

Symbian OS: End-to-End
Sockets API Example

S
60

p

l
a

t
f

o
r

m

Version 1.2
May 10, 2006

Symbian OS: End-to-End Sockets API Example | 2

Legal Notice

Copyright © 2006 Nokia Corporation. All rights reserved.

Nokia and Nokia Connecting People are registered trademarks of Nokia Corporation.
Java and all Java-based marks are trademarks or registered trademarks of Sun
Microsystems, Inc. Other product and company names mentioned herein may be
trademarks or trade names of their respective owners.

Disclaimer

The information in this document is provided “as is,” with no warranties whatsoever,
including any warranty of merchantability, fitness for any particular purpose, or any
warranty otherwise arising out of any proposal, specification, or sample. Furthermore,
information provided in this document is preliminary, and may be changed substantially
prior to final release. This document is provided for informational purposes only.

Nokia Corporation disclaims all liability, including liability for infringement of any
proprietary rights, relating to implementation of information presented in this document.
Nokia Corporation does not warrant or represent that such use will not infringe such
rights.

Nokia Corporation retains the right to make changes to this specification at any time,
without notice.

License

A license is hereby granted to download and print a copy of this specification for
personal use only. No other license to any other intellectual property rights is granted
herein.

Version 1.2 | May 10, 2006

Symbian OS: End-to-End Sockets API Example | 3

Contents

1. Introduction ... 6
2. Architecture ... 7

2.1 PHP...7
2.2 J2EE..8

2.2.1 Model ..9
2.2.2 Controller ..9
2.2.3 View..9

3. Use cases... 11
3.1 Mobile client ..11

3.1.1 Load tasks ..11
3.1.2 Complete task...11
3.1.3 Interaction diagram...12
3.1.4 Important classes ...12

3.2 Web UI ..13
3.2.1 View tasks...13
3.2.2 Change password...14
3.2.3 Add task..14
3.2.4 Delete task..14
3.2.5 Modify task ...15
3.2.6 Send SMS ..15
3.2.7 Add user ...15
3.2.8 Delete user ...16
3.2.9 Modify user ...16
3.2.10 Interaction diagram...17

4. Installation and configuration .. 18
4.1 Mobile client ..18

4.1.1 Installation ..18
4.1.2 Certificate..18

4.2 Web server..18
4.2.1 Installation ..18

4.3 Java server..19
4.3.1 Installation ..19
4.3.2 Configuration ..19
4.3.3 Running the server ...19

4.4 Security (SSL) ...19
4.4.1 Installing and configuring SSL for PHP ..19
4.4.2 Configuring SSL for J2EE...20

Version 1.2 | May 10, 2006

Symbian OS: End-to-End Sockets API Example | 4

4.5 Database...20
4.5.1 Installation ..20
4.5.2 User table ...21
4.5.3 Task table ...21
4.5.4 Roles table..21
4.5.5 Userrolemap table ..21

4.6 Configuring Web UIs ...22
4.6.1 Installing and configuring PHP ...22
4.6.2 Setting up J2EE..23

5. Evaluate this resource .. 25

Version 1.2 | May 10, 2006

Symbian OS: End-to-End Sockets API Example | 5

Change History

July 26, 2005 Version 1.0 Initial document release

October 5, 2005 Version 1.1 JSP included in the document

May 10, 2006 Version 1.2 Example updated to support S60 3rd Edition.
Minor editorial changes to the document.

Version 1.2 | May 10, 2006

Symbian OS: End-to-End Sockets API Example | 6

1 . I n t r o d u c t i o n

This example is a reference implementation of an enterprise system that includes a
mobile client, server-based database, and a Web portal. The purpose of this example is
to demonstrate the following:

 How to incorporate a mobile client into a back-end system.

 How to transfer data between the server and the mobile client in a secure
manner.

 How to parse the received data at the mobile end.

 How to inform the mobile client of changes in the server database.

The logic of the example in brief is as follows: A Web portal is used for adding users to
the system and for adding tasks to the users. Users can view and complete their tasks
through a mobile client. All users belong to a group. There are three different groups: the
administrators, managers, and workers. Administrators only manage the users of the
system and do not handle tasks in any way. Managers handle tasks by adding them to
workers and other managers. Managers can use the mobile client for completing their
tasks. Workers only view and complete their tasks through the mobile client.

Version 1.2 | May 10, 2006

Symbian OS: End-to-End Sockets API Example | 7

2 . A r c h i t e c t u r e

The architecture of the enterprise example is displayed in Figure 1 and Figure 2. The
three main parts are the Java™ SSL socket server, Symbian client, and a PC.

The Symbian client is implemented using the standard MVC design pattern, which allows
the program to be easily ported to other Symbian platforms. The UI interacts with the
user while the engine does the actual work. The engine communicates with the server by
using Symbian’s secure (SSL/TLS) sockets. Data is transmitted between the server and
the mobile client securely by using an SSL connection. Using SSL guarantees that all
data is encrypted during transport and that both sides of the connection can be verified.
The engine is responsible for opening a GPRS connection when one is needed. It also
listens to SMS messages sent by the server. When an SMS message is received, the
engine automatically reloads data from the server.

The Java server of this example can be roughly divided into two parts. First, there is a
communication package that handles incoming SSL connections and offers a certificate
to the connecting client. After the connection has been established, the second part of
the server handles parsing the incoming client messages and communicating them to a
MySQL database. It also receives the reply from the database and parses it into a
comprehensible format before offering it to the communications package for sending it
as a reply to the client. The SMS message sending feature is not implemented in the
server solution of this example due to the fact that no unambiguous solution exists. You
can implement it using one of the existing commercial and free solutions suitable for
your purposes.

Administration of the database is done through one of two alternative Web applications,
a PHP or a J2EE™ application.

2.1 PHP

The PHP version is used with a Web browser and PHP pages. The PHP scripts, used
through an Apache Web server, enable the user to connect securely (using HTTPS) to
the database and modify the content of the database, using PHP’s built-in MySQL
communication abilities. Apache handles running the PHP scripts and forming a secure
connection between the browser and the server.

Version 1.2 | May 10, 2006

Symbian OS: End-to-End Sockets API Example | 8

Figure 1: Architecture of the enterprise example using PHP

2.2 J2EE

The J2EE option consists of an Apache Tomcat servlet container and a Java Model 2
implementation using JavaServer Pages, Java Servlets, and JavaBeans. It uses the
same MySQL database for data storage but is otherwise different from the PHP version.
The Java Model 2 design pattern, which is more or less synonymous with the Model-
View-Controller design pattern, presents new challenges for the design and complicates
the architecture.

Version 1.2 | May 10, 2006

Symbian OS: End-to-End Sockets API Example | 9

Figure 2: Architecture of the enterprise example using J2EE

2.2.1 Model

The model role is implemented by the JavaBeans component, the database
access object (DBAO), and the MySQL database (see Figure 3). Due to the
requirements of the JSP 2.0 specification, the JavaBeans themselves cannot
make direct references to the database so they need a middleware object (the
DBAO) to do the actual queries. The DBAO is also used by the controller when it
needs access to the database. The actual beans consist of getter and setter
functions that provide data to the view.

2.2.2 Controller

The controller is implemented by a single Java servlet. All client requests go
through the servlet; no direct references to a JSP page are allowed (except for
the index.jsp, the login screen). The servlet decides what page is shown in
response to the client request.

2.2.3 View

The view is implemented by a collection of JSP files. This example uses JSP 2.0
and JSTL so there are no “scriptlets,” which can commonly be found in JSP 1.2
files. The Tomcat JSP parser (Jasper) parses the JSP files into an HTML page
which is then sent to the client. The JSP files access the database through the
JavaBeans which in turn use a persistent DBAO for data retrieval.

Version 1.2 | May 10, 2006

Symbian OS: End-to-End Sockets API Example | 10

Figure 3: A diagram of the data flow in the system

Version 1.2 | May 10, 2006

Symbian OS: End-to-End Sockets API Example | 11

3 . U s e c a s e s

This chapter describes the use cases for the mobile client and the Web user interface.
The chapter also illustrates with general-level interaction diagrams how the use cases
relate to the architecture of the enterprise example.

3.1 Mobile client

Figure 4: Mobile client use cases

3.1.1 Load tasks

Actors: Worker or manager

Summary: Loads the user’s undone tasks from the server to the mobile
client.

Preconditions: The following parameters have been set: username,
password, IAP to be used, name and port number of the
server.

Detailed
description:

1. User selects Load tasks from the Options menu.

OR

1. User starts the Task Manager. The application will
automatically load tasks when started.

OR

1. The mobile client receives an update SMS message from
the server and starts loading tasks automatically.

2. (Optional) User accepts a certificate sent by the server.

Postconditions: User sees a list of tasks in the mobile client.

3.1.2 Complete task

Actors: Worker or manager

Summary: Marks the selected task as done in the server database.

Version 1.2 | May 10, 2006

Symbian OS: End-to-End Sockets API Example | 12

Preconditions: Tasks have been loaded and user has undone tasks.

Detailed
description:

1. User selects a task from the list and presses the Enter key.

2. User accepts the Complete this task prompt by clicking
Yes.

3. (Optional) User accepts a certificate sent by the server.

Postconditions: The completed task is removed from the list. User is left with a
list of undone tasks.

3.1.3 Interaction diagram

The interaction diagram displayed in Figure 5 shows on a general level how the
mobile client use cases relate to the architecture of the enterprise example (see
Figure 1).

Figure 5: General interaction diagram of the mobile client

3.1.4 Important classes

TRequest is a static class that handles building the actual data package that is
sent to the server. If at some point you decide to change our message format,
you only need to edit this class and CResponse. The format of requests is
“username#password#operation#messageId” where the final segment is used

Version 1.2 | May 10, 2006

Symbian OS: End-to-End Sockets API Example | 13

only with the operation “mark” (marking a specific task as done). An example
request message would be “john#nhoj#mark#15#”.

The CResponse class handles parsing the response received from the server
into a more manageable form. The server response is in format “size#message”.
An example server response to a “fetch tasks” request would be “33#7#File
report#8#Prepare meeting#”. If there is a server-side error, the response is
“21#Error: Error message”. When marking a task done, the server sends a
confirmation message, “3#OK”.

The CTaskManagerConnForm class represents the settings form that allows the
user to set connection parameters.

CTaskManagerEngine is responsible for administering the socket connection to
the server and sending data to it.

The CTaskManagerEngineReader class reads the data sent to the client from
the server. It notifies the engine of a received package.

The CTimeoutTimer class is used to prevent the asynchronous function calls
from taking too much time.

3.2 Web UI

Figure 6: Web UI use cases

3.2.1 View tasks

Actors: Worker or manager

Summary: By logging in, a worker will see a list of all of his/her tasks. A
manager will see all tasks of every user.

Preconditions: User has logged in.

Version 1.2 | May 10, 2006

Symbian OS: End-to-End Sockets API Example | 14

Detailed
description:

No actions required by the user. A list of tasks is automatically
displayed when the user logs in.

Postconditions: User sees a list of tasks.

3.2.2 Change password

Actors: Worker or manager

Summary: User changes his/her password.

Preconditions: User has logged in.

Detailed
description:

1. User types in his/her current password to the Current
password field.

2. User types in the new password to the New password
field.

3. User retypes the new password to the Confirm password
field.

4. User presses the Change password button.

Postconditions: User’s password has been changed.

3.2.3 Add task

Actors: Manager

Summary: Manager adds a new task to a worker or a manager.

Preconditions: Manager has logged in.

Detailed
description:

1. Manager defines the following parameters for the task:

• Owner

• Description

• Status

2. Manager presses the Add as new button.

Postconditions: A new task appears in the task list.

3.2.4 Delete task

Actors: Manager

Summary: A manager deletes a task.

Preconditions: Manager has logged in and tasks exist.

Detailed
description:

1. Manager selects a task from the task list.

2. Manager clicks the Delete button.

Version 1.2 | May 10, 2006

Symbian OS: End-to-End Sockets API Example | 15

3. Manager accepts the Delete selected task prompt, by
clicking the OK button.

Postconditions: The selected task is removed from the task list.

3.2.5 Modify task

Actors: Manager

Summary: Manager modifies task’s owner, description, and status.

Preconditions: Manager has logged in and tasks exist.

Detailed
description:

1. Manager selects a task from the task list.

2. Manager modifies task’s owner, description, and status.

3. Manager clicks the Save button.

Postconditions: Owner, description, and status of the selected task are
updated in the task list.

3.2.6 Send SMS

Actors: Manager

Summary: Manager sends an update SMS message to users whose
mobile client is not up-to-date with the server.

Preconditions: Manager has logged in.

Detailed
description:

1. Manager clicks the Send SMS button.

2. The system sends an SMS message to all users whose
mobile client is not up-to-date with the server.

Postconditions: A list of all users to whom an SMS message was sent is
shown.

3.2.7 Add user

Actors: Administrator

Summary: Administrator adds a user to the system.

Preconditions: Administrator has logged in.

Detailed
description:

1. Administrator fills in the following parameters for the new
user:

• Username

• Group

• Mobile number

• Password

Version 1.2 | May 10, 2006

Symbian OS: End-to-End Sockets API Example | 16

2. Administrator clicks the Add as new button.

Postconditions: A new user appears in the user list.

3.2.8 Delete user

Actors: Administrator

Summary: Administrator deletes a user.

Preconditions: Administrator has logged in and users exist.

Detailed
description:

1. Administrator selects a user from the user list.

2. Administrator clicks the Delete button.

3. Administrator accepts the Delete current user prompt by
clicking the OK button.

Postconditions: The selected user is removed from the user list.

3.2.9 Modify user

Actors: Administrator

Summary: Administrator modifies user’s username, group, mobile
number, and password.

Preconditions: Administrator has logged in and users exist.

Detailed
description:

1. Administrator selects a user from the user list.

2. Administrator modifies user’s username, group, mobile
number, and password.

3. Administrator clicks the Save button.

Postconditions: User’s username, group, mobile number, and password are
updated in the user list.

Version 1.2 | May 10, 2006

Symbian OS: End-to-End Sockets API Example | 17

3.2.10 Interaction diagram

The interaction diagram displayed in Figure 7 shows on a general level how the
Web UI use cases relate to the architecture of the enterprise example (see
Figure 1).

Figure 7: General interaction diagram of the Web UI

Version 1.2 | May 10, 2006

Symbian OS: End-to-End Sockets API Example | 18

4 . I n s ta l l a t i o n a n d c o n f i g u r a t i o n

This chapter describes how the client application and the server implementation are
installed and configured on a mobile device and server environment, respectively. This
example was created and tested in a Fedora Linux server environment, but any server
environment could be used. Installing the Linux operating system is beyond the scope of
this document.

4.1 Mobile client

This section describes how to get the Symbian OS client application running on a S60 or
a Series 80 device.

4.1.1 Installation

Installation, building, and operating instructions for the S60 and Series 80 client
can be found in the Release Notes, which are included in
SocketTaskManager_S60.zip and SocketTaskManager_Series80.zip,
respectively.

4.1.2 Certificate

The Symbian client prompts the user to accept a certificate every time a
transaction with the server is needed. This can be avoided by installing the
certificate to the Symbian device. First export the certificate from the keystore
with keytool using the following command (in one line):

/usr/java/jdk1.5.0_01/bin/keytool -export -alias mykey -file server.crt -
keystore myKeystore

This command exports the certificate to a file named server.crt. Then just
send the certificate to the Symbian device, for example, with Bluetooth and save
the certificate to the device.

The -alias mykey parameter specifies the certificate you want to export. By
default, a newly generated key is given the alias “mykey”. You can change this
when generating the key by adding the parameter “-alias <name of key>” to the
command.

4.2 Web server

This section describes how to install the Apache Web server.

4.2.1 Installation

The Apache Web server is very easy to install and configure. Just download the
Apache Web server, for example, from
ftp://ftp.funet.fi/pub/Linux/images/fedora/linux/core/3/i386/os/Fedora/RPMS/httpd
*. Then install it with the command:

rpm -ivh httpd*

No other configuration is needed at this point.

Version 1.2 | May 10, 2006

ftp://ftp.funet.fi/pub/Linux/images/fedora/linux/core/3/i386/os/Fedora/RPMS/httpd*
ftp://ftp.funet.fi/pub/Linux/images/fedora/linux/core/3/i386/os/Fedora/RPMS/httpd*

Symbian OS: End-to-End Sockets API Example | 19

4.3 Java server

4.3.1 Installation

First of all, you need J2SE SDK 1.4.2 or higher (http://java.sun.com). This
reference implementation may work with an older version but it is not
guaranteed. You also need Apache Ant (http://ant.apache.org), a Java build
program. This is not mandatory but significantly eases the compiling and running
process. Finally, you need the MySQL Connector/J (J for Java) from
http://www.mysql.com. This is a driver for Java’s JDBC (Java Database
Connector). Refer to the respective installation guides for installation
instructions.

Copy the files into a folder on the server. Go to the project root directory (where
the Ant build file build.xml resides) and run “ant” or “ant compile”. However,
before running the server you need to create a certificate for the SSL connection.

4.3.2 Configuration

Install Ant and MySQL Connector/J and create the certificate (see Section
4.4.1.1,”Creating a certificate”). Add the server URI, username (if not the default,
taskdb), and password to the TaskManagerServerThread.java file (change
the constant’s values defined in the beginning of the file). Recompile the project.

4.3.3 Running the server

If you are running the server from command line, initialize the server with added
parameters: java –Djavax.net.ssl.keyStore=myKeystore –
Djavax.net.ssl.keyStorePassword=qwerty
com.nokia.forum.taskmanager.comm.TaskManagerServer. The
keyStorePassword argument should match the password that you chose for the
keystore (see Section 4.4.1.1, “Creating a certificate” or Section 4.4.2,
“Configuring SSL for J2EE”).

If, however, you are using ant, just type “ant run” to run the server. You need to
change the build.xml file a bit if your keystore’s name is not myKeystore and
your password is not “qwerty”. Editing build.xml should be self-explanatory.
The idea is to find the parameters specified above for the command line Java
interpreter and replace them with your chosen parameters (keystore password
and name of the keystore).

The server should be able to start, assuming that the keystore file is in the right
place, but connecting to it will fail if you haven’t configured the MySQL server
yet. The server runs until you kill the process (for example, by pressing CTRL-C).

4.4 Security (SSL)

This section describes how SSL is enabled for PHP J2EE. Again, you only need to
configure either PHP or JSP.

4.4.1 Installing and configuring SSL for PHP

SSL’s keys can be created through Java SDK’s keytool program, found in
$JAVA_HOME/bin. You have installed keytool when you have installed the SDK.

Version 1.2 | May 10, 2006

http://java.sun.com/
http://www.apache.org/
http://www.mysql.com/

Symbian OS: End-to-End Sockets API Example | 20

4.4.1.1 Creating a certificate

SSL uses asymmetric keys (RSA to be more precise) for enabling data to be
transmitted securely between the client and the server. A certificate is used to
positively authenticate the server’s identity to ensure that data is not sent to an
impostor site. A test certificate for this example is created as follows:

keytool -genkey -keystore myKeystore -keyalg RSA

This command creates a new keystore named myKeystore, the place of storage
for your certificate and keys. It also generates a public/private key pair. You will
be prompted for a password for the keystore and for the private key.

When generating the certificate everything else may be left as “Unknown” except
for the two-letter country code. If you fail to give a proper code, the certificate will
not be valid. For example, for Finland the proper code would be “fi”.

Copy the created keystore (which houses the certificate) into the project root
directory.

4.4.2 Configuring SSL for J2EE

In the default Tomcat server.xml file you should find a ready SSL connector
commented out. It should have a preceding comment saying “Define a SSL
HTTP/1.1 Connector on port 443” or something similar. Uncomment the
<Connector>-tag and change the port according to your preference. You also
need a keystore in the user home directory to host an SSL certificate.
Alternatively you can define a new location from where Tomcat will search for a
keystore by adding the keyStoreFile=”<location of the keystore>” attribute to the
<Connector>-tag.

You can create a new keystore with the keytool application which can be found
from all Java Development Kits, under the /bin directory. To create a new
keystore to the present working directory, write:

keytool -genkey -keystore myKeystore -keyalg RSA.

You will be prompted for a password that must be set as “changeit” so that
Tomcat can access the keystore. Also make sure you specify a two-letter country
code when keytool asks for one in the creation process, for example, “fi” for
Finland. Otherwise the certificate may not be accepted by the mobile client or the
browser.

More detailed information on enabling SSL can be found in the Tomcat
documentation on the Tomcat Web site (http://jakarta.apache.org/tomcat).

4.5 Database

This section describes how to install and configure the MySQL database. It will also
describe the database structure of this example.

4.5.1 Installation

 Download MySQL binaries from http://www.mysql.com. Alternatively, using
an .rpm file is an easy way and it is recommended. After you have
downloaded the .rpm file, just run rpm –install filename.rpm.

 You will need to install the MySQL server and MySQL client packages. The
.rpm packages are named MySQL-server-VERSION.i386.rpm and

Version 1.2 | May 10, 2006

http://www.mysql.com/

Symbian OS: End-to-End Sockets API Example | 21

MySQL-client-VERSION.i386.rpm. The order in which you install these is
not important.

 RPM installation also creates a new user named “mysql” into your system.
Some versions will also change your system configuration so that the MySQL
server will start automatically every time you start your system. Changing
these settings is beyond the scope of this document.

 After installing MySQL, run the included setup script which sets up all the
necessary MySQL user accounts, tables, and roles. You can execute the
script by copying it to your working directory, starting MySQL as the root
user, and running the source setup.sql command. The script will create a
MySQL user account “taskman” that has a password “namksat”. You should
change this password to something else either by editing the script before
executing it or by hand after sourcing the script.

 The script will also create a new user account “administrator” with a
password “admin” that you will need to create new users to the system. The
MySQL account is needed for logging into MySQL from the server application
and the PHP scripts, whereas this account is used when you add new users
from the Web UI.

4.5.2 User table

The user table stores information on all of the system’s users, including those
that only administer other users. Each user has the following attributes: an ID as
its primary key, a unique login string, a password string, and a string to its mobile
phone number. A user also has a state enumeration that specifies whether the
user’s tasks in the mobile client are up-to-date or not. All tables also use
MySQL’s InnoDB extension that allows more restrictions on foreign keys (more
on those later).

4.5.3 Task table

The task table stores all the tasks added to the system. Each task has a unique
ID number, a foreign key to the user that owns the task, a description, and a
state that specifies whether or not the task has been completed. The foreign key
is determined as “on delete cascade” meaning that when a user is deleted from
the list, all tasks pointing to it are also removed. This ensures that no ownerless
tasks can be found in the task table. This feature requires using the InnoDB
extension, since InnoDB-type tables are the only table types in MySQL that
support foreign key constraints.

4.5.4 Roles table

The roles table stores information on different roles in the system. The system
requires three roles to function: administrator, manager, and user. These roles
are set up in the setup script.

4.5.5 Userrolemap table

This table is redundant in the current implementation but if a need would rise to
have multiple roles on a single user, it would be needed.

Version 1.2 | May 10, 2006

Symbian OS: End-to-End Sockets API Example | 22

Figure 8: Database tables

4.6 Configuring Web UIs

This section describes configuration details for the two user interface types.

4.6.1 Installing and configuring PHP

PHP is installed as an Apache module so that the whole Apache does not have
to be recompiled each time PHP is updated. Download the latest PHP (version
4.3.10 used in this example) from www.php.net. Extract the PHP package:

tar xfz php_4.3.10.tar.gz

In the PHP directory (directories may vary in PHP and Apache builds), type the
following commands:

configure --with-mysql --with-apxs2=/usr/sbin/apxs

make

make install

PHP is now installed into the appropriate Apache directories. To enable Apache
and PHP to work together, add the following line to the
/etc/httpd/conf/httpd.conf file:

AddType application/x-httpd-php .php

If you need to use, for example, iso-8859-1 character set in your PHP pages,
make sure that this is defined in the php.ini file. If the php.ini file does not
exist, just create it to /usr/local/lib and insert the following line:

default_charset = “iso-8859-1”

The last thing to do is to restart Apache. The command to do this is:

/usr/sbin/apachectl restart

Version 1.2 | May 10, 2006

http://www.php.net/

Symbian OS: End-to-End Sockets API Example | 23

4.6.1.1 PHP & MySQL

The current version of PHP (4.3.10) does not support the new authentication
protocol in MySQL 4.1.1 and higher. Therefore, the MySQL database has to be
configured so that it will use the old authentication protocol. Create the my.cnf
file to the /etc/ directory, if one does not yet exist, and add the following lines
to the file:

[mysqld]

old_passwords

Also, when a new user is added to the user table (see Section ,”4.5.2 User
table”), the password for the user has to be generated with the
OLD_PASSWORD macro as seen in the PHP files of this example.

4.6.1.2 PHP files

Place all the PHP files of this example to the directory you defined as the SSL
directory in the DocumentRoot directive (see Section 4.3.1,”Installation”).

4.6.2 Setting up J2EE

This section describes how to set up the Java 2 Enterprise Edition version of the Web
UI, using the Apache Tomcat 5.5.x servlet container.

To use JavaServer Pages you need a servlet container software. Apache Tomcat
is ideal for this use since it is free and is also the official reference
implementation of the Java Servlet and JavaServer Pages technologies,
developed by Sun. This example was developed and tested using Tomcat 5.5.9.
It works with this and newer versions of Tomcat but not with older versions (since
the example uses JSP 2.0, to which support was introduced in 5.5.9).

4.6.2.1 Preparation

Get the Java 2 Enterprise Edition SDK if you are going to compile the code files.
In case you only wish to run the example, there is an included .war file that you
can simply deploy to the servlet container in which case J2EE SDK is not
needed. You will need a version 5.0 Java 2 Standard Edition Java Runtime
Environment (JRE) to run Tomcat 5.5. You can find the JRE at
http://java.sun.com/j2se.

4.6.2.2 Tomcat installation and configuration

Download Tomcat 5.5.9 or newer from http://jakarta.apache.org/tomcat. To install
Tomcat, simply extract the downloaded archive and read the included
RUNNING.TXT for further information. After you have successfully installed
Tomcat, you still need to configure it to run in a port of your choosing and to use
SSL. You do this by editing the file $CATALINA_HOME/conf/server.xml
(where $CATALINA_HOME is the installation directory for Tomcat).

Version 1.2 | May 10, 2006

http://java.sun.com/j2se
http://jakarta.apache.org/tomcat

Symbian OS: End-to-End Sockets API Example | 24

4.6.2.3 Installing the Web application to Tomcat

When Tomcat has been successfully installed and is responding from the port to
which it was configured, you are ready to deploy the Web application. There are
several ways to do this.

1. You can deploy the included .war file that includes all the files needed to run
the Web application through the Tomcat manager application. The manager
application can be found from the Tomcat front page, which in turn is located
at the address and port to which you configured Tomcat. Install it from the
“WAR file to deploy” section.

2. You can simply copy the .war file to the $CATALINA_HOME/webapps
directory. This way, Tomcat will extract your Web application automatically
during startup.

3. You can deploy with ant, assuming that you are deploying to the same
machine you are running ant from. Just make the necessary modifications to
the ant buildfile (build.xml, target “install”) found in the project root
directory. You need to set a valid manager url, username, and password
depending on your Tomcat settings. Installation can be executed with “ant
install” which will also compile your project, if necessary. Manual compile
can be done with “ant compile”.

To get the application to work with a database, you will need to make changes to
the code and recompile it. The most relevant change should be made to the
DBAccess.java file. You need to redefine the username and password
constants so that they match your database.

You also need to make changes to the build.xml file if you wish to deploy
straight to Tomcat with Ant. The parts that need to be changed are well
commented in build.xml.

Version 1.2 | May 10, 2006

Symbian OS: End-to-End Sockets API Example | 25

5 . E v a l u a t e t h i s r e s o u r c e

Please spare a moment to help us improve documentation quality and recognize the
resources you find most valuable, by rating this resource.

Version 1.2 | May 10, 2006

http://www.forum.nokia.com/main/1%2C%2C90%2C00.html?surveyId=5f4f909e-7e6a-42fa-8c4c-0e028b96a44f/Symbian_OS_End-to-End_Sockets_API_Example_v1_2.zip

	1. Introduction
	2. Architecture
	2.1 PHP
	2.2 J2EE
	2.2.1 Model
	2.2.2 Controller
	2.2.3 View

	3. Use cases
	3.1 Mobile client
	3.1.1 Load tasks
	3.1.2 Complete task
	3.1.3 Interaction diagram
	3.1.4 Important classes

	3.2 Web UI
	3.2.1 View tasks
	3.2.2 Change password
	3.2.3 Add task
	3.2.4 Delete task
	3.2.5 Modify task
	3.2.6 Send SMS
	3.2.7 Add user
	3.2.8 Delete user
	3.2.9 Modify user
	3.2.10 Interaction diagram

	4. Installation and configuration
	4.1 Mobile client
	4.1.1 Installation
	4.1.2 Certificate

	4.2 Web server
	4.2.1 Installation

	4.3 Java server
	4.3.1 Installation
	4.3.2 Configuration
	4.3.3 Running the server

	4.4 Security (SSL)
	4.4.1 Installing and configuring SSL for PHP
	4.4.1.1 Creating a certificate

	4.4.2 Configuring SSL for J2EE

	4.5 Database
	4.5.1 Installation
	4.5.2 User table
	4.5.3 Task table
	4.5.4 Roles table
	4.5.5 Userrolemap table

	4.6 Configuring Web UIs
	4.6.1 Installing and configuring PHP
	4.6.1.1 PHP & MySQL
	4.6.1.2 PHP files

	4.6.2 Setting up J2EE
	4.6.2.1 Preparation
	4.6.2.2 Tomcat installation and configuration
	4.6.2.3 Installing the Web application to Tomcat

	5. Evaluate this resource

