
EFFECTIVE SOA DEPLOYMENT
USING AN SOA REGISTRY REPOSITORY
A Practical Guide
September 2005

Sun Microsystems, Inc.2 Effective SOA Deployment Using an SOA Registry-Repository

Table of Contents

Rising Complexity of Service Information . 3

The Need for Governance to Enforce Organizational Policies . 3

The Need for an Integrated SOA Registry-Repository . 4

Validation: Key to enforcing organizational policies . 5

The need for standards-based SOA registry-repository . 5

Federated information management . 5

Federated policy management . 6

Federated identity management . 6

Service discovery and reuse . 6

Cataloging: Key to artifact discovery . 7

Service artifact dependency management . 8

Phased deployment of services . 8

Service evolution and versioning . 8

Service change notification . 9

Registry-repository SDKs and custom applications . 9

Choosing a registry-repository . 9

Conclusions . 10

Registry standards comparison matrix . 11

Today, Service Oriented Architecture [SOA] is being adopted by many IT organizations because it promises to make them

more agile and efficient. This is possible, in large part, due to the loosely coupled nature of SOA, which enables service

components to evolve without needing costly rework in existing deployments. Such agility and efficiency is also possible

due to increased leverage and reuse of existing service components when building new service components.

Until recently, SOA deployments were done by early adopters, and consisted of limited pilots involving a few relatively

simple services. The information about these services was equally simple and was managed, shared, and tracked informally

using Web sites and e-mails.

As SOA deployments become mainstream, the complexity and scale of these deployments are growing steadily. It is no

longer practical to use informal means such as Web sites and e-mails to manage, share, and track service-related information.

At the same time, important new requirements are emerging, such as governance of services and related information artifacts.

An SOA registry-repository is increasingly becoming an important infrastructure middleware solution for managing this

rising complexity and meeting new requirements. This paper explores some common challenges faced by large-scale SOA

deployments, and offers practical advice on how an SOA registry-repository may be harnessed to manage these challenges.

Rising Complexity of Service Information
As service components become richer and more complex, it is no longer realistic to assume that all information about a
service component can be captured in a single information artifact, such as a Web Services Description Language (WSDL) file.

Many different information artifacts describe a service component or relate it to other service components and information

artifacts. Some examples follow:

• Multiple WSDL files may describe the various interfaces and protocol bindings of these interfaces for the service component.

• Extensible Markup Language (XML) schema files may describe the documents exchanged by messages in the service

protocol.

• Business process orchestration for the service component may be described by artifacts such as Business Process

Execution Language (BPEL) descriptions, and Electronic Business Extensible Markup Language (ebXML) business process

specification schemas.

• Metadata may describe the assembly structure and subcomponents of a composite service.

• Extensible Stylesheet Language Transformations (XSLT) stylesheets may be used as adapters between service components

to handle impedance mismatch due to service version differences.

• Web Services for Remote Portlets (WSRP) descriptions may describe how service components are used by portals.

• Organizational policies, business rules, and procedures may define how service components and service information

artifacts may be defined and used.

The Need for Governance to Enforce Organizational Policies

Governance is defined as the policies, rules, and regulations under which an organization functions as well as the processes

that are put in place to ensure compliance with those policies, rules, and regulations.

Sun Microsystems, Inc.3 Effective SOA Deployment Using an SOA Registry-Repository

It is not enough to have organizational policies that stipulate how service components and service information artifacts

may be defined and used. What is needed is a point of control within the SOA infrastructure that provides governance

of service components and artifacts by enforcing the organizational policies that govern them. This ensures that the organi-

zational policies are applied consistently and predictably across the SOA deployment and results in improved quality

and integrity.

The Need for an Integrated SOA Registry-Repository

The need for a point of control and governance within the SOA deployment demands that service information artifacts be

stored and managed in a consistent manner that allows enforcement of organizational policies. This is precisely the role

served by a registry-repository service within an SOA deployment.

The following example describes a registry-repository using a common metaphor:

• A registry-repository is like your local library.

• It has a repository that contains all types of electronic assets, much like the library book shelves contain all types of

published content including books, magazines, videos, and so on.

• It has a registry that contains metadata describing the electronic artifacts, much like the library’s card catalog contains

information describing the published content on its book shelves.

• The registry and repository are administered jointly. Within a library, the card catalog information and and books in the

shelves are administered jointly.

• Any number of registry-repositories should be able to work together to offer a unified service, much like multiple libraries

can participate in a cooperative network and offer a unified service.

Earlier SOA deployments recognized that the rising complexity and diverse nature of service information artifacts demanded

more formal means of management, sharing, and tracking than simple Web sites. This led to the use of a registry such as a

Universal Description, Discovery, and Integration (UDDI) registry to manage, share, and track service information artifacts.

Though this is an improvement over the less formal Web site approach, it has a major limitation: a registry can only store

links or pointers to service information artifacts. The actual artifacts must reside outside the registry, using informal and

inconsistent means such as Web sites. This makes the actual artifacts ungovernable by the registry. What is missing is a

repository that stores the artifacts. Using the library analogy, imagine a library that has only a card catalog but no books,

and all the books were kept in people’s homes.

A registry-repository provides an integrated solution able to store metadata such as links or pointers to artifacts, as well as

the actual artifacts.

An SOA registry-repository should provide governance capabilities that enable organizations to define and enforce organiza-

tional policies governing the content and usage of the artifacts throughout their life cycles. Since organizational policies

vary, an SOA registry-repository should enable organizations to enforce custom policies for the governance of any type of

service information artifact throughout its life cycle. In particular, it should enforce conformance to such policies when a

service information artifact is published or updated.

Sun Microsystems, Inc.4 Effective SOA Deployment Using an SOA Registry-Repository

Validation: Key to Enforcing Organizational Policies

An important aspect of SOA governance is enforcing organizational and domain-specific business rules to validate information

artifacts at the time they are published to the registry-repository. Validation improves the quality of published artifacts and

ensures their conformance to established policies and standards. Such validation goes much further than syntax validation

and, instead, performs semantic validation in an artifact-specific manner. For example, a rule may be enforced that WSDL

artifacts MUST not contain bindings other than Simple Object Access Protocol (SOAP) bindings that use the Document style

of communication.

A registry-repository should allow business rules to be enforced at the time of publishing. It should also allow such business

rules to be defined by the organization and specialized for the types of artifacts. If an artifact fails publish-time validation

checking, the registry-repository should either reject the artifact, or accept it as invalid and automatically notify

responsible parties.

The Need for Standards-Based SOA Registry-Repository

As the need for an integrated, SOA registry-repository becomes broadly recognized, we will see a trend where vendors of

registry-only products will begin to deliver new versions of their products with product-specific (proprietary) extensions to

add repository capabilities. It is likely that these products will meet, either partially or fully, the governance requirements

expected of an integrated registry-repository. Some IT architects may find this to be an acceptable solution that meets their

needs. Indeed, this is a practical solution as long as the SOA deployment is under the control of a single organization that

can ensure either that a single registry-repository is used or, if multiple registry-repository instances are required, they are

based on the same vendor’s product and interoperate.

In practice, SOA deployments tend to span organizational and governance boundaries. This is true even among different

parts of the same enterprise. Organizations large and small prefer to have local autonomy over their SOA deployments, but

also need to seamlessly integrate their services with those in SOA deployments of other organizations. In order to meet the

requirement of local autonomy while providing seamless integration and interoperability globally, SOA deployments must

federate with other SOA deployments using open standards.

It is therefore expected that the trend of vendor-specific, integrated registry-repositories will be ephemeral, and will be

overshadowed by a new and growing trend towards integrated registry-repository products that are entirely based on

standards facilitating federation and general interoperability.

Federated Information Management

The trend towards open standards-based, integrated registry-repositories is largely because they allow organizations to

share and link information with other organizations in a secure manner. Federated information management allows multiple

registry-repositories to federate together and appear as a single, virtual registry-repository, while allowing individual organ-

izations to retain local control over their own registry-repositories. For example, a government may deploy a federated

registry-repository that consists of several registry-repositories operated by various jurisdictions of government at the

municipal, provincial, territorial, and federal levels. Such a federated registry-repository would give residents the ability to

discover information seamlessly within any level or jurisdiction of the government. For example, they could search for

services available for elder care across all levels of government.

Sun Microsystems, Inc.5 Effective SOA Deployment Using an SOA Registry-Repository

The United Nations Centre for the Facilitation of the Administration, Commerce, and Transport (CEFACT) organization

considered a federated information management requirement as the primary requirement for choosing an open standards-

based, integrated registry-repository.

Federated Policy Management

Governance requires enforcement of organization policies that are described in a machine-processable syntax, typically

XML. In an SOA deployment, these policy files must be published, managed, discovered, and governed like other service

information artifacts. In a federated SOA deployment, policies need to be linked and composed across enterprise bound-

aries within the federation.

At present, policies are managed within proprietary policy stores in product-specific ways. Policy expression syntax standards

have not yet fully matured, either. In any case, it is likely that an SOA registry-repository will be used to manage and govern

policies in much the same manner as other SOA artifacts. It is also likely that policy standards will mature during the next

year to provide a standard policy expression syntax that is capable of expressing all types of policies. The ebXML Registry

standard supports federated policy management of access control policies expressed in the XML syntax defined by the

OASIS Extensible Access Control Markup Language (XACML) standard.

Federated Identity Management

Open standards-based, integrated registry-repositories are necessary but not sufficient for federated SOA deployments

across organizational boundaries. There needs to be a way to securely manage identities of clients (human and machine),

and authenticate them when they access service components and artifacts within a federation. The challenge is to open

up an enterprise’s services and artifacts to clients in other enterprises while continuing to maintain air-tight security.

Federated identity management addresses this challenge by establishing a circle of trust across all services (including all

registry-repositories) within the federation. Within this environment, it is possible to support single sign-on (SSO) where a

client is authenticated once and then uses the authenticated session to access services throughout the federation multiple

times without having to reauthenticate. It is also possible to map identity credentials across systems within the federation.

A registry-repository should support federated identity management features such as single sign-on, and integrate with

identity and access management services using open standards such as Security Assertions Markup Language (SAML)

and Liberty.

Service Discovery and Reuse

An important motivation behind SOA is its component-centric architecture. This architecture enables the building of

complex service components from simpler, task-specific service components, much like building castles out of Lego blocks.

Unlike Lego, however, a service component may be reused any number of times in other services without ever running out

of blocks. An example of a task-specific service component is a credit rating service that may be used by any number of

more specialized and complex services such as car and home loans, credit cards, or financial aid applications.

A registry-repository contains all service-related artifacts for service components available within an SOA deployment. This

information should be available to developers during service design time, so they can discover existing service components

in order to reuse and leverage them within a new service being developed. It should be possible for discovery of the service-

related artifacts to be done using any search criteria relevant for the organization and its SOA deployment.

Sun Microsystems, Inc.6 Effective SOA Deployment Using an SOA Registry-Repository

A registry-repository should provide discovery capabilities that are extensible and can accommodate the simplest to the

most complex domain-specific discovery queries. Specifically, its discovery queries should not all be predefined. Instead, it

should provide an ad hoc query syntax supporting complex predicates that can be combined using Boolean logic. The

following are some examples of service artifact discovery queries expressed in plain English:

• Find all WSDL documents that use a specified namespace pattern

• Find all Service Bindings or Services that have a certain text pattern in their documentation

• Find all Service Bindings that are SOAP bindings AND use DOC Literal style AND do not use HTTP as transport

• Find all WSDLs with Service implementations that use specified implementation platform (for example, Java™ 2 Platform,

Enterprise Edition or J2EE™, .Net, and so on)

• Find all WSDLs with Service implementations that use specified platform resources (such as database, Java Message

Service or JMS, Java API for XML Registries or JAXR, and so on)

The flexibility and expressive power of an ad hoc query syntax can lead to problems if not properly governed and managed

by the organization. For example, the query syntax may be too complex to be of any use to typical users. It may also lead to

inefficient queries, placing an excessive load on the registry-repository. What is needed is a stored query capability similar

to relational databases.

A registry-repository should allow an organization to define parameterized, ad hoc queries as stored queries within the

registry-repository. It should allow such queries to be invoked by a client with some or all of its parameter values supplied

as invocation parameters. This enables the organization to define approved, domain-specific discovery queries within the

registry-repository, so that these discovery queries may be used by their user community. The queries may be exposed to

the users as simple Web forms hiding all the underlying complexity within the registry-repository server.

Cataloging: Key to Artifact Discovery

Cataloging of artifacts improves their discoverablity and is essential in supporting the kind of artifact-specific queries

mentioned as examples in the previous section.

Cataloging of artifacts is very similar in concept to indexing of tables in a relational database. In both cases, information is

automatically converted to metadata at the time it is published, and the metadata is used to facilitate efficient discovery of

the published information. For example, an organization may define cataloging policies for WSDL artifacts such that when

a WSDL document is published, it is cataloged in a WSDL-specific manner to generate metadata that includes information on:

• The documents imported by the WSDL document (such as other WSDL documents and XML schema documents)

• The name spaces used by the WSDL document and documents imported by it

• The name and description of the bindings, interfaces, and types used by the WSDL document

Such metadata can then be used in WSDL-specific discovery queries, such as the queries mentioned as examples in the

previous section.

Sun Microsystems, Inc.7 Effective SOA Deployment Using an SOA Registry-Repository

Service Artifact Dependency Management

As more and more service components are reused within other service components, the task of tracking the network of

dependencies between service components becomes more challenging and significant. This is another challenge that is

made easier by an SOA registry-repository where interservice dependency information can easily be managed as relation-

ships between service information artifacts. Examples of such relationships include Contains, Extends, Implements,

Supersedes, Uses, Depends Upon, and more. As with discovery queries, SOA deployments vary, and a fixed set of relationship

types may not be suitable for all deployments.

A registry-repository should provide a set of standard relationship types, but also allow an organization to define additional

relationship types based on its specific requirements.

Phased Deployment of Services

Service components are deployed in phases. During each phase, organizational access control policies (ACPs) determine

the controlled community of users which has access to the service. The controlled community is typically defined in terms

of functional roles people play or groups they belong to. Here is a typical, phased-deployment scenario (with potential roles

and groups in italics):

• Development phase – Service component is accessible to the Development Engineers, QA Engineers, Document Writers,

and so on.

• Pilot phase – Service component is accessible to Pilot Users.

• Production phase – Service component is accessible to Licensed Users.

• Obsolescence phase – Organizational ACPs restrict the user community instead of broadening it (by preventing new

clients from using the service, and grandfathering those who are already clients of the service).

A registry-repository should allow ACPs to be defined and enforced for service information artifacts. Since ACPs tend to be

fairly specific to organizational needs, the registry-repository should allow for fine-grained access control policies that can

accommodate specific needs.

For federated SOA deployments, the registry-repository should also allow ACPs to be defined anywhere in the federation,

and be usable as building blocks for more complex ACPs.

Service Evolution and Versioning

Service components evolve over time for a variety of reasons, such as the need to fulfill new requirements. A service’s evo-

lution may involve changes in its implementation and/or public interface. Changes to a service interface need much more

careful management because of the potential impact to existing clients of the service. These changes typically require a

new version of the service to be deployed, while maintaining the older version until its clients have had time to migrate to

the new version according to their own schedule. New versions of a service or a service component also typically require

publication of corresponding new versions of its service information artifacts .

Sun Microsystems, Inc.8 Effective SOA Deployment Using an SOA Registry-Repository

A registry-repository should provide versioning capabilities that enable automatic version control of any type of service

information artifact. The versioning feature should allow publishers and organizational policies to determine when modifi-

cations to an existing information artifact should be treated as an update of the existing artifact, and when these modifica-

tions should result in a new version of the information artifact.

Service Change Notification

When a service evolves, it is important to notify its consumers of the changes to the service. For example, when a new

version of a service becomes available, it is important to tell administrators responsible for clients of that service, so they

can begin planning the migration of their clients to the new version.

A registry-repository should provide a change notification capability that allows interested parties, such as system adminis-

trators, to create subscriptions to events within the registry-repository that may be of interest to them. Such a capability

should allow a subscription to be flexible enough to express precisely the types of events that are of interest to the subscriber.

It should be possible for change notification to automatically invoke services that can automate governance workflow

based upon the change notification.

Registry-Repository SDKs and Custom Applications

Many people focus on the role of a registry-repository as a design-time service to publish, manage, discover, and govern

service information artifacts. This is an important role, but it is also possible for deployed services to use a registry-repository

as a source of operational and configuration data during runtime. To facilitate this use case, a registry-repository should

provide a software development toolkit (SDK) to develop custom registry client applications and services. A registry-repository

SDK for the Java platform should include support for JAXR, the standard application programming interface (API) for registries

and repositories within the Java platform.

Choosing a Registry-Repository

As IT organizations evaluate which registry-repository to deploy as part of their SOA infrastructures, the choices often fall

into the following categories:

1. Proprietary registry-repository

2. UDDI registry without a repository

3. UDDI registry with a proprietary repository

4. ebXML registry-repository

5. Combination of UDDI registry and ebXML registry-repository

As mentioned earlier, federated SOA deployments require a standards-based registry-repository. This suggests eliminating

options 1 and 3 above. The remaining standards-based choices involve two standards, UDDI and ebXML Registry.

A UDDI registry offers a subset of capabilities offered by an ebXML Registry. See Table 1: Registry Standards Comparison

Matrix for details. In particular, it provides only a registry and no repository. What gets published in a UDDI registry are

pointers to service artifacts such as WSDL. What gets published to the ebXML Registry are not just pointers to service

artifacts, but also the actual artifact themselves. Thus, an ebXML registry-repository can be used for governance of any

type of service artifacts throughout their life cycles.

Sun Microsystems, Inc.9 Effective SOA Deployment Using an SOA Registry-Repository

An ebXML registry-repository is highly extensible. This extensibility has been a double-edged sword for the ebXML Registry

standard. On the positive side, it enables organizations to enforce custom governance policies for managing their service

artifacts. On the negative side, it also makes the standard harder to understand and deploy because of its generic and

extensible nature. This problem is being addressed by the emergence of vertical or use case-specific profiles of ebXML

Registry that define precisely how to make use of its generic and extensible features in a standard, interoperable manner

within a particular domain. For example, in the Web services area of greatest interest to those doing SOA deployments, a

Web Services Profile is being defined by the OASIS ebXML Registry Technical Committee (TC).

A UDDI registry may be adequate for simpler SOA deployments. However, experience has shown that as SOA deployments

increase in complexity and scale — which they inevitably do — an ebXML registry is a much better fit. It is sometimes the

case that a SOA deployment starting with a UDDI-based implementation will later migrate to an ebXML Registry-based one,

as needs grow.

It is not necessary to choose between the two standards. Newer products are appearing that support both standards in a

single engine. An example of this new class of registry-repository products is Sun’s Service Registry. When deploying such

a registry, be aware that the functionality offered by each interface is quite different. As discussed, the ebXML Registry

interface provides the fuller set of capabilities. This means that a dual-interface registry like the ebXML Registry interface

is employed more pervasively, while the UDDI interface is used more specifically to interoperate with clients restricted to

the UDDI protocol.

Conclusions

In the past, enterprise integration was achieved via data integration using a common enterprise database as the integration

point. SOA represents the latest approach to enterprise integration via loosely coupled service integration based on a com-

ponent and document-centric architecture. The next logical step is a federated SOA deployment that achieves enterprise

integration within and across enterprise boundaries via service integration enhanced with secure, federated information

management.

Today’s SOA deployments are becoming increasingly complex and require strong governance capabilities. A standards-

based registry-repository is emerging as an important SOA infrastructure component. First-generation Web services registries

based solely on UDDI lack many important capabilities, including repository functions, which are necessary for governing

and managing complex SOA deployments. An ebXML registry-repository provides a much richer set of capabilities to meet

the advanced governance and federated information management requirements of complex SOA deployments. A new class

of registry-repository will support both UDDI and ebXML Registry standards in a single solution. Sun’s Service Registry is a

prime example, and offers features that meet the growing requirements of today’s SOA deployments.

Sun Microsystems, Inc.10 Effective SOA Deployment Using an SOA Registry-Repository

Registry Standards Comparison Matrix

Table 1 compares UDDI and ebXML Registry 3.0 standards in various categories.

Table 1: Registry Standards Comparison Matrix

Sun Microsystems, Inc.11 Effective SOA Deployment Using an SOA Registry-Repository

Standards Leveraged

Service Description Standards WSDL 1.1 WSDL 1.1

Messaging Standards SOAP 1.1 with Attachments SOAP 1.1

Message Security Standards OASIS Web Service Security

Access Control Policy Standards XACML 1.0

Identity Management Standards SAML 2.0

Architecture

Object-Oriented API Yes
• API offers a few task-oriented calls

that may be used by any type of
metadata object

• Consistent and uniform actions
supported via few API calls across
entire information model

No
• API offers type-oriented calls that

keep growing as new types are
added in each release of UDDI
standard

Object-Oriented Information Model Yes No

Extensible API Yes
• New API calls may be defined

using standards-based API extensibility
features

No

Extensible Information Model Yes
• New information model types may

be defined using standards-based
type extensibility features

No

Category/Feature ebXML Registry 3.0 UDDI 3.0

Sun Microsystems, Inc.12 Effective SOA Deployment Using an SOA Registry-Repository

Core Features

Registry Yes
• Rich set of ~25 standard metadata

classes

Yes
• Inadequate set of ~6 standard

metadata classes

Repository Yes
• Integrated registry-repository
• Any type of electronic content

supported

No

Publish

Can publish metadata describing any
type of information artifact

Yes Yes

Can publish any type of information
artifact

Yes
• Information artifacts subject to

governance

No
• Actual information artifact resides

external to registry and therefore
not subject to governance

Discovery

Predefined queries Yes Yes

User-defined queries Yes No

Ad hoc queries Yes
• Supports predicate combination

using logical operators

No

SQL query syntax Yes
• Ad hoc syntax supports unlimited

number of queries

No

XML query syntax Yes
• Ad hoc syntax supports unlimited

number of queries

Yes
• Fixed syntax supports ~4

predefined queries

Stored parameterized queries Yes No

Category/Feature ebXML Registry 3.0 UDDI 3.0

Sun Microsystems, Inc.13 Effective SOA Deployment Using an SOA Registry-Repository

Life Cycle Management

Approval Yes No

Update Yes Yes

Automatic Version Control Yes
• Versioning of metadata
• Versioning of information artifacts

No

Deprecation Yes
• Prevents proliferation of obsolete

information artifacts

No

Undeprecation Yes No

Deletion Yes
• Prevents accidental deletion of

information artifacts that are in use

Yes

Taxonomy/Classification Support

Predefined taxonomies Yes Yes

User-defined taxonomies Yes No

Taxonomy browsing and validation Yes No

Classification of artifacts Yes Yes

Classification of any metadata object Yes No

Relationship Support

Predefined relationship types Yes - Extensive Yes - Very Limited

User-defined relationship types Yes No

Category/Feature ebXML Registry 3.0 UDDI 3.0

Sun Microsystems, Inc.14 Effective SOA Deployment Using an SOA Registry-Repository

Ability to relate any two objects in
registry using any relationship type

Yes No

Packaging/Grouping Support

User-defined packages Yes No

Group any number of objects in same
package

Yes No

Group an object in multiple packages Yes No

Security Features

Digital signature based authentication Yes - Required Yes - Optional. Most vendors do not
support it.

Basic acess control based on prede-
fined roles and predefined policies

Yes Yes - Limited

User-defined, fined-grained acess con-
trol policies based on user-defined
roles/groups

Yes
• Based on XACML 1.0

No

Federated identity management and
SSO

Yes
• Based on SAML 2.0

No

Audit trail Yes Yes

Protocol Bindings Support

HTTP binding (REST) Yes
• Allows any metadata or artifact to

be addressable via an HTTP URL
module access control

No

SOAP API binding Yes Yes

Category/Feature ebXML Registry 3.0 UDDI 3.0

Sun Microsystems, Inc.15 Effective SOA Deployment Using an SOA Registry-Repository

Advanced Features

Information Management

Metadata Validation Yes
• Unrestricted, may be used to vali-

date any metadata type
• XSLT-based, content-specific cata-

loging of XML artifacts
• Extensible via custom validation

services (requires programming)

No

Artifact Validation Yes
• Unrestricted, may be used to vali-

date any artifact type
• Extensible via custom validation

services (requires programming)

No

Event Subscription and Notification

Ability to select events using custom
query

Yes
• Can use any user-defined query

(see Discovery features)
No

Content-based event notification Yes
• Can specify interest in specific

types of content within specific
types of artifacts

No

Delivery of notifications to registered
Web service

Yes Yes

Delivery of notifications to registered
e-mail address

Yes No

Federation Support

Federated Queries Yes No

Object references between any object
in one registry to any object in any
other registry

Yes No

Object replication from any registry
to any other registry

Yes
• Supports selective replication

Yes
• All data replicated across all

registries all the time

Category/Feature ebXML Registry 3.0 UDDI 3.0

Sun Microsystems, Inc.16 Effective SOA Deployment Using an SOA Registry-Repository

Client SDK Support

JAXR API Yes
• JAXR level 0 and level 1 support

Yes
• JAXR level 0 support only

Other Features

Web Services Support Yes
• Several predefined, WSDL discovery-

parameterized stored queries
(such as “Find all WSDLs that use
a specified namespace or name
space pattern”)

• Automatic validation of WSDL
upon publish to ensure compli-
ance with WS-I Basic profile

• Automatic cataloging of WSDL
upon publish to support WSDL
discovery

Yes
• Limited to ~5 predefined discovery

queries
• No automatic validation of WSDL

upon publish
• No automatic cataloging, requires

publisher to manually catalog the
WSDL

Domain-Specific Profile Support Yes
• Extensibility features allow stan-

dard extensions to be defined for
domain-specific use cases

• Allows interoperability within and
across domains

• Examples of standard profile
include:
• Web Services Profile
• WSRP Profile

• Open Geographic Information
System (GIS) Profile

• Institute of Health Education (IHE)
– XML Data Representation (XDR)

Profile
• Health Level 7 (HL7)
Conformance Profile

No

Category/Feature ebXML Registry 3.0 UDDI 3.0

Related information

[SOA] Service-Oriented Architecture

webservices.xml.com/pub/a/ws/2003/09/30/soa.html

[UDDI] UDDI

www.oasis-open.org/committees/tc_home.php?wg_abbrev=uddi-spec

[ebRR] ebXML Registry Meta Links

ebxmlrr.sourceforge.net/tmp/ebXMLRegistryLinks.html

[SUNR] Sun’s Service Registry

www.sun.com/products/soa/registry/© 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, CA 95054 USA

Sun Microsystems, Inc.17 Effective SOA Deployment Using an SOA Registry-Repository

©2005 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun logo, Java, and J2EE are trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.
09/05

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN Web sun.co

© 2005 Sun Microsystems, Inc., 4150 Network Circle, Santa Clara, CA 95054 USA

All rights reserved.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product

or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software, including font

technology, is copyrighted and licensed from Sun suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California.

Sun, Sun Microsystems, the Sun logo, Java, and J2EE are trademarks, registered trademarks, or service marks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. in the U.S. and other countries. Products bearing

SPARC trademarks are based upon an architecture developed by Sun Microsystems, Inc. Mozilla and Netscape are trademarks or registered trademarks of Netscape

Communications Corporation in the United States and other countries. AMD Opteron is a trademark or registered trademark of Advanced Micro Devices. Oracle is a xxx.

The OPEN LOOK and Sun™ Graphical User Interface was developed by Sun Microsystems, Inc. for its users and licensees. Sun acknowledges the pioneering efforts of

Xerox in researching and developing the concept of visual or graphical user interfaces for the computer industry. Sun holds a non-exclusive license from Xerox to the

Xerox Graphical User Interface, which license also covers Sun’s licensees who implement OPEN LOOK GUIs and otherwise comply with Sun’s written license agreements.

RESTRICTED RIGHTS: Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87) and FAR 52.227-19(6/87), or DFAR

252.227-7015(b)(6/95) and DFAR 227.7202-3(a). DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES,

INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT

SUCH DISCLAIMERS HELD TO BE LEGALLY INVALID.

Effective SOA Deployment Using an SOA Registry-Repository sun.com

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA Phone 1-650-960-1300 or 1-800-555-9SUN Web sun.com

