
Talend ESB Container
Administration Guide

5.1

Talend ESB Container: Administration Guide

Publication date 3 May 2012
Copyright © 2011-2012 Talend Inc.

Copyleft

This documentation is provided under the terms of the Creative Commons Public License (CCPL). For more information about what you can
and cannot do with this documentation in accordance with the CCPL, please read: http://creativecommons.org/licenses/by-nc-sa/2.0/

This document may include documentation produced at The Apache Software Foundation which is licensed under The Apache License 2.0.

Notices

Talend and Talend ESB are trademarks of Talend, Inc.

Apache CXF, CXF, Apache Karaf, Karaf, Apache Camel, Camel, Apache Maven, Maven, Apache Archiva, Archiva are trademarks of The
Apache Foundation.

Eclipse Equinox is a trademark of the Eclipse Foundation, Inc. SoapUI is a trademark of SmartBear Software. Hyperic is a trademark of
VMware, Inc. Nagios is a trademark of Nagios Enterprises, LLC.

All other brands, product names, company names, trademarks and service marks are the properties of their respective owners.

Talend ESB Container Administration Guide

Table of Contents
1. Introduction .. 1

1.1. Structure of this manual ... 1
2. Directory Structure .. 3
3. Starting/Stopping Talend Runtime .. 4

3.1. Starting Talend Runtime .. 4
3.2. Stopping Talend Runtime ... 5

4. Starting/Stopping Talend ESB Infrastructure Components ... 7
4.1. Starting the Service Locator .. 7
4.2. Stopping the Service Locator .. 7
4.3. Starting Service Activity Monitoring .. 7
4.4. Stopping Service Activity Monitoring ... 8
4.5. Starting the Security Token Service .. 8
4.6. Stopping the Security Token Service .. 8
4.7. Starting all three Talend ESB infrastructure services .. 8
4.8. Stopping all three Talend ESB infrastructure services .. 8

5. Using Console .. 10
5.1. Viewing commands from the Karaf console ... 10
5.2. Karaf Console command summary ... 11

6. Deploying Multiple Karaf Containers .. 17
6.1. Deploying multiple containers using configuration adaption scripts 17

7. Remote Console .. 19
7.1. Configuring remote instances .. 19
7.2. Connecting and disconnecting remotely ... 20
7.3. Stopping a remote instance ... 21

8. Apache CXF and Camel, commands and tuning .. 22
8.1. Commands supplied by CXF ... 23
8.2. Commands supplied by Camel ... 23
8.3. Configuring CXF work queues .. 24

9. Security ... 26
9.1. Managing users and passwords .. 26
9.2. Managing roles ... 26
9.3. Enabling password encryption ... 27
9.4. Managing realms ... 27
9.5. Deploying security providers ... 32

10. HTTP Configuration ... 33
10.1. Server HTTP Configuration ... 33
10.2. Client HTTP Configuration ... 35

11. Logging System ... 42
11.1. Configuration .. 42
11.2. Console Log Commands ... 43
11.3. Advanced Configuration ... 43

12. Deployer .. 46
12.1. Features deployer .. 46
12.2. Spring deployer ... 47
12.3. Wrap deployer .. 47
12.4. War deployer .. 48

13. Servlet Context .. 49
13.1. Configuration .. 49
13.2. Configuring the context .. 49

14. Provisioning .. 51
14.1. Example: Deploying a sample feature .. 51
14.2. Repositories .. 52
14.3. Commands ... 56
14.4. Service configuration ... 57

15. Web Applications .. 58
15.1. Installing WAR support .. 58

Talend ESB Container

Talend ESB Container Administration Guide iv

15.2. Deploying a WAR to the installed web feature .. 60
16. Monitoring and Administration using JMX ... 61
17. Installing the Talend Runtime container as a service ... 62

17.1. Introduction .. 62
17.2. Supported platforms ... 62
17.3. Installing the wrapper ... 63
17.4. Installing the service .. 65

18. Troubleshooting Talend ESB ... 67
18.1. Memory Allocation Parameters .. 67
18.2. On Windows .. 68
18.3. On Linux ... 68

Talend ESB Container Administration Guide

List of Tables
5.1. admin Scope commands ... 11
5.2. config Scope commands ... 11
5.3. dev Scope commands ... 12
5.4. features Scope commands ... 12
5.5. jaas Scope commands .. 13
5.6. log Scope commands ... 13
5.7. OBR Scope commands ... 14
5.8. OSGi Scope commands .. 14
5.9. Shell Scope commands ... 15
5.10. Miscellaneous Scope commands ... 16
6.1. Ports configured by the configuration scripts .. 18
8.1. CXF commands .. 23
8.2. Camel commands .. 23
16.1. Karaf Management MBeans .. 61

Talend ESB Container Administration Guide

Chapter 1. Introduction
Talend ESB provides an Apache Karaf-based ESB container preconfigured to support Apache Camel routing and
Apache CXF-based services (both REST and SOAP-based). This container administration manual is intended to
provide information on Karaf tooling commands and general administration. It is NOT a tutorial on getting started
with Karaf - please see Talend ESB Getting Started User Guide for this.

Note

As the Talend ESB container is based on Apache Karaf, the two terms are used interchangeably
within this document, except when explicitly stressed otherwise.

1.1. Structure of this manual
The following chapters are in this manual:

• Chapter 2, Directory Structure describes the directory layout of a Talend ESB installation.

• Chapter 3, Starting/Stopping Talend Runtime describes the various options that are available to start and stop
Talend ESB.

• Chapter 4, Starting/Stopping Talend ESB Infrastructure Components describes how to start and stop the
infrastructure components of Talend ESB.

• Chapter 5, Using Console gives a list of the console commands available.

• Chapter 6, Deploying Multiple Karaf Containers describes how to adapt the configuration to deploy multiple
containers at the same machine.

• Chapter 7, Remote Console describes how to access Talend ESB using a remote console.

Introduction

Talend ESB Container Administration Guide 2

• Chapter 8, Apache CXF and Camel, commands and tuning describes commands provided by CXF and Camel.

• Chapter 9, Security describes how to configure security with Talend ESB.

• Chapter 11, Logging System describes configuring and using the logging system.

• Chapter 12, Deployer describes deploying bundles or re-defined groups of bundles (called features).

• Chapter 14, Provisioning describes how the provisioning system uses xml repositories that define sets of features
(bundles). Thus when you install a feature and it will install all of its bundles defined under it.

• Chapter 15, Web Applications describes deploying WAR-based web applications into Talend Runtime.

• Chapter 16, Monitoring and Administration using JMX lists the MBeans available to monitor and administrate
Karaf using any JMX client.

• Chapter 18, Troubleshooting Talend ESB describes how to fix problems related to JVM memory allocation
parameters running Talend ESB.

Talend ESB Container Administration Guide

Chapter 2. Directory Structure
The Talend ESB software may be downloaded from http://www.talend.com/download.php. The
standard directory layout of a Talend ESB installation is as follows:

• /bin: startup scripts

• /etc: configuration files

• /keystores: KeyStore files for JobServer SSL connection

• /data: working directory

• /cache: OSGi framework bundle cache

• /generated-bundles: temporary folder used by the deployer

• /log: log files

• /deploy: hot deploy directory

• /instances: directory containing child instances

• /lib: contains the bootstrap libraries

• /lib/ext: directory for JRE extensions

• /lib/endorsed: directory for endorsed libraries

• /system: OSGi bundles repository, laid out as a Maven 2 repository

Note

The data folder contains all the working and temporary files for Karaf. If you want to restart
from a clean state, you can wipe out this directory, which has the same effect as using the clean
option [5].

Talend ESB Container Administration Guide

Chapter 3. Starting/Stopping Talend Runtime
This chapter describes how to start and stop Talend Runtime and the various options that are available.

3.1. Starting Talend Runtime

Wait initally for commands to become available

After starting Talend Runtime, you need to wait a few seconds for initialization to complete before
entering the commands. Karaf starts the non core bundles in the background. So even if the console
is already available, the job commands may not.

3.1.1. On Windows

From a console window, change to the installation directory and run Talend Runtime. For the binary distribution,
go to:

cd [karaf_install_dir]

where karaf_install_dir is the directory in which Karaf was installed, e.g., ${Talend-ESB-
Version}\container .

Then type:

bin\trun.bat

Starting/Stopping Talend Runtime

Talend ESB Container Administration Guide 5

3.1.2. On Linux

From a console window, change to the installation directory and run Talend Runtime. For the binary distribution,
do:

cd [karaf_install_dir]

where karaf_install_dir is the directory in which Karaf was installed, for example: /usr/local/${Talend-
ESB-Version}/container .

Then type:

bin/trun

Warning

Do NOT close the console or shell in which Karaf was started, as that will terminate Karaf (unless
Karaf was started using the nohup command).

3.1.3. Starting Talend Runtime without console

Karaf can be started without the console if you don't intend to use it (one can always connect using the remote
ssh access) using the following command:

bin\trun.bat server (Windows)

bin\trun server (Linux).

3.1.4. Starting Talend Runtime in the background

Karaf can be easily started as a background process using the following command:

bin\start.bat (Windows)

bin\start (Linux).

Karaf can be reset to a clean state by simply deleting the [karaf_install_dir]/data folder. Alternatively, add clean
to the above start command.

3.2. Stopping Talend Runtime
Within the Karaf console, you can perform a clean shutdown of Karaf by using the osgi:shutdown command,
with an optional -f (force) flag to avoid a yes/no confirmation.

If you're running from the main console, exiting the shell using logout or Ctrl+D will also terminate the Karaf
instance.

Further, from a command shell, you can run bin\stop.bat (Windows) or bin/stop (Linux).

Starting/Stopping Talend Runtime

Talend ESB Container Administration Guide 6

For more advanced functionality, it's also possible to delay the shutdown using the time argument. The time
argument can have different formats. First, it can be an absolute time in the format hh:mm, in which hh is the hour
(1 or 2 digits) and mm is the minute of the hour (in two digits). Second, it can be in the format +m, in which m
is the number of minutes to wait. The argument now is an alias for +0.

Examples: The following command will shutdown Karaf at 10:35am:

osgi:shutdown 10:35

The following command will shutdown Karaf in 10 minutes:

osgi:shutdown +10

Talend ESB Container Administration Guide

Chapter 4. Starting/Stopping Talend ESB
Infrastructure Components
This chapter describes how to start and stop the infrastructure components of Talend ESB.

4.1. Starting the Service Locator
After starting the Talend Runtime container, enter the following command at the console prompt:

tesb:start-locator

Standalone version of the Service Locator

Alternatively there is a standalone version of the Service Locator described in the Talend ESB
Getting Started User Guide.

4.2. Stopping the Service Locator
Within the Talend Runtime container you can shutdown the Service Locator by typing:

tesb:stop-locator

4.3. Starting Service Activity Monitoring
After starting the Talend Runtime container, enter the following command at the console prompt:

Starting/Stopping Talend ESB Infrastructure Components

Talend ESB Container Administration Guide 8

tesb:start-sam

4.4. Stopping Service Activity Monitoring
At the console, you can shutdown Service Activity Monitoring by typing:

tesb:stop-sam

4.5. Starting the Security Token Service
After starting Talend Runtime container, enter the following command at the console prompt:

tesb:start-sts

4.6. Stopping the Security Token Service
At the console, you can shutdown the Security Token Service by typing:

tesb:stop-sts

4.7. Starting all three Talend ESB
infrastructure services
After starting Talend Runtime container, enter the following command at the console prompt:

tesb:start-all

Port Conflicts

If there is another Talend Runtime container running at the same machine and you forgot to adapt the
configuration of the used ports, a port conflict may arise while starting an infrastructure component.
In this case tesb:start-all will not try to start the remaining infrastructure components. Stop
all infrastructure services using tesb:stop-all and restart them after adapting the configuration.
There are configuration scripts simplifying this task.

4.8. Stopping all three Talend ESB
infrastructure services
At the console you can shutdown all three Talend ESB infrastructure services by typing:

Starting/Stopping Talend ESB Infrastructure Components

Talend ESB Container Administration Guide 9

tesb:stop-all

Talend ESB Container Administration Guide

Chapter 5. Using Console

5.1. Viewing commands from the Karaf
console
To see a list of the available commands in the console press the tab at the prompt. The tab key toggles completion
anywhere on the line, so if you want to see the commands in the osgi group, type the first letters and hit tab.
Depending on the commands, completion may be available on options and arguments too.

To view help on a particular command, type the command followed by --help or use the help command followed
by the name of the command:

karaf@trun> features:list --help

DESCRIPTION
 features:list

 Lists all existing features available from the defined repositories.

SYNTAX
 features:list [options]

OPTIONS
 --help
 Display this help message
 -i, --installed
 Display a list of all installed features only

Help for each command is also available online at the Apache Karaf website.

http://karaf.apache.org/manual/latest-2.2.x/commands/commands.html

Using Console

Talend ESB Container Administration Guide 11

5.2. Karaf Console command summary
The following tables summarize the out-of-the-box commands available with Karaf, grouped by scope (family of
commands). View the command-line or online help as discussed in the previous section for information about the
various arguments and options available with each command.

5.2.1. Admin Scope

The commands within the admin: scope involve administration tasks, including starting and stopping Karaf
instances and connecting to them remotely.

Table 5.1. admin Scope commands

Command Parameters Description

change-opts [options] name javaOpts Changes the java options of an existing container
instance.

change-rmi-
registry-port

[options] name port Changes the RMI registry port (used by
management layer) of an existing container
instance.

change-rmi-server-
port

[options] name port Changes the RMI server port (used by
management layer) of an existing container
instance.

change-ssh-port [options] name port Changes the secure shell port of an existing
container instance.

connect [options] name [command] Connects to an existing container instance.

create [options] name Creates a new container instance.

destroy [options] name Destroys an existing container instance.

list [options] Lists all existing container instances.

rename [options] name new-name Renames an existing container instance.

start [options] name Starts an existing container instance.

stop [options] name Stops an existing container instance.

5.2.2. Config Scope

The commands within the config: scope are used to modify configuration data of Karaf instances (data stored
in the /etc folder of the Karaf instance.) Updates take effect immediately without need of restarting Karaf. Note
there is also a ConfigMBean that can be used to do this configuration within JMX.

Table 5.2. config Scope commands

Command Parameters Description

cancel [options] Cancels the changes to the configuration being
edited.

delete [options] pid Delete a configuration.

edit [options] pid Creates or edits a configuration.

Using Console

Talend ESB Container Administration Guide 12

Command Parameters Description

list [options] [query] Lists existing configurations.

propappend [options] [query] Appends the given value to an existing property or
creates the property with the specified name and
value.

propdel [options] property Deletes a property from the edited configuration.

proplist [options] Lists properties from the currently edited
configuration.

propset [options] property value Sets a property in the currently edited
configuration.

update [options] Saves and propagates changes from the
configuration being edited.

5.2.3. Dev Scope

The commands within the dev: scope are used to providing logging and other system output help to the
administrator.

Table 5.3. dev Scope commands

Command Parameters Description

create-dump [options] [name] Creates zip archive with diagnostic info.

dynamic-import [options] id Enables/disables dynamic-import for a given
bundle.

framework [options] [framework] OSGi Framework options.

print-stack-traces [options] [print] Prints the full stack trace in the console when the
execution of a command throws an exception.

restart [options] Restart Karaf.

show-tree [options] id Shows the tree of bundles based on the wiring
information.

watch [options] [urls] Watches and updates bundles.

5.2.4. Features Scope

The commands within the features: scope are used to provide support for Karaf features, which are predefined
collections of bundles used to implement specific services.

Table 5.4. features Scope commands

Command Parameters Description

addUrl [options] urls Adds a list of repository URLs to the features
service.

info [options] name [version] Shows information about selected information.

install [options] feature Installs a feature with the specified name and
version.

Using Console

Talend ESB Container Administration Guide 13

Command Parameters Description

list [options] Lists all existing features available from the
defined repositories.

listRepositories [options] Displays a list of all defined repositories.

listUrl [options] Displays a list of all defined repository URLs.

listVersions [options] feature Lists all versions of a feature available from the
currently available repositories.

refreshUrl [options] urls Reloads the list of available features from the
repositories.

removeRepository [options] repository Removes the specified repository features service.

removeUrl [options] urls Removes the given list of repository URLs from
the features service.

uninstall [options] features Uninstalls a feature with the specified name and
version.

5.2.5. JAAS Scope

The commands within the jaas: scope are used for management of JAAS users and realms.

Table 5.5. jaas Scope commands

Command Parameters Description

cancel [options] Cancel the modification of a JAAS realm.

realms [options] Lists the modification on the active realm/module.

manage [options] realm Manage user and roles of a Jaas Realm.

pending [options] Lists the modifications on the active realm/
module.

roleadd [options] username role Add a role to a user.

roledel [options] username role Delete a role from a user.

update [options] Update JAAS realm.

useradd [options] username
password

Add a user.

userdel [options] username Delete a user.

users [options] Lists the users of the active realm/module.

5.2.6. Log Scope

The commands within the log: scope are used for management of system logs.

Table 5.6. log Scope commands

Command Parameters Description

clear [options] Clear log entries.

display [options] Displays log entries.

http://download.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html

Using Console

Talend ESB Container Administration Guide 14

Command Parameters Description

display-exception [options] Displays the last occurred exception from the log.

get [options] [logger] Shows the currently set log level.

set [options] level [logger] Sets the log level.

tail [options] Continuously display log entries.

5.2.7. OBR Scope

The commands within the obr: scope are used to link to OSGi bundle repositories (OBRs) and install bundles
defined within them.

Table 5.7. OBR Scope commands

Command Parameters Description

addUrl [options] urls Adds a list of repository URLs to the OBR service.

deploy [options] bundles Deploys a list of bundles using OBR service.

find [options] requirements Find OBR bundles for a given filter.

info [options] bundles Prints information about OBR bundles.

list [options] [packages] Lists OBR bundles, optionally providing the given
packages.

listUrl [options] Displays the repository URLs currently associated
with the OBR service.

refreshUrl [options] [urls] Reloads the repositories to obtain a fresh list of
bundles.

removeUrl [options] [urls] Removes a list of repository URLs from the OBR
service.

resolve [options] requirements Shows the resolution output for a given set of
requirements.

source [options] folder bundles Downloads the sources for an OBR bundle.

start [options] bundles Deploys and starts a list of bundles using OBR.

5.2.8. OSGi Scope

The commands within the osgi: scope handle bundle maintenance (installation, starting and stopping, etc.) as
well as some container-level actions.

Table 5.8. OSGi Scope commands

Command Parameters Description

bundle-level [options] id [startLevel] Gets or sets the start level of a given bundle.

headers [options] [ids] Displays OSGi headers of a given bundle.

info [options] [ids] Displays detailed information of a given bundle.

install [options] [urls] Installs one or more bundles.

list [options] Lists all installed bundles.

Using Console

Talend ESB Container Administration Guide 15

Command Parameters Description

ls [options] [ids] Lists OSGi services.

refresh [options] [ids] Refresh a bundle.

resolve [options] [ids] Resolve bundle(s).

restart [options] [ids] Stops and restarts bundle(s).

shutdown [options] [time] Shuts the framework down.

start [options] ids Starts bundle(s).

start-level [options] [level] Gets or sets the system start level.

stop [options] ids Stop bundle(s).

uninstall [options] ids Uninstall bundle(s).

update [options] id
[location]

Update bundle.

5.2.9. Shell Scope

The commands within the shell: scope are used to provide terminal window commands in the OSGi shell.

Table 5.9. Shell Scope commands

Command Parameters Description

cat [options] paths or urls Displays the content of a file or URL.

clear [options] Clears the console buffer.

each [options] values function Execute a closure on a list of arguments.

echo [options] [arguments] Echoes or prints arguments to STDOUT.

exec [options] command Executes system processes.

grep [options] pattern Prints lines matching the given pattern.

head [options] [paths or urls] Displays the first lines of a file.

history [options] Prints command history.

if [options] condition
ifTrue [ifFalse]

If/Then/Else block.

info [options] Prints system information.

java [options] className
[arguments]

Executes a Java standard application.

logout [options] Disconnects shell from current session.

more [options] File pager.

new [options] class [args] Creates a new java object.

printf [options] format [args] Formats and prints arguments.

sleep [options] duration Sleeps for a bit then wakes up.

sort [options] [files] Writes sorted concatenation of all files to standard
output.

source [options] script [args] Run a script

tac [options] Captures the STDIN and returns it as a string.
Optionally writes the content to a file.

tail [path or url] Displays the last lines of a file.

Using Console

Talend ESB Container Administration Guide 16

5.2.10. Miscellaneous Scopes

There are a few scopes that offer just one or two commands each. They're listed in the below table.

Table 5.10. Miscellaneous Scope commands

Command Parameters Description

packages:exports [options] [ids] Displays exported packages.

packages:imports [options] [ids] Displays imported packages.

ssh:ssh [options] hostname
[command]

Connects to a remote SSH server.

ssh:sshd [options] Creates a SSH server

web:list [options] Lists details for war bundles.

wrapper:install [options] Install the container as a system service in the OS.

Talend ESB Container Administration Guide

Chapter 6. Deploying Multiple Karaf
Containers
This chapter describes how to adapt the configuration to deploy multiple containers at the same machine.

6.1. Deploying multiple containers using
configuration adaption scripts
In order to avoid conflicts between multiple container instances, there are Karaf configuration adaption scripts
which automate the adjustment of potentially conflicting parameters. They are based on the edit and propset
commands described above.

First container state

Please make sure the first container is stopped (using the shutdown command or CTRL-D), and
that its data directory has been deleted, before copying its directory and files to create the second
container.

Otherwise the data in the first container (which contains absolute paths relating to the first container)
will cause problems in the second one.

Also make sure this default container is stopped when using the Karaf configuration adaptation
scripts below.

Start the second container with default settings, and then run the Karaf configuration adaption script at the
Karaf prompt to update and save the new settings. All necessary parameters adjustments are done using a single
script call. Changes performed by the Karaf configuration adaption scripts are persistent and reflected in the
configuration files in container/etc.

Deploying Multiple Karaf Containers

Talend ESB Container Administration Guide 18

In particular, after starting the container from the container directory, in the Karaf console, use:

source scripts/configureC1.sh for the first container copy

source scripts/configureC2.sh for the second container copy

source scripts/configureC3.sh for the third container copy

source scripts/configureC0.sh resets the parameters to the default values

The ports which are configured using the scripts are described in the table below:

Table 6.1. Ports configured by the configuration scripts

Parameter configureC0.sh configureC1.sh configureC2.sh configureC3.sh

HTTP Port 8040 8041 8042 8043

HTTPS Port 9001 9002 9003 9004

RMI Registry Port 1099 1100 1101 1102

RMI Server Port 44444 44445 44446 44447

SSH Port 8101 8102 8103 8104

Command Port 8000 8010 8020 8030

File Transfer Port 8001 8011 8021 8031

Monitoring Port 8888 8898 8908 8918

Restart Container

To make sure the new parameters are used, it is recommended to shut down and restart the container
after applying a configuration adaption script. Most of the parameter changes will be adapted "on
the fly", but for the Jobserver parameters in Talend Enterprise ESB this is not yet possible.

Troubleshooting

If you get the "Port already in use exception" when starting alternate-container, recheck that there is
not already a container running using the default parameters.

If you are still getting the error, it may also be that the port is actually in use by an unrelated process,
so change the ports in the Karaf configuration adaption scripts and rerun these to apply the changes.

Talend ESB Container Administration Guide

Chapter 7. Remote Console

7.1. Configuring remote instances
It does not always make sense to manage an instance a Talend ESB instance using the local console. Talend ESB
can be remotely managed using a remote console.

When you start Karaf, it enables a remote console that can be accessed over SSH from any other Karaf console
or plain SSH client. The remote console provides all the features of the local console and gives a remote user
complete control over the container and services running inside of it.

The SSH hostname and port number is configured in the [karaf_install_dir]/etc/
org.apache.karaf.shell.cfg configuration file with the following defaults values:

sshPort=8101
sshHost=0.0.0.0
sshRealm=karaf
hostKey=${karaf.base}/etc/host.key

You can change this configuration using the config commands or by editing the above file, but you'll need to
restart the ssh console in order for it to use the new parameters.

define helper functions
bundle-by-sn = { bm = new java.util.HashMap ; //
 each (bundles) { $bm put ($it symbolicName) $it } ; $bm get $1 }
bundle-id-by-sn = { b = (bundle-by-sn $1) ; //
 if { $b } { $b bundleId } { -1 } }
edit config
config:edit org.apache.karaf.shell

Remote Console

Talend ESB Container Administration Guide 20

config:propset sshPort 8102
config:update
force a restart
osgi:restart --force (bundle-id-by-sn org.apache.karaf.shell.ssh)

7.2. Connecting and disconnecting remotely

7.2.1. Using the ssh:ssh command

You can connect to a remote Karaf's console using the ssh:ssh command.

karaf@trun> ssh:ssh -l tadmin -P tadmin -p 8101 hostname

Warning

The default password is tadmin but we recommend changing it. See Chapter 9, Security for more
information.

To confirm that you have connected to the correct Karaf instance, type shell:info at the karaf> prompt. Information
about the currently connected instance is returned, as shown.

Karaf
 Karaf home /local/apache-karaf-2.0.0
 Karaf base /local/apache-karaf-2.0.0
 OSGi Framework org.eclipse.osgi - 3.5.1.R35x_v20090827
JVM
 Java Virtual Machine Java HotSpot(TM) Server VM version 14.1-b02
 ...

7.2.2. Using the Karaf client

The Karaf client allows you to securely connect to a remote Karaf instance without having to launch a Karaf
instance locally.

For example, to quickly connect to a Karaf instance running in server mode on the same machine, run the following
command from the karaf-install-dir directory: bin/client. More usually, you would provide a hostname, port,
username and password to connect to a remote instance. And, if you were using the client within a larger script,
you could append console commands as follows:

bin/client -a 8101 -h hostname -u tadmin -p tadmin features:install wrapper

To display the available options for the client, type:

> bin/client --help
Apache Karaf client
 -a [port] specify the port to connect to
 -h [host] specify the host to connect to

Remote Console

Talend ESB Container Administration Guide 21

 -u [user] specify the user name
 -p [password] specify the password
 --help shows this help message
 -v raise verbosity
 -r [attempts] retry connection establishment (up to attempts times)
 -d [delay] intra-retry delay (defaults to 2 seconds)
 [commands] commands to run
If no commands are specified, the client will be put in an interactive mode

7.2.3. Using a plain SSH client

You can also connect using a plain SSH client from your *nix system or Windows SSH client like Putty.

~$ ssh -p 8101 tadmin@localhost
tadmin@localhost's password:

7.2.4. Disconnecting from a remote console

To disconnect from a remote console, press Ctrl+D, shell:logout or simply logout at the Karaf prompt.

7.3. Stopping a remote instance

7.3.1. Using the remote console

If you have connected to a remote console using ssh:ssh or the Karaf client, you can stop the remote instance
using osgi:shutdown.

Note

Pressing Ctrl+D in a remote console simply closes the remote connection and returns you to the local
shell without shutting off the remote instance.

7.3.2. Using the Karaf client

To stop a remote instance using the Karaf client, run the following from the karaf-install-dir/lib
directory:

bin/client -u tadmin -p tadmin -a 8101 hostname osgi:shutdown

Talend ESB Container Administration Guide

Chapter 8. Apache CXF and Camel,
commands and tuning
These are commands that are related to Apache CXF and Camel functionality.

Note

CXF and Camel are already preconfigured in the Talend OSGi container, but you need to install
Camel / CXF features in native Karaf to use these commands.

To view help on a particular command, type the command followed by --help or use the help command followed
by the name of the command:

karaf@trun> cxf:list-endpoints --help
DESCRIPTION
 cxf:list-endpoints

 Lists all CXF Endpoints on a Bus.

SYNTAX
 cxf:list-endpoints [options] [bus]

ARGUMENTS
 bus The CXF bus name where to look for the Endpoints

OPTIONS
 --help Display this help message

Apache CXF and Camel, commands and tuning

Talend ESB Container Administration Guide 23

8.1. Commands supplied by CXF
These commands related to CXF functionality. For more information on CXF, see http://
cxf.apache.org/.

Table 8.1. CXF commands

Command Parameters Description

cxf:list-busses [options] Lists all CXF Busses

cxf:list-endpoints [options] [bus] bus is the optional CXF bus name where to look
for the Endpoints

cxf:stop-endpoint
busid
endpointName

[options] bus endpoint stops a CXF Endpoint on a Bus; bus is CXF bus
name where to look for the Endpoint. endpoint
is the Endpoint name to stop.

cxf:start-endpoint
busid
endpointName

[options] bus endpoint starts a CXF Endpoint on a Bus; bus is CXF bus
name where to look for the Endpoint. endpoint
is the Endpoint name to start.

8.2. Commands supplied by Camel
These commands related to Camel functionality. Help for these commands is available at http://
camel.apache.org/karaf.html. These are for version Camel 2.8.x, which is the current version used by
Talend ESB.

Tip

Use TAB key for completion on the name parameters below.

Table 8.2. Camel commands

Command Parameters Description

camel:list-contexts [options] Lists the Camel contexts available in the current
Karaf instance

camel:list-routes [options] Displays the list of Camel routes available in the
current Karaf instance

camel:info-context [options] name Displays detail information about a given Camel
context

camel:start-context [options] name Starts the given Camel context

camel:stop-context [options] name Stops the given Camel context

camel:info-route [options] name Provides detail information about a Camel route

camel:show-route [options] name Renders the route in XML

camel:start-route [options] name Starts the given route

camel:stop-route [options] name Stops the given route

Apache CXF and Camel, commands and tuning

Talend ESB Container Administration Guide 24

8.3. Configuring CXF work queues
CXF work queues are used for queuing incoming work requests, using a thread pool.

The etc/org.apache.cxf.workqueues.cfg configuration file is used for workqueue configuration
(without this file, the configuration would need to be done for each individual bundle using CXF services). This
process can significantly optimize the performance of HTTP / CXF Service request handling in the Talend OSGi
container.

This mechanism allows you to configure global work queues for use by all bundles that are created, and normally
services would share a thread pool. However, an individual service can override this via local configuration, if
they have specific requirements.

8.3.1. Configuration parameters

A configuration file contains the following parameters:

Name Description Default value

org.apache.cxf.workqueue.names One or more names of work queues, separated by
commas

'default'

org.apache.cxf.workqueue.default.
highWaterMark

Maximum number of threads to work on the queue 10

org.apache.cxf.workqueue.default.
lowWaterMark

Minimum number of threads to work on the queue 5

org.apache.cxf.workqueue.default.
initialSize

Initial number of threads to work on the queue 7

org.apache.cxf.workqueue.default.
dequeueTimeout

this is the keep alive time for the threadpool executor.
This allows excess threads to be terminated when idle
for longer than this time, and they can be created again
later if needed.

100 (optional)

org.apache.cxf.workqueue.default.
queueSize

Maximum number of entries in the queue 100 (optional)

8.3.2. Configuration files

In the Talend Runtime container, the default configuration file is in etc/
org.apache.cxf.workqueues.cfg.

Note this file is normally not used or edited directly; it gives work queue default values that each CXF-using
bundle can choose to employ when it creates its work queues.

To configure a work queue, you need to create a specific file: org.apache.cxf.workqueues-
n.cfg, where best practice would be for "n" to be the same as the work queue name; for example,
org.apache.cxf.workqueues-http-conduit.cfg would configure the http-conduit work
queue.

These is a list of pre-defined work queue names:

Name Description

default this means using the default values.

Apache CXF and Camel, commands and tuning

Talend ESB Container Administration Guide 25

Name Description

http-conduit On the client side when using the asynchronous methods, the HTTP
conduit must wait for and process the response on a background
thread. This can control the queue that is used specifically for that
purpose, to limit or expand the number of outstanding asynchronous
requests.

jms-continuation This is used by the JMS transport to handle continuations.

local-transport The local transport being based on PipedInput/OutputStreams
requires the use of separate threads; this workqueue can be used to
configure the queue used exclusively for the local-transport.

ws-addressing For decoupled cases, the ws-addressing layer may need to process
the request on a background thread. This can control the work queue
it uses.

Note that you can also update these variables using the standard Karaf configuration commands.

Talend ESB Container Administration Guide

Chapter 9. Security

9.1. Managing users and passwords
The default security configuration uses a property file located at karaf-install-dir/etc/
users.properties to store authorized users and their passwords. The default user name is tadmin and the
associated password is tadmin too. We strongly encourage you to change the default password by editing the
above file before moving Karaf into production.

The users are currently used in three different places in Karaf:

• access to the SSH console

• access to the JMX management layer

• access to the Web console

Those three ways all delegate to the same JAAS based security authentication.

The users.properties file contains one or more lines, each line defining a user, its password and the
associated roles: user=password[,role][,role]...

9.2. Managing roles
JAAS roles can be used by various components. The three management layers (SSH, JMX and WebConsole) all use
a global role based authorization system. The default role name is configured in the etc/system.properties
using the karaf.admin.role system property and the default value is admin. All users authenticating for
the management layer must have this role defined. The syntax for this value is the following:

[classname:]principal

Security

Talend ESB Container Administration Guide 27

where classname is the class name of the principal object (defaults to
org.apache.karaf.jaas.modules.RolePrincipal) and principal is the name of the principal of that
class (defaults to admin). Note that roles can be changed for a given layer using ConfigAdmin in the following
configurations:

Layer PID Value

SSH org.apache.karaf.shell sshRole

JMX org.apache.karaf.management jmxRole

Web org.apache.karaf.webconsole role

9.3. Enabling password encryption
In order to not keep the passwords in plain text, the passwords can be stored encrypted in the configuration file.
This can be easily enabled using the following commands:

edit config
config:edit org.apache.karaf.jaas
config:propset encryption.enabled true
config:update
force a restart
dev:restart

The passwords will be encrypted automatically in the etc/users.properties configuration file the first time the user
logs in. Encrypted passwords are prepended with {CRYPT} so that are easy to recognize.

9.4. Managing realms
Karaf supports JAAS with some enhancements to allow JAAS to work nicely in an OSGi environment. This
framework also features an OSGi keystore manager with the ability to deploy new keystores or truststores at
runtime.

9.4.1. Overview
The Security framework feature of Karaf allows runtime deployment of JAAS based configuration for use in
various parts of the application. This includes the remote console login, which uses the karaf realm, but which is
configured with a dummy login module by default. These realms can also be used by the NMR, JBI components
or the JMX server to authenticate users logging in or sending messages into the bus.

In addition to JAAS realms, you can also deploy keystores and truststores to secure the remote shell console,
setting up HTTPS connectors or using certificates for WS-Security.

A very simple XML schema for spring has been defined, allowing the deployment of a new realm or a new keystore
very easily.

9.4.2. Schema
To override or deploy a new realm, you can use the following XSD which is supported by a Spring namespace
handler and can thus be defined in a Spring xml configuration file.

http://docs.oracle.com/javase/6/docs/technotes/guides/security/jaas/JAASRefGuide.html

Security

Talend ESB Container Administration Guide 28

You can find the schema at the following location: http://karaf.apache.org/xmlns/jaas/v1.1.0.

Here are two examples using this schema:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.0.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

 <!-- Bean to allow the $[karaf.base] property to be correctly resolved -->
 <ext:property-placeholder placeholder-prefix="$[" placeholder-suffix="]"/>

 <jaas:config name="myrealm">
 <jaas:module className="org.apache.karaf.jaas.modules.properties.PropertiesLoginModule"
 flags="required">
 users = $[karaf.base]/etc/users.properties
 </jaas:module>
 </jaas:config>

</blueprint>

<jaas:keystore xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.1.0"
 name="ks"
 rank="1"
 path="classpath:privatestore.jks"
 keystorePassword="keyStorePassword"
 keyPasswords="myalias=myAliasPassword">
</jaas:keystore>

The id attribute is the blueprint id of the bean, but it will be used by default as the name of the realm if no name
attribute is specified. Additional attributes on the config elements are a rank, which is an integer. When the
LoginContext looks for a realm for authenticating a given user, the realms registered in the OSGi registry are
matched against the required name. If more than one realm is found, the one with the highest rank will be used,
thus allowing the override of some realms with new values. The last attribute is publish which can be set to
false to not publish the realm in the OSGi registry, thereby disabling the use of this realm.

Each realm can contain one or more module definitions. Each module identifies a LoginModule and the
className attribute must be set to the class name of the login module to use. Note that this login module must
be available from the bundle classloader, so either it has to be defined in the bundle itself, or the needed package
needs to be correctly imported. The flags attribute can take one of four values that are explained on the JAAS
documentation. The content of the module element is parsed as a properties file and will be used to further
configure the login module.

Deploying such a code will lead to a JaasRealm object in the OSGi registry, which will then be used when using
the JAAS login module.

9.4.2.1. Configuration override and use of the rank attribute

The rank attribute on the config element is tied to the ranking of the underlying OSGi service. When the JAAS
framework performs an authentication, it will use the realm name to find a matching JAAS configuration. If
multiple configurations are used, the one with the highest rank attribute will be used. So if you want to override
the default security configuration in Karaf (which is used by the ssh shell, web console and JMX layer), you need
to deploy a JAAS configuration with the name name="karaf" and rank="1".

http://karaf.apache.org/xmlns/jaas/v1.1.0
http://svn.apache.org/repos/asf/karaf/tags/karaf-2.0.0/jaas/boot/src/main/java/org/apache/karaf/jaas/boot/ProxyLoginModule.java
http://svn.apache.org/repos/asf/karaf/tags/karaf-2.0.0/jaas/boot/src/main/java/org/apache/karaf/jaas/boot/ProxyLoginModule.java
http://svn.apache.org/repos/asf/karaf/tags/karaf-2.0.0/jaas/config/src/main/java/org/apache/karaf/jaas/config/JaasRealm.java

Security

Talend ESB Container Administration Guide 29

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
 xmlns:jaas="http://karaf.apache.org/xmlns/jaas/v1.1.0"
 xmlns:ext="http://aries.apache.org/blueprint/xmlns/blueprint-ext/v1.0.0">

 <!-- Bean to allow the $[karaf.base] property to be correctly resolved -->
 <ext:property-placeholder placeholder-prefix="$[" placeholder-suffix="]"/>

 <jaas:config name="karaf" rank="1">
 <jaas:module className="org.apache.karaf.jaas.modules.properties.PropertiesLoginModule"
 flags="required">
 users = $[karaf.base]/etc/users.properties
 ...
 </jaas:module>
 </jaas:config>

</blueprint>

9.4.3. Available realms

Karaf comes with several login modules that can be used to integrate into your environment.

9.4.3.1. PropertiesLoginModule

This login module is the one configured by default. It uses a properties text file to load the users, passwords and
roles from. This file uses the properties file format. The format of the properties are as follows, each line defining
a user, its password and the associated roles: user=password[,role][,role]...

<jaas:config name="karaf">
 <jaas:module className=
 "org.apache.karaf.jaas.modules.properties.PropertiesLoginModule"
 flags="required">
 users = $[karaf.base]/etc/users.properties
 </jaas:module>
</jaas:config>

9.4.3.2. OsgiConfigLoginModule

The OsgiConfigLoginModule uses the OSGi ConfigurationAdmin service to provide the users, passwords and
roles. Instead of users for the PropertiesLoginModule, this configuration uses a pid value for the process ID
of the configuration containing user definitions.

9.4.3.3. JDBCLoginModule

The JDBCLoginModule uses a database to load the users, passwords and roles from, provided a data source
(normal or XA). The data source and the queries for password and role retrieval are configurable, with the use
of the following parameters.

http://download.oracle.com/javase/6/docs/api/java/util/Properties.html#load(java.io.Reader)

Security

Talend ESB Container Administration Guide 30

Name Description

datasource The datasource as on OSGi ldap filter or as JDNI name

query.password The SQL query that retries the password of the user

query.role The SQL query that retries the roles of the user

Passing a data source as an OSGi ldap filter

To use an OSGi ldap filter, the prefix osgi: needs to be provided. See the example below:

<jaas:config name="karaf">
 <jaas:module
 className="org.apache.karaf.jaas.modules.jdbc.JDBCLoginModule"
 flags="required">
 datasource = osgi:javax.sql.DataSource/ \\
 (osgi.jndi.service.name=jdbc/karafdb)
 query.password = SELECT PASSWORD FROM USERS WHERE USERNAME=?
 query.role = SELECT ROLE FROM ROLES WHERE USERNAME=?
 </jaas:module>
</jaas:config>

Passing a data source as a JNDI name

To use an JNDI name, the prefix jndi: needs to be provided. The example below assumes the use of Aries JNDI
to expose services via JNDI.

<jaas:config name="karaf">
 <jaas:module
 className="org.apache.karaf.jaas.modules.jdbc.JDBCLoginModule"
 flags="required">
 datasource = jndi:aries:services/javax.sql.DataSource/ \\
 (osgi.jndi.service.name=jdbc/karafdb)
 query.password = SELECT PASSWORD FROM USERS WHERE USERNAME=?
 query.role = SELECT ROLE FROM ROLES WHERE USERNAME=?
 </jaas:module>
</jaas:config>

9.4.3.4. LDAPLoginModule

The LDAPLoginModule uses a LDAP to load the users and roles, bind the users on the LDAP to check passwords.
The LDAPLoginModule supports the following parameters:

Name Description

connection.url The LDAP connection URL, e.g. ldap://hostname

connection.username Admin username to connect to the LDAP. This parameter is optional, if it's not
provided, the LDAP connection will be anonymous.

connection.password Admin password to connect to the LDAP. Only used if the connection.username is
specified.

user.base.dn The LDAP base DN used to looking for user, e.g. ou=user,dc=apache,dc=org

Security

Talend ESB Container Administration Guide 31

Name Description

user.filter The LDAP filter used to looking for user, e.g. (uid=%u) where %u will be replaced
by the username.

user.search.subtree If "true", the user lookup will be recursive (SUBTREE). If "false", the user lookup
will be performed only at the first level (ONELEVEL).

role.base.dn The LDAP base DN used to looking for roles, e.g. ou=role,dc=apache,dc=org

role.filter The LDAP filter used to looking for user's role, e.g. (member:=uid=%u)

role.name.attribute The LDAP role attribute containing the role string used by Karaf, e.g. cn

role.search.subtree If "true", the role lookup will be recursive (SUBTREE). If "false", the role lookup
will be performed only at the first level (ONELEVEL).

authentication Define the authentication backend used on the LDAP server. The default is simple.

initial.context.factory Define the initial context factory used to connect to the LDAP server. The default
is com.sun.jndi.ldap.LdapCtxFactory

ssl If "true" or if the protocol on the connection.url is ldaps, an SSL connection will
be used

ssl.provider The provider name to use for SSL

ssl.protocol The protocol name to use for SSL (SSL for example)

ssl.algorithm The algorithm to use for the KeyManagerFactory and TrustManagerFactory (PKIX
for example)

ssl.keystore The key store name to use for SSL. The key store must be deployed using a
jaas:keystore configuration.

ssl.keyalias The key alias to use for SSL

ssl.truststore The trust store name to use for SSL. The trust store must be deployed using a
jaas:keystore configuration.

A example of LDAPLoginModule usage follows:

<jaas:config name="karaf">
 <jaas:module
 className="org.apache.karaf.jaas.modules.ldap.LDAPLoginModule"
 flags="required">
 connection.url = ldap://localhost:389
 user.base.dn = ou=user,dc=apache,dc=org
 user.filter = (cn=%u)
 user.search.subtree = true
 role.base.dn = ou=group,dc=apache,dc=org
 role.filter = (member:=uid=%u)
 role.name.attribute = cn
 role.search.subtree = true
 authentication = simple
 </jaas:module>
</jaas:config>

If you want to use an SSL connection, the following configuration can be used as an example:

<ext:property-placeholder />

<jaas:config name="karaf" rank="1">
 <jaas:module
 className="org.apache.karaf.jaas.modules.ldap.LDAPLoginModule"
 flags="required">

Security

Talend ESB Container Administration Guide 32

 connection.url = ldaps://localhost:10636
 user.base.dn = ou=users,ou=system
 user.filter = (uid=%u)
 user.search.subtree = true
 role.base.dn = ou=groups,ou=system
 role.filter = (uniqueMember=uid=%u)
 role.name.attribute = cn
 role.search.subtree = true
 authentication = simple
 ssl.protocol=SSL
 ssl.truststore=ks
 ssl.algorithm=PKIX
 </jaas:module>
</jaas:config>

<jaas:keystore name="ks"
 path="file:///${karaf.home}/etc/trusted.ks"
 keystorePassword="secret" />

9.5. Deploying security providers
Some applications require specific security providers to be available, such as BouncyCastle. The JVM imposes
some restrictions about the use of such provider JAR files, namely, that they need to be signed and be available
on the boot classpath. One way to deploy such providers is to put them in the JRE folder at $JAVA_HOME/jre/
lib/ext and modify each provider's security policy configuration ($JAVA_HOME/jre/lib/security/
java.security) in order to register them. While this approach works fine, it has a global effect and requires
that all servers are configured accordingly.

However Talend ESB offers a simple way to configure additional security providers:

• put your provider jar in [karaf-install-dir]/lib/ext

• modify the [karaf-install-dir]/etc/config.properties configuration file to add the following
property:

org.apache.karaf.security.providers = xxx,yyy

The value of this property is a comma separated list of the provider class names to register. For example:

org.apache.karaf.security.providers = \\
 org.bouncycastle.jce.provider.BouncyCastleProvider

In addition, you may want to provide access to the classes from those providers from the system bundle so that
all bundles can access those. It can be done by modifying the org.osgi.framework.bootdelegation property in
the same configuration file:

org.osgi.framework.bootdelegation = ...,org.bouncycastle*

Talend ESB Container Administration Guide

Chapter 10. HTTP Configuration
HTTP is a request and response protocol used to enable communications between clients and servers.

Basically, a client send a request to a server on a particular port. The server listening to that port is waiting for the
client's request. And when it receives the request from the client, the server sends back the corresponding response.

To secure this communication, a SSL protocol can be used on top of HTTP to provide security. This will allow
the data to be encrypted and safely transfered through a secure HTTP protocol: HTTPS.

10.1. Server HTTP Configuration
The Talend Runtime provides support for HTTP and HTTPS by default with the help of the pax web
component. For more information, see the documentation of Pax Web on http://team.ops4j.org/wiki/display/
paxweb/Documentation.

HTTP / HTTPS configuration for Talend Runtime is done in the following configuration file:
<Talend.runtime.dir>/container/etc/org.ops4j.pax.web.cfg.

10.1.1. Basic configuration

To enable HTTP and HTTPS in Talend Runtime, configure the properties of the org.ops4j.pax.web.cfg
file as follows:

Property Default Description

org.osgi.service.http.port 8080 This property specifies the port used for
servlets and resources accessible via HTTP.

http://team.ops4j.org/wiki/display/paxweb/Documentation
http://team.ops4j.org/wiki/display/paxweb/Documentation

HTTP Configuration

Talend ESB Container Administration Guide 34

Property Default Description

The default value for this property is 8080.
You can specify a value of 0 (zero), if you
wish to allow Pax Web to automatically
determine a free port to use for HTTP access.

org.osgi.service.http.port.secure 8443 This property specifies the port used for
servlets and resources accessible via HTTPS.
The default value for this property is 8443.
You can specify a value of 0 (zero), if you
wish to allow Pax Web to automatically
determine a free port to use for HTTPS
access.

org.osgi.service.http.enabled true This property specifies if the HTTP is enabled
or disabled. If the value is set to "true", the
support for HTTP access is enabled. If the
value is set to "false", the support for HTTP
access is disabled. The default value is "true".

org.osgi.service.http.secure.enabled false This property specifies if the HTTPS is
enabled. If the value is set to "true", the
support for HTTPS access is enabled. If
the value is set to "false", the support for
HTTPS access is disabled. The default value
is "false".

10.1.2. SSL configuration

To encrypt the communication and secure the identification of a server, you can use a HTTPS protocol. HTTPS
is based on SSL, which supports the encryption of messages sent via HTTP.

To secure a communication, HTTPS uses key pairs containing one public key and one private key. Data is
encrypted with one key and can only be decrypted with the other key of the key pair. This establishes trust and
privacy in message transfers.

To authenticate the Talend Runtime, you need to configure its private key in the org.ops4j.pax.web.cfg.

Property Default Description

org.ops4j.pax.web.ssl.keystore Path to the keystore file.
See http://team.ops4j.org/wiki/display/
paxweb/SSL+Configuration for details.

org.ops4j.pax.web.ssl.keystore.type JKS This property specifies the keystore type. By
default, the value is JKS.

org.ops4j.pax.web.ssl.password Password used for keystore integrity check.

org.ops4j.pax.web.ssl.keypassword Password used for keystore.

10.1.3. Advanced configuration

For a complete list of all advanced configuration properties, see http://team.ops4j.org/wiki/display/paxweb/
Configuration/.

http://team.ops4j.org/wiki/display/paxweb/SSL+Configuration
http://team.ops4j.org/wiki/display/paxweb/SSL+Configuration
http://team.ops4j.org/wiki/display/paxweb/Configuration/
http://team.ops4j.org/wiki/display/paxweb/Configuration/

HTTP Configuration

Talend ESB Container Administration Guide 35

10.1.4. Default configuration

The Talend Runtime is deployed with the following configuration of the <Talend.runtime.dir>/
container/etc/org.ops4j.pax.web.cfg file.

 org.osgi.service.http.port=8040
 org.osgi.service.http.port.secure=9001
 org.osgi.service.http.secure.enabled=true
 org.ops4j.pax.web.ssl.keystore=./etc/keystore.jks
 org.ops4j.pax.web.ssl.password=password
 org.ops4j.pax.web.ssl.keypassword=password

Note

The Certificates deployed with the Talend Runtime by default must not be used for production, but
only for demo purposes.

Note

And the key password corresponds to the password generated by the user when he/she generated
the key.

10.2. Client HTTP Configuration
This section discusses configuring HTTPS using the OSGi Configuration Admin Service.

More information

For more background information, see CXF SSL configuration in http://cxf.apache.org/docs/client-
http-transport-including-ssl-support.html, which has some sample configurations supported by CXF.

10.2.1. OSGi configuration files

If a Web service is deployed in Talend Runtime as an OSGi bundle, it is now possible to configure
SSL via the OSGi Configuration Admin Service. This may be done using the following files (located at
<Talend.runtime.dir>/container/etc/):

• a generic configuration org.apache.cxf.http.conduits-common.cfg, used by all HTTPS
endpoints in the container,

• endpoint-specific files: org.apache.cxf.http.conduits-<endpoint_name>.cfg,

• there may also be additional endpoint-specific configuration files.

Note that instead of the tree-structured XML configurations, these configurations are flat property files. The
properties are named after their XML equivalents and are described in detail in Section 10.2.2, “HTTP Conduit
OSGi Configuration Parameters”.

http://cxf.apache.org/docs/client-http-transport-including-ssl-support.html
http://cxf.apache.org/docs/client-http-transport-including-ssl-support.html

HTTP Configuration

Talend ESB Container Administration Guide 36

The non-OSGi style of SSL configuration is supported and if present will take precedence over the OSGi
configuration.

10.2.2. HTTP Conduit OSGi Configuration Parameters

The configuration files described in this section are located in <Talend.runtime.dir>/container/etc/
org.apache.cxf.http.conduits-<endpoint_name>.cfg in the Talend Runtime.

As an example of the syntax involved, here are the contents of the general
org.apache.cxf.http.conduits-common.cfg configuration file:

 url = https.*
 tlsClientParameters.disableCNCheck = true
 tlsClientParameters.trustManagers.keyStore.type = JKS
 tlsClientParameters.trustManagers.keyStore.password = password
 tlsClientParameters.trustManagers.keyStore.file = ./etc/keystore.jks
 tlsClientParameters.keyManagers.keyStore.type = JKS
 tlsClientParameters.keyManagers.keyStore.password = password
 tlsClientParameters.keyManagers.keyStore.file = ./etc/keystore.jks
 tlsClientParameters.cipherSuitesFilter.include = *_EXPORT_.*,.*_EXPORT\
 1024_.*,.*_WITH_DES_.*,.*_WITH_AES_.*,.*_WITH_NULL_.*,.*_DH_anon_.*

10.2.2.1. The url parameter

The url parameter is one of the main parameters. In the configuration files, the url parameter defines the list
of matching client endpoints for which the contained configuration parameters are applied. (The client endpoint
address is retrieved using HTTPConduit.getAddress()).

url may be a full endpoint address or may be a regular expression containing wild cards - for example:

• ".*" matches all endpoints,

• https.* matches all client addresses starting with "https".

All parameters contained in all matching configuration files are collected:

1. in the order defined by the order parameter (see the table in the Section 10.2.2.2, “The order parameter”),

2. then by an exact match,

3. then by a configuration with a matching conduit bean name.

If a parameter is defined in multiple matching configuration files, then the last parameter definition found is the
one that is used.

10.2.2.2. The order parameter

This parameter defines the order in which the parameters in configuration files are applied. Each file has a unique
value of order. For example:

abc.cfg:

HTTP Configuration

Talend ESB Container Administration Guide 37

order = 1
url = .*
client.ReceiveTimeout = 60000;

xyz.cfg:

order = 2
url = .*busy.*
client.ReceiveTimeout = 120000;

If the endpoint address contains "busy", then both config files match as applicable, according to the rules in
Section 10.2.2.1, “The url parameter”.

In this case, client.ReceiveTimeout will have the longer timeout value 120000 because the order
parameters stipulate that xyz.cfg is applied after abc.cfg.

10.2.2.3. Configuration properties

In this table, we look at the complete list of possible properties:

Property Default Description

url The endpoint URL - either defined as exact
string or as regular expression pattern (see
Section 10.2.2.1, “The url parameter”)

order 50 Defines the order in which parameters are applied
(see Section 10.2.2.2, “The order parameter”).

name If name is defined and is equal to the conduit bean
name, HTTPConduit.getBeanName(), the
parameter definitions have highest priority,
overwriting and extending other matching
configurations.

tlsClientParameters.secureSocketProtocol TLS Protocol Name. Most common examples are
"SSL", "TLS" or "TLSv1".

tlsClientParameters.sslCacheTimeout JDK
default

Sets the SSL Session Cache timeout value for
client sessions handled by CXF.

tlsClientParameters.jsseProvider JSSE provider name.

tlsClientParameters.disableCNCheck false Indicates whether that the hostname given in the
HTTPS URL will be checked against the service's
Common Name (CN) given in its certificate
during SOAP client requests - it fails if there is a
mismatch.

If set to true (not recommended for production
use), such checks will be bypassed. That will
allow you, for example, to use a URL such as
localhost during development.

tlsClientParameters.
useHttpsURLConnectionDefaultHostname-
Verifier

false This attribute specifies if HttpsURLConnection.
getDefaultHostnameVerifier() should be used
to create HTTPS connections. If 'true', the
'disableCNCheck' configuration parameter is
ignored.

tlsClientParameters.
useHttpsURLConnectionDefaultSsl-
SocketFactory

false Specifies if HttpsURLConnection.
getDefaultSSLSocketFactory() should be used to
create HTTPS connections.

HTTP Configuration

Talend ESB Container Administration Guide 38

Property Default Description

If 'true', 'jsseProvider', 'secureSocketProtocol',
'trustManagers', 'keyManagers', 'secureRandom',
'cipherSuites' and 'cipherSuitesFilter'
configuration parameters are ignored.

tlsClientParameters.certConstraints.
SubjectDNConstraints.combinator

SubjectDN certificate constraints specification as
combinator.

tlsClientParameters.certConstraints.
SubjectDNConstraints.RegularExpression

SubjectDN certificate constraints specification as
regular expression.

tlsClientParameters.certConstraints.
IssuerDNConstraints.combinator

IssuerDN certificate constraints specification as
combinator.

tlsClientParameters.certConstraints.
IssuerDNConstraints.RegularExpression

IssuerDN certificate constraints specification as
regular expression.

tlsClientParameters.
secureRandomParameters.algorithm

JVM
default

algorithm parameter of the SecureRandom
specification.

tlsClientParameters.
secureRandomParameters.provider

JVM
default

provider parameter of the SecureRandom
specification.

tlsClientParameters.cipherSuitesFilter.include filters the supported CipherSuites, list of
CipherSuites that will be supported and used if
available.

tlsClientParameters.cipherSuitesFilter.exclude filters the supported CipherSuites, list of
CipherSuites that will be excluded.

tlsClientParameters.cipherSuites default
sslContext
cipher
suites

CipherSuites that will be supported.

tlsClientParameters. trustManagers.provider JVM
default

Provider of the trust manager.

tlsClientParameters.
trustManagers.factoryAlgorithm

JVM
default

factory algorithm of the trust manager.

tlsClientParameters. trustManagers.keyPassword JVM
default

Key password of the trust manager.

tlsClientParameters.
trustManagers.keyStore.type

JVM
default

Keystore type of the trust manager.

tlsClientParameters.
trustManagers.keyStore.password

JVM
default

Keystore password of the trust manager.

tlsClientParameters.
trustManagers.keyStore.provider

JVM
default

Keystore provider of the trust manager.

tlsClientParameters. trustManagers.keyStore.url JVM
default

Trust Managers URL to hold X509 certificates.

tlsClientParameters. trustManagers.keyStore.file JVM
default

Trust Managers file to hold X509 certificates.

tlsClientParameters.
trustManagers.keyStore.resource

JVM
default

Trust Managers resource to hold X509
certificates.

tlsClientParameters. keyManagers.provider JVM
default

Provider of the key manager.

tlsClientParameters.
keyManagers.factoryAlgorithm

JVM
default

factory algorithm of the key manager.

HTTP Configuration

Talend ESB Container Administration Guide 39

Property Default Description

tlsClientParameters. keyManagers.keyPassword JVM
default

Key password of the key manager.

tlsClientParameters. keyManagers.keyStore.type JVM
default

Keystore type of the key manager.

tlsClientParameters.
keyManagers.keyStore.password

JVM
default

Keystore password of the key manager.

tlsClientParameters.
keyManagers.keyStore.provider

JVM
default

Keystore provider of the key manager.

tlsClientParameters. keyManagers.keyStore.url JVM
default

Key managers URL to hold X509 certificates.

tlsClientParameters. keyManagers.keyStore.file JVM
default

Key managers file to hold X509 certificates.

tlsClientParameters.
keyManagers.keyStore.resource

JVM
default

Key managers resource to hold X509 certificates.

authorization.UserName Specifies the UserName parameter for
configuring the basic authentication method that
the endpoint uses preemptively.

authorization.Password Specifies the Password parameter for configuring
the basic authentication method that the endpoint
uses preemptively.

authorization.Authorization Corresponds to the authentication specified in the
SPNEGO/Kerberos login.conf.

authorization.AuthorizationType Authorization type: "Basic", "Digest" or
"Negotiation"

proxyAuthorization.UserName Specifies the UserName parameter for
configuring basic authentication against outgoing
HTTP proxy servers.

proxyAuthorization.Password Specifies the Password parameter for configuring
basic authentication against outgoing HTTP
proxy servers.

proxyAuthorization.Authorization Proxy authorization type: "Basic", "Digest" or
"Negotiation"

proxyAuthorization.AuthorizationType Corresponds to the proxy authentication specified
in the SPNEGO/Kerberos login.conf.

client.ConnectionTimeout 30000 Specifies the amount of time, in milliseconds, that
the client will attempt to establish a connection
before it times out. 0 specifies that the client
will continue to attempt to open a connection
indefinitely.

client.ReceiveTimeout 60000 Specifies the amount of time, in milliseconds,
that the client will wait for a response before it
times out. 0 specifies that the client will wait
indefinitely.

client.AutoRedirect false Specifies if the client will automatically follow a
server issued redirection. The default is false.

client.MaxRetransmits -1 Specifies the maximum number of times a client
will retransmit a request to satisfy a redirect.

HTTP Configuration

Talend ESB Container Administration Guide 40

Property Default Description

The default of -1 specifies that unlimited
retransmissions are allowed.

client.AllowChunking true Specifies whether the client will send requests
using chunking. The default is true which
specifies that the client will use chunking when
sending requests.

Chunking cannot be used if either

• http-conf:basicAuthSupplier is configured to
provide credentials preemptively or

• AutoRedirect is set to true.

In both cases the value of AllowChunking
is ignored and chunking is disallowed. See note
about chunking below.

client.ChunkingThreshold 4000 Specifies the threshold at which CXF will switch
from non-chunking to chunking.

By default, messages less than 4K are buffered
and sent non-chunked. Once this threshold is
reached, the message is chunked.

client.Connection Keep-
Alive

Specifies whether a particular connection is to be
kept open or closed after each request/response
dialog. There are two valid values:

• Keep-Alive specifies that the client wants
to keep its connection open after the initial
request/response sequence. If the server honors
it, the connection is kept open until the
consumer closes it.

• close specifies that the connection to the server
is closed after each request/response sequence.

client.DecoupledEndpoint Specifies the URL of a decoupled endpoint for the
receipt of responses over a separate server-client
connection.

Warning: You must configure both the client and
server to use WS-Addressing for the decoupled
endpoint to work.

client.ProxyServer Specifies the URL of the proxy server through
which requests are routed.

client.ProxyServerPort Specifies the port number of the proxy server
through which requests are routed.

client.ProxyServerType HTTP Specifies the type of proxy server used to
route requests. Valid values are: HTTP (default),
SOCKS

client.NonProxyHosts a (possibly empty) list of hosts which should
be connected directly and not through the proxy
server; it may contain wild card expressions.

HTTP Configuration

Talend ESB Container Administration Guide 41

10.2.3. Chunking

There are a number of parameters related to chunking, so we discuss this here in more detail. There are two ways
of putting the body of a message into an HTTP stream:

1. Standard scheme: this is used by most browsers. It consists in specifying a Content-Length header in the HTTP
headers. This allows the receiver to know how much data is coming and when to stop reading.

The problem with this approach is that the length needs to be pre-determined. The data cannot be streamed as
generated as the length needs to be calculated upfront.

Thus, if chunking is turned off, we need to buffer the data in a byte buffer (or temp file if it is too large) so
that the Content-Length can be calculated.

2. Chunked scheme: with this mode, the data is sent to the receiver in chunks. Each chunk is preceded by a
hexadecimal chunk size. When a chunk size is 0, the receiver knows that all the data has been received.

This mode allows better streaming, as we just need to buffer a small amount, up to 8K by default. When the
buffer fills, the chunk is written out.

Some parameters in Section 10.2.2.3, “Configuration properties” allow you to specify the details of the chunking.

In general, the Chunked scheme will perform better as the streaming can take place directly. However, there are
some problems with chunking:

• Many proxy servers don't understand it, especially older proxy servers. Many proxy servers want the Content-
Length up front so they can allocate a buffer to store the request before passing it onto the real server.

• Some of the older Web Services stacks also have problems with Chunking - specifically, older versions of .NET.

Tip

If you are getting strange errors (generally not SOAP faults, but other HTTP-type errors) when trying
to interact with a service, try turning off chunking to see if that helps.

Talend ESB Container Administration Guide

Chapter 11. Logging System
Karaf provides a powerful logging system based on OPS4j Pax Logging. In addition to being a standard OSGi
Log service, it supports the following APIs:

• Apache Commons Logging

• SLF4J

• Apache Log4j

• Java Util Logging

Karaf also comes with a set of console commands that can be used to display, view and change the log levels.

11.1. Configuration

11.1.1. Configuration file

The configuration of the logging system uses a standard Log4j configuration file at the following location:
[karaf_install_dir]/etc/org.ops4j.pax.logging.cfg

You can edit this file at runtime and any change will be reloaded and be effective immediately.

11.1.2. Configuring the appenders

The default logging configuration defines three appenders:

http://logging.apache.org/log4j/1.2/manual.html

Logging System

Talend ESB Container Administration Guide 43

• the stdout console appender is disabled by default. If you plan to run Karaf in server mode only (i.e. with
the locale console disabled), you can turn on this appender on by adding it to the list of configured appenders
using the log4j.rootLogger property

• the out appender is the one enabled by default. It logs events to a number of rotating log files of a fixed size.
You can easily change the parameters to control the number of files using maxBackupIndex and their size
maxFileSize.

• the sift appender can be used instead to provide a per-bundle log file. The default configuration uses the
bundle symbolic name as the file name to log to

11.1.3. Changing the log levels

The default logging configuration sets the logging levels so that the log file will provide enough information
to monitor the behavior of the runtime and provide clues about what caused a problem. However, the default
configuration will not provide enough information to debug most problems. The most useful logger to change
when trying to debug an issue with Karaf is the root logger. You will want to set its logging level to DEBUG in
the org.ops4j.pax.logging.cfg file.

log4j.rootLogger=DEBUG, out, osgi:VmLogAppender
...

When debugging a problem in Karaf you may want to change the level of logging information that is displayed on
the console. The example below shows how to set the root logger to DEBUG but limiting the information displayed
on the console to >WARN.

log4j.rootLogger=DEBUG, out, stdout, osgi:VmLogAppender
log4j.appender.stdout.threshold=WARN
...

11.2. Console Log Commands
The log scope comes with several commands -- see Section 5.2.6, “Log Scope” for a full list.

For example, if you want to debug something, you might want to run the following commands:

<log:set DEBUG
... do something ...
< log:display

Note that the log levels set using the log:set commands are not persistent and will be lost upon restart. To
configure those in a persistent way, you should edit the configuration file mentioned above using the config
commands or directly using a text editor of your choice. The log commands have a separate configuration file:
[karaf_install_dir]/etc/org.apache.karaf.log.cfg

11.3. Advanced Configuration
The logging backend uses Log4j, but offers a number of additional features.

Logging System

Talend ESB Container Administration Guide 44

11.3.1. Filters
Appender filters can be added using the following syntax:

log4j.appender.[appender-name].filter.[filter-name]=[filter-class]
log4j.appender.[appender-name].filter.[filter-name].[option]=[value]

Below is a real example:

log4j.appender.out.filter.f1=org.apache.log4j.varia.LevelRangeFilter
log4j.appender.out.filter.f1.LevelMax=FATAL
log4j.appender.out.filter.f1.LevelMin=DEBUG

11.3.2. Nested appenders
Nested appenders can be added using the following syntax:

log4j.appender.[appender-name].appenders= //
 [comma-separated-list-of-appender-names]

Below is a real example:

log4j.appender.async=org.apache.log4j.AsyncAppender
log4j.appender.async.appenders=jms

log4j.appender.jms=org.apache.log4j.net.JMSAppender
...

11.3.3. Error handlers
Error handlers can be added using the following syntax:

log4j.appender.[appender-name].errorhandler=[error-handler-class]
log4j.appender.[appender-name].errorhandler.root-ref=[true|false]
log4j.appender.[appender-name].errorhandler.logger-ref=[logger-ref]
log4j.appender.[appender-name].errorhandler.appender-ref=[appender-ref]

11.3.4. OSGi specific MDC attributes
Pax-Logging provides the following attributes by default:

• bundle.id: the id of the bundle from which the class is loaded

• bundle.name: the symbolic-name of the bundle

• bundle.version: the version of the bundle

11.3.5. MDC sifting appender
An MDC sifting appender is available to split the log events based on MDC attributes. Below is a configuration
example for this appender:

Logging System

Talend ESB Container Administration Guide 45

log4j.appender.sift=org.apache.log4j.sift.MDCSiftingAppender
log4j.appender.sift.key=bundle.name
log4j.appender.sift.default=karaf
log4j.appender.sift.appender=org.apache.log4j.FileAppender
log4j.appender.sift.appender.layout=org.apache.log4j.PatternLayout
log4j.appender.sift.appender.layout.ConversionPattern= \\
 %d{ABSOLUTE} | %-5.5p | %-16.16t | %-32.32c{1} | %-32.32C %4L | %m%n
log4j.appender.sift.appender.file=${karaf.data}/log/$\\{bundle.name\\}.log
log4j.appender.sift.appender.append=true

11.3.6. Enhanced OSGi stack trace renderer

This renderer is configured by default in Karaf and will give additional informations when printing stack traces. For
each line of the stack trace, it will display OSGi specific informations related to the class on that line: the bundle id,
the bundle symbolic name and the bundle version. This information can greatly help diagnosing problems in some
cases. The information is appended at the end of each line in the following format id:name:version as shown below:

java.lang.IllegalArgumentException: Command not found: *:foo
 at org.apache.felix.gogo.runtime.shell.Closure.execute
 (Closure.java:225)[21:org.apache.karaf.shell.console:2.1.0]
 at org.apache.felix.gogo.runtime.shell.Closure.executeStatement
 (Closure.java:162)[21:org.apache.karaf.shell.console:2.1.0]
 at org.apache.felix.gogo.runtime.shell.Pipe.run
 (Pipe.java:101)[21:org.apache.karaf.shell.console:2.1.0]
 at org.apache.felix.gogo.runtime.shell.Closure.execute
 (Closure.java:79)[21:org.apache.karaf.shell.console:2.1.0]
 at org.apache.felix.gogo.runtime.shell.CommandSessionImpl.execute
 (CommandSessionImpl.java:71)[21:org.apache.karaf.shell.console:2.1.0]
 at org.apache.karaf.shell.console.jline.Console.run
 (Console.java:169)[21:org.apache.karaf.shell.console:2.1.0]
 at java.lang.Thread.run(Thread.java:637)[:1.6.0_20]

11.3.7. Using your own appenders

If you plan to use your own appenders, you need to create an OSGi bundle and attach it as a fragment to the bundle
with a symbolic name of org.ops4j.pax.logging.pax-logging-service. This way, the underlying logging system will
be able to see and use your appenders. So for example you write a log4j appender:

class MyAppender extends AppenderSkeleton {
...
}

Then you need to package the appender in a jar with a Manifest like this:

Manifest:
Bundle-SymbolicName: org.mydomain.myappender
Fragment-Host: org.ops4j.pax.logging.pax-logging-service
...

Now you can use the appender in your log4j config file like shown in the config examples above.

Talend ESB Container Administration Guide

Chapter 12. Deployer
The Karaf deployer is used for deploying bundles or groups of bundles (called features) into the Karaf container.
The following diagram describes the architecture of the deployer.

12.1. Features deployer
To be able to hot deploy features from the deploy folder, you can simply drop a Feature descriptor on that folder.
A bundle will be created and its installation (automatic) will trigger the installation of all features contained in
the descriptor. Removing the file from the deploy folder will uninstall the features. If you want to install a single
feature, you can do so by writing a feature descriptor like the following:

Deployer

Talend ESB Container Administration Guide 47

<features>
 <repository>mvn:org.apache.servicemix.nmr/apache-servicemix-nmr/ \\
 1.0.0/xml/features</repository>
 <feature name="nmr-only">
 <feature>nmr</feature>
 </feature>
</features>

For more informations about features, see the Chapter 14, Provisioning.

12.2. Spring deployer
Karaf includes a deployer that is able to deploy plain blueprint or spring-dm configuration files. The deployer will
transform on the fly any spring configuration file dropped into the deploy folder into a valid OSGi bundle. The
generated OSGi manifest will contain the following headers:

Manifest-Version: 2
Bundle-SymbolicName: [name of the file]
Bundle-Version: [version of the file]
Spring-Context: *;publish-context:=false;create-asynchronously:=true
Import-Package: [required packages]
DynamicImport-Package: *

The name and version of the file are extracted using a heuristic that will match common patterns. For example
my-config-1.0.1.xml will lead to name = my-config and version = 1.0.1. The default imported packages
are extracted from the Spring file definition and includes all classes referenced directly. If you need to customize
the generated manifest, you can do so by including an xml element in your Spring configuration:

<spring:beans ...>
 <manifest>
 Require-Bundle= my-bundle
 </manifest>

12.3. Wrap deployer
The wrap deployer allows you to hot deploy non-OSGi jar files ("classical" jar files) from the deploy folder. It's
a standard deployer (you don't need to install additional Karaf features):

karaf@trun> la|grep -i wrap
[1] [Active] [] [5] OPS4J Pax Url - wrap: (1.2.5)
[32] [Active] [Created] [30] Apache Karaf :: Deployer :: Wrap Non OSGi Jar

Karaf wrap deployer looks for jar files in the deploy folder. The jar files is considered as non-OSGi if
the MANIFEST doesn't contain the Bundle-SymbolicName and Bundle-Version attributes, or if there is no
MANIFEST at all. The non-OSGi jar file is transformed into an OSGi bundle. The deployer tries to populate
the Bundle-SymbolicName and Bundle-Version extracted from the jar file path. For example, if you simply copy
commons-lang-2.3.jar (which is not an OSGi bundle) into the deploy folder, you will see:

karaf@trun> la|grep -i commons-lang
[41] [Active] [] [60] commons-lang (2.3)

If you take a look on the commons-lang headers, you can see that the bundle exports all packages with optional
resolution and that Bundle-SymbolicName and Bundle-Version have been populated:

karaf@trun> osgi:headers 41

Deployer

Talend ESB Container Administration Guide 48

commons-lang (41)

Specification-Title = Commons Lang
Tool = Bnd-0.0.357
Specification-Version = 2.3
Specification-Vendor = Apache Software Foundation
Implementation-Version = 2.3
Generated-By-Ops4j-Pax-From = wrap:file:/home/onofreje/workspace/karaf/
 assembly/target/apache-karaf-2.99.99-SNAPSHOT/deploy/commons-lang-2.3.jar$
 Bundle-SymbolicName=commons-lang&Bundle-Version=2.3
Implementation-Vendor-Id = org.apache
Created-By = 1.6.0_21 (Sun Microsystems Inc.)
Implementation-Title = Commons Lang
Manifest-Version = 1.0
Bnd-LastModified = 1297248243231
X-Compile-Target-JDK = 1.1
Originally-Created-By = 1.3.1_09-85 ("Apple Computer, Inc.")
Ant-Version = Apache Ant 1.6.5
Package = org.apache.commons.lang
X-Compile-Source-JDK = 1.3
Extension-Name = commons-lang
Implementation-Vendor = Apache Software Foundation

Bundle-Name = commons-lang
Bundle-SymbolicName = commons-lang
Bundle-Version = 2.3
Bundle-ManifestVersion = 2

Import-Package =
 org.apache.commons.lang;resolution:=optional,
 org.apache.commons.lang.builder;resolution:=optional,
 org.apache.commons.lang.enum;resolution:=optional,
 org.apache.commons.lang.enums;resolution:=optional,
 org.apache.commons.lang.exception;resolution:=optional,
 org.apache.commons.lang.math;resolution:=optional,
 org.apache.commons.lang.mutable;resolution:=optional,
 org.apache.commons.lang.text;resolution:=optional,
 org.apache.commons.lang.time;resolution:=optional
Export-Package =
 org.apache.commons.lang;uses:="org.apache.commons.lang.builder,
 org.apache.commons.lang.math,org.apache.commons.lang.exception",
 org.apache.commons.lang.builder;
 uses:="org.apache.commons.lang.math,org.apache.commons.lang",
 org.apache.commons.lang.enum;uses:=org.apache.commons.lang,
 org.apache.commons.lang.enums;uses:=org.apache.commons.lang,
 org.apache.commons.lang.exception;uses:=org.apache.commons.lang,
 org.apache.commons.lang.math;uses:=org.apache.commons.lang,
 org.apache.commons.lang.mutable;uses:="org.apache.commons.lang,
 org.apache.commons.lang.math",
 org.apache.commons.lang.text;uses:=org.apache.commons.lang,
 org.apache.commons.lang.time;uses:=org.apache.commons.lang

12.4. War deployer
See Chapter 15, Web Applications for information on web application (war) deployment.

Talend ESB Container Administration Guide

Chapter 13. Servlet Context
A servlet context defines a set of methods which allows a servlet to communicate with its servlet container.
Karaf and CXF provide servlet context custom configuration, for building services. For example, you can deploy
into a servlet container, using a servlet transport, CXFServlet. The following section explains servlet context
configuration in more detail.

Please read the Servlet Transport on the Apache CXF website for additional information about this servlet context.

13.1. Configuration

Note

The paths [karaf_install_dir]/ and [Talend-ESB-Version]/container are
equivalent.

First we look at the configuration files. The configuration of the servlet context for the OSGi HTTP Service is
specified in a file at the following location: [karaf_install_dir]/etc/org.apache.cxf.osgi.cfg

The configuration of the port for the OSGi HTTP Service is specified in: [karaf_install_dir]/etc/
org.ops4j.pax.web.cfg

You can edit these files at runtime and any change will be reloaded and be effective immediately.

13.2. Configuring the context
When editing the files, the org.apache.cxf.osgi.cfg file specified prefix for the services is:

http://cxf.apache.org/docs/servlet-transport.html

Servlet Context

Talend ESB Container Administration Guide 50

org.apache.cxf.servlet.context=/services

The org.ops4j.pax.web.cfg file specified port for the services is:

org.osgi.service.http.port=8040

13.2.1. Relative endpoint address

The CXFServlet uses a relative address for the endpoint rather than a full http address. For example, given an
implementation class called GreeterImpl with endpoints greeter and greeterRest, the relative endpoint
addresses would be configured as:

 <jaxws:endpoint id="greeter"
 implementor="org.apache.hello_soap_http.GreeterImpl"
 address="/Greeter1"/>

 <jaxrs:server id="greeterRest"
 serviceClass="org.apache.hello_soap_http.GreeterImpl"
 address="/GreeterRest"/>

The cumulative result of these changes is that the endpoint address for the servlet will be: http://
{server}:8040/services/Greeter1 and http://{server}:8040/services/GreeterRest

Talend ESB Container Administration Guide

Chapter 14. Provisioning
Karaf provides a simple, yet flexible, way to provision applications or "features". Such a mechanism is mainly
provided by a set of commands available in the features shell. The provisioning system uses xml "repositories"
that define a set of features.

14.1. Example: Deploying a sample feature
In the rest of this chapter, we describe in detail the process involved in provisioning. But as a quick demonstration,
we'll run a sample Apache Camel feature already present in the Talend ESB distribution. In the console, run the
following commands:

features:addUrl mvn:org.apache.camel/camel-example-osgi/2.5.0/xml/features
features:install camel-example-osgi

The example installed uses Camel to start a timer every 2 seconds and output a message on the console. These
features:addUrl and features:install commands download the Camel features descriptor and install this example.
The output is as follows:

>>>> SpringDSL set body: Fri Jan 07 11:59:51 CET 2011
>>>> SpringDSL set body: Fri Jan 07 11:59:53 CET 2011
>>>> SpringDSL set body: Fri Jan 07 11:59:55 CET 2011

14.1.1. Stopping and uninstalling the sample
application

To stop this demo, run the following command:

Provisioning

Talend ESB Container Administration Guide 52

features:uninstall camel-example-osgi

14.2. Repositories
So, first we look at feature repositories. The complete xml schema for feature descriptor are available on Features
XML Schema page. We recommend using this XML schema. It will allow Karaf to validate your repository before
parsing. You may also verify your descriptor before adding it to Karaf by simply validation, even from IDE level.
Here is an example of such a repository:

<features xmlns="http://karaf.apache.org/xmlns/features/v1.0.0">
 <feature name="spring" version="3.0.4.RELEASE">
 <bundle>mvn:org.apache.servicemix.bundles/ \\
 org.apache.servicemix.bundles.aopalliance/1.0_1</bundle>
 <bundle>mvn:org.springframework/spring-core/3.0.4.RELEASE</bundle>
 <bundle>mvn:org.springframework/spring-beans/3.0.4.RELEASE</bundle>
 <bundle>mvn:org.springframework/spring-aop/3.0.4.RELEASE</bundle>
 <bundle>mvn:org.springframework/spring-context/3.0.4.RELEASE</bundle>
 <bundle>mvn:org.springframework/spring-context-support/3.0.4.RELEASE
 </bundle>
 </feature>
</features>

A repository includes a list of feature elements, each one representing an application that can be installed. The
feature is identified by its name which must be unique amongst all the repositories used and consists of a set
of bundles that need to be installed along with some optional dependencies on other features and some optional
configurations for the Configuration Admin OSGi service.

References to features define in other repositories are allow and can be achieved by adding a list of repository.

<features xmlns="http://karaf.apache.org/xmlns/features/v1.0.0">
 <repository>mvn:org.apache.servicemix.nmr/apache-servicemix-nmr/ \\
 1.3.0/xml/features</repository>
 <repository>mvn:org.apache.camel.karaf/apache-camel/2.5.0/xml/features
 </repository>
 <repository>mvn:org.apache.karaf/apache-karaf/2.1.2/xml/features
 </repository>
 ...

Be careful when you define them as there is a risk of 'cycling' dependencies. Note: By default, all the features
defined in a repository are not installed at the launch of Apache Karaf (see Section 14.4, “Service configuration”
for more information).

14.2.1. Bundles

The main information provided by a feature is the set of OSGi bundles that defines the application. Such bundles
are URLs pointing to the actual bundle jars. For example, one would write the following definition:

<bundle>http://repo1.maven.org/maven2/org/apache/servicemix/nmr/ \\
 org.apache.servicemix.nmr.api/1.0.0-m2/ \\
 org.apache.servicemix.nmr.api-1.0.0-m2.jar</bundle>

Doing this will make sure the above bundle is installed while installing the feature. However, Karaf provides
several URL handlers, in addition to the usual ones (file, http, etc...). One of these is the maven URL handler,
which allow reusing maven repositories to point to the bundles.

http://karaf.apache.org/manual/2.2.2/users-guide/provisioning-schema.html
http://karaf.apache.org/manual/2.2.2/users-guide/provisioning-schema.html

Provisioning

Talend ESB Container Administration Guide 53

14.2.1.1. Maven URL Handler

The equivalent of the above bundle would be:

<bundle>
 mvn:org.apache.servicemix.nmr/org.apache.servicemix.nmr.api/1.0.0-m2
</bundle>

In addition to being less verbose, the maven url handlers can also resolve snapshots and can use a local copy of
the jar if one is available in your maven local repository.

The org.ops4j.pax.url.mvn bundle resolves mvn URLs. This flexible tool can be configured through the
configuration service. For example, to find the current repositories type: karaf@trun:/> config:list
and the following will display:

Pid: org.ops4j.pax.url.mvn
BundleLocation: mvn:org.ops4j.pax.url/pax-url-mvn/0.3.3
Properties:
 service.pid = org.ops4j.pax.url.mvn
 org.ops4j.pax.url.mvn.defaultRepositories = file:/opt/development/ \\
 karaf/assembly/target/apache-felix-karaf-1.2.0-SNAPSHOT/ \\
 system@snapshots
 org.ops4j.pax.url.mvn.repositories = http://repo1.maven.org/maven2,
 http://svn.apache.org/repos/asf/servicemix/m2-repo
 below = list of repositories and even before the local repository

The repositories checked are controlled by these configuration properties. For example,
org.ops4j.pax.url.mvn.repositories is a comma separated list of repository URLs specifying those remote
repositories to be checked. So, to replace the defaults with a new repository at http://www.example.org/repo on
the local machine:

karaf@trun:/> config:edit org.ops4j.pax.url.mvn
karaf@trun:/> config:proplist
 service.pid = org.ops4j.pax.url.mvn
 org.ops4j.pax.url.mvn.defaultRepositories = file:/opt/development/karaf/
 assembly/target/apache-felix-karaf-1.2.0-SNAPSHOT/system@snapshots
 org.ops4j.pax.url.mvn.repositories = http://repo1.maven.org/maven2,
 http://svn.apache.org/repos/asf/servicemix/m2-repo
 below = list of repositories and even before the local repository
karaf@trun:/> config:propset org.ops4j.pax.url.mvn.repositories
 http://www.example.org/repo
karaf@trun:/> config:update

By default, snapshots are disabled. To enable an URL for snapshots append @snapshots. For example: http://
www.example.org/repo@snapshots. Repositories on the local are supported through file:/ URLs.

14.2.1.2. Bundle start-level

By default, the bundles deployed through the feature mechanism will have a start-level equals to the value defined
in the configuration file config.properties with the variable karaf.startlevel.bundle=60. This value can be changed
using the xml attribute start-level.

<feature name='my-project' version='1.0.0'>
<feature version='2.4.0'>camel-spring</feature>
 <bundle start-level='80'>mvn:com.mycompany.myproject/ \\

Provisioning

Talend ESB Container Administration Guide 54

 myproject-dao</bundle>
 <bundle start-level='85'>mvn:com.mycompany.myproject/ \\
 myproject-service</bundle>
 <bundle start-level='85'>mvn:com.mycompany.myproject/ \\
 myproject-camel-routing</bundle>
</feature>

The advantage to define the start-level of a bundle is that you can deploy all your bundles including those of the
project with the 'infrastructure' bundles required (e.g : camel, activemq) at the same time and you will have the
guaranty when you use Spring Dynamic Module (to register service through OSGI service layer), Blueprint that
by example Spring context will not be created without all the required services installed.

14.2.1.3. Bundle stop/start

The OSGI specification allows to install a bundle without starting it. To use this functionality, simply add the
following attribute in your <bundle> definition

<feature name='my-project' version='1.0.0'>
 <feature version='2.4.0'>camel-spring</feature>
 <bundle start-level='80' start='false'>mvn:com.mycompany.myproject/ \\
 myproject-dao</bundle>
 <bundle start-level='85' start='false'>mvn:com.mycompany.myproject/ \\
 myproject-service</bundle>
 <bundle start-level='85' start='false'>mvn:com.mycompany.myproject/ \\
 myproject-camel-routing</bundle>
</feature>

14.2.1.4. Bundle dependency

A bundle can be flagged as being a dependency. Such information can be used by resolvers to compute the final
list of bundles to be installed.

14.2.2. Dependent Features

Dependent features are useful when a given feature depends on another feature to be installed. Such a dependency
can be expressed easily in the feature definition:

<feature name="jbi">
 <feature>nmr</feature>
 ...
</feature>

The effect of such a dependency is to automatically install the required nmr feature when the jbi feature will be
installed. A version range can be specified on the feature dependency:

<feature name="spring-dm">
 <feature version="[2.5.6,4)">spring</feature>
 ...
</feature>

In such a case, if no matching feature is already installed, the feature with the highest version available in the range
will be installed. If a single version is specified, this version will be chosen. If nothing is specified, the highest
available will be installed.

Provisioning

Talend ESB Container Administration Guide 55

14.2.3. Configurations

The configuration section allows to deploy configuration for the OSGi Configuration Admin service along a set
of bundles. Here is an example of such a configuration:

<config name="com.foo.bar">
 myProperty = myValue
</config>

The name attribute of the configuration element will be used as the ManagedService PID for the configuration
set in the Configuration Admin service. When using a ManagedServiceFactory, the name attribute is servicePid-
aliasId, where servicePid is the PID of the ManagedServiceFactory and aliasId is a label used to uniquely identify
a particular service (an alias to the factory generated service PID). Deploying such a configuration has the same
effect than dropping a file named com.foo.bar.cfg into the etc folder.

The content of the configuration element is set of properties parsed using the standard java property mechanism.
Such configuration as usually used with Spring-DM or Blueprint support for the Configuration Admin service, as
in the following example, but using plain OSGi APIs will of course work the same way:

<bean ...>
 <property name="propertyName" value="${myProperty}" />
</bean>

<osgix:cm-properties id="cmProps" persistent-id="com.foo.bar">
 <prop key="myProperty">myValue</prop>
</osgix:cm-properties>
<ctx:property-placeholder properties-ref="cmProps" />

There may also be cases where you want to make the properties from multiple configuration files available to
your bundle context. This is something you may want to do if you have a multi-bundle application where there
are application properties used by multiple bundles, and each bundle has its own specific properties. In that case,
<ctx:property-placeholder> won't work as it was designed to make only one configuration file available to a bundle
context. To make more than one configuration file available to your bundle-context you would do something like
this:

<beans:bean id="myBundleConfigurer" class=
 "org.springframework.beans.factory.config.PropertyPlaceholderConfig">
 <beans:property name="ignoreUnresolvablePlaceholders" value="true"/>
 <beans:property name="propertiesArray">
 <osgix:cm-properties id="myAppProps" persistent-id="myApp.props"/>
 <osgix:cm-properties id="myBundleProps"
 persistent-id="my.bundle.props"/>
 </beans:property>
</beans:bean>

In this example, we are using SpringDM with osgi as the primary namespace. Instead of using ctx:context-
placeholder we are using the "PropertyPlaceholderConfig" class. Then we are passing in a beans array and inside
of that array is where we set our osgix:cm-properties elements. This element "returns" a properties bean.

For more informations about using the Configuration Admin service in Spring-DM, see the Spring-DM
documentation.

14.2.4. Configuration files

In certain cases it is needed not only to provide configurations for the configuration admin service but to add
additional configuration files e.g. a configuration file for jetty (jetty.xml). It even might be help full to deploy

http://java.sun.com/j2se/1.5.0/docs/api/java/util/Properties.html#load(java.io.InputStream)
http://static.springsource.org/osgi/docs/1.2.0-m2/reference/html/compendium.html#compendium:cm:props
http://static.springsource.org/osgi/docs/1.2.0-m2/reference/html/compendium.html#compendium:cm:props

Provisioning

Talend ESB Container Administration Guide 56

a configuration file instead of a configuration for the config admin service since. To achieve this the attribute
finalname shows the final destination of the configfile, while the value references the Maven artifact to deploy.

<configfile finalname="/etc/jetty.xml">mvn:org.apache.karaf/apache-karaf/ \\
 ${project.version}/xml/jettyconfig</configfile>

14.2.5. Feature resolver

The resolver attribute on a feature can be set to force the use of a given resolver instead of the default resolution
process. A resolver will be use to obtain the list of bundles to actually install for a given feature. The default resolver
will simply return the list of bundles provided in the feature description. The obr resolver can be installed and used
instead of the standard one. In that case, the resolver will use the OBR service to determine the list of bundles to
install (bundles flagged as dependency will only be used as possible candidates to solve various constraints).

14.3. Commands

14.3.1. Repository management

The following commands can be used to manage the list of descriptors known by Karaf. They use URLs pointing
to features descriptors. These URLs can use any protocol known to Apache Karaf, the most common ones being
http, file and mvn.

• features:addUrl: Add a list of repository URLs to the features service

• features:removeUrl: Remove a list of repository URLs from the features service

• features:listUrl: Display the repository URLs currently associated with the features service.

• features:refreshUrl: Reload the repositories to obtain a fresh list of features

Karaf maintains a persistent list of these repositories so that if you add one URL and restart Karaf, the features will
still be available. The refreshUrl command is mostly used when developing features descriptors: when changing
the descriptor, it can be handy to reload it in the Kernel without having to restart it or to remove then add again
this URL.

14.3.2. Features management

Common features: scope commands used in features management include features:install, features:uninstall,
and features:list. See Section 5.2.4, “Features Scope” for more information on these commands.

14.3.3. Examples

To install features using mvn handler:

Provisioning

Talend ESB Container Administration Guide 57

features:addUrl mvn:org.apache.servicemix.nmr/apache-servicemix-nmr/ \\
 1.0.0-m2/xml/features
features:install nmr

To use a file handler to deploy a features file (note the path is relative to the Apache Karaf installation directory):

features:addUrl file:base/features/features.xml

To deploy bundles from file system without using Maven: As we can use file:// as protocol handler to deploy
bundles, you can use the following syntax to deploy bundles when they are located in a directory which is not
available using Maven:

<features xmlns="http://karaf.apache.org/xmlns/features/v1.0.0">
 <feature name="spring-web" version="2.5.6.SEC01">
 <bundle>file:base/bundles/spring-web-2.5.6.SEC01.jar</bundle>
 </feature>
</features>

Note the path again is relative to Apache Karaf installation directory.

14.4. Service configuration
A simple configuration file located in [FELIX:karaf]/etc/org.apache.karaf.features.cfg can
be modified to customize the behavior when starting the Kernel for the first time. This configuration file contains
two properties:

• featuresBoot: a comma separated list of features to install at startup

• featuresRepositories: a comma separated list of feature repositories to load at startup

This configuration file is of interest if you plan to distribute a Apache Karaf distribution which includes pre-
installed features.

Talend ESB Container Administration Guide

Chapter 15. Web Applications
Karaf provides an ability to deploying WAR-based web applications within the Jetty server contained in the Karaf
instance.

15.1. Installing WAR support
The following steps will install the "war" feature (support for deploying WAR files with Servlet and JSPs into a
Jetty server) into your Karaf instance.

1. List the available features -

 karaf@trun> features:list
 State Name
 . . .
 [uninstalled] [2.2.0] obr karaf-2.2.0
 [uninstalled] [2.2.0] config karaf-2.2.0
 [uninstalled] [2.2.0] http karaf-2.2.0
 [uninstalled] [2.2.0] war karaf-2.2.0
 [uninstalled] [2.2.0] webconsole karaf-2.2.0
 [installed] [2.2.0] ssh karaf-2.2.0
 . . .

2. Install the war feature (and the sub-features it requires) - karaf@trun> features:install war

Note: you can use the -v or --verbose to see exactly what Karaf does

karaf@trun> features:install -v war
Installing feature war 2.1.99-SNAPSHOT

Web Applications

Talend ESB Container Administration Guide 59

Installing feature http 2.1.99-SNAPSHOT
Installing feature jetty 7.1.6.v20100715
Installing bundle mvn:org.apache.geronimo.specs/
 geronimo-servlet_2.5_spec/1.1.2
Found installed bundle: org.apache.servicemix.bundles.asm [10]
Installing bundle mvn:org.eclipse.jetty/jetty-util/7.1.6.v20100715
Installing bundle mvn:org.eclipse.jetty/jetty-io/7.1.6.v20100715
Installing bundle mvn:org.eclipse.jetty/jetty-http/7.1.6.v20100715
Installing bundle mvn:org.eclipse.jetty/jetty-continuation/7.1.6.v20100715
Installing bundle mvn:org.eclipse.jetty/jetty-server/7.1.6.v20100715
Installing bundle mvn:org.eclipse.jetty/jetty-security/7.1.6.v20100715
Installing bundle mvn:org.eclipse.jetty/jetty-servlet/7.1.6.v20100715
Installing bundle mvn:org.eclipse.jetty/jetty-xml/7.1.6.v20100715
Checking configuration file mvn:org.apache.karaf/apache-karaf/
 2.1.99-SNAPSHOT/xml/jettyconfig
Installing bundle mvn:org.ops4j.pax.web/pax-web-api/0.8.2-SNAPSHOT
Installing bundle mvn:org.ops4j.pax.web/pax-web-spi/0.8.2-SNAPSHOT
Installing bundle mvn:org.ops4j.pax.web/pax-web-runtime/0.8.2-SNAPSHOT
Installing bundle mvn:org.ops4j.pax.web/pax-web-jetty/0.8.2-SNAPSHOT
Installing bundle mvn:org.ops4j.pax.web/pax-web-jsp/0.8.2-SNAPSHOT
Installing bundle mvn:org.ops4j.pax.web/pax-web-extender-war/
 0.8.2-SNAPSHOT
Installing bundle mvn:org.ops4j.pax.web/pax-web-extender-whiteboard/
 0.8.2-SNAPSHOT
Installing bundle mvn:org.ops4j.pax.web/pax-web-deployer/0.8.2-SNAPSHOT
Installing bundle mvn:org.ops4j.pax.url/pax-url-war/1.2.4

3. Verify the features were installed

 servicemix> features/list
 State Name
 . . .
 [installed] [2.2.0] http karaf-2.2.0
 [installed] [2.2.0] war karaf-2.2.0
 . . .

4. Verify the installed bundles were started

 karaf@trun> osgi:list
 START LEVEL 100
 ID State Level Name
 . . .
 [32] [Active] [] [60] geronimo-servlet_2.5_spec (1.1.2)
 [33] [Active] [] [60] Apache ServiceMix :: Bundles ::
 jetty (6.1.22.2)
 [34] [Active] [] [60] OPS4J Pax Web - API (1.0.0)
 [35] [Active] [] [60] OPS4J Pax Web - Service SPI (1.0.0)
 [36] [Active] [] [60] OPS4J Pax Web - Runtime (1.0.0)
 [37] [Active] [] [60] OPS4J Pax Web - Jetty (1.0.0)
 [38] [Active] [] [60] OPS4J Pax Web - Jsp Support (1.0.0)
 [39] [Active] [] [60] OPS4J Pax Web - Extender - WAR (1.0.0)
 [40] [Active] [] [60] OPS4J Pax Web -
 Extender - Whiteboard (1.0.0)
 [42] [Active] [] [60] OPS4J Pax Web - FileInstall Deployer (1.0.0)
 [41] [Active] [] [60] OPS4J Pax Url - war:, war-i: (1.2.4)
 . . .

Web Applications

Talend ESB Container Administration Guide 60

5. The Jetty server should now be listening on http://localhost:8181/, but with no published applications
available.

 HTTP ERROR: 404
 NOT_FOUND
 RequestURI=/
 Powered by jetty://

15.2. Deploying a WAR to the installed web
feature
The following steps will describe how to install a simple WAR file (with JSPs or Servlets) to the just installed
web feature.

1. To deploy a WAR (JSP or Servlet) to Jetty, update its MANIFEST.MF to include the required OSGi headers
as described here: http://team.ops4j.org/wiki/display/paxweb/WAR+Extender

2. Copy the updated WAR (archive or extracted files) to the deploy directory.

If you want to deploy a sample web application into Karaf, you could use the following command:

karaf@trun> osgi:install -s webbundle:http://tomcat.apache.org/ \\
tomcat-5.5-doc/appdev/sample/sample.war?Bundle-SymbolicName= \\
tomcat-sample&Webapp-Context=/sample

Then open your web browser and point to http://localhost:8181/sample/index.html.

http://team.ops4j.org/wiki/display/paxweb/WAR+Extender

Talend ESB Container Administration Guide

Chapter 16. Monitoring and Administration
using JMX
Apache Karaf provides a large set of MBeans that allow you to fully monitor and administrate Karaf using any
JMX client (for example, JConsole provided in the Oracle or IBM JDK). They provide more or less the same
actions that you can do using the Karaf shell commands. The list of MBeans available:

Table 16.1. Karaf Management MBeans

MBean (org.apache.karaf:type value) Description

admin administrates the child instances

bundles manipulates the OSGi bundles

config manipulates the Karaf configuration files (in the /etc folder) and the
ConfigAdmin layer

dev provides information and administration of the OSGi framework

diagnostic used to create information files (dumps) about Karaf activity

features manipulate the Karaf features

log manipulate the logging layer

packages manipulate the PackageAdmin layer and get information about exported
and imported packages

services to get information about the OSGi services

system to shutdown the Karaf container itself

web to get information about the Web bundles (installed with the war
feature)

obr to manipulate the OBR layer (installed with the obr feature)

Talend ESB Container Administration Guide

Chapter 17. Installing the Talend Runtime
container as a service

17.1. Introduction
The Talend Runtime container is based on Apache Karaf. Karaf Wrapper (for service wrapper) makes it possible
to install the Talend Runtime container as a Windows Service. Likewise, the scripts shipped with Karaf also make
it very easy to install the Talend Runtime container as a daemon process on Unix systems.

To install Talend Runtime container as a service, you first have to install the wrapper, which is an optional feature.

The Wrapper correctly handles "user log outs" under Windows, service dependencies, and the ability to run
services which interact with the desktop.

17.2. Supported platforms
The following platforms are supported by the Wrapper:

• AIX

• FreeBSD

• HP-UX, 32-bit and 64-bit versions

• SGI Irix

• Linux kernels 2.2.x, 2.4.x, 2.6.x. Known to work with Debian, Ubuntu, and Red Hat, but should work with any
distribution. Currently supported on both 32-bit and 64-bit x86, Itanium, and PPC systems.

• Macintosh OS X

Installing the Talend Runtime container as a service

Talend ESB Container Administration Guide 63

• Sun OS, Solaris 9 and 10. Currently supported on both 32-bit and 64-bit sparc, and x86 systems.

• Windows - Windows 2000, XP, 2003, Vista, 2008 and Windows 7. Currently supported on both 32-bit and 64-
bit x86 and Itanium systems. Also known to run on Windows 98 and ME, however due the lack of support for
services in the OS, the Wrapper can be run only in console mode.

17.3. Installing the wrapper
First, to install the wrapper, simply:

1. Browse to the bin folder of the Talend Runtime container directory, then launch:

• trun.bat in Administrator mode on Windows

• trun as root user on Linux

2. To install the wrapper feature, simply type:

• karaf@trun> features:install wrapper on Windows.

• trun@root> features:install wrapper on Linux.

Once installed, wrapper feature will provide wrapper:install new command in the trun:

trun@root> wrapper:install --help

DESCRIPTION
 wrapper:install

 Install the container as a system service in the OS.

SYNTAX
 wrapper:install [options]

OPTIONS
 -d, --display
 The display name of the service.
 --help
 Display this help message

-s, --start-type
 Mode in which the service is installed. AUTO_START or
 DEMAND_START (Default: AUTO_START)
 (defaults to AUTO_START)

 -n, --name
 The service name that will be used when installing the
 service. (Default: Karaf)
 (defaults to karaf)

-D, --description
 The description of the service.
 (defaults to)

3. To set up the installation of the service, type in the following command:

• karaf@trun> wrapper:install on Windows.

Installing the Talend Runtime container as a service

Talend ESB Container Administration Guide 64

• trun@root> wrapper:install on Linux.

For instance, to register Talend Runtime container as a service (depending on the running OS), in automatic start
mode, simply type:

• For Windows:

karaf@trun> wrapper:install -s AUTO_START -n TALEND-ESB-CONTAINER -d Talend-ESB-Container
 -D "Talend ESB Container Service"

• For Linux:

trun@root> wrapper:install -s AUTO_START -n TALEND-ESB-CONTAINER -d Talend-ESB-Container
 -D "Talend ESB Container Service"

Here is an example of wrapper:install command executing on Windows:

karaf@trun> wrapper:install -s AUTO_START -n TALEND-ESB-CONTAINER
-d Talend-ESB-Container -D "Talend ESB Container Service"

Creating file: C:\work\5.0.1-release\Talend-ESB-V5.0.1\container\bin\
TALEND-ESB-CONTAINER-wrapper.exe
Creating file: C:\work\5.0.1-release\Talend-ESB-V5.0.1\container\etc\
TALEND-ESB-CONTAINER-wrapper.conf
Creating file: C:\work\5.0.1-release\Talend-ESB-V5.0.1\container\bin\
TALEND-ESB-CONTAINER-service.bat
Creating file: C:\work\5.0.1-release\Talend-ESB-V5.0.1\container\lib\
wrapper.dll
Creating file: C:\work\5.0.1-release\Talend-ESB-V5.0.1\container\lib\
karaf-wrapper.jar
Creating file: C:\work\5.0.1-release\Talend-ESB-V5.0.1\container\lib\
karaf-wrapper-main.jar

Setup complete. You may wish to tweak the JVM properties in the
wrapper configuration file:
 C:\work\5.0.1-release\Talend-ESB-V5.0.1\container\etc\TALEND-
ESB-CONTAINER-wrapper.conf
before installing and starting the service.

To install the service, run:
 C:> C:\work\5.0.1-release\Talend-ESB-V5.0.1\container\bin\
TALEND-ESB-CONTAINER-service.bat install

Once installed, to start the service run:
 C:> net start "TALEND-ESB-CONTAINER"

Once running, to stop the service run:
 C:> net stop "TALEND-ESB-CONTAINER"

Once stopped, to remove the installed the service run:
 C:> C:\work\5.0.1-release\Talend-ESB-V5.0.1\container\bin\
TALEND-ESB-CONTAINER-service.bat remove

Here is an example of wrapper:install command executing on Linux:

trun@root> wrapper:install -s AUTO_START -n TALEND-ESB-CONTAINER \
 -d Talend-ESB-Container -D "Talend ESB Container Service"
Creating file: /home/onofreje/5.0.1-release/Talend-ESB-V5.0.1/container/
bin/KARAF-wrapper

Installing the Talend Runtime container as a service

Talend ESB Container Administration Guide 65

Creating file: /home/onofreje/5.0.1-release/Talend-ESB-V5.0.1/container/
bin/KARAF-service
Creating file: /home/onofreje/5.0.1-release/Talend-ESB-V5.0.1/container/
etc/KARAF-wrapper.conf
Creating file: /home/onofreje/5.0.1-release/Talend-ESB-V5.0.1/container/
lib/libwrapper.so
Creating file: /home/onofreje/5.0.1-release/Talend-ESB-V5.0.1/container/
lib/karaf-wrapper.jar
Creating file: /home/onofreje/5.0.1-release/Talend-ESB-V5.0.1/container/
lib/karaf-wrapper-main.jar

Setup complete. You may want to tweak the JVM properties in the wrapper
configuration file:
 /home/onofreje/apache-karaf-2.1.3/etc/KARAF-wrapper.conf
before installing and starting the service.

17.4. Installing the service

17.4.1. On Windows
1. Open a CMD window in Administrator mode.

2. Browse to the bin folder of the Talend Runtime installation directory, then type in the following command:

TALEND-ESB-CONTAINER-service install

Here is an example of the installation of Talend Runtime container as a service on Windows:

C:\Builds\Talend-Runtime\bin>TALEND-ESB-CONTAINER-service.bat install

wrapper | Talend ESB Container installed.

C:\Builds\Talend-Runtime\bin>

The Talend Runtime service is created and can be viewed by selecting Control Panel > Administrative Tools
> Services in the Start menu of Windows.

You can then run the net start "TALEND-CONTAINER" and net stop "TALEND-ESB-CONTAINER"
commands to manage the service.

To remove the service, type in the following command in the command window:

TALEND-ESB-CONTAINER-service.bat remove

17.4.2. On Linux
The way the service is installed depends upon your flavor of Linux:

Installing the Talend Runtime container as a service

Talend ESB Container Administration Guide 66

17.4.2.1. On Redhat/Fedora/CentOS Systems

To install the service:

 $ ln -s /home/onofreje/5.0.1-release/Talend-ESB-V5.0.1/container/bin/TALEND-ESB-CONTAINER-
service /etc/init.d/
 $ chkconfig TALEND-ESB-CONTAINER-service --add

To start the service when the machine is rebooted:

 $ chkconfig TALEND-ESB-CONTAINER-service on

To disable starting the service when the machine is rebooted:

 $ chkconfig TALEND-ESB-CONTAINER-service off

To start the service:

 $ service TALEND-ESB-CONTAINER-service start

To stop the service:

 $ service TALEND-ESB-CONTAINER-service stop

To uninstall the service :

 $ chkconfig TALEND-ESB-CONTAINER-service --del
 $ rm /etc/init.d/TALEND-ESB-CONTAINER-service

17.4.2.2. On Ubuntu/Debian Systems

To install the service:

 $ ln -s /home/onofreje/5.0.1-release/Talend-ESB-V5.0.1/container/bin/
TALEND-ESB-CONTAINER-service /etc/init.d/

To start the service when the machine is rebooted:

 $ update-rc.d TALEND-ESB-CONTAINER-service defaults

To disable starting the service when the machine is rebooted:

 $ update-rc.d -f TALEND-ESB-CONTAINER-service remove

To start the service:

 $ /etc/init.d/TALEND-ESB-CONTAINER-service start

To stop the service:

 $ /etc/init.d/TALEND-ESB-CONTAINER-service stop

To uninstall the service :

 $ rm /etc/init.d/TALEND-ESB-CONTAINER-service

Talend ESB Container Administration Guide

Chapter 18. Troubleshooting Talend ESB
This chapter describes how to fix problems related to JVM memory allocation.

18.1. Memory Allocation Parameters
The Talend ESB start scripts define the JVM memory allocation parameters used for running Talend ESB.

JAVA_MIN_MEM. Determines the start size of the Java heap memory. Higher values may reduce garbage
collection and improve performance. Corresponds to the JVM parameter -Xms.

JAVA_MAX_MEM. Determines the maximum size of the Java heap memory. Higher values may reduce garbage
collection, improve performance and avoid "Out of memory" exceptions. Corresponds to the JVM parameter -
Xmx.

JAVA_PERM_MEM. Determines the start size of permanent generation. This is a separate heap space that is
normally not garbage collected. Java classes are loaded in permanent generation. Using Talend ESB many classes
are loaded, specially when using security features and deploying multiple services to the same container. Increase
if a "PermGen space" exception is thrown. Corresponds to the JVM parameter -XX:PermSize

JAVA_MAX_PERM_MEM. Determines the maximum size of permanent generation. This is a separate heap
space that is normally not garbage collected. Increase if a "PermGen space" exception is thrown. Corresponds to
the JVM parameter -XX:MaxPermSize

Additionally the following parameters are used as default to enable class unloading from permanent generation
which reduces the overall permanent generation space usage: -XX:+CMSClassUnloadingEnabled and -XX:
+UseConcMarkSweepGC.

Troubleshooting Talend ESB

Talend ESB Container Administration Guide 68

18.2. On Windows
Adapt the memory allocation parameters in the karaf start script at the following location:
[karaf_install_dir]/bin/trun.bat.

Determined by the script variable

%Bit_64%

you can set different values depending whether your JVM is 64-bit. 64-bit-JVMs need significantly more memory.

18.3. On Linux
Adapt the memory allocation parameters in the karaf start script at the following location:
[karaf_install_dir]/bin/trun.

Determined by the script variable

$JAVA_SIXTY_FOUR

you can set different values depending whether your JVM is 64-bit. 64-bit-JVMs need significantly more memory.

	Talend ESB Container
	Table of Contents
	Chapter 1. Introduction
	1.1. Structure of this manual

	Chapter 2. Directory Structure
	Chapter 3. Starting/Stopping Talend Runtime
	3.1. Starting Talend Runtime
	3.1.1. On Windows
	3.1.2. On Linux
	3.1.3. Starting Talend Runtime without console
	3.1.4. Starting Talend Runtime in the background

	3.2. Stopping Talend Runtime

	Chapter 4. Starting/Stopping Talend ESB Infrastructure Components
	4.1. Starting the Service Locator
	4.2. Stopping the Service Locator
	4.3. Starting Service Activity Monitoring
	4.4. Stopping Service Activity Monitoring
	4.5. Starting the Security Token Service
	4.6. Stopping the Security Token Service
	4.7. Starting all three Talend ESB infrastructure services
	4.8. Stopping all three Talend ESB infrastructure services

	Chapter 5. Using Console
	5.1. Viewing commands from the Karaf console
	5.2. Karaf Console command summary
	5.2.1. Admin Scope
	5.2.2. Config Scope
	5.2.3. Dev Scope
	5.2.4. Features Scope
	5.2.5. JAAS Scope
	5.2.6. Log Scope
	5.2.7. OBR Scope
	5.2.8. OSGi Scope
	5.2.9. Shell Scope
	5.2.10. Miscellaneous Scopes

	Chapter 6. Deploying Multiple Karaf Containers
	6.1. Deploying multiple containers using configuration adaption scripts

	Chapter 7. Remote Console
	7.1. Configuring remote instances
	7.2. Connecting and disconnecting remotely
	7.2.1. Using the ssh:ssh command
	7.2.2. Using the Karaf client
	7.2.3. Using a plain SSH client
	7.2.4. Disconnecting from a remote console

	7.3. Stopping a remote instance
	7.3.1. Using the remote console
	7.3.2. Using the Karaf client

	Chapter 8. Apache CXF and Camel, commands and tuning
	8.1. Commands supplied by CXF
	8.2. Commands supplied by Camel
	8.3. Configuring CXF work queues
	8.3.1. Configuration parameters
	8.3.2. Configuration files

	Chapter 9. Security
	9.1. Managing users and passwords
	9.2. Managing roles
	9.3. Enabling password encryption
	9.4. Managing realms
	9.4.1. Overview
	9.4.2. Schema
	9.4.2.1. Configuration override and use of the rank attribute

	9.4.3. Available realms
	9.4.3.1. PropertiesLoginModule
	9.4.3.2. OsgiConfigLoginModule
	9.4.3.3. JDBCLoginModule
	Passing a data source as an OSGi ldap filter
	Passing a data source as a JNDI name

	9.4.3.4. LDAPLoginModule

	9.5. Deploying security providers

	Chapter 10. HTTP Configuration
	10.1. Server HTTP Configuration
	10.1.1. Basic configuration
	10.1.2. SSL configuration
	10.1.3. Advanced configuration
	10.1.4. Default configuration

	10.2. Client HTTP Configuration
	10.2.1. OSGi configuration files
	10.2.2. HTTP Conduit OSGi Configuration Parameters
	10.2.2.1. The url parameter
	10.2.2.2. The order parameter
	10.2.2.3. Configuration properties

	10.2.3. Chunking

	Chapter 11. Logging System
	11.1. Configuration
	11.1.1. Configuration file
	11.1.2. Configuring the appenders
	11.1.3. Changing the log levels

	11.2. Console Log Commands
	11.3. Advanced Configuration
	11.3.1. Filters
	11.3.2. Nested appenders
	11.3.3. Error handlers
	11.3.4. OSGi specific MDC attributes
	11.3.5. MDC sifting appender
	11.3.6. Enhanced OSGi stack trace renderer
	11.3.7. Using your own appenders

	Chapter 12. Deployer
	12.1. Features deployer
	12.2. Spring deployer
	12.3. Wrap deployer
	12.4. War deployer

	Chapter 13. Servlet Context
	13.1. Configuration
	13.2. Configuring the context
	13.2.1. Relative endpoint address

	Chapter 14. Provisioning
	14.1. Example: Deploying a sample feature
	14.1.1. Stopping and uninstalling the sample application

	14.2. Repositories
	14.2.1. Bundles
	14.2.1.1. Maven URL Handler
	14.2.1.2. Bundle start-level
	14.2.1.3. Bundle stop/start
	14.2.1.4. Bundle dependency

	14.2.2. Dependent Features
	14.2.3. Configurations
	14.2.4. Configuration files
	14.2.5. Feature resolver

	14.3. Commands
	14.3.1. Repository management
	14.3.2. Features management
	14.3.3. Examples

	14.4. Service configuration

	Chapter 15. Web Applications
	15.1. Installing WAR support
	15.2. Deploying a WAR to the installed web feature

	Chapter 16. Monitoring and Administration using JMX
	Chapter 17. Installing the Talend Runtime container as a service
	17.1. Introduction
	17.2. Supported platforms
	17.3. Installing the wrapper
	17.4. Installing the service
	17.4.1. On Windows
	17.4.2. On Linux
	17.4.2.1. On Redhat/Fedora/CentOS Systems
	17.4.2.2. On Ubuntu/Debian Systems

	Chapter 18. Troubleshooting Talend ESB
	18.1. Memory Allocation Parameters
	18.2. On Windows
	18.3. On Linux

