talend

*open integration solutions

Talend Enterprise Service Factory

User Guide

Covers Apache CXF 2.5.x/2.6.x series

Talend Enterprise Service Factory: User Guide

Publication date 3 May 2012
Copyright © 2011-2012 Talend Inc.

Copyleft

This documentation is provided under the terms of the Creative Commons Public License (CCPL). For more information about what you can
and cannot do with this documentation in accordance with the CCPL, please read: http://creativecommons.org/licenses/by-nc-sa/2.0/

This document may include documentation produced at The Apache Software Foundation which is licensed under The Apache License 2.0.

Notices

Talend and Talend ESB are trademarks of Talend, Inc.

Apache CXF, CXF, Apache Karaf, Karaf, Apache Camel, Camel, Apache Maven, Maven, Apache Archiva, Archiva are trademarks of The
Apache Foundation.

Eclipse Equinox is a trademark of the Eclipse Foundation, Inc. SoapUl is a trademark of SmartBear Software. Hyperic is a trademark of
VMware, Inc. Nagios is atrademark of Nagios Enterprises, LLC.

All other brands, product names, company names, trademarks and service marks are the properties of their respective owners.

Table of Contents

1. Introduction to Service Creation with TAlend ESBcccoviiiiiiiiiiii e 1
2. JAX-WS DEVEIOPIMENT ...ttt et e et e e e e e eenas 2
2.1 JAX-WS OVEIVIBIW ...ttt ettt ettt e e et e e et e e e et e e e ennneeees 2
2.1.1. SPring INEEOratiONoiueieiieei et e e e e aans 2
2,02, TIANGPOITS ..ttt ettt e e e e eans 2
2.1.3. Support for Various Databindings between XML and Java.............ccooeeeunneees 3

204, BINGINGS ..ttt 3
2.1.5. Message Interception and Modificationocouoviieiiiiiiiiiii e 3
2.1.6. JAX-WS HENAIENS ...ttt 3
207, INEEICEPLOISeeeee ettt et e e e e e e e e e ens 3
2.1.8. Transmitting Binary Dalaoceuuuiiiuniiiiieii e 3
2.0.9. WS SUPPOIT .ttt ettt et et e e et e e e e e e e e ees 4
2.1.00. INVOKESS ...ttt ettt e e e e e nneas 4

2.2. JAX-WS Service Devel opment OPLiONSoieeuieriiiiieeie e e 4
2.2.1. JAX-WS Annotated Services from JaVacceevuvieiiiinieiiiiineeecee e 4
2.2.2. JAX-WS Annotated Services from WSDLoovviiiiiiiiiicei e 5
2.2.3. Developing a Service using JAX-WS ..o 5
2.2.4. JAX-WS CONfIQUIELTIONoieeneiieiei et eae e 19
225, JAX-WS ProVIOerS ...covuiiiiiiieeeei et 28
2.2.6. WEDSEIVICECONEXTeevviieieeiii et 34

2.3. JAX-WS Client Devel opment OPLIONSccuuiirneiitieieiee e e eane 34
2.3.1. WSDL2Java generated CHEeNtcocuuiiiiiiiiiiiiee e 34
2.3.2. JAX-WS PrOXY . oevviieeeeetie ettt ettt 35
2.3.3. JAX-WS DiSPaCh APISoiiiiiiiie et 35
2.3.4. USAOE MOUES ... ettt ettt et e 36
2.3.5. DELA TYPES ..eueeeiteitee ettt ettt a e 37
2.3.6. Working with Dispatch OBJECEScvvviiiiiiii e, 38
2.3.7. Developing @ CONSUIMESiuuuiitieeie et e e e e e e et e e e e aanas 41

2.4. Data Binding OPLIONSiiuuiiieiei e et e ean e 56
240, AABOIS ettt 57
2.4.2. JAXB e 66
2.4.3. MTOM Attachments With JAXBccooviiiiiiiiiiei e 69
244, SDO ... 72

245, XIMLBEANSciiiiiieiie et 73

2.5, CXF TFANSPOMS ...ctieit ettt ettt e et e e et et et et e e e e e e e e e e eneees 74
250 HTTP TranSpOrtc.ueeeiieieeiie ettt e e e e e ees 74
2.5.2. IMS TIANSPOM ..ceieneieeee et e e e e e e e e e eanes 94

2.6. WS SUPPOIT ..ttt et et et et e e e et e e e e e eaaas 110
2.6.1. WS- AAArESSING ..evvneieeiiieieeii et e 110
2.6.2. WSPOIICY ...ttt 111
2.6.3. WS-Reliabl&MESSAgINGneeeneiiiieiii e 121
2.6.4, WS-SeCUr€CONVEISALIONcveerieieeiiieeeeii et e et e e e e e e enees 122
2.6.5. WS SECUMEY ...eeeitiiee ettt et et 123
2.6.6. WS-SECUNLYPOIICY ..coevviieiiii e 133
2.6.7. WSTIUSE ..ttt e e e enens 136

2.7. CXF CUSIOMIZALTIONSeeeeiiiieeeeei ettt e et e e e et e e e et e e e enn e eeees 139
2.7. 0 ANNOLBEIONS ...eeetei ettt et e r e e e e 139
2.7.2. DYNAMIC CHENES ..evutiiieiit ettt e e eeens 142

2.8. CXF Command-Line TOOISccoiiriiiiiii e 144
2.8. 1. WSDL 10 JAVA ...ceevviieeeeiii ettt 144
2.8.2. JAVATO WS ... 146

2.9. JAX-WS Development With ECHPSEc.uiiiiniiiiiiii e 147
3. JAX-RS DEVEIOPIMENT ...ttt e 153
3L JAX-RS OVEIVIBIV ...ttt et 153
3.1.1. Root Resources and SUD RESOUICESuueiieriieieiiieeeeete e 153
3.1.2. Path, HTTP Method and MediaType annotationsc.coceuveeviieiennennn. 155

Talend Enterprise Service Factory User Guide

Talend Enterprise Service Factory

3.1.3. Request Message, Parameters and ContextSceuuvviiieiiineeiineiiiieecineens 156

3.1.4. Responses from Resource Methodscooevviveiiiiiiiiecieecece e, 157

3.1.5. EXCeption Handlingocovuieiiiiiii e e e 157

3.1.6. Custom JAX-RS PrOVIGErSccccuuieiiiiieeiiiiie e et e et e e e e 158

I O T o) N P 158
3.2 L HTTP CentriC APl ..ottt 158

B.2.2. PrOXY APl o 159

3.2.3. Reading and Writing HTTP MESSAgEScvvvuieiiieiiii e e e e 160

3.2.4. EXCeption Handlingocouuieiiiiiiiii e e e 161

3.3. Working With Attachmentscocoiiiiiiiii e 161
3.3.1. Reading AttaChmentScc.uieiiiiiiiii e e e e 161

3.3.2. Writing AtaChMENESvuiiiici e e s 162

3.3.3. Uploading fil€S ..vuiie i 164

3.3.4. FOrms and MUIIPartSoeeuuiiiiiiieii e e e e 164

3.3.5. XOP SUPPIOI . vuttiiineie ittt e e e e e e e e e e et e e e e e 166

I3/ @)y T 1W =i o] o 166
3.4.1. Configuration of ENAPOINSoiuiiiiiieiiii e ce e e e e e e 166

3.4.2. Configuration Of CHENESccuuiiiiiiiiii e e e 168

ST U (o= PSP 168
3.5.1. Creating a Basic JAX-RS endpointccoovuieiiiieiiiieeiiieeieee e e 168

4. JAX-RS @N0 OAULN2 ...ouii e aaaa 173
4.1, Introduction t0 OAULNZiiei e 173

4.2, Developing OAULN2 SEIVEISiiiiieie e e e e aaas 174
4.2.1. AULhOrIZEHION SEIVICE ..vvuiiiiii et e 174

4.2.2. ACCESSTOKENSEIVICE ..e.vvuieiiiiiieeeiie e et e e et e et e et e et e e e eaaa s 177

4.2.3. Writing OAUthDataProVIercocovviiiiiiiiice e 178

4.2.4. OAUuth Server JAX-RS endpOiNtScovvneiiiieiiiiieii e e e e e e 179

4.3. Protecting resources with OAULh2 filterscooovii i 180

4.4. How to get the user [0gin NAMEiiiiiiiiiii e 180

I O T= 01 Bt Yo LI T o] oo o A 181

4.6. OAUth2 without Explicit AUthOMZationcoovviieiiii e 182

4.7. OAUth2 WIthOUL @ BIOWSEYuiiiiiiii et 182

4.8. Controlling the AcCess t0 RESOUICE SEIVEScccvuiiiiiieeiiieiii e 182
4.8.1. Sharing the same access path between end users and clients....................... 183

4.8.2. Providing different access points to end users and clients.......................... 184

5. Combining JAX-WS and JAX-RS ..ottt 185
5.1. Using Java-First APProachccoouuiiiiiiiiii e 185

5.2. Using Document-First APProachccuviiiiieiiiii e 186

6. Talend ESB Service Recommended Project Structurecouveviieiiiiiiiii e 187
7. Talend ESB Service EXaMPIESccvuiiiiiiii e e e e e e e e e e 188
8. Configuring JIMX INEEGIaioNccuueiiiieiii e e e e e e e e e e e e e e eaen 190
8.1. Example Configurationc..oiiiiiiiiiii i 191

8.2. How to get web service performance MetriCsooovvveviviiiiiiciii e, 192

Talend Enterprise Service Factory User Guide iv

List of Examples

2.1. Implementation of the Greeter SEIVICEc.uu i 7
2.2, SIMPLE SEL .o 9
2.3, Implementation fOr SEI ... e 9
2.4. Interface with the @WebService ANNOLALIONvuivieiii e aaas 11
2.5. Annotated Service Implementation Classcouuiiiiiiiiiiiii e 12
2.6. Specifying an RPC/LITERAL SOAP BinNGiNgc..oeeuuiiiiiiiiiiiiiieei e 13
2.7. SEI with Annotated MEthOOScoovviiiiie e 16
2.8. Fully Annotated SEIooiiiiii e 17
2.9. Outline of a Generated SErViCE ClaSSiiiiiriiieiiiiie e 46
2.10. The Greeter Service Endpoint INterfaceco.uiiiiiiiiiiii e, 47
2.11. Setting a Request Context Property on the Client Sidec.ooeveiiiiiiiiiiiee, 49
2.12. Reading a Response Context Property on the Client Side............cccovviiiiiiiiiiineeeeenn, 50
2.13. Template for an Asynchronous Binding Declarationccoviiiiiiiiiniiiniiiieees 52
2.14. Service Endpoint Interface with Methods for Asynchronous Invocations......................... 53
2.15. Polling Approach for an Asynchronous Operation Callcciiiiiiiiiiiiiiiis 54
2.16. The javax.xml.ws AsyncHandler Interfaceoooeeiiiiiiii e 55
2.17. The TestAsyncHandler Callback Classcouuiiiiiiiiiii e 55
2.18. Callback Approach for an Asynchronous Operation Callccooviiiiiiiiiiiiiiiiieenn, 56
2.19. HTTP Consumer Configuration NaMESPACEcuuieuueeuiaiiiaeeieeeieeeiaeeiiaeeeieaennnns 76
2.20. http-conf:conduit EIEMENtcoouiiii e 76
2.21. HTTP Consumer Endpoint Configurationooieuiiiuiiiiineiieeee e 79
2.22. HTTP conduit configuration disabling HTTP URL hostname verification (usage of

ToTor= 1 0o 1S F = (o) R PP UPTR PP 80
2.23. HTTP Consumer WSDL Element's NamMESPACEccuuueiutniiiiieiieeeiaeeeeeei e eieeeenne 80
2.24. WSDL to Configure an HTTP Consumer Endpointcocouiiiiiiiiiiiiiieceei e, 81
2.25. Adding the Configuration NaMESPECEccuuriiiiieiiieiei et e e e e eaaeees 86
2.26. http-conf:destination EIEMENtoooeueiiiiii e 86
2.27. HTTP Service Provider Endpoint Configurationoceuueeiuiiiiiieiieeii e 87
2.28. HTTP Provider WSDL Element's NamMESPACEccuuuierneeiieeiiieeeiaeeieeeiaeeaiaeeeiaaes 88
2.29. WSDL to Configure an HTTP Service Provider Endpointcocouiiiiiiiiiiiiiiiiies 88
2.30. IMS EXIENSION NAMESPECE ... cevneetieeiti ettt ettt e e e e e et e e e e e e e e ea e ean s 95
2.31. IMS Configuration NAMESPACESuuieuniiietii et e e et e e e e e e eaeaeens 95
2.32. IMS WSDL POrt SPeCifiCatioNoveiieiiiieiiiiie et 97
2.33. Addressing Information in a Configuration File ..o, 98
2.34. Configuration for a IMS Consumer ENAPOINtooeuuiiiiiiiiaeiieeei e 99
2.35. Configuration for a JIMS Service ENdPOINtccuuviiiiiiiiiii e 101
2.36. IMS Session Pool CONfIGQUIELTIONieueiiieiii e e e 102
2.37. IMS Consumer Endpoint Runtime Configurationcooeeieeiiiiiiiineei e, 103
2.38. IMS Service Endpoint Runtime Configurationccoveeeiiiiiiiiiiieieeeeeeee e 103

Talend Enterprise Service Factory User Guide

Chapter 1. Introduction to Service Creation
with Talend ESB

Talend ESB provides users with an easy-to-use solution for service enablement. Talend ESB incorporates the
industry leading open source Apache CXF implementation of JAX-WS and helps you create new services and
also service enable your existing applications and interfaces. It provides a lightweight, modular architecture that
is based on the popular Spring Framework, so it works with your application, regardless of the platform on which
it is running. It can be run as a stand-alone Java applications, as part of a servlet engine, such as Tomcat, as an
OSGi bundle on an OSGi container such as Equinox, or within a JEE server.

Talend ESB supportsthe creation of SOAP and REST web services, with full WS-*functionality, including support
for WS- Addressing, WS-Reliable Messaging, and WS-Security over both HTTP and JM S transports. Developers
use a declarative, policy-centric approach to enable different qualities of service through configuration, rather
than code.

CXF hasbeen certified and tested against the broadest set of vendor implementationsfor the various WS standards.
Users benefit from this interoperability testing, which reduces the overall cost and complexity for application
integration.

The Talend ESB distribution goes beyond Apache CXF, with support for OSGi containers along with illustrative
examples, freely available for download. CXF development tools include support for Maven plug-ins, WSDL
document creation, and Spring configuration generation.

Talend Enterprise Service Factory User Guide

Chapter 2. JAX-WS Development

2.1. JAX-WS Overview

CXF implements the JAX-WS APIs which make building web services easy. JAX-WS encompasses many
different areas. Generating WSDL from Java classes and generating Java classes from WSDL, a Provider API
which alows you to create simple messaging receiving server endpoints, and a Dispatch API which allows you
to send raw XML messages to server endpoints. Apache CXF supports a variety of web service specifications
including WS-Addressing, WS-Policy, WS-ReliableMessaging and WS-Security. Architectural aspects of CXF
include the following:

2.1.1. Spring Integration

Spring is afirst class citizen with Apache CXF. CXF supports the Spring 2.0 XML syntax, making it trivial to
declare endpoints which are backed by Spring and inject clients into your application.

2.1.2. Transports

CXF works with many different transports. Currently CXF includes support for HTTP, IMS, and Local (that is,
"in-JVM") transports. The local transport is unique in that it will not work across machines, but simply sends
messages in memory. Y ou can also configure thelocal transport to avoid serialization by using the Object binding
or the colocation feature if desired. Y ou can also write your own transport.

Talend Enterprise Service Factory User Guide

JAX-WS Development

2.1.3. Support for Various Databindings between XML
and Java

CXF provides support for multiple databindings, including JAXB, XML Beans, and Aegis Databinding (2.0.x),
is our own databinding library that makes devel opment of code-first web servicesincredibly easy. Unlike JAXB,
you don't need annotations at all. It also works correctly with a variety of datatypes such as Lists, Maps, Dates,
etc. right out of the box. If you're building a prototype web services that's really invaluable as it means you have
to do very little work to get up and running.

2.1.4. Bindings

Bindings map a particular service's messages to a particular protocol. CXF includes support for several different
bindings. The SOAP binding, which is the default, maps messages to SOAP and can be used with the various
WS-* modulesinside CXF. The Pure XML binding avoids serialization of a SOAP envelope and just sends araw
XML message. Thereisaso an HTTP Binding which maps a serviceto HTTP using RESTful semantics.

2.1.5. Message Interception and Modification

Many times you may want to provide functionality for your application that works at a low level with XML
messages. This commonly occurs through functionality referred to as Handlers or Interceptors. Handlers/
Interceptors are useful for:

 Performing authentication based on Headers
 Processing custom headers

» Transforming amessage (i.e. viaXSLT or GZip)
» Redirecting a message

» Getting access to the raw 1/O or XML stream

2.1.6. JAX-WS Handlers

If you are using the JAX-WS frontend, JAX-WS supports the concept of logical and protocol handlers. Protocol
handlers allow you to manipulate the message in its raw, often XML-based, form - i.e. a SAAJ SOAPMessage.
Logica handlers allow you to manipul ate the message after its already been bound from the protocol to the JAXB
object that your service will receive.

2.1.7. Interceptors

Interceptors provide access to all the features that CXF has to offer - alowing you to do just about anything,
including manipulating the raw bytes or XML of the message.

2.1.8. Transmitting Binary Data

CXF provides facilities to transmit binary data efficiently via a standard called MTOM. Normally binary data
inside an XML message must be Base64 encoded. This results in processing overhead and increases message

Talend Enterprise Service Factory User Guide 3

http://localhost:8080/confluence/pages/viewpage.action?pageId=1343563

JAX-WS Development

size by 30%. If you use MTOM, CXF will send/receive MIME messages with the message stored as a MIME
attachment, just likeemail. Thisresultsin much more efficient communication and allowsyou to transmit messages
much larger than memory.

2.1.9. WS-* Support

CXF supports a variety of web service specifications including WS-Addressing, WS-Policy, WS-
ReliableMessaging and WS-Security.

2.1.10. Invokers

Invokersallow you to customize how aparticular method or backend service object isexecuted. Thisisparticularly
useful if your underlying service objects are not plain javabeans and instead need to be created or looked up via
acustom factory.

2.2. JAX-WS Service Development Options

2.2.1. JAX-WS Annotated Services from Java

The JAX-WS APIsinclude a set of annotations which allow you to build services using annotated classes. These
services are based on a single class which contains a set of operations.

Here's asimple example:

@\ebService
public class Hello {
public String sayHi (String nanme) {
return "Hello " + naneg;

}
}

JAX-WS includes many more annotations as well such as:

* @WebMethod - allowsyou to customize the operation name, excludethe operation frominclusioninthe service,
etc

* @WebParam - alows you to customize a parameter's name, namespace, direction (IN or OUT), etc
* @WebResult - allows you to customize the return value of the web service call

Datais marshalled from XML to Java and vice versaviathe JAXB data-binding.

Services are publish via one of two means:

» The JAX-WS standard Endpoint APIs

» CXF's XML configuration format - i.e. <jaxws.endpoint ... />

Talend Enterprise Service Factory User Guide 4

https://jax-ws.dev.java.net/jax-ws-ea3/docs/annotations.html#1.%20Overview%7Coutline

JAX-WS Development

2.2.2. JAX-WS Annotated Services from WSDL

If you have existing WSDLs for your service or wish to write your WSDL first and then generate classes, CXF
has many tools to help you do this.

The WSDL 2Javatool will generate a JAX-WS annotated service and server stub from your WSDL. Y ou can run
it one of three ways:

* The command line
» The Maven plugin
* With the WSDL 2Java APl

Note that CXF generally restricts WSDL support to WSI-BP, not the full WSDL 1.1 specification.

2.2.3. Developing a Service using JAX-WS

Y ou can develop a service using one of two approaches:
 Start with aWSDL contract and generate Java objects to implement the service.

 Start with a Java object and service enable it using annotations. For new development the preferred path is
to design your services in WSDL and then generate the code to implement them. This approach enforces the
concept that aserviceisan abstract entity that isimplementation neutral. It also meansyou can spend moretime
working out the exact interface your service requires before you start coding.

However, there are many cases where you may need to service enable an existing application. While JAX-WS
eases the process, it does require that you make some changes to source code of your application. Y ou will need
to add annotations to the source. It also requires that you migrate your code to Java 5.0.

2.2.3.1. WSDL First Development

Using the WSDL first model of service development, you start with a WSDL document that defines the service
you wish to implement. This WSDL document could be obtained from another developer, a system architect, a
UDDI registry, or you could writeit yourself. The document must contain at least afully specified logical interface
before you can begin generating code fromit.

Once you have aWSDL document, the process for developing a JAX-WS service is three steps:
1. Generate starting point code.
2. Implement the service's operations.

3. Publish the implemented service.

Generating the Starting Point Code

JAX-WS specifiesadetailed mapping from aservice defined in WSDL to the Java classes that will implement that
service. Thelogical interface, defined by thewsdl : por t Type element, ismapped to aservice endpoint interface
(SEI). Any complex types defined in the WSDL are mapped into Java classes following the mapping defined
by the Java Architecture for XML Binding (JAXB) specification. The endpoint defined by thewsdl : ser vi ce
element isalso generated into a Java classthat is used by consumersto access endpointsimplementing the service.

Talend Enterprise Service Factory User Guide 5

JAX-WS Development

The wsdl2java command automates the generation of this code. It also provides options for generating starting
point code for your implementation and an ant based makefile to build the application. wsdl2java provides a
number of arguments for controlling the generated code.

Running wsdl2java

Y ou can generate the code needed to develop your service using the following command: wsdl2java -ant -impl
-server -d outputDir myService.wsdl

The command does the following:
e The-ant argument generates a Ant makefile, called bui | d. xm , for your application.
* The-i npl argument generatesashell implementation classfor each portTypeelementinthe WSDL document.

» The-server argument generatesasimple mai n() to launch your service as a stand aone application.

The-d out put Di r argument tells wsdl2java to write the generated code to a directory called outputDir.

* nyServi ce. wsdl isthe WSDL document from which code is generated.

Generated code

Tablel [6] describes the files generated for creating a service.

Table 1: Generated Classes for a Service

File Description

port TypeNane. | ava The SEI. This file contains the interface your service
implements. Y ou should not edit thisfile.

servi ceNane. j ava The endpoint. This file contains the Java class your
clientswill use to make requests on the service.

port TypeNanel npl . j ava The skeleton implementation class. You will modify
thisfile to implement your service.

port TypeNane_port TypeNane. .. A basic server mai n() that allows you to deploy your

I mpl Port _Server.java service as a stand alone process.

Implementing the Service

Once the starting point code is generated, you must provide the business logic for each of the operations defined
in the service's interface.

Generating the implementation code

Y ou generate the implementation class for your service with wsdl2java's- i npl flag.

@ Tip

If your service's contract included any custom types defined in XML Schema, you will also need to
ensure that the classes for the types are also generated and available.

Talend Enterprise Service Factory User Guide 6

JAX-WS Development

Generated code

The service implementation code consists of two files:
e port TypeNane. | ava isthe service interface(SEl) for the service.

» port TypeNanel npl . j ava isthe class you will use to implement the operations defined for the service.

Implement the operation's logic

You provide the business logic for your service's operations by completing the stub methods in
port TypeNanel npl . j ava . For the most part, you use standard Javato implement the businesslogic. If your
service uses custom XML Schema types, you will need to use the generated classes for each type to manipulate
them. There are also some CXF specific APIs that you can use to access some advanced features.

Example

For example, an implementation class for a service that defined the operations sayHi and gr eet Me may look
like the below example.

Example 2.1. Implementation of the Greeter Service
package deno. hw. server;
i mport org.apache. hell o_world _soap_http. Greeter;
@ avax.jws. WebServi ce(port Nane = "SoapPort", serviceNane = "SQAPServi ce",

t ar get Namespace = "http://apache.org/hello world_soap_http",

endpoi ntI nterface = "org. apache. hel | o_worl d_soap_http. Geeter")
public class Greeterlnpl inplements Geeter {

public String greetMe(String me) {
System out. println("Executing operation greetM");

Systemout. println("Mssage received: " + me + "\n");
return "Hello " + ne;

}

public String sayHi () {
System out. println("Executing operation sayH \n");
return "Bonjour";

2.2.3.2. Java First Development

To create a service starting from Java you need to do the following:

1. Create a Service Endpoint Interface (SEI) that defines the methods you wish to expose as a service.

Talend Enterprise Service Factory User Guide 7

JAX-WS Development

@ Tip
You can work directly from a Java class, but working from an interface is the recommended
approach. Interfaces are better for sharing with the developers who will be responsible for

developing the applications consuming your service. Theinterfaceis smaller and does not provide
any of the service's implementation details.

2. Add the required annotations to your code.

3. Generate the WSDL contract for your service.

@ Tip

If you intend to use the SEI as the service's contract, it is not necessary to generate a WSDL
contract

4. Publish the service.

Creating the SEI

The service endpoint interface (SEI) is the piece of Java code that is shared between a service and the consumers
that make requests on it. When starting with a WSDL contract, the SEI is generated by the code generators.
However, when starting from Java, it is the up to a developer to create the SEI.

There are two basic patterns for creating an SEl:

» Green field development Y ou are developing a new service from the ground up. When starting fresh, it is best
to start by creating the SEI first. You can then distribute the SEI to any developers that are responsible for
implementing the services and consumers that use the SEI.

@ Note

The recommended way to do green field service development is to start by creating a WSDL
contract that defines the service and its interfaces.

» Service enablement In this pattern, you typically have an existing set of functionality that is implemented as a
Java class and you want to service enableit. This means that you will need to do two things:

1. Create an SEI that contains only the operations that are going to be exposed as part of the service.

2. Modify the existing Java class so that it implements the SEI.

3 Note

Y ou can add the JAX-WS annotations to a Java class, but that is not recommended.

Writing the interface

The SEl is a standard Java interface. It defines a set of methods that a class will implement. It can also define a
number of member fields and constants to which the implementing class has access.

Talend Enterprise Service Factory User Guide 8

JAX-WS Development

In the case of an SEI the methods defined are intended to be mapped to operations exposed by a service. The SEI
correspondstoawsdl : port Type element. The methods defined by the SEI correspondtowsdl : oper ati on
edementsinthewsdl : port Type element.

@ Tip

JAX-WS defines an annotation that allows you to specify methods that are not exposed as part of a
service. However, the best practice is to leave such methods out of the SEI.

The below shows a simple SEI for a stock updating service.

Example 2.2. Smple SEI

package org. apache. cxf;

public interface QuoteReporter

{
}

public Quote getQuote(String ticker);

Implementing the interface

Because the SEl isastandard Javainterface, the classthat implementsit isjust astandard Javaclass. If you started
with aJavaclassyou will need to modify it to implement theinterface. If you are starting fresh, theimplementation
class will need to implement the SEI.

The below shows a class for implementing the above [9] interface. .

Example 2.3. Implementation for SEI

package org. apache. cxf;
i mport java.util.*;

public class StockQuoteReporter inplenments QuoteReporter
{

public Quote getQuote(String ticker)
{

Quote retVal = new Quote();
retVal .setl D(ticker);
retVal . set Val (Board. check(ticker));[1]
Date retDate = new Date();
retVal .setTine(retDate.toString());
return(retVval);

Annotating the Code

JAX-WS relies on the annotation feature of Java 5. The JAX-WS annotations are used to specify the metadata
used to map the SEI to a fully specified service definition. Among the information provided in the annotations
are the following:

Talend Enterprise Service Factory User Guide 9

JAX-WS Development

 Thetarget namespace for the service.

» The name of the class used to hold the request message.

» The name of the class used to hold the response message.

* If an operation is aone way operation.

» The binding style the service uses.

» The name of the class used for any custom exceptions.

» The namespaces under which the types used by the service are defined.

@ Tip

Most of the annotations have sensible defaults and do not need to be specified. However, the more
information you provide in the annotations, the better defined your service definition. A solid
service definition increases the likely hood that all parts of a distributed application will work
together.

Required Annotations

In order to create a service from Java code you are only required to add one annotation to your code. Y ou must
add the @\ébSer vi ce() annotation on both the SEI and the implementation class.

The @WebService annotation

The @\¥bSer vi ce annotation is defined by thej avax. j ws. WebSer vi ce interface and it is placed on an
interface or a class that is intended to be used as a service. @\ébSer vi ce hasthe following properties:

Property

Description

name

Specifiesthe name of the serviceinterface. Thisproperty ismapped to thename
attribute of thewsdl : port Type element that defines the service's interface
in aWSDL contract. The default is to append Por t Ty pe to the name of the
implementation class.

targetNamespace

Specifies the target namespace under which the service is defined. If this
property is not specified, the target namespace is derived from the package
name.

serviceName

Specifies the name of the published service. This property is mapped to the
nane attribute of the wsdl : servi ce element that defines the published
service. The default is to use the name of the service's implementation class.
Note: Not alowed on the SEI

wsdlL ocation

Specifies the URI at which the service's WSDL contract is stored. The default
isthe URI at which the service is deployed.

endpointinterface

Specifies the full name of the SEI that the implementation class implements.
This property is only used when the attribute is used on a service
implementation class. Note: Not allowed on the SEI

portName

Specifies the name of the endpoint at which the service is published. This
property is mapped to the nane attribute of the wsdl : port element that

Talend Enterprise Service Factory User Guide 10

JAX-WS Development

Property Description

specifiesthe endpoint details for a published service. The default isthe append
Port to the name of the service's implementation class. Note: Not allowed
on the SEI

@ Tip

Y ou do not need to provide values for any of the @\ebSer vi ce annotation's properties. However,
it is recommended that you provide as much information as you can.

Annotating the SEI

The SEI requiresthat you add the @\¥bSer vi ce annotation. Sincethe SEI isthe contract that definesthe service,
you should specify as much detail as you can about the service in the @\ébSer vi ce annotation's properties.

The below shows the interface defined in above [9] with the @\bSer vi ce annotation.

Example 2.4. I nterface with the @WebService Annotation
package com nyconpany. deno;
i mport javax.jws.*;

@ebSer vi ce(name="quot eUpdat er ",
t ar get Namespace="http://cxf. apache. org",
wsdl Locati on="htt p://somewher e. com’ quot eExanpl eSer vi ce?wsdl ")
public interface QuoteReporter
{
public Quote get Quote(@¥bParanm(name="ticker") String ticker);

}

The @\ébSer vi ce annotation above does the following:

1. Specifiesthat the value of the name attribute of thewsdl : por t Type element defining the service interface
isquot eUpdat er .

2. Specifiesthat the target namespace of the service is http://cxf.apache.org.

3. Specifies that the service will use the pre-defined WSDL contract published at http://somewhere.com/
quoteExampleServicewsdl.

The @WebParam annotation is necessary as java interfaces do not store the Parameter name in the .classfile. So
if you leave out the annotation your parameter will be named argO.

Annotating the service implementation

In addition to annotating the SEI with the @\bSer vi ce annotation, you also have to annotate the
service implementation class with the @\ebSer vi ce annotation. When adding the annotation to the service
implementation class you only need to specify the endpoi nt | nt er f ace property. As shown in the next
exampl e the property needs to be set to the full name of the SEI.

Talend Enterprise Service Factory User Guide 11

JAX-WS Development

Example 2.5. Annotated Service | mplementation Class

package org. apache. cxf;
i mport javax.jws.?*;

@\ebServi ce(endpoi nt I nterface="org. apache. cxf. quot eReporter"”,
t ar get Namespace="htt p://cxf. apache. org",
port Nane=" St ockQuot ePort ",
servi ceNane=" St ockQuot eReporter",

public class StockQuot eReporter inplenments QuoteReporter
{
public Quote getQuote(String ticker)

{

}

Optional Annotations

Whilethe @\ebSer vi ce annotation is sufficient for service enabling a Javainterface or a Javaclass, it does not
provide alot of information about how the service will be exposed as an endpoint. The JAX-WS programming
model uses a number of optional annotations for adding details about your service, such as the binding it uses, to
the Java code. Y ou add these annotations to the service's SEI.

@ Tip

The more detailsyou providein the SElthe easier it will befor devel opers to implement applications
that can use the functionality it defines. It will also provide for better generated WSDL contracts.

Defining the Binding Properties with Annotations

If you are using a SOAP binding for your service, you can use JAX-WS annotations to specify a number of the
bindings properties. These properties correspond directly to the properties you can specify in a service's WSDL
contract.

The @SOAPBinding annotation

The @OAPBI ndi ng annotation is defined by thej avax. j ws. soap. SOAPBI ndi ng interface. It provides
details about the SOAP binding used by the service when it is deployed. If the @SOAPBI ndi ng annotation is not
specified, aservice is published using awrapped doc/literal SOAP binding.

You can put the @OAPBI ndi ng annotation on the SEI and any of the SEl's methods. When it is used on a
method, setting of the method's @OAPBI ndi ng annotation take precedent.

The following table shows the properties for the @SOA PBinding annotation.

Property Values Description
style St yl e. DOCUMENT (default) | Specifies the style of the SOAP
Style. RPC message. If RPC style is specified, each

Talend Enterprise Service Factory User Guide 12

JAX-WS Development

Property

Values

Description

message part within the SOAP body is
a parameter or return value and will
appear inside a wrapper element within
thesoap: body element. The message
parts within the wrapper element
correspond to operation parameters
and must appear in the same order
as the parameters in the operation.
If DOCUMENT style is specified, the
contents of the SOAP body must be a
valid XML document, but itsformisnot
astightly constrained.

use

Use. LI TERAL
Use. ENCODED

(default)

Specifies how the data of the SOAP
message is streamed.

parameterStyle

Par anet er St yl e. BARE
Par anet er St yl e. WRAPPED
(default)

Specifies how the method parameters,
which correspond to message parts in
a WSDL contract, are placed into the
SOAP message body. A parameter style
of BARE means that each parameter
is placed into the message body as
a child element of the message root.
A parameter style of WRAPPED means
that all of the input parameters are
wrapped into a single element on a
request message and that all of the
output parameters are wrapped into a
single element in the response message.
If you set the style to RPC you must use
the WRAPPED parameter style.

The below shows an SEI that uses rpc/literal SOAP messages.

Example 2.6. Specifying an RPC/LITERAL SOAP Binding

package org.eric. deno;

i mport javax.jws.*;

i mport javax.jws.soap.*;
i mport javax.jws.soap. SOAPBi ndi ng. *;

@\ebSer vi ce(name="quot eReporter")

@0APBI ndi ng(styl e=Styl e. RPC,

use=Use. LI TERAL)

public interface QuoteReporter

{
}

Defining Operation Properties with Annotations

When the runtime maps your Java method definitionsinto XML operation definitionsit fillsin details such as:

» what the exchanged messages look likein XML.

« if the message can be optimized as a one way message.

Talend Enterprise Service Factory User Guide 13

JAX-WS Development

« the namespaces where the messages are defined.

The @WebMethod annotation

The @\bMet hod annotation is defined by the j avax. j ws. WebMet hod interface. It is placed on the
methods in the SEI. The @\ébMet hod annotation provides the information that is normally represented in the
wsdl : oper at i on element describing the operation to which the method is associated.

The following table describes the properties of the @\bMet hod annotation.

Property Description

operationName Specifiesthevalue of theassociated wsdl : oper at i on element'sname. The
default value is the name of the method.

action Specifiesthe value of the soapAct i on attribute of thesoap: oper ati on
element generated for the method. The default value is an empty string.

exclude Specifies if the method should be excluded from the service interface. The
defaultisf al se .

The @RequestWrapper annotation

The @Request W apper annotation is defined by the j avax. xml . ws. Request W apper interface. It is
placed on the methods in the SEI. As the name implies, @Request W apper specifies the Java class that
implements the wrapper bean for the method parametersthat are included in the request message sent in aremote
invocation. It is also used to specify the element names, and namespaces, used by the runtime when marshalling
and unmarshalling the request messages.

The following table describes the properties of the @RequestWrapper annotation.

Property Description

localName Specifiesthe local name of the wrapper element in the XML representation of
the request message. The default value is the name of the method or the value
of the @\&bMet hod annotation's oper at i onNane property.

targetNamespace Specifies the namespace under which the XML wrapper element is defined.
The default value is the target namespace of the SEI.

className Specifies the full name of the Java class that implements the wrapper element.

@ Tip

Only the cl assName property is required.

The @ResponseWrapper annotation

The @ResponseW apper annotation is defined by the j avax. xm . ws. ResponseW apper interface. It
is placed on the methods in the SEI. As the name implies, @ResponseW apper specifies the Java class that
implements the wrapper bean for the method parameters that are included in the response message sent in aremote
invocation. It is also used to specify the element names, and namespaces, used by the runtime when marshalling
and unmarshalling the response messages.

The following table describes the properties of the @ResponseW apper annotation.

Talend Enterprise Service Factory User Guide 14

JAX-WS Development

Property Description

localName Specifies the local name of the wrapper element in the XML representation
of the response message. The default value is the name of the method
with Response appended or the value of the @\&bMet hod annotation's
oper at i onNamne property with Response appended.

targetNamespace Specifies the namespace under which the XML wrapper element is defined.
The default value is the target namespace of the SEI.
className Specifies the full name of the Java class that implements the wrapper element.

@ Tip

Only the cl assName property is required.

The @WebFault annotation

The @¥bFaul t annotationisdefined by thej avax. xm . ws. WebFaul t interface. Itisplaced on exceptions
that are thrown by your SEI. The @\bFaul t annotation is used to map the Java exception to awsdl : f aul t
element. Thisinformation is used to marshall the exceptions into a representation that can be processed by both
the service and its consumers.

The following table describes the properties of the @\bFaul t annotation.

Property Description

name Specifies the local name of the fault element.

targetNamespace Specifies the namespace under which the fault element is defined. The default
value is the target namespace of the SEI.

faultName Specifies the full name of the Java class that implements the exception.

@ I mportant

The name property is required.

The @Oneway annotation

The @neway annotationisdefined by thej avax. j ws. Oneway interface. Itisplaced onthe methodsinthe SEI
that will not require aresponse from the service. The @neway annotation tells the run time that it can optimize
the execution of the method by not waiting for a response and not reserving any resources to process a response.

Example

The next example shows an SEI whose methods are annotated.

Talend Enterprise Service Factory User Guide 15

JAX-WS Development

Example 2.7. SEI with Annotated M ethods
package org. apache. cxf;

i mport javax.jws.*;
i mport javax.xm .ws.*;

@\ebSer vi ce(name="quot eReporter")
public interface QuoteReporter
{
@\bMet hod(oper at i onNanme="get St ockQuot e")
@Request W apper (t ar get Namespace="htt p: // denp. myconpany. conf t ypes",
cl assNane="j ava.l ang. String")
@ResponseW apper (t ar get Namespace="htt p:// deno. nyconpany. com t ypes",
cl assNane="org. eri c. denn. Quot e")
public Quote getQuote(String ticker);

Defining Parameter Properties with Annotations

The method parametersin the SEI coresspond to thewsdl : message elementsand their wsdl : part elements.
JAX-WS provides annotations that allow you to describe the wsdl : part elements that are generated for the
method parameters.

The @WebParam annotation

The @\ébPar amannotation isdefined by thej avax. j ws. WebPar aminterface. It is placed on the parameters
on the methods defined in the SEI. The @\bPar am annotation allows you to specify the direction of the
parameter, if the parameter will be placed in the SOAP header, and other properties of thegeneratedwsdl : part .

The following table describes the properties of the @\ebPar amannotation.

Property Description

name Specifies the name of the parameter as it appears in the WSDL. For RPC
bindings, this is name of the wsdl : part representing the parameter. For
document bindings, this is the local name of the XML element representing
the parameter. Per the JAX-WS specification, the default isargN , where N is
replaced with the zero-based argument index (i.e., arg0, argl , etc.)

targetNamespace Specifies the namespace for the parameter. It is only used with document
bindings where the parameter mapsto an XML element. The defaultsisto use
the service's namespace.

mode Specifies the direction of the parameter: Mode.IN (default), Mode.OUT,
Mode.INOUT

header Specifiesif the parameter is passed as part of the SOAP header. Vaues of true
or false (default).

partName Specifies the value of the name attribute of thewsdl : part element for the

parameter when the binding is document.

Talend Enterprise Service Factory User Guide 16

JAX-WS Development

The @WebResult annotation

The @\ebResul

t annotation is defined by the j avax. j ws. WebResul t interface. It is placed on the

methods defined in the SEI. The @¥bResul t annotation allows you to specify the properties of the generated

wsdl : part that

is generated for the method's return value.

The following table describes the properties of the @¥bResul t annotation.

Property Description

name Specifies the name of the return value as it appears in the WSDL. For RPC
bindings, this is name of the wsdl : part representing the return value. For
document bindings, thisisthe local name of the XML element representing the
return value. The default value is return.

targetNamespace Specifies the namespace for the return vaue. It is only used with document
bindings where the return value maps to an XML element. The defaults is to
use the service's namespace.

header Specifiesif the return value is passed as part of the SOAP header.

partName Specifies the value of the name attribute of thewsdl : part element for the
return value when the binding is document.

Example

This example shows an SEI that is fully annotated.

Example 2.8. Fully Annotated SEI

package org. apache. cxf;

i mport javax.

i mport javax
i mport javax
i mport javax
i mport javax

@\ebSer vi ce(
@0APBI ndi ng

jws. *;

xmoows. Y

. Ws. soap. *;

.] ws. soap. SOAPBI ndi ng. *;
. j ws. WebPar am *;

nane="quot eReporter")
(style=Style.RPC, use=Use. LI TERAL)

public interface QuoteReporter

{

@\ebMet hod(oper at i onNane="get St ockQuot e")
@Request W apper (t ar get Nanespace="htt p:// denp. myconpany. coni t ypes",

cl assNane="j ava. |l ang. String")

@ResponseW apper (t ar get Namespace="htt p:// deno. nyconpany. conf t ypes",

@\¢ebResul

cl assNane="org. eri c. denp. Quot e")
t (target Nanespace="http://denp. myconpany. coni types",
nane="updat edQuot e")

public Quote get Quot g(
@\bPar an(t ar get Nanespace="htt p://deno. nyconpany. com t ypes",

name="

st ockTi cker", nobde=Mode. | N)

String ticker

)

Talend Enterprise Service Factory User Guide 17

JAX-WS Development

Generating WSDL

Once you have annotated your code, you can generate a WSDL contract for your service using the java2wsdl
command.

Generated WSDL from an SEI

The below example shows the WSDL contract generated for the SEI shown above.

<?xm version="1.0" encodi ng="UTF-8"7?>
<wsdl : definitions target Nanespace="http://denp.eric.org/"
xm ns:tns="http://denp.eric.org/"
xm ns: ns1=""
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schena"
xm ns: ns2="http://denp.eric.org/types"
xm ns: soap="http://schemas. xn soap. or g/ wsdl / soap/"
xm ns: wsdl ="htt p://schenmas. xn soap. or g/ wsdl /">
<wsdl : types>
<xsd: schema>
<xs: conpl exType nanme="quote">
<XS:sequence>
<xs: el enent name="1D" type="xs:string" m nCccurs="0"/>
<xs: el enent nane="tine" type="xs:string" m nCccurs="0"/>
<xs: el enent name="val" type="xs:float"/>
</ xs: sequence>
</ xs: conpl exType>
</ xsd: schema>
</ wsdl : types>
<wsdl : message name="get St ockQuot e" >
<wsdl : part nanme="st ockTi cker" type="xsd:string">
</ wsdl : part >
</ wsdl : nressage>
<wsdl : message nane="get St ockQuot eResponse" >
<wsdl : part nanme="updat edQuote" type="tns: quote">
</ wsdl : part >
</ wsdl : nressage>
<wsdl : port Type nane="quot eReporter">
<wsdl : operati on nane="get St ockQuot e" >
<wsdl : i nput nane="get Quote" nessage="tns: get St ockQuot e" >
</ wsdl : i nput >
<wsdl : out put nane="get Quot eResponse”
nmessage="t ns: get St ockQuot eResponse" >
</ wsdl : out put >
</ wsdl : operati on>
</ wsdl : port Type>
<wsdl : bi ndi ng nane="quot eReporterBi ndi ng" type="tns: quot eReporter">
<soap: bi ndi ng style="rpc"
transport="http://schemas. xnl soap. org/ soap/ http"/ >
<wsdl : operati on nane="get St ockQuot e" >
<soap: operation style="rpc"/>
<wsdl : i nput name="get Quot e" >
<soap: body use="literal"/>
</ wsdl : i nput >
<wsdl : out put nanme="get Quot eResponse" >
<soap: body use="literal"/>

Talend Enterprise Service Factory User Guide 18

JAX-WS Development

</ wsdl : out put >
</ wsdl : oper ati on>
</ wsdl : bi ndi ng>
<wsdl : servi ce name="quot eReporter Service">
<wsdl : port name="quot eReporterPort"
bi ndi ng="t ns: quot eReport er Bi ndi ng" >
<soap: address | ocati on=
"http://1ocal host: 9000/ quot eReport er Servi ce"/ >
</ wsdl : port >
</wsdl| : service>
</wsdl : definitions>

2.2.4. JAX-WS Configuration

The following sections list JAX-WS specific configuration items.

2.2.4.1. Configuring an Endpoint

A JAX-WS Endpoint can be configured in XML in addition to using the JAX-WS APIs. Once you've created your
server implementation , you simply need to provide the class name and an address. Here is a simple example:

<beans xm ns="http://ww. spri ngfranmework. org/ schena/ beans"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance”

xm ns: jaxws="http://cxf.apache. org/jaxws"

xsi : schemalLocat i on="
http://ww. springframework. org/ schema/ beans
http://ww. springframework. org/ schema/ beans/ spri ng- beans- 2. 0. xsd
http://cxf.apache. org/jaxws
http://cxf.apache. org/ schemas/j axws. xsd" >

<j axws: endpoi nt id="classlnpl"”
i npl enment or =" or g. apache. cxf.j axws. servi ce. Hel | 0"
endpoi nt Name="e: Hel | oEndpoi nt Cust om zed"
servi ceNane="s: Hel | oSer vi ceCust om zed"
address="http://1 ocal host: 8080/test"
xm ns:e="http://service.jaxws. cxf.apache. org/ endpoi nt"
xm ns:s="http://service.jaxws.cxf.apache. org/ service"/>

</ beans>

Be sure to include the JAX-WS schenalLocat i on attribute specified on the root beans element. This allows
CXFtovaidatethefile and is required. Also note the namespace declarations at the end of the <jaxws:endpoint/
> tag--these are required because the combined "{ namespace} localName" syntax is presently not supported for
thistag's attribute values.

The j axws: endpoi nt element (which appears to create an Endpointimpl under the covers) supports many
additional attributes:

Name Value

endpointName The endpoint name this service is implementing, it maps to the
wsdl:port@name. In the format of "ns:ENDPOINT_NAME" where ns is a
namespace prefix valid at this scope.

Talend Enterprise Service Factory User Guide 19

http://cxf.apache.org/javadoc/latest/org/apache/cxf/jaxws/EndpointImpl.html

JAX-WS Development

Name Value

publish Whether the endpoint should be published now, or whether it will be published
at alater point.

serviceName The service name this service is implementing, it maps to the
wsdl:service@name. In the format of "ns:SERVICE_NAME" where nsis a
namespace prefix valid at this scope.

wsdlLocation The location of the WSDL. Can be on the classpath, file system, or be hosted
remotely.

bindingUri The URI, or ID, of the message binding for the endpoint to use. For SOAP the
binding URI(ID) is specified by the JAX-WS specification. For other message
bindings the URI is the namespace of the WSDL extensions used to specify
the binding.

address The service publish address

bus The bus name that will be used in the jaxws endpoint.

implementor The implementor of jaxws endpoint. You can specify the implementor class

name here, or just the ref bean name in the format of "#REF_BEAN_NAME"

implementorClass

The implementor class name, it is really useful when you specify the
implementor with the ref bean which iswrapped by using Spring AOP

createdFromAPI

This indicates that the endpoint bean was aready created using jaxws API's
thus at runtime when parsing the bean spring can use these values rather than
the default ones. It's important that when thisis true, the "name" of the bean
is set to the port name of the endpoint being created in the form "{ http://
service.target.namespace} PortName".

publishedEndpointUrl

The URL that is placed in the address element of the wsdl when the wsdl is
retrieved. If not specified, the address listed above is used. This parameter
alows setting the "public" URL that may not be the same as the URL the
service is deployed on. (for example, the service is behind a proxy of some
sort).

It also supports many child elements:

Name

Value

jaxws.executor

A Java executor which will be used for the service. This can be supplied using
the Spring <bean class="MyExecutor"/> syntax.

jaxws:inlnterceptors

The incoming interceptors for this endpoint. A list of <bean>s or
<ref>s. Each should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

jaxws:inFaultinterceptors

The incoming fault interceptors for this endpoint. A list of <bean>s
or <ref>s. Each should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

jaxws.outl nterceptors

The outgoing interceptors for this endpoint. A list of <bean>s or
<ref>s. Each should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

jaxws:outFaultinterceptors

The outgoing fault interceptors for this endpoint. A list of <bean>s or
<ref>s. Each should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

jaxws:handlers

The JAX-WS handlers for this endpoint. A list of <bean>s
or <ref>s. Each should implement javax.xml.wshandler.Handler or
javax.xml.ws.handler.soap.SOAPHandler (Note that @Handl er Chain
annotations on the service bean appear to be ignored)

Talend Enterprise Service Factory User Guide 20

http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/Handler.html
http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/soap/SOAPHandler.html

JAX-WS Development

Name Value
jaxws:properties A properties map which should be supplied to the JAX-WS endpoint. See
below.

jaxws.dataBinding

Y ou can specify the which DataBinding will be use in the endpoint , This can
be supplied using the Spring <bean class="MyDataBinding"/> syntax.

jaxws.binding You can specify the BindingFactory for this endpoint to use. This can be
supplied using the Spring <bean class="MyBindingFactory"/> syntax.

jaxws:features The features that hold the interceptors for this endpoint. A list of <bean>s or
<ref>s

jaxws:invoker Theinvoker which will be supplied to thisendpoint. This can be supplied using

the Spring <bean class="Mylnvoker"/> syntax.

jaxws.schemalocations

The schema locations for endpoint to use. A list of <schemal ocation>s

jaxws:.serviceFactory

The service factory for this endpoint to use. This can be supplied using the
Spring <bean class="MyServiceFactory"/> syntax

Here is amore advanced example which shows how to provide interceptors and properties:

<beans xm ns="http://ww. springframework. org/ schema/ beans™
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: jaxws="http://cxf.apache. org/jaxws"
xm ns: soap="http://cxf.apache. or g/ bi ndi ngs/ soap"
Xsi : schenmaLocat i on="
htt p: // www. spri ngfranewor k. or g/ scherma/ beans
htt p: // www. spri ngf ranewor k. or g/ scherma/ beans/ spri ng- beans- 2. 0. xsd

http://cxf.
http://cxf.
http://cxf.
http://cxf.

<i
<

<j axws: endpoi nt

—

apache.
apache.
apache.
apache.

i d="hel | oVor |l d"
i mpl enent or =" deno. spri ng. Hel | oWor | dl npl ™
address="http://1 ocal host/ Hel | oVor| d">
<j axws:inlnterceptors>
<bean cl ass="com acne. Sonel nterceptor"/>
<ref bean="anot herlnterceptor"”/>
</jaxws:inlnterceptor>
<j axws: properti es>
<entry key="ntom enabl ed" val ue="true"/>
</jaxws: properties>
</ j axws: endpoi nt >

or g/ bi ndi ngs/ soap

or g/ schemas/ confi gurati on/ soap. xsd
or g/ j axws

or g/ schemas/ j axws. xsd" >

nport resource="cl asspat h: META- | NF/ cxf/cxf.xm "/ >
nport resource="cl asspat h: META- | NF/ cxf / cxf - ext ensi on-soap. xm "/ >

<bean id="anot herlnterceptor" class="com acne. Sonel nterceptor"/>

<j axws: endpoi nt

i d="si nmpl eW t hBi ndi ng"
i mpl enent or =" #greeter™
address="http://1 ocal host: 8080/ si npl eW t hAddr ess" >
<j axws: bi ndi ng>
<soap: soapBi ndi ng nt onEnabl ed="true" version="1.2"/>
</ j axws: bi ndi ng>
</ j axws: endpoi nt >

Talend Enterprise Service Factory User Guide

21

JAX-WS Development

<j axws: endpoi nt id="inlinelnvoker"
address="http://1 ocal host: 8080/ si npl eW t hAddr ess" >
<j axws: i mpl enent or >
<bean cl ass="org. apache. hell o_worl d_soap_http. G eeterlnpl"/>
</jaxws:inpl ement or >
<j axws: i nvoker >
<bean cl ass="org. apache. cxf.jaxws. spring. Nul I I nvoker"/>
</jaxws:invoker>
</ j axws: endpoi nt >

</ beans>

If you are a Spring user, you'll notice that thej axws: pr operti es element follows the Spring Map syntax.

2.2.4.2. Configuring a Spring Client (Option 1)

2 I mportant

This technique lets you add a Web Services client to your Spring application. Y ou can inject it into
other Spring beans, or manually retrieve it from the Spring context for use by non-Spring-aware
client code.

Theeasiest way to add aWeb Servicesclient to a Spring context isto usethe<j axws: cl i ent >element (similar
tothe <j axws: endpoi nt > element used for the server side). Here's a simple example:

<?xm version="1.0" encodi ng="UTF-8"7?>
<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: jaxws="http://cxf.apache. org/jaxws"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
Xsi : schemaLocat i on="
htt p: // ww. spri ngf ranmewor k. or g/ schema/ beans
htt p: // ww. spri ngf ranmewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://cxf. apache. or g/ j axws
htt p: //cxf. apache. or g/ schemas/ | axws. xsd" >

<jaxws:client id="helloCient"
servi ceC ass="deno. spri ng. Hel | oWor| d"
address="http://1 ocal host: 9002/ Hel | oWor| d" />
</ beans>

The attributes available on <j axws: cl i ent > include:

Name Type Description

id String A unique identified for the client, which is how other
beansin the context will reference it

address URL The URL to connect to in order to invoke the service

serviceClass Class The fully-qualified name of the interface that the

bean should implement (typically, same as the service
interface used on the server side)

serviceName QName Thenameof theservicetoinvoke, if thisaddress'WSDL
hosts several. It maps to the wsdl:service@name. In
the format of "ns:SERVICE_NAME" where ns is a
namespace prefix valid at this scope.

Talend Enterprise Service Factory User Guide 22

JAX-WS Development

Name

Type

Description

endpointName

QName

The name of the endpoint to invoke, if this address/
WSDL hosts several. It maps to the wsdl:port@name.
In the format of "ns:ENDPOINT_NAME" where nsis
anamespace prefix valid at this scope.

bindingld

URI

TheURI, or ID, of the message hinding for the endpoint
to use. For SOAP the binding URI(ID) is specified by
the JAX-WS specification. For other message bindings
the URI isthe namespace of the WSDL extensions used
to specify the binding.

bus

Bean Reference

The bus name that will be used in the jaxws endpoint
(defaultsto cxf).

username

String

password

String

wsdlL ocation

URL

A URL to connect to in order to retrieve the WSDL for
the service. Thisis not required.

createdFromAPI

boolean

This indicates that the client bean was already created

using jaxws API's thus at runtime when parsing the
bean spring can use these values rather than the default
ones. It'simportant that when thisis true, the "name" of
the bean is set to the port name of the endpoint being
created in the form "{ http://service.target.namespace}
PortName".

It also supports many child elements:

Name

Description

jaxws:inlnterceptors

The incoming interceptors for this endpoint. A list of <bean> or <r ef >
elements. Each should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

jaxws.inFaultinterceptors

The incoming fault interceptors for this endpoint.
A list of <bean> or <ref> elements. Each
should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

jaxws.outl nterceptors

The outgoing interceptors for this endpoint. A list of <bean> or <r ef >
elements. Each should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

jaxws:outFaultinterceptors

The outgoing fault interceptors for this endpoint.
A list of <bean> or <ref> elements. Each
should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

jaxws:features

The features that hold the interceptors for this endpoint. A list of <bean>
or <r ef > elements

jaxws:handlers

The JAX-WS handlers for this endpoint. A list of <bean> or
<r ef > elements. Each should implement javax.xml.ws.handler.Handler
or javax.xml.ws.handler.soap.SOAPHandler . These are more portablethan
CXF interceptors, but may cause the full messageto beloadedinasaDOM
(dower for large messages).

jaxws.properties

A properties map which should be supplied to the JAX-WS endpoint. See
below.

jaxws:dataBinding

Y ou can specify the which DataBinding will be use in the endpoint , This
can be supplied using the Spring <bean class="MyDataBinding"/> syntax.

Talend Enterprise Service Factory User Guide 23

http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/Handler.html
http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/soap/SOAPHandler.html

JAX-WS Development

Name Description

jaxws:binding Y ou can specify the BindingFactory for this endpoint to use. This can be
supplied using the Spring <bean class="MyBindingFactory"/> syntax.

jaxws.conduitSel ector

Here is amore advanced example which shows how to provide interceptors, JAX-WS handlers, and properties:

<?xm version="1.0" encodi ng="UTF-8"7?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: jaxws="http://cxf.apache. org/jaxws"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
Xsi : schemaLocat i on="
htt p: // ww. spri ngf ramewor k. or g/ schema/ beans
htt p: // ww. spri ngf ranmewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://cxf.apache. or g/ j axws
htt p: //cxf. apache. or g/ schemas/ | axws. xsd" >

<l-- Interceptors extend
e.g. org.apache. cxf. phase. Abstract Phasel nterceptor -->
<bean id="anotherlnterceptor"” class="..." />
<l-- Handl ers inpl emrent
e.g. javax.xm .ws. handl er. soap. SOAPHandl er -->
<bean id="jaxwsHandl er" class="..." />

<!-- The SOAP client bean -->
<jaxws:client id="helloCient"
servi ceC ass="deno. spri ng. Hel | oWor | d"
address="http://| ocal host: 9002/ Hel | oWor | d" >
<j axws:inlnterceptors>
<bean cl ass="org. apache. cxf.interceptor.Loggi nglnlnterceptor"/>
<ref bean="anot herlnterceptor"/>
</jaxws:inlnterceptor>
<j axws: handl er s>
<ref bean="jaxwsHandler" />
</j axws: handl er s>
<j axws: properti es>
<entry key="ntonm enabl ed" val ue="true"/>
</jaxws: properties>
</jaxws:client>
</ beans>

2.2.4.3. Configuring a Spring Client (Option 2)

2 I mportant

Building a Client using this configuration is only applicable for those wishing to inject a Client into
their Spring ApplicationContext.

This approach requires more explicit Spring bean configuration than the previous option, and may require more
configuration data depending on which features are used. To configure a client thisway, you'll need to declare a
proxy factory bean and also a client bean which is created by that proxy factory. Here is an example:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"

Talend Enterprise Service Factory User Guide 24

JAX-WS Development

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: jaxws="http://cxf.apache. org/jaxws"
Xsi : schenmaLocat i on="
htt p: // www. spri ngf ranewor k. or g/ scherma/ beans
htt p: // www. spri ngf ranewor k. or g/ scherma/ beans/ spri ng- beans- 2. 0. xsd
http://cxf.apache. org/j axws
http://cxf.apache. or g/ schemas/j axws. xsd" >

<bean i d="proxyFactory"
cl ass="org. apache. cxf.j axws. Jax\WsPr oxyFact or yBean" >
<property nane="servi ceC ass" val ue="deno. spring. Hel | oWor | d"/>
<property nane="address" value="http://| ocal host: 9002/ Hel | oWor | d"/ >
</ bean>

<bean id="client" class="deno.spring.Hell oWrld"
factory-bean="proxyFactory" factory-nmethod="create"/>

</ beans>

The JaxWsProxyFactoryBean in this case takes two properties. The service class, which is the interface of the
Client proxy you wish to create. The addressis the address of the service you wish to call.

The second bean definition is for the client. In this case it implements the Helloworld interface and is created by
the proxyFactory <bean> by calling the create() method. Y ou can then reference this "client" bean and inject it
anywhere into your application. Here is an example of avery simple Java class which accesses the client bean:

i ncl ude org. springfranmework. cont ext. support. C assPat hXm Appl i cati onCont ext ;
public final class HelloWrlddient {
private HellowrldCient() { }

public static void main(String args[]) throws Exception {
Cl assPat hXm Appl i cati onCont ext context =
new Cl assPat hXm Appl i cat i onCont ext (
new String[]{"nmy/path/to/client-beans.xm"});

Hel l oworld client = (Hell owbrl d)context.getBean("client");
String response = client.sayH ("Dan");
System out. println("Response: " + response);

System exit(0);

}

The JaxWsProxyFactoryBean supports many other properties:

Name Description

clientFactoryBean The ClientFactoryBean used in construction of this proxy.

password The password which the transport should use.

username The username which the transport should use.

wsdlURL Thewsdl URL the client should use to configure itself.

wsdlLocation Appears to be the same aswsdlURL ?

serviceName The name of the serviceto invoke, if thisaddress’WSDL hosts several. It maps
to the wsdl:service@name. In the format of "ns:SERVICE_NAME" where ns
is a namespace prefix valid at this scope.

Talend Enterprise Service Factory User Guide 25

JAX-WS Development

Name

Description

endpointName

The name of the endpoint to invoke, if this address’'WSDL hosts several.
It maps to the wsdl:port@name. In the format of "nsENDPOINT_NAME"
where ns is a namespace prefix valid at this scope.

inlnterceptors

The incoming interceptors for this endpoint. A list of <bean> or <r ef >
elements. Each should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

inFaultl nterceptors

Theincoming fault interceptors for thisendpoint. A list of <bean> or <r ef >
elements. Each should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

outlnterceptors

The outgoing interceptors for this endpoint. A list of <bean> or <ref >
elements. Each should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

outFaultinterceptors

The outgoing fault interceptors for thisendpoint. A list of <bean> or <r ef >
elements. Each should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

features The features that hold the interceptors for this endpoint. A list of <bean> or
<r ef > elements

handlers A list of <bean> or <r ef > elements pointing to JAX-WS handler classesto
be used for this client. Each should implement javax.xml.ws.handler.Handler
or javax.xml.ws.handler.soap.SOAPHandler . These are more portable than
CXF interceptors, but may cause the full message to be loaded in as a DOM
(slower for large messages).

bindingConfig

bindingld The URI, or ID, of the message binding for the endpoint to use. For SOAP the
binding URI(ID) is specified by the JAX-WS specification. For other message
bindings the URI is the namespace of the WSDL extensions used to specify
the binding.

bus A reference to a CXF bus bean. Must be provided if, for example, handlers
are used. May require additional Spring context imports (e.g. to bring in the
default CXF bus bean).

conduitSelector

dataBinding Y ou can specify the which DataBinding will be use in the endpoint , This can
be supplied using the Spring <bean class="MyDataBinding"/> syntax.

properties A properties map which should be supplied to the JAX-WS endpoint.

serviceFactory

Using some of the properties will require additional configuration in the Spring context. For instance, using JAX-
WS handlersrequires that you explicitly import several CXF Spring configurations, and assign the "bus" property
of the JaxWsProxyFactory bean like this:

<inport resource="classpath: META-| NF/ cxf/cxf.xm" />
<i nport resource="cl asspat h: META- | NF/ cxf/ cxf - ext ensi on-soap. xm " />
<inport resource="cl asspath: META- | NF/ cxf/cxf-extension-http. xm" />

<bean id="client Factory"
cl ass="org. apache. cxf.j axws. JaxWsPr oxyFact or yBean" >
<property nane="servi ceC ass" val ue="deno. spri ng. Hel | oWor | d"/ >
<property name="address" val ue="http://Iocal host: 9002/ Hel | oWor| d"/ >
<property nane="bus" ref="cxf" />

</ bean>

Talend Enterprise Service Factory User Guide 26

http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/Handler.html
http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/soap/SOAPHandler.html

JAX-WS Development

2.2.4.4. Configuring an Endpoint/Client Proxy Using CXF APIs

JAX-WS endpoints and client proxies are implemented on top of CXF's frontend-neutral endpoint API. You can
therefore use CXF APIsto enhance the functionality of aJJAX-WSendpoint or client proxy, for example by adding
interceptors.

To cast aclient proxy to a CXF client;

GreeterService gs = new GeeterService();
Greeter greeter = gs.getGeeterPort();

org. apache. cxf.endpoint.Cient client =

org. apache. cxf.frontend. CientProxy.getCient(greeter);

or g. apache. cxf. endpoi nt . Endpoi nt cxf Endpoi nt = client. get Endpoi nt ();
cxf Endpoi nt. get Qut I nterceptors().add(...);

To cast aJAX-WS endpoint to a CXF server:

j avax. xm . ws. Endpoi nt jaxwsEndpoi nt =

j avax. xm . ws. Endpoi nt . publ i sh(

"http://1ocal host: 9020/ SoapCont ext/ G eet er Port",

new Greeterlnpl ());
or g. apache. cxf.j axws. Endpoi nt | npl j axwsEndpoi ntlnpl =
(org. apache. cxf.jaxws. Endpoi nt | npl) j axwsEndpoi nt ;
or g. apache. cxf. endpoi nt. Server server = jaxwsEndpointlnpl.getServer();
or g. apache. cxf. endpoi nt. Endpoi nt cxf Endpoi nt = server. get Endpoi nt ();
cxf Endpoi nt. getQut I nterceptors().add(...);
or g. apache. cxf. service. Servi ce cxfService = cxfEndpoi nt. get Service();
cxf Service.getQutinterceptors().add(...);

2.2.4.5. Configure the JAXWS Server/Client Using Spring

CXF provides <jaxws:server>, <jaxws:client> to configure the server/client side endpoint. Here are some exmples:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: jaxws="http://cxf.apache. org/jaxws"
xm ns: soap="htt p://cxf.apache. or g/ bi ndi ngs/ soap"
Xsi : schermaLocat i on="
htt p: // ww. spri ngfranmewor k. or g/ scherma/ beans
htt p: // ww. spri ngfranmewor k. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
htt p: //cxf. apache. or g/ bi ndi ngs/ soap
htt p://cxf. apache. or g/ schemas/ confi gur ati on/ soap. xsd
http://cxf.apache. or g/ j axws
htt p://cxf. apache. or g/ schemas/ | axws. xsd" >
<j axws:server id="inlinelnplenmentor"
address="http://| ocal host: 8080/ si npl eW t hAddr ess" >
<j axws: servi ceBean>
<bean cl ass="org. apache. hello_worl d_soap _http. G eeterlnpl"/>
</j axws: servi ceBean>
</jaxws: server >

<j axws: server id="bookServer"
servi ceC ass="org. myorg. nyt ype. AnonynousConpl exTypel npl "
address="http://| ocal host: 8080/ act"

Talend Enterprise Service Factory User Guide 27

JAX-WS Development

bus="cxf">
<j axws: i nvoker >
<bean cl ass="org. nyorg. servi ce. i nvoker. Beanl nvoker" >
<constructor-arg>
<bean cl ass="org. nyorg. myt ype. AnonynousConpl exTypel npl "/ >
</ constructor-arg>
</ bean>
</jaxws:invoker>
<j axws: dat aBi ndi ng>
<bean cl ass="org. apache. cxf.j axb. JAXBDat aBi ndi ng" >
<property nanme="nanmespaceMap">

<map>
<entry>
<key>
<val ue>
http://cxf.apache. or g/ anon_conpl ex_t ype/
</ val ue>
</ key>
<val ue>BeepBeep</ val ue>
</entry>
</ map>
</ property>
</ bean>

</ j axws: dat aBi ndi ng>
</jaxws:server>

<jaxws:client id="bookdient"
servi ced ass="org. myorg. nyt ype. AnonynousConpl exType"
address="http://1 ocal host: 8080/ act"/>

</ beans>

2.2.5. JAX-WS Providers

JAX-WS Providers alow you to create services which work at the message level - as opposed to the operation
level as with annotated classes. The have a single operation "invoke" which receives either the message payload
(i.e. the SOAP Body) or the whole message itself (i.e. the SOAP Envelope).

Here'sasimple example:

@\ebSer vi ceProvi der
public class HelloProvider {
publ i c Source invoke(Source request) {
return;

}
}

Services are publish via one of two means:
* The JAX-WS standard Endpoint APIs

* CXFs XML configuration format - i.e. <jaxws.endpoint ... />

Talend Enterprise Service Factory User Guide 28

JAX-WS Development

2.2.5.1. Messaging Modes

Overview

Objects that implement the Pr ovi der interface have two messaging modes :
» Message mode
» Payload mode

The messaging mode you specify determines the level of messaging detail that is passed to your implementation.

Message mode

When using message mode, aPr ovi der implementation works with complete messages. A compl ete message
includes any binding specific headers and wrappers. For example, aPr ovi der implementation that usesa SOAP
binding would receive requests asfully specified SOAP message. Any response returned from theimplementation
would also need to be afully specified SOAP message.

You specify that a Provider implementation uses message mode by providing the value
java. xm . ws. Servi ce. Mbde. MESSACGE as the vaue to the javax.xnl .ws. Servi ceMbde
annotation.

@\ebSer vi ceProvi der
@ber vi ceMode(val ue=Servi ce. Mode. MESSAGE)
public class stockQuoteProvider inplenments Provider <SOAPMessage>

{
}

Payload mode

In payload mode a Pr ovi der implementation works with only the payload of a message. For example, a
Pr ovi der implementation working in payload mode works only with the body of a SOAP message. The binding
layer processes any binding level wrappers and headers.

@ Tip

When working with abinding that does not use special wrappers, such asthe XML binding, payload
mode and message mode provide the same results.

You specify that a Provider implementation uses payload mode by providing the vaue
java. xm . ws. Servi ce. Mbde. PAYLOAD as the vaue to the javax.xm .ws. Servi ceMbde
annotation.

@\ebSer vi ceProvi der
@ser vi ceMode(val ue=Ser vi ce. Mode. PAYLOAD)
public class stockQuoteProvider inplenments Provider <DOVBour ce>

{
}

Talend Enterprise Service Factory User Guide 29

JAX-WS Development

@ Tip
If you do not provide the @er vi ceMbde annotation, the Pr ovi der implementation will default
to using payload mode.

2.2.5.2. Data Types

Overview

Pr ovi der implementations, because they are low-level objects, cannot use the same JAXB generated types as
the higher level consumer APIs. Provider implementations work with the following types of objects:

e javax.xm .transform Source
e javax. xnm . soap. SOAPMessage

* javax. activati on. Dat aSour ce

Using Source objects

A Provider implementation can accept and return objects that are derived from the
javax. xm . transform Source interface. Source objects are low level objects that hold XML
documents. Each Sour ce implementation provides methods that access the stored XML documents and
mani pulate its contents. The following objects implement the Sour ce interface:

» DOVBour ce holds XML messages as a Document Object Model(DOM) tree. The XML message is stored as
a set of Node objects that can be accessed using the get Node() method. Nodes can be updated or added to
the DOM tree using the set Node () method.

e SAXSour ce holds XML messages as a Simple APl for XML (SAX) object. SAX objects contain an
| nput Sour ce object that contains the raw data and an XM_Reader object that parses the raw data.

» StreantSour ce holds XML messages as a data stream. The data stream can be manipulated as would any
other data stream.

2 | mportant

When using Sour ce objects the developer is responsible for ensuring that al required binding
specific wrappers are added to the message. For example, when interacting with a service
expecting SOAP messages, the devel oper must ensure that the required SOAP envelope is added
to the outgoing request and that the SOAP envelope's contents are correct.

Using SOAPMessage objects

Provi der implementations can use j avax. xm . soap. SOAPMessage objects when the following
conditions are true:

» theProvi der implementation is using the SOAP binding.

» theProvi der implementation is using message mode.

Talend Enterprise Service Factory User Guide 30

JAX-WS Development

A SOAPMessage object, as the name implies, holds a SOAP message. They contain one SOAPPar t object
and zero or more At t achnent Part objects. The SOAPPart object contains the SOAP specific portions
of the SOAP message including the SOAP envelope, any SOAP headers, and the SOAP message body. The
At t achment Par t objects contain binary data that was passed as an attachment.

Using DataSource objects

Provider implementations can use objects that implement the j avax. acti vati on. Dat aSour ce interface
when the following conditions are true:

* theimplementation is using the HTTP binding.
* theimplementation is using message mode.

Dat aSour ce objects provide a mechanism for working with MIME typed data from a variety of sources
including URLSs, files, and byte arrays.

Implementing a Provider Object

Overview

The Pr ovi der interface is relatively easy to implement. It only has one method, invoke(), that needs to be
implemented. In addition it has three simple requirements:

* Animplementation must have the @¥bSer vi cePr ovi der annotation.
« Animplementation must have a default public constructor.

e An implementation must implement a typed version of the Provider interface. In other words, you cannot
implement aPr ovi der <T> interface. Y ou must implement aversion of the interface that uses a concrete data
type. For example, you can implement an instance of aPr ovi der <SAXSour ce> .

The complexity of implementing the Provider interface surrounds handling the request messages and building the
proper responses.

Working with messages

Unlike the higher-level SEI based service implementations, Pr ovi der implementations receive requests as raw
XML dataand must send responses as raw XML data. This requires that the developer has intimate knowledge of
the messages used by the service being implemented. These details can typically befound in the WSDL document
describing the service.

WS- Basic Profile provides guidelines about the messages used by services including:

* Theroot element of arequest is based in the value of the name attribute of the wsdl : oper ati on element
that corresponds to the operation being invoked.

o Warning

If the service uses doc/literal bare messages, the root element of the request will be based on
the value of name attribute of the wsdl : part element referred to by thewsdl : oper ati on
element.

Talend Enterprise Service Factory User Guide 31

JAX-WS Development

e Theroot element of all messages will be namespace qualified.

« If the service uses rpc/literal messages, the top-level elementsin the messages will not be namespace qualified.

C | mportant

The children of top-level elements may be namespace qualified. To be certain you will need to
check their schema definitions.

« If the service uses rpc/literal messages, none of the top-level elements can be null.

« If the service uses doc/literal messages, the schema definition of the message determinesif any of the elements
are namespace qualified.

Implementing the invoke() method

The Provi der interface has only one method, i nvoke() , that needs to be implemented. i nvoke()
receives the incoming request packaged into the type of object declared by the type of Pr ovi der interface
being implemented and returns the response message packaged into the same type of object. For example, an
implementation of a Pr ovi der <SOAPMessage> interface would receive the request as a SOAPMessage
object and return the response as a SOAPMessage object.

The messaging mode used by the Provi der implementation determines the amount of binding specific
information the request and response messages contain. Implementation using message mode receive al of the
binding specific wrappers and headers along with the request. They must aso add all of the binding specific
wrappers and headers to the response message. |mplementations using payload mode only receive the body of
the request. The XML document returned by an implementation using payload mode will be placed into the body
of the request message.

Examples

Thefollowing showsaPr ovi der implementation that works with SOAPMessage objects in message mode.

i mport javax.xm .ws. Provider;

i mport javax.xm .ws. Service;

i nport javax.xm .ws. Servi ceMode;

i nport javax.xm .ws.WbServi ceProvi der;

@\bServi ceProvi der (port Name="st ockQuot eReporterPort"
servi ceName="st ockQuot eReporter")
@der vi ceMode(val ue="Servi ce. Mode. MESSAGE")
public class stockQuoteReporterProvider inplenments Provi der <SOAPMessage>

{
publ i c stockQuot eReporterProvider() {}

publ i ¢ SOAPMessage i nvoke(SOAPMessage request)
{
SOAPBody request Body = request. get SOAPBody/() ;
i f(request Body. get El enent Name. get Local Nane. equal s("get St ockPrice"))
{
MessageFactory nf = MessageFactory. new nstance();
SOAPFact ory sf = SOAPFact ory. newl nstance();

SOAPMessage response = nf.creat eMessage();
SOAPBody respBody = response. get SOAPBody/() ;

Talend Enterprise Service Factory User Guide 32

JAX-WS Development

Nane bodyName = sf.createNanme("get St ockPri ceResponse");

r espBody. addBodyEl enment (bodyNane) ;

SOAPEI enent respContent = respBody. addChi | dEl enent (" price");
respCont ent . set Val ue("123. 00");

response. saveChanges();

return response;

}

}
}

The code does the following:

1. Specifies that the following class implements a Pr ovi der object that implements the service whose
wsdl : servi ce element is named st ockQuot eReport er and whose wsdl : port element is named
st ockQuot eReporterPort .

2. Specifiesthat thisPr ovi der implementation uses message mode.

3. Providesthe required default public constructor.

N

. Provides an implementation of the i nvoke() method that takesa SOAPMessage object and returns a
SOAPMessage object.

. Extracts the request message from the body of the incoming SOAP message.

. Checks the root element of the request message to determine how to process the request.

5
6
7. Creates the factories needed for building the response.
8. Builds the SOAP message for the response.

9

. Returns the response as a SOA PM essage object.
The following shows an example of a Provider implementation using DOM Source objects in payload mode.

i mport javax.xm .ws. Provider;

i mport javax.xm .ws. Servi ce;

i mport javax.xm .ws. Servi ceMde;

i mport javax.xm .ws.\WebServi ceProvi der;

@\¢bSer vi ceProvi der (port Nane="st ockQuot eReporterPort"
servi ceNane="st ockQuot eReporter")
@ber vi ceMode(val ue="Servi ce. Mode. PAYLOAD")
public class stockQuoteReporterProvider inplenments Provider<DOVSour ce>
publ i c stockQuot eReporterProvider()
{
}

publ i c DOVBour ce i nvoke(DOVBour ce request)
{

DOVBour ce response = new DOMSource();

return response;
}
}

The code does the following:

1. Specifies that the class implements a Provi der object that implements the service whose
wsdl : servi ce element is named st ockQuot eReport er and whose wsdl : port element is named
st ockQuot eReporterPort .

Talend Enterprise Service Factory User Guide 33

JAX-WS Development

2. Specifiesthat this Provider implementation uses payload mode.
3. Provides the required default public constructor.

4. Provides an implementation of the i nvoke() method that takes a DOMSour ce object and returns a
DOVBour ce object.

2.2.6. WebserviceContext

The WebserviceContext interface is part of the JAX-WS specification. It allows you to access severa context
informations the runtime has associated to your service call.

The following code fragment show how to use some parts of the WebserviceContext.

public class CustonerServicelnmpl inplenments CustonerService {
@Resour ce
WebSer vi ceCont ext wsCont ext ;

publ i c List<Customer> get CustormersByName(String namne)
t hrows NoSuchCust oner Excepti on {
Princi pal pr = wsContext.getUserPrincipal();

/1 Only joe may access this service operation
if (pr == null |] !'"joe".equal s(pr.getNanme())) {
t hrow new Runti meExcepti on("Access deni ed");

}

/1 Only the sales role may access this operation
if (!'wsContext.isUserlnRole("sales")) {
t hrow new Runti meExcepti on("Access deni ed");

}
MessageCont ext nCont ext = wsCont ext. get MessageCont ext () ;

/1 See which contents the nessage context has
Set<String> s = nContext. keySet ();

/1 Using this cxf specific code you can access

/1 the CXF Message and Exchange objects

W appedMessageCont ext wrt = (W appedMessageCont ext) mCont ext ;
Message m = wnt. get W appedMessage() ;

Exchange ex = m get Exchange();

2.3. JAX-WS Client Development Options

2.3.1. WSDL2Java generated Client

One of the most common scenariosisthat where you have a service which you may or not manage and this service
hasaWSDL. In this case you'll often want to generate a client from the WSDL.. This provides you with astrongly

Talend Enterprise Service Factory User Guide 34

JAX-WS Development

typed interface by which to interact with the service. Once you've generated a client, typical usage of it will look
like so:

Hel | oServi ce service = new Hel |l oService();
Hell o client = service.getHell oH tpPort();

String result = client.sayH ("Joe");

The WSDL 2Java tool will generate JAX-WS clients from your WSDL. Y ou can run WSDL 2java one of three
ways:

e The command line
» The Maven Plugin
* With the WSDL 2Java APl

For more in depth information read Developing a JAX-WS consumer or see the Hello World demos inside the
distribution.

2.3.2. JAX-WS Proxy

Instead of using awsdl2java-generated stub client directly, you can use Service.create to create Service instances,
the following code illustrates this process:

i mport java. net. URL;
i mport javax.xm .ws. Servi ce;

URL wsdl URL = new URL("http://local host/hell o?wsdl");

MNanme SERVI CE_NAME = new QNane("http://apache.org/ hello_world_soap_http",
" SOAPSer vi ce") ;

Service service = Service.create(wsdl URL, SERVI CE_NAME);

Greeter client = service.getPort(G eeter.class);

String result = client.greetMe("test");

2.3.3. JAX-WS Dispatch APIs

JAX-WS provides the "dispatch" mechanism which makesit easy to dynamically invoke services which you have
not generated aclient for. Using the Dispatch mechanism you can create messages (which can be JAXB objects,
Source objects, or a SAAIMessage) and dispatch them to the server. A simple example might look like this:

i mport java. net. URL;

i mport javax.xm .transform Source;
i mport javax.xm .ws. Di spatch;

i mport javax.xm .ws. Servi ce;

URL wsdl URL = new URL("http://local host/hell o?wsdl");

Service service = Service. create(wsdl URL, new QNane("Hel | oService"));

Di spat ch<Source> disp = service. createbi spatch(new QNane("Hel | oPort"),
Sour ce. cl ass, Service. Mbde. PAYLOAD) ;

Source request = new StreantSource("<hell o/ >")
Source response = disp.invoke(request);

Talend Enterprise Service Factory User Guide 35

http://localhost:8080/confluence/pages/viewpage.action?pageId=1343584
http://localhost:8080/confluence/pages/viewpage.action?pageId=1343571_UsingCXFwithmaven-MavenPlugin
http://localhost:8080/confluence/pages/viewpage.action?pageId=1343602

JAX-WS Development

NOTE: you can also use dispatches without aWSDL.

For more in depth information see the Hello World demos inside the distribution.

2.3.4. Usage Modes

2.3.4.1. Overview

Di spat ch objects have two usage modes :
» Message mode
» Message Payload mode (Payload mode)

The usage mode you specify for aDi spat ch object determines the amount of detail is passed to the user level
code.

2.3.4.2. Message mode

In message mode , a Di spat ch object works with complete messages. A complete message includes any
binding specific headers and wrappers. For example, a consumer interacting with a service that requires SOAP
messages would need to provide the Di spat ch object'si nvoke() method a fully specified SOAP message.
Thei nvoke() method will also return afully specified SOAP message. The consumer code is responsible for
completing and reading the SOA P message's headers and the SOAP message's envel ope information.

@ Tip

Message mode is not ideal when you wish to work with JAXB objects.

You specify that a Dispatch object uses message mode by providing the vaue
java. xm . ws. Servi ce. Mbde. MESSAGE when creating the Dispatch object.

2.3.4.3. Payload mode

In payload mode , also called message payload mode, a Di spat ch object works with only the payload of a
message. For example, a Di spat ch object working in payload mode works only with the body of a SOAP
message. The binding layer processes any binding level wrappers and headers. When a result is returned from
i nvoke() the binding level wrappers and headers are already striped away and only the body of the message
isleft.

@ Tip

When working with a binding that does not use special wrappers, such as the Artix ESB XML
binding, payload mode and message mode provide the same results.

You specify that a Dispatch object wuses payload mode by providing the vaue
java. xm . ws. Servi ce. Mbde. PAYLOAD when creating the Di spat ch object.

Talend Enterprise Service Factory User Guide 36

JAX-WS Development

2.3.5. Data Types

2.3.5.1. Overview

Di spat ch objects, because they are low-level objects, are not optimized for using the same JAXB generated
types as the higher level consumer APIs. Di spat ch objects work with the following types of objects:

e javax.xm . transform Source
* javax. xm . soap. SOAPMessage
* javax. activati on. Dat aSour ce

* JAXB

2.3.5.2. Using Source objects

A Dispatch object can accept and return objects that are derived from the
j avax. xm . t ransf or m Sour ce interface. Source objects are low level objects that hold XML documents.
Each Sour ce implementation provides methods that access the stored XML documents and manipulate its
contents. The following objects implement the Sour ce interface:

 DOVBour ce
* SAXSour ce

* StreanBource

2 | mportant

When using Sour ce objects the developer is responsible for ensuring that all required binding
specific wrappers are added to the message. For example, when interacting with a service
expecting SOAP messages, the devel oper must ensure that the required SOAP envelope is added
to the outgoing request and that the SOAP envelope's contents are correct.

2.3.5.3. Using SOAPMessage objects

Di spat ch objectscanusej avax. xnl . soap. SOAPMessage objectswhenthefollowing conditionsaretrue:
» theDi spat ch object isusing the SOAP binding.

» theDi spat ch object is using message mode.

2.3.5.4. Using DataSource objects

Di spat ch objects can use objects that implement the j avax. act i vati on. Dat aSour ce interface when
the following conditions are true:

» theDi spat ch object isusing the HTTP binding.

Talend Enterprise Service Factory User Guide 37

JAX-WS Development

 the Di spat ch object is using message mode.

Dat aSour ce objects provide a mechanism for working with MIME typed data from a variety of sources
including URLSs, files, and byte arrays.

2.3.5.5. Using JAXB objects

While Di spat ch objects are intended to be low level API that allows you to work with raw messages, they
also alow you to work with JAXB objects. To work with JAXB objects a Di spat ch object must be passed
a JAXBCont ext that knows how to marshal and unmarshal the JAXB objects in use. The JAXBCont ext is
passed when the Di spat ch object is created.

You can pass any JAXB object understood by the JAXBCont ext object as the parameter to the i nvoke()
method. Y ou can also cast the returned message into any JAXB object understood by the JAXBCont ext object.

2.3.6. Working with Dispatch Objects

2.3.6.1. Procedure

To use a Dispatch object to invoke a remote service you do the following:
1. Create aDi spat ch object.

2. Construct areguest message.

3. Call the proper i nvoke() method.

4. Parse the response message.

2.3.6.2. Creating a Dispatch object

To createaDi spat ch object do the following:

1. Create a Ser vi ce object to represent the wsdl : servi ce element defining the service on which the
Di spat ch object will make invocations.

2. Createthe Di spat ch object using the Ser vi ce object'scr eat eDi spat ch() method.

publ i c Di spat ch<T> creat ebDi spat ch(Q\anme port Nane,
java.l ang. d ass<T> type, Service.Mde node) throws WbServi ceException;

@ Note

If you are using JAXB objects the method signature for cr eat eDi spat ch() is:

publ i c Di spat ch<T> creat eDi spat ch(QNanme port Nane,
j avax. xm . bi nd. JAXBCont ext context, Service. Mode npde)
t hrows WebSer vi ceExcepti on;

Talend Enterprise Service Factory User Guide 38

JAX-WS Development

The following table describes the parameters for cr eat eDi spat ch() .

Parameter Description

portName Specifies the QName of the wsdl : port element that represent the service
provider on which the Di spat ch object will make invocations.

type Specifies the data type of the objects used by the Di spat ch object.

mode Specifies the usage mode for the Di spat ch object.

The code bellow createsa Di spat ch object that works with DOMSour ce objects in payload mode.
package com nyconpany. deno;

i mport javax.xml . nanespace. QNane;
i mport javax.xm .ws. Service;

public class dient
{
public static void main(String args[])
{
Q\ane servi ceNane = new QNane("http://org. apache. cxf",
"st ockQuot eReporter");
Service s = Service.create(servi ceNane);

Q\ane portName = new QName("http://org.apache. cxf",
"st ockQuot eReporterPort");
Di spat ch<DOVSour ce> di spatch = creat eD spat ch(port Nane,
DOvBour ce. cl ass,
Servi ce. Mode. PAYLQOAD) ;

2.3.6.3. Constructing request messages

When working with Di spat ch objects requests must be built from scratch. The developer is responsible for
ensuring that the messages passed to a Di spat ch object match a request that the targeted service provider can
process. This requires precise knowledge about the messages used by the service provider and what, if any, header
information it requires.

Thisinformation can be provided by aWSDL document or an XML Schema document that defines the messages.
While service providers vary greatly there are afew guidelines that can be foll owed:

» Theroot element of the request is based in the value of the name attribute of thewsdl| : oper at i on element
that corresponds to the operation being invoked.

o Warning

If the service being invoked uses doc/literal bare messages, the root element of the request
will be based on the value of name attribute of the wsdl : part element refered to by the
wsdl : oper at i on element.

» Theroot element of the request will be namespace qualified.

* If theservicebeinginvoked usesrpc/literal messages, thetop-level el ementsin the request will not be namespace
qualified.

Talend Enterprise Service Factory User Guide 39

JAX-WS Development

2 | mportant

The children of top-level elements may be namespace qualified. To be certain you will need to
check their schema definitions.

« If the service being invoked uses rpc/literal messages, none of the top-level elements can be null.

« If the service being invoked uses doc/literal messages, the schema definition of the message determines if any
of the elements are namespace qualified.

For more information about how services use XML messages see the WS-| Basic Profile.

2.3.6.4. Synchronous invocation

For consumers that make synchronous invocations that generate a response, you use the Di spat ch object's
i nvoke() method shown bellow.

T invoke(T mnsg)
t hrows WebServi ceExcepti on;

Thetype of both the response and the request passed to thei nvoke() method are determined when the Dispatch
object is created. For example if you created a Di spat ch object using cr eat eDi spat ch(port Nane,
SOAPMessage. cl ass, Servi ce. Mode. MESSAGE) the response and the request would both be
SOAPMessage objects.

@ Note

When using JAXB objects, the response and the request can be of any type the provided
JAXBCont ext object can marshal and unmarshal. Also, the response and the request can be
different JAXB objects.

The code bel ow makes a synchronous invocation on aremote service using a DOVSour ce object.

/1 Creating a DOVBource Object for the request
Docunent Bui | der db = Docunent Bui | der Fact ory. newDocunent Bui | der () ;
Docunent requestDoc = db. newDocunent ();
El ement root = requestDoc. creat eEl ement NS(
"http://org.apache. cxf/ st ockExanpl e", "getStockPrice");
root . set NodeVal ue(" DOW) ;
DOVBour ce request = new DOVSour ce(request Doc);

/1 Dispatch disp created previously
DOVBour ce response = di sp.invoke(request);

Asynchronous invocation

Di spat ch objectsalso support asynchronousinvocations. Aswith the higher level asynchronous APIsdiscussed
in Chapter 4, Di spat ch objects can use both the polling approach and the callback approach.

When using the polling approach the i nvokeAsync() method returns a Response<t > object that can be
periodically polled to seeif the response has arrived.

Response <T> invokeAsync(T nsg)
t hrows WebServi ceExcepti on;

Talend Enterprise Service Factory User Guide 40

JAX-WS Development

When using the callback approach thei nvokeAsync() methodtakesan AsyncHandl er implementation that
processes the response when it is returned.

Fut ur e<?> i nvokeAsync(T nmsg, AsyncHandl er <T> handl er)
t hrows WebSer vi ceExcepti on;

S Note

As with the synchronous i nvoke() method, the type of the response and the type of the request
are determined when you create the Di spat ch object.

Oneway invocation

When a request does not generate a response, you make remote invocations using the Di spat ch object's
i nvokeOneWay() .

voi d i nvokeOneVay (T nsQ)
t hrows WebServi ceExcepti on;

The type of object used to package the request is determined when the Di spat ch object is created. For
example if the Di spat ch object is created using cr eat eDi spat ch(port Nane, DOMSource. cl ass,
Servi ce. Mode. PAYLOAD) the request would be packaged into a DOVSour ce object.

@ Note

When using JAXB objects, the response and the request can be of any type the provided
JAXBCont ext object can marshal and unmarshal. Also, the response and the request can be
different JAXB objects.

The code below makes a one way invocation on aremote service using a JAXB object.

/1 Creating a JAXBContext and an Unmarshaller for the request
JAXBCont ext jbc = JAXBCont ext.newl nstance("org. myconpany. St ockExanpl ") ;
Unmarshal ler u = jbc.createUnmarshal l er();

/1 Read the request fromdisk
File rf = new File("request.xm");
Get St ockPrice request = (Get StockPrice)u.unnmarshal (rf);

/1 Dispatch disp created previously
di sp. i nvokeOneWay(r equest) ;

2.3.7. Developing a Consumer

2.3.7.1. Generating the Stub Code

The starting point for developing a service consumer (or client) in CXF isaWSDL contract, complete with port
type, binding, and service definitions. Y ou can then use the wsdl 2java utility to generate the Java stub code from
the WSDL contract. The stub code provides the supporting code that is required to invoke operations on the remote
service. For CXF clients, the wsdl2java utility can generate the following kinds of code:

* Stub code - supporting files for implementing a CXF client.

Talend Enterprise Service Factory User Guide 41

http://cwiki.apache.org/CXF20DOC/wsdl-to-java.html

JAX-WS Development

« Client starting point code - sample client code that connects to the remote service and invokes every operation
on the remote service.

* Antbuildfile-abui | d. xm fileintended for use with the ant build utility. It hastargets for building and for
running the sample client application.

Basic HellowWorld WSDL contract

The below shows the Helloworld WSDL contract. This contract defines a single port type, G eet er , with a
SOAPbinding, Gr eet er _SOAPBI ndi ng, andaservice, SOAPSer vi ce ,whichhasasingleport, SoapPor t

<?xm version="1.0" encodi ng="UTF-8"7?>

<wsdl : def

ni ti ons nane="Hel | oWr| d"

t ar get Namespace="htt p://apache. org/ hell o_worl d soap_http"
xm ns="http://schemas. xm soap. or g/ wsdl /"

xm ns
xm ns
xm ns
xm ns
xm ns
<wsdl :

soap="http://schemas. xnl soap. or g/ wsdl / soap/ "

:tns="http://apache.org/ hell o _world soap_http"

x1="http://apache.org/ hell o world soap_http/types"
wsdl ="htt p://schemas. xm soap. or g/ wsdl /"

:xsd="htt p://ww. w3. org/ 2001/ XM_Schema" >

types>

<schema t ar get Nanespace=

"http://apache.org/hello world soap_http/types"
xm ns="http://ww. w3. or g/ 2001/ XM_LSchema"

xm ns:tns="http://apache.org/hell o world _soap_http/types"

el ement For mDef aul t ="qual i fi ed" >

<si npl eType nanme="M/Stri ngType" >
<restriction base="string">

<maxLength val ue="30" />

</restriction>
</ si npl eType>

<el enent name="sayH ">
<conpl exType/ >
</ el emrent >
<el enent nanme="sayH Response" >
<conpl exType>
<sequence>
<el enent name="responseType" type="string"/>
</ sequence>
</ conpl exType>
</ el emrent >
<el enent name="greet ">
<conpl exType>
<sequence>
<el enent nanme="request Type"
type="tns: MyStringType"/ >
</ sequence>
</ conpl exType>
</ el emrent >
<el enent name="gr eet MeResponse" >
<conpl exType>
<sequence>
<el enent name="responseType" type="string"/>
</ sequence>

Talend Enterprise Service Factory User Guide

42

JAX-WS Development

</ conpl exType>
</ el ement >
<el enent nanme="gr eet MeOneVay" >
<conpl exType>
<sequence>
<el enent name="request Type" type="string"/>
</ sequence>
</ conpl exType>
</ el ement >
<el enent name="pi nghe" >
<conpl exType/ >
</ el ement >
<el enent name="pi ngMeResponse" >
<conpl exType/ >
</ el ement >
<el ement nane="faul t Detail ">
<conpl exType>
<sequence>
<el enent name="m nor" type="short"/>
<el enent name="mgj or" type="short"/>
</ sequence>
</ conpl exType>
</ el ement >
</ schema>
</ wsdl : types>
<wsdl : message nanme="sayH Request">
<wsdl : part el erent="x1:sayH " name="in"/>
</ wsdl : nressage>
<wsdl : message nanme="sayH Response" >
<wsdl : part el enent ="x1: sayH Response" nane="out"/>
</ wsdl : nressage>
<wsdl : message nane="gr eet MeRequest " >
<wsdl : part el enent ="x1: greet " nanme="in"/>
</ wsdl : nressage>
<wsdl : message nane="gr eet MeResponse” >
<wsdl : part el ement ="x1: gr eet MeResponse” nanme="out"/>
</ wsdl : nressage>
<wsdl : message nanme="gr eet MeOneWayRequest " >
<wsdl : part el enent ="x1: gr eet MeOneV\ay" nane="in"/>
</ wsdl : nressage>
<wsdl : message nane="pi ngMeRequest " >
<wsdl : part name="in" el ement="x1: pi ngMe"/ >
</ wsdl : nressage>
<wsdl : message nane="pi ngMeResponse" >
<wsdl : part name="out" el enent ="x1: pi ngMeResponse"/ >
</ wsdl : nressage>
<wsdl : message nane="pi ngMeFaul t ">
<wsdl : part name="faultDetail" el enment="x1:faultDetail"/>
</ wsdl : nressage>

<wsdl : port Type nane="G eeter">
<wsdl : operati on name="sayH ">
<wsdl : i nput nessage="tns: sayH Request" nane="sayH Request"/>
<wsdl : out put message="tns: sayH Response"
nane="sayH Response"/ >
</ wsdl : oper ati on>

<wsdl| : operati on name="greet V">

Talend Enterprise Service Factory User Guide 43

JAX-WS Development

<wsdl : i nput nessage="tns: greet MeRequest ™
nane="gr eet MeRequest "/ >
<wsdl : out put message="tns: gr eet MeResponse”
nane="gr eet MeResponse"/ >
</ wsdl : oper ati on>

<wsdl : oper ati on name="gr eet MeOneWay" >
<wsdl : i nput nessage="tns: greet MeOneWayRequest "
nane="gr eet MeOneVayRequest "/ >
</ wsdl : oper ati on>

<wsdl| : oper ati on name="pi nge" >
<wsdl : i nput nanme="pi ngMeRequest " nessage="t ns: pi ngMeRequest "/ >
<wsdl : out put nane="pi ngMeResponse”
message="t ns: pi ngMeResponse"/ >
<wsdl : fault name="pi ngMeFaul t" message="tns: pi ngMeFaul t"/ >
</ wsdl : oper ati on>
</ wsdl : port Type>
<wsdl : bi ndi ng nanme="G eet er _SOAPBI ndi ng" type="tns: G eeter">
<soap: bi ndi ng styl e="docunent"
transport="http://schemas. xnl soap. or g/ soap/ http"/>

<wsdl : operati on name="sayH ">
<soap: operati on soapAction= styl e="docunent"/>
<wsdl : i nput nanme="sayH Request ">
<soap: body use="literal"/>
</ wsdl : i nput >
<wsdl : out put nane="sayH Response" >
<soap: body use="literal"/>
</ wsdl : out put >
</ wsdl : oper ati on>

<wsdl| : operati on name="greet Me">
<soap: operati on soapAction= styl e="docunent"/>
<wsdl : i nput name="gr eet MeRequest " >
<soap: body use="literal"/>
</ wsdl : i nput >
<wsdl : out put nanme="gr eet MeResponse" >
<soap: body use="literal"/>
</ wsdl : out put >
</ wsdl : oper ati on>

<wsdl : operati on name="gr eet MeOneWay" >
<soap: operation soapAction="" style="docunent"/>
<wsdl : i nput name="gr eet MeOneVayRequest " >
<soap: body use="literal"/>
</ wsdl : i nput >
</ wsdl : oper ati on>

<wsdl| : operati on name="pi nge" >
<soap: operation styl e="docunment"/>
<wsdl : i nput >
<soap: body use="literal"/>
</ wsdl : i nput >
<wsdl : out put >
<soap: body use="literal"/>
</ wsdl : out put >
<wsdl : fault name="pi ngMeFaul t ">

Talend Enterprise Service Factory User Guide 44

JAX-WS Development

<soap:fault name="pi ngMeFault" use="literal"/>
</wsdl : faul t>
</ wsdl : oper ati on>

</ wsdl : bi ndi ng>
<wsdl : servi ce nanme="SOAPSer vi ce" >
<wsdl : port bindi ng="tns: G eet er _SOAPBi ndi ng" name="SoapPort">
<soap: addr ess
| ocation="http://1 ocal host: 9000/ SoapCont ext / SoapPort"/ >
</ wsdl : port >
</wsdl| : service>
</wsdl : definitions>

The G eet er port type from the example above [42] defines the following WSDL operations:
» sayH - hasasingleoutput parameter, of xsd: string.
e greet Me - hasan input parameter, of xsd: stri ng, and an output parameter, of xsd: string.

» greet MeOneWay - has a single input parameter, of xsd: st ri ng . Because this operation has no output
parameters, CXF can optimize this call to be aoneway invocation (that is, the client does not wait for aresponse
from the server).

* pi ngMe - has no input parameters and no output parameters, but it can raise afault exception.

The above example [42] also defines a binding, Gr eet er _SOAPBI ndi ng , for the SOAP protocol. In
practice, the binding is normally generated automatically - for example, by running either of the CXF wsdl2soap
or wsdl2xml utilities. Likewise, the SOAPSer vi ce service can be generated automatically by running the CXF
wsdl2service utility.

Generating the stub code

After defining the WSDL contract, you can generate client code using the CXF wsdl2java utility. Enter the
following command at a command-line prompt:

wsdl 2j ava -ant -client -d ClientDir hello_world. wsdl

Where ClientDir is the location of a directory where you would like to put the generated files and
hel | o_wor | d. wsdl isafile containing the contract shown in the above WSDL. The - ant option generates
anantbui | d. xm file, for use with the ant build utility. The- cl i ent option generates starting point code for
aclient mai n() method.

The preceding wsdl2java command generates the following Java packages:

e org.apache. hell o_worl d_soap_http This package name is generated from the http://apache.org/
hello_world soap_http target namespace. All of the WSDL entities defined in this target namespace (for
example, the Greeter port type and the SOAPService service) map to Java classes in the corresponding Java
package.

» org.apache. hell o_worl d_soap_http.types This package name is generated from the http://
apache.org/hello_world_soap_http/types’ target namespace. All of the XML types defined in this target
namespace (that is, everything defined in thewsdl : t ypes element of the Helloworld contract) map to Java
classesin the corresponding Java package.

The stub files generated by the wsdl2java command fall into the following categories:

 Classes representing WSDL entities (in the or g. apache. hel | o_wor| d_soap_htt p package) - the
following classes are generated to represent WSDL entities:

Talend Enterprise Service Factory User Guide 45

JAX-WS Development

* G eet er isaJavainterfacethat representsthe Greeter WSDL port type. In JAX-WS terminology, this Java
interface is a service endpoint interface.

* SCOAPSer vi ce isaJavaclassthat represents the SOAPService WSDL ser vi ce element.

e Pi ngMeFaul t is a Java exception class (extending j ava. | ang. Excepti on) that represents the
pingMeFault WSDL f aul t element.

 Classesrepresenting XML types(intheor g. apache. hel | o_wor | d_soap_htt p. t ypes package) - in
the HelloWorld example, the only generated types are the various wrappers for the request and reply messages.
Some of these data types are useful for the asynchronous invocation model.

2.3.7.2. Implementing a CXF Client

This section describes how to write the code for a simple Java client, based on the WSDL contract above. To
implement the client, you need to use the following stub classes:

* Serviceclass (that is, SOAPSer vi ce).

» Service endpoint interface (that is, Gr eet er).

Generated service class

The next example shows the typical outline a generated service class, Ser vi ceNane , which extends the
j avax. xm . ws. Ser vi ce baseclass.

Example 2.9. Outline of a Generated Service Class

public class ServiceName extends javax.xm .ws. Service

{

public ServiceName(URL wsdl Locati on, QNanme serviceNane) { }
public ServiceName() { }

public Geeter getPortName() { }

}

The Ser vi ceNane class above defines the following methods:
 Constructor methods - the following forms of constructor are defined:

e Servi ceNanme(URL wsdl Locati on, QNane servi ceNanme) constructs a service object based on
the datain the serviceName service in the WSDL contract that is obtainable from wsdlLocation .

e Servi ceName() isthe default constructor, which constructs a service object based on the service name
and WSDL contract that were provided at the time the stub code was generated (for example, when running
the CdtiXfire wsdl2java command). Using this constructor presupposes that the WSDL contract remains
available at its original location.

e get _Port Nane_() methods- for every PortName port defined on the ServiceName service, CXF generates
a corresponding get _Port Name_ () method in Java. Therefore, awsdl : servi ce element that defines
multiple ports will generate a service class with multiple get _Por t Nanme_ () methods.

Talend Enterprise Service Factory User Guide 46

JAX-WS Development

Service endpoint interface

For every port type defined in the original WSDL contract, you can generate a corresponding service endpoint
interface in Java. A service endpoint interface is the Java mapping of aWSDL port type. Each operation defined
in the original WSDL port type mapsto a corresponding method in the service endpoint interface. The operation's
parameters are mapped as follows:

1. Theinput parameters are mapped to method arguments.
2. Thefirst output parameter is mapped to areturn value.

3. If there is more than one output parameter, the second and subsequent output parameters map to method
arguments (moreover, the values of these arguments must be passed using Holder types).

The next example shows the Greeter service endpoint interface, which is generated from the Greeter port type
defined in the WSDL above. For simplicity, this example omits the standard JAXB and JAX-WS annotations.
Example 2.10. The Greeter Service Endpoint Interface

/* Cenerated by WsDLToJava Conpiler. */
package org. obj ectweb. hell o_worl| d_soap_http;
puEi | c interface Geeter
{ public java.lang. String sayHi ();
public java.lang. String greetMe(java.lang. String request Type);

public void greet MeOneWay(j ava.l ang. String request Type);

public void pingMe() throws PingMeFault;

Client main function

This exampl e shows the Java code that implements the HelloWorld client. In summary, the client connectsto the
SoapPort port on the SOAPSer vi ce service and then proceeds to invoke each of the operations supported
by the Gr eet er port type.

package deno. hw. client;

i mport java.io.File;

i mport java. net. URL;

i mport javax.xm . nanespace. QNane;

i mport org.apache. hell o _world soap_http. Greeter;

i mport org.apache. hell o world soap_http. Pi ngMeFaul t;
i mport org.apche. hello world _soap_http. SOAPSer vi ce;

public final class dient {
private static final QNane SERVI CE_ NAME =
new QNane("http://apache.org/ hell o _world soap http",
" SOAPSer vi ce") ;

private Cient()

Talend Enterprise Service Factory User Guide 47

JAX-WS Development

{
}
public static void main(String args[]) throws Exception
{
if (args.length == 0)
{
Systemout. println("please specify wsdl");
Systemexit(1l);
}
URL wsdl URL;

File wsdlFile = new File(args[O0]);
if (wsdlFile.exists())

{

wsdl URL = wsdl File.toURL();
}
el se
{

wsdl URL = new URL(args[0]);
}

System out . printl n(wsdl URL) ;

SOAPServi ce ss = new SOAPServi ce(wsdl URL, SERVI CE_NAME) ;
Greeter port = ss.getSoapPort();

String resp;

Systemout.println("lnvoking sayH ...");
resp = port.sayHi();
Systemout.println("Server responded with:
Systemout.println();

+ resp);

Systemout.println("lnvoking greetMe...");

resp = port.greet Me(System get Property("user.nanme"));
Systemout. println("Server responded with: " + resp);
Systemout.println();

System out. println("lnvoking greet MOneVy...");

port.greet MeOneWay(Syst em get Property("user.nane"));
Systemout.println("No response fromserver as nmethod is OneVay");
Systemout.println();

try {
Systemout. println("Invoking pingMe, expecting exception...");

port. pi ngMe();

} catch (PingMeFault ex) ({
System out . printl n(

"Expected exception: PingMeFault has occurred.");

Systemout.println(ex.toString());

}

System exit(0);

}
}

Thed i ent . nmai n() function from the above example proceeds as follows.</para>

1. The CXF runtimeisimplicitly initialized - that is, provided the CXF runtime classes are loaded. Hence, there
isno need to call aspecial function in order to initialize CXF.

Talend Enterprise Service Factory User Guide 48

JAX-WS Development

2.

4,

5.

2

The client expects a single string argument that gives the location of the WSDL contract for Helloworld. The
WSDL location is stored inwsdl URL .

. A new port object (which enables you to access the remote server endpoint) is created in two steps, as shown

in the following code fragment:

SOAPServi ce ss = new SOAPServi ce(wsdl URL, SERVI CE_NAME) ;
Greeter port = ss.get SoapPort ();

To create anew port object, you first create a service object (passing in the WSDL location and service name)
and then call the appropriate get Port Nane () method to obtain an instance of the particular port you
need. In this case, the SOAPSer vi ce service supportsonly the SoapPor t port, whichisof Gr eet er type.

The client proceeds to call each of the methods supported by the Gr eet er service endpoint interface.

In the case of the pi ngMe() operation, the example code shows how to catch the Pi ngMeFaul t fault
exception.

.3.7.3. Setting Connection Properties with Contexts

Y ou can use JAX-WS contexts to customize the properties of a client proxy. In particular, contexts can be used to
modify connection properties and to send data in protocol headers. For example, you could use contexts to add a
SOAP header, either to aregquest message or to aresponse message. The following types of context are supported
on the client side:

Request context - on the client side, the request context enables you to set properties that affect outbound
messages. Request context properties are applied to a specific port instance and, once set, the properties affect
every subsequent operation invocation made on the port, until such time as a property is explicitly cleared. For
example, you might use a request context property to set a connection timeout or to initialize data for sending
in a header.</para>

Response context - on the client side, you can access the response context to read the property values set by the
inbound message from the | ast operation invocation. Response context properties are reset after every operation
invocation. For example, you might access a response context property to read header information received
from the last inbound message.

Setting a request context

To set a particular request context property, ContextPropertyName , to the value, PropertyValue , use the code
shown in the below example.

Example 2.11. Setting a Request Context Property on the Client Side

11

Set request context property.

java.util.Map<String, Object> requestContext =

((javax.xm . ws. Bi ndi ngProvi der) port) . get Request Cont ext ();

request Cont ext . put (Cont ext PropertyNane, PropertyVal ue);

11

I nvoke an operati on.

port. SomeQper ation();

Y ou haveto cast the port object toj avax. xnl . ws. Bi ndi ngPr ovi der inorder to accessthe request context.
Therequest context itself isof type,j ava. uti | . Map<Stri ng, Cbj ect >,whichisahash mapthat haskeys

of

St ri ng and values of arbitrary type. Usej ava. uti | . Map. put () to create anew entry in the hash map.

Talend Enterprise Service Factory User Guide 49

JAX-WS Development

Reading aresponse context

To retrieve a particular response context property, ContextPropertyName , use the code shown below.

Example 2.12. Reading a Response Context Property on the Client Side

/1 I nvoke an operation.
port. SoneQperation();

/1 Read response context property.
java.util.Map<String, Object> responseContext =

((javax.xm . ws. Bi ndi ngProvi der) port). get ResponseCont ext () ;
PropertyType propVal ue = (PropertyType)

responseCont ext . get (Cont ext Propert yNane) ;

The response context is of type, j ava. uti | . Map<String, Object >, whichisahash map that has keys
of type St ri ng and values of an arbitrary type. Usej ava. uti | . Map. get () to access an entry in the hash
map of response context properties.

Supported contexts

CXF supports the following context properties:

Context Property Name Context Property Type

or g. apache. cxf . ws. addressing . |org.apache. c¢xf . ws.addressing
JAXWSAConst ant s . |Addr essi ngProperties

CLI ENT_ADDRESSI NG_PROPERTI ES

2.3.7.4. Asynchronous Invocation Model

In addition to theusua synchronous mode of invocation, CXF al so supportstwo forms of asynchronousinvocation,
asfollows:

» Palling approach - in this case, to invoke the remote operation, you call a special method that has no output
parameters, but returnsaj avax. xm . ws. Response instance. The Response object (which inheritsfrom
the j avax. util. concurrency. Fut ur e interface) can be polled to check whether or not a response
message has arrived.

» Callback approach - in this case, to invoke the remote operation, you call another special method that takes a
referencetoacallback object (of j avax. xnl . ws. AsyncHandl er type) asone of its parameters. Whenever
the response message arrives at the client, the CXF runtime calls back on the AsyncHandl er object to give
it the contents of the response message.

Both of these asynchronous invocation approaches are described here and illustrated by code examples.

Contract for asynchronous example

The below example shows the WSDL contract that is used for the asynchronous example. The contract defines a
single port type, Gr eet er Async , which contains a single operation, gr eet MeSonet i ne .

Talend Enterprise Service Factory User Guide 50

JAX-WS Development

<wsdl : definitions xmns="http://schemas. xn soap. org/ wsdl /"
xm ns: soap="http://schemas. xm soap. or g/ wsdl / soap/"
xm ns:tns="http://apache. org/ hell o_worl d_async_soap_http"
xm ns: x1="http://apache. org/ hell o_worl d_async_soap_http/types”
xm ns:wsdl ="http://schemas. xm soap. org/ wsdl /"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema"
t ar get Namespace="htt p://apache. org/ hel |l o_wor| d_async_soap_http"
name="Hel | oWor | d" >
<wsdl : types>
<schenma t ar get Nanmespace=
"http://apache. org/hell o _world_async_soap_http/types"
xm ns="http://wwmw. w3. or g/ 2001/ XM_Schema"
xm ns: x1="http://apache. org/ hell o_worl d_async_soap_http/types”
el ement For mDef aul t ="qual i fi ed">
<el enent name="gr eet MeSoneti ne" >
<conpl exType>
<sequence>
<el enent nanme="request Type" type="xsd:string"/>
</ sequence>
</ conpl exType>
</ el ement >
<el enent name="gr eet MeSonet i neResponse” >
<conpl exType>
<sequence>
<el enent nanme="responseType" type="xsd:string"/>
</ sequence>
</ conpl exType>
</ el ement >
</ schema>
</ wsdl : types>
<wsdl : message nane="gr eet MeSonet i neRequest " >
<wsdl : part name="in" el ement="x1:greet MeSoneti ne"/>
</ wsdl : nressage>
<wsdl : message nane="gr eet MeSonet i neResponse” >
<wsdl : part name="out" el enent="x1: greet MeSonet i mreResponse"/ >
</ wsdl : nressage>
<wsdl : port Type nane="G eet er Async" >
<wsdl| : operati on name="gr eet MeSoneti ne" >
<wsdl| : i nput nane="greet MeSonet i reRequest "
message="t ns: gr eet MeSonet i neRequest "/ >
<wsdl : out put nanme="gr eet MeSonet i mreResponse”
message="t ns: gr eet MeSonet i neResponse”/ >
</ wsdl : oper ati on>
</ wsdl : port Type>
<wsdl : bi ndi ng nanme="G eet er Async_SQAPBI ndi ng"
type="tns: G eeter Async" >
<soap: bi ndi ng styl e="docunent"
transport="http://schemas. xnl soap. org/ soap/ http"/>
<wsdl| : operati on name="gr eet MeSoneti ne" >
<soap: operation styl e="docunment"/>
<wsdl : i nput >
<soap: body use="literal"/>
</ wsdl : i nput >
<wsdl : out put >
<soap: body use="literal"/>
</ wsdl : out put >
</ wsdl : oper ati on>

Talend Enterprise Service Factory User Guide 51

JAX-WS Development

</ wsdl : bi ndi ng>
<wsdl : servi ce nanme="SOAPSer vi ce" >
<wsdl| : port name="SoapPort"
bi ndi ng="t ns: G eet er Async_SQAPBI ndi ng" >
<soap: addr ess
| ocation="http://1 ocal host: 9000/ SoapCont ext / SoapPort"/ >
</ wsdl : port >
</wsdl| : service>
</wsdl : definitions>

Generating the asynchronous stub code

The asynchronous style of invocation requires extra stub code (for example, dedicated asychronous methods
defined on the service endpoint interface). This specia stub codeis not generated by default, however. To switch
on the asynchronous feature and generate the requisite stub code, you must use the mapping customization feature
from the WSDL 2.0 specification.

Customization enables you to modify the way the wsdl2java utility generates stub code. In particular, it enables
you to modify the WSDL -to-Java mapping and to switch on certain features. Here, customization is used to switch
on the asynchronous invocation feature. Customizations are specified using a binding declaration, which you
defineusing aj axws: bi ndi ngs tag (where the jaxws prefix is tied to the http://java.sun.com/xml/ng/jaxws"
namespace). There are two alternative ways of specifying a binding declaration:

» External binding declaration - thej axws: bi ndi ngs elementisdefinedin afile separately from the WSDL
contract. Y ou specify the location of the binding declaration file to the wsdl2java utility when you generate
the stub code.

» Embedded binding declaration - you can also embed the j axws: bi ndi ngs element directly in a WSDL
contract, treating it as a WSDL extension. In this case, the settingsin j axws: bi ndi ngs apply only to the
immediate parent element.

This section considers only the first approach, the external binding declaration. The template for a binding
declaration file that switches on asynchronous invocationsis shown below.

Example 2.13. Template for an Asynchronous Binding Declar ation

<bi ndi ngs xm ns: xsd="htt p://wwmv. wW3. or g/ 2001/ XM_Schema"
xm ns:wsdl ="http://schemas. xm soap. org/ wsdl /"
wsdl Locat i on=" @\5DL_LOCATI ON@ hel | o_wor | d_async. wsdl "
xm ns="http://java. sun. conl xm / ns/j axws" >
<bi ndi ngs node="wsdl : definitions">
<enabl eAsyncMappi ng>t r ue</ enabl eAsyncMappi ng>
</ bi ndi ngs>
</ bi ndi ngs>

<para>Where AffectedWSDL Contract specifies the URL of the WSDL contract that is affected by this binding
declaration. The AffectedNode is an XPath value that specifies which node (or nodes) from the WSDL contract
are affected by this binding declaration. Y ou can set AffectedNode to wsdl : def i ni ti ons , if you want the
entire WSDL contract to be affected. The {jaxws.enableAsyncMapping}} element isset tot r ue to enable the
asynchronous invocation feature.

For example, if you want to generate asynchronous methods only for the Gr eet er Async port type, you could
specify <bi ndi ngs node="wsdl : defi ni ti ons/wsdl : port Type[@ane=" G eet er Async']">
in the preceding binding declaration.

Talend Enterprise Service Factory User Guide 52

JAX-WS Development

Assuming that the binding declaration isstored in afile, async_bi ndi ng. xm , you can generate therequisite
stub files with asynchronous support by entering the following wsdl2java command:

wsdl 2java -ant -client -d dientDir -b async_bi ndi ng. xm hel |l o_worl d. wsdl

When you run the wsdl2java command, you specify the location of the binding declaration file using the -b
option. After generating the stub code in this way, the G- eet er Async service endpoint interface (in the file
Greet er Async. j ava) isdefined as shown below.

Example 2.14. Service Endpoint I nterface with Methods for Asynchronous I nvocations

/* Cenerated by WSDLToJava Conpiler. */
package org. apache. hell o_worl d_async_soap_http;

i mport java.util.concurrent. Future;
i mport javax.xm .ws. AsyncHandl er;
i mport javax.xm .ws. Response;

public interface G eeterAsync {

public Future<?> greet MeSoneti meAsync(
java.lang. String request Type,
AsyncHandl er <or g. myor g. types. G eet MeSonet i neResponse>
asyncHandl er

)

publ i c Response<org. nyorg.types. Geet MeSonet i mreResponse>
gr eet MeSonet i meAsync(
java.lang. String request Type

);

public java.lang. String greet MeSoneti me(
java.lang. String request Type

);
}

In addition to the usual synchronous method, gr eet MeSonet i ne() , two asynchronous methods are also
generated for the gr eet MeSormret i me operation, as follows:

» greet MeSonet i neAsync() method with Future<?> return type and an extra
j avax. xm . ws. AsyncHandl er parameter - call this method for the callback approach to asynchronous
invocation.

» greet MeSoneti neAsync() method with Response<G eet MeSonet i neResponse> return type -
call this method for the polling approach to asynchronous invocation.

The details of the callback approach and the polling approach are discussed in the following subsections.

Implementing an asynchronous client with the polling approach

The next exampleillustrates the polling approach to making an asynchronous operation call. Using this approach,
the client invokes the operation by calling the special Javamethod, Oper ati onNanme_Async() , that returns

Talend Enterprise Service Factory User Guide 53

JAX-WS Development

ajavax. xm . ws. Response<T> object, where T is the type of the operation's response message. The
Response<T> object can be polled at alater stageto check whether the operation'sresponse message hasarrived.

Example 2.15. Polling Approach for an Asynchronous Operation Call
package deno. hw. client;

i mport java.io.File;
i mport java.util.concurrent. Future;

i mport javax.xml . nanespace. QNane;
i mport javax.xm .ws. Response;

i mport org.apache. hell o_async_soap_http. G eet er Async;
i mport org.apache. hell o_async_soap_http. SOAPSer vi ce;
i mport org.apache. hell o_async_soap_http.types. G eet MeSonet i meResponse;

public final class dient {
private static final QNane SERVI CE_NAME
= new QNane("http://objectweb.org/hello_async_soap http",
" SOAPSer vi ce");

private Cient() {}
public static void main(String args[]) throws Exception {

/1 Polling approach:

Response<G eet MeSonet i meResponse> greet MeSoneTi neResp =
port.greet MeSoneti neAsync(Syst em get Property("user. nane"));
while (!greet MeSonmeTi neResp.isDone()) {

Thr ead. sl eep(100);

}
Greet MeSonet i neResponse reply = greet MeSoneTi meResp. get () ;

.Sil.stem exit(0);
}
}

The greet MeSoneti meAsync() method invokes the greet MeSonetinmes operation,
transmitting the input parameters to the remote service and returning a reference to a
javax. xm . ws. Response<G eet MeSonet i meResponse> object. The Response classis defined by
extendingthestandardj ava. uti | . concurrency. Fut ur e<T> interface, whichisspecifically designed for
polling the outcome of work performed by a concurrent thread. There are essentially two basic approaches to
polling using the Response object:

» Non-blocking polling - before attempting to get the result, check whether the response has arrived by calling
the non-blocking Response<T>. i sDone() method. For example:

Response<G eet MeSonet i nreResponse> greet MeSoneTi neResp = ... ;

if (greetMeSonmeTi neResp.isDone()) {
G eet MeSonet i mreResponse reply = greet MeSoneTi neResp. get () ;

}

» Blocking palling - call Response<T>. get () right away and block until the response arrives (optionally
specifying atimeout). For example, to poll for aresponse, with a 60 second timeout:

Response<G eet MeSonet i neResponse> greet MeSoneTi neResp = ...

Talend Enterprise Service Factory User Guide 54

JAX-WS Development

G eet MeSonet i meResponse reply = greet MeSoneTi neResp. get (
60L,
java.util.concurrent. Ti neUni t. SECONDS

)

Implementing an asynchronous client with the callback approach

An dternative approach to making an asynchronous operation invocation is to implement a callback class,
by deriving from the j avax. xm . ws. AsyncHandl er interface. This calback class must implement a
handl eResponse() method, which is called by the CXF runtime to notify the client that the response has
arrived. The below example shows an outline of the AsyncHandl er interface that you need to implement.

Example 2.16. Thejavax.xml.ws. AsyncHandler | nterface
package javax.xm .ws;
public interface AsyncHandl er <T>

{
voi d handl eResponse(Response<T> res);

}

In this example, a callback class, Test AsyncHandl er , is defined as shown in the example below.

Example 2.17. The TestAsyncHandler Callback Class
package deno. hw. client;

i mport javax.xm .ws. AsyncHandl er;
i mport javax.xm .ws. Response;

i mport org.apache. hel | o_async_soap. types. G eet MeSonet i meResponse,;

public class Test AsyncHandl er inplenents
AsyncHandl er <G eet MeSonet i neResponse> {
private G eet MeSoneti neResponse reply;

public void handl eResponse(Response<G eet MeSonet i neResponse>
response) {
try {
reply = response. get();
} catch (Exception ex) {
ex. print StackTrace();
}
}

public String getResponse() {
return reply. get ResponseType();
}
}

The implementation of handl eResponse() shown in Examplell [55] smply gets the response data and
storesit in amember variable, r epl y . The extraget Response() method is just a convenience method that
extracts the sole output parameter (that is, r esponseType) from the response.

Talend Enterprise Service Factory User Guide 55

JAX-WS Development

Examplel2 [56] illustrates the callback approach to making an asynchronous operation call. Using this
approach, the client invokes the operation by calling the special Java method, _Qper ati onNane_Async()
, that returns a java. util.concurrency. Future<?> object and takes an extra parameter of
AsyncHandl er <T>.

Example 2.18. Callback Approach for an Asynchronous Operation Call
package deno. hw. client;

import java.io.File;
i mport java.util.concurrent. Future;

i mport javax.xm . nanespace. QNane;
i mport javax.xm .ws. Response;

i mport org.apache. hell o_async_soap_http. G eet er Async;
i mport org. apache. hel |l o_async_soap_htt p. SOAPSer vi ce;
i mport org.apache. hel l o_async_soap_http.types. G eet MeSonet i meResponse;

public final class Cient {
private static final QName SERVI CE_NAME
= new QNane("http://apache.org/ hello_world_async_soap_http",
" SOAPSer vi ce") ;

private Cient() {}
public static void main(String args[]) throws Exception {

/1 Call back approach
Test AsyncHandl er test AsyncHandl er = new Test AsyncHandl er () ;
System out. printl n(

"I nvoki ng greet MeSorreti neAsync usi ng cal | back object...");
Fut ure<?> response = port.greet MeSoreti neAsync(

System get Property("user. name"), testAsyncHandl er);
whil e (!response.isbDone()) {

Thr ead. sl eep(100);

}
resp = test AsyncHandl er. get Response();

.Sﬁ./étem exit(0);
}
}

The Fut ur e<?> object returned by gr eet MeSomret i neAsync() can be used only to test whether or not a
response has arrived yet - for example, by calling r esponse. i sDone() . The value of the response is only
made available to the callback object, t est AsyncHandl er .

2.4. Data Binding Options

CXF uses JAXB 2.x asits default databinding.

CXF aso includes other data bindings. There is the Aegis data binding which will turn nearly any Java object
into something that can be represented using schema, including Maps, Lists, and unannotated javatypes. CXF 2.1
added an XML Beans databinding, and CXF 2.3.0 added an SDO databinding.

Talend Enterprise Service Factory User Guide 56

JAX-WS Development

2.4.1. Aegis

2.4.1.1. What is Aegis?

Aegisisadatabinding. That is, it isasubsystem that can map Java objectsto XML documents described by XML
schema, and vica-versa. Aegisis designed to give useful mappings with a minimum of programmer effort, while
allowing detailed control and customization.

Aegis began as part of XFire, and moved with XFire into Apache CXF.

Y ou can use Aegis independently of CXF as a mechanism for mapping Java objectsto and from XML. This page,
however, describes Aegis as used inside of CXF.

Aegis has some advantages over JAXB for some applications. Some users find that it produces a more natural
XML mapping for less configuration. For example, Aegishasadefault setting for 'nillable’, allowing you to declare
it for your entire service in one place instead of having to annotate every single element. The biggest advantage of
Aegis, however, isaconvenient way to customize the mapping without adding (@)annotations to your Java code.
This allows you to avoid class |oading dependencies between your data classes and your web service binding.

2.4.1.2. Getting Started: Basic Use of Aegis

You can configure any web service to use the Aegis data binding. A service configured with Aegis will yield
avalid WSDL description, and you can use that to configure any client that you like. You can talk to an Aegis
service with JAXB, or .NET, or ascripted language, or ... Aegisitself.

You can use Aegis as aclient to talk to Aegis, by using the very same Java classes and configuration filesin the
client environment that you use on the server. However, it's not all that practical to use Aegisasaclient totalk to
some a service using some other data binding, since Aegis lacks a'wsdl2java tool.

Using Aegis on the client side also carries severe risks of compatibility problems. Since there is no WSDL to
specify the contract, small changesin your code or in CXF can result in a situation where the client and the server
are incompatible. If you want to use Aegis on the client side, you should be sure to use exactly the same version
of CXF on both sides. If you cannot do that, you should consider generating JAX-WS/JAX-B code for the client
using wsdl2java.

Every CXF service and client uses afront end: JAX-WS, Simple, etc. Each of these provides a place to configure
the data binding, both in Spring and via Java code.

For example, hereis a Simple front-end service using Aegis as a data binding.

<si npl e: server id="pojoservice" serviceC ass="deno. hw. server. Hel | oWor| d"
address="/hell o_worl d">
<si npl e: servi ceBean>
<bean cl ass="deno. hw. server. Hel | oWorldlmpl" />
</ si npl e: servi ceBean>
<si npl e: dat aBi ndi ng>
<bean cl ass="org. apache. cxf. aegi s. dat abi ndi ng. Aegi sDat abi ndi ng"/ >
</ si npl e: dat aBi ndi ng>
</ sinpl e: server>
</ bean>

AegisDatabinding is the class that integrates Aegisinto CXF as a databinding.

Note that AegisDatabinding beans, like all databinding beans, are not reusable . The example above uses an
anonymous nested bean for the databinding. If you make a first-class bean for a databinding, be sure to use
scope="prototype’ if you are inclined to define more than one endpoint.

Talend Enterprise Service Factory User Guide 57

JAX-WS Development

2.4.1.3. Aegis Operations - The Simple Case

How does Aegiswork? Aegis maintains, for each service, a set of mappings from Javatypes (Class<?> objects) to
XML Schematypes. It usesthat mapping to read and write XML. Let'slook at asimple service, where all the Java
types involved are either Java built-in types, other types with predefined mappings to XML Schema, or simple
bean-pattern classes that have properties that (recursively) are simple.

Let's start with serializing : mapping from Javato XML. (JAXB calls this marshalling, and cannot decide how
many 'lI'sto usein spellingit.) Given aJavaobject, Aegislooksto seeif it hasamapping. By default, Aegishasaset
of default mappings for the basic types defined in XML Schema, plus afew other special items. These mappings
areimplemented by Java classes, parts of Aegis, that can turn objectsinto XML and visaversa. In particular, note
that Aegiswill map a DataSource or DataHandler to an MTOM attachment.

What if Aegisfindsno mapping for atype? Inthe default configuration, Aegisinvokesthe type creatorsto createa
mapping. Type creators use several mechanismsto create XML schemafrom Javaobjects. Thisinclude reflection,
annotations, and XML type mappings files. As part of the mapping process, Aegis will assign a namespace
URI based on the Java package. (Note : Aegis does not support elementForm="unqualified' at this time.) These
mappings are implemented by a generic mapping class, and stored away.

How about the reverse process: deserializing ? (JAXB calls this unmarshalling.) In this case, by default, Aegisis
presented with an XML element and asked to produce a Java object. Recall, however, that the Aegis maintains a
mapping from Java types to XML Schema Types. By default, an XML instance document offers no information
asto the type of agiven element. How can Aegis determine the Java type? Outside of CXF, the application would
have to tell Aegis the expected type for the root element of a document.

Or, as an dternative, Aegis can add xsi:type attributes to top-level elements when writing. It will always respect
them when reading.

Inside CXF, Aegis gets the benefit of the Message and Part information for the service. The WSDL service
configuration for a service gives enough information to associate an XML Schema type with each part. Once the
front-end has determined the part, it can call Aegis with the QName for the schema type, and Aegis can look it
up in the mapping.

Will it bein the mapping? Y es, inside CXF because Aegis precreates mappings for the typesin the service's parts.
Aegis cannot dynamically create or choose a Java class based on XML schema, so the type creators cannot start
from XML. Thus, outside CXF you are responsible for ensuring that your top-level types are mapped.

Schema Validation

As of CXF 2.3, the Aegis databinding can leverage the Schema Validation capabilities built into the Woodstox
4.x Stax parser to validate incoming requests. To enable this, you must do the following:

1. Make sureyou are using the Woodstox 4.x Stax parser and not a 3.x or other parser. By default, CXF 2.3 ships
with an appropriate version of Woodstox.

2. If not using the CXF bundle jar, (example, if using maven), you'll need to add the cxf-wstx-msv-
validation-2.3.0.jar to the classpath

3. If not using maven or similar to obtain the cxf-wstx-msv-validation jar, you'll aso need to add themsv validation
jars as CXF does not ship them by default. Y ou will need:

i sorel ax-20030108. j ar

nsv- core-2009.1.jar

r el axngDat at ype- 20020414. j ar
xerceslmpl-2.9.1.jar

xm -resolver-1.2.jar

xsdl i b-2009.1.j ar

4. If not using adefault bus (such as configuring your own spring context), you'll need to add:

Talend Enterprise Service Factory User Guide 58

JAX-WS Development

<i nport resource=
"cl asspat h: META- | NF/ cxf/ cxf - ext ensi on-wst x- nsv-val i dati on. xm "/ >

to load the validator utilities that Aegiswill use.

5. Turn on schema validation like you would for JAXB by using the @SchemaV alidation annotation or setting
the "schema-validation-enabled" property on the endpoint to "true".

2.4.1.4. Using Java Classes That Aren't Visible to the Service
Interface

Many web service programmerswant to use typesthat are not directly visible by reflection of the serviceinterface.
Here are some popular examples of types that programmers want to use for property or parameter types:

» Declare abase type, but transfer any one of a number of classes that extend it.

» Declarearaw Collection class, such as a Set, List, or Map, and send arbitrary objects as keys and values.
» Declare a base exception type for 'throws, and then throw other exception classes that derive from it.

» Declare an interface or an abstract type.

Aegis can handle all of these. For all except interfaces, there are two mechanismsinvolved: the root classlist and
Xsi‘type attributes.

As explained above, Aegis can write ‘anything', but it can only read objects of types that are mapped. Y ou must
give Aegisalist of al the types that you want to use over and above those visible from the service, and you must
instruct Aegisto send xsi:type attributes when sending objects of such types. These type attributes allow Aegisto
identify the type of these additional objects and ook them up in the mappings.

Interfaces and abstract types require one further step. Obviously, Aegis cannot instantiate (run 'new’) on an
interface. Thus, knowing that a particular XML Schema type maps to an interface is not enough information. To
be ableto read an XML element that correspondsto an interface, Aegis must know a'proxy class' that implements
the interface. Y ou must give Aegis a mapping from interface types to proxy class names.

How does this work? The core of Aegis is the AegisContext class. Each AegisDatabinding object has an
AegisContext. (It is probably not possible to share an AegisContext amongst databindings.)

By default, AegisDatabinding will create its own AegisContext with default properties. To configure additional
types, as well control other options that we will examine later on, you must create the AegisContext for yourself
and specify some of its properties. Then you pass your AegisContext object into your AegisDatabinding object.

To use additional classes or interfaces, you need to set two (or three) properties of your AegisContext.

 rootClassesisacollection of Java Class<?> objects. These are added to thelist of types known to Aegis. Aegis
will create a mapping for each. For convenience, there is arootClassNames property for use from Spring. Itis
alist of Strings containing class names.

o writeXsiTypesisaboolean. Set it to true to send xsi:type attributes.

» beanlmplementationM ap is a mapping from Class<?> to class hames. Use this to specify proxy classes for
interfaces (or abstract classes).

2.4.1.5. Global Type Creation Options

There are a few global options to the default type mapping process. You can control these by creating a
org.apache.cxf.aegis.type. TypeCreationOptions and passing it into your AegisContext object.

Talend Enterprise Service Factory User Guide 59

JAX-WS Development

There are four propertiesin the class, of which two are much more commonly used.

« defaultNillabledefinesthe default value of the nillableattribute of xsd:element itemsin the xsd: sequences built
for non-primitive types. By default, it istrue, since any Java reference can be null. However, nillable="true’ has
annoying consequences in some wsdl2java tools (turning scalars into arrays, €.g.), and SO many programmers
prefer to default to false.

» defaultMinOccurs defines the default value of the minOccurs attribute of xsd:element items in the
xsd:sequences built for Java arrays. In combination with nillable, programmers often want to adjust this value
from 0 to 1 to get amore useful mapping of an array.

» defaultExtensibleElements causes each sequence to end with an xsd:any. Theidea hereisto allow for schema
evolution; aclient that has generated Javafrom oneversion of the servicewill tolerate datafrom anewer version
that has additional elements. Usethisfeature with care; version management of web servicesisacomplex topic,
and xsd:any may have unexpected conseguences.

» defaultExtensibleAttributes causes each element to permit any attribute. By default, Aegis doesn't map any
properties or parameters to attributes. As with the element case, careis called for.

Note that these are options to the default type creators. If you take the step of creating a customized type creator,
it will be up to you to respect or ignore these options.

Here's a quick example of Java code setting these options. In Spring you would do something analogous with
properties.

TypeCreationOptions tOpts = new TypeCreati onQptions();
t Opts. set Defaul t M nCccurs(1);

tOpts.setDefaul tNi || abl e(fal se);

Aegi sDat abi ndi ng aDB = new Aegi sDat abi ndi ng() ;

aDB. get Aegi sCont ext (). set TypeCreati onOptions(tOpts);
sFactory. get Servi ceFact ory() . set Dat aBi ndi ng(aDB) ;

2.4.1.6. Detailed Control of Bean Type Mapping

This page has descended, gradually, from depending on Aegis defaults toward exercising more detailed control
over the process. The next level of detail is to customize the default type creators behavior via XML mapping
files and annotations.

XML Mapping Files

XML mapping files are amajor distinguishing feature of Aegis. They allow you to specify details of the mapping
process without either (a) modifying your Java source for your types or (b) maintaining a central file of somekind
containing mapping instructions.

Aegis XML mapping applies to services and to beans. By "beans,” we mean "Java classes that follow the bean
pattern, used in aweb service." "Services," you ask? Aren't they the responsibility of the CXF front end? There
is some overlap in the responsibilities of front-ends and databindings.

By and large, front-ends map servicesto XML schema, filling in XML Schema elements and types for messages
and parts. Data bindings then map from those schema items to Java. However, Aegis also provides XML
configuration for methods and parameters, which 'poach’ in the territory of the front end. This works well for
the Simple front end, which has no other way to control these mappings. The present author is not sure what
will happen in the event of a conflict between Aegis and any other front-end, like JAX-WS, that has explicit
configuration. Thus, Aegis service configuration is best used with the Simple front end.

For both bean and service customization, Aegis looks for customization in files found by the classloader. If your
class is my.hovercraft.is.full.of .E€els, Aegis will search the classpath for /my/hovercraft/is/full/of/Eels.aegis.xml.
In other words, if Eels.classis sitting in aJJAR file or adirectory, Eels.aegis.xml can be sitting right next to it.

Talend Enterprise Service Factory User Guide 60

JAX-WS Development

Or, on the other hand, it can be in a completely different JAR or tree, so long as it ends up in the same logical
location. In other words, you can create XML files for classes when you don't even have their source.

Thisisacopy of the XML Schemafor mapping XML files that is annotated with comments.

Bean Mapping

Hereisavery simple mapping. It takes a property named 'horse, renamesit to ‘feathers, and makesit an attribute
instead of an element.

<mappi ngs>
<mappi ng nane="">
<property nane="horse" mappedNanme="Feat hers" style="attribute"/>
</ mappi ng>
</ mappi ngs>

Names and Namespaces

Y ou can also specify the full QName of the bean itself. The following mapping causes a class to have the QName
{ urn:north-pol e:operations} Employee.

<mappi ngs xm ns: np="urn: nort h-pol e: operati ons">
<mappi ng nanme="np: Enpl oyee" >
</ mappi ng>

</ mappi ngs>

Notice that the namespace was declared on the mappings element and then the prefix was used to specify the
element QNames for the name/title properties.

Thiswill result in amapping like so:

<np: Enpl oyee xm ns: np="ur n: nort h- pol e: operati ons">
<np: Nane>Sant a Cl aus</ np: Nane>
<np: Title>Chief Present Oficer (CPO</np:Title>
</ np: Enpl oyee>

Ignoring properties
If you don't want to serialize a certain property it is easy to ignoreit:

<mappi ngs>
<mappi ng>
<property nane="propertyNane" ignore="true"/>
</ mappi ng>
</ mappi ngs>

MinOccurs and Nillable

The default Aegis mapping is to assume that, since any Java object can be null, that the corresponding schema
elements should have minOccurs of 0 and nillable of true. There are properties on the mappingsfor to control this.

<mappi ngs>
<nmappi ng>
<property nane='everpresentProperty' m nCccurs="1"'
nillable='false' />

Talend Enterprise Service Factory User Guide 61

JAX-WS Development

</ mappi ng>
<mappi ngs>

Alternative Type Binding

Later on, we will explain how to replace the default mappings that Aegis provides for basic types. However,
there are some cases where you may want to simply specify one of the provided type mappings for one of your
properties. Y ou can do that from the XML mapping file without creating any Java customization.

By default, for example, if Aegis maps a property as a Date, it uses the XML schema type xsd:dateTime. Here
isan example that uses xsd:date, instead.

<mappi ngs xm ns: xsd="htt p:// ww. w3. or g/ 2001/ XM_Schema" >
<mappi ng>
<property nane="birthDate"
t ype="org. apache. cxf. aegi s. t ype. basi c. Dat eType"
t ypeNane="xsd: dat e"
/>
</ mappi ng>
</ mappi ngs>

Collections

If you use a'raw' collection type, Aegiswill map it as a collection of xsd:any particles. If you want the WSDL to
show it as a collection of some specific type, the easiest thing to do is to use Java generics instead of raw types.
If, for some reason, you can't do that, you can use the componentType and keyType attributes of a property to
specify the Java classes.

Multiple mappings for Different Services

What if you want to specify different mapping behavior for different services on the same types? The 'mapping'
element of the file accepts a 'uri’ attribute. Each AegisContext has a ‘mappingNamespaceURI" attribute. If a
mapping in a.aegis.xml file has a uri attribute, it must match the current service's uri.

Services and Parameters

For a service, mapping files specify attributes of operations and parameters.

This example specifiesthat getUnannotatedStrings returns an element named UnannotatedStringCollection which
isaraw collection of String values. It then specifies the first parameter of getValues is also araw collection of
String values.

<mappi ngs>
<mappi ng>
<nmet hod name="get Unannot at edStri ngs" >
<return-type nane="Unannot at edStri ngCol | ecti on"
conponent Type="j ava. | ang. Stri ng"/ >
</ met hod>
<nmet hod name="get Val ues" >
<par anet er i ndex="0" conponent Type="java. |l ang. String"/>
</ met hod>
</ mappi ng>
</ mappi ngs>

Talend Enterprise Service Factory User Guide 62

JAX-WS Development

Annotations

Like JAXB, Aegis supports some Java annotations to control the mapping process. These attributes are modelled
after JAXB. Aegis defines them in the package org.apache.cxf.aegis.type.javab. They are:

» XmlAttribute

o XmlIType

* XmlElement

e XmlIReturnType

e Xmllgnore

In addition, Aegiswill respect actual JAXB annotations from the following list:
 javax.jws.WebParam

e javax.jws.WebResult

* javax.xml.bind.annotation.X mlAttribute
* javax.xml.bind.annotation. X mlElement
* javax.xml.bind.annotation.X mlSchema
* javax.xml.bind.annotation.XmIType

* javax.xml.bind.annotation.XmlTransient

Note, however, that Aegisdoesnot handle package-info.javaclasses, and so XmlSchemamust be appliedto aclass.

2.4.1.7. Creating Your Own Type Mappings

If you want complete control on the mapping between Javaand XML, you must create your own type mappings.
To do this, you should make a class that extends org.apache.cxf.aegis.type. Type, and then you must register it in
atype mapping for your service.

To see how these classes work, read the source code.
To register your type mappings, you have two choices.

If you just want to add a custom type mapping into your service, the easiest thing to do is to retrieve the
TypeMapping from the AegisContext, and register your type asamapping from Class<?> to your custom mapping
object.

If you want complete control over the process, you can create your own TypeMapping. The class
DefaultTypeMapping is the standard type map. Y ou can use these, or you can create your own implementation of
TypeMapping. Set up your type mapping asyou like, and install it in your context before the service isinitialized.

2.4.1.8. Customizing Type Creation

What if you want to change how Aegis builds new type mappings and types from Java classes? Y ou can create
your own TypeCreator, and either put it in the front of the list of type creators or replace the entire standard list.

As with type mappings, reading the source is the only way to learn the details. Type creators are associated with
type mappings; you can call setTypeCreator on an instance of DefaultTypeMapping to install yours.

Talend Enterprise Service Factory User Guide 63

2.4.1.9. Aegis Default Mappings

For services declared to operate with Soap 1.1, Aegis sets up two sets of mappings.

Soap 1.1 SOAP mappings

Type SOAP Mapping
boolean Soap-encoded boolean
Boolean Soap-encoded boolean
int Soap-encoded int
Integer Soap-encoded int

short Soap-encoded int

Short Soap-encoded int
double Soap-encoded double
Double Soap-encoded double
float Soap-Encoded float
Float Soap-Encoded float
long Soap-encoded long
Long Soap-encoded long

char Soap-encoded char
Character Soap-encoded char
String Soap-encoded String
java.sgl.Date Soap-encoded date-time
java.util.Calendar Soap-encoded date-time
byte]] soap-encoded Base64
BigDecimal Soap-encoded Decimal
Biglnteger Soap-encoded Biglnteger

Soap 1.1 XSD mappings

Type XSD Mapping
boolean XSD boolean
Boolean XSD boolean
int XSD int
Integer XSD int
short XSD int
Short XSD int
double XSD double
Double XSD double
float XSD float
Float XSD float

Talend Enterprise Service Factory User Guide

JAX-WS Development

JAX-WS Development

Type XSD Mapping

long XSD long

Long XSD long

char XSD char

Character XSD char

String XSD String

java.sgl.Date XSD date-time

javasgl.Time XSD time

java.util.Calendar XSD date-time

byte[] XSD Base64

BigDecimal XSD Decimal

Biglnteger XSD Integer

org.w3c.Document XSD Any

org.jdom.Document XSD Any

org.jdom.Element XSD Any

javax.xml transform.source XSD Any

javax.xml.stream.X ML StreamReader XSD Any

Object XSD Any

javax.activation.DataSource XSD Base64 via MTOM data source type (See
org.apache.cxf.argis.type.mtom)

javax.activation.DataHandler XSD Base64 via MTOM data source type (See
org.apache.cxf.argis.type.mtom)

Services that Don't Use Soap 1.1

The type mappings for non-Soap-1.1 services start out with the same X SD types as the Soap-1.1 services

Type XSD Mapping
boolean XSD boolean
Boolean XSD boolean
int XSD int
Integer XSD int
short XSD int
Short XSD int
double XSD double
Double XSD double
float XSD float
Float XSD float
long XSD long
Long XSD long
char XSD char
Character XSD char

Talend Enterprise Service Factory User Guide 65

JAX-WS Development

Type XSD Mapping

String XSD String

java.sgl.Date XSD date-time

javasgl.Time XSD time

java.util.Calendar XSD date-time

byte[] XSD Base64

BigDecimal XSD Decimal

Biglnteger XSD Integer

org.w3c.Document XSD Any

org.jdom.Document XSD Any

org.jdom.Element XSD Any

javax.xml.transform.source XSD Any

javax.xml.stream.X ML StreamReader XSD Any

Object XSD Any

javax.activation.DataSource Base64 via MTOM data source type (See
org.apache.cxf.argis.type.mtom)

javax.activation.DataHandler Base54 MTOM data source type (See
org.apache.cxf.argis.type.mtom)

These services get some additional mappings, as well:

Type Mapping
javax.xml.datatype.Duration XSD Duration
javax.xml.datatype.X M L GregorianCalendar XSD Date
javax.xml.datatype. X ML GregorianCalendar XSD Time
javax.xml.datatype.X ML GregorianCalendar XSD gDay
javax.xml.datatype.X M L GregorianCalendar XSD gMonth
javax.xml.datatype.X M L GregorianCalendar XSD gMonthDay
javax.xml.datatype. X ML GregorianCalendar XSD gYear
javax.xml.datatype. X ML GregorianCalendar XSD gYearMonth
javax.xml.datatype.X ML GregorianCalendar XSD Date-Time

2.4.2. JAXB

2.4.2.1. Introduction

JAXB is the default data binding for CXF. If you don't specify one of the other data bindings in your Spring
configuration or through the API, you will get JAXB. CXF 2.0.x branch supplies JAXB 2.0, CXF 2.1.x and CXF
22xuseJAXB 2.1

JAXB uses Java annotation combined with files found on the classpath to build the mapping between XML and
Java. JAXB supports both code-first and schema-first programming. The schema-first support the ability to create
aclient proxy, dynamically, at runtime. See the CXF DynamicClientFactory class.

Talend Enterprise Service Factory User Guide 66

JAX-WS Development

CXF uses the JAXB reference implementation. To learn more about annotating your classes or how to generate
beans from a schema, please read the JAXB user's guide .

2.4.2.2. JAXB versus JAX-WS (or other front-ends)

There are some pitfalls in the interaction between the front end and the data binding. If you need detailed control
over the XML that travels on the wire, you may want to avoid the ‘wrapped' alternative, and stick with 'bare'.
When you use the wrapped parameter style or the RPC binding, the front ends construct more or less elaborate
XML representations for your operations. Y ou have less control over those constructs than you do over JAXB's
mappings. In particular, devel opers with detailed requirementsto control the XML Schema 'elementFormDefault’
or the use or non-use of XML namespace prefixes often become frustrated because the JAXB annotations for these
options don't effect mappings that are purely the work of the front-end. The safest course is to use Document/
Literal/Bare.

2.4.2.3. Configuring JAXB

CXF alows you to configure JAXB in two ways.

JAXB Properties

JAXB allows the application to specify two sets of properties that modify its behavior: context properties and
marshaller properties. CXF allows applications to add to these properties. Take care. In some cases, CXF sets
these properties for its own use.

You can add items to both of these property sets via the JAXBDataBinding class. The 'contextProperties' and
'marshallerProperties properties (in the Spring sense) of JAXBDataBinding each store a Map<String, Object>.
Whatever you put in the map, CXF will pass aong to JAXB. Seethe JAXB documentation for details.

<j axws: server id="bookServer"
servi ceC ass="or g. apache. cxf. nyt ype. AnonynousConpl exTypel npl "
address="http://| ocal host: 8080/ act"
bus="cxf">
<j axws: i nvoker >
<bean cl ass="org. apache. cxf. servi ce. i nvoker. Beanl nvoker" >
<constructor-arg>
<bean cl ass="org. apache. cxf. nyt ype. AnonynousConpl exTypel npl "/ >
</ constructor-arg>
</ bean>
</jaxws: i nvoker >
<j axws: dat aBi ndi ng>
<bean cl ass="org. apache. cxf.j axb. JAXBDat aBi ndi ng" >
<property nane="context Properties">
<map>
<entry>
<key><val ue>com sun. xni . bi nd. def aul t NanespaceRenmap</ val ue></ key>
<val ue>uri:ul tima:thul e</val ue>
</entry>
</ map>
</ property>
</ bean>
</ j axws: dat aBi ndi ng>
</jaxws: server >

Talend Enterprise Service Factory User Guide 67

https://jaxb.dev.java.net/guide/

JAX-WS Development

Activating JAXB Validation of SOAP requests and responses

For the client side

<jaxws:client name="{http://apache.org/ hello_world_soap_http}SoapPort"
creat edFr omAPI ="t rue" >
<j axws: properti es>
<entry key="schema-validation-enabl ed" value="true" />
</jaxws: properties>
</jaxws:client>

Y ou may also do this programmatically:

((Bi ndi ngProvi der) port). get Request Cont ext (). put (
"schema-val i dati on-enabl ed", "true");

For the server side

<j axws: endpoi nt name="{http://apache.org/ hell o_world_soap_http} SoapPort"
wsdl Locati on="wsdl /hel |l o_worl d. wsdl " creat edFromAPlI ="true">
<j axws: properti es>
<entry key="schema-validation-enabl ed" val ue="true" />
</jaxws: properties>
</ j axws: endpoi nt >

Y ou can a'so use the org.apache.cxf.annotations.SchemaV alidation annotation.

Namespace Prefix Management

The JAXB referenceimplementation allowsthe application to provide an object that in turn maps namespace URI's
to prefixes. You can create such an object and supply it via the marshaller properties. However, CXF provides
an easier process. The namespaceMap property of the JAXBDataBinding accepts a Map<String, String>. Think
of it as amap from namespace URI to namespace prefix. If you load up this map, CXF will set up the necessary
marshaller property for you.

<j axws: server id="bookServer"
servi ceC ass="or g. apache. cxf. nyt ype. AnonynousConpl exTypel npl "
address="http://| ocal host: 8080/ act"
bus="cxf">
<j axws: i nvoker >
<bean cl ass="org. apache. cxf. servi ce. i nvoker. Beanl nvoker" >
<constructor-arg>
<bean cl ass="org. apache. cxf. nyt ype. AnonynousConpl exTypel npl "/ >
</ constructor-arg>
</ bean>
</jaxws: i nvoker >
<j axws: dat aBi ndi ng>
<bean cl ass="org. apache. cxf.j axb. JAXBDat aBi ndi ng" >
<property nanme="nanmespaceMap" >
<map>
<entry>
<key>
<val ue>
htt p: //cxf. apache. or g/ anonynous_conpl ex_t ype/
</ val ue>
</ key>
<val ue>BeepBeep</ val ue>

Talend Enterprise Service Factory User Guide 68

JAX-WS Development

</entry>
</ map>
</ property>
</ bean>
</ j axws: dat aBi ndi ng>
</jaxws:server>

2.4.3. MTOM Attachments with JAXB

MTOM is a standard which allows your services to transfer binary data efficiently and conveniently. Many
frameworks have support for MTOM - Axis2, JAX-WS RI, JBoss WS, XFire, Microsoft's WCF, and more.

If the binary is part of the XML document, it needs to be base64 encoded - taking CPU time and increasing the
payload size. When MTOM isenabled on aservice, it takes binary datawhich might normally be part of the XML
document, and creates an attachment for it.

Enabling MTOM is a rather simple process. First, you must annotate your schema type or POJO to let JAXB
know that a particular field could be a candidate for MTOM optimization. Second, you just tell CXF that you
wish to enable MTOM.

This page tells you how to activate MTOM for JAXB. MTOM is aso supported in Aegis.

2.4.3.1. 1) Annotating the Message

1la) Modifying your schema for MTOM

L ets say we have a Picture schematype like this:

<schemn t ar get Nanmespace="http:// pi ctures. cont
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema" >
<el ement nane="Pi cture">
<conpl exType>
<sequence>
<el enent nanme="Title" type="xsd:string"/>
<el enent nanme="1nmageDat a" type="xsd: base64Bi nary"/ >
</ sequence>
</ conpl exType>
</ el ement >
</ schema>

In this case the ImageData element is something we would like to have transferred as an attachment. To do this
we just need to add an xmime:expectedContentTypes annotation:

<schemm t ar get Nanespace="http:// pi ctures. cont
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schenma"
xm ns: xm ne="http://ww. w3. or g/ 2005/ 05/ xm m ne" >
<el ement nane="Pi cture">
<conpl exType>
<sequence>
<el enent name="Title" type="xsd:string"/>
<el enent name="1| mageDat a" type="xsd: base64Bi nary"
xm nme: expect edCont ent Types="appl i cati on/ octet-streani/>

Talend Enterprise Service Factory User Guide 69

http://www.w3.org/TR/soap12-mtom/

JAX-WS Development

</ sequence>
</ conpl exType>
</ el ement >
</ schema>

This tells JAXB (which WSDL2Java uses to generate POJOs for your service) that this field could be of any
content type. Instead of creating a byte[] array for the base64Binary element, it will create a DataHandler instead
which can be used to stream the data.

1b) Annotation your JAXB beans to enable MTOM

If you're doing code first, you need to add an annotation to your POJO to tell JAXB that the field is a candidate
for MTOM optimization. Lets say we have a Picture class with has Title and ImageData fields, then it might ook
likethis:

@Xm Type
public class Picture {
private String title;

@mM M neType("appl i cation/octet-streant')
privat e Dat aHandl er i nageDat a;

public String getTitle() { returntitle; }
public void setTitle(String title) { this.title =title; }

publ i ¢ DataHandl er getlnageData() { return inageData; }
public void setlmageDat a(Dat aHandl er i mageDat a)
{ this.imgeData = i nageData; }
}

Note the use of 'application/octet-stream’. According to the standard, you should be able to use any MIME type
you like, in order to specify the actual content of the attachment. However, due to adefect in the JAX-B reference
implementation, this won't work.

2.4.3.2. 2) Enable MTOM on your service

If you've used JAX-WS to publish your endpoint you can enable MTOM like so:

i mport javax.xml .ws. Endpoi nt;
i mport javax.xm .ws. soap. SOAPBI ndi ng;

Endpoi nt ep = Endpoi nt. publish("http://Iocal host/nyService",
new MyService());

SOAPBI ndi ng bi ndi ng = (SQAPBI ndi ng) ep. getBi ndi ng();

bi ndi ng. set MTOVEnabl ed(true);

Or, if you used XML to publish your endpoint:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: jaxws="http://cxf.apache. org/jaxws"
xsi : schemaLocat i on="
htt p: // ww. spri ngfranmewor k. or g/ schema/ beans
htt p: // ww. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
http://cxf. apache. or g/ j axws

Talend Enterprise Service Factory User Guide 70

JAX-WS Development

http://cxf.apache. org/ schena/ j axws. xsd" >

<j axws: endpoi nt
i d="hel | oVor |l d"
i mpl enent or =" deno. spri ng. Hel | oWor | dl npl ™
address="http://1 ocal host/ Hel | oVor| d">
<j axws: properti es>
<entry key="ntom enabl ed" val ue="true"/>
</jaxws: properties>
</ j axws: endpoi nt >

</ beans>

If you're using the simple frontend you can set the mtom-enabled property on your ServerFactoryBean or
ClientProxyFactoryBean:

Map<Stri ng, Obj ect> props = new HashMap<String, Object>();
/1l Boolean. TRUE or "true" will work as the property val ue here
props. put ("nt om enabl ed", Bool ean. TRUE);

dient ProxyFact oryBean pf = new O i ent ProxyFactoryBean();
pf. set Propertyi es(props);

YourCient client = (YourCient) pf.create();

Server Fact oryBean sf = new Server Fact oryBean();
sf.set Propertyies(props);

sf.create();
Similarly, you can use the XML configuration:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

xm ns: si npl e="http://cxf.apache. org/si npl e"

Xsi : schermaLocat i on="
htt p: // ww. spri ngfranmewor k. or g/ schema/ beans
htt p: // ww. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
http://cxf. apache. org/ si npl e
htt p://cxf. apache. or g/ schema/ si npl e. xsd" >

<si npl e: server
i d="hel | oVor | d"
servi ceC ass="deno. spri ng. Hel | oWor | dl npl "
address="http://1 ocal host/Hel | oWrl| d" >
<si npl e: properties>
<entry key="ntonm enabl ed" val ue="true"/>
</ sinpl e: properties>
</ sinpl e: server>

<sinmple:client
i d="hel | oWorl ddient"
servi ceC ass="deno. spri ng. Hel | oWor | dl npl "
address="http://1 ocal host/Hel | oWorl| d" >
<si npl e: properties>
<entry key="ntonm enabl ed" val ue="true"/>
</ sinpl e: properties>
</sinple:client>

Talend Enterprise Service Factory User Guide 71

JAX-WS Development

</ beans>

2.4.3.3. Using DataHandlers

Once you've got the above done, its time to start writing your logic. DataHandlers are easy to use and create. To
consume a DataHandler:

Picture picture = ...;
Dat aHandl er handl er = picture. getlnmageData();
Input Streamis = handl er. getl nput Stream();

There are many waysto create DataHandlers. Y ou can use a FileDataSource, ByteArrayDataSource, or write your
own DataSource:

Dat aSource source = new Byt eArrayDat aSource(new byte[] {...},
"“content/type");
Dat aSour ce source

new Fi |l eDat aSource(new File("nmy/file"));

Picture picture = new Picture();
pi cture. set| mageDat a(new Dat aHandl er (source));

2.4.4. SDO

Apache CXF 2.3 added support for the Tuscany implementation of Service Data Objects as aternative data
binding.

2.4.4.1. Setup

By default, CXF does not ship with the Tuscany SDO jars. Y ou will need to acquire them elsewhere and add them
to the classpath for the SDO databinding to work. The list of required jars are:

backport-util-concurrent-3.0.jar
codegen-2.2.3.jar
codegen-ecore-2.2.3.jar
common-2. 2. 3.j ar
ecore-2.2.3.jar
ecore-change-2.2.3.jar
ecore-xm-2.2.3.jar
tuscany-sdo-api-r2.1-1.1.1.jar
tuscany-sdo-inpl-1.1.1.jar
tuscany-sdo-lib-1.1.1.jar
tuscany-sdo-tools-1.1.1.jar
xsd-2.2.3.jar

2.4.4.2. Code Generation

If all the SDO required jars are available (by default, CXF does not ship them, see above), wsld2java tool can
be run with the -db sdo flag to have the code generator emit SDO objects instead of the default JAXB objects.
The generated SEI interface will have @DataBinding(org.apache.cxf.sdo.SDODataBinding.class) annotation on
it which is enough to configure the runtime to know to use SDO.

Talend Enterprise Service Factory User Guide 72

http://tuscany.apache.org/sdo-java.html
http://en.wikipedia.org/wiki/Service_Data_Objects

JAX-WS Development

2.4.5. XMLBeans

Apache XMLBeans is another technology for mapping XML Schema to java objects. CXF added support for
XMLBeansin 2.1. There are atwo parts to the support for XM LBeans:

2.45.1. Code Generation

The wsdl2java tool now allows a "-db xmlbeans' flag to be added that will generate XML Beans types for all
the schema beans instead of the default JAXB beans. With 2.1 and 2.2, the types are generated, but you still
need to configure the XML Beans databinding to be used at runtime. With 2.3, the generated code contains an
@Databinding annotation marking it as XML Beans and the configuration is unnecessary.

2.4.5.2. Runtime

Y ou need to configure the runtimeto tell it to use XMLBeans for the databinding instead of JAXB.

Spring config
For the server side, your spring configuration would contain something like:

<j axws: server serviceCd ass="deno. hw. server. Hel | oWor| d"
address="/hell o_worl d">
<j axws: dat aBi ndi ng>
<bean cl ass="org. apache. cxf. xm beans. Xm BeansDat aBi ndi ng" />
</ j axws: dat aBi ndi ng>
</jaxws:server>

or

<j axws: endpoi nt
i d="hel | oWOr 1 d"
i mpl ement or =" deno. spring. Hel | oWor | dl npl "
address="http://1 ocal host/ Hel |l oWorl| d">
<j axws: dat aBi ndi ng>
<bean cl ass="org. apache. cxf. xm beans. Xm BeansDat aBi ndi ng" />
</ j axws: dat aBi ndi ng>
</ j axws: endpoi nt >

Theclient sideisvery similar:

<jaxws:client id="helloCient"
servi ceC ass="deno. spri ng. Hel | oWor| d"
address="http://1 ocal host: 9002/ Hel | oWor | d" >
<j axws: dat aBi ndi ng>
<bean cl ass="org. apache. cxf. xm beans. Xm BeansDat aBi ndi ng" />
</ j axws: dat aBi ndi ng>
<j axws: client>

FactoryBeans

If using programmatic factory beans instead of spring configuration, the databinding can be set on the
ClientProxyFactoryBean (and subclasses) and the ServerFactoryBean (and subclasses) via

Talend Enterprise Service Factory User Guide 73

http://xmlbeans.apache.org/

JAX-WS Development

factory. get Servi ceFactory() . set Dat aBi ndi ng(
new or g. apache. cxf . xm beans. Xnml BeansDat aBi ndi ng()) ;

2.5. CXF Transports

2.5.1. HTTP Transport

HTTPtransport support viaservlet-based environmentsis described bel ow (embedded Jetty and OSGi deployment
isalso availablein CXF).

2.5.1.1. Client HTTP Transport (including SSL support)

Configuring SSL Support

To configure your client to use SSL, you'll need to add an <http:conduit> definition to your XML configuration
file. If you are already using Spring, this can be added to your existing beans definitions.

A wsdl_first_https sample can be found in the CXF distribution with more detail. Also see this blog entry for
another example.

Here is a sample of what your conduit definition might look like:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

xm ns: sec="http://cxf.apache. org/configuration/security"

xm ns: http="http://cxf.apache. org/transports/ http/configuration”

xm ns: jaxws="http://java. sun. com xm / ns/j axws"

xsi : schermalLocat i on="
http://cxf.apache. org/ configuration/security
http://cxf. apache. or g/ schenas/ confi gurati on/ security. xsd
http://cxf.apache. org/transports/ http/configuration
htt p: //cxf. apache. or g/ schenas/ confi gurati on/ htt p-conf. xsd
htt p: // ww. spri ngfranmewor k. or g/ scherma/ beans
htt p: // ww. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans- 2. 0. xsd" >

<ht t p: condui t
nanme="{http://apache.org/ hell o_worl d}Hel |l oWorl d. http-conduit">

<http:tlsdientParaneters>
<sec: keyManager s keyPasswor d="passwor d" >
<sec: keyStore type="JKS" passwor d="password"
file="ny/filel/dir/Mrpit.jks"/>
</ sec: keyManager s>
<sec: trust Manager s>
<sec: keyStore type="JKS" passwor d="password"
file="ny/filel/dir/Truststore.jks"/>
</ sec: trust Manager s>
<sec: ci pherSuitesFilter>
<l-- these filters ensure that a ciphersuite with
export-suitable or null encryption is used,
but excl ude anonynmous Diffie-Hell man key change as

Talend Enterprise Service Factory User Guide 74

http://svn.apache.org/viewvc/cxf/trunk/distribution/src/main/release/samples/wsdl_first_https/
http://techpolesen.blogspot.com/2007/08/using-ssl-with-xfirecxf-battling.html

JAX-WS Development

this is vulnerable to man-in-the-mddle attacks -->
<sec:include>. * EXPORT . *</sec:include>
<sec:include>. * EXPORT1024 . *</sec:incl ude>
<sec:include>* WTH DES .*</sec:include>
<sec:include>* WTH NULL .*</sec:include>
<sec: excl ude>.* DH anon_. *</sec: excl ude>
</ sec:ci pherSuitesFilter>
</http:tlsCientParaneters>
<htt p: aut hori zati on>
<sec: User Nanme>Bet t y</ sec: User Nane>
<sec: Passwor d>passwor d</ sec: Passwor d>
</ http:authorization>
<http:client AutoRedirect="true" Connection="Keep-Alive"/>

</ http: conduit>

</ beans>

The first thing to notice is the "name" attribute on <http:conduit>. This allows CXF to associate this HTTP
Conduit configuration with a particular WSDL Port. The name includes the service's namespace, the WSDL port
name (as found in the wsdl:service section of the WSDL), and ".http-conduit". It follows this template: "{WSDL
Namespace} portName.http-conduit”. Note: it's the PORT name, not the service name. Thus, it's likely something
like"MyServicePort", not "MyService". If you are having troubl e getting thetemplate to work, another (temporary)
option for the name value is simply "*.http-conduit".

Another option for the name attribute is a reg-ex expression for the ORIGINAL URL of the endpoint. The
configuration is matched at conduit creation so the address used in the WSDL or used for the JAX-WS
Service.create(...) call can be used for the name. For example, you can do:

<http: conduit name="http://Iocal host:8080/.*">

</ http: conduit>

to configure a conduit for all interactions on localhost:8080. If you have multiple clientsinteracting with different
services on the same server, thisis probably the easiest way to configureit.

Advanced Configuration

HTTP client endpoints can specify a number of HTTP connection attributes including whether the endpoint
automatically accepts redirect responses, whether the endpoint can use chunking, whether the endpoint will request
a keep-alive, and how the endpoint interacts with proxies.

A client endpoint can be configured using three mechanisms:
 Configuration

« WSDL

» Javacode

Using Configuration

Namespace

The elements used to configure an HTTP client are defined in the namespace http://cxf.apache.org/transports/http/
configuration” . It iscommonly referred to using the prefix ht t p- conf . In order to usethe HTTP configuration

Talend Enterprise Service Factory User Guide 75

JAX-WS Development

elements you will need to add the lines shown bel ow to the beans element of your endpoint's configuration file. In
addition, you will need to add the configuration elements' namespace to the xsi : schemalLocat i on attribute.

Example 2.19. HTTP Consumer Configuration Namespace

<beans ...
xm ns: htt p-conf=
"http://cxf.apache.org/transports/http/configuration

Xsi : schemaLocati on=". ..
http://cxf.apache. org/transports/ http/configuration

http://cxf.apache. or g/ schenas/ confi gurati on/ htt p-conf. xsd
L >

The conduit element

You configure an HTTP client using the htt p- conf: conduit element and its children. The htt p-
conf: condui t element takesasingle attribute, name , that specifiesthe WSDL port element that corresponds
to the endpoint. The value for the nane attribute takes the form portQName . htt p-conduit . For
example, the code below shows the ht t p- conf : condui t element that would be used to add configuration
for an endpoint that was specified by the WSDL fragment <port bi ndi ng="w dget SOQAPBi ndi ng"
nane="w dget SOAPPor t > if the endpoint's target namespace was http://widgets.widgetvendor.net" .

Example 2.20. http-conf:conduit Element

<ht t p- conf: conduit nane=
"{http://w dgets/w dget vendor. net } wi dget SOAPPort. http-conduit">

</ http-conf:conduit>

<ht t p- conf: conduit nanme="*.http-conduit">

<l-- you can also using a wild card specify the http-conduit that
you want to configure -->

</ http-conf:conduit>

The ht t p- conf : condui t element has a number of child elements that specify configuration information.
They are described below. See also Sun's JSSE Guide for more information on configuring SSL.

Element Description

htt p-conf:client Specifies the HTTP connection properties such as
timeouts, keep-alive requests, content types, etc.

htt p- conf:authori zati on Specifies the the parameters for configuring the
basic authentication method that the endpoint uses
preemptively.

htt p- conf: proxyAut hori zati on Specifies the parameters for configuring basic
authentication against outgoing HTTP proxy servers.

http-conf:tlsCientParaneters Specifies the parameters used to configure SSL/TLS.

ht t p- conf : basi cAut hSuppl i er Specifies the bean reference or class name of the object

that supplies the the basic authentication information
used by the endpoint both preemptively or in response
toa401 HTTP challenge.

Talend Enterprise Service Factory User Guide 76

http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html

JAX-WS Development

Element

Description

htt p- conf:trustDeci der

Specifies the bean reference or class name of the object
that checks the HTTP(S) URLConnection object in
order to establish trust for a connection with an HTTPS
service provider before any information is transmitted.

The client element

The http-conf:client element is used to configure the non-security properties of a client's HTTP
connection. Its attributes, described below, specify the connection's properties.

Attribute

Description

Connecti onTi meout

Specifies the amount of time, in milliseconds, that the client will attempt
to establish a connection before it times out. The default is 30000 (30
seconds). O specifies that the client will continue to attempt to open a
connection indefinitely.

Recei veTi neout

Specifies the amount of time, in milliseconds, that the client will wait for a
response beforeit times out. The default is 60000. O specifiesthat the client
will wait indefinitely.

Aut oRedi r ect

Specifiesif the client will automatically follow a server issued redirection.
The default isfalse.

MaxRetransm ts

Specifies the maximum number of times a client will retransmit a request
to satisfy a redirect. The default is -1 which specifies that unlimited
retransmissions are allowed.

Al'l owChunki ng

Specifieswhether the client will send requests using chunking. The default
is true which specifies that the client will use chunking when sending
reguests. Chunking cannot be used used if either of the following are true:

e http-conf: basi cAut hSupplier is configured to provide
credentials preemptively.

e AutoRedirect is set to true. In both cases the vaue of
Al'l owChunki ng is ignored and chunking is disallowed. See note
about chunking below.

Chunki ngThr eshol d

Specifies the threshold at which CXF will switch from non-chunking to
chunking. By default, messages less than 4K are buffered and sent non-
chunked. Once this threshold is reached, the message is chunked.

Accept

Specifies what media types the client is prepared to handle. The value is
used asthe value of theHTTP Accept property. Thevalue of the attribute
is specified using as multipurpose internet mail extensions (MIME) types.
See note about chunking below.

Accept Language

Specifieswhat language (for example, American English) the client prefers
for the purposes of receiving aresponse. The value is used as the value of
the HTTP AcceptLanguage property. Language tags are regulated by the
International Organization for Standards (1SO) and are typically formed
by combining a language code, determined by the 1SO-639 standard, and
country code, determined by the | SO-3166 standard, separated by ahyphen.
For example, en-US represents American English.

Accept Encodi ng

Specifies what content encodings the client is prepared to handle. Content
encoding labels are regulated by the Internet Assigned Numbers Authority
(IANA). Thevalueis used as the value of the HTTP Accept Encodi ng

property.

Talend Enterprise Service Factory User Guide 77

JAX-WS Development

Attribute

Description

Cont ent Type

Specifies the media type of the data being sent in the body of a message.
Media types are specified using multipurpose internet mail extensions
(MIME) types. Thevalueisused asthevaue of theHTTP Cont ent Type
property. Thedefaultist ext / xm . Tip: For web services, this should be
settot ext / xm . If theclientissending HTML form datato aCGl script,
this should be set to application/x-www-form-urlencoded. If the HTTP
POST request is bound to a fixed payload format (as opposed to SOAP),
the content type istypically set to application/octet-stream.

Host

Specifies the Internet host and port number of the resource on which the
request isbeing invoked. Thevalueisused asthe value of the HTTP Host
property. Tip: This attribute is typically not required. It is only required
by certain DNS scenarios or application designs. For example, it indicates
what host the client prefersfor clusters (that is, for virtual servers mapping
to the same Internet protocol (1P) address).

Connecti on

Specifies whether a particular connection isto be kept open or closed after
each request/response dialog. There are two valid values:

» Keep- Ali ve (default) specifies that the client wants to keep its
connection open after theinitial request/response sequence. If the server
honorsit, the connection is kept open until the consumer closesiit.

» cl ose specifies that the connection to the server is closed after each
request/response sequence.

CacheCont r ol Specifies directives about the behavior that must be adhered to by caches
involved in the chain comprising a request from aclient to a server.
Cooki e Specifies a static cookie to be sent with all requests.

Br owser Type

Specifiesinformation about the browser from which the request originates.
In the HTTP specification from the World Wide Web consortium (W3C)
this is also known as the user-agent . Some servers optimize based upon
the client that is sending the request.

Ref erer

Specifies the URL of the resource that directed the consumer to make
requests on aparticular service. The valueisused asthe value of theHTTP
Referer property. Note: This HTTP property is used when a request is
the result of a browser user clicking on a hyperlink rather than typing a
URL. Thiscan allow the server to optimize processing based upon previous
task flow, and to generate lists of back-links to resources for the purposes
of logging, optimized caching, tracing of obsolete or mistyped links, and
so on. However, it is typically not used in web services applications.
Important: If the AutoRedirect attribute is set to true and the request is
redirected, any value specified in the Refererattribute is overridden. The
value of the HTTP Referer property will be set to the URL of the service
who redirected the consumer's original request.

Decoupl edEndpoi nt

Specifiesthe URL of adecoupled endpoint for the receipt of responses over
a separate server->client connection. Warning: Y ou must configure both
the client and server to use WS-Addressing for the decoupled endpoint to
work.

Pr oxySer ver

Specifiesthe URL of the proxy server through which requests are routed.

Pr oxySer ver Port

Specifies the port number of the proxy server through which requests are
routed.

ProxyServer Type

Specifies the type of proxy server used to route requests. Valid values are;

« HTTP(default)

Talend Enterprise Service Factory User Guide 78

JAX-WS Development

Attribute Description
* SOCKS

Example using the Client Element

The example below shows a the configuration for an HTTP client that wants to keep its connection to the server
open between requests, will only retransmit requests once per invocation, and cannot use chunking streams.

Example 2.21. HTTP Consumer Endpoint Configuration

<beans xm ns="http://ww. spri ngframework. org/ schema/ beans™

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xm ns: htt p-conf=
"http://cxf.apache.org/transports/http/configuration”

Xsi : schemaLocat i on="
http://cxf.apache. org/transports/http/configuration
http: // cxf. apache. or g/ schemas/ confi gurati on/ htt p-conf. xsd
htt p: // www. spri ngf ranewor k. or g/ scherma/ beans
htt p: // ww. spri ngfranmewor k. or g/ scherma/ beans/ spri ng- beans. xsd" >

<htt p- conf: conduit name=
"{http://apache.org/ hell o_world_soap_http}SoapPort. http-conduit">
<htt p-conf:client Connection="Keep-Alive"
MaxRet ransmi t s="1"
Al | onChunki ng="f al se" />
</ http-conf:conduit>
</ beans>

Again, see the Configuration page for information on how to get CXF to detect your configuration file.

The tlsClientParameters element

The TLSClientParameters are listed here and here .

Attribute Description

certConstraints Certificate Constraints specification.

ci pher Suites CipherSuites that will be supported. JVM defaults if not specified.

ci pherSuitesFilter filters of the supported CipherSuites that will be supported and used if
available.

di sabl eCNcheck Indicates whether that the hostname given in the HTTPS URL will be checked

against the service's Common Name (CN) given in its certificate during SOAP
client requests, and failing if there is a mismatch. If set to true (not
recommended for production use), such checks will be bypassed. That
will allow you, for example, to use a URL such as | ocal host during
development. Default isfalse.

j sseProvi der JSSE provider name. VM default if not specified.
keyManager s Key Managers to hold X509 certificates. VM defaults used if not specified.
secur eRandom SecureRandom specification. VM default if not specified.

Paraneters

secur eSocket Pr ot ocol Protocol Name. Most common example are "SSL", "TLS" (default) or
"TLSv1".

Talend Enterprise Service Factory User Guide 79

http://cwiki.apache.org/CXF20DOC/configuration.html
https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/configuration/jsse/TLSParameterBase.java
https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/configuration/jsse/TLSClientParameters.java

JAX-WS Development

Attribute Description

trust Managers TrustManagers to validate peer X509 certificates. VM default used if not
specified.

useHt t psURL- specifies if HttpsURL-Connection.getDefault-SSL SocketFactory() should

Connect i on- be used to create https connections. If true, jsseProvider,

Def aul t Ssl Socket - secureSocket - Protocol, trustManagers, keyManagers,

Factory secureRandom ci pherSuites, and cipherSuitesFilter
configuration parameters are ignored. Default isfalse.

useHt t psURL- This attribute specifies if HttpsURL -Connection.getDefault-

Connecti on- HostnameV erifier() should be used to create https connections. If t r ue, the

Def aul t Host nane- di sabl eCNCheck configuration parameter isignored. Default isfalse.

Verifier

Note: di sabl eCNcheck is aparameterized boolean, you can use afixed variablet r ue | f al se aswell asa
Spring externalized property variable (e.g. ${ di sabl e- ht t ps- host nane- veri fi cati on})oraSpring
expression (e.g. #{ syst enProperti es[' dev-node'] }).

Sample:

Example 2.22. HTTP conduit configuration disabling HTTP URL hostname verification
(usage of localhost, etc)

<ht t p- conf : condui t
nane="{http://exanpl e.con }Hel | oServi cePort. http-conduit">

<l-- deactivate HITPS url hostnanme verification (local host, etc) -->
<I-- WARNING ! disabl eCNcheck=true shoul d NOT be used in production -->
<http-conf:tlsdientParaneters di sabl eCNcheck="true" />

</ http-conf:conduit>

Using WSDL

Namespace

The WSDL extension elements used to configure an HTTP client are defined in the namespace http://
cxf.apache.org/transports/http/configuration . It is commonly referred to using the prefix ht t p- conf . In order
to usethe HT TP configuration elements you will need to add the line shown below tothedef i ni t i ons element
of your endpoint's WSDL document.

Example 2.23. HTTP Consumer WSDL Element's Namespace

<definitions ...
xm ns: http-conf="http://cxf.apache.org/transports/http/configuration

The client element

Theht t p-conf: cli ent elementisused to specify the connection properties of an HTTP client in aWSDL
document. Theht t p- conf : cl i ent elementisachild of the WSDL port element. It has the same attributes
asthecl i ent eement used in the configuration file.

Talend Enterprise Service Factory User Guide 80

http://java.sun.com/javase/6/docs/api/javax/net/ssl/HttpsURLConnection.html#getDefaultSSLSocketFactory()
http://java.sun.com/javase/6/docs/api/javax/net/ssl/HttpsURLConnection.html#getDefaultHostnameVerifier()
http://java.sun.com/javase/6/docs/api/javax/net/ssl/HttpsURLConnection.html#getDefaultHostnameVerifier()
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-factory-placeholderconfigurer
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-beandef
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-beandef

JAX-WS Development

Example

The example below shows a WSDL fragment that configures an HTTP clientto specify that it will not interact
with caches.

Example 2.24. WSDL to Configurean HTTP Consumer Endpoint

<service ...>
<port ...>
<soap: address ... />
<http-conf:client CacheControl ="no-cache" />
</ port>

</ service>
Using java code

How to configure the HTTPConduit for the SOAP Client?

First you need get the HTTPConduit from the Proxy object or Client, then you can set the HTTPClientPolicy ,
AuthorizationPolicy, ProxyAuthorizationPolicy, TL SClientParameters , and/or HttpBasicAuthSupplier .

i mport org. apache. cxf.endpoint.dient;
i mport org. apache. cxf.frontend. i ent Proxy;
i mport org.apache. cxf.transport. http. HTTPCondui t;
i mport org.apache. cxf.transports. http. configuration. HTTPC i ent Pol i cy;

URL wsdl = getd ass().getResource("wsdl/greeting.wsdl");
SOAPSer vi ce service = new SOAPServi ce(wsdl, serviceNane);
Greeter greeter = service.getPort(portName, Geeter.class);

/1 Ckay, are you sick of configuration files ?

/1 This will show you how to configure the http conduit dynam cally
Client client = dientProxy.getCient(greeter);

HTTPConduit http = (HTTPConduit) client.getConduit();

HTTPC i ent Policy httpCientPolicy = new HTTPC i ent Policy();

htt pd i ent Policy. set Connecti onTi meout (36000) ;

htt pdientPolicy. set All onChunki ng(fal se);

htt pdient Policy. set Recei veTi mneout (32000) ;

http.setCient(httpdientPolicy);

greeter.sayHi ("Hello");

How to override the service address ?

If you areusing JAXWS API to create the proxy obejct, hereis an example which is complete JAX-WS compliant
code

URL wsdl URL = MyServi ce. cl ass. get Cl assLoader

Talend Enterprise Service Factory User Guide 8l

http://tinyurl.com/285zll
https://svn.apache.org/repos/asf/cxf/trunk/rt/transports/http/src/main/resources/schemas/configuration/http-conf.xsd
https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/configuration/jsse/TLSParameterBase.java
https://svn.apache.org/repos/asf/cxf/trunk/rt/transports/http/src/main/java/org/apache/cxf/transport/http/HttpBasicAuthSupplier.java

JAX-WS Development

. get Resource ("nmyService.wsdl");

MNane serviceNanme = new QNane("urn: nyService", "MService");

MyServi ce service = new MyServi ce(wsdl URL, serviceNane);
ServicePort client = service. get ServicePort();
Bi ndi ngPr ovi der provider = (BindingProvider)client;
/1 You can set the address per request here
provi der. get Request Cont ext () . put (
Bi ndi ngPr ovi der. ENDPO NT_ADDRESS PROPERTY,
"http://my/ new url/tol/the/service");

If you are using CXF ProxyFactoryBean to create the proxy object , you can do like this

JaxWsPr oxyFact or yBean proxyFactory = new JaxWsPr oxyFact or yBean() ;

poxyFactory. set Servi ceCl ass(Servi cePort.cl ass);
/1 you could set the service address with this nethod

proxyFact ory. set Addr ess("t heUr | youwant ") ;
ServicePort client = (ServicePort) proxyFactory.create();

Hereis another way which takes advantage of JAXWS's Service.addPort() API

URL wsdl URL = MyServi ce. cl ass. get C assLoader . get Resour ce(
"service2.wsdl");
MNane serviceNane = new QName("urn:service2", "M/Service");

QNanme port Nane

new QNane("urn:service2", "ServicePort");

MyServi ce service = new MyService(wsdl URL, serviceNane);

/1 You can add whatever address as you want

servi ce. addPort (port Nane, "http://schemas. xm soap. org/ soap/ ",
"http://thel/ new url/nyService");

/1 Passing the SEI class that is generated by wsdl 2j ava

ServicePort proxy = service.getPort(portName, SEl.class);

Client Cache Control Directives

The following table lists the cache control directives supported by an HTTP client.

Directive

Behavior

no-cache

Caches cannot use a particular response to satisfy subseguent requests without
first revalidating that response with the server. If specific response header fields
are specified with this value, the restriction applies only to those header fields
within the response. If no response header fields are specified, the restriction
applies to the entire response.

no-store

Caches must not store any part of a response or any part of the request that
invoked it.

max-age

The consumer can accept aresponse whose age is no greater than the specified
timein seconds.

max-stale

The consumer can accept a response that has exceeded its expiration time. If
avalue is assigned to max-stale, it represents the number of seconds beyond
the expiration time of a response up to which the consumer can still accept
that response. If no valueis assigned, it means the consumer can accept astale
response of any age.

min-fresh

The consumer wants a response that will be still be fresh for at least the
specified number of seconds indicated.

no-transform

Caches must not modify media type or location of the content in a response
between a provider and a consumer.

Talend Enterprise Service Factory User Guide 82

JAX-WS Development

Directive Behavior

only-if-cached Caches should return only responses that are currently stored in the cache, and
not responses that need to be reloaded or revalidated.

cache-extension Specifies additional extensionsto the other cache directives. Extensions might

beinformational or behavioral. An extended directiveisspecified in the context
of a standard directive, so that applications not understanding the extended
directive can at | east adhere to the behavior mandated by the standard directive.

A Note About Chunking

There are two ways of putting a body into an HTTP stream:

» The "standard" way used by most browsers is to specify a Content-Length header in the HTTP headers. This
alowsthereceiver to know how much datais coming and when to stop reading. The problem with this approach
is that the length needs to be pre-determined. The data cannot be streamed as generated as the length needs to
be calculated upfront. Thus, if chunking is turned off, we need to buffer the data in a byte buffer (or temp file
if too large) so that the Content-L ength can be calculated.

» Chunked - with this mode, the data is sent to the receiver in chunks. Each chunk is preceded by a hexidecimal
chunk size. When a chunk size is 0, the receiver knows all the data has been received. This mode allows better
streaming as we just need to buffer a small amount, up to 8K by default, and when the buffer fills, write out

the chunk.

In general, Chunked will perform better as the streaming can take place directly. HOWEVER, there are some

problems with chunking:

» Many proxy servers don't understand it, especially older proxy servers. Many proxy servers want the Content-
Length up front so they can alocate a buffer to store the request before passing it onto the real server.

» Some of the older WebServices stacks al so have problemswith Chunking. Specifically, older versionsof .NET.

If you are getting strang errors (generally not soap faults, but other HT TP type errors) when trying to interact with
aservice, try turning off chunking to see if that helps.

Authentication

Basic Authentication sample:

<conduit name="{http://exanple.coni}Hell oWrl dServi cePort. http-conduit"
xm ns="http://cxf.apache. org/transports/ http/configuration">

<aut hori zati on>

<Aut hori zati onType>Basi c</ Aut hori zati onType>
<User Nane>nyuser </ User Nane>
<Passwor d>nmypasswd</ Passwor d>

</ aut hori zati on>
</ condui t >

For Digest Authentication, use the same as above but with AuthorizationType value of Di gest .

Authorization can aso

be supplied dynamically, by implementing the

org. apache. cxf.transport. http. aut h. H t pAut hSuppl i er interface or another interface which
extends it. The main method this interface providesis:

Talend Enterprise Service Factory User Guide 83

JAX-WS Development

public String getAuthorization(AuthorizationPolicy authPolicy,
URL current URL, Message message, String full Header);

With this method you'll need to supply the HttpAuthPolicy, the service URL, the CXF message
and the full Authorization header (what the server sent in its last response). With the latter
value multi-phase authentications can be implemented. For a simple implementation check the the
or g. apache. cxf.transport. http. aut h. Def aul t Basi cAut hSuppl i er class. On the conduit
above, declare your implementation classin an Aut hSuppl i er element for CXF to useit.

Spnego Authentication (Kerberos)

Starting with CXF 2.4.0 CXF supports Spnego authentication using the standard AuthPolicy mechanism. Spnego
isactivated by setting the AuthPolicy.authorizationTypeto 'Negotiate'. If userNameisleft blank then singlesignon
isused with the TGT from e.g. Windows Login. If userName is set then anew LoginContext is established and the
ticket is created out of this. By default the SpnegoAuthSupplier usesthe OID for Spnego. Some serversrequirethe
OID for Kerberos. This can be activated by setting the contextual property auth.spnego.useK erberosOid to 'true'.

Kerberos Config: Make sure that krb5.conf/krb5.ini is configured correctly for the Kerberos realm you want to
authenticate against and supply it to your application by setting the java.security.krb5.conf system property

Login Config: Create a file login.conf and supply it to CXF wusing the System property
java.security.auth.login.config. The file should contain:

CXFd ient {
com sun. security. aut h. nodul e. Kr b5Logi nMbdul e /1
requi red client=TRUE useTi cket Cache=tr ue;

b

Sample config: Make sure the Authorization element contains the same name as the Section in the login.conf
(here: CXFClient).

<l-- HTTP conduit configuration for spnego with single sign on -->

<conduit name="{http://exanple.coni}Hell oWwrl dServi cePort. http-conduit"
xm ns="http://cxf.apache. org/transports/ http/configuration">

<aut hori zati on>

<Aut hori zati onType>Negot i at e</ Aut hori zati onType>

<Aut hori zat i on>CXFC i ent </ Aut hori zati on>

</ aut hori zati on>

</ condui t >

Y ou can use UserName and Password in the above xml config if you want to log in explicitly. If you want to use
the cached Ticket Granting Ticket then do not supply them. On Windows you will also have to make sure you
allow the TGT to be used in Java. See: http://www.javaactivedirectory.com/?page_id=93 for more information.

<l-- Switching to Kerberos O D instead of Spnego -->

<j axws: client>

<j axws: properti es>

<entry key="aut h. spnego. useKer berosQ d" val ue="true"/>
</jaxws: properties>

</jaxws:client>

Talend Enterprise Service Factory User Guide 84

JAX-WS Development

NTLM Authentication

On Java 6, NTLM authentication is built into the Java runtime and you don't need to do anything special.

Next, you need to configure jcifs to use the correct domains, wins servers, etc... Notice that the bit which sets the
username/password to use for NTLM is commented out. If credentials are missing jcifs will use the underlying
NT credentials.

/1Set the jcifs properties
jcifs.Config.setProperty("jcifs.snb.client.domin", "ben.coni);
jcifs.Config.setProperty("jcifs.nethbios.w ns", "XXX.XXX.XXX.XXX");
jcifs.Config.setProperty("jcifs.snb.client.soTinmeout",
"300000"); //5 mnutes
jcifs.Config.setProperty("jcifs.netbios.cachePolicy",

"1200"); //20 m nutes
/ljcifs.Config.setProperty("jcifs.snb.client.usernanme", "nyNTLogin");
/ljcifs.Config.setProperty("jcifs.snb.client.password", "secret");

/'l Register the jcifs URL handler to enable NTLM
jcifs.Config.registerSnmhURLHandl er () ;

Finally, you need to setup the CXF client to turn off chunking. Thereasonisthat the NTLM authentication requires
a 3 part handshake which breaks the streaming.

[/ Turn of f chunking so that NTLM can occur

Cient client = dientProxy.getCient(port);

HTTPConduit http = (HTTPConduit) client.getConduit();
HTTPC i ent Policy httpCientPolicy = new HTTPC i ent Policy();
htt pd i ent Policy. set Connecti onTi meout (36000) ;

htt pdientPolicy. set All onChunki ng(fal se);
http.setCient(httpdientPolicy);

2.5.1.2. Server HTTP Transport

HTTP server endpoints can specify a number of HTTP connection attributes including if it will honor keep aive
requests, how it interacts with caches, and how tolerant it is of errorsin communicating with a consumer.

A server endpoint can be configured using two mechanisms:
» Configuration

+ WSDL

Using Configuration

Namespace

The elements used to configure an HTTP provider endpoint are defined in the namespace http://cxf.apache.org/
transports/http/configuration. It is commonly referred to using the prefix htt p- conf . In order to use the
HTTP configuration elements you will need to add the lines shown below to the beans element of your

Talend Enterprise Service Factory User Guide 85

JAX-WS Development

endpoint's configuration file. In addition, you will need to add the configuration elements' namespace to the
xsi : schemalLocat i on attribute.

Example 2.25. Adding the Configuration Namespace

<beans ...
xm ns: http-conf="http://cxf.apache.org/transports/http/configuration

xsi :schemaLocation=". ..
http://cxf.apache. org/transports/http/configuration

http://cxf.apache. org/ schemas/ confi guration/ http-conf. xsd
. >

The destination element

Y ou configure an HTTP server endpoint using the ht t p- conf : dest i nati on element and its children. The
htt p- conf: dest i nat i on element takesasingle attribute, nane , the specifiesthe WSDL port element that
correspondsto the endpoint. Thevaluefor the nane attributetakestheform portQName. htt p- desti nati on
. The example below showstheht t p- conf : dest i nat i on element that would be used to add configuration
for an endpoint that was specified by the WSDL fragment <port bi ndi ng="wi dget SOAPBi ndi ng"
nane="w dget SOAPPor t > if the endpoint's target namespace was http://widgets.widgetvendor.net .

Example 2.26. http-conf:destination Element
<ht t p- conf: desti nati on nane=
"{http://w dgets/w dget vendor. net } w dget SOAPPort. http-destination">

</ http-conf:destination>

The http-conf:destinati on element has a number of child elements that specify configuration
information. They are described below.

Element Description

htt p-conf: server Specifies the HTTP connection properties.

htt p- conf: cont ext Mat chSt r at egy Specifies the parameters that configure the context
match strategy for processing HT TP requests.

htt p- conf: fi xedPar anet er O der Specifies whether the parameter order of an HTTP
reguest handled by this destination is fixed.

The server element

The htt p-conf: server } element is used to configure the properties of a server's HTTP connection. Its
attributes, described below, specify the connection's properties.

Attribute Description

Recei veTi neout Sets the length of time, in milliseconds, the server tries to receive a request
before the connection times out. The default is 30000. The specify that the
server will not timeout use 0.

Suppressd i ent - Specifies whether exceptions are to be thrown when an error is encountered
SendErrors on receiving a request. The default is f al se ; exceptions are thrown on
encountering errors.

Talend Enterprise Service Factory User Guide 86

JAX-WS Development

Attribute

Description

Suppressd i ent -
Recei veErrors

Specifieswhether exceptions are to be thrown when an error is encountered on
sending a response to a client. The default isf al se ; exceptions are thrown
on encountering errors.

Honor KeepAl i ve

Specifies whether the server honors requests for a connection to remain open
after aresponse has been sent. The default ist r ue ; keep-alive requests are
honored.

Redi rect URL

Specifies the URL to which the client request should be redirected if the
URL specified in the client request is no longer appropriate for the requested
resource. In this case, if astatus code is not automatically set in the first line of
the server response, the status code is set to 302 and the status description is set
to Object Moved. Thevalueisused asthevalue of the HTTP Redi r ect URL

property.

CacheContr ol

Specifies directives about the behavior that must be adhered to by caches
involved in the chain comprising aresponse from a server to a client.

Cont ent Locati on

Sets the URL where the resource being sent in aresponseis located.

Cont ent Type

Specifies the media type of the information being sent in a response. Media
types are specified using multipurpose internet mail extensions (MIME) types.
Thevalueis used asthe value of the HTTP Cont ent Type location.

Cont ent Encodi ng

Specifies any additional content encodings that have been applied to the
information being sent by the service provider. Content encoding labels are
regulated by the Internet Assigned Numbers Authority (IANA). Possible
content encoding valuesinclude zip, gzip, compress, deflate, and identity. This
value is used as the value of the HTTP Cont ent Encodi ng property.

Server Type

Specifies what type of server is sending the response. Values take the form
program-name/version. For example, Apache/1.2.5.

Example

The example below shows a the configuration for an HTTP service provider endpoint that honors keep alive
requests and suppresses all communication errors.

Example 2.27. HTTP Service Provider Endpoint Configuration

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

xm ns: http-conf=
"http://cxf.apache.org/transports/http/configuration”

xsi : schemaLocat i on="
http://cxf.apache. org/transports/ http/configuration
http: //cxf. apache. or g/ schenas/ confi gurati on/ htt p-conf. xsd
htt p: // ww. spri ngfranmewor k. or g/ schema/ beans
htt p: // ww. spri ngfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd" >

<ht t p- conf: desti nati on nane=
"{http://apache.org/ hell o_soap_http}SoapPort. http-destination">
<ht t p- conf: server Suppressd ient SendErrors="true"
Suppressd i ent Recei veErrors="true"
Honor KeepAl i ve="true" />
</ http-conf:destination>
</ beans>

Talend Enterprise Service Factory User Guide 87

JAX-WS Development

Using WSDL

Namespace

The WSDL extension elements used to configure an HTTP server endpoint are defined in the namespace http://
cxf.apache.org/transports/http/configuration . It iscommonly refered to using the prefix ht t p- conf . Inorder to
use the HTTP configuration elements you will need to add the line shown below to thedef i ni ti ons element
of your endpoint's WSDL document.

Example 2.28. HTTP Provider WSDL Element's Namespace

<definitions ...
xm ns: http-conf="http://cxf.apache.org/transports/http/configuration

The server element

Theht t p- conf: server element is used to specify the connection properties of an HTTP server in aWSDL
document. The ht t p- conf : server element is a child of the WSDL port element. It has the same attributes
astheser ver eement used in the configuration file.

Example

The example below shows a WSDL fragment that configures an HTTP server endpoint to specify that it will not
interact with caches.

Example 2.29. WSDL to Configurean HTTP Service Provider Endpoint

<service ...>
<port ...>
<soap: address ... />
<htt p-conf:server CacheControl ="no-cache" />
</ port>

</ service>

Server Cache Control Directives

The table below lists the cache control directives supported by an HTTP server.

Directive Behavior

no- cache Caches cannot use a particular response to satisfy subseguent requests without
first revalidating that response with the server. If specific response header fields
are specified with this value, the restriction applies only to those header fields
within the response. If no response header fields are specified, the restriction
applies to the entire response.

public Any cache can store the response.

private Public (shared) caches cannot store the response because the response is
intended for asingle user. If specific response header fields are specified with

Talend Enterprise Service Factory User Guide 88

JAX-WS Development

Directive Behavior

thisvalue, therestriction appliesonly to those header fieldswithin the response.
If no response header fields are specified, the restriction applies to the entire

response.
no-store Caches must not store any part of response or any part of the request that
invoked it.
no-transform Caches must not modify the mediatype or location of the content in aresponse

between a server and aclient.

nmust -reval i dat e Cachesmust revaildate expired entriesthat rel ate to aresponse before that entry
can be used in a subsequent response.

proxy-revalidate Means the same as must-revalidate, except that it can only be enforced on
shared caches and isignored by private unshared caches. If using thisdirective,
the public cache directive must also be used.

max- age Clients can accept aresponse whose age is no greater that the specified number
of seconds.
S- max- age Means the same as max-age, except that it can only be enforced on shared

caches and isignored by private unshared caches. The age specified by s-max-
age overrides the age specified by max-age. If using this directive, the proxy-
revalidate directive must also be used.

cache- ext ensi on Specifies additional extensionsto the other cache directives. Extensions might
beinformational or behavioral. An extended directiveisspecified in the context
of a standard directive, so that applications not understanding the extended
directive can at | east adhere to the behavior mandated by the standard directive.

2.5.1.3. Servlet Transport

To create services that use this transport you can either use the CXF APIs (for example, see JAX-WS) or create
an XML file which registers services for you.

Publishing an endpoint from XML

CXF uses Spring to provide XML configuration of services. This means that first we'll want to load Spring viaa
Servlet listener and tell it where our XML configuration fileis:

Next, you'll need to add CXFServlet to your web.xml:

<?xm version="1.0" encodi ng="1S0O 8859-1"7?>
<! DOCTYPE web- app
PUBLIC "-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN
"http://java.sun. com dt d/ web-app_2 3.dtd">
<web- app>
<cont ext - par anp
<par am nane>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>
cl asspat h: conf acne/ ws/ servi ces. xm
</ par am val ue>
</ cont ext - par an®

<l istener>
<l i stener-cl ass>

Talend Enterprise Service Factory User Guide 89

JAX-WS Development

or g. spri ngframewor k. web. cont ext . Cont ext Loader Li st ener
</listener-class>
</listener>

<servl et >
<servl et - name>CXFSer vl et </ servl et - nane>
<di spl ay- name>CXF Ser vl et </ di spl ay- nane>
<servl et-cl ass>
org. apache. cxf.transport. servl et. CXFSer vl et
</ servl et-cl ass>
<l oad- on- st art up>1</ 1| oad- on- st artup>
</servl et>

<servl et - mappi ng>
<servl et - name>CXFSer vl et </ servl et - nane>
<url -pattern>/services/*</url-pattern>
</ servl et - mappi ng>
</ web- app>

Alternatively, you can point to the configuration file using a CXFServlet init parameter :

<?xm version="1.0" encodi ng="1S0O 8859-1"7?>

<! DOCTYPE web- app
PUBLIC "-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN'
"http://java. sun.com dtd/ web-app_2_ 3.dtd">

<web- app>

<servl et >
<servl et - name>CXFSer vl et </ servl et - nane>
<di spl ay- nanme>CXF Ser vl et </ di spl ay- nane>
<servl et-cl ass>
org. apache. cxf.transport. servl et. CXFSer vl et
</ servl et-cl ass>
<init-paranp
<par am nane>confi g- 1 ocat i on</ param nane>
<par ant val ue>/ V\EEB- | NF/ beans. xm </ par am val ue>
</init-paranp
<l oad- on-startup>1</| oad-on-startup>
</servlet>

<servl et - mappi ng>
<servl et - name>CXFSer vl et </ servl et - nane>
<url -pattern>/services/*</url-pattern>
</ servl et - mappi ng>

</ web- app>
The next step isto actually write the configuration file:

<beans xm ns="http://ww. springfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: jaxws="http://cxf.apache. org/jaxws"
xm ns:jaxrs="http://cxf.apache.org/jaxrs"
Xsi : schemaLocat i on="
htt p: // ww. spri ngfranmewor k. or g/ schema/ beans
htt p: // ww. spri ngf ranmewor k. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
http://cxf. apache. or g/ j axws

Talend Enterprise Service Factory User Guide 90

JAX-WS Development

http://cxf. apache. or g/ schemas/j axws. xsd
http://cxf.apache. org/jaxrs
http://cxf.apache. org/ schemas/j axrs. xsd" >

<i nport resource="cl asspat h: META- | NF/ cxf/cxf.xm "/ >
<i nport resource="cl asspat h: META- | NF/ cxf/ cxf - ext ensi on-soap. xm "/ >
<i nport resource=
"cl asspat h: META- | NF/ cxf/ cxf - ext ensi on-j axrs- bi ndi ng. xm "/ >
<i nport resource="cl asspat h: META-| NF/ cxf/cxf-servlet.xm"/>

<j axws: endpoi nt id="greeter"”
i mpl enent or =" or g. apache. hel | o_soap_http. Geeterlnmpl"
address="/ G eeterl1"/>

<j axrs:server id="greeterRest"
servi ceC ass="org. apache. hel | o_soap_http. Geeterl ml"
address="/ G eeterRest"/>

</ beans>
Here we're creating a JAX-WS endpoint based on our implementation class, Greeterlmpl.

NOTE: Were publishing endpoints "http://localhost/mycontext/services/Greeterl" and "http://localhost/
mycontext/services/GreeterRest”, but we set jaxws.endpoint/@address and jaxrs.server/@address to relative
values such as"/Greeterl" "/GreeterRest".

Redirecting requests and serving the static content

Starting from CXF 2.2.5 it is possible to configure CXFServlet to redirect current requests to other servlets or
serve the static resources.

"redirects-list" init parameter can be used to provide a space separated list of URI patterns; if a given request URI
matches one of the patternsthen CXFServlet will try to find a RequestDispatcher using the pathinfo of the current
HTTP request and will redirect the request to it.

"redirect-servlet-path" can be used to affect a RequestDispatcher lookup, if specified then it will concatenated
with the pathinfo of the current request.

"redirect-servlet-name” init parameter can be used to enable anamed RequestDispatcher [ook-up, after one of the
URI patterns in the "redirects-list" has matched the current request URI.

"static-resources-list" init parameter can be used to provide a space separated list of static resource such as html,
css, or pdf fileswhich CXFServlet will serve directly.

One can have requests redirected to other servlets or JSP pages.
CXFServlets serving both JAXWS and JAXRS based endpoints can avail of this feature.
For example, please see thisweb.xml .

The "http://localhost:9080/the/bookstorel/books/html/123" request URI will initially be matched by the
CXFServlet given that it has a more specific URI pattern than the RedirectCXFServlet. After a current URI has
reached ajaxrs:server endpoint, the response will be redirected by the JAXRS RequestDispatcherProvider to a"/
book.html" address, see "dispatchProviderl" bean here.

Next, the request URI "/book.html" will be handled by RedirectCXFServlet. Note that a uri pattern can be a
regular expression. This servlet redirects the request further to a RequestDispatcher capable of handling a"/static/
book.html".

Talend Enterprise Service Factory User Guide 91

http://svn.apache.org/repos/asf/cxf/trunk/systests/jaxrs/src/test/resources/jaxrs_dispatch/WEB-INF/web.xml
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-WithRequestDispatcherProvider
http://svn.apache.org/repos/asf/cxf/trunk/systests/jaxrs/src/test/resources/jaxrs_dispatch/WEB-INF/beans.xml

JAX-WS Development

Finally, DefaultCXFServlet serves a requested book.html.

Publishing an endpoint with the API

Once your Servlet is registered in your web.xml, you should set the default bus with CXFServlet's bus to make
sure that CXF uses it asit's HTTP Transport. Simply publish with the related path "Greeter" and your service
should appear at the address you specify:

i mport javax.xm .ws. Endpoi nt;

i mport org. apache. cxf. Bus;

i mport org. apache. cxf. BusFactory;

i mport org.apache. cxf.transport.servlet. CXFServl et;

/1 cxf is the instance of the CXFServlet, you could al so get
/1 this instance by extending the CXFServl et

Bus bus = cxf.getBus();

BusFact ory. set Def aul t Bus(bus);

Endpoi nt. publish("/ Geeter", new Geeterlnml ());

The one thing you must ensure is that your CXFServlet is set up to listen on that path. Otherwise the CXFServlet
will never receive the requests.

NOTE:

Endpoint.publish(...) is a JAX-WS API for publishing JAX-WS endpoints. Thus, it would require the JAX-WS
module and API's to be present. If you are not using JAX-WS or want more control over the published endpoint
properties, you should replace that call with the proper calls to the appropriate ServerFactory.

Since CXFServlet know nothing about the web container listen port and the application context path, you need
to specify the relate path instead of full http address.

Using the servlet transport without Spring

Some user who doesn't want to touch any Spring stuff could also publish the endpoint with CXF servlet transport.
First you should extends the CXFNonSpringServlet and then override the method loadBus which below codes:

i mport javax.xm .ws. Endpoi nt;

@verride
public void | oadBus(Servl et Config servletConfig)

t hrows Servl et Exception {
super. | oadBus(servl et Config);

/1 You could add the endpoi nt publish codes here
Bus bus = cxf.getBus();

BusFact ory. set Def aul t Bus(bus) ;

Endpoi nt. publish("/ G eeter", new Geeterlnpl());

/1 You can als use the sinple frontend APl to do this
Server Fact oryBean factroy = new Server Fact oryBean();
factory. set Bus(bus);

factory. set Servi ceC ass(G eeterlnpl.class);

factory. set Address("/ Greeter");

factory.create();

Talend Enterprise Service Factory User Guide 92

JAX-WS Development

}

If you are using the Jetty as the embedded servlet engine, you could publish endpoint like this:

i mport javax.xm .ws. Endpoi nt;

/1 Setup the system properties to use
/1 the CXFBusFactory not the SpringBusFactory
String busFactory =

Syst em get Property(BusFact ory. BUS_FACTORY_PROPERTY_NAME) ;
System set Property(BusFact ory. BUS_FACTORY_PROPERTY_NAME,

"org. apache. cxf. bus. CXFBusFact ory") ;
try {
/1 Start up the jetty enbedded server
htt pServer = new Server (9000);
Cont ext Handl er Col | ecti on contexts
= new Cont ext Handl er Col | ection();
htt pServer. set Handl er (cont ext s) ;

Context root = new Context(contexts, "/", Context.SESSIONS);

CXFNonSpri ngServl et cxf = new CXFNonSpringServlet();

Servl et Hol der servlet = new Servl et Hol der (cxf);
servl et. set Name("soap");

servl et. set For cedPat h(" soap");

root.addServl et (servlet, "/soap/*");

httpServer.start();

Bus bus = cxf.getBus();
set Bus(bus);
BusFact ory. set Def aul t Bus(bus) ;
Geeterlnmpl inmpl = new Geeterlnpl();
Endpoi nt. publish("/ G eeter", inmpl);
} catch (Exception e) {
t hrow new Runti meException(e);
} finally {
/1 clean up the system properties
if (busFactory !'= null) {

System set Property(BusFact ory. BUS_FACTORY_PROPERTY_NAME,

busFact ory);
} else {

System cl ear Property(BusFact ory. BUS FACTORY_PROPERTY_NAME) ;

}

Accessing the MessageContext and/or HTTP Request and Response

Sometimesyou'll want to access more specific message detail sin your serviceimplementation. One example might
be accessing the actual request or response object itself. This can be done using the WebServiceContext object.

First, declare a private field for the WebServiceContext in your service implementation, and annotate it as a

resource:

@Resour ce
private WebServi ceCont ext context;

Talend Enterprise Service Factory User Guide

93

http://java.sun.com/javase/6/docs/api/javax/xml/ws/WebServiceContext.html

JAX-WS Development

Then, within your implementing methods, you can access the MessageContext, HttpServletRequest, and
HttpServletResponse as follows:

i mport javax.servlet.http. HtpServl et Request;

i mport javax.servlet.http.HtpServl et Response;

i mport javax.xm .ws. handl er. MessageCont ext ;

i mport org.apache. cxf.transport. http. Abstract HTTPDest i nati on;

MessageCont ext ctx = context.get MessageCont ext ();

Ht t pSer vl et Request request = (HttpServl et Request)
ct x. get (Abstract HTTPDest i nati on. HTTP_REQUEST) ;

Ht t pSer vl et Response response = (Ht pServl et Response)
ct x. get (Abstract HTTPDest i nati on. HTTP_RESPONSE) ;

Of course, it is aways a good idea to program defensively if using transport-specific entities like the
HttpServietRequest and HttpServletResponse. If the transport were changed (for instance to the JM S transport),
then these values would likely be null.

2.5.2. JMS Transport

CXF provides a transport plug-in that enables endpoints to use Java Message Service (IMS) queues and topics.
CXF's M S transport plug-in uses the Java Naming and Directory Interface (JNDI) to locate and obtain references
to the IMS provider that brokers for the IMS destinations. Once CXF has established a connection to a IMS
provider, CXF supports the passing of messages packaged as either a IMS Cbj ect Message or a IMS
Text Message .

2.5.2.1. Easier configuration using the new JMSConfigFeature

Starting with CXF 2.0.9 and 2.1.3 there is a new easier and more flexible configuration style available. See
Section 2.5.2.8, “Using the M SConfigFeature”

2.5.2.2. JMS Transport wiht SOAP over Java Message Service 1.0-
Supported

Starting with the CXF 2.3 , we make some improvement on the JMS Transport to support SOAP over IMS
specification . See Section 2.5.2.7, “ SOAP over IMS 1.0 support” for more information.

2.5.2.3. IMS Namespaces

WSDL Namespace

The WSDL extensionsfor defining aJJM S endpoint are defined in the namespace http://cxf.apache.org/transports/
jms . In order to use the IMS extensions you will need to add the namespace definition shown below to the
definitions element of your contract.

Talend Enterprise Service Factory User Guide 9

http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/

JAX-WS Development

Example 2.30. JM S Extension Namespace

xm ns:jme="http://cxf.apache.org/transports/jns"

Configuration Namespaces

In order to use the IM S configuration properties you will need to add the line shown below to thebeans element
of your configuration.

Example 2.31. JIM S Configuration Namespaces

xm ns:jme="http://cxf.apache.org/transports/jns"

2.5.2.4. Basic Endpoint Configuration

JMS endpoints need to know certain basic information about how to establish a connection to the proper
destination. Thisinformation can be provided in one of two places: WSDL or XML configuration. The following
configuration elements which are described can be used in both the client side Conduits and the server side
Destinations.

Using WSDL

The JMS destination information is provided using the j ns: address element and its child, the
j ms: JMSNam ngProperti es element. The j ns: addr ess element's attributes specify the information
needed to identify the IM S broker and the destination. Thej ns: JMSNam ngPr operti es element specifies
the Java properties used to connect to the INDI service.

The address element

The basic configuration for a IMS endpoint is done by using aj ms: addr ess element as the child of your
service's port element. The j ms: addr ess element uses the attributes described below to configure the
connection to the IMS broker.

Attribute Description

destinationStyle Specifiesif theIMSdestinationisaJMSqueueor aJMS
topic.

j ndi Connect i onFact or yNane Specifies the INDI name bound to the JM S connection
factory to use when connecting to the IM S destination.

j ndi Desti nati onNane Specifies the INDI name bound to the IMS destination
to which requests are sent.

j ndi Repl yDesti nati onNare Specifiesthe INDI name bound to the IM S destinations
where replies are sent. This attribute allows you to use
auser defined destination for replies.

connecti onUser Nane Specifiesthe usernameto usewhen connectingtoaJMS
broker.

Talend Enterprise Service Factory User Guide 95

JAX-WS Development

Attribute Description
connect i onPasswor d Specifiesthe password to use when connectingtoaJM S
broker.

The JMSNamingProperties element

To increase interoperability with IMS and JNDI providers, the j ms: addr ess element has a child element,
j ms: JMSNami ngPr operti es,that allowsyouto specify the values used to popul ate the properties used when
connecting to the INDI provider. The j ns: JMSNani ngPr oper ti es element has two attributes: nane and
val ue . The nane attribute specifies the name of the property to set. The val ue attribute specifies the value
for the specified property. The j ns: JMSNam ngPr operti es element can also be used for specification of
provider specific properties. The following isalist of common JNDI properties that can be set:

e java. nam ng.factory.initial

e java. nam ng. provi der. url

e java. nam ng. factory. obj ect

* java. naning.factory.state

* java. nam ng. factory. url.pkgs

e java. nam ng. dns. url

e java. nam ng. authoritative

* java. nam ng. bat chsi ze

e java. naning.referral

* java. nam ng. security. protocol

e java. ham ng. security. authentication

e java. nam ng. security. princi pal

e java. nam ng. security.credentials

* java. nani ng. | anguage

* java. nam ng. appl et

For more details on what information to use in these attributes, check your JNDI provider's documentation and
consult the Java API reference material.

Using a named reply destination

By default, CXF endpoints using JMS create a temporary queue for sending replies back and forth. You can
change this behavior by setting the j ndi Repl yDesti nati onNane attribute in the endpoint's contract.
A client endpoint will listen for replies on the specified destination and it will specify the value of the
attribute in the Repl yTo field of al outgoing requests. A service endpoint