in module sqlalchemy.sql.expression), 142
intersect_all() (sqlalchemy.orm.query.Query method),

195
intersect_all() (sqlalchemy.sql.expression.Select method),

153
Interval (class in sqlalchemy.types), 172
invalidate() (sqlalchemy.engine.base.Connection

method), 127
invalidated (sqlalchemy.engine.base.Connection at-

tribute), 127
is_active (sqlalchemy.orm.session.Session attribute), 206
is_bound() (sqlalchemy.schema.MetaData method), 160
is_bound() (sqlalchemy.schema.ThreadLocalMetaData

method), 165
is_derived_from() (sqlalchemy.schema.Table method),

164
is_derived_from() (sqlalchemy.sql.expression.FromClause

method), 151
is_disconnect() (sqlalchemy.engine.base.Dialect method),

131
is_instrumented() (in module sqlalchemy.orm.attributes),

188
is_modified() (sqlalchemy.orm.session.Session method),

206
is_mutable() (sqlalchemy.types.AbstractType method),

177
is_mutable() (sqlalchemy.types.MutableType method),

178
is_mutable() (sqlalchemy.types.TypeDecorator method),

176
is_mutable() (sqlalchemy.types.TypeEngine method), 177
isa() (sqlalchemy.orm.mapper.Mapper method), 190
items() (sqlalchemy.engine.base.RowProxy method), 129
iterate_instances() (sqlalchemy.orm.query.Query

method), 195
iterate_properties (sqlalchemy.orm.mapper.Mapper at-

tribute), 190

J
Join (class in sqlalchemy.sql.expression), 151
join() (in module sqlalchemy.orm), 199
join() (in module sqlalchemy.sql.expression), 142
join() (sqlalchemy.ext.sqlsoup.SqlSoup method), 258

join() (sqlalchemy.orm.query.Query method), 195
join() (sqlalchemy.schema.Table method), 164
join() (sqlalchemy.sql.expression.FromClause method),

151

K
key (sqlalchemy.schema.Table attribute), 164
keys() (sqlalchemy.engine.base.RowProxy method), 129
keys() (sqlalchemy.schema.Constraint method), 165

L
label() (in module sqlalchemy.sql.expression), 143
label() (sqlalchemy.schema.Column method), 158
label() (sqlalchemy.sql.expression._CompareMixin

method), 149
last_inserted_ids() (sqlalchemy.engine.base.ExecutionContext

method), 133
last_inserted_ids() (sqlalchemy.engine.base.ResultProxy

method), 128
last_inserted_params() (sqlalchemy.engine.base.ExecutionContext

method), 133
last_inserted_params() (sqlalchemy.engine.base.ResultProxy

method), 128
last_updated_params() (sqlalchemy.engine.base.ExecutionContext

method), 133
last_updated_params() (sqlalchemy.engine.base.ResultProxy

method), 128
lastrow_has_defaults() (sqlalchemy.engine.base.ExecutionContext

method), 133
lastrow_has_defaults() (sqlalchemy.engine.base.ResultProxy

method), 128
lazyload() (in module sqlalchemy.orm), 200
like() (sqlalchemy.schema.Column method), 158
like() (sqlalchemy.sql.expression.ColumnOperators

method), 150
limit() (sqlalchemy.orm.query.Query method), 196
literal() (in module sqlalchemy.sql.expression), 143
literal_column() (in module sqlalchemy.sql.expression),

143
load_dialect_impl() (sqlalchemy.types.TypeDecorator

method), 176
loads() (in module sqlalchemy.ext.serializer), 253
localtime (class in sqlalchemy.sql.functions), 155
localtimestamp (class in sqlalchemy.sql.functions), 155
log() (sqlalchemy.pool.Pool method), 136

M
manage() (in module sqlalchemy.pool), 138
manage() (sqlalchemy.orm.interfaces.InstrumentationManager

method), 209
manager_getter() (sqlalchemy.orm.interfaces.InstrumentationManager

method), 209
map() (sqlalchemy.ext.sqlsoup.SqlSoup method), 258

Index 273

SQLAlchemy Documentation, Release 0.5.4

mapped_collection() (in module
sqlalchemy.orm.collections), 192

Mapper (class in sqlalchemy.orm.mapper), 189
mapper() (in module sqlalchemy.orm), 180
mapper() (sqlalchemy.orm.scoping.ScopedSession

method), 208
MapperExtension (class in sqlalchemy.orm.interfaces),

209
match() (sqlalchemy.schema.Column method), 158
match() (sqlalchemy.sql.expression._CompareMixin

method), 149
match() (sqlalchemy.sql.expression.ColumnOperators

method), 150
max (class in sqlalchemy.sql.functions), 155
merge() (sqlalchemy.orm.session.Session method), 206
MetaData (class in sqlalchemy.schema), 159
min (class in sqlalchemy.sql.functions), 155
MSBigInteger (class in sqlalchemy.databases.mysql), 223
MSBinary (class in sqlalchemy.databases.mysql), 228
MSBit (class in sqlalchemy.databases.mysql), 224
MSBlob (class in sqlalchemy.databases.mysql), 228
MSBoolean (class in sqlalchemy.databases.mysql), 230
MSChar (class in sqlalchemy.databases.mysql), 227
MSDate (class in sqlalchemy.databases.mysql), 224
MSDateTime (class in sqlalchemy.databases.mysql), 224
MSDecimal (class in sqlalchemy.databases.mysql), 222
MSDouble (class in sqlalchemy.databases.mysql), 222
MSEnum (class in sqlalchemy.databases.mysql), 228
MSFloat (class in sqlalchemy.databases.mysql), 223
MSInteger (class in sqlalchemy.databases.mysql), 223
MSLongBlob (class in sqlalchemy.databases.mysql), 228
MSLongText (class in sqlalchemy.databases.mysql), 226
MSMediumBlob (class in sqlalchemy.databases.mysql),

228
MSMediumInteger (class in

sqlalchemy.databases.mysql), 223
MSMediumText (class in sqlalchemy.databases.mysql),

226
MSNChar (class in sqlalchemy.databases.mysql), 227
MSNumeric (class in sqlalchemy.databases.mysql), 222
MSNVarChar (class in sqlalchemy.databases.mysql), 227
MSReal (class in sqlalchemy.databases.mysql), 223
MSSet (class in sqlalchemy.databases.mysql), 229
MSSmallInteger (class in sqlalchemy.databases.mysql),

224
MSString (class in sqlalchemy.databases.mysql), 226
MSText (class in sqlalchemy.databases.mysql), 225
MSTime (class in sqlalchemy.databases.mysql), 225
MSTimeStamp (class in sqlalchemy.databases.mysql),

225
MSTinyBlob (class in sqlalchemy.databases.mysql), 228
MSTinyInteger (class in sqlalchemy.databases.mysql),

224
MSTinyText (class in sqlalchemy.databases.mysql), 225

MSVarBinary (class in sqlalchemy.databases.mysql), 228
MSYear (class in sqlalchemy.databases.mysql), 225
MutableType (class in sqlalchemy.types), 178

N
name (sqlalchemy.engine.base.Engine attribute), 125
NCHAR (class in sqlalchemy.types), 173
new (sqlalchemy.orm.session.Session attribute), 206
not_() (in module sqlalchemy.sql.expression), 143
now (class in sqlalchemy.sql.functions), 155
null() (in module sqlalchemy.sql.expression), 143
NullPool (class in sqlalchemy.pool), 135
NullType (class in sqlalchemy.types), 178
NUMERIC (class in sqlalchemy.types), 173
Numeric (class in sqlalchemy.types), 172

O
object_mapper() (in module sqlalchemy.orm), 187
object_session() (sqlalchemy.orm.session.Session class

method), 206
of_type() (sqlalchemy.orm.interfaces.PropComparator

method), 211
of_type_op() (sqlalchemy.orm.interfaces.PropComparator

static method), 211
offset() (sqlalchemy.orm.query.Query method), 196
one() (sqlalchemy.orm.query.Query method), 196
op() (sqlalchemy.schema.Column method), 158
op() (sqlalchemy.sql.expression._CompareMixin

method), 149
op() (sqlalchemy.sql.expression.ColumnOperators

method), 150
operate() (sqlalchemy.schema.Column method), 158
operate() (sqlalchemy.sql.expression._CompareMixin

method), 149
operate() (sqlalchemy.sql.expression.ColumnOperators

method), 150
options() (sqlalchemy.orm.query.Query method), 196
or_() (in module sqlalchemy.sql.expression), 143
order_by() (sqlalchemy.orm.query.Query method), 196
ordering_list() (in module sqlalchemy.ext.orderinglist),

252
outerjoin() (in module sqlalchemy.orm), 199
outerjoin() (in module sqlalchemy.sql.expression), 144
outerjoin() (sqlalchemy.orm.query.Query method), 196
outerjoin() (sqlalchemy.schema.Table method), 164
outerjoin() (sqlalchemy.sql.expression.FromClause

method), 151
outparam() (in module sqlalchemy.sql.expression), 143

P
params() (sqlalchemy.orm.query.Query method), 196
params() (sqlalchemy.schema.Column method), 158
params() (sqlalchemy.schema.Table method), 164

274 Index

SQLAlchemy Documentation, Release 0.5.4

params() (sqlalchemy.sql.expression.ClauseElement
method), 147

PassiveDefault (in module sqlalchemy.schema), 169
PickleType (class in sqlalchemy.types), 173
PKNotFoundError, 258
polymorphic_iterator() (sqlalchemy.orm.mapper.Mapper

method), 190
polymorphic_union() (in module sqlalchemy.orm.util),

213
Pool (class in sqlalchemy.pool), 135
PoolListener (class in sqlalchemy.interfaces), 179
populate_existing() (sqlalchemy.orm.query.Query

method), 196
populate_instance() (sqlalchemy.orm.interfaces.MapperExtension

method), 210
post_configure_attribute()

(sqlalchemy.orm.interfaces.InstrumentationManager
method), 209

post_exec() (sqlalchemy.engine.base.ExecutionContext
method), 133

postfetch_cols() (sqlalchemy.engine.base.ResultProxy
method), 128

pre_exec() (sqlalchemy.engine.base.ExecutionContext
method), 133

prefix_with() (sqlalchemy.sql.expression.Insert method),
151

prefix_with() (sqlalchemy.sql.expression.Select method),
153

prepare() (sqlalchemy.orm.session.Session method), 207
preparer (sqlalchemy.engine.default.DefaultDialect at-

tribute), 132
primary_key (sqlalchemy.schema.Table attribute), 164
primary_key (sqlalchemy.sql.expression.FromClause at-

tribute), 151
primary_key_from_instance()

(sqlalchemy.orm.mapper.Mapper method),
190

primary_mapper() (sqlalchemy.orm.mapper.Mapper
method), 190

PrimaryKeyConstraint (class in sqlalchemy.schema), 167
process_bind_param() (sqlalchemy.types.TypeDecorator

method), 176
process_result_value() (sqlalchemy.types.TypeDecorator

method), 176
PropComparator (class in sqlalchemy.orm.interfaces),

211
prune() (sqlalchemy.orm.session.Session method), 207
Python Enhancement Proposals

PEP 249, 138

Q
Query (class in sqlalchemy.orm.query), 193
query() (sqlalchemy.orm.session.Session method), 207

query_from_parent() (sqlalchemy.orm.query.Query class
method), 196

query_property() (sqlalchemy.orm.scoping.ScopedSession
method), 208

QueuePool (class in sqlalchemy.pool), 136

R
random (class in sqlalchemy.sql.functions), 155
raw_connection() (sqlalchemy.engine.base.Engine

method), 125
reconstruct_instance() (sqlalchemy.orm.interfaces.MapperExtension

method), 210
reconstructor() (in module sqlalchemy.orm), 187
recreate() (sqlalchemy.pool.Pool method), 136
references() (sqlalchemy.schema.Column method), 159
references() (sqlalchemy.schema.ForeignKey method),

166
reflect() (sqlalchemy.schema.MetaData method), 160
reflecttable() (sqlalchemy.engine.base.Connection

method), 127
reflecttable() (sqlalchemy.engine.base.Dialect method),

131
reflecttable() (sqlalchemy.engine.base.Engine method),

125
refresh() (sqlalchemy.orm.session.Session method), 207
relation() (in module sqlalchemy.orm), 184
remove() (sqlalchemy.orm.interfaces.AttributeExtension

method), 208
remove() (sqlalchemy.schema.MetaData method), 161
remove() (sqlalchemy.schema.PrimaryKeyConstraint

method), 168
remove_state() (sqlalchemy.orm.interfaces.InstrumentationManager

method), 209
replace() (sqlalchemy.schema.PrimaryKeyConstraint

method), 168
replace() (sqlalchemy.sql.expression.ColumnCollection

method), 148
replace_selectable() (sqlalchemy.schema.Table method),

164
replace_selectable() (sqlalchemy.sql.expression.FromClause

method), 151
reset_joinpoint() (sqlalchemy.orm.query.Query method),

197
result() (sqlalchemy.engine.base.ExecutionContext

method), 133
result_processor() (sqlalchemy.types.AbstractType

method), 178
result_processor() (sqlalchemy.types.TypeDecorator

method), 176
result_processor() (sqlalchemy.types.TypeEngine

method), 177
ResultProxy (class in sqlalchemy.engine.base), 128
return_conn() (sqlalchemy.pool.Pool method), 136

Index 275

SQLAlchemy Documentation, Release 0.5.4

ReturnTypeFromArgs (class in sqlalchemy.sql.functions),
154

reverse_operate() (sqlalchemy.schema.Column method),
159

reverse_operate() (sqlalchemy.sql.expression._CompareMixin
method), 149

reverse_operate() (sqlalchemy.sql.expression.ColumnOperators
method), 150

rollback() (sqlalchemy.engine.base.Transaction method),
129

rollback() (sqlalchemy.orm.session.Session method), 207
RowProxy (class in sqlalchemy.engine.base), 129

S
save() (sqlalchemy.orm.session.Session method), 207
save_or_update() (sqlalchemy.orm.session.Session

method), 207
scalar() (sqlalchemy.engine.base.Connection method),

127
scalar() (sqlalchemy.engine.base.ResultProxy method),

129
scalar() (sqlalchemy.orm.query.Query method), 197
scalar() (sqlalchemy.orm.session.Session method), 207
scalar() (sqlalchemy.schema.Column method), 159
scalar() (sqlalchemy.schema.Table method), 164
scalar() (sqlalchemy.sql.expression.ClauseElement

method), 147
SchemaItem (class in sqlalchemy.schema), 170
SchemaIterator (class in sqlalchemy.engine.base), 134
SchemaVisitor (class in sqlalchemy.schema), 171
scoped_session() (in module sqlalchemy.orm), 200
ScopedSession (class in sqlalchemy.orm.scoping), 207
Select (class in sqlalchemy.sql.expression), 152
select() (in module sqlalchemy.sql.expression), 144
select() (sqlalchemy.schema.Table method), 164
select() (sqlalchemy.sql.expression.FromClause method),

151
select() (sqlalchemy.sql.expression.Join method), 151
select_from() (sqlalchemy.orm.query.Query method), 197
select_from() (sqlalchemy.sql.expression.Select method),

153
Selectable (class in sqlalchemy.sql.expression), 153
self_group() (sqlalchemy.schema.Column method), 159
self_group() (sqlalchemy.schema.Table method), 164
self_group() (sqlalchemy.sql.expression.Select method),

153
Sequence (class in sqlalchemy.schema), 169
Serializer() (in module sqlalchemy.ext.serializer), 253
server_version_info() (sqlalchemy.engine.base.Dialect

method), 131
Session (class in sqlalchemy.orm.session), 203
session_user (class in sqlalchemy.sql.functions), 155
SessionExtension (class in sqlalchemy.orm.interfaces),

211

sessionmaker() (in module sqlalchemy.orm), 201
set() (sqlalchemy.orm.interfaces.AttributeExtension

method), 208
set() (sqlalchemy.orm.util.Validator method), 213
set_attribute() (in module sqlalchemy.orm.attributes), 188
set_committed_value() (in module

sqlalchemy.orm.attributes), 189
set_input_sizes() (sqlalchemy.engine.default.DefaultExecutionContext

method), 132
shares_lineage() (sqlalchemy.schema.Column method),

159
shares_lineage() (sqlalchemy.sql.expression.ColumnElement

method), 148
should_autocommit_text()

(sqlalchemy.engine.base.ExecutionContext
method), 133

should_close_with_result
(sqlalchemy.engine.base.Connection attribute),
127

SingletonThreadPool (class in sqlalchemy.pool), 137
slice() (sqlalchemy.orm.query.Query method), 197
SMALLINT (class in sqlalchemy.types), 174
SmallInteger (class in sqlalchemy.types), 172
sorted_tables (sqlalchemy.schema.MetaData attribute),

161
sqlalchemy.databases.access (module), 213
sqlalchemy.databases.firebird (module), 213
sqlalchemy.databases.informix (module), 214
sqlalchemy.databases.maxdb (module), 214
sqlalchemy.databases.mssql (module), 215
sqlalchemy.databases.mysql (module), 219
sqlalchemy.databases.oracle (module), 230
sqlalchemy.databases.postgres (module), 232
sqlalchemy.databases.sqlite (module), 233
sqlalchemy.databases.sybase (module), 235
sqlalchemy.ext.associationproxy (module), 243
sqlalchemy.ext.compiler (module), 258
sqlalchemy.ext.declarative (module), 235
sqlalchemy.ext.orderinglist (module), 251
sqlalchemy.ext.serializer (module), 252
sqlalchemy.ext.sqlsoup (module), 253
sqlalchemy.interfaces (module), 178
sqlalchemy.orm (module), 180, 193, 200
sqlalchemy.orm.attributes.instance_state() (in module

sqlalchemy.orm), 188
sqlalchemy.orm.attributes.manager_of_class() (in module

sqlalchemy.orm), 188
sqlalchemy.orm.collections (module), 190
sqlalchemy.orm.interfaces (module), 208
sqlalchemy.orm.util (module), 212
sqlalchemy.pool (module), 134
sqlalchemy.schema (module), 155
sqlalchemy.sql.expression (module), 139
sqlalchemy.sql.functions (module), 154

276 Index

SQLAlchemy Documentation, Release 0.5.4

sqlalchemy.types (module), 171
SqlSoup (class in sqlalchemy.ext.sqlsoup), 258
startswith() (sqlalchemy.schema.Column method), 159
startswith() (sqlalchemy.sql.expression._CompareMixin

method), 149
startswith() (sqlalchemy.sql.expression.ColumnOperators

method), 150
state_getter() (sqlalchemy.orm.interfaces.InstrumentationManager

method), 209
statement (sqlalchemy.orm.query.Query attribute), 197
statement_compiler (sqlalchemy.engine.default.DefaultDialect

attribute), 132
StaticPool (class in sqlalchemy.pool), 137
status() (sqlalchemy.pool.Pool method), 136
String (class in sqlalchemy.types), 171
subquery() (in module sqlalchemy.sql.expression), 145
subquery() (sqlalchemy.orm.query.Query method), 197
sum (class in sqlalchemy.sql.functions), 155
supports_sane_multi_rowcount()

(sqlalchemy.engine.base.ResultProxy method),
129

supports_sane_rowcount()
(sqlalchemy.engine.base.ResultProxy method),
129

synonym() (in module sqlalchemy.orm), 186
synonym_for() (in module sqlalchemy.ext.declarative),

243
sysdate (class in sqlalchemy.sql.functions), 155

T
Table (class in sqlalchemy.schema), 161
table() (in module sqlalchemy.sql.expression), 145
table_iterator() (sqlalchemy.schema.MetaData method),

161
table_names() (sqlalchemy.engine.base.Engine method),

125
TableClause (class in sqlalchemy.sql.expression), 153
target_class (sqlalchemy.ext.associationproxy.AssociationProxy

attribute), 249
target_fullname (sqlalchemy.schema.ForeignKey at-

tribute), 166
Text (class in sqlalchemy.types), 172
TEXT (in module sqlalchemy.types), 173
text() (in module sqlalchemy.sql.expression), 145
text() (sqlalchemy.engine.base.Engine method), 125
thread safety

Connection, 126
connections, 105
MetaData, 159
Session, 86
sessions, 86
Transaction, 129
transactions, 106

ThreadLocalMetaData (class in sqlalchemy.schema), 164

TIME (class in sqlalchemy.types), 174
Time (class in sqlalchemy.types), 172
TIMESTAMP (class in sqlalchemy.types), 174
timetuple (sqlalchemy.sql.expression.ColumnOperators

attribute), 150
tometadata() (sqlalchemy.schema.Table method), 164
Transaction (class in sqlalchemy.engine.base), 129
transaction() (sqlalchemy.engine.base.Engine method),

126
translate_connect_args() (sqlalchemy.engine.url.URL

method), 125
translate_row() (sqlalchemy.orm.interfaces.MapperExtension

method), 211
type_descriptor() (sqlalchemy.engine.base.Dialect

method), 131
type_descriptor() (sqlalchemy.engine.default.DefaultDialect

method), 132
TypeDecorator (class in sqlalchemy.types), 175
TypeEngine (class in sqlalchemy.types), 176

U
undefer() (in module sqlalchemy.orm), 200
Unicode (class in sqlalchemy.types), 171
UnicodeText (class in sqlalchemy.types), 172
uninstall_descriptor() (sqlalchemy.orm.interfaces.InstrumentationManager

method), 209
uninstall_member() (sqlalchemy.orm.interfaces.InstrumentationManager

method), 209
union() (in module sqlalchemy.sql.expression), 145
union() (sqlalchemy.orm.query.Query method), 197
union() (sqlalchemy.sql.expression.Select method), 153
union_all() (in module sqlalchemy.sql.expression), 146
union_all() (sqlalchemy.orm.query.Query method), 198
union_all() (sqlalchemy.sql.expression.Select method),

153
unique_connection() (sqlalchemy.pool.Pool method), 136
unique_params() (sqlalchemy.schema.Column method),

159
unique_params() (sqlalchemy.schema.Table method), 164
unique_params() (sqlalchemy.sql.expression.ClauseElement

method), 147
UniqueConstraint (class in sqlalchemy.schema), 168
Update (class in sqlalchemy.sql.expression), 153
update() (in module sqlalchemy.sql.expression), 146
update() (sqlalchemy.orm.query.Query method), 198
update() (sqlalchemy.orm.session.Session method), 207
update() (sqlalchemy.schema.Table method), 164
update() (sqlalchemy.sql.expression.TableClause

method), 153
URL (class in sqlalchemy.engine.url), 124
user (class in sqlalchemy.sql.functions), 155

V
validates() (in module sqlalchemy.orm), 187

Index 277

SQLAlchemy Documentation, Release 0.5.4

Validator (class in sqlalchemy.orm.util), 212
value() (sqlalchemy.orm.query.Query method), 198
values() (sqlalchemy.engine.base.RowProxy method),

129
values() (sqlalchemy.orm.query.Query method), 198
values() (sqlalchemy.sql.expression.Insert method), 151
values() (sqlalchemy.sql.expression.Update method), 154
VARCHAR (class in sqlalchemy.types), 173

W
where() (sqlalchemy.sql.expression.Delete method), 150
where() (sqlalchemy.sql.expression.Select method), 153
where() (sqlalchemy.sql.expression.Update method), 154
whereclause (sqlalchemy.orm.query.Query attribute), 198
with_labels() (sqlalchemy.ext.sqlsoup.SqlSoup method),

258
with_labels() (sqlalchemy.orm.query.Query method), 198
with_lockmode() (sqlalchemy.orm.query.Query method),

198
with_only_columns() (sqlalchemy.sql.expression.Select

method), 153
with_parent() (in module sqlalchemy.orm.util), 213
with_parent() (sqlalchemy.orm.query.Query method),

198
with_polymorphic() (sqlalchemy.orm.query.Query

method), 198

Y
yield_per() (sqlalchemy.orm.query.Query method), 199

278 Index

	Overview / Installation
	Overview
	Tutorials
	Main Documentation
	API Reference
	Installing SQLAlchemy
	Installing a Database API
	Checking the Installed SQLAlchemy Version
	0.4 to 0.5 Migration

	Object Relational Tutorial
	Version Check
	Connecting
	Define and Create a Table
	Define a Python Class to be Mapped
	Setting up the Mapping
	Creating Table, Class and Mapper All at Once Declaratively
	Creating a Session
	Adding new Objects
	Rolling Back
	Querying
	Common Filter Operators
	Returning Lists and Scalars
	Using Literal SQL

	Building a Relation
	Working with Related Objects
	Querying with Joins
	Using Aliases
	Using Subqueries
	Selecting Entities from Subqueries
	Using EXISTS
	Common Relation Operators

	Deleting
	Configuring delete/delete-orphan Cascade

	Building a Many To Many Relation
	Further Reference

	SQL Expression Language Tutorial
	Version Check
	Connecting
	Define and Create Tables
	Insert Expressions
	Executing
	Executing Multiple Statements
	Connectionless / Implicit Execution
	Selecting
	Operators
	Conjunctions
	Using Text
	Using Aliases
	Using Joins
	Intro to Generative Selects and Transformations
	Everything Else
	Bind Parameter Objects
	Functions
	Unions and Other Set Operations
	Scalar Selects
	Correlated Subqueries
	Ordering, Grouping, Limiting, Offset...ing...

	Updates
	Correlated Updates

	Deletes
	Further Reference

	Mapper Configuration
	Mapper Configuration
	Customizing Column Properties
	Deferred Column Loading
	SQL Expressions as Mapped Attributes
	Changing Attribute Behavior
	Simple Validators
	Using Descriptors
	Custom Comparators

	Composite Column Types
	Controlling Ordering
	Mapping Class Inheritance Hierarchies
	Joined Table Inheritance
	Single Table Inheritance
	Concrete Table Inheritance
	Using Relations with Inheritance

	Mapping a Class against Multiple Tables
	Mapping a Class against Arbitrary Selects
	Multiple Mappers for One Class
	Constructors and Object Initialization
	Extending Mapper

	Relation Configuration
	Basic Relational Patterns
	One To Many
	Many To One
	One To One
	Many To Many
	Association Object

	Adjacency List Relationships
	Self-Referential Query Strategies
	Configuring Eager Loading

	Specifying Alternate Join Conditions to relation()
	Specifying Foreign Keys
	Building Query-Enabled Properties
	Multiple Relations against the Same Parent/Child

	Alternate Collection Implementations
	Custom Collection Implementations
	Annotating Custom Collections via Decorators
	Dictionary-Based Collections
	Instrumentation and Custom Types

	Configuring Loader Strategies: Lazy Loading, Eager Loading
	Routing Explicit Joins/Statements into Eagerly Loaded Collections

	Working with Large Collections
	Dynamic Relation Loaders
	Setting Noload
	Using Passive Deletes

	Mutable Primary Keys / Update Cascades

	Using the Session
	What does the Session do ?
	Getting a Session
	Using a sessionmaker() Configuration
	Binding Session to an Engine
	Binding Session to a Connection
	Using create_session()
	Configurational Arguments

	Using the Session
	Quickie Intro to Object States
	Frequently Asked Questions
	Querying
	Adding New or Existing Items
	Merging
	Deleting
	Flushing
	Committing
	Rolling Back
	Expunging
	Closing
	Refreshing / Expiring
	Session Attributes

	Cascades
	Managing Transactions
	Using SAVEPOINT
	Enabling Two-Phase Commit

	Embedding SQL Insert/Update Expressions into a Flush
	Using SQL Expressions with Sessions
	Joining a Session into an External Transaction
	Contextual/Thread-local Sessions
	Creating a Thread-local Context
	Lifespan of a Contextual Session

	Partitioning Strategies
	Vertical Partitioning
	Horizontal Partitioning

	Extending Session

	Database Engines
	Supported Databases
	create_engine() URL Arguments
	Custom DBAPI connect() arguments

	Database Engine Options
	More On Connections
	Using Transactions with Connection
	Understanding Autocommit

	Connectionless Execution, Implicit Execution
	Using the Threadlocal Execution Strategy

	Configuring Logging

	Database Meta Data
	Describing Databases with MetaData
	Defining Foreign Keys
	Accessing Tables and Columns
	Binding MetaData to an Engine or Connection
	Reflecting Tables
	Overriding Reflected Columns
	Reflecting All Tables at Once

	Specifying the Schema Name
	ON UPDATE and ON DELETE
	Other Options

	Creating and Dropping Database Tables
	Column Insert/Update Defaults
	Pre-Executed Python Functions
	Pre-executed and Inline SQL Expressions
	DDL-Level Defaults
	Triggered Columns
	Defining Sequences

	Defining Constraints and Indexes
	UNIQUE Constraint
	CHECK Constraint
	Indexes

	Adapting Tables to Alternate Metadata

	API Reference
	sqlalchemy
	Connections
	Creating Engines
	Connectables
	Result Objects
	Transactions
	Internals

	Connection Pooling
	Connection Pool Configuration
	Custom Pool Construction
	Builtin Pool Implementations
	Pooling Plain DB-API Connections

	SQL Statements and Expressions
	Functions
	Classes
	Generic Functions

	Database Schema
	Tables and Columns
	Constraints
	Default Generators and Markers
	DDL
	Internals

	Column and Data Types
	Generic Types
	SQL Standard Types
	Vendor-Specific Types
	Custom Types

	Interfaces

	sqlalchemy.orm
	Class Mapping
	Defining Mappings
	Mapper Properties
	Decorators
	Utilities
	Attribute Utilities
	Internals

	Collection Mapping
	Querying
	The Query Object
	ORM-Specific Query Constructs
	Query Options

	Sessions
	Interfaces
	Utilities

	sqlalchemy.databases
	Access
	Firebird
	Firebird backend

	Informix
	MaxDB
	Overview
	Connecting
	Implementation Notes

	SQL Server
	Driver
	Connecting
	Auto Increment Behavior
	Collation Support
	LIMIT/OFFSET Support
	Nullability
	Date / Time Handling
	Compatibility Levels
	Known Issues

	MySQL
	Overview
	Supported Versions and Features
	Character Sets
	Storage Engines
	Keys
	SQL Mode
	MySQL SQL Extensions
	Troubleshooting
	MySQL Column Types

	Oracle
	Driver
	Connecting
	Auto Increment Behavior
	LOB Objects
	LIMIT/OFFSET Support
	Two Phase Transaction Support
	Oracle 8 Compatibility
	Synonym/DBLINK Reflection

	PostgreSQL
	Driver
	Connecting
	Sequences/SERIAL
	INSERT/UPDATE...RETURNING
	Indexes
	Transactions

	SQLite
	Driver
	Connect Strings
	Threading Behavior
	Date and Time Types
	Unicode

	Sybase

	sqlalchemy.ext
	declarative
	Synopsis
	Defining Attributes
	Association of Metadata and Engine
	Configuring Relations
	Configuring Many-to-Many Relations
	Defining Synonyms
	Table Configuration
	Mapper Configuration
	Inheritance Configuration
	Class Usage

	associationproxy
	Simplifying Relations
	Simplifying Association Object Relations
	Building Complex Views
	API

	orderinglist
	serializer
	SqlSoup
	Introduction
	Loading objects
	Modifying objects
	Joins
	Relations
	Advanced Use
	Extra tests

	compiler
	Synopsis

	Indices and tables
	Module Index
	Index

