talend
*open integration solutions

Talend ESB STS
User Guide

5.1

Talend ESB STS: User Guide

Publication date 3 May 2012
Copyright © 2011-2012 Talend Inc.

Copyleft

This documentation is provided under the terms of the Creative Commons Public License (CCPL). For more information about what you can
and cannot do with this documentation in accordance with the CCPL, please read: http://creativecommons.org/licenses/by-nc-sa/2.0/

This document may include documentation produced at The Apache Software Foundation which is licensed under The Apache License 2.0.

Notices

Talend and Talend ESB are trademarks of Talend, Inc.

Apache CXF, CXF, Apache Karaf, Karaf, Apache Camel, Camel, Apache Maven, Maven, Apache Archiva, Archiva are trademarks of The
Apache Foundation.

Eclipse Equinox is a trademark of the Eclipse Foundation, Inc. SoapUl is a trademark of SmartBear Software. Hyperic is a trademark of
VMware, Inc. Nagios is atrademark of Nagios Enterprises, LLC.

All other brands, product names, company names, trademarks and service marks are the properties of their respective owners.

Table of Contents

O [gL oo (8 1o o RSP TSPP PR 1
1.1. What is a Security TOKEN SEIVICE?c.uiiiiiiiii et 1
1.2. The STS provider framework in Apache CXF ..o 3
2. Security Token Service ArChITECIUIEo.uu i 4
2.1. The TOKeNProvider INTEITACEveiiiiie e 4
2.2. TOKENProvider ParameterSoeeeeriiieeiii e e e e e eees 5
2.3. TOKENPIOVIAErRESPONSE ...ttt et e e e ean e 5
2.4, THE SCTPIOVIOEScieeiiieeeei ettt ettt et e e e e e ennens 6
2.5. Token caching in the TOKENPIOVIAE!ccouuiiiiiiiiii e 6
2.6. The SAMLTOKENPIOVIAEYcovviieiiiiiieeeet et 7
2.7. Reams in the TOKEN ProViderScccuuiiiiiiiiieeiiiie et 7
2.8. Populating SAML TOKENSiiutiiiieeii et e e e e e eaans 8
2.9. TOKEN Validationooeeiiiiiiii e 10
2.10. TOKEN RENEIWAL ... ceeitieeeit e e 15
2.11. TOKEN CanCEIIBLIONccvuieeiirii e 17
2.12. Generic Token Handlingc.uoieiiiiii e 18
2.13. Claims Handling iNn the STS ... 25
2.14. The TokenValidat@OPErationcceuueieuuiieiieii e e e e e 27
3. Using STS with the Talend RUNIIMEco.uiiii e 30
3.1. Deploying the STS into the Talend Runtime CONtaiNerc.oveeeuieiiiniieinieeineene, 30
3.2. Deploying the STS into a Servliet Container (TOMCAL)ccvvuvvevnieiiiiiiieeeieeeies 31
3.3. Security Token Service (STS) Configurationc.oveeuiiiiiiiiiiineeee e 31
3.4. Data Service Configuration for USING STSc.uiiiuiiiiiiiiiie e 33
3.5. Creating keys for the Security TOKEN SEIVICEovivuiiiiiiiii e 34
4. Secure Token Service (STS) Client Configurationco.uvieuiiiiiiiiieee e 37
4.1, STS ClIeNt BENAVIOLcieeiiieieii ettt 37
4.2. Running the JAX-WS CXF WS-Trust Sample from Talend ESB ..o, 39

Talend ESB STS User Guide

Chapter 1. Introduction

1.1. What is a Security Token Service?

An informal description of a Security Token Service is that it is a web service that offers some or all of the
following services (among others):

* It canissue a Security Token of some sort based on presented or configured credentials.
* It can say whether a given Security Token isvalid or not.

« It can renew (extend the validity of) a given Security Token.

It can cancel (remove the validity of) a given Security Token.
* It can transform a given Security Token into a Security Token of a different sort.

Offloading this functionality to another service greatly simplifies client and service provider functionality, asthey
can simply call the STS appropriately rather than have to handle the security processing logic themselves. For
example, the WSDL of a service provider might state that a particular type of security token is required to access
the service. Then:

1. A client of the service can ask an STS for a Security Token of that particular type, which is then sent to the
service provider.

2. The service provider could choose to validate the received token locally, or dispatch the token to an STS for
validation.

These are the two most common use cases of an STS;

Security Token Services are defined formally within the OASIS WS-Trust specification. They help immensely
in decoupling authentication and authorization maintenance from the web service clients and providers that need

Talend ESB STS User Guide

http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html

Introduction

that information. Using the STS eliminates the need for the Web Service Provider (WSP) and Web Service Clients
(WSC) to haveadirect trust rel ationship, freeing WSPs from needing to maintain WSC UsernameT oken passwords
or X509 certificates from acceptable clients. Instead, it isjust necessary for the WSP to trust the STS and for the
STSto be able to validate the WSC's credentials prior to making the STS call.

A client can communicate with the STS viaa protocol defined in the WS-Trust specification. The SOAP Body of
the request contains a " RequestSecurity Token" element as follows:

<wst : Request SecurityToken Context="..." xmns:wst="...">
<wst: TokenType>. .. </ wst: TokenType>
<wst : Request Type>. .. </ wst: Request Type>

<wst : Secondar yPar anmet er s>. . . </ wst : Secondar yPar anet er s>

</ wst : Request Securit yToken>

The Apache CXF STS implementation supports a wide range of parameters that are passed in
the RequestSecurityToken element. The SOAP Body of the response from the STS will contain a
"ReguestSecurity TokenResponse(Collection)" element, e.qg.:

<wst : Request SecurityTokenResponseCol | ection xmns:wst="...">
<wst : Request SecurityTokenResponse>

</ wst : Request Secur it yTokenResponse>
</ wst : Request Secur it yTokenResponseCol | ecti on>

1.1.1. A sample request/response for issuing a
Security Token

A sample client request is given here, where the client wants the STS to issue a Security Assertion Markup
Language (SAML) 2.0 token for aservice hosted at ht t p: / / cxf . apache. or g: 8080/ servi ce:

<wst : Request SecurityToken Context="..." xmns:wst="...">
<wst : TokenType>
http://docs. oasi s- open. or g/ wss/ oasi s-wss-samnl -t oken-profile-1. 1#SAM.V2. 0
</ wst: TokenType>
<wst : Request Type>
http://docs. oasi s-open. or g/ ws- sx/ ws-trust/ 200512/ | ssue
</ wst : Request Type>
<wsp: Appl i esTo>http://cxf.apache. org: 8080/ servi ce</ wsp: Appl i esTo>
</ wst : Request SecurityToken>

The STS responds with:

<wst : Request SecurityTokenResponseCol | ection xmns:wst="...">

<wst : Request Securit yTokenResponse>
<wst : TokenType>

htt p://docs. oasi s- open. or g/ wss/ oasi s-wss-saml -t oken-profil e-1. 1#SAM.V2. 0
</ wst : TokenType>
<wst : Request edSecuri t yToken>

<sam 2: Assertion xmns:sam2="..." ... />

</ wst : Request edSecurityToken>

</ wst : Request Securi t yTokenResponse>

Talend ESB STS User Guide 2

Introduction

</ wst : Request Securi t yTokenResponseCol | ecti on>

1.2. The STS provider framework in Apache
CXF

The first support for an STS in Apache CXF appeared in the 2.4.0 release with the addition of an STS provider
framework in the WS-Security module. This is essentially an API that can be used to create your own STS
implementation. As the STS implementation shipped in CXF 2.5 is based on this provider framework, it makes
sense to examine it in more detail.

The SEI (Service Endpoint Interface) is available here. It contains the following methods that are relevant to the
ST S features discussed above:

* Request SecurityTokenResponseCol | ecti onType issue(Request SecurityTokenType
request) -toissueasecurity token

* Request SecurityTokenResponseType issueSingl e(Request Securi tyTokenType
request) -toissueasecurity token that is not contained in a"Collection" wrapper (for legacy applications)

* Request SecurityTokenResponseType cancel (Request SecurityTokenType request)
- to cancel a security token

* Request SecurityTokenResponseType val i dat e(Request SecurityTokenType
request) -tovalidate a security token

* Request SecurityTokenResponseType renew Request SecurityTokenType request) -
to renew a security token

The SEI implementation handles each request by delegating it to a particular operation, which isjust an interface
that must be implemented by the provider framework implementation. Finally, a JAX-WS provider is available,
which dispatches a request to the appropriate operation.

Talend ESB STS User Guide 3

Chapter 2. Security Token Service
Architecture

2.1. The TokenProvider Interface

Security tokens are created in the Security Token Service viathe TokenProvider interface. It has three methods:

* bool ean canHandl eToken(String t okenType) - Whether this TokenProvider implementation can
provide atoken of the given type

* bool ean canHandl eToken(String tokenType, String real m - Whether this TokenProvider
implementation can provide atoken of the given type, in the given realm

» TokenProvi der Response creat eToken(TokenPr ovi der Par anet er s t okenPar anet er s)
- Create atoken using the given parameters

A client can request a security token from the STS by either invoking the i ssue operation and supplying
a desired token type, or else calling the "validate" operation and passing a (different) token type (token
transformation). Assuming that the client request is authenticated and well-formed, the STS will iterate through
alist of TokenProvider implementations to see if they can "handle" the received token type. If they can, then the
implementation is used to create a security token, which is returned to the client. The second "canHandleToken"
method which also takes a"realm" parameter.

So to support theissuing of aparticular token typein an STSdeployment, it isnecessary to specify aTokenProvider
implementation that can handl e that token type. The STS currently shipswith two TokenProvider implementations,
one for generating SecurityContextTokens, and one for generating SAML Assertions. Before we look at these
two implementations, let's take a look at the "createToken" operation in more detail. This method takes a
TokenProviderParameters instance.

Talend ESB STS User Guide

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/TokenProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/TokenProviderParameters.java?view=markup

Security Token Service Architecture

2.2. TokenProvider Parameters

The TokenProviderParameters classis nothing more than a collection of configuration propertiesto usein creating
the token, which are populated by the STS operations using information collated from the request, or static
configuration, etc. The properties of the TokenProviderParameters are:

» STSProperti esMBean stsProperties - A configuration MBean that holds the configuration for the
STS asawhole, such asinformation about the private key to use to sign issued tokens, etc.

 EncryptionProperties encryptionProperties - A properties object that holds encryption
information relevant to the intended recipient of the token.

e Principal principal - The current client Principal object. This can be used as the "subject" of the
generated token.

» WebServi ceCont ext webServi ceCont ext - The current web service context object. This allows
access to the client request.

* Request d ai nCol | ecti on request edCl ai s - The requested claims in the token.

* KeyRequirements keyRequi renent s - A set of configuration properties relating to keys.

» TokenRequi renments tokenRequirements - A set of configuration properties relating to the token.
e String appliesToAddr ess - The URL that corresponds to the intended recipient of the token.

e Cl ai nrsManager cl ai nsManager - An object that can manage claims.

* Map<String, Object> additional Properties -Any additional (custom) propertiesthat might be
used by a TokenProvider implementation.

» TokenSt ore tokenStore - A cache used to store tokens.

e String real m- The ream to create the token in (this should be the same as the ream passed to
"canHandleToken").

If thislooks complicated then remember that the STS will take care of populating all of these properties from the
request and some additional configuration. Y ou only need to worry about the TokenProviderParameters object if
you are creating your own TokenProvider implementation.

2.3. TokenProviderResponse

The "createToken" method returns an object of type TokenProviderResponse. Similar to the
TokenProviderParameters object, this just holds a collection of objects that is parsed by the STS operation to
construct a response to the client. The properties are;

* El ement token - The (DOM) token that was created by the TokenProvider.
e String tokenld-ThelD of thetoken

* long lifetime-Thelifetime of the token

* byte[] entropy - Any entropy associated with the token

* | ong keySi ze - Thekey size of a secret key associated with the token.

* bool ean conput edKey - Whether a computed key algorithm was used in generating a secret key.

Talend ESB STS User Guide 5

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/STSPropertiesMBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/service/EncryptionProperties.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/claims/RequestClaimCollection.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/KeyRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/TokenRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/claims/ClaimsManager.java?view=markup
http://cxf.apache.org/javadoc/latest-2.6.x/org/apache/cxf/ws/security/tokenstore/TokenStore.html
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/TokenProviderResponse.java?view=markup

Security Token Service Architecture

» TokenRef erence attachedRef er ence - An object which gives information how to refer to the token
when it is"attached".

* TokenRef erence unAttachedRef er ence - An object which gives information how to refer to the
token when it is "unattached".

Most of these properties are optional as far as the STS operation is concerned, apart from the token and token
ID. The TokenReference object contains information about how to refer to the token (direct reference vs. Key
Identifier, etc.), that is used by the STS to generate the appropriate reference to return to the client.

2.4. The SCTProvider

Now that we've covered the TokenProvider interface, let's look at an implementation that is shipped with the
STS. The SCTProvider is used to provide a token known as a SecurityContextToken, that is defined in the WS-
SecureConversation specification. A SecurityContextToken essentially consists of a String Identifier which is
associated with a particular secret key. If a service provider receives a SOAP message with a digital signature
which refers to a SecurityContextToken in the Keylnfo of the signature, then the service provider knows that it
must somehow obtain a secret key associated with that particular Identifier to verify the signature. How this is
doneis "out of band".

To request a SecurityContextToken, the client must use one of the following Token Types:

* http://schemas. xm soap. or g/ ws/ 2005/ 02/ sc/ sct

 http://docs. oasi s- open. or g/ ws- sx/ ws- secur econver sati on/ 200512

Two properties can be configured on the SCTProvider directly:

* long lifetime-Thelifetime of the generated SCT. The default is 30 minutes.

* bool ean returnEntropy - Whether to return any entropy bytes to the client or not. The default istrue.

The SCTProvider generates a secret key using the KeyRequirements object that was supplied, and constructs a
SecurityContextToken with arandom Identifier. It createsa CXF Security Token object that wrapsthisinformation,
and stores it in the supplied cache using the given lifetime. The SecurityContextToken element is then returned,
along with the appropriate references, lifetime element, entropy, etc.

When requesting a token from an STS, the client will typically present some entropy along with a computed
key algorithm. The STS will generate some entropy of its own, and combine it with the client entropy using the
computed key algorithm to generate the secret key. Alternatively, the client will present no entropy, and the STS
will supply all of the entropy. Any entropy the STS generates is then returned to the client, who can recreate the
secret key using its own entropy, the STS entropy, and the computed key algorithm.

This secret key is then used for the SCT use-case to encrypt/sign some part of a message. The
SecurityContextToken is placed in the security header of the message, and referred to in the Keylnfo element
of the signed/encrypted structure. As noted earlier, the service provider must obtain somehow the secret key
corresponding to the SecurityContextToken identifier. Perhaps the service provider shares a (secured) distributed
cache with an STS instance. Or perhaps the service provider sends the SCT to an STS instance to "validate" it,
and receives a SAML token in response with the embedded (encrypted) secret key.

2.5. Token caching in the TokenProvider

Finally, we will cover token caching in a TokenProvider implementation. The SCTProvider is essentially useless
without a cache, as otherwise there is no way for a third-party to know the secret key corresponding to a

Talend ESB STS User Guide 6

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/TokenReference.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/SCTProvider.java?view=markup
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html#_Toc162064047
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html#_Toc162064047

Security Token Service Architecture

SecurityContextToken. Any TokenProvider implementation can cache agenerated token in the TokenStore object
supplied as part of the TokenProviderParameters.

The SCTProvider creates a Security Token with the ID of the SCT, the secret key associated with the SCT and the
client principal. If a"realm" is passed through, then thisis recorded as a property of the Security Token (keyed via
STSConstants. TOKEN_REALM). Finally, the STS ships with two TokenStore implementations, an in-memory
implementation based on eh-cache, and an implementation that uses Hazelcast.

2.6. The SAMLTokenProvider

The SAMLTokenProvider can issue SAML 1.1 and SAML 2.0 tokens. To request a SAML 1.1 token, the client
must use one of the following Token Types:

e http://docs. oasi s-open. or g/ wss/ oasi s-wss-sanl -t oken-profile-1. 1#SAM.V1. 1
e urn:oasis:nanes:tc: SAML: 1. 0: assertion

To request a SAML 2.0 token, the client must use one of the following Token Types:

 http://docs. oasi s- open. or g/ wss/ oasi s-wss-saml -t oken-profile-1. 1#SAM_V2. 0
e urn:oasis:nanmes:tc: SAML: 2. 0: assertion

The following properties can be configured on the SAML TokenProvider directly:

» List<AttributeStatementProvider> attributeStatementProviders - A list of objects that can add attribute
statements to the token.

* List<AuthenticationStatementProvider> authenticationStatementProviders - A list of objects that can add
authentication statements to the token.

 List<AuthDecisionStatementProvider> authDecisionStatementProviders - A list of objects that can add
authorization decision statements to the token.

 SubjectProvider subjectProvider - An object used to add a Subject to the token.
 ConditionsProvider conditionsProvider - An object used to add a Conditions statement to the token.
* boolean signToken - Whether to sign the token or not. The default is true.

* Map<String, SAMLRealm> realmMap - A map of realms to SAMLRealm objects.

We will explain each of these propertiesin more detail in the next few sections.

2.7. Realms in the Token Providers

Asexplained in the previous section, the TokenProvider interface has a method that takes a realm parameter:

* bool ean canHandl eToken(String tokenType, String real m - Whether this TokenProvider
implementation can provide atoken of the given type, in the given realm

In other words, the TokenProvider implementation is being asked whether it can supply atoken corresponding to
the Token Typein aparticular realm. How the STS knows what the desired realm iswill be covered subsequently.
However, we will explain how the realm is handled by the TokenProviders here. The SCTProvider ignores the
realm in the canHandleToken method. In other words, the SCTProvider can issue a SecurityContextToken in any

Talend ESB STS User Guide 7

http://cxf.apache.org/javadoc/latest-2.6.x/org/apache/cxf/ws/security/tokenstore/TokenStore.html
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/STSConstants.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/cache/HazelCastTokenStore.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/SAMLTokenProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/AttributeStatementProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/AuthenticationStatementProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/AuthDecisionStatementProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/SubjectProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/ConditionsProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/realm/SAMLRealm.java?view=markup

Security Token Service Architecture

realm. If arealm is passed through via the TokenProviderParameters when creating the token, the SCTProvider
will cache the token with the associated realm as a property.

Unlike the SCTProvider, the SAMLTokenProvider does not ignore the realm parameter to the
canHandl eToken method. Recall that the SAMLTokenProvider has a property "Map<String, SAMLRealm>
reelmMap". The canHandl eToken method checks to see if the given realm is null, and if it is not null then
the reAlmMap must contain a key which matches the given realm. So if the STS implementation is designed to
issue tokens in different realms, then the reAlmMap of the SAML TokenProvider must contain the corresponding
realms in the key-set of the map.

The realmMap property maps realm Strings to SAMLRealm objects. Among other properties, the SAMLRealm
class contains the following settings:

 String issuer - the Issuer String to usein thisrealm

» String signatureAlias - the keystore alias to use to retrieve the private key the SAMLTokenProvider uses to
sign the generated token

If the SAMLTokenProvider is"realm aware", then it can issue tokenswith an issuer name and signing key specific
to agiven realm. SAMLRealms a so contain cryptographic and CallbackHandler settings to allow for configuring
realm-specific keystores if desired. If no realm is passed to the SAMLTokenProvider, then these properties are
obtained from the "system wide" properties defined in the STSPropertiesMBean object passed as part of the
TokenProviderParameters, which can be set via the following methods:

e voi d setSignatureUsernane(String signatureUsernane)
 void setlssuer(String issuer)

Two additional properties are required when signing SAML Tokens. A password is required to access the private
key in the keystore, which is supplied by a CallbackHandler instance. A WSSAJ " Crypto" instanceis also required
which controls access to the keystore. These are both set on the ST SPropertiesM Bean object via:

e voi d setCal | backHandl er (Cal | backHandl er cal | backHandl er)
» void setSignatureCrypto(Crypto signatureCrypto)

Note that the signature of generated SAML Tokens can be disabled, by setting the "signToken" property of the
SAMLTokenProvider to "false". As per the SCTProvider, the generated SAML tokens are stored in the cache with
the associated realm stored as a property.

2.8. Populating SAML Tokens

In the previous section we covered how agenerated SAML token is signed, how to configure the key used to sign
the assertion, and how to set the I ssuer of the Assertion. In this section we will describe how to popul ate the SAML
Token itself. The SAMLTokenProvider is designed to be able to issue awide range of SAML Tokens. It doesthis
by re-using the SAML abstraction library that ships with Apache WSS4J, which defines a collection of beans that
are configured and then assembled in a CallbackHandler to create a SAML assertion.

2.8.1. Configure a Conditions statement

The SAMLTokenProvider has a "ConditionsProvider conditionsProvider" property, which can be used to
configure the generated Conditions statement which is added to the SAML Assertion. The ConditionsProvider has
a method to return a ConditionsBean object, and a method to return alifetime in seconds. The ConditionsBean
holds properties such as the not-before and not-after dates, etc. The SAMLTokenProvider ships with a

Talend ESB STS User Guide 8

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/realm/SAMLRealm.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/STSPropertiesMBean.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/saml/ext/bean/
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/SamlCallbackHandler.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/ConditionsProvider.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/saml/ext/bean/ConditionsBean.java?view=markup

Security Token Service Architecture

default ConditionsProvider implementation that is used to insert a Conditions statement in every SAML
token that is generated. This implementation uses a default lifetime of 30 minutes, and set the Audience
Restriction URI of the Conditions Statement to be the received "AppliesTo" address, which is obtained from the
TokenProviderParameters object.

The DefaultConditionsProvider can be configured to change the lifetime of theissued token. If you want to remove
the ConditionsProvider altogether from the generation assertion, or implement a custom Conditions statement,
then you must implement an instance of the ConditionsProvider interface, and set it on the SAMLTokenProvider.

2.8.2. Configure a Subject

The SAMLTokenProvider has a " SubjectProvider subjectProvider" property, which can be used to configure the
Subject of the generated token, regardless of the version of the token. The SubjectProvider interface defines a
single method to return a SubjectBean, given the token provider parameters, the parent Document of the assertion,
and a secret key to use (if any). The SubjectBean contains the Subject name, name-qualifier, confirmation method,
and KeylInfo element, amongst other properties. The SAMLTokenProvider ships with a default SubjectProvider
implementation that is used to insert a Subject into every SAML Token that is generated.

The DefaultSubjectProvider has a single configuration method to set the subject name qualifier. It creates a
subject confirmation method by checking the received key type. The subject name is the name of the principal
obtained from TokenProviderParameters. Finally, aKeylnfo element is set on the SubjectBean under the following
conditions:

« If a"SymmetricKey" Key Type algorithm is specified by the client, then the secret key passed through to the
SubjectProvider is encrypted with the X509Certificate of the recipient, and added to the Keylnfo element. How
the provider knows the public key of the recipient will be covered subsequently.

» If a"Publickey" KeyType algorithm is specified by the client, the X509Certificate that is received as part of
the "UseKey" request isinserted into the Keylnfo element of the Subject.

If a"Bearer" KeyTypealgorithmis specified by the client, then no Keylnfo element is added to the Subject. For the
"SymmetricKey" Key Type case, the SAMLTokenProvider creates a secret key using a SymmetricKeyHandler
instance. The SymmetricKeyHandler first checks the key size that is supplied as part of the KeyRequirements
object, by checking that it fitsin between aminimum and maximum key size that can be configured. It also checks
any client entropy that is supplied, as well as the computed key algorithm. It then creates some entropy and a
secret key.

To add a custom Subject element to an assertion, you must create your own SubjectProvider implementation, and
set it on the SAMLTokenProvider.

2.8.3. Adding Attribute Statements

The SAMLTokenProvider hasa"List<AttributeStatementProvider> attributeStatementProviders' property, which
can be used to add AttributeStatments to the generated assertion. Each object in the list adds a single Attribute
statement. The AttributeStatementProvider contains a single method to return an AttributeStatementBean given
the TokenProviderParameters object. This contains a SubjectBean (for SAML 1.1 assertions), and a list of
AttributeBeans. The AttributeBean object holds the attribute name/qualified-name/name-format, and a list of
attribute values, amongst other properties.

If no statement provider is configured in the SAMLTokenProvider, then the DefaultAttributeStatementProvider
is invoked to create an Attribute statement to add to the assertion. It creates a default "authenticated” attribute,
and also creates separate Attributes for any "OnBehalfOf" or "ActAs" elements that were received in the request.
If the received OnBehal fOf/ActAs element was a UsernameT oken, then the username is added as an Attribute. If
the received element was a SAML Assertion, then the subject name is added as an Attribute.

Talend ESB STS User Guide 9

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/DefaultConditionsProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/SubjectProvider.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/saml/ext/bean/SubjectBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/DefaultSubjectProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/SymmetricKeyHandler.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/AttributeStatementProvider.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/saml/ext/bean/AttributeStatementBean.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/saml/ext/bean/AttributeBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/DefaultAttributeStatementProvider.java?view=markup

Security Token Service Architecture

2.8.4. Adding Authentication Statements

The SAMLTokenProvider has a "List<AuthenticationStatementProvider> authenticationStatementProviders'
property, which can be used to add AuthenticationStatements to the generated assertion. Each object in the
list adds a single Authentication statement. The AuthenticationStatementProvider contains a single method to
return an AuthenticationStatementBean given the TokenProviderParameters object. This contains a SubjectBean
(for SAML 1.1 assertions), an authentication instant, authentication method, and other properties. No default
implementation of the AuthenticationStatementProvider interface is provided in the STS, so if you want to issue
Authentication Statements you will have to write your own.

2.8.5. Adding Authorization Decision Statements

The SAMLTokenProvider has a "List<AuthDecisionStatementProvider> authDecisionStatementProviders'
property, which can be used to add AuthzDecisionStatements to the generated assertion. Each object in
the list adds a single statement. The AuthDecisionStatementProvider contains a single method to return an
AuthDecisionStatementBean given the TokenProviderParameters object. This contains a SubjectBean (for SAML
1.1 assertions), the decision (permit/indeterminate/deny), the resource URI, alist of ActionBeans, amongst other
properties. No default implementation of the AuthDecisionStatementProvider interface is provided in the STS.

Note that for SAML 1.1 tokens, the Subject is embedded in one of the Statements. When creating a SAML
1.1 Assertion, if a given Authentication/Attribute/AuthzDecision statement does not have a subject, then the
standalone Subject is inserted into the statement. Finally, once a SAML token has been created, it is stored
in the cache (if one is configured), with a lifetime corresponding to that of the Conditions statement. A
TokenProviderResponse object is created with the DOM representation of the SAML Token, the SAML Token
ID, lifetime, entropy bytes, references, etc.

2.9. Token Validation

2.9.1. The TokenValidator interface

SecurityTokens are validated in the STS viathe TokenV alidator interface. It is very similar to the TokenProvider
interface. It has three methods:

e bool ean canHandl eToken(Recei vedToken val i dat eTar get) - Whether this TokenValidator
implementation can validate the given token

* bool ean canHandl eToken(Recei vedToken val i dateTarget, String real n) - Whether
this TokenValidator implementation can validate the given token in the given realm

» TokenVal i dat or Response val i dat eToken(TokenVal i dat or Paraneters tvp) - Vaidate
atoken using the given parameters.

A client can validate a security token viathe STS by invoking the "validate”" operation. Assuming that the client
request is authenticated and well-formed, the STS will iterate through alist of TokenValidator implementations
to seeif one can "handle" the received token. If one can, then that implementation is used to validate the received
security token, and the validation result is returned to the client. The second "canHandleToken" method also takes
a'"realm" parameter.

So to support the validation of a particular token type in an STS deployment, it is necessary to
specify a TokenValidator implementation that can handle that token. The STS currently ships with four

Talend ESB STS User Guide 10

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/AuthenticationStatementProvider.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/saml/ext/bean/AuthenticationStatementBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/AuthDecisionStatementProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/AuthDecisionStatementProvider.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/saml/ext/bean/AuthDecisionStatementBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/AuthDecisionStatementProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/validator/TokenValidator.java?view=markup

Security Token Service Architecture

TokenValidator implementations, to validate SecurityContextTokens, SAML Assertions, UsernameT okens, and
BinarySecurity Tokens. Beforewelook at these implementations, let'stake alook at the "validateToken" operation
in more detail. This method takes a TokenV aidatorParameters instance.

2.9.2. TokenValidatorParameters

The TokenValidatorParameters class is a collection of configuration properties to use in validating the token,
which are populated by the STS operations using information collated from the request, or static configuration,
etc. The properties of the TokenValidatorParameters are:

» STSPropertiesM Bean stsProperties- A configuration MBean that holdsthe configuration for the STSasawhole.
* Principal principal - The current client Principal object

» WebServiceContext webServiceContext - The current web service context object. This allows access to the
client request.

» KeyRequirements keyRequirements - A set of configuration properties relating to keys.
» TokenRequirements tokenReguirements - A set of configuration properties relating to the token.
» TokenStore tokenStore - A cache used to retrieve tokens.

e String realm - The realm to validate the token in (this should be the same as the ream passed to
"canHandleToken").

» ReceivedToken token - Represents the token that was received for validation.

If thislooks complicated then remember that the STS will take care of populating all of these properties from the
request and some additional configuration. Y ou only need to worry about the TokenV alidatorParameters object
if you are creating your own TokenV alidator implementation.

2.9.3. TokenValidatorResponse

The "validateToken" method returns an object of type TokenValidatorResponse. Similar to the
TokenValidatorParameters object, this just holds a collection of objects that is parsed by the STS operation to
construct a response to the client. The properties are:

» ReceivedToken token - Represents the token that was received for validation. If the token is determined
valid, then the ReceivedToken will be given a valid state ReceivedToken.STATE.VALID, otherwise
STATE.INVALID or STATE.EXPIRED

* Principal principal - A principal corresponding to the validated token.
» Map<String, Object> additional Properties - Any additional properties associated with the validated token.

 String realm - The realm of the validated token.

2.9.4. The SCTValidator

Now that we've covered the TokenValidator interface, let's look at an implementation that is shipped with
the STS. The SCTVadlidator is used to validate a token known as a SecurityContextToken, that is defined

Talend ESB STS User Guide 11

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/validator/TokenValidatorParameters.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/STSPropertiesMBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/KeyRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/TokenRequirements.java?view=markup
http://cxf.apache.org/javadoc/latest-2.6.x/org/apache/cxf/ws/security/tokenstore/TokenStore.html
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/validator/TokenValidatorResponse.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/validator/SCTValidator.java?view=markup

Security Token Service Architecture

in the WS-SecureConversation specification. The SCTProvider was covered in earlier in this chapter. A
SecurityContextToken essentially consists of a String Identifier which is associated with a particular secret key.
If aservice provider receives a SOAP message with adigital signature which refersto a SecurityContextToken in
the KeylInfo of the signature, then the service provider knows that it must somehow obtain a secret key associated
with that particular Identifier to verify the signature.

One way to do this would be if the service provider shares a (secured) distributed cache with an STS instance.
An alternative solution would be for the service provider to send the SCT to an STSfor validation, and to receive
a SAML token in response with the embedded (encrypted) secret key. The SCTValidator can accommodate this
latter scenario, albeit indirectly aswill be explained shortly.

The SCTValidator can validate a SecurityContextToken in either of the following namespaces:
* http://schenmas. xnl soap. or g/ ws/ 2005/ 02/ sc/ sct
* http://docs. oasi s- open. or g/ ws- sx/ ws- secur econver sati on/ 200512

The SCTVadlidator validates areceived SecurityContextToken by checking to see whether it is stored in the cache.
Thereforeit isarequirement to configure acachefor the STSif you want to validate SecurityContextTokens. If the
SecurityContextToken is stored in the cache (for example, by the SCTProvider), then the received Security Token
is taken to be valid. The secret associated with the SecurityContextToken is also retrieved from the cache, and
set as an "additional property"” in the TokenValidatorResponse using the key "sct-validator-secret”. If the cached
token has a stored principal, then thisis also returned in the TokenValidatorResponse.

If you want to support the scenario of returning the secret key associated with the SecurityContextToken to the
client (of the STS), thenitis possibleto do so viatoken transformation. Thisiswherethe client sends an additional
Token Type (inthiscasefor aSAML Token). After thetokenisvalidated, the SAMLTokenProvider iscalled with
the additional properties map obtained from the SCTValidator. The SAMLTokenProvider then has access to the
secret key viathe " sct-validator-secret" tag, which it can insert into the Assertion using acustom AttributeProvider.

2.9.5. The X509TokenValidator

Another TokenValidator implementation that ships with the STS is the X509TokenValidator. This class
validates an X.509 V.3 certificate (received as a BinarySecurityToken). The BinarySecurityToken must use
Base-64 encoding. The received cert must be known (or trusted) by the STS crypto object, that is set on the
STSPropertiesM Bean object. The X509TokenValidator has a single property that can be configured:

* voi d setValidator(Validator validator) - Setthe WSSAJValidator instance to use to validate
the received certificate. The default is SignatureTrustValidator.

No proof-of-possession is done with the received certificate. The subject principal of the certificate is set on the
response, if validation is successful. Note that no caching is used in this TokenValidator implementation.

2.9.6. The UsernameTokenValidator

The UsernameTokenValidator is used to validate WS-Security UsernameTokens. Two properties can be set
directly on the UsernameTokenValidator:

 void setValidator(Validator validator) - Setthe WSSA4J Validator instance to use to validate
the received UsernameToken. The default is the UsernameTokenValidator (note that thisisin WSSA4J and not
the same as the UsernameTokenValidator in the STS!).

e void set User naneTokenReal nCodec(User naneTokenReal nCodec UTRC) - Set the
UsernameT okenRealmCodec instance to use to return arealm from avalidated token.

Talend ESB STS User Guide 12

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html#_Toc162064047
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/validator/X509TokenValidator.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/validate/Validator.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/validate/SignatureTrustValidator.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/validator/UsernameTokenValidator.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/validate/Validator.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/validate/UsernameTokenValidator.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/realm/UsernameTokenRealmCodec.java?view=markup

Security Token Service Architecture

The UsernameToken is first checked to make sure that it is well-formed. If it has no password element then it
is rgiected. If a cache is configured, then it sees if the UsernameToken has been previoudly stored in the cache
(searching by wsu:ld). If it is, the CXF STS checks the wsu:|d-independent hashcode of the UsernameToken, and
searches for the String representation of this hash in the TokenStore. If a SecurityToken is retrieved, a second
check that the stored hash of the Security Token matches the hash of the received token. Note that the CXF STS
does not have a UsernameTokenProvider as of yet, so for this use-case perhaps the cache is shared with a custom
TokenProvider.

If the token is not stored in the cache, then the WSSAJ Vdidator instance is used to validate the received
UsernameToken. As stated above, the default implementation that is used is the UsernameTokenValidator in
WSSAJ. This implementation uses a CallbackHandler to supply a password to validate the UsernameT oken.
This CallbackHandler implementation is supplied by the ST SPropertiesMBean object. WSS4J also ships with an
implementation that validates a UsernameToken viaa JAAS LoginModule, which can be plugged in to the STS
UsernameT okenValidator. If validationissuccessful, then aprincipal iscreated from the received UsernameT oken
and set on the response.

2.9.7. Realms in the TokenValidators

Recall that the TokenValidator interface has a method that takes a realm parameter:

* bool ean canHandl eToken(Recei vedToken val i dateTarget, String real n) - Whether
this TokenValidator implementation can validate the given token in the given realm

Realms are handled in a dightly different way in TokenValidators compared to TokenProviders. Recall that for
TokenProviders, the implementation is essentially asked whether it can provide atoken in agiven ream. For the
SCTProvider, the realm is ignored in this method. However, when creating a token, the SCTProvider will store
the given realm as a property associated with that token in the cache. The SAMLTokenProvider checks to see if
the given realm isnull, and if it is not null then the realmMap must contain a key which matches the given realm.

There is a subtle distinction between the realm passed to "canHandleToken" for TokenValidators and the
realm returned after a token is validated as part of the TokenValidatorResponse object. The realm passed to
"canHandleToken" is the realm to validate the token in. So for example, you could have two TokenValidator
instances registered to validate the same token, but in different realms. All of the TokenVaidator implementations
that ship with the STS ignore the realm as part of this method. However, the method signature gives the user the
option to validate tokens in different realms in a more flexible manner.

The realm that is returned as part of the TokenValidatorResponse is the realm that the validated token is in
(if any). This can be different to the realm the token was validated in. The X509TokenValidator ignores this
parameter altogether. The SCTValidator checks to see whether the Security Token that was stored in the cache
has a realm property, and if so sets this on the TokenValidatorResonse. The UsernameTokenValidator and
SAMLTokenValidator handle realms in a more sophisticated manner. Recall that the UsernameT okenV alidator
has the following method:

* void set User naneTokenReal nCodec(User naneTokenReal nCodec UTRC) - Set the
UsernameT okenRealmCodec instance to use to return arealm from a validated token.

The UsernameT okenRealmCodec has a single method:

e String get Real nFronToken(User naneToken user naneToken) - Get the realm associated with
the UsernameT oken parameter.

No UsernameT okenRealmCodec implementation is set by default on the UsernameTokenValidator, hence no
realmisreturned in TokenValidatorResponse. If an implemention is specified, then the UsernameT okenV alidator
will retrieve a ream from the UsernameTokenRealmCodec implementation corresponding to the validated
UsernameT oken. If acacheis configured, and the UsernameT oken was already stored in the cache, then therealm
is compared to the realm of the cached token, stored under thetag or g. apache. cxf. sts. t oken. real m
If they do not match then validation fails.

Talend ESB STS User Guide 13

http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/validate/UsernameTokenValidator.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/validate/JAASUsernameTokenValidator.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/realm/UsernameTokenRealmCodec.java?view=markup

Security Token Service Architecture

2.9.8. The SAMLTokenValidator

The SAMLTokenValidator is used to validate SAML (1.1 and 2.0) tokens. The following properties can be set
directly on the SAMLTokenValidator:

 void setValidator(Validator validator) - Setthe WSS4JValidator instance to use to validate
the received certificate. The default is SignatureTrustValidator.

» voi d set Sanl Real mCodec(SAMLReal nCodec sam Real nCodec) - Set the SAMLRealmCodec
instance to use to return arealm from a validated token.

» voi d set Subj ect Constraints(List<String> subjectConstraints) - Setalist of Strings
corresponding to regular expression constraints on the subject DN of a certificate that was used to sign an
Assertion.

These methods are covered in more detail below. The Assertionisfirst checked to make surethat it iswell-formed.
If a cacheis defined, then the hashcode of the Assertion is checked against the hash of al assertionsin the cache.
If amatch isfound in the cache, then the Assertion istaken to be valid. If amatch is not found, then the Assertion
isvalidated.

2.9.8.1. Validating areceived SAML Assertion

If the token is not stored in the cache then it must be validated. Firstly a check is performed to make sure that
the Assertion is signed, if it is not then it is rejected. The signature of the Assertion is then validated using the
Crypto object retrieved from the ST SPropertiesMBean passed in the TokenVaidatorParameters. Finally, trust is
verified in the certificate/public-key used to sign the Assertion. This is done using the Validator object that can
be configured via"setValidator". The default Vaidator is the WSSA4J SignatureTrustVaidator, which checks that
the received certificate is known (or trusted) by the STS Crypto object.

Recall that aList of Strings can be set onthe SAML TokenV aidator viathe "setSubjectConstraints’ method. These
Strings correspond to regular expression constraints on the subject DN of a certificate that was used to sign an
Assertion. This provides additional flexibility to validate areceived SAML Assertion. For example, the Assertion
could be signed by an entity that has a certificate issued by a particular CA, which in turn is trusted by the STS
Crypto object. However, one might want to restrict the list of "valid" entities who can sign a SAML Assertion.
This can be done by adding alist of regular expressions that match the Subject DN of all acceptable certificates
that might be used to sign avalid SAML Assertion. This matching is done by the CertConstraintsParser.

2.9.8.2. Realm handling in the SAMLTokenValidator

Recall that the SAMLTokenValidator has the following method:

* void set Sam Real mCodec(SAMLReal nCodec sam Real nCodec) - Set the SAMLRealmCodec
instance to use to return arealm from a validated token.

The SAMLRealmCodec has a single method:

e String get Real nFromTloken(Asserti onW apper assertion) - Get the ream associated with
the (SAML Assertion) parameter.

No SAML RealmCodec implementation is set by default on the SAML TokenValidator, hence no realm isreturned
in TokenVaidatorResponse. If animplemention is specified, then the SAML TokenValidator will retrieve arealm
from theSAML RealmCodec implementation corresponding to the validated Assertion. If a cache is configured,

Talend ESB STS User Guide 14

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/validator/SAMLTokenValidator.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/validate/Validator.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/validate/SignatureTrustValidator.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/realm/SAMLRealmCodec.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/STSPropertiesMBean.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/validate/Validator.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/validate/SignatureTrustValidator.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/realm/CertConstraintsParser.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/realm/SAMLRealmCodec.java?view=markup

Security Token Service Architecture

and the Assertion was already stored in the cache, then the realm is compared to the realm of the cached token,
stored under the tag "org.apache.cxf.sts.token.realm". If they do not match then validation fails.

2.10. Token Renewal

2.10.1. The TokenRenewer interface

Security tokens are renewed in the STS via the TokenRenewer interface. It has the following methods:

 void setVerifyProof Of Possessi on(bool ean verifyProof Of Possessi on) - A boolean
switch to enable or disable the proof of possession requirement.

* void set All ownRenewal Aft er Expi ry(bool ean al | owRenewal Aft er Expiry) - A switchto
enable or disable the ability to renew tokens after they have expired.

* bool ean canHandl eToken(Recei vedToken renewTarget) - Whether this TokenRenewer
implementation can renew the given token.

* bool ean canHandl eToken(Recei vedToken renewTarget, String real n) - Whether this
TokenRenewer implementation can renew the given token in the given realm.

» TokenRenewerResponse renewToken(TokenRenewerParameters tokenParameters) - Renew the token using
the given parameters

A client can request that the STS renew a security token by invoking the "renew" operation and supplying atoken
under the "RenewTarget" Element. Assuming that the client request is authenticated and well-formed, the STS
will first iterate through alist of TokenVaidator implementations to seeif they can "handle" the received token.
If they can, then the implementation is used to validate the received security token. If no TokenValidator isfound
that can handle the RenewTarget that was received, then an exception is thrown. Note that this means that for
token renewal, it is necessary to configure both a TokenValidator and TokenRenewer implementation that can
handl e the given token.

After the successful validation of atoken, the state of the token is checked. If the state is not valid or expired, then
an exception is thrown. The STS then iterates through the configured list of TokenRenewer implementations to
see which can renew the given (validated) token. The token is then renewed and returned to the client.

The TokenRenewerParameters class is nothing more than a collection of configuration properties to use in
renewing the token, which are populated by the STS operations using information collated from the request, or
static configuration, etc. The TokenRenewerResponse class holds the results from the (successful) token renewal,
including the DOM representation of the renewed token, the token Id, the new lifetime of the renewed token, and
references to the renewed token.

2.10.1.1. The SAMLTokenRenewer

The SAML TokenRenewer can renew valid or expired SAML 1.1 and SAML 2.0 tokens. The following properties
can be configured on the SAML TokenRenewer directly:

* bool ean si gnToken - Whether to sign the renewed token or not. The default is true.

e ConditionsProvider conditionsProvider - An object used to add a Conditions statement to the
token.

Talend ESB STS User Guide 15

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/renewer/TokenRenewer.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/renewer/TokenRenewerResponse.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/renewer/TokenRenewerParameters.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/renewer/SAMLTokenRenewer.java?view=markup

Security Token Service Architecture

e Map<String, SAM_Real nm»realmMap - A map of realmsto SAMLRealm objects.

* | ong maxExpiry - how long atoken is allowed to be expired (in seconds) before renewal. The default is
30 minutes.

The SAML TokenRenewer first checksthat thetoken it extractsfrom the TokenRenewerParametersisin an expired
or valid state, if not it throws an exception. It then retrieves the cached token that corresponds to the token to be
renewed. A cache must be configured to use the SAML TokenRenewer, and the token to be renewed must be in
the cache before renewal takes place, for reasons that will become clear in the next section.

2.10.1.2. Token validation

Before the received SAML token can be renewed, a number of validation steps (that are specific to renewing
SAML tokens) takes place. Two boolean properties are retrieved from the properties of the cached token:

» org. apache. cxf. sts.token.renew ng. al | ow-Whether thetoken isallowed to be renewed or not.

* org. apache. cxf. sts.token.renew ng. al | ow. af t er. expi ry - Whether the token is allowed
to be renewed or not after it has expired.

These two properties are set in the SAMLTokenProvider based on a received <wst:Renewing/> element when
the user is requesting a SAML token viathe issue binding. If a user omits a <wst:Renewing/> element, or sends
<wst:Renewing/> or <wst:Renewing Allow="true"/>, then the token is allowed to be renewed. However, only if
the user sends <wst:Renewing OK="true"/>, will the token be allowed to be renewed after expiry. This explains
why a TokenStore is required for token renewal, as without access to these two propertiesit isimpossible for the
SAML TokenRenewer to figure out whether the issuer of the token intended for the token to be renewed (after
expiry) or not.

If the state of the token is expired, and if the token is allowed to be renewed after expiry, afina check is done
against the boolean set viathe set Al | owRenewal Af t er Expi ry method of TokenRenewer. If thisis set to
false (the default), then an exception isthrown. So to support token renewal after expiry, you must explicitly define
this behavior on the TokenRenewer implementation. Finally, a check is done on how long ago the SAML Token
expired. If it is greater than the value configured in the maxExpi ry property (30 minutes by default), then an
exception is thrown.

The next validation step isto check proof of possession, if thisis enabled (true by default). The Subject Keylnfo
of the Assertion must contain a PublicKey or X509Certificate that corresponds to either the client certificate if
TLSisused, or to the private key that was used to sign some part of the request. Findly, if an Appl i esTo URI
is sent as part of the request, the SAMLTokenRenewer checks that the received Assertion contains at least one
AudienceRestrictionURI that matches that address, otherwise it throws an Exception.

2.10.1.3. Renewing the SAML Assertion

After the validation steps outlined above have passed, the token is renewed in the following way:
» A new ID is generated for the token.
* Anew | ssuel nst ant isset on the token.

* A new Conditions Element replaces the old Conditions Element of the token, using the configured
ConditionsProvider.

» TheAssertionis (re)-signed if the si gnToken property istrue.

The old token is removed from the cache, and the new token is added. Finaly, the token is set on the
TokenRenewerResponse, along with the token Id, and Lifetime.

Talend ESB STS User Guide 16

Security Token Service Architecture

2.10.1.4. SAML Token Renewal in action

Finally, let'stake alook at a system test in CXF that shows how to renew a SAML Token issued by an STS. The
wsdl of the service provider defines a number of endpoints which use the transport binding, with a (endorsing)
supporting token requirement which has an IssuedToken policy that requires a SAML token. In other words, the
client must request a SAML token from an STS and send it to the service provider over TLS, and optionally usethe
secret associated with the SAML token to sign the message Timestamp (if an EndorsingSupportingToken policy
is specified in the wsdl).

The STS spring configuration is available here. The SAML TokenRenewer is configured with proof-of-possession
enabled, and tokens are alowed to be renewed after they have expired. Let's look at the test code and client
configuration. All of the tests follow the same pattern. The client requests a SAML Token from the STS (as per
the IssuedToken policy), with a TTL (time-to-live) value of 8 seconds. The client then uses this issued token to
make a successful request to the service provider. The test code then sleeps for 8 seconds to expire the token, and
triesto invoke on the service provider again. The | ssuedTokenlnterceptorProvider in the WS-Security runtimein
CXF recognizes that the token has expired, and sends it to the STS for renewal. The returned (renewed) token is
then sent to the service provider.

2.11. Token Cancellation

2.11.1. The TokenCanceller interface

SecurityTokens are cancelled in the STS via the TokenCanceller interface. This interface is very similar to the
TokenProvider and TokenValidator interfaces. It contains three methods:

* voi d setVerifyProof O Possessi on(bool ean verifyProof O Possessi on) - Whether to
enable or disable proof-of-possession verification.

* bool ean canHandl eToken(Recei vedToken cancel Target) - Whether this TokenCanceller
implementation can cancel the given token

e TokenCancel | er Response cancel Token(TokenCancel | er Par anet er s
t okenPar anet er s) - Cancel atoken using the given parameters

A client can cancel a security token via the STS by invoking the "cancel" operation. Assuming that the client
request is authenticated and well-formed, the STS will iterate through alist of TokenCanceller implementations
to see if they can "handle" the received token. If they can, then the implementation is used to cancel the
received security token, and the cancellation result is returned to the client. The STS currently shipswith asingle
TokenCanceller implementation, which can cancel SecurityContextTokens that were issued by the STS. Before
we look at this implementation, let's look at the "cancel Token" operation in more detail. This method takes a
TokenCancellerParameters instance, and returns a TokenCancellerResponse object.

2.11.2. TokenCancellerParameters and
TokenCancellerResponse

The TokenCancellerParameters class is nothing more than a collection of configuration properties to use in
cancelling the token, which are populated by the STS operations using information collated from the request, or
static configuration, etc. The properties of the TokenCancellerParameters are;

e STSPropertiesM Bean stsProperties- A configuration MBean that holdsthe configuration for the STSasawhole.

Talend ESB STS User Guide 17

http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/advanced/src/test/resources/org/apache/cxf/systest/sts/renew/DoubleIt.wsdl?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/advanced/src/test/resources/org/apache/cxf/systest/sts/renew/cxf-sts-pop.xml?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/advanced/src/test/java/org/apache/cxf/systest/sts/renew/SAMLRenewTest.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/advanced/src/test/resources/org/apache/cxf/systest/sts/renew/cxf-client.xml?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/canceller/TokenCanceller.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/canceller/TokenCancellerParameters.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/canceller/TokenCancellerResponse.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/STSPropertiesMBean.java?view=markup

Security Token Service Architecture

* Principal principal - The current client Principal object

» WebServiceContext webServiceContext - The current web service context object. This allows access to the
client request.

» KeyRequirements keyRequirements - A set of configuration properties relating to keys.

» TokenRequirements tokenReguirements - A set of configuration properties relating to the token.
» TokenStore tokenStore - A cache used to retrieve tokens.

» ReceivedToken token - Represents the token that was received for cancellation.

The "cancelToken" method returns an object of type TokenCancellerResponse. Similar to the
TokenCancellerParameters object, this just holds a collection of objects that is parsed by the STS operation to
construct a response to the client. It currently only has a single property:

» ReceivedToken token - Represents the token that was received for cancellation. Its state will be
STATE.CANCELLED if token cancellation was successful.

2.11.3. The SCTCanceller

The STS ships with a single implementation of the TokenCanceller interface, namely the SCTCanceller.
The SCTCanceller is used to cancel a token known as a SecurityContextToken, that is defined in the
WS-SecureConversation specification. The SCTProvider and the SCTValidator were covered previously. A
SecurityContextToken essentially consists of a String Identifier which is associated with a particular secret key.
The SCTCanceller can cancel a SecurityContextToken in either of the following namespaces:

* http://schemas.xml soap.org/ws/2005/02/sc/sct
* http://docs.oasi s-open.org/ws-sx/ws-secureconversation/200512

Recall that the SCTValidator validates a received SecurityContextToken by checking to see whether it is
stored in the cache. Therefore it is a requirement to configure a cache for the STS if you want to validate
SecurityContextTokens. The same appliesfor the SCTCanceller. A received SecurityContextToken issuccessfully
cancelled only if it is stored in the cache and is removed from the cache without any errors. Thisgenerally implies
that the STS must have previously issued the SecurityContextToken and stored it in the cache, unlessthe STSis
sharing a distributed cache with other STS instances.

2.11.3.1. Enforcing proof-of-possession

Recall that the TokenCanceller interface has a method "setV erifyProof Of Possession” which defines whether
proof-of-possession is required or not to cancel a security token. The default value for the SCTCanceller is "true".
Thismeansthat for the client to successfully cancel a SecurityContextToken it must proveto the STSthat it knows
the secret key associated with that SecurityContextToken. The client must do this by signing some portion of the
request with the same secret key that the SCTCanceller retrieves from the security token stored in the cache.

2.12. Generic Token Handling

This chapter so far has discussed how tokens are provided, validated, and cancelled in the STS. These operations
are (at least in theory) relatively independent of WS-Trust. For example, they could be used as an API to provide/

Talend ESB STS User Guide 18

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/KeyRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/TokenRequirements.java?view=markup
http://cxf.apache.org/javadoc/latest-2.6.x/org/apache/cxf/ws/security/tokenstore/TokenStore.html
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/canceller/TokenCancellerResponse.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/canceller/SCTCanceller.java?view=markup
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html#_Toc162064047

Security Token Service Architecture

validate/process, etc. tokens. In thissection we'll be exploring thelarger picture of how thisinternal token handling
functionality worksin the context of aclient invocation. In this section we will cover some common functionality
that is used by all of the WS-Trust operations in the STS implementation.

2.12.1. AbstractOperation

Earlier in this chapter the STS provider framework in Apache CXF was introduced. A number of interfaces were
defined for each of the operations that can be invoked on the STS. Before looking at the implementations of
these interfaces that ship with the STS, we will look a base class that al of the operations extend, namely the
AbstractOperation class. This class defines a number of properties that are shared with any subclasses, and can
be accessed via set/get methods:

» ST SPropertiesM Bean stsProperties- A configuration MBean that holdsthe configuration for the STSasawhole,
such as information about the private key to use to sign issued tokens, etc.

* boolean encryptlssuedToken - Whether to encrypt an issued token or not. The default is false.
» List<ServiceMBean> services - A list of ServiceMBean objects, which correspond to "known" services.
» List<TokenProvider> - A list of TokenProvider implementations to use to issue tokens.

* boolean returnReferences - Whether to return Security TokenReference elements to the client or not, that point
to the issued token. The default istrue.

» TokenStore tokenStore - A cache used to storefretrieve tokens.
» List<TokenValidator> tokenValidators - A list of TokenValidator implementations to use to validate tokens.
» ClaimsManager claimsManager - An object that is used to handle claims.

Severa of the properties refer to issuing tokens - this is because this functionality is shared between the issuing
and validating operations. At least one TokenProvider implementation must be configured, if the STS is to
support issuing a token. Some of these properties have been discussed previoudly, for example the TokenStore
cache covered earlier. This cache could be shared across a number of different operations, or else kept separate.
AbstractOperation also contains some common functionality to parse requests, encrypt tokens, create references
to return to the client, etc.

2.12.1.1. STSPropertiesMBean

The AbstractOperation object must be configured with an STSPropertiesMBean object. Thisis an interface that
encapsul ates some configuration common to a number of different operations of the STS:

» void configureProperties() -loadand processthe properties

e void setCall backHandl er (Cal | backHandl er cal | backHandl er) - Set a CallbackHandler
object. Thisisused in the TokenProviders/TokenValidators to retrieve passwords for various purposes.

 void setSignatureCrypto(Crypto signatureCrypto) - Set aWSSAJ Crypto object to use to
sign tokens, or validate signed requests, etc.

e void setSignatureUsername(String signatureUsernane) - Set the default signature
username to use (e.g. corresponding to a keystore alias)

e void setEncryptionCrypto(Crypto encryptionCrypto) - Set aWSS4J Crypto object to use
to encrypt issued tokens.

Talend ESB STS User Guide 19

http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/sts/provider/operation/
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/operation/AbstractOperation.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/STSPropertiesMBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/service/ServiceMBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/TokenProvider.java?view=markup
http://cxf.apache.org/javadoc/latest-2.6.x/org/apache/cxf/ws/security/tokenstore/TokenStore.html
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/validator/TokenValidator.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/STSPropertiesMBean.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/components/crypto/Crypto.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/components/crypto/Crypto.java?view=markup

Security Token Service Architecture

e void setEncryptionUsernane(String encryptionUsernane) - Set the default encryption
username to use (e.g. corresponding to a keystore alias)

e void setlssuer(String issuer) - Setthedefault issuer name of the STS

e voi d set SignatureProperties(SignatureProperties signatureProperties) -Setthe
SignatureProperties object corresponding to the STS.

» void set Real nPar ser (Real nPar ser real nParser) - Set the object used to define what realm
arequestisin.

e void setldentityMapper(ldentityMapper identityMapper) - Setthe object used to map
identities across realms.

The STS ships with a single implementation of the STSPropertiesMBean interface - StaticSTSProperties. This
class has two additional methods:

» void setSignaturePropertiesFile(String signaturePropertiesFile)
» void setEncryptionPropertiesFile(String encryptionPropertiesFile)

If no Crypto objects are supplied to StaticSTSProperties, then it will try to locate a properties file using these
values, and create a WSSA4J Crypto object internally from the properties that are parsed.

2.12.1.2. SignatureProperties

A SignatureProperties object can be defined on the STSPropertiesMBean. Note that this is unrelated to the
signaturePropertieskile property of StaticSTSProperties. This class provides some configuration relating to the
signing of an issued token, as well as symmetric key generation. It has the following properties:

* boolean useKeyValue - Whether to use a KeyValue or not to refer to a certificate in a signature. The default
isfalse.

 long keySize - The (default) key size to use when generating a symmetric key. The default is 256 bits.

* long minimumKeySize - The minimum key size to use when generating a symmetric key. The requestor can
specify aKeySize value to use. The default is 128 bits.

* long maximumKeySize - The maximum key size to use when generating a symmetric key. The requestor can
specify aKeySize value to use. The default is 512 bits.

* signatureAlgorithm - Signature algorithm preferred by the client. Default value is rsa-shal
* acceptedSignatureAlgorithms - Alternative signature algorithms that may be used by the STS.

* cl4nAlgorithm - Canonicalization algorithm (default c14n-excl-omit-comments) preferred by the client.

acceptedCl4nAlgorithms - Alternative canonicalization algorithms that may be used by the STS.

For example, when the client sendsa"KeySize" element to the STS when requesting a SAML Token (and sending
a SymmetricKey KeyType URI), the SAMLTokenProvider will check that the requested keysize fallsin between
the minimum and maximum key sizes defined above. If it does not, then the default key size is used.

2.12.2. Request Parsing

Thefirst thing any of the AbstractOperation implementations do on receiving arequest isto call somefunctionality
in AbstractOperation to parse the request. This parsing is done by the RequestParser object, which iterates

Talend ESB STS User Guide 20

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/SignatureProperties.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/RealmParser.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/IdentityMapper.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/StaticSTSProperties.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/SignatureProperties.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/RequestParser.java?view=markup

Security Token Service Architecture

through the objects of the JAXB RequestSecurityTokenType. The request is parsed into two components,
TokenReguirements and K eyRequirements, which are availabl e on the RequestParser object and are subsequently
passed to the desired TokenProvider/TokenValidator/etc objects.

2.12.2.1. TokenRequirements

The TokenRequirements class holds a set of properties that have been extracted and parsed by RequestParser.
These properties loosely relate to the token itself, rather than anything to do with keys. The properties that can
be set by RequestParser are:

* String tokenType - The desired TokenType URI. Thisisrequired if atoken isto beissued.

» Element appliesTo - The AppliesTo element that was received in the request. This normally holds a URL that
indicates who the recipient of the issued token will be.

 String context - The context attribute of the request.

» ReceivedToken validateTarget - This object holds the contents of a received "ValidateTarget" element, i.e. a
token to validate.

» ReceivedToken onBehalfOf - This object holds the contents of areceived "OnBehalfOf" element.
» ReceivedToken actAs - This object holds the contents of areceived "ActAs' element.

» ReceivedToken cancel Target - This object holdsthe contents of areceived "Cancel Target” element, i.e. atoken
to cancel.

* Lifetime lifetime - The requested lifetime of the issued token. This just holds created and expires Strings, that
are parsed from the request.

» RequestClaimCollection claims - A collection of requested claims that are parsed from the request.
» Renewing renewing - Holds the wst:Renewing semantics that were received (if any) as part of the request.

The ReceivedToken class mentioned above parses a received token object, which can be a JAXBElement<?> or
a DOM Element. If it is a JAXBElement then it must be either a UsernameToken, Security TokenReference, or
BinarySecurityToken. If it is a reference to a security token in the security header of the request, then this token
isretrieved and set as the ReceivedToken instead.

2.12.2.2. KeyRequirements

The KeyRequirements class holds a set of propertiesthat have been extracted and parsed by RequestParser. These
properties contain everything to do with key handling or creation. The properties that can be set by RequestParser
are

* String authenticationType - An optional authentication type URI. Thisis currently not used in the STS.
 String keyType - The desired KeyType URI.

* long keySize - The requested KeySize to use when generating symmetric keys.

* String signatureAlgorithm - The requested signature algorithm to use when signing an issued token.

» String encryptionAlgorithm - The requested encryption algorithm to use when encrypting an issued token.

String c14nAlgorithm - The requested canonicalization algorithm to use when signing an issued token.

Talend ESB STS User Guide 21

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/TokenRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/KeyRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/TokenRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/ReceivedToken.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/ReceivedToken.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/ReceivedToken.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/ReceivedToken.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/Lifetime.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/claims/RequestClaimCollection.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/KeyRequirements.java?view=markup

Security Token Service Architecture

« String computedK eyAlgorithm - The computed key algorithm to use when creating a symmetric key.
 String keywrapAlgorithm - The requested KeyWrap algorithm to use when encrypting a symmetric key.

» X509Certificate certificate- A certificatethat has been extracted from a"UseKey" element, for useinthe SAML
case when a PublicKey KeyType URI is specified.

» Entropy entropy - This object holds entropy information extracted from the client request for use in generating
asymmetric key. Only BinarySecret elements are currently supported.

2.12.2.3. SecondaryParameters

RequestParser also supports parsing a " SecondaryParameters’ element that might be in the request. This could
be extracted from the WSDL of a service provider that specifies an IssuedToken policy by the client and sent
to the STS as part of the RequestSecurityToken reguest. Only KeySize, TokenType, KeyType and Claims child
elements are currently parsed.

2.12.3. The TokenlssueOperation

The TokenlssueOperation is an extension of AbstractOperation that is used to issue tokens. It implements the
I ssueOperation and I ssueSingleOperation interfaces in the STS provider framework.

Recall that AbstractOperation uses the RequestParser to parse a client request into TokenRequirements
and KeyRequirements objects. TokenlssueOperation populates a TokenProviderParameters object with values
extracted from the TokenRequirements and K eyRequirements objects. A number of different processing stepsthen
occur before a TokenProvider implementation is used to retrieve the desired token, comprising of realm parsing,
claims handling, and AppliesTo parsing.

2.12.3.1. Realm Parsing

We have earlier shown how realms are used with TokenProviders to provide tokens, and also how they work
with TokenValidators to validate a given token. However, we did not cover how realms are defined in the first
place. Recall that the ST SPropertiesM Bean configuration object defined on AbstractOperation has a RealmParser
property. The ReamParser is an interface which defines a pluggable way of defining a realm for the current
request. It has a single method:

e String parseReal n{WebServi ceCont ext context) - Return the realm of the current request
given a WebServiceContext object.

Therefore if you wish to issue tokens in multiple reams, it is necessary to create an implementation of the
RequestParser which will return a realm String given a context object. For example, different realms could be
returned based on the endpoint URL or aHTTP parameter. Thisrealm will then get used to select a TokenProvider
implementation to useto issue atoken of the desired type. It will also be used for token validationinasimilar way.

2.12.3.2. AppliesTo parsing

An AppliesTo element contains an address that refersto the recipient of theissued token. If an AppliesTo element
was sent as part of the request then the CXF STS requires that it be explicitly handled. This is done by the list

Talend ESB STS User Guide 22

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/Entropy.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/operation/TokenIssueOperation.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/sts/provider/operation/IssueOperation.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/sts/provider/operation/IssueSingleOperation.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/RequestParser.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/TokenRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/KeyRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/TokenProviderParameters.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/STSPropertiesMBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/RealmParser.java?view=markup

Security Token Service Architecture

of ServiceM Bean objects that can be configured on AbstractOperation. The ServiceMBean interface represents a
service, and has the following methods (among others):

e bool ean i sAddressl nEndpoints(String address) - Return true if the supplied address
corresponds to a known address for this service.

* voi d set Endpoi nt s(Li st<Stri ng> endpoi nts) - Setthelist of endpoint addressesthat correspond
to this service.

The STSshipswith asingleimplementation of thisinterface, the StaticService. For the normal use-case of handling
an AppliesTo element, the user creates a StaticService object and calls setEndpoints with a set of Strings that
correspond to a list of regular expressions that match the allowable set of token recipients (by address). The
TokenlssueOperation will extract the URL address from the EndpointReference child of the received AppliesTo
element, and then iterate through the list of ServiceMBean objects and ask each one whether the given address
is known to that ServiceMBean object. If an AppliesTo address is received, and no ServiceMBean is configured
that can deal with that URL, then an exception is thrown.

The ServiceMBean also defines a number of optional configuration options, such as the default KeyType and
TokenType Strings to use for that Service, if the client does not supply them. It also allows the user to set a
custom EncryptionProperties object, which defines a set of acceptable encryption algorithms to use to encrypt
issued tokens for that service.

2.12.3.3. Token creation and response

Once the TokenlssuerOperation has processed the client request, it iterates through the list of defined
TokenProvider implementationsto seeif each "can handle" the desired token typein the configured realm (if any).
If no TokenProvider is defined, or if no TokenProvider can handle the desired token type, then an exception is
thrown. Otherwise, atoken is created, and a response object is constructed containing the following items:

» The context attribute (if any was specified).

The Token Type.

» Therequested token (possibly encrypted, depending on configuration).
» A number of references to that token (can be disabled by configuration).
e Thereceived AppliesTo address (if any).

e The RequestedProof Token (if a Computed Key Algorithm was used).

» The Entropy generated by the STS (if any, can be encrypted).

» Thelifetime of the generated token.

» TheKeySize that was used (if any).

2.12.3.4. TokenlssueOperation Example

Finally, it'stime to look at an example of how to spring-load the STS so that it can issue tokens. This particular
example uses a security policy that requires a UsernameToken over the symmetric binding. Asthe STSisaweb
service, we first define an endpoint:

Talend ESB STS User Guide 23

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/service/ServiceMBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/service/StaticService.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/service/EncryptionProperties.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/basic/src/test/resources/org/apache/cxf/systest/sts/deployment/cxf-ut.xml?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/basic/src/test/resources/org/apache/cxf/systest/sts/deployment/ws-trust-1.4-service.wsdl?view=markup

Security Token Service Architecture

<j axws: endpoi nt id="UTSTS"
i mpl enent or =" #ut STSPr ovi der Bean"
address="http://.../SecurityTokenService/ UT"
wsdl Location=".../ws-trust-1.4-service.wsdl"
xm ns: ns1="http://docs. oasi s- open. or g/ ws- sx/ ws-trust/200512/"
servi ceNane="ns1: SecurityTokenServi ce"
endpoi nt Name="ns1: UT_Port">
<j axws: properti es>
<entry key="ws-security.call back-handler" value="..."/>

<entry key="ws-security.signature.properties”
val ue="st sKeyst ore. properties"/>
</jaxws: properties>
</ j axws: endpoi nt >

The jaxws:properties are required to parse the incoming message. The CallbackHandler is used to validate the
UsernameT oken and provide the password required to access the private key defined in the signature properties
parameter. The "implementor” of the jaxws.endpoint is the Security TokenServiceProvider class defined in the
STS provider framework:

<bean i d="ut STSProvi der Bean"
cl ass="org. apache. cxf.ws. security.sts. provider. SecurityTokenServiceProvider">
<property nane="issueQperation" ref="utlssueDel egate"/>

</ bean>
This bean supports the Issue Operation via a Tokenl ssueOperation instance:

<bean id="utl ssueDel egat e"
cl ass="org. apache. cxf. sts. operation. Tokenl ssueQCper ati on">
<property nane="t okenProvi ders" ref="ut Sam TokenProvi der"/>
<property nane="services" ref="utService"/>

<property nane="stsProperties" ref="utSTSProperties"/>
</ bean>

This Tokenl ssueOperation instance has a single TokenProvider configured to issue SAML Tokens (with adefault
Subject and Attribute statement):

<bean i d="ut Sam TokenPr ovi der"
cl ass="org. apache. cxf. sts.token. provi der. SAM_TokenPr ovi der" >
</ bean>

The Tokenl ssueOperation also refersto asingle StaticService implementation, which in turn definesasingle URL
expression to use to compare any received AppliesTo addresses:

<bean i d="ut Servi ce"
cl ass="org. apache. cxf.sts.service. StaticService">
<property nane="endpoi nts" ref="ut Endpoi nts"/>

</ bean>

<util:list id="utEndpoints">
<val ue>http://l ocal host: (\d)*/ (doubl ei t| metrowsp)/services/doubl eit /1
(UT|.*symmetric.*|.*)</val ue>

Talend ESB STS User Guide 24

Security Token Service Architecture

<futil:list>

Finally, the TokenlssueOperation is configured with a StaticST SProperties object. This class contains properties
that define what private key to use to sign issued SAML tokens, aswell asthe Issuer nameto use in the generated
token.

<bean i d="ut STSProperties"
cl ass="org. apache. cxf.sts. Stati cSTSProperti es">
<property nane="si gnaturePropertiesFile" val ue="stsKeystore. properties"/>
<property nane="si gnat ureUser nanme" val ue="nmnyst skey"/>
<property nane="cal | backHandl er Cl ass" val ue="..."/>

<property nane="issuer" val ue="Doubl el t STSI ssuer"/ >

</ bean>

2.12.4. The TokenCancelOperation

The TokenCancel Operation classis used to cancel tokensin the STS. It implements the Cancel Operation interface
inthe STS provider framework. In addition to the propertiesthat it inherits from AbstractOperation, it hasasingle
property that can be configured:

» List<TokenCanceller> tokencancellers - A list of TokenCanceller implementations to use to cancel tokens.

Recall that AbstractOperation uses the RequestParser to parse a client request into TokenRequirements and
KeyRequirements objects. TokenCancel Operation first checks that a "Cancel Target" token was received and
successfully parsed (if so it will be stored in the TokenRequirements object). If no token was received then an
exception is thrown.

The TokenCancelOperation then populates a TokenCancellerParameters object with values extracted from
the TokenRequirements and KeyRequirements objects. It iterates through the list of defined TokenCanceller
implementations to see if any "can handle" the received token. If no TokenCanceller is defined, or if no
TokenCanceller can handle the received token, then an exception is thrown. Otherwise, the received token is
cancelled. If thereis an error in cancelling the token, then an exception is also thrown. A response is constructed
with the context attribute (if applicable), and the cancelled token type.

2.13. Claims Handling in the STS

A typical scenario for WS-Trust is when the client requires a particular security token from an STS to access a
service provider. The service provider can let the client know what the requirements are for the security token in
an IssuedToken policy embedded in the WSDL of the service. In particular, the service provider can advertise the
claimsthat the security token must contain in the policy (either directly asachild element of IssuedToken, or else
as part of the RequestSecurityTokenTemplate). An example is contained in the STS systests:

<sp: Request Securi t yTokenTenpl at e>
<t: TokenType>http://...#SAM.V1. 1</t: TokenType>
<t:KeyType>http://.../PublicKey</t:KeyType>
<t:Clains Dialect="http://.../identity">

<ic:Cainmlype Ui="http://.../clains/role"/>
</t:d ai ms>

Talend ESB STS User Guide 25

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/operation/TokenCancelOperation.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/sts/provider/operation/CancelOperation.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/canceller/TokenCanceller.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/RequestParser.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/TokenRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/KeyRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/canceller/TokenCancellerParameters.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/advanced/src/test/resources/org/apache/cxf/systest/sts/claims/DoubleIt.wsdl?view=markup

Security Token Service Architecture

</ sp: Request SecurityTokenTenpl at e>

This template specifies that a SAML 1.1 Assertion is required with an embedded X509 Certificate in the subject
of the Assertion. Theissued Assertion must also contain a"rol€" claim. Thetemplateis sent verbatim by the client
to the STS when requesting a security token.

2.13.1. Parsing claims

The RequestParser object parses the client request into TokenReguirements and KeyRequirements objects.
As part of this processing it converts a received Claims element into a RequestClaimCollection object. The
RequestClaimCollectionisjust alist of RequestClaim objects, along with adialect URI. The RegquestClaim object
holds the claimType URI as well as a boolean indicating whether the claim is optional or not.

2.13.2. The ClaimsHandler

The ClaimsHandler is an interface that the user must implement to be able to "handle" arequested claim. It has
two methods:

e Li st <URI > get Supportedd ai nypes() - Returnthelist of ClaimType URIsthat this ClaimHandler
object can handle.

e ClainmCollection retrieved ai nval ues (Principal p, Requestd ainCollection
rcc) - Return the claim values associated with the requested claims (and client principal).

The ClaimCollection object that is returned is just alist of Claim objects. This object represents a Claim that has
been processed by a ClaimsHandler instance. It essentially contains anumber of propertiesthat the ClaimsHandler
implementation will set, e.g.:

* URI claimType - The claimtype URI as received from the client.
» String value - The claim value

Each Claim object in a ClaimCaollection corresponds to a RequestClaim object in the RequestClaimCollection,
and contains the Claim value corresponding to the requested claim. The STS ships with a single ClaimsHandler
implementation, the LDAPClaimsHandler, which can retrieve claims from an LDAP store. A simpler exampleis
available in the unit tests.

2.13.3. The ClaimsManager

The ClaimsManager defined on AbstractOperation holds a list of ClaimsHandler objects. So to support claim
handling in the STS, it is necessary to implement one or more ClaimsHandler objects for whatever Claim
URIs you wish to support, and register them with a ClaimsManager instance, which will be configured on the
Tokenl ssueOperation object.

As detailed in the previous article, the TokenlssueOperation gets the realm of the current request, and does
some processing of the AppliesTo address, after the RequestParser has finished parsing the request. The
RequestClaimCaollection object that has been constructed by the RequestParser is then processed. For each
RequestClaim in the collection, it checksto see whether the ClaimsManager has a ClaimsHandler implementation
registered that can "handle" that Claim (by checking the URIs). If it does not, and if the requested claim is not
optional, then an exception is thrown.

Talend ESB STS User Guide 26

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/RequestParser.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/claims/RequestClaimCollection.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/claims/RequestClaim.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/claims/ClaimCollection.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/claims/Claim.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/claims/LdapClaimsHandler.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/test/java/org/apache/cxf/sts/common/CustomClaimsHandler.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/claims/ClaimsManager.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/claims/ClaimsHandler.java?view=markup

Security Token Service Architecture

If a ClaimsHandler implementation is registered with the ClaimsManager that can handle the desired claim, then
the claims are passed through to the TokenProvider implementation, which is expected to be able to invoke the
relevant ClaimHandler object, and insert the processed Claim into the generated security token. How thisis done
is entirely up to the user. For example, for the use-case given above of a SAML 1.1 token containing a "role"
claim, the user could implement a custom AttributeStatementProvider instance that evaluatesthe claim values (via
a custom ClaimsHandler implementation registered with the ClaimsManager) and constructs a set of Attributes
accordingly in an AttributeStatement. An example of how to do thisis given in the CXF unit tests.

2.14. The TokenValidateOperation

TokenValidateOperation is an extension of AbstractOperation used to validate tokens in the STS. It implements
the ValidateOperation interface in the STS provider framework. For validation, the below property from
AbstractOperation can be configured:

» List<TokenValidator> tokenValidators - A list of TokenValidator implementations to use to validate tokens.

Recall that AbstractOperation uses the RequestParser to parse a client request into TokenRequirements and
KeyReqguirements objects. TokenValidateOperation first checks that a"ValidateTarget" token was received and
successfully parsed (if so it will be stored in the TokenRequirements object). If no token was received then an
exception is thrown.

2.14.1. Token validation and response

TokenValidateOperation then populates a TokenValidatorParameters object with values extracted from the
TokenReguirements and KeyRequirements objects. It iterates through the list of defined TokenValidator
implementations to see if any "can handle" the received token. If no TokenValidator is defined, or if no
TokenValidator can handle the received token, then an exception is thrown. Otherwise, the received token is
validated. The TokenV alidateOperation then checks to see whether token transformation is required.

2.14.1.1. Token Transformation

If the received token is successfully validated, and if the client supplies a TokenType in the request that does
not correspond to the WS-Trust "status’ namespace, then the TokenV alidateOperation attempts to transform the
validated token into a token of the requested type. Token transformation works in asimilar way to token issuing,
as detailed previously. A TokenProviderParameters object is constructed and the same processing steps (Realm
parsing, AppliesTo parsing) are followed as for token issuing.

One additional processing step occurs before the token is transformed. If the TokenValidatorResponse object
has a principal that was set by the TokenValidator implementation, then it is set as the principa of the
TokenProviderParameters object. However, it is possible that the token is being issued in a different realm to that
of the validated token, and the principal might also need to be transformed. Recall that the ST SPropertiesMBean
configuration object defined on AbstractOperation has an |dentityMapper property. Thisinterface is used to map
identities across realms. It has a single method:

 Principal mapPrincipal(String sourceRealm Principal sourcePrincipal,
String target Real n) - Mapaprincipal from asource realm to atarget realm

If the source realm is not null (the realm of the validated token as returned in TokenValidatorResponse), and if it
does not equal the target realm (as set by the RealmParser), then the identity mapper is used to map the principal
to the target realm and thisis stored in TokenProviderParameters for use in token generation. After the (optional)

Talend ESB STS User Guide 27

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/AttributeStatementProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/test/java/org/apache/cxf/sts/common/CustomAttributeProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/operation/TokenValidateOperation.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/sts/provider/operation/ValidateOperation.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/validator/TokenValidator.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/RequestParser.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/TokenRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/KeyRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/validator/TokenValidatorParameters.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/STSPropertiesMBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/IdentityMapper.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/RealmParser.java?view=markup

Security Token Service Architecture

identity mapping step, TokenV alidateOperation iterates through the TokenProvider list to find an implementation
that can "handle" the desired token typein the given (target) ream (if applicable). If no TokenProvider is defined,
or if no TokenProvider can handle the desired token type, then an exception is thrown.

2.14.1.2. Token response

After token validation has been performed, and after any optional token transformation steps, a response object
is constructed containing the following items:

» The context attribute (if any was specified).
» Thereceived Token Type (if any was specified, or the "status’ token type if validation was successful).
» Whether the received token was valid or not (status code & reason).
« If the received token was valid, and if token transformation successfully occurred:
* The transformed token.
* Thelifetime of the transformed token.

« A number of references to that token (can be disabled by configuration).

2.14.2. TokenValidateOperation example

Finaly, it'stimeto look at an example of how to spring-load the STS so that it can validate tokens. This particular
example uses a security policy that requires aUsernameToken over the transport binding (client auth is disabled).
Asthe STSisaweb service, we first define an endpoint:

<j axws: endpoi nt id="transport STS"
i mpl enent or =" #t r ansport STSPr ovi der Bean"
address="http://.../SecurityTokenService/ Transport"
wsdl Location=".../ws-trust-1.4-service.wsdl"
xm ns: ns1="http://docs. oasi s- open. or g/ ws- sx/ ws-trust/200512/"
servi ceNane="ns1: SecurityTokenServi ce"
endpoi nt Name="ns1: Transport_Port">
<j axws: properti es>
<entry key="ws-security.call back-handler" value="..."/>
</jaxws: properties>

</j axws: endpoi nt >

The CalbackHandler JAX-WS property is used to validate the UsernameToken. The "implementor" of the
jaxws.endpoint is the Security TokenServiceProvider class defined in the STS provider framework:

<bean i d="transport STSProvi der Bean"
cl ass="org. apache. cxf.ws. security.sts.provider. [/
Securi tyTokenServi ceProvi der" >

<property nane="val i dateQperation" ref="transport Val i dat eDel egate"/>
</ bean>

This bean supports the Validate Operation via a TokenV alidateOperation instance:

<bean id="transport Val i dat eDel egat e"

Talend ESB STS User Guide 28

http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/basic/src/test/resources/org/apache/cxf/systest/sts/deployment/cxf-transport.xml?view=markup

Security Token Service Architecture

cl ass="org. apache. cxf. sts. operation. TokenVal i dat eCper ati on">
<property nane="t okenVal i dators" ref="transport TokenVal i dators"/>
<property nane="stsProperties” ref="transport STSProperties"/>

</ bean>

This TokenValidateOperation instance has a number of different TokenValidator instances configured:

<util:list id="transport TokenVali dators">

<ref bean="transport Sam TokenVal i dator"/>

<ref bean="transportX509TokenVal i dator"/>

<ref bean="transport UsernaneTokenVal i dator"/>
<futil:list>

<bean id="transport X509TokenVal i dat or"
cl ass="org. apache. cxf. sts. token. val i dat or. X509TokenVal i dat or "/ >

<bean i d="transport UsernaneTokenVal i dat or"
cl ass="org. apache. cxf. sts. token. val i dat or. User nanmeTokenVal i dat or "/ >

<bean id="transport Sam TokenVal i dat or"
cl ass="org. apache. cxf. sts. token. val i dat or. SAM_.TokenVal i dat or "/ >
</ bean>

Finally the STSPropertiesMBean object that is used is given as follows:

<bean id="transport STSProperties"
cl ass="org. apache. cxf.sts. Stati cSTSProperti es">
<property nane="si gnaturePropertiesFile" value="..."/>
<property nane="si gnat ureUser name" val ue="nyst skey"/>

<property nane="cal | backHandl er Cl ass" val ue="..."/>

<property nane="encryptionPropertiesFile" value="..."/>

<property nane="issuer" val ue="Doubl el t STSI ssuer"/ >

<property nane="encrypti onUsernanme" val ue="nyservi cekey"/>
</ bean>

Talend ESB STS User Guide 29

Chapter 3. Using STS with the Talend
Runtime

This chapter describes the deployment and configuration of STS with a Talend Runtime container, how to
configure the Data Servicesto use the STS. It also discusses creating keys and certificates for STS and clients.

@ Note

Weusetheterm <Tal end. runt i me. di r > for the directory where Talend Runtime isinstalled.
Thisis typicaly the full path of either Runt i me_ ESBSE or Tal end- ESB- V5. 1. x, depending
on the version of the software that is being used. Please substitute appropriately.

3.1. Deploying the STS into the Talend
Runtime container

O Warning

For production use, the sample keys used here will need to be replaced with your project's own keys,
usually signed by athird-party CA.

To enable Security Token Service (STS) in the Talend Runtime, we need to deploy it into a Talend Runtime
container:

1. Replace the STS sample keystore/truststore called st sst or e. j ks located in the <Taend.runtime.dir>/
container/etc/keystores folder with your own keystore. See Section 3.3, “Security Token Service (STS)
Configuration” for more information.

Talend ESB STS User Guide

Using STS with the Talend Runtime

2. cd <Tdend.runtime.dir>/container/bin directory, enter trun to start Talend Runtime, a Talend Runtime
container (Karaf) console window will open.

3. Inthe console, type features.install tesb-ststo install the Security Token Service component.

4. Typelist | grep STSin the console. Y ou should see the output:

ID State Blueprint Spring Level Nane

[203] [Active] [] [started] [60] Apache
CXF STS Core (2.5.0)

Fragnments: 204

[204] [Resolved] [1 [1 [60] Talend ::
ESB :: STS :: CONFIG (5.1.0)

The above shows that Security Token Service (STS) component is enabled in the Talend Runtime container.
The Fragment Bundle204: Talend :: ESB :: STS :: CONFIG (5.1.0) providesthecustom
configuration about the Security Token Service (STS), which will be described in Section 3.3, “ Security
Token Service (STS) Configuration”.

3.2. Deploying the STS into a Servlet
Container (Tomcat)

O Warning

For production use, the sample keys used here will need to be replaced with your project's own keys,
usually signed by athird-party CA.

To enable Security Token Service (STS) using a servlet container (here we are using Tomcat as an example)
follow the below steps:

1. Extract the <Tal end. runti nme. di r >/ add- ons/ st s/ SecurityTokenServi ce. war file and
replace the stsstore.jks STS sample keystore/truststore with your own keystore. Alter the
stsKeystore.properties file with any different configuration information based on your new keystore.
Recompress the extracted WAR into anew WAR file.

2. Deploy the new WAR file created in the previous step into the Tomcat container.

3. Stat Tomcat and open a browser with the follow wurl: http://{tontat}host: port/
SecurityTokenService/. You'll see several Security Token Services available, such as Username
Token service (UT), X.509 Token service, etc.

4, Enter URL:http://{tonctat host}:port/SecurityTokenService/ UT?wsdl , thedisplayed
WSDL file will describe the details about the Security Token Service.

3.3. Security Token Service (STS)
Configuration

The Security Token Service provides the following methods as described in the below snippet, which is defined
in Security TokenService.war/WEB-INF/wsdl/ws-trust-1.4-service.wsdl

Talend ESB STS User Guide 31

Using STS with the Talend Runtime

<wsdl : servi ce name="SecurityTokenService">
<wsdl : port name="UT_Port" bindi ng="tns: UT_Bi ndi ng" >
<soap: address | ocation="http://| ocal host: 8080/ SecurityTokenServi ce/ UT"/ >
</ wsdl : port >
<wsdl : port name="X509_Port" bindi ng="t ns: X509_Bi ndi ng" >
<soap: address | ocation="http://| ocal host: 8080/ SecurityTokenServi ce/ X509"/ >
</ wsdl : port >
<wsdl : port name="Transport_Port" bindi ng="tns: Transport _Bi ndi ng">
<soap: address | ocation="/Transport"/>
</ wsdl : port >
<wsdl : port name="UTEncrypted_Port" bi ndi ng="tns: UTEncr ypt ed_Bi ndi ng" >
<soap: address | ocati on="/UTEncrypted"/>
</ wsdl : port >
</wsdl : service>

As above snippet shows, the Security Token Service can issue (or validate) UserName Token or X509 Token, etc.
In Talend Runtime container, the configuration of Security Token Service (STS) can be defined in thefile:

<Tal end.runtine.dir>/etc/org.tal end. esb. sts. server.cfg

stsServi celrl =/ SecurityTokenServi ce/ UT

j aasCont ext =kar af

signatureProperties=file: ${tesb. home}/ et c/ keyst ores/stsKeystore. properties
si gnat ur eUser name=nyst skey

bspConpl i ant =f al se

By default STS is configured to use JAAS interface to verify the user credentials and perform authentication.
As shown above, STS uses kar af JAAS Context which is the default context configured for Talend Runtime
container and uses Pr oper ti esLogi nMbdul e of Karaf. Thislogin module uses users.properties file located
in/etc/users. properties which contains alist of users and their passwords, hence the users which are
needed to be authenticated via the STS should be listed here. A different login module can be configured for the
STS by updating thej aasCont ext parameter in the above configuration. A Talend Runtime container comes
with several login modules that can be used to integrate into your environment, the modules are listed below:

* PropertiesLoginModule

» OsgiConfigLoginModule

« JDBCLoginModule

e LDAPLoginModule

The si gnat ureProperties file, which is located in: / et c/ keyst or es/

st sKeyst or e. properti es, defines the signature configuration as shown below:

org. apache.ws. security.crypto. nerlin. keystore.type=j ks

org. apache.ws. security.crypto. nerlin. keystore. passwor d=st sspass
org. apache.ws. security.crypto. nerlin. keystore. al i as=nyst skey
org. apache.ws. security.crypto.nerlin. keystore.file=stsstore.jks

The keystore file name can be changed by altering its value in the stsK eystore.properties file. With the default
configuration as shown above, the Talend Runtime container will expect the STS' private key to have the aias
of myst skey, this can be changed by altering the al i as and si gnat ur eUser nane values in the two
configuration files listed above.

Talend ESB STS User Guide 32

Using STS with the Talend Runtime

3.4. Data Service Configuration for using STS

In the Talend Runtime container, the configuration used by Data Service Consumers for using Security
Token Service (STS) can be defined in the filee <Tal end. runti nme. dir>/contai ner/etc/
org.talend.esb.job.client.sts.cfg

#STS endpoi nt configuration
sts.wsdl .l ocation =\

http://1 ocal host: 8040/ servi ces/ SecurityTokenServi ce/ UT?wsdl
sts. nanespace = http://docs. oasi s-open. org/ ws-sx/ws-trust/ 200512/
sts.service.nane = SecurityTokenService
st s. endpoi nt. name = UT_Port

#STS properties configuration
Ws-security.sts.token.username = myclientkey
Ws-security.sts.token.usecert = true
Ws-security.is-bsp-conpliant = fal se
Ws-security.sts.token. properties =\

file:${tesb. hone}/etc/keystores/clientKeystore. properties

The STS endpoint used by the consumer is defined by st s. wsdl . | ocat i on. This configuration should be
changed in case the STS service is running on a different host and port. The keystore configuration described
above is used for signing the timestamp sent in the request by the consumer to the provider. The Talend ESB-
supplied sample keystores and certificates above are not meant for production use. Be sure to use your own keys
(with different passwords) and configure them as discussed below.

A Data Service consumer can use two types of authentication mechanisms. Username token and SAML token.

e When using Username token, the consumer sends the credentids as a part of the request to
the provider and authentication is performed on the provider side. The policy used by the
consumer for Username token authentication is defined in the file <Tal end. runtine. dir>/etc/
org.tal end. esh. j ob. t oken. pol i cy.

e For SAML tokens, the consumer makes a SAML token issue request to the STS passing its credentials
and on successful authentication the STS issues a SAML token. This SAML token is sent as a part of
the request to the provider and the provider verifies the validity of the SAML token. The policy used by
the consumer for SAML token authentication is defined in the file <Tal end. runti ne. di r>/ etc/
org.tal end. esh. job. sam . policy.

When using Username tokens, a Data Service provider receives credentials from the consumer and performs
authentication locally. By default a Data Service provider is configured with JAAS authentication handler and
usesthe default JAAS context kar af configured for the Talend Runtime container. Thelogin module configured
for this context usesuser s. properti es filelocated in/ et c/ users. properti es which containsalist
of users and their passwords. Thus, the user which needs to be authenticated should be listed here.

In the case of a SAML token, the provider localy verifies the integrity of the token using
a certificate, the configuration for it is defined in the file <Tal end.runtine.dir>/etc/
org. tal end. esh. job. service. cfg.

Ws-security.signature. properties =\

file:${tesb. hone}/etc/ keystores/servi ceKeystore. properties
WS- security. signature.username = myservi cekey
Ws-security.signature. password = skpass

Talend ESB STS User Guide 33

Using STS with the Talend Runtime

3.5. Creating keys for the Security Token
Service

This section describes how to create keysfor the Security Token Service. We highly recommend that you usethird-
party signed CA’s (certificate authorities) or create your own Certificate Authority, but the following instructions
can be used to create self-signed keys.

3.5.1. Using OpenSSL to create certificates

First, create the keys.

@ Note

Replace “<PW-Sk>", “<PW-Sk>" “<PW-Cs>" and “<PW-Ck>" in the example below with your
own passwords.

3.5.1.1. Creating the service keystore

Note: given the rm commands below, it is probably best to create anew directory and navigate to it before running
these commands from a terminal window.

rm*.pl2 *.pem*.jks *.cer
openssl req -x509 -days 3650 -newkey rsa: 1024 -keyout servicekey.pem -out
servi cecert.pem - passout pass: <PW Sk>

When running this openssl command, enter any geographic and company information desired, the key passwordin
passout, and acommon name of your choice (perhapsser vi cecn for theserviceand cl i ent cn for theclient).

openssl pkcsl2 -export -inkey servicekey.pem-in servicecert.pem -out
servi ce. pl2 -name nyservicekey -passin pass: <PW Sk> - passout
pass: <PW Sk>

This creates a pkcsl2 certificate. Note the <PW-Sk> value will be used both for the keystore and the private key
itself.

keyt ool -inportkeystore -destkeystore servicestore.jks -deststorepass <PW Sk>
-deststoretype jks -srckeystore service.pl2 -srcstorepass <PW Sk>
-srcstoretype pkcsl2 # See Note 3

This places the certificate in a new JKS keystore. The keystore's password is changed here to <PW-Sk>, but the
private key's password retainsthe earlier value of <PW-Sk>. Also notewe' re using Java 6 instead of Java5 keytool
commands (see changes between the two.)

keytool -list -keystore servicestore.jks -storepass <PWSk> -v
Thelist command isjust to show the keys presently in the keystore.

keyt ool -exportcert -alias nyservicekey -storepass <PW Sk> -keystore
servicestore.jks -file service.cer

keytool -printcert -file service.cer

rm*.pem?*.pl2

Talend ESB STS User Guide 34

http://download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html#Changes

Using STS with the Talend Runtime

3.5.1.2. Creating the client keystore

openssl req -x509 -days 3650 -newkey rsa: 1024 -keyout clientkey.pem
-out clientcert.pem -passout pass: <PW Cs>

openssl pkcsl2 -export -inkey clientkey.pem-in clientcert.pem
-out client.pl2
-nane nyclientkey -passin pass: <PW Cs> -passout pass: <PW Ck>

keyt ool -inportkeystore -destkeystore clientstore.jks -deststorepass <PWCs>
-deststoretype jks -srckeystore client.pl2
-srcstorepass <PW Ck>-srcstoretype pkcsl2

keytool -list -keystore clientstore.jks -storepass <PWCs> -v

keyt ool -exportcert -alias myclientkey -storepass <PWCs> -keystore
clientstore.jks -file client.cer

keytool -printcert -file client.cer

rm*.pem?*.pl2

3.5.2. Deploying and Using a Security Token Service
(STS)

You have created the service and client keystores as in the previous section. Now create the STS keystore as
follows:

@ Note

Replace <PW-Ts>, <PW-Tk> in the example below with your own passwords.

openssl req -x509 -days 3650 -newkey rsa: 1024 -keyout stskey.pem -out
stscert. pem - passout pass: <PW Ts>

openssl pkcsl2 -export -inkey stskey.pem-in stscert.pem-out sts.pl2
-nane nystskey -passin pass: <PW Ts> -passout pass: <PW Tk>

keyt ool -inportkeystore -destkeystore stsstore.jks -deststorepass <PWTs>
-srckeystore sts.pl2 -srcstorepass <PWTk> -srcstoretype pkcsl2
keytool -list -keystore stsstore.jks -storepass <PWTs>

keyt ool -exportcert -alias nmystskey -storepass <PWTs> -keystore
stsstore.jks -file sts.cer

keytool -printcert -file sts.cer

rm*.pem*.pl2

To fix any issues with fixed paths to the keystore and truststore locations within the WSDLSs, the source code
download uses Maven resource filtering to allow for arelative path to the project base directory to be used instead.

Next, the service keystore will need to have the STS public key added so it trusts it, and vice-versa. Also, the
client will need to have the STS and WSP's certificates added to its truststore, as it relies on symmetric binding
to encrypt the SOAP requests it makes to both:

keyt ool -keystore servicestore.jks -storepass <PWSk> -inmport -nopronpt
-trustcacerts -alias nystskey -file sts.cer

keyt ool -keystore stsstore.jks -storepass <PWTs> -inport -nopronpt
-trustcacerts -alias nyservicekey -file service.cer

keyt ool -keystore clientstore.jks -storepass <PWCs> -inport -nopronpt
-trustcacerts -alias nystskey -file sts.cer

keyt ool -keystore clientstore.jks -storepass <PWCs> -inport -nopronpt
-trustcacerts -alias nyservicekey -file service.cer

Talend ESB STS User Guide 35

Using STS with the Talend Runtime

If you plan on using X.509 authentication of the WSC to the STS (instead of UsernameT oken), the former's public
key will need to be in the latter's truststore. This can be done with the following commands:

keyt ool -exportcert -alias myclientkey -storepass <PWCs> -keystore
clientstore.jks -file client.cer

keyt ool -keystore stsstore.jks -storepass <PWTs> -inport -nopronpt
-trustcacerts -alias nyclientkey -file client.cer

Since the service does not directly trust the client (the purpose for our use of the STS to begin with), we will not
add the client's public certificate to the service's truststore as normally done with message-layer encryption.

Talend ESB STS User Guide 36

Chapter 4. Secure Token Service (STS) Client
Configuration

4.1. STS Client Behavior

A simple example of how a CXF client can obtain a security token from the STSis shown inthe CXF'sbasic STS
system test "IssueUnitTest". This test starts an instance of the new CXF STS and obtains a number of different
security tokens, all done completely programmatically, i.e. with no Spring configuration. The STS instance that
is used for the test cases is configured with a number of different endpoints that use different security bindings
(defined in the wsdl of the STS). For the purposes of thistest, the Transport binding is used:

<wsp: Policy wsu:ld="Transport_ policy">
<wsp: Exact | yOne>
<wsp: Al | >
<sp: Transport Bi ndi ng
xm ns: sp="http://docs. oasi s-open. or g/ ws- sx/ ws-securitypolicy/200702" >
<wsp: Pol i cy>
<sp: Tr ansport Token>
<wsp: Pol i cy>
<sp: Htt psToken RequireCientCertificate="fal se"/>
</ wsp: Policy>
</ sp: Transport Token>
<sp: Al gori thnBuite>
<wsp: Pol i cy>
<sp: Basi c128 />
</ wsp: Policy>
</sp: Al gorithnBuite>
<sp: Layout >
<wsp: Pol i cy>

Talend ESB STS User Guide

http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/basic/src/test/java/org/apache/cxf/systest/sts/issueunit/IssueUnitTest.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/basic/src/test/resources/org/apache/cxf/systest/sts/deployment/ws-trust-1.4-service.wsdl?view=markup

Secure Token Service (STS) Client Configuration

<sp: Lax />
</ wsp: Policy>
</ sp: Layout >
<sp: I ncl udeTi mestamp />
</ wsp: Policy>
</ sp: Transport Bi ndi ng>
<sp: Si gnedSupporti ngTokens
xm ns: sp="http://docs. oasi s-open. or g/ ws- sx/ ws-securitypolicy/200702">
<wsp: Pol i cy>
<sp: User nanmeToken
sp: I ncl udeToken=".../ Al waysToReci pi ent ">
<wsp: Pol i cy>
<sp: WsUser nameTokenl10 />
</ wsp: Pol i cy>
</ sp: User naneToken>
</ wsp: Policy>
</ sp: Si gnedSupporti ngTokens>

</wsp: Al'l >
</ wsp: Exact | yOne>
</ wsp: Policy>

In other words, this security policy requires that a one-way TLS connection must be used to communicate with
the STS, and that authentication is performed via a Username Token in the SOAP header.

The object that communicates with an STS in CXF is the STSClient. Typically, the user constructs
an STSClient instance (normally via Spring), sets it with certain properties such as the WSDL location
of the STS, what service/port to use, various crypto properties, etc, and then stores this object on the
message context using the SecurityConstants tag "ws-security.sts.client”. This object is then controlled by the
I ssuedT okenlnterceptorProvider in the ws-security runtime in CXF. This interceptor provider istriggered by the
"IssuedToken" policy assertion, which is typicaly in the WSDL of the service provider. This policy assertion
informsthe client that it must obtain a particular security token from an STS and include it in the service request.
The IssuedTokenl nterceptorProvider takes care of using the STSClient to get a Security Token from the STS, and
handles how long the security token should be cached, etc.

An example of asimple IssuedToken policy that might appear in the WSDL of a service provider is as follows:

<sp: | ssuedToken sp: I ncl udeToken=".../ Al waysToReci pi ent">

<sp: Request Securi t yTokenTenpl at e>
<t: TokenType>

htt p://docs. oasi s- open. or g/ wss/ oasi s-wss-saml -t oken-profile-1. 1#SAM.V2. 0
</t: TokenType>
<t: KeyType>

htt p://docs. oasi s-open. or g/ ws- sx/ ws-trust/ 200512/ Bear er

</t: KeyType>

</ sp: Request Securi tyTokenTenpl at e>

</ sp: | ssuedToken>

This policy states that the client should include a SAML 2.0 Assertion of subject confirmation method "Bearer"
in the request. The client must know how to communicate with an STS to obtain such a token. This is done by
providing the STSClient object with the appropriate information.

The IssueUnitTest referred to above uses the STSClient programmatically to obtain a security token. Let's look
at the "requestSecurity Token" method called by the tests. An STSClient is instantiated via the CXF bus, and the
WSDL location of the STS, plus service and port names are configured:

Talend ESB STS User Guide 38

http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/trust/STSClient.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/SecurityConstants.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/policy/interceptors/IssuedTokenInterceptorProvider.java?view=markup

Secure Token Service (STS) Client Configuration

STSCient stsCient = new STSC i ent (bus);

stsCient.setWdl Location("https://.../SecurityTokenService/ Transport?wsdl ") ;
stsdient.setServiceNane("{...}SecurityTokenService");

stsd ient.set Endpoi nt Name("{...}Transport_Port");

A map is then populated with various properties and set on the STSClient. It is keyed with a different number of
SecurityConstants tags. A username is supplied for use as the "user" in the UsernameToken. A CallbackHandler
classis supplied to get the password to use in the UsernameT oken. Compliance of the Basic Security Profile 1.1
isturned off, thisis to prevent CXF throwing an exception when receiving a non-spec compliant response from
anon-CXF STS:

Map<String, Cbject> properties = new HashMap<String, bject>();
stsCient.setProperties(properties);
properties. put (SecurityConstants. USERNAMVE, "alice");
properties. put (

Securi tyConst ant s. CALLBACK HANDLER,

"org. apache. cxf. systest. sts. conmon. CormonCal | backHandl er ™"
)
properties. put (SecurityConstants.|S BSP_COVPLI ANT, "fal se");

If the KeyType is a "PublicKey", then an X.509 Certificate is presented to the STS in the request to
embed in the generated SAML Assertion. The X.509 Certificate is obtained from the keystore defined in
"clientK eystore.properties’, with the alias "myclientkey”. Finally, the "useCertificateForConfirmationK eylnfo"
property of the STSClient means that the entire certificate is to be included in the request, instead of a KeyValue
(which isthe default):

i f (PUBLI C_KEY_KEYTYPE. equal s(keyType)) {
properties. put (SecurityConstants. STS TOKEN USERNAME, "nyclientkey");
properties. put (SecurityConstants. STS TOKEN PROPERTI ES,
"clientKeystore. properties”);
stsCient.setUseCertificateForConfirmati onKeyl nfo(true);

}

Finally, the token type is set on the STSClient (the type of token that is being requested), as well as the KeyType
(specific to a SAML Assertion), and a security token is requested, passing the endpoint address which is sent to
the STSin the "AppliesTo" element:

stsd ient.set TokenType(t okenType);
stsd ient.set KeyType(keyType);
return stsCient.request SecurityToken(endpoi nt Address);

The returned Security Token object contains the received token as a DOM element, the ID of the received token,

any reference elements that were returned - which show how to reference the token, any secret associated with
the token, and the lifetime of the token.

4.2. Running the JAX-WS CXF WS-Trust
Sample from Talend ESB

Talend ESB includes aj axws- cxf - st s sample under the examples folder of the distribution. The STS and
WSP portions of this example run on Apache Tomcat Version 7.

Talend ESB STS User Guide 39

http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/SecurityConstants.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/tokenstore/SecurityToken.java?view=markup

Secure Token Service (STS) Client Configuration

@ Running on Tomcat 6

If you would like to use Tomcat 6, as discussed in this sample's README file, some changes to
this sample are needed:

* In Tomcat 6's tomcat-users.xml file (discussed in the next section), instead of giving the tomcat
user the "manager-script" and "manager-gui” roles, give him the Tomcat 6-specific "manager"
role.

» Usethe - PTontat 6 setting when deploying either the STS or the Web Service Provider onto
Tomcat

If not already done, configure Maven to be able to install and uninstall the WSP and the STS by following these
instructions:

4.2.1. Download Tomcat and configure Tomcat-Maven
integration

1

Download from http://tomcat.apache.org/download-70.cgi or http://tomcat.apache.org/download-60.cgi the
latest release version of Tomcat and extract the zip or tar.gz file into a new directory.

Have an environment variable $CATALINA_HOME point to your expanded Tomcat application directory,
e.g. for Linux (in your ~/.bashrc file): export CATALI NA_HOVE=/ usr/ myapps/ t ontat -
<ver si on>

In the CATALI NA_HOVE/ conf/t ontat - users. xm file, welll need to create a user with appropriate
manager permissions. Create a new user with the role of manager-script or give the default "tomcat” user the
manager-script role as shown below. This role allows for deploying web applications using scripting tools
such asthe Tomcat Maven Plugin we're using in thistutorial . Although not necessary for Tomcat deployment,
The manager-gui role gives ability to access the browser-based Tomcat Manager HTML application, helpful
for a quick authentication check. Depending on your security needs, you may or may not wish to do this
in production.

<t ontat - user s>
...other entries..
<rol e rol enane="rmanager-script"/>
<rol e rol enane="manager-gui "/ >
<user username="tontat" password="???7?"
rol es="toncat, manager - scri pt, manager - gui "/ >
</toncat - user s>

g Note

For production it is best to grant manager roles to another username besides the easy-to-guess
default "tomcat" user.

Change the "????" in user password line of tomcat-users configuration to another appropriate password and
save.

Start Tomcat from a console window: { pr onpt } % $CATALI NA_HOME/ bi n/ st art up. sh

If you granted the user the manager-gui role, confirm that you can log into the manager webapp at http://
local host:8080/manager/html using the username and password of the manager account.para

Talend ESB STS User Guide 40

http://tomcat.apache.org/download-70.cgi
http://tomcat.apache.org/download-60.cgi

Secure Token Service (STS) Client Configuration

4.2.2. Configure Maven and Java Security Extension

1. Update (or create if not present) your Maven repository settings.xml file for Maven deployment plugin
authorization.

Go to the .m2/settings.xml file of your operating system home directory (for Microsoft Windows, usually
\Documents and Settings\<windows-user>; Linux would be /home/<user>) and add:

<settings>

<servers>
<server>
<i d>nyTonctat </i d>
<user nane>t ontat </ user nanme>
<passwor d>(defined in tontat-users.xm configuration)</password>
</ server>
</ servers>

</settings>
Where "tomcat" above is the name of the user you granted the managerial role(s) to in the previous section.
2. Check if the Java Security Extension installed:

To prevent the "lllegal key size or default parameters* exception, update your Java SDK by downloading
the Java(TM) Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files 6. Follow the
README within that download for instructions on upgrading your JDK to support 256-bit encryption.
(Another option is to reduce the encryption level of the sample to 128-bit by following the instructions
in this sample's README file.) You can download the policy files from htt p: / / ww. or acl e. cont
t echnet wor k/ j ava/ j avase/ downl oads/ i ndex. ht n .

4.2.3. Deployment and running

1. From the root j axws- cxf - st's folder, run mvn clean install. If no errors, can then run nvn
t ontat : depl oy (ort ontat : undepl oy ort ontat : r edepl oy on subsequent runs as appropriate),
either from the same folder (to deploy the STS and WSP at the same time) or separately, one at atime, from
thewar and st s folders.

2. Before proceeding to the next step, make sure you can view the following WSDLs: the CXF STS WSDL
located at: ht t p: / /| ocal host : 8080/ Doubl el t STS/ X509?wsdl andthe CXFWSPathttp://
| ocal host: 8080/ doubl ei t/ servi ces/ doubl ei t UT?wsdl .

3. Navigatetothecl i ent folderandrunnmvn cl ean install exec:exec. Youshould seetheresults
of threeweb service calls, with the client using X.509 authentication with the STSto get the SAML Assertion.

Talend ESB STS User Guide 41

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

	Talend ESB STS
	Table of Contents
	Chapter 1. Introduction
	1.1. What is a Security Token Service?
	1.1.1. A sample request/response for issuing a Security Token

	1.2. The STS provider framework in Apache CXF

	Chapter 2. Security Token Service Architecture
	2.1. The TokenProvider Interface
	2.2. TokenProvider Parameters
	2.3. TokenProviderResponse
	2.4. The SCTProvider
	2.5. Token caching in the TokenProvider
	2.6. The SAMLTokenProvider
	2.7. Realms in the Token Providers
	2.8. Populating SAML Tokens
	2.8.1. Configure a Conditions statement
	2.8.2. Configure a Subject
	2.8.3. Adding Attribute Statements
	2.8.4. Adding Authentication Statements
	2.8.5. Adding Authorization Decision Statements

	2.9. Token Validation
	2.9.1. The TokenValidator interface
	2.9.2. TokenValidatorParameters
	2.9.3. TokenValidatorResponse
	2.9.4. The SCTValidator
	2.9.5. The X509TokenValidator
	2.9.6. The UsernameTokenValidator
	2.9.7. Realms in the TokenValidators
	2.9.8. The SAMLTokenValidator
	2.9.8.1. Validating a received SAML Assertion
	2.9.8.2. Realm handling in the SAMLTokenValidator

	2.10. Token Renewal
	2.10.1. The TokenRenewer interface
	2.10.1.1. The SAMLTokenRenewer
	2.10.1.2. Token validation
	2.10.1.3. Renewing the SAML Assertion
	2.10.1.4. SAML Token Renewal in action

	2.11. Token Cancellation
	2.11.1. The TokenCanceller interface
	2.11.2. TokenCancellerParameters and TokenCancellerResponse
	2.11.3. The SCTCanceller
	2.11.3.1. Enforcing proof-of-possession

	2.12. Generic Token Handling
	2.12.1. AbstractOperation
	2.12.1.1. STSPropertiesMBean
	2.12.1.2. SignatureProperties

	2.12.2. Request Parsing
	2.12.2.1. TokenRequirements
	2.12.2.2. KeyRequirements
	2.12.2.3. SecondaryParameters

	2.12.3. The TokenIssueOperation
	2.12.3.1. Realm Parsing
	2.12.3.2. AppliesTo parsing
	2.12.3.3. Token creation and response
	2.12.3.4. TokenIssueOperation Example

	2.12.4. The TokenCancelOperation

	2.13. Claims Handling in the STS
	2.13.1. Parsing claims
	2.13.2. The ClaimsHandler
	2.13.3. The ClaimsManager

	2.14. The TokenValidateOperation
	2.14.1. Token validation and response
	2.14.1.1. Token Transformation
	2.14.1.2. Token response

	2.14.2. TokenValidateOperation example

	Chapter 3. Using STS with the Talend Runtime
	3.1. Deploying the STS into the Talend Runtime container
	3.2. Deploying the STS into a Servlet Container (Tomcat)
	3.3. Security Token Service (STS) Configuration
	3.4. Data Service Configuration for using STS
	3.5. Creating keys for the Security Token Service
	3.5.1. Using OpenSSL to create certificates
	3.5.1.1. Creating the service keystore
	3.5.1.2. Creating the client keystore

	3.5.2. Deploying and Using a Security Token Service (STS)

	Chapter 4. Secure Token Service (STS) Client Configuration
	4.1. STS Client Behavior
	4.2. Running the JAX-WS CXF WS-Trust Sample from Talend ESB
	4.2.1. Download Tomcat and configure Tomcat-Maven integration
	4.2.2. Configure Maven and Java Security Extension
	4.2.3. Deployment and running

