
A PRAGMATIC APPROACH TO
IMPLEMENTING A SERVICE-
ORIENTED ARCHITECTURE
WITH SUN JAVA™ COMPOSITE
APPLICATION PLATFORM SUITE
White Paper
February 2007

Sun Microsystems, Inc.

Table of Contents

Introduction . 3

Defining SOA Projects . 4

The Benefits of Adopting an SOA . 5

The Toolset for SOA is Important . 7

Sun’s SOA Solution . 8

The Layered Approach to SOA . 9

The Agile Infrastructure . 11

The Four-Layer SOA Model . 13

Presentation services . 14

Business processes . 15

Business services . 16

Technical services . 17

SOA Key Components . 18

Business-level service interfaces . 21

Technical-level service interfaces . 23

Service enablement . 23

Service orchestration . 26

Repository organization . 26

Integration Styles and SOA . 29

Business process management in an SOA . 29

Enterprise application integration for service enablement . 30

Adapters for service enablement . 31

Workflow in an SOA . 32

Composite applications in an SOA . 32

Portals in an SOA . 33

Business activity monitoring in an SOA . 34

Single entity views in an SOA . 35

Summary . 37

Learn More . 38

About Sun . 38

Sun Microsystems, Inc.3 Introduction

Chapter 1

Introduction

The term “service-oriented architecture” has been used quite frequently in the news

and by many information technology (IT) vendors recently. While a large number of

service-oriented architecture (SOA) projects have been undertaken in the last few

years, not all have achieved the benefits expected. Often, an SOA project has been

turned into an IT-only initiative that just delivers more IT-centric solutions. The result of

an IT-led SOA implementation can easily be a mass of complex technical services that

are very loosely aligned to the goals of the business and may provide very few reusable

business services. These resulting technical services usually require complex point-to-

point interconnections that only the most skilled IT staff are likely to understand.

In some cases, well-meaning project teams have had to drop their plans to adopt an

SOA because the business was demanding fast project delivery of a tactical solution.

This means that team members have little or no time to get educated on the new

development approach required in order to benefit from an SOA, and SOA investments

are then delayed until a later project. The key challenge is breaking this cycle. How can

you implement your next project using SOA-based principles without the burden of

implementing a completely new architecture from scratch?

Incremental delivery is a key goal for any SOA project, but it is important to keep sight

of the business goals of the SOA as well. Without a clear understanding of what’s critical,

what has to be done, and when, real SOA benefits may never be reached.

The main focus of this white paper is to provide practical, real-world guidance on how

to start your first SOA project and how the Sun Java™ Composite Application Platform

Suite (Java CAPS) can help you successfully implement SOA-based solutions. This paper

describes a pragmatic approach for SOA development that adheres to the principles of

SOA. It will also outline a four-layer model for SOA implementation that will:

• Help IT and business cooperate in project delivery

• Show how to provide real business solutions in practical time frames using Java CAPS

• Deliver business solutions on a project-by-project basis

Not all aspects of an SOA implementation will be discussed; the main focus for this

document is to describe the steps involved in taking business processes from design

through to the physical implementation using a pragmatic approach and the Java

CAPS platform.

Sun Microsystems, Inc.4 Defining SOA Projects

Chapter 2

Defining SOA Projects

First, what exactly is an SOA and how is it different from traditional software development

approaches? SOA can be defined at the high level as:

An architecture where services are defined and orchestrated using open standards,

allowing for a pluggable service infrastructure that removes single vendor lock-in

and provides an agile infrastructure where services range from business definition

through to technical implementation.

It is important to not confuse your existing IT infrastructure and approach in SOA

terms. After all, you could argue that everything developed in your IT department for

the past 20 to 30 years is service-based, and therefore is an SOA. You could also argue

that Customer Information Control Systems (CICS), Corba, Enterprise JavaBeans™ (EJB™)

technology, object orientation, and Web services are all SOA, but that would miss one

of the more fundamental points about SOA benefits: delivering increasing value to the

business from IT investments through the adoption of an SOA.

Another problem to avoid when defining an SOA project is devising solutions that are

IT-centric. In other words, the term “business service” has to be used to refer to a com-

ponent that the business can understand in business terms. This is a critical point that

will impact the business’s involvement in and joint ownership of an SOA project. If the

business does not see the alignment to business services, the solution will in all likeli-

hood end up as just another technical solution. This may also result in a technically

complex set of service interfaces that do not help to deliver the agile infrastructure the

enterprise needs.

It is important to understand the definition of an SOA and the expected benefits when

embarking on an SOA project.

Sun Microsystems, Inc.5 The Benefits of Adopting an SOA

Chapter 3

The Benefits of Adopting an SOA

Who specifically benefits from an SOA? The short answer is the business, for example,

through cost savings, revenue growth, and increasing customer satisfaction. The longer

answer is that if done right, everyone across the entire organization will benefit, even

your partners and customers.

It’s important to define the key benefits you expect from an SOA project, then use

those expectations as a guide when you document in more detail the practical imple-

mentation aspects of your SOA project.

Examples of key SOA benefits include:

• Decoupled services providing better management of complex systems as well as

increased business and technical agility

• Services reuse driving speed of implementation and lowering costs

• Open, pluggable infrastructure allowing more choice of components and technologies,

reducing vendor lock-in and risk

• Service-based approach aligning business objectives and IT capabilities, helping IT

deliver real business value

Different functional areas within an enterprise will benefit from an SOA infrastructure

in a variety of ways, as illustrated in Figure 1.

CFO
Faster ROI

CIO
Reduce backlog

and time to market

CTO/Architecture
Leverage existing

infrastructure;
build foundation

for future projects

Developer
Lower

maintenance;
higher productivity

LoB
Increase agility
to respond to

business needs

Business Analyst
Reuse processes

and services;
align business

with IT

Figure 1: The benefits of adopting SOA

Sun Microsystems, Inc.6 The Benefits of Adopting an SOA

In today’s business environment, however, an SOA infrastructure is also a competitive

advantage with partners and customers. With growing expectations for efficiency,

operational transparency, and speed, many organizations are looking at how to

effectively implement an SOA to meet those demands.

Sun Microsystems, Inc.7 The Toolset for SOA is Important

Chapter 4

The Toolset for SOA is Important

One of the factors to consider when embarking on an SOA-based business integration

solution is that it is actually an “integration architecture” solution. And as such, it

needs to cover a wide range of different integration styles required by the enterprise,

including:

• Application-to-application integration (A2A)

• Business-to-business integration (B2B)

• Business process management (BPM)

• Human workflow integration (Workflow)

• Business activity monitoring (BAM)

• Extract, transform, and load (ETL) for data warehousing

• Single customer view (SCV)

• Composite applications

And all this should be within a single architecture.

One approach often taken by developers to cover these different integration styles is to

consider each independently and select a suitable product/toolset for each style from

one or more vendors. This approach adds dramatically to your people costs, reduces

reuse, and adds additional coding and complexity. Additionally, this disjointed approach

can break your original “architecture” and result in a much higher total cost of owner-

ship (TCO).

Many software product vendors today have made their products SOA-capable by adding

a layer of software that effectively provides a Web services wrapper. This additional

layer sits on top of the key components that you build. In the more extreme cases, the

creation of this Web services wrapping is left up to you. Both of these approaches lead

to complex tooling, increased developer training, duplicated development effort, and

less flexibility going forward.

Most SOA software vendors fit into one of two areas:

“We can do it all with our mix of disparate products.”

“You need to partner with other vendors for the full solution toolset.”

Alternatively, using a single product suite to implement an SOA-based enterprise inte-

gration solution can avoid these costly issues, significantly lowering TCO. A single product

suite provides a level of integration that enables an enterprise to quickly meet business

challenges — without the need to integrate and maintain numerous point products.

Sun Microsystems, Inc.8 Sun’s SOA Solution

Chapter 5

Sun’s SOA Solution

Sun offers a single product suite with the Sun Java Composite Application Platform

Suite (Java CAPS). Java CAPS is the first Java Platform, Enterprise Edition (Java EE) certified

integration suite for SOA. Java CAPS was built using open standards throughout, so

every component created is natively a reusable service. This dramatically reduces your

implementation efforts without adding unnecessary complexity to the solution.

Java CAPS contains everything you need to develop and deploy an SOA solution. With

Java CAPS, you can reuse existing applications, deliver new services, and integrate

legacy and packaged applications within an existing infrastructure without extensive

coding. In addition, Java CAPS combines business process modeling and orchestration,

convenient interface design, metadata management, and strong development tools

— all in a comprehensive platform built on open standards.

As stated in the introduction, this paper provides a detailed look at implementing SOA-

based solutions with Java CAPS.

Figure 2: Java CAPS functional illustration

Sun Microsystems, Inc.9 The Layered Approach to SOA

Chapter 6

The Layered Approach to SOA

Another key concept in SOA is the layering or classification of service types. If you consider

how a “top-down” implementation approach would be tackled, you can get a better

understanding of these layers.

Step 1: Business challenges and processes

The first step is to document the business challenge, then define the business processes

needed to meet that challenge. For example, if the business challenge is to automate

the sales fulfillment process to increase speed, reduce costs, and improve customer

satisfaction, document the high-level, end-to-end business processes involved.

Step 2: Business services

This leads to defining the business services needed to support those business processes.

For example, three business services needed within the above processes might be

“Update-CRM,” “Place-Order-On-Supplier,” and “Check-Credit.”

Step 3: Technical services

Next, the business services need to be implemented utilizing technical resources (or

services). Assume we have a data center where we have a Siebel CRM version 7.5

implementation with its own customized data structures. We would then need to

implement the Update_CRM business service by mapping the business service interface

to Siebel’s proprietary interface, namely the UAN/XML data structure specific to the

data center instance and the Siebel EAI-Post transactional interface. This application

integration is done through building technical services based on integration adapters

and transformation mapping from application centric data structure to the business

service interface representation.

This top-down implementation approach is summarized as follows:

The Business Challenge Supported by Business Processes

Business Processes Supported by Business Services

Business Services Supported by Technical Services

Sun Microsystems, Inc.10 The Layered Approach to SOA

Step 4: Presentation services

For presentation services, consider how a user interacts with business processes. For

example, the sales manager needs to authorize orders when the credit check fails for

an existing customer placing a new order. If this user form does not exist in any current

application, then you need to be able to design a new user interface screen. If your

computer users can continue to service all of their business obligations from the existing

applications’ user interface screens, then there is no need for this presentation layer.

However, if you need new user interfaces, this type of solution is what we refer to as a

“composite application.”

A final consideration is if you want a business service to be understandable by business

people, such as business analysts, business department managers, and project managers,

you need to make the interface understandable to them. This requires business-centric

common-object models or canonical data formats. This will be discussed in more detail

in Chapter 9 under Common message formats.

Sun Microsystems, Inc.11 The Agile Infrastructure

Chapter 7

The Agile Infrastructure

Businesses must be able to change quickly to take advantage of new market opportunities

and stay competitive.

For example, consider an instance in which the flow of a business process needs to

change (Figure 3). With an SOA, it should be possible to implement this simply by

reorchestrating business services into the new sequence without any new development

effort. This is achieved with a simple drag and drop of the relevant activities described

in the business process flow at design time and automatically reimplemented as part

of the runtime solution.

In some cases, new business services will also be required. These can be developed in

isolation and then orchestrated at the right time together with the other services that

support the business process.

This approach allows maximum reuse of existing business services regardless of where

they were built or where they are currently being used. This also requires little or no

applications domain knowledge to reorchestrate the solution. The technical implemen-

tation team need only to get involved in new development when new or modified

business services are required.

Receive Order

Drag and drop to change orchestration

Validate Order Credit Check Update CRM

Figure 3: GUI rewiring at the business service interface; no development needed

Sun Microsystems, Inc.12 The Agile Infrastructure

Business processes are inherently linked to technical implementation, but a business

process designer should be able to redefine business process flows without having to

rely on IT technical staff to implement it. This is the value of an SOA at the business

level: providing increased flexibility over what is normally a more complex set of tech-

nical components.

Consider another issue. Assume users want to see a change in the user interface. A

user-driven application is defined by the data entry and inquiry forms that the user

sees in addition to the screen flow sequence that guides them through the tasks that

they perform.

These user applications tend to get the user forms mixed in with business logic, removing

any chance of reuse and making maintenance difficult. In an SOA solution, the presen-

tation should be isolated from the business logic. To implement this, you need a layered

approach for services, such as the four-layer SOA model.

Sun Microsystems, Inc.13 The Four-Layer SOA Model

Chapter 8

The Four-Layer SOA Model

A layered approach to SOA is essential, but most SOA implementations are paying little

attention to this today and are therefore not realizing the benefits expected. This four-

layer SOA model helps you maintain focus on both the business and technical IT

components of the solution. The four layers are:

• Presentation services (e.g., Web pages)

• Business processes (orchestration of business services)

• Business services

• Technical services

In a true SOA implementation, every component you build (and therefore every service

you build) should fit discreetly into one of these layers. If the layers are ignored, every-

thing gets named as “business services” in a maze of technical interconnections. The

result will be that you will still need technical experts to implement any type of

change, which is certainly not the business agility that SOA is expected to deliver.

To be able to classify any particular service artifact into one of these four layers, it is

important to clearly define the differences between the layers.

Get Order Quote Submit/Change Order Manage Exception Orders

Generate Quote Process Consolidate Order
for Shipment Process

Order Fulfillment Process

Validate Order Check Credit Check Inventory Schedule Shipment Create Invoice

Presentation
“User Interface”

Business Processes
“Assembly &

Orchestration”

Business Services
“Business Language”

Technical Services
“IT Landscape”

Figure 4: Four-layer SOA model

Sun Microsystems, Inc.14 The Four-Layer SOA Model

Presentation services
The presentation layer involves anything to do with screen layouts, (e.g., HTML and

JavaServer Pages™ (JSP™) technology, images, style sheets, etc.). This layer is owned by

business users, but that does not mean that business users do the actual build; rather,

the layout of the screen is defined to support the requirements of business users and

built to their satisfaction.

In Figure 5, notice the four-layer SOA model in the left-hand panel “DevLife_OrderProcess”

project. The selected Web page is “pgOrderUpdate” and is contained in the

presentation layer.

The left-hand panel in the Java CAPS Enterprise Designer is used to create, edit, and

move project folders. This is where you can build any type of components needed in

your solution. The first step in a new project would be to create project folders in an

SOA hierarchy (root project folder and then subproject folders) to suit your new devel-

opment. To create a root project folder, click on the top-level item in the project panel

— the repository. Right click, select “new project,” give it a name, and the project

folder is created. To create a subproject folder, click on the root project folder and

repeat as above. Any level of project folder structure can be created.

In the Java CAPS Enterprise Designer, you can create any type of component simply by

selecting the project folder where you want it to reside, right clicking, and then selecting

to object type.

Figure 5: Java CAPS Enterprise Designer — editing a user form

Sun Microsystems, Inc.15 The Four-Layer SOA Model

Business processes
Business processes are the processes as defined by a process designer (a business analyst

or lead consultant) using business terms. Each individual step (activity) within the

process is a business service.

It is vital that the business processes being designed can be implemented. The language

of the business process must stay business focused and not become complicated with

technical detail. Technical implementation details should be pushed down into the

technical layer and only be accessed by business processes through a business service

interface.

Figure 6 shows a process model built using drag and drop. To build a business process,

select the project folder in the projects panel (e.g., “Devlife_OrderProcess/SOA2_

BusinessProcesses”). Then right click and select new “business process.” This gives you

a blank process model as your starting point. You can now drag and drop on the activities

you want, wire them together, and test the model, all within the graphical build panel.

Business Process Execution Language (BPEL) code is automatically generated in the

background.

Figure 6: Java Caps Enterprise Designer — designing a BPEL process flow

Sun Microsystems, Inc.16 The Four-Layer SOA Model

Business services
Business services are the activities defined in the business process. They should be in

business terms with no reference to the physical systems or locations where the systems

run (because that information is technical and will change when the technical imple-

mentations change). Business services should be fully decoupled from technical

implementation.

The business process names the business services that IT will need to implement. A

well-defined business service will have its service interface defined at this level. The

business service interface, along with its name, defines what needs to be implemented

by IT. It is the unit of work that can be implemented in isolation.

For example, a business service to create an order in the customer relationship man-

agement (CRM) system could be defined as CreateOrderInCRM(OrderCom, OrderCom,

ErrorCom), where OrderCom is the common object model for an order and is used as

the input and output data structures for the service call and ErrorCom is the common

object model for returning error information. We will see how these common objects

are derived shortly.

Figure 7 shows a business process model with business services dropped on the activities.

Figure 7: Java CAPS Enterprise Designer — mapping business service interfaces in a process

Sun Microsystems, Inc.17 The Four-Layer SOA Model

The business rules designer section of the Sun SeeBeyond eInsight™ model in the Java CAPS

Designer shows mapping an OrderCom object into a specific business service that has

the same data interface. Note that there are 150+ fields in OrderCom that can be

mapped from one service to another by simply mapping the top-most node, or it could

be mapping individual fields within the OrderCom object and even transforming the

data as it is mapped.

Technical services
The likelihood is that most of your current IT artifacts (applications, code segments,

reference tables, etc.) fit into the technical services level, but these are only true tech-

nical services when you service-enable them (i.e., expose a service interface to make

it easily reused). The business analyst has no need to be involved in the technical

services layer.

Any type of object can be built by selecting a project folder in the projects panel, right

clicking, and selecting the type of object. This creates the object and gives you the

associated object editor in the right-hand panel.

The benefit of this four-layer approach is that each of the layers are decoupled from the

neighboring layers by their service interfaces. By keeping the interfaces stable, you

can change any service implementation within a particular layer without impacting

anything in any other layer, giving your organization the ability and agility to quickly

make changes as market forces or new strategies require.

Figure 8: Java CAPS Enterprise Designer — implementing a transformation in the Java platform

Sun Microsystems, Inc.18 The Four-Layer SOA Model

Chapter 9

SOA Key Components

To get a better understanding of how this all works, let’s explore the components on

which an SOA relies:

• Common message formats

• Business-level service interfaces

• Technical-level service interfaces

• Service enablement (and service creation)

• Service orchestration

• Repository organization

Common message formats
Business analysts, process designers, project managers, and business department

managers should all be able to freely communicate on business processes and business

services without reference to any specific application or technical knowledge. Similarly,

the technical staff should be able to converse at the same level and easily translate

business language into technical challenges. Key to this ability is the use of business-

level common object models (also known as common message formats, canonical

message formats, common data models, or just common objects), which allow all

those involved to use the same data model and therefore the same language, removing

potential misinterpretations between IT and business.

The common object models link the services between the SOA layers. These are a critical

component in an SOA framework and a cornerstone of how Java CAPS supports delivery

of an SOA framework. You should be free to choose the best common object models to

suit your business, and you should not be forced by the SOA technology to base this on

any particular standard, for example, the eXtensible Markup Language (XML).

Three key sources for common object models are:

1. Open standards and industry standards bodies

For example: SWIFT and FIX for finance, OASIS BODs or Rosettanet for retail, OSS/J

for telco, and HL7 for health care. These may provide the best “open” model, but

may also overcomplicate the common object model, making it difficult for all

parties to understand and use.

Sun Microsystems, Inc.19 SOA Key Components

2. Application vendor-led standards

For example: SAP IDOCs and Siebel UAN. These are more pragmatic standards that

may work if your application space is predominantly driven by one of these appli-

cations and if this is a good representation of your business as a whole. However,

these standards tend to lock you to that vendor, reducing the “no vendor lock-in”

aim of an SOA.

3. Build your own

This is the most pragmatic approach of all. Look to your current systems, look to

the business understanding, and then define your own common objects. This does

not have to be extensive. You may only define 10 to 20 types of objects, and this

could be the easiest to understand for both business and IT and the fastest

approach to implement.

Whichever approach you take, it is important that this model is straw man tested

against a number of scenarios to ensure that it is stable across business and IT changes.

The SOA platform should allow you to make simple changes, such as adding fields or

substructures; however, you don’t want to make extensive structural changes such as

restructuring multilayer data nodes.

For example, consider the objects associated with an order. You would need to handle

customer details such as address, contact details, credit status, delivery details, product

details, order values, etc. Each of these objects has a number of fields, for example,

delivery address fields could include street name, town, city, and postcode.

Let’s look at the following example. To determine the best representation for each of

these, we can look to our existing systems and then define them in XML.

Figure 9: Two common objects

Sun Microsystems, Inc.20 SOA Key Components

We can now combine them into a single OrderCom composite object that can be used

as the standard interface for any business service that deals with orders.

Some business services only need a subset of these common objects, while others

need the full structure. For example, the credit check service only needs “account”

and “order total” common objects, while the delivery service only needs the “product

details” and the “delivery address.” You would need to create two composite service

interfaces for these two services.

Within Java CAPS, you can either create your common objects directly through a forms-

based object type definition (OTD) editor or import metadata, such as XML Schema

Definition (XSD). Both mechanisms require no coding.

Figure 10: OrderCom — a composite order common object built in Java CAPS Enterprise Designer

Figure 11: CreditCom — combining account and order totals objects

Sun Microsystems, Inc.21 SOA Key Components

Business-level service interfaces
It is vital to define the business service interface in business-specific terms, not technical

terms. This is the most critical layer because it links the business requirements to the

IT solution and ensures that business and IT have a common understanding of the

proposed solution. There are two key parts: the naming convention and the data

definitions (i.e., the common object model).

The business services are the key units of work that IT needs to meet the project goals.

How these business services are orchestrated into business processes is what delivers

the business objective in a flexible and agile business solution. For example, consider:

• UpdateCRMAccount(AccountCom, AccountCom, ErrorCom) service. This would indicate

that it is a business service because its operation name uses business terms and is

not specific to any physical application implementation.

• Update UpdateSAP4.6cAccount(AccountCom, AccountCom, ErrorCom) service. Even

though this might have the same common objects, this would be a technical service

because its operation name references a specific application. You would be forced to

change this service interface if the target application was replaced with another

application, or even if it was just a simple application version change. Any service

interface change then forces every service orchestration to be changed and most

likely requires a full implementation release, not just a minor update. Hence, it is

not a very robust or agile solution.

A business service interface also defines the structure of the data to be passed into and

out of the service. There should be common object models for complex services (such

as AccountCom for account) and simple parameters for less complex services interfaces.

If you use application-specific data structures in the service interface, you will need an

application domain expert — not just to build the service, but also to use the service (wire

it into processes). This would therefore be a technical service and not a business service.

One potential issue to avoid is allowing technical services to be confused with business

services. Basically, business services are defined by the business analyst. Any components

that the implementor needs to build to implement the business service is a technical

service. Mixing business and technical services will pollute the business domain with

technical detail and turn the solution into just a technical solution, breaking the

business link.

Sun Microsystems, Inc.22 SOA Key Components

Business services should be defined in Web Services Description Language (WSDL) and

published in a Universal Description, Discovery, and Integration (UDDI) registry, runable

on an enterprise service bus (ESB) or in a hub, accessible as a Web service or at a lower

level (for performance), and transparent to the way you build the services. Java CAPS

provides this functionality out of the box.

A business service will “internally” call technical services and optionally other business

services, but the business service interface should not change for any application-centric

changes and should rarely need changing — even for business changes.

Figure 12 illustrates how easy it is to map business service interfaces, no matter how

complex the target systems. Even the most nontechnical business analyst will be able

to understand the impact of changing processes.

Clicking on a line between two business services (yellow boxes) in the business process

brings up the service interface mapper, as shown in Figure 12, bottom right-hand

panel. From there, you can map common object data fields from any output service

into any input service using a set of transformation functions and data enrichment

options. This is a simple drag-and-drop interface: the function is known as service

interface mapping.

Figure 12: Java CAPS BPEL for mapping business service interfaces

Sun Microsystems, Inc.23 SOA Key Components

Technical-level service interfaces
Technical-level service interfaces should also be defined in WSDL and published in a

UDDI repository, runable on an ESB or in a hub, accessible as a Web service or at a

lower level (for performance), and transparent to the way you build a service.

What makes a technical service different from a business service is that it tends to be

application-specific. Its interface can be the business-level common object model if it is

suitable, or the lower-level application-specific interface. Regardless, this is where the

complex implementation work is done.

Service enablement
The single most time-consuming and complex task in implementing an SOA is service-

enabling the valuable assets that you already have. Examples include the call center

operation through CRM, order management in enterprise resource planning (ERP), or

logistics through third parties. Any new business challenge will be easier, faster, and

less expensive to address if you can reuse much of what you already have. Once you

have service-enabled these assets they become even easier to reuse.

Service enablement is an SOA term for enterprise application integration (EAI). It

encompasses all of the same requirements that any integration project requires, but

delivers them in a more open and service-oriented way. To service-enable an existing

application, you need to do the following:

1. Define a business-level service interface in WSDL that incorporates a common

objectmodel. This is a task done by the business analyst and the lead consultant

or architect.

2. The technical implementation, which is logically “inside” the business service,

needs to:

• Map this business-level common object model to and from the proprietary

application message structure (such as IDOC for SAP, UAN XSD for Siebel, etc.)

• Connect to the application using an application adapter

• Manage the connection, transaction, and exception logic

The technical implementation could be done as a single unit of work inside the business

service (where reuse is only at the business-service level), or it could be an orchestration

of a number of individual technical services that could each be reused in other business

service implementations.

Sun Microsystems, Inc.24 SOA Key Components

For example, consider the difference between a conventional application-to-application

integration and an SOA-based service enablement of existing applications (both of

which are possible in Java CAPS). Assume the goal is to synchronize a customer record

change being made by a user of the CRM application with an automatic update of the

same customer record in the ERP system.

Case 1: Conventional application-to-application integration

The key components in this scenario are the adapters (Sun SeeBeyond eWay™ Adapters)

for each application, the message structure representation (object type definitions or

OTDs) for each application, and the transformation mapping (Java or eXtensible

Stylesheet Language Transformations (XSLT) collaboration editor) from one message

structure to the other. The entire construct between the two applications is not a service

because it only does one thing: pick up an account change in Siebel and convert it to

an SAP account change. It most likely only works for these exact instances of the appli-

cations since other Siebel and SAP application instances could have different underlying

application data structures.

Also, it cannot be reused because the adapters and message transformation components

are hardwired together. There is not actually a usable service interface. Further, if either

application should change for any reason, this transformation will need to be changed.

That means it is twice as fragile as either application and will require domain expertise

of both applications should either application force a change.

Business Service 1

Technical
Service 1

Business Service 2

TS 1 TS 2

Business Service 3

TS 1 TS 2 BS 1

Figure 13: Technical services inside the business service interface

Sun Microsystems, Inc.25 SOA Key Components

Case 2: SOA integration (service enablement) using Java CAPS

With SOA, you service-enable both applications independently. Notice that the trans-

formation is from the application to the service interface (common object based). This

service is now an open service, defined in WSDL and published in a UDDI, that can be

run on an ESB and can be accessed by any application that wants to publish or subscribe

to that service event.

To better represent this in a service bus diagram, we will turn the construct through

90 degrees.

To implement synchronization of CRM account changes into SAP in an SOA implemen-

tation, we need to orchestrate the Siebel publish service with the SAP subscribe service.

We could do this by using a publish-to-JMS (Java Messaging Service) service. This is

done by simply dropping the JMS service on the newly created Siebel and SAP services

onto what is known as a connectivity map. Then a single button click will build the

solution and another deploys it to your message hub or ESB.

Figure 14: A classic service representation

Sun Microsystems, Inc.26 SOA Key Components

Service orchestration
Service orchestration is where services are organized into the tasks the business needs

done. From the business perspective, this is the business process management layer,

where business services are orchestrated into business processes. It is at this level

where business analysts and business managers agree on the physical business

processes with the process designer. These processes can be defined, reorganized,

and augmented without the need to delve into costly IT development work. This is

the business level of service reuse.

Figure 15 shows a simple two-step service orchestration of the Siebel-to-SAP account

synchronization using BPEL in Java CAPS. The first service publishes the change while

the second subscribes to it. These would be the same services detailed in Figure 14, but

this time BPEL is managing the orchestration instead of just using JMS to orchestrate it.

If you look at it from the view of one application (e.g., Siebel CRM), you can see that for

business objects you want synchronized across all business systems, you would implement

two services: one to publish changes made in the Siebel application and one to subscribe

to changes made from any other system to be inserted into Siebel. If you need logic to

dynamically manage the distribution of these updates, then the process level is the

perfect location for this.

Repository organization
With numbers of services that combine to make a solution, you need a single reposi-

tory in which to store them. The repository needs to be organized so that the services

can be easily searched, built, and enhanced in isolation; version controlled; and

deployed in a controlled manner.

Figure 16 shows a standard four-layer SOA project structure in Java CAPS that provides a

location for every type of artifact during the build. Note that in Java CAPS, every artifact

is actually a first-class service with a WSDL definition, although you get to choose how

you want to expose them at runtime.

Figure 15: Service orchestration with a Java CAPS BPEL engine

Sun Microsystems, Inc.27 SOA Key Components

The project panel in the Java CAPS Enterprise Designer is the access mechanism into

the repository where every type of object is stored. Since we want a layered SOA model

to help tie business and technical implementation together, we implement the four

SOA layers into the project structures in the repository.

In Figure 17, you can see a root project called “ASI_CRM.” This is an application service

interface project for the specific application, the Siebel CRM in this example. These

CRM services are then completely decoupled from the rest of the solution, making

them easy to implement and manage in isolation.

Figure 16: An SOA project structure in Java CAPS repository

Figure 17: The CRM ASI project structure in a Java CAPS repository

Sun Microsystems, Inc.28 SOA Key Components

In the “business services” layer, there is a third type of service known as a “lookup,”

where the application is providing a lookup service to other systems. Not all of the four

SOA layers are needed in every root-level project. Notice that in Figure 17, the CRM

project does not have any presentation services or business processes, so these two

levels are missing.

In Figure 18, there is a four-layer SOA model inside each of the root projects. A root

project represents one of the following:

• A business process or process group implementation (e.g., order processing)

• A composite application implementation (e.g., quote application)

• Service enablement of specific applications (e.g., ASI_CRM)

• A grouping of common services (e.g., shared common objects)

Notice also that the “Quote” project has all four layers. For example, the business

services level will have any new business services that have been built which are only

required to support the quote composite application.

Figure 18: The Order Entry composite application project in Java CAPS

Sun Microsystems, Inc.29 SOA Key Components

Chapter 11

Integration Styles and SOA

As mentioned earlier in this paper, there are many integration styles. The following will

address how each of these styles fits into an SOA infrastructure.

Business process management in an SOA
So where does business process management fit in? As long as each activity in a serv-

ice orchestration is a business service, that service orchestration is a business process.

If any activity is a technical service, the service orchestration is a technical service flow.

For example, Figure 19 shows a business process to synchronize account changes with

multiple other services.

Note that the “lookup” business service returns the account IDs in each of the

disparate systems. This service is supplied by the Sun SeeBeyond eView™ Studio

module in Java CAPS.

Business processes defined by business analysts should be the exact process that

controls the solution at runtime. Business analysts should be able to monitor their

processes through a real-time graphical representation of exactly the process model

they defined at the start of the project. This is provided out of the box with Java CAPS.

Figure 19: Synchronization of account changes across multiple systems in eView

Sun Microsystems, Inc.30 Integration Styles and SOA

Enterprise application integration for service enablement
EAI is a critical aspect of any SOA project, yet pure-play ESB vendors tend to be weak

here. Often, vendors make the assumption that every existing application is already

service-enabled with a simple XML interface that is accessible as a Web service. If this

were the case, you could pick any ESB product. The reality is that most legacy systems

are not service-enabled, and any that are tend to have complex technical XML interfaces,

which makes them unsuitable for business service interfaces.

The Java Collaboration Editor is an object editor inside the Java CAPS Enterprise

Designer. It provides a graphical drag-and-drop interface that generates pure EJB code

(see code representation in Figure 20). You can even type in the Java code directly and

watch the GUI representation being built or do the reverse, dragging and dropping a

transformation rule and watching the Java code being generated. You can also edit the

Java code in a third-party source code editor and then import it back into the Java

Collaboration Editor (known as round-tripping).

The inclusion of the Java Collaboration Editor means that you have the full power of

the Java language to enable you to build any level of transformation capability into

your technical services.

Figure 20: Java CAPS Enterprise Designer — Java transformations

Sun Microsystems, Inc.31 Integration Styles and SOA

Adapters for service enablement
Another key component to service-enabling your existing systems is adapter technology.

Adapters allow you to connect to, request information from, and update the target

system — all within a manageable transaction dialogue. Adapters are key components

to service enablement used within each business service that needs to connect

to systems.

Java CAPS has more than 80 highly functional eWay Adapters that cover the full range

of connectivity styles, such as:

• Communications eWay Adapters: Connecting at protocol levels such as HTTP/S, File

Transfer Protocol (FTP), Simple Mail Transfer Protocol (SMTP), System Network

Architecture (SNA), TCP/IP, etc.

• API-level eWay Adapters: Microsoft Com/DCom, CICS, application servers, Web

servers, JMS, IBM MQ, Corba, etc.

• Database eWay Adapters: Oracle, Microsoft SQL Server, Sybase, Informix, DB2,

Adabas, etc.

• Application eWay Adapters: Siebel, Oracle, SAP, Retec, etc.

For the occasional system where even the communications eWay Adapters won’t fit,

a new adapter can be implemented using the eWay development kit.

Java CAPS is a fully open solution, so you can use third-party Java Connector Architecture

(JCA) adapters in your solution.

Figure 21: Java CAPS Enterprise Designer — mapping to a batch eWay with eInsight

Sun Microsystems, Inc.32 Integration Styles and SOA

Workflow in an SOA
Workflow can be characterized as the human being in the process. Processes that

require human intervention also require defining who, in what role/what group as

well as hierarchies for escalation/delegation, and time limits for alerts and escalation.

Workflow is a subcomponent of BPM, although not all BPM products support workflow

functionality.

Most business processes need workflow. For example, consider when an order is

placed. Order-to-cash may be an automated process, but in some instances, a credit

risk issue may require a manager to authorize the order. This requires workflow.

Within a Java CAPS business process, workflow is just another service type known as a

user activity. For direct user interaction with a process (i.e., workflow), you would drag

and drop a user activity onto the process model, then define the user, role, or group,

the escalation details, and the forms the user should be presented with. This is all

done within the eInsight process model in the Java CAPS Enterprise Designer.

Composite applications in an SOA
If you need new user interfaces that don’t exist in your current applications (e.g., a

new quote form that uniquely supports your business), you may require a composite

application.

Figure 22: Java CAPS Enterprise Designer — configuring escalation rules

Sun Microsystems, Inc.33 Integration Styles and SOA

Composite applications are effectively business processes that are driven by users.

For example, a quote application could be built that presents numbers of screens to

the user, allowing them to construct a quotation for a sale. This application could be

calling many services from many service-enabled existing applications and new services

built specifically to support this new application. This is what is known as a composite

application.

Figure 23 shows the first screen in a quotations composite application, where most of

the functionality for this application actually exists in legacy systems. The pages are

built by selecting the “page layout” object type in the Java CAPS Enterprise Designer,

which then displays the page layout editor as shown in Figure 18. You can drag and

drop the forms objects you want. To implement the “process” behind the forms, you

simply design the flows with the eInsight process designer, linking pages with the

services that you want to call.

Portals in an SOA
A powerful portal is an important component to successful enterprise integration and

SOA projects because it provides end-user configurable access to the new business

processes and composite applications.

Figure 23: Quote composite application built with Java CAPS

Sun Microsystems, Inc.34 Integration Styles and SOA

With an open and standards-based architecture, the Sun Java System Portal Server

(included with Java CAPS) provides a flexible framework for designing the service view

of an SOA.

• Bidirectional Web Services for Remote Portlets (WSRP) support enables the portal to

simultaneously produce and consume remote Web services

• An interportlet communication API lets portlets share information with each other

to create a greater degree of dynamism and adaptive behavior

• Java and Web services standards support facilitates integration: UDDI, WSDL, SOAP,

Java Specification Request (JSR) 168, and Java API for XML (JAX)

Portals provide a new level of enterprise productivity, enabling users and groups to

work together easily and securely within the requirements of a dynamic organizational

structure. Advantages of a well-designed portal include:

• Ensuring more rapid and cost-effective deployment of successful enterprise solutions

by delivering identity-based content to employees and partners

• Providing end users with easy-to-use services that enable them to design customized

community portals

• Adding compelling content and services to portal pages via custom development,

with simple-to-use developer tools accessing Web services or data repositories

through a content management system, workflow management, and enterprise

integration

Business activity monitoring in an SOA
Among the challenges of automating business processes is that staff can lose visibility

of what’s happening. If you want real-time information rather than just weekly/monthly

reports, business activity monitoring (BAM) is the answer. BAM relies on picking up

events as they occur on the service bus; collating, aggregating, and checking against

key performance indicators (KPI); and then providing information to dashboards or

through alert channels.

There are three key components to BAM: collection of data, processing of data, and

delivery to the user. Collection can be done at the business process level or via eWay

Adapters. Processing is done via the Java CAPS BAM engine (Sun SeeBeyond eBAM™

Studio), and delivery to the user can be via any channel. The Java CAPS BAM engine is

fully configured and managed within Java CAPS Enterprise Designer.

To build a BAM solution, select the project folder where you want to create the BAM

components, right click, and select “new BAM object.” Java CAPS will walk you through

the build of the BAM solution, all from within the Java CAPS Enterprise Designer.

Sun Microsystems, Inc.35 Integration Styles and SOA

Figure 24 shows an executive dashboard where real-time data is being provided by Java

CAPS and the dashboard itself is built using the Sun SeeBeyond eVision™ module within

Java CAPS.

Single entity views in an SOA
Classic examples of a single entity view are customers, patients, companies, citizens,

and products. Single customer view (SCV) will be referred to here, but the logic is the

same for any type of entity.

It’s a challenge to have a single customer view when customer information is gathered

from many disparate sources. For example, a finance company might have a CRM

system, ERP system, household insurance system, life insurance system, or trading

system – and each system may have its own unique ID for a customer.

The simple answer to this challenge is to add a master database, and every time a new

customer is added into any system, check the master database first to see if the customer

already exists in another system. This has been the CRM solution for many years. Clearly

this is not practical in most instances because it is not practical to change every other

system to do a lookup on the CRM system first. It’s just too expensive to change all of

your existing systems.

A single entity view service needs to manage cross references between systems, provide

real-time probabilistic matching, duplicate management, and full auditing. In an SOA,

this is a critical service on the service bus.

Figure 24: A BAM Dashboard built with Java CAPS

Sun Microsystems, Inc.36 Integration Styles and SOA

To build a SCV service, select the project folder where you want it to reside, right click,

and select the “New eView Object.” You will be presented with editors to define the

entity model, define the probabilistic matching rules, automatically generate the appli-

cation, and deploy it, all through the Java CAPS Enterprise Designer.

Figure 25 shows one of the automatically generated forms for use in managing potential

duplicates in the system.

Figure 25: eView EDM — managing potential duplicates

Sun Microsystems, Inc.37 Summary

Chapter 12

Summary

It is possible to deliver on the SOA promise. However, you need to implement it in a

pragmatic way. You need to deliver results fast, yet on a project-by-project basis. Also,

you need the SOA overhead to be minimal.

To meet the objectives of an SOA, a layered approach to services is necessary. Without

a layered approach, all services can become complicated with technical domain detail,

making the SOA solely a technical tool and keeping it at the domain of technical experts.

Unless the SOA project remains on business objectives, it will not succeed.

Many software product vendors today offer either a disparate range of products or

require customers to partner with additional vendors to get a full SOA solution toolset.

Both of these approaches lead to complex tooling, increased developer training, dupli-

cated development effort, and far less flexibility for your SOA infrastructure in the future.

Throughout this paper, we have covered the key aspects of an SOA implementation

and shown how Java CAPS is specifically designed to enable an efficient and effective

SOA implementation. In summary, key points to keep in mind include:

• Pick a business project – don’t look to put in an SOA infrastructure as an IT project

in its own right.

• Define the business processes from the business challenge using standard analysis

and design methods. This should be owned by the business analyst.

• Agree on the names of the business services (the activities on the business

processes) and draw the physical process model in Java CAPS.

• Define the business-level interface data structures needed for these business services.

These will be the common objects, again implementing in Java CAPS.

• Implement all business services interface in Java CAPS (no coding needed) and drop

it on to the relevant activity in the business process model.

• Leave the technical implementation to the domain experts to implement using

Java CAPS. Each business service can be implemented in isolation.

• Use standard test and deploy techniques, fully supported within Java CAPS.

Sun Microsystems, Inc.38 Summary

Learn More
For more information on Sun SOA solutions with Java CAPS, go to sun.com/soa. For

additional information on Java CAPS and Java CAPS for developers, go to sun.com/

software/javaenterprisesystem/javacaps and developers.sun.com/prodtech/javacaps

About Sun
A singular vision, The Network is the Computer™, drives Sun in delivering industry-leading

technologies that focus on the whole system — where computers, software, storage, and

services combine. With a proven history of sharing, building communities, and innovation,

Sun solutions create opportunities, both social and economic, around the world.

A Pragmatic Approach to Implementing an SOA with the Sun Java™ Composite Application Platform Suite On the Web sun.com

© 2007 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun logo, eBAM, eInsight, EJB, Enterprise JavaBeans, eView, eVision, eWay, Java, JavaServer Pages, JSP, SeeBeyond, and The Network is
the Computer are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries. Information subject to change without notice. SunWIN# 497805 02/07

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN (9786) Web sun.com

