
Talend Mediation
Developer Guide

5.1_b (Apache Camel 2.9.x series)



Talend Mediation: Developer Guide

Publication date 5 July 2012
Copyright © 2011-2012 Talend Inc.

Copyleft

This documentation is provided under the terms of the Creative Commons Public License (CCPL). For more information about what you can
and cannot do with this documentation in accordance with the CCPL, please read: http://creativecommons.org/licenses/by-nc-sa/2.0/

This document may include documentation produced at The Apache Software Foundation which is licensed under The Apache License 2.0.

Notices

Talend and Talend ESB are trademarks of Talend, Inc.

Apache CXF, CXF, Apache Karaf, Karaf, Apache Cellar, Cellar, Apache Camel, Camel, Apache Maven, Maven, Apache Archiva, Archiva
are trademarks of The Apache Foundation.

Eclipse Equinox is a trademark of the Eclipse Foundation, Inc. SoapUI is a trademark of SmartBear Software. Hyperic is a trademark of
VMware, Inc. Nagios is a trademark of Nagios Enterprises, LLC.

All other brands, product names, company names, trademarks and service marks are the properties of their respective owners.

Document includes Enterprise Integration Patterns graphics licensed under the Creative Commons Attribution License. Book: Enterprise
Integration Patterns by Gregor Hohpe and Bobby Woolf; Website: http://www.eaipatterns.com/eaipatterns.html.



Talend Mediation Developer Guide

Table of Contents
1. Introduction ..............................................................................................................  1
2. Enterprise Integration Patterns .....................................................................................  3

2.1. List of EIPs ...................................................................................................  3
2.2. Aggregator ..................................................................................................... 8
2.3. Claim Check ................................................................................................  12
2.4. Competing Consumers ...................................................................................  13
2.5. Composed Message Processor .........................................................................  14
2.6. Content Based Router ....................................................................................  15
2.7. Content Enricher ...........................................................................................  16
2.8. Content Filter ...............................................................................................  20
2.9. Correlation Identifier .....................................................................................  21
2.10. Dead Letter Channel ....................................................................................  22
2.11. Delayer ......................................................................................................  27
2.12. Detour .......................................................................................................  29
2.13. Durable Subscriber ......................................................................................  30
2.14. Dynamic Router ..........................................................................................  31
2.15. Event Driven Consumer ................................................................................  33
2.16. Event Message ............................................................................................  33
2.17. Guaranteed Delivery ....................................................................................  35
2.18. Idempotent Consumer ................................................................................... 35
2.19. Load Balancer .............................................................................................  37
2.20. Log ...........................................................................................................  41
2.21. Loop .........................................................................................................  42
2.22. Message .....................................................................................................  43
2.23. Message Bus ..............................................................................................  44
2.24. Message Channel ......................................................................................... 44
2.25. Message Dispatcher .....................................................................................  45
2.26. Message Endpoint .......................................................................................  45
2.27. Message Filter ............................................................................................  46
2.28. Message Router ...........................................................................................  47
2.29. Message Translator ......................................................................................  48
2.30. Messaging Gateway .....................................................................................  50
2.31. Messaging Mapper ....................................................................................... 50
2.32. Multicast ....................................................................................................  51
2.33. Normalizer .................................................................................................  53
2.34. Pipes and Filters ..........................................................................................  54
2.35. Point to Point Channel .................................................................................  56
2.36. Polling Consumer ........................................................................................  56
2.37. Publish Subscribe Channel ............................................................................  59
2.38. Recipient List .............................................................................................  60
2.39. Request Reply .............................................................................................  63
2.40. Resequencer ...............................................................................................  64
2.41. Return Address ...........................................................................................  68
2.42. Routing Slip ...............................................................................................  69
2.43. Sampling ....................................................................................................  71
2.44. Scatter-Gather .............................................................................................  72
2.45. Selective Consumer .....................................................................................  75
2.46. Service Activator .........................................................................................  76
2.47. Sort ...........................................................................................................  76
2.48. Splitter ....................................................................................................... 78
2.49. Throttler ..................................................................................................... 84
2.50. Transactional Client .....................................................................................  85
2.51. Validate .....................................................................................................  90
2.52. Wire Tap ...................................................................................................  91

3. Components ............................................................................................................  93
3.1. ActiveMQ ....................................................................................................  97



Talend Mediation

iv Talend Mediation Developer Guide

3.2. Atom .........................................................................................................  101
3.3. Bean .........................................................................................................  102
3.4. Cache ........................................................................................................  104
3.5. Class .........................................................................................................  111
3.6. Context ......................................................................................................  112
3.7. Crypto (Digital Signatures) ............................................................................  114
3.8. CXF ..........................................................................................................  116
3.9. CXF Bean Component .................................................................................  134
3.10. CXFRS ....................................................................................................  137
3.11. Direct ......................................................................................................  138
3.12. Event .......................................................................................................  139
3.13. Exec ........................................................................................................  140
3.14. File .........................................................................................................  142
3.15. Flatpack ...................................................................................................  159
3.16. Freemarker ...............................................................................................  163
3.17. FTP .........................................................................................................  165
3.18. Hl7 ..........................................................................................................  176
3.19. HTTP4 .....................................................................................................  180
3.20. Jasypt ......................................................................................................  188
3.21. JCR .........................................................................................................  191
3.22. JDBC ....................................................................................................... 192
3.23. Jetty ........................................................................................................  195
3.24. JMS ......................................................................................................... 202
3.25. JMX ........................................................................................................  216
3.26. JPA .........................................................................................................  217
3.27. Jsch .........................................................................................................  221
3.28. Log .........................................................................................................  222
3.29. Lucene .....................................................................................................  225
3.30. Mail ........................................................................................................  229
3.31. Mock .......................................................................................................  234
3.32. MyBatis ...................................................................................................  240
3.33. Properties .................................................................................................  243
3.34. Quartz ......................................................................................................  251
3.35. Ref ..........................................................................................................  254
3.36. RMI ........................................................................................................  255
3.37. RSS .........................................................................................................  256
3.38. SEDA ......................................................................................................  258
3.39. Servlet .....................................................................................................  260
3.40. Shiro Security ...........................................................................................  262
3.41. SMPP ......................................................................................................  266
3.42. SNMP ......................................................................................................  273
3.43. Spring Integration ......................................................................................  275
3.44. Spring Security ..........................................................................................  279
3.45. SQL Component ........................................................................................  283
3.46. SSH ......................................................................................................... 290
3.47. Stub ......................................................................................................... 291
3.48. Test .........................................................................................................  292
3.49. Timer ....................................................................................................... 292
3.50. Velocity ...................................................................................................  294
3.51. VM .........................................................................................................  297
3.52. XQuery Endpoint .......................................................................................  297
3.53. XSLT ......................................................................................................  298
3.54. Zookeeper ................................................................................................  301

4. Talend ESB Mediation Examples ..............................................................................  305



Talend Mediation Developer Guide

Chapter 1. Introduction
Talend ESB provides a fully supported, stable, production ready distribution of the industry leading open source
integration framework Apache Camel. Apache Camel uses well known Enterprise Integration Patterns to make
message based system integration simpler yet powerful and scalable.

The Apache Camel uses a lightweight, component based architecture which allows great flexibility in deployment
scenarios: as stand-alone JVM applications or embedded in a servlet container such as Tomcat, or within a JEE
server, or in an OSGi container such as Equinox.

Apache Camel and Talend ESB come out of the box with an impressive set of available components for all
commonly used protocols like http, https, ftp, xmpp, rss and many more. A large number of data formats like EDI,
JSON, CSV, HL7 and languages like JS, Python, Scala, are supported out of the box. Its extensible architecture
allows developers to easily add support for proprietary protocols and data formats.

The Talend ESB distribution supplements Apache Camel with support for OSGi deployment, support for
integrating Talend jobs on Camel routes and a number of advanced examples. Its OSGi container uses Apache
Karaf, a lightweight container providing advanced features such as provisioning, hot deployment, logger system,
dynamic configuration, complete shell environment, and other features.



Talend Mediation Developer Guide



Talend Mediation Developer Guide

Chapter 2. Enterprise Integration Patterns
Camel supports most of the Enterprise Integration Patterns from the excellent book by Gregor Hohpe and Bobby
Woolf.

2.1. List of EIPs

2.1.1. Messaging Systems

Section 2.24, “Message Channel” How does one application
communicate with another using
messaging?

Section 2.22, “Message” How can two applications connected
by a message channel exchange a
piece of information?

Section 2.34, “Pipes and Filters” How can we perform complex
processing on a message while
maintaining independence and
flexibility?

http://www.enterpriseintegrationpatterns.com/toc.html


Messaging Channels

4 Talend Mediation Developer Guide

Section 2.28, “Message Router” How can you decouple individual
processing steps so that messages
can be passed to different filters
depending on a set of conditions?

Section 2.29, “Message Translator” How can systems using different
data formats communicate with each
other using messaging?

Section 2.26, “Message Endpoint” How does an application connect to
a messaging channel to send and
receive messages?

2.1.2. Messaging Channels

Section 2.35, “Point to Point
Channel”

How can the caller be sure that
exactly one receiver will receive the
document or perform the call?

Section 2.37, “Publish Subscribe
Channel”

How can the sender broadcast an
event to all interested receivers?

Section 2.10, “Dead Letter Channel” What will the messaging system do
with a message it cannot deliver?

Section 2.17, “Guaranteed Delivery” How can the sender make sure that
a message will be delivered, even if
the messaging system fails?

Section 2.23, “Message Bus” What is an architecture that
enables separate applications to
work together, but in a de-coupled
fashion such that applications can
be easily added or removed without
affecting the others?

2.1.3. Message Construction

Section 2.16, “Event Message” How can messaging be used to
transmit events from one application
to another?



Message Routing

Talend Mediation Developer Guide 5

Section 2.39, “Request Reply” When an application sends a
message, how can it get a response
from the receiver?

Section 2.9, “Correlation Identifier” How does a requestor that has
received a reply know which request
this is the reply for?

Section 2.41, “Return Address” How does a replier know where to
send the reply?

2.1.4. Message Routing

Section 2.6, “Content Based Router” How do we handle a situation
where the implementation of a single
logical function (e.g., inventory
check) is spread across multiple
physical systems?

Section 2.27, “Message Filter” How can a component avoid
receiving uninteresting messages?

Section 2.14, “Dynamic Router” How can you avoid the dependency
of the router on all possible
destinations while maintaining its
efficiency?

Section 2.38, “Recipient List” How do we route a message to a list
of (static or dynamically) specified
recipients?

Section 2.48, “Splitter” How can we process a message if it
contains multiple elements, each of
which may have to be processed in a
different way?

Aggregator How do we combine the results of
individual, but related messages so
that they can be processed as a
whole?

Section 2.40, “Resequencer” How can we get a stream of related
but out-of-sequence messages back
into the correct order?



Message Transformation

6 Talend Mediation Developer Guide

Section 2.5, “Composed Message
Processor”

How can you maintain the overall
message flow when processing
a message consisting of multiple
elements, each of which may require
different processing?

Section 2.44, “Scatter-Gather” How do you maintain the overall
message flow when a message needs
to be sent to multiple recipients, each
of which may send a reply?

Section 2.42, “Routing Slip” How do we route a message
consecutively through a series of
processing steps when the sequence
of steps is not known at design-time
and may vary for each message?

Section 2.49, “Throttler” How can I throttle messages to
ensure that a specific endpoint does
not get overloaded, or we don't
exceed an agreed SLA with some
external service?

Section 2.43, “Sampling” How can I sample one message
out of many in a given period to
avoid downstream route does not get
overloaded?

Section 2.11, “Delayer” How can I delay the sending of a
message?

Section 2.19, “Load Balancer” How can I balance load across a
number of endpoints?

Section 2.32, “Multicast” How can I route a message to a
number of endpoints at the same
time?

Section 2.21, “Loop” How can I repeat processing a
message in a loop?

2.1.5. Message Transformation

Section 2.7, “Content Enricher” How do we communicate with
another system if the message
originator does not have all the
required data items available?

Section 2.8, “Content Filter” How do you simplify dealing with
a large message, when you are
interested only in a few data items?

Section 2.3, “Claim Check” How can we reduce the data
volume of message sent across
the system without sacrificing
information content?



Messaging Endpoints

Talend Mediation Developer Guide 7

Section 2.33, “Normalizer” How do you process messages
that are semantically equivalent, but
arrive in a different format?

Section 2.47, “Sort” How can I sort the body of a
message?

Section 2.51, “Validate” How can I validate a message?

2.1.6. Messaging Endpoints

Section 2.31, “Messaging Mapper” How do you move data between
domain objects and the messaging
infrastructure while keeping the two
independent of each other?

Section 2.15, “Event Driven
Consumer”

How can an application
automatically consume messages as
they become available?

Section 2.36, “Polling Consumer” How can an application consume
a message when the application is
ready?

Section 2.4, “Competing
Consumers”

How can a messaging client process
multiple messages concurrently?

Section 2.25, “Message Dispatcher” How can multiple consumers on
a single channel coordinate their
message processing?

Section 2.45, “Selective Consumer” How can a message consumer select
which messages it wishes to receive?

Section 2.13, “Durable Subscriber” How can a subscriber avoid missing
messages while it's not listening for
them?

Section 2.18, “Idempotent
Consumer”

How can a message receiver deal
with duplicate messages?

Section 2.50, “Transactional Client” How can a client control its
transactions with the messaging
system?



System Management

8 Talend Mediation Developer Guide

Section 2.30, “Messaging Gateway” How do you encapsulate access to
the messaging system from the rest
of the application?

Section 2.46, “Service Activator” How can an application design a
service to be invoked both via
various messaging technologies and
via non-messaging techniques?

2.1.7. System Management

Section 2.12, “Detour” How can you route a message
through intermediate steps to
perform validation, testing or
debugging functions?

Section 2.52, “Wire Tap” How do you inspect messages that
travel on a point-to-point channel?

Log How can I log processing a message?

2.2. Aggregator

2.2.1. Aggregator Pattern

The Aggregator from the EIP patterns allows you to combine a number of messages together into a single message.

A correlation Expression is used to determine the messages which should be aggregated together. If you want to
aggregate all messages into a single message, just use a constant expression. An AggregationStrategy is used to
combine all the message exchanges for a single correlation key into a single message exchange.

The aggregator provides a pluggable repository which you can implement your own
org.apache.camel.spi.AggregationRepository. If you need a persistent repository then you can
use either Camel HawtDB or SQL Component.

http://www.enterpriseintegrationpatterns.com/Aggregator.html
http://camel.apache.org/expression.html
http://camel.apache.org/hawtdb.html
http://camel.apache.org/sql-component.html


Aggregator options

Talend Mediation Developer Guide 9

You can manually complete all current aggregated exchanges by sending in a message containing the header
Exchange.AGGREGATION_COMPLETE_ALL_GROUPS set to true. The message is considered a signal
message only, the message headers/contents will not be processed otherwise.

The Apache Camel website maintains several examples of this EIP in use.

2.2.2. Aggregator options

The aggregator supports the following options:

Option Default Description

correlationExpression Mandatory Expression which evaluates the correlation key
to use for aggregation. The Exchange which has the same
correlation key is aggregated together. If the correlation key
could not be evaluated an Exception is thrown. You can
disable this by using the ignoreBadCorrelationKeys
option.

aggregationStrategy Mandatory AggregationStrategy which is used to
merge the incoming Exchange with the existing already
merged exchanges. At first call the oldExchange parameter
is null. On subsequent invocations the oldExchange
contains the merged exchanges and newExchange is
of course the new incoming Exchange. The strategy can
also be a TimeoutAwareAggregationStrategy implementation,
supporting the timeout callback. Here, Camel will invoke the
timeout method when the timeout occurs. Notice that the
values for index and total parameters will be -1, and the
timeout parameter will only be provided if configured as a
fixed value.

strategyRef A reference to lookup the AggregationStrategy in the
Registry.

completionSize number of messages aggregated before the aggregation is
complete. This option can be set as either a fixed value or
using an Expression which allows you to evaluate a size
dynamically; it will use Integer as result. If both are set,
Camel will fallback to use the fixed value if the Expression
result was null or 0.

completionTimeout Time in milliseconds that an aggregated exchange should be
inactive before it is complete. This option can be set as either
a fixed value or using an Expression which allows you to
evaluate a timeout dynamically; it will use Long as result. If
both are set Camel will fallback to use the fixed value if the
Expression result was null or 0. You cannot use this option
together with completionInterval, only one of the two can be
used.

completionInterval A repeating period in milliseconds by which the aggregator
will complete all current aggregated exchanges. Camel has a
background task which is triggered every period. You cannot
use this option together with completionTimeout, only one of
them can be used.

completionPredicate A Predicate to indicate when an aggregated exchange is
complete.

http://camel.apache.org/aggregator2.html#Aggregator2-Examples
http://camel.apache.org/expression.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/registry.html
http://camel.apache.org/expression.html
http://camel.apache.org/expression.html
http://camel.apache.org/expression.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html


Aggregator options

10 Talend Mediation Developer Guide

Option Default Description

completionFromBatchConsumer false This option is if the exchanges are coming from a Batch
Consumer. Then when enabled the Section 2.2, “Aggregator”
will use the batch size determined by the Batch Consumer
in the message header CamelBatchSize. See more details
at Batch Consumer. This can be used to aggregate all files
consumed from a File endpoint in that given poll.

forceCompletionOnStop false Indicates completing all current aggregated exchanges when
the context is stopped.

eagerCheckCompletion false Whether or not to eager check for completion when a new
incoming Exchange has been received. This option influences
the behavior of the completionPredicate option as
the Exchange being passed in changes accordingly. When
false the Exchange passed in the Predicate is the aggregated
Exchange which means any information you may store on the
aggregated Exchange from the AggregationStrategy is
available for the Predicate. When true the Exchange passed
in the Predicate is the incoming Exchange, which means you
can access data from the incoming Exchange.

groupExchanges false If enabled then Camel will group all
aggregated Exchanges into a single combined
org.apache.camel.impl.GroupedExchange
holder class that holds all the aggregated Exchanges. And
as a result only one Exchange is being sent out from
the aggregator. Can be used to combine many incoming
Exchanges into a single output Exchange without coding a
custom AggregationStrategy yourself. Note this option
does not support persistant aggregator repositories.

ignoreInvalidCorrelationKeys false Whether or not to ignore correlation keys which could not
be evaluated to a value. By default Camel will throw an
Exception, but you can enable this option and ignore the
situation instead.

closeCorrelationKeyOnCompletion Whether or not too late Exchanges should be accepted or
not. You can enable this to indicate that if a correlation key
has already been completed, then any new exchanges with
the same correlation key be denied. Camel will then throw a
closedCorrelationKeyException exception. When
using this option you pass in a integer which is a number
for a LRUCache which keeps that last X number of closed
correlation keys. You can pass in 0 or a negative value to
indicate a unbounded cache. By passing in a number you are
ensured that cache won't grow too big if you use a log of
different correlation keys.

discardOnCompletionTimeout false Whether or not exchanges which complete due to a timeout
should be discarded. If enabled then when a timeout occurs
the aggregated message will not be sent out but dropped
(discarded).

aggregationRepository Allows you to plugin you own implementation of Camel's
AggregationRepository class which keeps track of the
current inflight aggregated exchanges. Camel uses by default
a memory based implementation.

aggregationRepositoryRef Reference to lookup a aggregationRepository in the
Registry.

http://camel.apache.org/batch-consumer.html
http://camel.apache.org/batch-consumer.html
http://camel.apache.org/batch-consumer.html
http://camel.apache.org/batch-consumer.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/predicate.html
http://camel.apache.org/predicate.html
http://camel.apache.org/exchange.html
http://camel.apache.org/predicate.html
http://camel.apache.org/exchange.html
http://camel.apache.org/registry.html


Exchange Properties

Talend Mediation Developer Guide 11

Option Default Description

parallelProcessing false When aggregated are completed they are being send out of the
aggregator. This option indicates whether or not Camel should
use a thread pool with multiple threads for concurrency. If no
custom thread pool has been specified then Camel creates a
default pool with 10 concurrent threads.

executorService If using parallelProcessing you can specify a custom
thread pool to be used. In fact also if you are not using
parallelProcessing this custom thread pool is used to
send out aggregated exchanges as well.

executorServiceRef Reference to lookup a executorService in the Registry

timeoutCheckerExecutorService If using either of the completionTimeout,
completionTimeoutExpression, or completionInterval options
a background thread is created to check for the completion for
every aggregator. Set this option to provide a custom thread
pool to be used rather than creating a new thread for every
aggregator.

timeoutCheckerExecutorServiceRef Reference to lookup a timeoutCheckerExecutorService in the
Registry.

2.2.3. Exchange Properties

The following properties are set on each aggregated Exchange:

header type description

CamelAggregatedSize int The total number of Exchanges aggregated into this
combined Exchange.

CamelAggregatedCompletedBy String Indicator how the aggregation was completed as a value
of either: predicate, size, consumer, timeout
or interval.

2.2.4. About AggregationStrategy

The AggregationStrategy is used for aggregating the old (lookup by its correlation id) and the new
exchanges together into a single exchange. Possible implementations include performing some kind of combining
or delta processing, such as adding line items together into an invoice or just using the newest exchange and
removing old exchanges such as for state tracking or market data prices; where old values are of little use.

Notice the aggregation strategy is a mandatory option and must be provided to the aggregator.

2.2.5. About completion

When aggregation Exchanges at some point you need to indicate that the aggregated exchanges is complete, so
they can be send out of the aggregator. Camel allows you to indicate completion in various ways as follows:

• completionTimeout - Is an inactivity timeout in which is triggered if no new exchanges have been aggregated
for that particular correlation key within the period.

http://camel.apache.org/registry.html
http://camel.apache.org/exchange.html


Claim Check

12 Talend Mediation Developer Guide

• completionInterval - Once every X period all the current aggregated exchanges are completed.

• completionSize - Is a number indicating that after X aggregated exchanges it's complete.

• completionPredicate - Runs a Predicate when a new exchange is aggregated to determine if we are complete
or not

• completionFromBatchConsumer - Special option for Batch Consumer which allows you to complete when all
the messages from the batch has been aggregated. |

• forceCompletionOnStop - Indicates to complete all current aggregated exchanges when the context is stopped.

Notice that all the completion ways are per correlation key. And you can combine them in any way you like. It's
basically the first which triggers that wins. So you can use a completion size together with a completion timeout.
Only completionTimeout and completionInterval cannot be used at the same time.

Notice the completion is a mandatory option and must be provided to the aggregator. If not provided Camel will
throw an Exception on startup.

2.3. Claim Check
The Claim Check from the EIP patterns allows you to replace message content with a claim check (a unique key),
which can be used to retrieve the message content at a later time. The message content is stored temporarily in a
persistent store like a database or file system. This pattern is very useful when message content is very large (thus
it would be expensive to send around) and not all components require all information.

It can also be useful in situations where you cannot trust the information with an outside party; in this case, you
can use the Claim Check to hide the sensitive portions of data.

In the below example we'll replace a message body with a claim check, and restore the body at a later step.

Using the Fluent Builders

from("direct:start").to("bean:checkLuggage", "mock:testCheckpoint", "
   bean:dataEnricher", "mock:result");

Using the Spring XML Extensions

<route>
    <from uri="direct:start"/>
    <pipeline>
        <to uri="bean:checkLuggage"/>
        <to uri="mock:testCheckpoint"/>

http://camel.apache.org/predicate.html
http://camel.apache.org/batch-consumer.html
http://www.enterpriseintegrationpatterns.com/StoreInLibrary.html


Competing Consumers

Talend Mediation Developer Guide 13

        <to uri="bean:dataEnricher"/>
        <to uri="mock:result"/>
    </pipeline>
</route>        
        

The example route is pretty simple - it's a Pipeline. In a real application you would have some other steps where
the mock:testCheckpoint endpoint is in the example.

The message is first sent to the checkLuggage bean which looks like

public static final class CheckLuggageBean {        
    public void checkLuggage(Exchange exchange, @Body String body, 
        @XPath("/order/@custId") String custId) {   
        // store the message body into the data store, 
        // using the custId as the claim check
        dataStore.put(custId, body);
        // add the claim check as a header
        exchange.getIn().setHeader("claimCheck", custId);
        // remove the body from the message
        exchange.getIn().setBody(null);
    }
}    

This bean stores the message body into the data store, using the custId as the claim check. In this example,
we're just using a HashMap to store the message body; in a real application you would use a database or file
system, etc. Next the claim check is added as a message header for use later. Finally we remove the body from
the message and pass it down the pipeline.

The next step in the pipeline is the mock:testCheckpoint endpoint which is just used to check that the
message body is removed, claim check added, etc.

To add the message body back into the message, we use the dataEnricher bean which looks like

public static final class DataEnricherBean {
    public void addDataBackIn(Exchange exchange, @Header("claimCheck") 
        String claimCheck) { 
        // query the data store using the claim check as the key and add the 
        // data back into the message body
        exchange.getIn().setBody(dataStore.get(claimCheck));
        // remove the message data from the data store
        dataStore.remove(claimCheck);
        // remove the claim check header
        exchange.getIn().removeHeader("claimCheck");
    }
}    

This bean queries the data store using the claim check as the key and then adds the data back into the message.
The message body is then removed from the data store and finally the claim check is removed. Now the message
is back to what we started with!

For full details, check the example source here:

camel-core/src/test/java/org/apache/camel/processor/ClaimCheckTest.java

2.4. Competing Consumers
Camel supports the Competing Consumers from the EIP patterns using a few different components.

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ClaimCheckTest.java
http://www.enterpriseintegrationpatterns.com/CompetingConsumers.html


Composed Message Processor

14 Talend Mediation Developer Guide

You can use the following components to implement competing consumers:-

• Section 3.38, “SEDA” for SEDA based concurrent processing using a thread pool

• Section 3.24, “JMS” for distributed SEDA based concurrent processing with queues which support reliable load
balancing, failover and clustering.

To enable Competing Consumers with JMS you just need to set the concurrentConsumers property on the
Section 3.24, “JMS” endpoint.

For example

from("jms:MyQueue?concurrentConsumers=5").bean(SomeBean.class);

Or in Spring DSL:

<route>
  <from uri="jms:MyQueue?concurrentConsumers=5"/>
  <to uri="bean:someBean"/>
</route>
        

Or just run multiple JVMs of any Section 3.1, “ActiveMQ” or Section 3.24, “JMS” route.

2.5. Composed Message Processor
The Composed Message Processor from the EIP patterns allows you to process a composite message by splitting
it up, routing the sub-messages to appropriate destinations and the re-aggregating the responses back into a single
message.

http://www.enterpriseintegrationpatterns.com/DistributionAggregate.html


Content Based Router

Talend Mediation Developer Guide 15

Camel provides two solutions for implementing this EIP -- using both the Splitter and Aggregator EIPs or just
the Splitter alone. With the Splitter-only option, all split messages are aggregated back into the same aggregation
group (like a fork/join pattern), whereas using an Aggregator provides more flexibility by allowing for grouping
into multiple groups.

See the Camel Website for the latest examples of this EIP in use.

2.6. Content Based Router
The Content Based Router from the EIP patterns allows you to route messages to the correct destination based
on the contents of the message exchanges.

The following example shows how to route a request from an input seda:a endpoint to either seda:b, seda:c or
seda:d depending on the evaluation of various Predicate expressions

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
    public void configure() {
        errorHandler(deadLetterChannel("mock:error"));

        from("seda:a")
            .choice()
                .when(header("foo").isEqualTo("bar"))
                    .to("seda:b")
                .when(header("foo").isEqualTo("cheese"))
                    .to("seda:c")
                .otherwise()
                    .to("seda:d");
    }
};

http://camel.apache.org/composed-message-processor.html
http://www.enterpriseintegrationpatterns.com/ContentBasedRouter.html
http://camel.apache.org/predicate.html
http://camel.apache.org/fluent-builders.html


Content Enricher

16 Talend Mediation Developer Guide

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" 
xmlns="http://camel.apache.org/schema/spring">
    <route>
        <from uri="seda:a"/>
        <choice>
            <when>
                <xpath>$foo = 'bar'</xpath>
                <to uri="seda:b"/>
            </when>
            <when>
                <xpath>$foo = 'cheese'</xpath>
                <to uri="seda:c"/>
            </when>
            <otherwise>
                <to uri="seda:d"/>
            </otherwise>
        </choice>
    </route>
</camelContext>

For further examples of this pattern in use you could look at the junit test case

2.7. Content Enricher
Camel supports the Content Enricher from the EIP patterns using a Section 2.29, “Message Translator”, an arbitrary
Processor in the routing logic or using the enrich [17] DSL element to enrich the message.

2.7.1. Content enrichment using a Message Translator
or a Processor

Using the  Fluent Builders

http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ChoiceTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/DataEnricher.html
http://camel.apache.org/processor.html
http://camel.apache.org/fluent-builders.html


Content enrichment using the enrich DSL element

Talend Mediation Developer Guide 17

You can use Templating to consume a message from one destination, transform it with something like Section 3.50,
“Velocity” or XQuery and then send it on to another destination. For example using InOnly (one way messaging)

from("activemq:My.Queue").
  to("velocity:com/acme/MyResponse.vm").
  to("activemq:Another.Queue");

If you want to use InOut (request-reply) semantics to process requests on the My.Queue queue on Section 3.1,
“ActiveMQ” with a template generated response, then sending responses back to the JMSReplyTo Destination
you could use this:

from("activemq:My.Queue").
  to("velocity:com/acme/MyResponse.vm");

We can also use Bean Integration to use any Java method on any bean to act as the transformer

from("activemq:My.Queue").
  beanRef("myBeanName", "myMethodName").
  to("activemq:Another.Queue");

For further examples of this pattern in use you could look at one of the JUnit tests

• TransformTest

• TransformViaDSLTest

Using Spring XML

<route>
  <from uri="activemq:Input"/>
  <bean ref="myBeanName" method="doTransform"/>
  <to uri="activemq:Output"/>
</route>

2.7.2. Content enrichment using the enrich DSL
element

Camel comes with two flavors of content enricher in the DSL

• enrich

• pollEnrich

enrich is using a Producer to obtain the additional data. It is usually used for Section 2.39, “Request Reply”
messaging, for instance to invoke an external web service. pollEnrich on the other hand is using a Section 2.36,
“Polling Consumer” to obtain the additional data. It is usually used for Section 2.16, “Event Message” messaging,
for instance to read a file or download a FTP file. Enrich options:

Name Default Value Description

uri The endpoint uri for the external service to enrich from.
You must use either uri or ref.

ref Refers to the endpoint for the external service to enrich
from. You must use either uri or ref.

http://camel.apache.org/templating.html
http://camel.apache.org/xquery.html
http://camel.apache.org/bean-integration.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup


Content enrichment using the enrich DSL element

18 Talend Mediation Developer Guide

Name Default Value Description

strategyRef Refers to an AggregationStrategy to be used to merge
the reply from the external service, into a single
outgoing message. By default Camel will use the reply
from the external service as outgoing message.

Using the  Fluent Builders

AggregationStrategy aggregationStrategy = ...

from("direct:start")
.enrich("direct:resource", aggregationStrategy)
.to("direct:result");

from("direct:resource")
...

The content enricher ( enrich ) retrieves additional data from a resource endpoint in order to enrich an incoming
message (contained in the original exchange ). An aggregation strategy is used to combine the original exchange
and the resource exchange. The first parameter of the AggregationStrategy.aggregate(Exchange,
Exchange) method corresponds to the the original exchange, the second parameter the resource exchange. The
results from the resource endpoint are stored in the resource exchange's out-message. Here's an example template
for implementing an aggregation strategy.

public class ExampleAggregationStrategy implements AggregationStrategy {

    public Exchange aggregate(Exchange original, Exchange resource) {
        Object originalBody = original.getIn().getBody();
        Object resourceResponse = resource.getOut().getBody();
        Object mergeResult = ... // combine original body and resourceResponse
        if (original.getPattern().isOutCapable()) {
            original.getOut().setBody(mergeResult);
        } else {
            original.getIn().setBody(mergeResult);
        }
        return original;
    }
    
}

Using this template the original exchange can be of any pattern. The resource exchange created by the enricher
is always an in-out exchange.

Using Spring XML

The same example in the Spring DSL

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
  <route>
    <from uri="direct:start"/>
    <enrich uri="direct:resource" strategyRef="aggregationStrategy"/>
    <to uri="direct:result"/>
  </route>
  <route>
    <from uri="direct:resource"/>
    ...
  </route>
</camelContext>

http://camel.apache.org/fluent-builders.html


Aggregation strategy is optional

Talend Mediation Developer Guide 19

<bean id="aggregationStrategy" class="..." />

2.7.3. Aggregation strategy is optional

The aggregation strategy is optional. If you do not provide it Camel will by default just use the body obtained
from the resource.

from("direct:start")
  .enrich("direct:resource")
  .to("direct:result");

In the route above the message send to the direct:result endpoint will contain the output from the
direct:resource as we do not use any custom aggregation.

And in Spring DSL just omit the strategyRef attribute:

<route>
    <from uri="direct:start"/>
    <enrich uri="direct:resource"/>
    <to uri="direct:result"/>
  </route>

2.7.4. Content enrichment using pollEnrich

The pollEnrich works just as the enrich option however as it uses a Section 2.36, “Polling Consumer” we
have 3 methods when polling

• receive

• receiveNoWait

• receive(timeout)

By default Camel will use the receiveNoWait. If there is no data then the newExchange in the aggregation
strategy is null.

The same configuration options above for enrich also hold for pollEnrich, but there is also a timeout value (in
milliseconds) that determines which method will be used:

• timeout is -1 or other negative number then receive is selected

• timeout is 0 then receiveNoWait is selected

• otherwise receive(timeout) is selected

Data from current Exchange not used

pollEnrich does not access any data from the current Exchange which means when polling it cannot
use any of the existing headers you may have set on the Exchange. For example you cannot set a filename
in the Exchange.FILE_NAME header and use pollEnrich to consume only that file. For that you
must set the filename in the endpoint URI.

In this example we enrich the message by loading the content from the file named inbox/data.txt.

from("direct:start")
.pollEnrich("file:inbox?fileName=data.txt")

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html


Content Filter

20 Talend Mediation Developer Guide

.to("direct:result");

And in XML DSL you do:

<route>
<from uri="direct:start"/>
<pollEnrich uri="file:inbox?fileName=data.txt"/>
<to uri="direct:result"/>
</route>

If there is no file then the message is empty. We can use a timeout to either wait (potentially forever) until a file
exists, or use a timeout to wait a certain period. For example to wait up to 5 seconds you can do:

<route>
<from uri="direct:start"/>
<pollEnrich uri="file:inbox?fileName=data.txt" timeout="5000"/>
<to uri="direct:result"/>
</route>

2.8. Content Filter
Camel supports the Content Filter from the EIP patterns using one of the following mechanisms in the routing
logic to transform content from the inbound message.

• Section 2.29, “Message Translator”

• invoking a Java bean

• Processor object

A common way to filter messages is to use an Expression in the DSL like XQuery, SQL or one of the supported
Scripting Languages.

Using the Fluent Builders

Here is a simple example using the DSL directly

from("direct:start").setBody(body().append(" World!")).to("mock:result");

In this example we add our own Processor

from("direct:start").process(new Processor() {
    public void process(Exchange exchange) {
        Message in = exchange.getIn();
        in.setBody(in.getBody(String.class) + " World!");

http://www.enterpriseintegrationpatterns.com/ContentFilter.html
http://camel.apache.org/processor.html
http://camel.apache.org/expression.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/dsl.html
http://camel.apache.org/processor.html


Correlation Identifier

Talend Mediation Developer Guide 21

    }
}).to("mock:result");

For further examples of this pattern in use you could look at one of the JUnit tests

• TransformTest

• TransformViaDSLTest

Using Spring XML

<route>
  <from uri="activemq:Input"/>
  <bean ref="myBeanName" method="doTransform"/>
  <to uri="activemq:Output"/>
</route>

You can also use XPath to filter out part of the message you are interested in:

<route>
  <from uri="activemq:Input"/>
  <setBody>
     <xpath resultType="org.w3c.dom.Document">//foo:bar</xpath>
  </setBody>
  <to uri="activemq:Output"/>
</route>

2.9. Correlation Identifier
Camel supports the Correlation Identifier from the EIP patterns by getting or setting a header on a Section 2.22,
“Message”.

When working with the Section 3.1, “ActiveMQ” or Section 3.24, “JMS” components the correlation identifier
header is called JMSCorrelationID. You can add your own correlation identifier to any message exchange to
help correlate messages together to a single conversation (or business process).

The use of a Correlation Identifier is key to working with the Camel Business Activity Monitoring Framework and
can also be highly useful when testing with simulation or canned data such as with the Mock testing framework

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/CorrelationIdentifier.html
http://camel.apache.org/bam.html


Dead Letter Channel

22 Talend Mediation Developer Guide

2.10. Dead Letter Channel
Camel supports the Dead Letter Channel from the EIP patterns using the DeadLetterChannel processor which is
an Error Handler.

Difference between Dead Letter Channel and Default Error Handler

The major difference is that Section 2.10, “Dead Letter Channel” has a dead letter queue that whenever
an Exchange could not be processed is moved to. It will always moved failed exchanges to this queue.

Unlike the Default Error Handler that does not have a dead letter queue. So whenever an Exchange could
not be processed the error is propagated back to the client.

Notice: You can adjust this behavior of whether the client should be notified or not with the handled
option.

2.10.1. Redelivery

It is common for a temporary outage or database deadlock to cause a message to fail to process; but the chances
are if it is tried a few more times with some time delay then it will complete fine. So we typically wish to use
some kind of redelivery policy to decide how many times to try redeliver a message and how long to wait before
redelivery attempts.

The RedeliveryPolicy defines how the message is to be redelivered. You can customize things like

• how many times a message is attempted to be redelivered before it is considered a failure and sent to the dead
letter channel

• the initial redelivery timeout

• whether or not exponential backoff is used (i.e. the time between retries increases using a backoff multiplier)

• whether to use collision avoidance to add some randomness to the timings

http://www.enterpriseintegrationpatterns.com/DeadLetterChannel.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/exchange.html
http://camel.apache.org/defaulterrorhandler.html
http://camel.apache.org/exchange.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html


About moving Exchange to dead letter queue and using handled

Talend Mediation Developer Guide 23

• delay pattern, see below for details.

Once all attempts at redelivering the message fails then the message is forwarded to the dead letter queue.

2.10.2. About moving Exchange to dead letter queue
and using handled

When all attempts of redelivery have failed the Exchange is moved to the dead letter queue (the dead letter
endpoint). The exchange is then complete and from the client point of view it was processed. With this process
the Dead Letter Channel has handled the Exchange.

For instance configuring the dead letter channel, using the fluent builders:

errorHandler(deadLetterChannel("jms:queue:dead")
    .maximumRedeliveries(3).redeliverDelay(5000));

Using Spring XML Extensions:

<route errorHandlerRef="myDeadLetterErrorHandler">
...
</route>

<bean id="myDeadLetterErrorHandler" 
    class="org.apache.camel.builder.DeadLetterChannelBuilder">
<property name="deadLetterUri" value="jms:queue:dead"/>
<property name="redeliveryPolicy" ref="myRedeliveryPolicyConfig"/>
</bean>

<bean id="myRedeliveryPolicyConfig" 
    class="org.apache.camel.processor.RedeliveryPolicy">
<property name="maximumRedeliveries" value="3"/>
<property name="redeliveryDelay" value="5000"/>
</bean>
      

The Section 2.10, “Dead Letter Channel” above will clear the caused exception setException(null), by
moving the caused exception to a property on the Exchange, with the key Exchange.EXCEPTION_CAUGHT.
Then the exchange is moved to the jms:queue:dead destination and the client will not notice the failure.

2.10.3. About moving Exchange to dead letter queue
and using the original message

The option useOriginalMessage is used for routing the original input message instead of the current message that
potentially is modified during routing.

For instance if you have this route:

from("jms:queue:order:input")
       .to("bean:validateOrder")
       .to("bean:transformOrder")
       .to("bean:handleOrder");

The route listen for JMS messages and validates, transforms and handle it. During this the Exchange payload
is transformed/modified. So in case something goes wrong and we want to move the message to another JMS

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html


OnRedelivery

24 Talend Mediation Developer Guide

destination, then we can configure our Section 2.10, “Dead Letter Channel” with the useOriginalBody option.
But when we move the Exchange to this destination we do not know in which state the message is in. Did the
error happen in before the transformOrder or after? So to be sure we want to move the original input message
we received from jms:queue:order:input. So we can do this by enabling the useOriginalMessage option
as shown below:

// will use original body
    errorHandler(deadLetterChannel("jms:queue:dead")
       .useOriginalMessage().mamimumRedeliveries(5).redeliverDelay(5000);

Then the messages routed to the jms:queue:dead is the original input. If we want to manually retry we can
move the JMS message from the failed to the input queue, with no problem as the message is the same as the
original we received.

2.10.4. OnRedelivery

When Section 2.10, “Dead Letter Channel” is doing redelivery it is possible to configure a Processor that is
executed just before every redelivery attempt. This can be used for the situations where you need to alter the
message before it is redelivered. See below for sample.

We also have support for per onException to set a onRedeliver. That means you can do special on redelivery
for different exceptions, as opposed to onRedelivery set on Section 2.10, “Dead Letter Channel” can be viewed
as a global scope.

2.10.5. Redelivery default values

Redelivery is disabled by default. The default redeliver policy uses the following values:

• maximumRedeliveries=0

• redeliverDelay=1000L (1 second)

• use initialRedeliveryDelay for previous versions

• maximumRedeliveryDelay = 60 * 1000L (60 seconds)

• And the exponential backoff and collision avoidance is turned off.

• The retriesExhaustedLogLevel are set to LoggingLevel.ERROR

• The retryAttemptedLogLevel are set to LoggingLevel.DEBUG

• Stack traces is logged for exhausted messages.

• Handled exceptions is not logged

The maximum redeliver delay ensures that a delay is never longer than the value, default 1 minute. This can happen
if you turn on the exponential backoff.

The maximum redeliveries is the number of re delivery attempts. By default Camel will try to process the exchange
1 + 5 times. 1 time for the normal attempt and then 5 attempts as redeliveries. Setting the maximumRedeliveries
to a negative value such as -1 will then always redelivery (unlimited). Setting the maximumRedeliveries to 0 will
disable any re delivery attempt.

Camel will log delivery failures at the DEBUG logging level by default. You
can change this by specifying retriesExhaustedLogLevel and/or retryAttemptedLogLevel. See
ExceptionBuilderWithRetryLoggingLevelSetTest for an example.

http://camel.apache.org/exchange.html
http://camel.apache.org/processor.html
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/builder/ExceptionBuilderWithRetryLoggingLevelSetTest.java


Redeliver Delay Pattern

Talend Mediation Developer Guide 25

You can turn logging of stack traces on/off. If turned off Camel will still log the redelivery attempt; but it's much
less verbose.

2.10.6. Redeliver Delay Pattern

Delay pattern is used as a single option to set a range pattern for delays. If used then the following options does not
apply: (delay, backOffMultiplier, useExponentialBackOff, useCollisionAvoidance, maximumRedeliveryDelay).

The idea is to set groups of ranges using the following syntax: limit:delay;limit 2:delay 2;limit
3:delay 3;...;limit N:delay N

Each group has two values separated with colon

• limit = upper limit

• delay = delay in milliseconds And the groups is again separated with semi colon. The rule of thumb is that the
next groups should have a higher limit than the previous group.

Let's clarify this with an example: delayPattern=5:1000;10:5000;20:20000

That gives us 3 groups:

• 5:1000

• 10:5000

• 20:20000

Resulting in these delays for redelivery attempt:

• Redelivery attempt number 1..4 = 0 ms (as the first group start with 5)

• Redelivery attempt number 5..9 = 1000 ms (the first group)

• Redelivery attempt number 10..19 = 5000 ms (the second group)

• Redelivery attempt number 20.. = 20000 ms (the last group)

Note: The first redelivery attempt is 1, so the first group should start with 1 or higher.

You can start a group with limit 1 to eg have a starting delay: delayPattern=1:1000;5:5000

• Redelivery attempt number 1..4 = 1000 ms (the first group)

• Redelivery attempt number 5.. = 5000 ms (the last group)

There is no requirement that the next delay should be higher than the previous. You can use any delay value you
like. For example with delayPattern=1:5000;3:1000 we start with 5 sec delay and then later reduce that
to 1 second.

2.10.7. Redelivery header

When a message is redelivered the DeadLetterChannel will append a customizable header to the message to
indicate how many times it has been redelivered. The header CamelRedeliveryMaxCounter, which is also
defined on the Exchange.REDELIVERY_MAX_COUNTER, contains the maximum redelivery setting. This
header is absent if you use retryWhile or have unlimited maximum redelivery configured.

http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html


Determining location of endpoint failures

26 Talend Mediation Developer Guide

And a boolean flag whether it is being redelivered or not (first attempt). The header CamelRedelivered contains
a boolean if the message is redelivered or not, which is also defined on the Exchange.REDELIVERED.

There's an additional header, CamelRedeliveryDelay, to show any dynamically calculated delay from
the exchange. This is also defined on the Exchange.REDELIVERY_DELAY. If this header is absent, normal
redelivery rules will apply.

2.10.8. Determining location of endpoint failures

When Camel routes messages it will decorate the Exchange with a property that contains the last endpoint Camel
send the Exchange to:

String lastEndpointUri = exchange.getProperty(Exchange.TO_ENDPOINT, 
    String.class);

The Exchange.TO_ENDPOINT have the constant value CamelToEndpoint.

This information is updated when Camel sends a message to any endpoint. So if it exists it's the last endpoint
which Camel send the Exchange to.

When for example processing the Exchange at a given Endpoint and the message is to be moved into the dead
letter queue, then Camel also decorates the Exchange with another property that contains that last endpoint:

String failedEndpointUri = exchange.getProperty(Exchange.FAILURE_ENDPOINT, 
    String.class);

The Exchange.FAILURE_ENDPOINT have the constant value CamelFailureEndpoint.

This allows for example you to fetch this information in your dead letter queue and use that for error reporting.
This is useable if the Camel route is a bit dynamic such as the dynamic Section 2.38, “Recipient List” so you
know which endpoints failed.

Notice: These information is kept on the Exchange even if the message was successfully processed by a given
endpoint, and then later fails for example in a local Section 3.3, “Bean” processing instead. So beware that this
is a hint that helps pinpoint errors.

from("activemq:queue:foo")
    .to("http://someserver/somepath")
    .beanRef("foo");

Now suppose the route above and a failure happens in the foo bean. Then the Exchange.TO_ENDPOINT and
Exchange.FAILURE_ENDPOINT will still contain the value of  http://someserver/somepath .

2.10.9. Samples

The following example shows how to configure the Dead Letter Channel configuration using the DSL

RouteBuilder builder = new RouteBuilder() {
    public void configure() {
        // using dead letter channel with a seda queue for errors
        errorHandler(deadLetterChannel("seda:errors"));

        // here is our route
        from("seda:a").to("seda:b");
    }

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/dsl.html


Delayer

Talend Mediation Developer Guide 27

};

You can also configure the RedeliveryPolicy as this example shows

RouteBuilder builder = new RouteBuilder() {
    public void configure() {
        // configures dead letter channel to use seda queue for errors and 
        // uses at most 2 redeliveries
        // and exponential backoff
        errorHandler(deadLetterChannel("seda:errors").maximumRedeliveries(2).
            useExponentialBackOff());

        // here is our route
        from("seda:a").to("seda:b");
    }
};

2.11. Delayer
The Delayer Pattern allows you to delay the delivery of messages to some destination. Note: the specified
expression is a value in milliseconds to wait from the current time, so if you want to wait 3 sec from now, the
expression should be 3000. You can also use a long value for a fixed value to indicate the delay in milliseconds.
See the Spring DSL samples below for Delayer.

Name Default Value Description

asyncDelayed false If enabled then delayed messages happens
asynchronously using a scheduled thread pool.

executorServiceRef Refers to a custom Thread Pool to be used if asyncDelay
has been enabled.

callerRunsWhenRejected true Is used if asyncDelayed was enabled. This controls if the
caller thread should execute the task if the thread pool
rejected the task.

Using the Fluent Builders

from("seda:b").delay(1000).to("mock:result");

So the above example will delay all messages received on seda:b 1 second before sending them to mock:result.

You can of course use many different Expression languages such as XPath, XQuery, SQL or various Scripting
Languages. You can just delay things a fixed amount of time from the point at which the delayer receives the
message. For example to delay things 2 seconds:

delayer(2000)

The above assumes that the delivery order is maintained and that the messages are delivered in delay order. If
you want to reorder the messages based on delivery time, you can use the Section 2.40, “Resequencer” with this
pattern. For example:

from("activemq:someQueue").resequencer(header("MyDeliveryTime")).
    delay("MyRedeliveryTime").to("activemq:aDelayedQueue");

The sample below demonstrates the delay in Spring DSL:

<camelContext xmlns="http://camel.apache.org/schema/spring">

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/expression.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/scripting-languages.html


Asynchronous delaying

28 Talend Mediation Developer Guide

    <route>
        <from uri="seda:a"/>
        <delay>
            <header>MyDelay</header>
        </delay>
        <to uri="mock:result"/>
    </route>
    <route>
        <from uri="seda:b"/>
        <delay>
            <constant>1000</constant>
        </delay>
        <to uri="mock:result"/>
    </route>
</camelContext>

2.11.1. Asynchronous delaying

You can let the Section 2.11, “Delayer” use non blocking asynchronous delaying, which means Camel will use
a scheduler to schedule a task to be executed in the future. The task will then continue routing. This allows the
caller thread to not block and be able to service other messages etc.

2.11.1.1. From Java DSL

You use the asyncDelayed() to enable the async behavior.

from("activemq:queue:foo").delay(1000).asyncDelayed().
    to("activemq:aDelayedQueue");

2.11.1.2. From Spring XML

You use the asyncDelayed="true" attribute to enable the async behavior.

<route>
   <from uri="activemq:queue:foo"/>
   <delay asyncDelayed="true">
       <constant>1000</constant>
   </delay>
   <to uri="activemq:aDealyedQueue"/>
</route>

2.11.2. Creating a custom delay

You can use an expression to determine when to send a message using something like this

from("activemq:foo").
  delay().method("someBean", "computeDelay").



Detour

Talend Mediation Developer Guide 29

  to("activemq:bar");

then the bean would look like this:

public class SomeBean {
  public long computeDelay() { 
     long delay = 0;
     // use Java code to compute a delay value in milliseconds
     return delay;
 }
}

2.12. Detour
The Detour from the EIP patterns allows you to send messages through additional steps if a control condition is
met. It can be useful for turning on extra validation, testing, debugging code when needed.

In the below example we essentially have a route like from("direct:start").to("mock:result")
with a conditional detour to the mock:detour endpoint in the middle of the route:

from("direct:start").choice()
    .when().method("controlBean", "isDetour").to("mock:detour").end()
    .to("mock:result");

Using the Spring XML Extensions

<route>
  <from uri="direct:start"/>
    <choice>
      <when>
        <method bean="controlBean" method="isDetour"/>
 <to uri="mock:detour"/>
      </when>
    </choice>
    <to uri="mock:result"/>
  </split>
</route>       
       

whether the detour is turned on or off is decided by the ControlBean. So, when the detour is on the
message is routed to mock:detour and then mock:result. When the detour is off, the message is routed
to mock:result.

For full details, check the example source here:

http://www.enterpriseintegrationpatterns.com/Detour.html


Durable Subscriber

30 Talend Mediation Developer Guide

camel-core/src/test/java/org/apache/camel/processor/DetourTest.java

2.13. Durable Subscriber
Camel supports the Durable Subscriber from the EIP patterns using the Section 3.24, “JMS” component which
supports publish & subscribe using Topics with support for non-durable and durable subscribers.

Another alternative is to combine the Section 2.25, “Message Dispatcher” or Section 2.6, “Content Based Router”
with Section 3.14, “File” or Section 3.26, “JPA” components for durable subscribers then Seda for non-durable.

Here are some examples of creating durable subscribers to a JMS topic. Using the Fluent Builders:

from("direct:start").to("activemq:topic:foo");
from("activemq:topic:foo?clientId=1&durableSubscriptionName=bar1").
   to("mock:result1");
from("activemq:topic:foo?clientId=2&durableSubscriptionName=bar2").
   to("mock:result2");

Using the Spring XML Extensions:

<route>
    <from uri="direct:start"/>
    <to uri="activemq:topic:foo"/>
</route>

<route>
    <from uri="activemq:topic:foo?clientId=1& ... 
       durableSubscriptionName=bar1"/>
    <to uri="mock:result1"/>
</route>

<route>
    <from uri="activemq:topic:foo?clientId=2& ...

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/DetourTest.java
http://www.enterpriseintegrationpatterns.com/DurableSubscription.html
http://camel.apache.org/seda.html


Dynamic Router

Talend Mediation Developer Guide 31

       durableSubscriptionName=bar2"/>
    <to uri="mock:result2"/>
</route>

2.14. Dynamic Router
The Dynamic Router from the EIP patterns allows you to route messages while avoiding the dependency of the
router on all possible destinations while maintaining its efficiency.

In Camel 2.5 we introduced a dynamicRouter in the DSL which is like a dynamic Section 2.42, “Routing
Slip” which evaluates the slip on-the-fly.

Beware

You must ensure the expression used for the dynamicRouter such as a bean, will return null to
indicate the end. Otherwise the dynamicRouter will keep repeating endlessly.

Option Default Description

uriDelimiter , Delimiter used if the Expression returned multiple
endpoints.

ignoreInvalidEndpoints false If an endpoint URI could not be resolved, whether it should
it be ignored. Otherwise Camel will throw an exception
stating that the endpoint URI is not valid.

The Dynamic Router will set a property (Exchange.SLIP_ENDPOINT) on the Exchange which contains the
current endpoint as it advanced though the slip. This allows you to know how far we have processed in the slip.
(It's a slip because the Section 2.14, “Dynamic Router” implementation is based on top of Section 2.42, “Routing
Slip” ).

2.14.1. Java DSL

In Java DSL you can use the routingSlip as shown below:

http://www.enterpriseintegrationpatterns.com/DynamicRouter.html
http://camel.apache.org/exchange.html


Spring XML

32 Talend Mediation Developer Guide

from("direct:start")
    // use a bean as the dynamic router
    .dynamicRouter(bean(DynamicRouterTest.class, "slip"));

Which will leverage a Section 3.3, “Bean” to compute the slip on-the-fly, which could be implemented as follows:

/**
 * Use this method to compute dynamic where we should route next.
 *
 * @param body the message body
 * @return endpoints to go, or null to indicate the end
 */
public String slip(String body) {
    bodies.add(body);
    invoked++;

    if (invoked == 1) {
        return "mock:a";
    } else if (invoked == 2) {
        return "mock:b,mock:c";
    } else if (invoked == 3) {
        return "direct:foo";
    } else if (invoked == 4) {
        return "mock:result";
    }

    // no more so return null
    return null;
}

Mind that this example is only for show and tell. The current implementation is not thread safe. You would have
to store the state on the Exchange, to ensure thread safety.

2.14.2. Spring XML

The same example in Spring XML would be:

<bean id="mySlip" class="org.apache.camel.processor.DynamicRouterTest"/>

<camelContext xmlns="http://camel.apache.org/schema/spring">
    <route>
        <from uri="direct:start"/>
        <dynamicRouter>
            <!-- use a method call on a bean as dynamic router -->
            <method ref="mySlip" method="slip"/>
        </dynamicRouter>
    </route>

    <route>
        <from uri="direct:foo"/>
        <transform><constant>Bye World</constant></transform>
        <to uri="mock:foo"/>
    </route>

</camelContext>



@DynamicRouter annotation

Talend Mediation Developer Guide 33

2.14.3. @DynamicRouter annotation

You can also use the @DynamicRouter annotation, for example the example below could be written as follows.
The route method would then be invoked repeatedly as the message is processed dynamically. The idea is to
return the next endpoint uri where to go. Return null to indicate the end. You can return multiple endpoints if
you like, just as the Section 2.42, “Routing Slip”, where each endpoint is separated by a delimiter.

public class MyDynamicRouter {

    @Consume(uri = "activemq:foo")
    @DynamicRouter
    public String route(@XPath("/customer/id") String customerId, 
    @Header("Location") String location, Document body) {
        // query a database to find the best match of the endpoint based on 
        // the input parameters
        // return the next endpoint uri, where to go. Return null to indicate
        // the end.
    }
}

2.15. Event Driven Consumer
Camel supports the Event Driven Consumer from the EIP patterns. The default consumer model is event based
(i.e. asynchronous) as this means that the Camel container can then manage pooling, threading and concurrency
for you in a declarative manner.

The Event Driven Consumer is implemented by consumers implementing the Processor interface which is invoked
by the Section 2.26, “Message Endpoint” when a Section 2.22, “Message” is available for processing.

For more details see

• Section 2.22, “Message”

• Section 2.26, “Message Endpoint”

2.16. Event Message
Camel supports the Event Message from the EIP patterns by supporting the Exchange Pattern on a Section 2.22,
“Message” which can be set to InOnly to indicate a oneway event message. Camel Components then implement
this pattern using the underlying transport or protocols.

http://www.enterpriseintegrationpatterns.com/EventDrivenConsumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Processor.html
http://www.enterpriseintegrationpatterns.com/EventMessage.html
http://camel.apache.org/exchange-pattern.html


Event Message

34 Talend Mediation Developer Guide

See also the related Section 2.39, “Request Reply” EIP.

The default behavior of many Components is InOnly such as for Section 3.24, “JMS” or Section 3.38, “SEDA”

If you are using a component which defaults to InOut but wish to use InOnly you can override the Exchange
Pattern for an endpoint using the pattern property.

foo:bar?exchangePattern=InOnly

From 2.0 onwards on Camel you can specify the Exchange Pattern using the dsl. Using the Fluent Builders:

from("mq:someQueue").
  inOnly().
  bean(Foo.class);

or you can invoke an endpoint with an explicit pattern

<route>
<from uri="mq:someQueue"/>
<inOnly uri="bean:foo"/>
</route>

<route>
<from uri="mq:someQueue"/>
<inOnly uri="mq:anotherQueue"/>
</route> 
        

Using the Spring XML Extensions:

from("mq:someQueue").
  inOnly().
  bean(Foo.class);

http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/exchange-pattern.html


Guaranteed Delivery

Talend Mediation Developer Guide 35

2.17. Guaranteed Delivery
Camel supports the Guaranteed Delivery from the EIP patterns using the following components

• Section 3.14, “File” for using file systems as a persistent store of messages

• Section 3.24, “JMS” when using persistent delivery (the default) for working with JMS Queues and Topics for
high performance, clustering and load balancing

• Section 3.26, “JPA” for using a database as a persistence layer, or use any of the many other database
components such as SQL, JDBC, iBatis/MyBatis, Hibernate

• HawtDB for a lightweight key-value persistent store

2.18. Idempotent Consumer
The Idempotent Consumer from the EIP patterns is used to filter out duplicate messages.

This pattern is implemented using the IdempotentConsumer class. This uses an Expression to calculate a unique
message ID string for a given message exchange; this ID can then be looked up in the IdempotentRepository to
see if it has been seen before; if it has the message is consumed; if it is not then the message is processed and
the ID is added to the repository.

The Idempotent Consumer essentially acts like a Section 2.27, “Message Filter” to filter out duplicates.

Camel will add the message id eagerly to the repository to detect duplication also for Exchanges currently in
progress. On completion Camel will remove the message id from the repository if the Exchange failed, otherwise
it stays there.

Camel provides the following Idempotent Consumer implementations:

• MemoryIdempotentRepository

• FileIdempotentRepository

• JdbcMessageIdRepository ( Available as of Camel 2.7 )

• JpaMessageIdRepository

http://www.enterpriseintegrationpatterns.com/GuaranteedMessaging.html
http://camel.apache.org/hawtdb.html
http://www.enterpriseintegrationpatterns.com/IdempotentReceiver.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/IdempotentConsumer.html
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/IdempotentRepository.html


Options

36 Talend Mediation Developer Guide

2.18.1. Options

The Idempotent Consumer has the following options:

Option Default Description

eager true Eager controls whether Camel adds the message to the
repository before or after the exchange has been processed.
If enabled before then Camel will be able to detect duplicate
messages even when messages are currently in progress. By
disabling Camel will only detect duplicates when a message
has successfully been processed.

messageIdRepositoryRef null A reference to a IdempotentRepository to lookup in the
registry. This option is mandatory when using XML DSL.

removeOnFailure true Sets whether to remove the id of an Exchange that failed.

2.18.2. Using the Fluent Builders

The following example will use the header myMessageId to filter out duplicates

RouteBuilder builder = new RouteBuilder() {
    public void configure() {
        errorHandler(deadLetterChannel("mock:error"));

        from("seda:a")
            .idempotentConsumer(header("myMessageId"),
               MemoryIdempotentRepository.memoryIdempotentRepository(200))
            .to("seda:b");
    }
};

The above example will use an in-memory based MessageIdRepository which can easily run out of memory and
doesn't work in a clustered environment. So you might prefer to use the JPA based implementation which uses a
database to store the message IDs which have been processed

from("direct:start").idempotentConsumer(
        header("messageId"),
        jpaMessageIdRepository(lookup(JpaTemplate.class), PROCESSOR_NAME)
).to("mock:result");

In the above example we are using the header messageId to filter out duplicates and using the collection
myProcessorName to indicate the Message ID Repository to use. This name is important as you could process
the same message by many different processors; so each may require its own logical Message ID Repository.

For further examples of this pattern in use you could look at the junit test case

2.18.3. Spring XML example

The following example will use the header myMessageId to filter out duplicates

<!-- repository for the idempotent consumer -->
<bean id="myRepo" 
class="org.apache.camel.processor.idempotent.MemoryIdempotentRepository"/>

https://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/builder/RouteBuilderTest.java
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
https://svn.apache.org/repos/asf/camel/trunk/components/camel-jpa/src/test/java/org/apache/camel/processor/jpa/JpaIdempotentConsumerTest.java
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/IdempotentConsumerTest.java?view=markup


Load Balancer

Talend Mediation Developer Guide 37

<camelContext xmlns="http://camel.apache.org/schema/spring">
    <route>
        <from uri="direct:start"/>
        <idempotentConsumer messageIdRepositoryRef="myRepo">
            <!-- use the messageId header as key for identifying duplicate 
                messages -->
            <header>messageId</header>
            <!-- if not a duplicate send it to this mock endpoint -->
            <to uri="mock:result"/>
        </idempotentConsumer>
    </route>
</camelContext>

2.19. Load Balancer
The Load Balancer Pattern allows you to delegate to one of a number of endpoints using a variety of different
load balancing policies.

2.19.1. Built-in load balancing policies

Camel provides the following policies out-of-the-box:

Policy Description

Round Robin The exchanges are selected from in a round robin fashion. This is a well
known and classic policy, which spreads the load evenly.

Random A random endpoint is selected for each exchange.

Sticky Sticky load balancing using an Expression to calculate a correlation key
to perform the sticky load balancing; rather like jsessionid in the web or
JMSXGroupID in JMS.

Topic Topic which sends to all destinations (rather like JMS Topics).

Failover In case of failures the exchange is tried on the next endpoint.

Weighted Round Robin The weighted load balancing policy allows you to specify a processing
load distribution ratio for each server with respect to others.In addition to
the weight, endpoint selection is then further refined using round-robin
distribution based on weight.

Weighted Random The weighted load balancing policy allows you to specify a processing
load distribution ratio for each server with respect to others.In addition
to the weight, endpoint selection is then further refined using random
distribution based on weight.

Custom The weighted load balancing policy allows you to specify a processing
load distribution ratio for each server with respect to others.In addition
to the weight, endpoint selection is then further refined using random
distribution based on weight.

2.19.2. Round Robin

The round robin load balancer is not meant to work with failover, for that you should use the dedicated failover
load balancer. The round robin load balancer will only change to next endpoint per message.

http://camel.apache.org/load-balancer.html#LoadBalancer-RoundRobin
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/RandomLoadBalancer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/StickyLoadBalancer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/TopicLoadBalancer.html
camel.apache.org/load-balancer.html#LoadBalancer-Failover
http://camel.apache.org/load-balancer.html#LoadBalancer-WeightedRoundRobinandRandomLoadBalancing
http://camel.apache.org/load-balancer.html#LoadBalancer-WeightedRoundRobinandRandomLoadBalancing
http://camel.apache.org/load-balancer.html#LoadBalancer-CustomLoadBalancer


Failover

38 Talend Mediation Developer Guide

The round robin load balancer is stateful as it keeps state which endpoint to use next time.

Using the Fluent Builders

from("direct:start").loadBalance().
roundRobin().to("mock:x", "mock:y", "mock:z");

Using the Spring configuration

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
  <route>
    <from uri="direct:start"/>
    <loadBalance>        
        <roundRobin/>
        <to uri="mock:x"/>        
        <to uri="mock:y"/>       
        <to uri="mock:z"/>                 
    </loadBalance>
  </route>
</camelContext>

So the above example will load balance requests from direct:start to one of the available mock endpoint
instances, in this case using a round robbin policy. For further examples of this pattern in use you could look at
the junit test case

2.19.3. Failover
The failover load balancer is capable of trying the next processor in case an Exchange failed with an
exception during processing. You can configure the failover with a list of specific exception to only
failover. If you do not specify any exceptions it will failover over any exceptions. It uses the same strategy for
matching exceptions as the Exception Clause does for the onException.

Enable stream caching if using streams

If you use streaming then you should enable Stream Caching when using the failover load balancer. This
is needed so the stream can be re-read when failing over.

It has the following options:

Option Type Default Description

inheritErrorHandler boolean true Whether or not the Error Handler configured on the
route should be used or not. You can disable it if you
want the failover to trigger immediately and failover
to the next endpoint. On the other hand if you have
this option enabled, then Camel will first let the Error
Handler try to process the message. The Error Handler
may have been configured to redelivery and use delays
between attempts. If you have enabled a number of
redeliveries then Camel will try to redeliver to the same
endpoint, and only failover to the next endpoint, when
the Error Handler is exhausted.

maximumFailover-
Attempts

int -1 A value to indicate after X failver attempts we should
exhaust (give up). Use -1 to indicate newer give up and
always try to failover. Use 0 to newer failover. And use
e.g. 3 to failover at most 3 times before giving up. This
option can be used whether or not round robin is enabled
or not.

http://camel.apache.org/fluent-builders.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/LoadBalanceTest.java?view=markup
http://camel.apache.org/exchange.html
http://camel.apache.org/exception-clause.html
http://camel.apache.org/stream-caching.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html


Failover

Talend Mediation Developer Guide 39

Option Type Default Description

roundRobin boolean false Whether or not the failover load balancer should
operate in round robin mode or not. If not, then it will
always start from the first endpoint when a new message
is to be processed. In other words it restart from the
top for every message. If round robin is enabled, then it
keeps state and will continue with the next endpoint in a
round robin fashion. When using round robin it will not
stick to last known good endpoint, it will always pick
the next endpoint to use.

The failover load balancer supports round robin mode, which allows you to failover in a round robin fashion.
See the roundRobin option.

Here is a sample to failover only if a IOException related exception was thrown:

from("direct:start")
    // here we will load balance if IOException was thrown
    // any other kind of exception will result in the Exchange as failed
    // to failover over any kind of exception we can just omit the exception
    // in the failOver DSL
    .loadBalance().failover(IOException.class)
        .to("direct:x", "direct:y", "direct:z");

You can specify multiple exceptions to failover as the option is varargs, for instance:

// enable redelivery so failover can react
errorHandler(defaultErrorHandler().maximumRedeliveries(5));

from("direct:foo").
    loadBalance().failover(IOException.class, MyOtherException.class)
        .to("direct:a", "direct:b");

2.19.3.1. Using failover in Spring DSL

Failover can also be used from Spring DSL and you configure it as:

<route errorHandlerRef="myErrorHandler">
      <from uri="direct:foo"/>
      <loadBalance>
          <failover>
              <exception>java.io.IOException</exception>
              <exception>com.mycompany.MyOtherException</exception>
          </failover>
          <to uri="direct:a"/>
          <to uri="direct:b"/>
      </loadBalance>
    </route>

2.19.3.2. Using failover in round robin mode

An example using Java DSL:

from("direct:start")



Weighted Round-Robin and Random Load Balancing

40 Talend Mediation Developer Guide

    // Use failover load balancer in stateful round robin mode
    // which mean it will failover immediately in case of an exception
    // as it does NOT inherit error handler. It will also keep retrying as
    // it is configured to newer exhaust.
    .loadBalance().failover(-1, false, true).
        to("direct:bad", "direct:bad2", "direct:good", "direct:good2");

And the same example using Spring XML:

<route>
    <from uri="direct:start"/>
    <loadBalance>
        <!-- failover using stateful round robin,
             which will keep retrying forever those 
             4 endpoints until success. You can set
             the maximumFailoverAttempt to break out after 
             X attempts -->
        <failover roundRobin="true"/>
        <to uri="direct:bad"/>
        <to uri="direct:bad2"/>
        <to uri="direct:good"/>
        <to uri="direct:good2"/>
    </loadBalance>
</route>

2.19.4. Weighted Round-Robin and Random Load
Balancing

In many enterprise environments where server nodes of unequal processing power & performance characteristics
are utilized to host services and processing endpoints, it is frequently necessary to distribute processing load based
on their individual server capabilities so that some endpoints are not unfairly burdened with requests. Obviously
simple round-robin or random load balancing do not alleviate problems of this nature. A Weighted Round-Robin
and/or Weighted Random load balancer can be used to address this problem.

The weighted load balancing policy allows you to specify a processing load distribution ratio for each server with
respect to others. You can specify this as a positive processing weight for each server. A larger number indicates
that the server can handle a larger load. The weight is utilized to determine the payload distribution ratio to different
processing endpoints with respect to others.

The parameters that can be used are

Option Type Default Description

roundRobin boolean false The default value for round-robin is false. In
the absence of this setting or parameter the
load balancing algorithm used is random.

distributionRatio String none The distributionRatio is a delimited String
consisting on integer weights separated
by delimiters for example "2,3,5". The
distributionRatio must match the number of
endpoints and/or processors specified in the
load balancer list.

distributionRatio-
Delimiter

String , The distributionRatioDelimiter is the
delimiter used to specify the
distributionRatio. If this attribute is not
specified a default delimiter "," is expected



Log

Talend Mediation Developer Guide 41

Option Type Default Description

as the delimiter used for specifying the
distributionRatio.

See the Camel website for examples on using this load balancer.

2.20. Log
How can I log processing a Section 2.22, “Message” ?

Camel provides many ways to log processing a message. Here is just some examples:

• You can use the Section 3.28, “Log” component which logs the Message content.

• You can use the Tracer which trace logs message flow.

• You can also use a Processor or Section 3.3, “Bean” and log from Java code.

• You can use the log DSL, covered below.

The log DSL allows you to use Simple language to construct a dynamic message which gets logged. For example
you can do

from("direct:start").log("Processing ${id}").
   to("bean:foo");

Which will construct a String message at runtime using the Simple language. The log message will by logged at
INFO level using the route id as the log name. By default a route is named route-1, route-2 etc. But you can
use the routeId("myCoolRoute") to set a route name of choice.

Difference between log in the DSL and Log component

The log DSL is much lighter and meant for logging human logs such as Starting to do ... and
so on. It can only log a message based on the Simple language. On the other hand Section 3.28, “Log”
component is a full fledged component which involves using endpoints and etc. The Section 3.28, “Log”
component is meant for logging the Message itself and you have many URI options to control what you
would like to be logged.

The log DSL have overloaded methods to set the logging level and/or name as well.

from("direct:start").log(LoggingLevel.DEBUG, "Processing ${id}").to("bean:foo");

For example you can use this to log the file name being processed if you consume files.

from("file://target/files").log(LoggingLevel.DEBUG, 
   "Processing file ${file:name}").to("bean:foo");

2.20.1. Using log DSL from Spring

In Spring DSL it is also easy to use log DSL as shown below:

<route id="foo">
            <from uri="direct:foo"/>
            <log message="Got ${body}"/>
            <to uri="mock:foo"/>
        </route>

http://camel.apache.org/load-balancer.html#LoadBalancer-WeightedRoundRobinandRandomLoadBalancing
http://camel.apache.org/tracer.html
http://camel.apache.org/processor.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html


Using slf4j Marker

42 Talend Mediation Developer Guide

The log tag has attributes to set the message, loggingLevel and logName. For example:

<route id="baz">
      <from uri="direct:baz"/>
      <log message="Me Got ${body}" loggingLevel="FATAL" logName="cool"/>
      <to uri="mock:baz"/>
</route>

2.20.2. Using slf4j Marker

You can specify a marker name in the DSL:

<route id="baz">
    <from uri="direct:baz"/>
    <log message="Received ${body}" loggingLevel="FATAL" logName="cool" 
        marker="myMarker"/>
    <to uri="mock:baz"/>
</route>          
          

2.21. Loop
The Loop allows for processing a message a number of times, possibly in a different way for each iteration. Useful
mostly during testing. Options:

Name Default Value Description

copy false Whether or not copy mode is used. If false then the
same Exchange will be used for each iteration. So the
result from the previous iteration will be visible for the
next iteration. Instead you can enable copy mode, and
then each iteration restarts with a fresh copy of the input
Exchange.

For each iteration two properties are set on the Exchange. These properties can be used by processors down the
pipeline to process the Section 2.22, “Message” in different ways.

Property Description

CamelLoopSize Total number of loops

CamelLoopIndex Index of the current iteration (0 based)

that could be used by processors down the pipeline to process the Section 2.22, “Message” in different ways.

The following example shows how to take a request from the direct:x endpoint, then send the message repetitively
to mock:result. The number of times the message is sent is either passed as an argument to loop(), or
determined at runtime by evaluating an expression. The expression must evaluate to an int, otherwise a
RuntimeCamelException is thrown.

Using the Fluent Builders

Pass loop count as an argument

from("direct:a").loop(8).to("mock:result");

Use expression to determine loop count

http://camel.apache.org/fluent-builders.html


Message

Talend Mediation Developer Guide 43

from("direct:b").loop(header("loop")).to("mock:result");

Use expression to determine loop count

from("direct:c").loop().xpath("/hello/@times").to("mock:result");

Using the Spring XML Extensions

Pass loop count as an argument

<route>
  <from uri="direct:a"/>
  <loop>
    <constant>8</constant>
    <to uri="mock:result"/>
  </loop>
</route>

Use expression to determine loop count

<route>
  <from uri="direct:b"/>
  <loop>
    <header>loop</header>
    <to uri="mock:result"/>
  </loop>
</route>

See the Camel Website for further examples of this pattern in use.

2.22. Message
Camel supports the Message from the EIP patterns using the Message interface.

To support various message exchange patterns like one way Section 2.16, “Event Message” and Section 2.39,
“Request Reply” messages Camel uses an Exchange interface which has a pattern property which can be set to
InOnly for an Section 2.16, “Event Message” which has a single inbound Message, or InOut for a Section 2.39,
“Request Reply” where there is an inbound and outbound message.

Here is a basic example of sending a Message to a route in InOnly and InOut modes

Requestor Code

//InOnly
getContext().createProducerTemplate().sendBody("direct:startInOnly", 
   "Hello World");

//InOut
String result = (String) getContext().createProducerTemplate().requestBody(

http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/loop.html
http://www.enterpriseintegrationpatterns.com/Message.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Message.html
http://camel.apache.org/exchange.html


Message Bus

44 Talend Mediation Developer Guide

   "direct:startInOut", "Hello World");
 

Route Using the Fluent Builders

from("direct:startInOnly").inOnly("bean:process");
 
from("direct:startInOut").inOut("bean:process");

Route Using the Spring XML Extensions

<route>
  <from uri="direct:startInOnly"/>
  <inOnly uri="bean:process"/>
</route>

<route>
  <from uri="direct:startInOut"/>
  <inOut uri="bean:process"/>
</route>
 

2.23. Message Bus
Camel supports the Message Bus from the EIP patterns. You could view Camel as a Message Bus itself as it allows
producers and consumers to be decoupled.

Folks often assume that a Message Bus is a JMS though so you may wish to refer to the Section 3.24, “JMS”
component for traditional MOM support.

Also worthy of note is the XMPP component for supporting messaging over XMPP (Jabber)

2.24. Message Channel
Camel supports the Message Channel from the EIP patterns. The Message Channel is an internal implementation
detail of the Endpoint interface and all interactions with the Message Channel are via the Endpoint interfaces. For
more details see Section 2.22, “Message” and Section 2.26, “Message Endpoint”.

http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://camel.apache.org/xmpp.html
http://www.enterpriseintegrationpatterns.com/MessageChannel.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html


Message Dispatcher

Talend Mediation Developer Guide 45

2.25. Message Dispatcher
Camel supports the Message Dispatcher from the EIP patterns using various approaches.

You can use a component like Section 3.24, “JMS” with selectors to implement a Section 2.45, “Selective
Consumer” as the Message Dispatcher implementation. Or you can use an Endpoint as the Message Dispatcher
itself and then use a Section 2.6, “Content Based Router” as the Message Dispatcher.

2.26. Message Endpoint
Camel supports the Message Endpoint from the EIP patterns using the Endpoint interface.

http://www.enterpriseintegrationpatterns.com/MessageDispatcher.html
http://camel.apache.org/endpoint.html
http://www.enterpriseintegrationpatterns.com/MessageEndpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html


Message Filter

46 Talend Mediation Developer Guide

When using the DSL to create Routes you typically refer to Message Endpoints by their URIs rather than directly
using the Endpoint interface. it is then a responsibility of the CamelContext to create and activate the necessary
Endpoint instances using the available Component implementations.

2.27. Message Filter
The Message Filter from the EIP patterns allows you to filter messages

The following example shows how to create a Message Filter route consuming messages from an endpoint called
queue:a which if the Predicate is true will be dispatched to queue:b

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
    public void configure() {
        errorHandler(deadLetterChannel("mock:error"));

        from("seda:a")
            .filter(header("foo").isEqualTo("bar"))
                .to("seda:b");
    }
};

You can of course use many different Predicate languages such as XPath, XQuery, SQL or various Scripting
Languages. Here is an XPath example

from("direct:start").
        filter().xpath("/person[@name='James']").
        to("mock:result");

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" 
    xmlns="http://camel.apache.org/schema/spring">
    <route>
        <from uri="seda:a"/>
        <filter>
            <xpath>$foo = 'bar'</xpath>

http://camel.apache.org/dsl.html
http://camel.apache.org/routes.html
http://camel.apache.org/uris.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Component.html
http://www.enterpriseintegrationpatterns.com/Filter.html
http://camel.apache.org/predicate.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/predicate.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java
http://camel.apache.org/spring-xml-extensions.html


Using stop

Talend Mediation Developer Guide 47

            <to uri="seda:b"/>
        </filter>
    </route>
</camelContext>

For further examples of this pattern in use you could look at the junit test case

2.27.1. Using stop

Stop is a bit different than a message filter as it will filter out all messages. Stop is convenient to use in a Section 2.6,
“Content Based Router” when you for example need to stop further processing in one of the predicates.

In the example below we do not want to route messages any further that has the word Bye in the message body.
Notice how we prevent this in the when predicate by using the .stop().

from("direct:start")
    .choice()
        .when(body().contains("Hello")).to("mock:hello")
        .when(body().contains("Bye")).to("mock:bye").stop()
        .otherwise().to("mock:other")
    .end()
    .to("mock:result");

2.27.2. Knowing if Exchange was filtered or not

The Message Filter EIP will add a property on the Exchange which states if it was filtered or not.

The property has the key Exchange.FILTER_MATCHED which has the String value of
CamelFilterMatched. Its value is a boolean indicating true or false. If the value is true then the
Exchange was routed in the filter block.

2.28. Message Router
The Message Router from the EIP patterns allows you to consume from an input destination, evaluate some
predicate then choose the right output destination.

The following example shows how to route a request from an input queue:a endpoint to either queue:b, queue:c
or queue:d depending on the evaluation of various Predicate expressions

Using the Fluent Builders

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/FilterTest.java?view=markup
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://www.enterpriseintegrationpatterns.com/MessageRouter.html
http://camel.apache.org/predicate.html
http://camel.apache.org/fluent-builders.html


Message Translator

48 Talend Mediation Developer Guide

RouteBuilder builder = new RouteBuilder() {
    public void configure() {
        errorHandler(deadLetterChannel("mock:error"));

        from("seda:a")
            .choice()
                .when(header("foo").isEqualTo("bar"))
                    .to("seda:b")
                .when(header("foo").isEqualTo("cheese"))
                    .to("seda:c")
                .otherwise()
                    .to("seda:d");
    }
};

Here is another example of using a bean to define the filter behavior

from("direct:start")
.filter().method(MyBean.class, "isGoldCustomer").to("mock:result").end()
.to("mock:end");

public static class MyBean {
   public boolean isGoldCustomer(@Header("level") String level) {
      return level.equals("gold");
   }
}

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" 
    xmlns="http://camel.apache.org/schema/spring">
    <route>
        <from uri="seda:a"/>
        <choice>
            <when>
                <xpath>$foo = 'bar'</xpath>
                <to uri="seda:b"/>
            </when>
            <when>
                <xpath>$foo = 'cheese'</xpath>
                <to uri="seda:c"/>
            </when>
            <otherwise>
                <to uri="seda:d"/>
            </otherwise>
        </choice>
    </route>
</camelContext>

Note if you use a choice without adding an otherwise, any unmatched exchanges will be dropped by default.

2.29. Message Translator
Camel supports the Message Translator from the EIP patterns by using an arbitrary Processor in the routing logic,
by using a bean to perform the transformation, or by using transform() in the DSL. You can also use a Data Format
to marshal and unmarshal messages in different encodings.

http://camel.apache.org/spring-xml-extensions.html
http://www.enterpriseintegrationpatterns.com/MessageTranslator.html
http://camel.apache.org/processor.html
http://camel.apache.org/data-format.html


Message Translator

Talend Mediation Developer Guide 49

Using the Fluent Builders

You can transform a message using Camel's Bean Integration to call any method on a bean in your Registry such
as your Spring XML configuration file as follows

from("activemq:SomeQueue").
  beanRef("myTransformerBean", "myMethodName").
  to("mqseries:AnotherQueue");

Where the "myTransformerBean" would be defined in a Spring XML file or defined in JNDI and so on. You can
omit the method name parameter from beanRef() and the Bean Integration will try to deduce the method to invoke
from the message exchange.

or you can add your own explicit Processor to do the transformation

from("direct:start").process(new Processor() {
    public void process(Exchange exchange) {
        Message in = exchange.getIn();
        in.setBody(in.getBody(String.class) + " World!");
    }
}).to("mock:result");

or you can use the DSL to explicitly configure the transformation

from("direct:start").transform(body().append(" World!")).to("mock:result");

Use Spring XML

You can also use Spring XML Extensions to do a transformation. Basically any Expression language can be
substituted inside the transform element as shown below

<camelContext xmlns="http://camel.apache.org/schema/spring">
  <route>
    <from uri="direct:start"/>
    <transform>
      <simple>${in.body} extra data!</simple>
    </transform>
    <to uri="mock:end"/>
  </route>
</camelContext>

Or you can use the Bean Integration to invoke a bean

<route>
  <from uri="activemq:Input"/>
  <bean ref="myBeanName" method="doTransform"/>
  <to uri="activemq:Output"/>
</route>

http://camel.apache.org/fluent-builders.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/registry.html
http://camel.apache.org/spring.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/processor.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/expression.html
http://camel.apache.org/bean-integration.html


Messaging Gateway

50 Talend Mediation Developer Guide

You can also use Templating to consume a message from one destination, transform it with something like
Section 3.50, “Velocity” or XQuery and then send it on to another destination. For example using InOnly (one
way messaging)

from("activemq:My.Queue").
  to("velocity:com/acme/MyResponse.vm").
  to("activemq:Another.Queue");

If you want to use InOut (request-reply) semantics to process requests on the My.Queue queue on Section 3.1,
“ActiveMQ” with a template generated response, then sending responses back to the JMSReplyTo Destination
you could use this.

from("activemq:My.Queue").
  to("velocity:com/acme/MyResponse.vm");

2.30. Messaging Gateway
Camel has several endpoint components that support the Messaging Gateway from the EIP patterns.

Components like Section 3.3, “Bean” and Section 3.8, “CXF” provide a way to bind a Java interface to the message
exchange.

However you may want to read the Using CamelProxy documentation as a true Section 2.30, “Messaging
Gateway” EIP solution. Another approach is to use @Produce which you can read about in POJO Producing
which also can be used as a Section 2.30, “Messaging Gateway” EIP solution.

2.31. Messaging Mapper
Camel supports the Messaging Mapper from the EIP patterns by using either Section 2.29, “Message Translator”
pattern or the Type Converter module.

http://camel.apache.org/templating.html
http://camel.apache.org/xquery.html
http://www.enterpriseintegrationpatterns.com/MessagingGateway.html
http://camel.apache.org/using-camelproxy.html
http://camel.apache.org/pojo-producing.html
http://www.enterpriseintegrationpatterns.com/MessagingMapper.html
http://camel.apache.org/type-converter.html


Multicast

Talend Mediation Developer Guide 51

2.32. Multicast
The Multicast allows for routing the same message to a number of endpoints and process them in a different way.
The main difference between the Multicast and Splitter is that Splitter will split the message into several pieces
but the Multicast will not modify the request message. Options:

Name Default
Value

Description

strategyRef Refers to an AggregationStrategy to be used to assemble the replies
from the multicasts, into a single outgoing message from the
Multicast. By default Camel will use the last reply as the outgoing
message.

parallelProcessing false If enabled then sending messages to the multicasts occurs
concurrently. Note the caller thread will still wait until all messages
has been fully processed, before it continues. Its only the sending
and processing the replies from the multicasts which happens
concurrently.

executorServiceRef Refers to a custom Thread Pool to be used for parallel processing.
Notice if you set this option, then parallel processing is automatic
implied, and you do not have to enable that option as well.

stopOnException false Whether or not to stop continue processing immediately when an
exception occurred. If disabled, then Camel will send the message
to all multicasts regardless if one of them failed. You can deal with
exceptions in the AggregationStrategy class where you have full
control how to handle that.

streaming false If enabled then Camel will process replies out-of-order, eg in the
order they come back. If disabled, Camel will process replies in the
same order as multicasted.

timeout Sets a total timeout specified in millis. If the Multicast hasn't been
able to send and process all replies within the given timeframe, then
the timeout triggers and the Multicast breaks out and continues.
Notice if you provide a TimeoutAwareAggregationStrategy then
the timeout method is invoked before breaking out.

onPrepareRef Refers to a custom Processor to prepare the copy of the Exchange
each multicast will receive. This allows you to do any custom logic,
such as deep-cloning the message payload if that's needed etc.

shareUnitOfWork false Whether the unit of work should be shared. See the same option on
Splitter for more details.



Example

52 Talend Mediation Developer Guide

2.32.1. Example

The following example shows how to take a request from the direct:a endpoint, then multicast these request to
direct:x, direct:y, direct:z.

Using the Fluent Builders

from("direct:a").multicast().to("direct:x", "direct:y", 
"direct:z");

By default Multicast invokes each endpoint sequentially. If parallel processing is desired, simply use

from("direct:a").multicast().parallelProcessing().to("direct:x", "direct:y", 
    "direct:z");

In case of using InOut MEP, an AggregationStrategy is used for aggregating all reply messages. The default is to
only use the latest reply message and discard any earlier replies. The aggregation strategy is configurable:

from("direct:start")
  .multicast(new MyAggregationStrategy())
  .parallelProcessing().timeout(500).to("direct:a", "direct:b", "direct:c")
  .end()
  .to("mock:result");

2.32.2. Stop processing in case of exception

The Section 2.32, “Multicast” will by default continue to process the entire Exchange even in case one of the
multicasted messages will throw an exception during routing. For example if you want to multicast to 3 destinations
and the second destination fails by an exception. What Camel does by default is to process the remainder
destinations. You have the chance to remedy or handle this in the AggregationStrategy.

But sometimes you just want Camel to stop and let the exception be propagated back, and let the Camel error
handler handle it. You can do this by specifying that it should stop in case of an exception occurred. This is done
by the stopOnException option as shown below:

from("direct:start")
        .multicast()
            .stopOnException().to("direct:foo", "direct:bar", "direct:baz")
        .end()
        .to("mock:result");

        from("direct:foo").to("mock:foo");

        from("direct:bar").process(new MyProcessor()).to("mock:bar");

        from("direct:baz").to("mock:baz");

And using XML DSL you specify it as follows:

<route>
    <from uri="direct:start"/>
    <multicast stopOnException="true">
        <to uri="direct:foo"/>
        <to uri="direct:bar"/>
        <to uri="direct:baz"/>
    </multicast>
    <to uri="mock:result"/>
</route>

http://camel.apache.org/fluent-builders.html
http://camel.apache.org/exchange.html


Using onPrepare to execute custom logic when preparing messages

Talend Mediation Developer Guide 53

<route>
    <from uri="direct:foo"/>
    <to uri="mock:foo"/>
</route>

<route>
    <from uri="direct:bar"/>
    <process ref="myProcessor"/>
    <to uri="mock:bar"/>
</route>

<route>
    <from uri="direct:baz"/>
    <to uri="mock:baz"/>
</route>

2.32.3. Using onPrepare to execute custom logic when
preparing messages
The Multicast will copy the source Exchange and multicast each copy. However the copy is a shallow copy, so
in case you have mutateable message bodies, then any changes will be visible by the other copied messages. If
you want to use a deep clone copy then you need to use a custom onPrepare which allows you to do this using
the Processor interface.

Note that onPrepare can be used for any kind of custom logic which you would like to execute before the Exchange
is being multicasted.

The Multicast EIP page on the Camel website hosts a dynamically updated example of using onPrepare to execute
custom logic.

2.33. Normalizer
Camel supports the Normalizer from the EIP patterns by using a Section 2.28, “Message Router” in front of a
number of Section 2.29, “Message Translator” instances.

The below example shows a Message Normalizer that converts two types of XML messages into a common format.
Messages in this common format are then filtered.

http://camel.apache.org/multicast.html#Multicast-UsingonPreparetoexecutecustomlogicwhenpreparingmessages
http://www.enterpriseintegrationpatterns.com/Normalizer.html


Pipes and Filters

54 Talend Mediation Developer Guide

Using the Fluent Builders

// we need to normalize two types of incoming messages
from("direct:start")
    .choice()
        .when().xpath("/employee").to(
            "bean:normalizer?method=employeeToPerson")
        .when().xpath("/customer").to(
            "bean:normalizer?method=customerToPerson")
    .end()
    .to("mock:result");

In this case we're using a Java bean as the normalizer. The class looks like this

public class MyNormalizer {
    public void employeeToPerson(Exchange exchange, 
        @XPath("/employee/name/text()") String name) {
        exchange.getOut().setBody(createPerson(name));            
    }

    public void customerToPerson(Exchange exchange,
        @XPath("/customer/@name") String name) {
        exchange.getOut().setBody(createPerson(name));
    }        
    
    private String createPerson(String name) {
        return "<person name=\"" + name + "\"/>";
    }
}    

Using the Spring XML Extensions

The same example in the Spring DSL

<camelContext xmlns="http://camel.apache.org/schema/spring">
  <route>
    <from uri="direct:start"/>
    <choice>
      <when>
        <xpath>/employee</xpath>
        <to uri="bean:normalizer?method=employeeToPerson"/>
      </when>
      <when>
        <xpath>/customer</xpath>
        <to uri="bean:normalizer?method=customerToPerson"/>
      </when>
    </choice>
    <to uri="mock:result"/>
  </route> 
</camelContext>

<bean id="normalizer" class="org.apache.camel.processor.MyNormalizer"/>

2.34. Pipes and Filters
Camel supports Pipes and Filters from the EIP patterns in various ways.

http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://www.enterpriseintegrationpatterns.com/PipesAndFilters.html


Pipes and Filters

Talend Mediation Developer Guide 55

With Camel you can split your processing across multiple independent Endpoint instances which can then be
chained together.

You can create pipelines of logic using multiple Endpoint or Section 2.29, “Message Translator” instances as
follows:

from("direct:a").pipeline("direct:x", "direct:y", "direct:z", 
    "mock:result");

Though pipeline is the default mode of operation when you specify multiple outputs in Camel. The opposite to
pipeline is multicast; which fires the same message into each of its outputs. (See the example below).

In Spring XML you can use the <pipeline/> element as of 1.4.0 onwards

<route>
  <from uri="activemq:SomeQueue"/>
  <pipeline>
    <bean ref="foo"/>
    <bean ref="bar"/>
    <to uri="activemq:OutputQueue"/>
  </pipeline>
</route>

In the above the pipeline element is actually unnecessary, you could use this:

<route>
  <from uri="activemq:SomeQueue"/>
  <bean ref="foo"/>
  <bean ref="bar"/>
  <to uri="activemq:OutputQueue"/>
</route>

Which is a bit more explicit. However if you wish to use <multicast/> to avoid a pipeline - to send the same
message into multiple pipelines - then the <pipeline/> element comes into its own.

<route>
  <from uri="activemq:SomeQueue"/>
  <multicast>
    <pipeline>
      <bean ref="something"/>
      <to uri="log:Something"/>
    </pipeline>
    <pipeline>
      <bean ref="foo"/>
      <bean ref="bar"/>
      <to uri="activemq:OutputQueue"/>
    </pipeline>
  </multicast>
</route>

In the above example we are routing from a single Endpoint to a list of different endpoints specified using URIs.

http://camel.apache.org/endpoint.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html


Point to Point Channel

56 Talend Mediation Developer Guide

2.35. Point to Point Channel
Camel supports the Point to Point Channel from the EIP patterns using the following components

• Section 3.38, “SEDA” for in-VM seda based messaging

• Section 3.24, “JMS” for working with JMS Queues for high performance, clustering and load balancing

• Section 3.26, “JPA” for using a database as a simple message queue

• XMPP for point-to-point communication over XMPP (Jabber)

• and others

2.36. Polling Consumer
Camel supports implementing the Polling Consumer from the EIP patterns using the PollingConsumer interface
which can be created via the Endpoint.createPollingConsumer() method.

So in your Java code you can do

Endpoint endpoint = context.getEndpoint("activemq:my.queue");
PollingConsumer consumer = endpoint.createPollingConsumer();
Exchange exchange = consumer.receive();

Notice in Camel 2.0 we have introduced the ConsumerTemplate.

There are 3 main polling methods on PollingConsumer

Method name Description

receive() Waits until a message is available and then returns it; potentially blocking forever

receive(long) Attempts to receive a message exchange, waiting up to the given timeout and
returning null if no message exchange could be received within the time available

receiveNoWait() Attempts to receive a message exchange immediately without waiting and returning
null if a message exchange is not available yet

http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://camel.apache.org/xmpp.html
http://www.enterpriseintegrationpatterns.com/PollingConsumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html#createPollingConsumer()
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive()
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive(long)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receiveNoWait()


ConsumerTemplate

Talend Mediation Developer Guide 57

2.36.1. ConsumerTemplate

The ConsumerTemplate is a template much like Spring's JmsTemplate or JdbcTemplate supporting the
Section 2.36, “Polling Consumer” EIP. With the template you can consume Exchange s from an Endpoint.

The template supports the three operations above, but also including convenient methods for returning the body:
consumeBody, and so on. The example from above using ConsumerTemplate is:

Exchange exchange = consumerTemplate.receive("activemq:my.queue");

Or to extract and get the body you can do:

Object body = consumerTemplate.receiveBody("activemq:my.queue");

And you can provide the body type as a parameter and have it returned as the type:

String body = consumerTemplate.receiveBody("activemq:my.queue", 
   String.class);

You get hold of a ConsumerTemplate from the CamelContext with the createConsumerTemplate
operation:

ConsumerTemplate consumer = context.createConsumerTemplate();

For using Spring DSL with consumerTemplate, see the dynamically maintained examples for the most up-to-
date examples.

2.36.2. Scheduled Poll Components

Quite a few inbound Camel endpoints use a scheduled poll pattern to receive messages and push them through
the Camel processing routes. That is to say externally from the client the endpoint appears to use an Section 2.15,
“Event Driven Consumer” but internally a scheduled poll is used to monitor some kind of state or resource
and then fire message exchanges. Since this is such a common pattern, polling components can extend the
ScheduledPollConsumer base class which makes it simpler to implement this pattern.

The ScheduledPollConsumer supports the following options:

Option Default Description

pollStrategy A pluggable org.apache.camel.
PollingConsumerPollStrategy allowing you to provide your
custom implementation to control error handling usually occurred during
the poll operation before an Exchange have been created and being
routed in Camel. In other words the error occurred while the polling was
gathering information, for instance access to a file network failed so Camel
cannot access it to scan for files. The default implementation will log the
caused exception at WARN level and ignore it.

sendEmptyMessageWhenIdlefalse If the polling consumer did not poll any files, you can enable this option to
send an empty message (no body) instead.

2.36.3. About error handling and scheduled polling
consumers

ScheduledPollConsumer is scheduled based and its run method is invoked periodically based on schedule settings.
But errors can also occur when a poll is being executed. For instance if Camel should poll a file network, and this

http://camel.apache.org/exchange.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/polling-consumer.html#PollingConsumer-UsingConsumerTemplatewithSpringDSL
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://camel.apache.org/exchange.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html


About error handling and scheduled polling consumers

58 Talend Mediation Developer Guide

network resource is not available then a java.io.IOException could occur. As this error happens before
any Exchange has been created and prepared for routing, then the regular Error Handling in Camel does not apply.
So what does the consumer do then? Well the exception is propagated back to the run method where it is handled.
Camel will by default log the exception at WARN level and then ignore it. At next schedule the error could have
been resolved and thus being able to poll the endpoint successfully.

2.36.3.1. Controlling the error handling using
PollingConsumerPollStrategy

org.apache.camel.PollingConsumerPollStrategy is a pluggable strategy that
you can configure on the ScheduledPollConsumer. The default implementation
org.apache.camel.impl.DefaultPollingConsumerPollStrategy will log the caused exception
at WARN level and then ignore this issue.

The strategy interface provides the following 3 methods

• begin

• void begin(Consumer consumer, Endpoint endpoint)

• commit

• void commit(Consumer consumer, Endpoint endpoint)

• commit ( Camel 2.6 )

• void commit(Consumer consumer, Endpoint endpoint, int polledMessages)

• rollback

• boolean rollback(Consumer consumer, Endpoint endpoint, int retryCounter,
Exception e) throws Exception

The begin method returns a boolean which indicates whether or not to skipping polling. So you can implement
your custom logic and return false if you do not want to poll this time.

In Camel 2.6 onwards the commit method has an additional parameter containing the number of message that
was actually polled. For example if there was no messages polled, the value would be zero, and you can react
accordingly.

The most interesting is the rollback as it allows you do handle the caused exception and decide what to do.

For instance if we want to provide a retry feature to a scheduled consumer we can implement the
PollingConsumerPollStrategy method and put the retry logic in the rollback method. Let's just retry
up until 3 times:

public boolean rollback(Consumer consumer, Endpoint endpoint, int retryCounter, 
    Exception e) throws Exception {
    if (retryCounter < 3) {
        // return true to tell Camel that it should retry the poll immediately
        return true;
    }
    // okay we give up do not retry anymore
    return false;
}

Notice that we are given the Consumer as a parameter. We could use this to restart the consumer as we can
invoke stop and start:

http://camel.apache.org/exchange.html
http://camel.apache.org/error-handling-in-camel.html


Publish Subscribe Channel

Talend Mediation Developer Guide 59

// error occurred let's restart the consumer, 
// that could maybe resolve the issue
consumer.stop();
consumer.start();

Notice: If you implement the begin operation make sure to avoid throwing exceptions as in such a case the poll
operation is not invoked and Camel will invoke the rollback directly.

2.36.3.2. Configuring an Endpoint to use
PollingConsumerPollStrategy

To configure an Endpoint to use a custom PollingConsumerPollStrategy you use the option
pollStrategy. For example in the file consumer below we want to use our custom strategy defined in the
Registry with the bean id myPoll :

from("file://inbox/?pollStrategy=#myPoll").to("activemq:queue:inbox")

2.37. Publish Subscribe Channel
Camel supports the Publish Subscribe Channel from the EIP patterns using the following components

• Section 3.24, “JMS” for working with JMS Topics for high performance, clustering and load balancing

• XMPP when using rooms for group communication

Another option is to explicitly list the publish-subscribe relationship using routing logic; this keeps the producer
and consumer decoupled but lets you control the fine grained routing configuration using the DSL or XML
Configuration.

http://camel.apache.org/endpoint.html
http://camel.apache.org/registry.html
http://www.enterpriseintegrationpatterns.com/PublishSubscribeChannel.html
http://camel.apache.org/xmpp.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/xml-configuration.html


Recipient List

60 Talend Mediation Developer Guide

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" 
    xmlns="http://camel.apache.org/schema/spring">
    <route>
        <from uri="seda:a"/>
        <multicast>
            <to uri="seda:b"/>
            <to uri="seda:c"/>
            <to uri="seda:d"/>
        </multicast>
    </route>
</camelContext>

2.38. Recipient List
The Recipient List from the EIP patterns allows you to route messages to a number of dynamically specified
recipients.

The recipients will receive a copy of the same Exchange and Camel will execute them sequentially.

2.38.1. Options

Name Default
Value

Description

delimiter , Delimiter used if the Expression returned multiple
endpoints.

strategyRef An AggregationStrategy that will assemble the replies
from recipients into a single outgoing message from the
Recipient List. By default Camel will use the last reply
as the outgoing message.

parallelProcessing false If enabled, messages are sent to the recipients
concurrently. Note that the calling thread will still wait

http://camel.apache.org/spring-xml-extensions.html
http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://camel.apache.org/exchange.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html


Static Recipient List

Talend Mediation Developer Guide 61

Name Default
Value

Description

until all messages have been fully processed before it
continues; it's the sending and processing of replies from
recipients which happens in parallel.

executorServiceRef A custom Thread Pool to use for parallel processing.
Note that enabling this option implies parallel
processing, so you need not enable that option as well.

stopOnException false Whether to immediately stop processing when an
exception occurs. If disabled, Camel will send
the message to all recipients regardless of any
individual failures. You can process exceptions in an
AggregationStrategy implementation, which supports
full control of error handling.

ignoreInvalidEndpoints false Whether to ignore an endpoint URI that could not be
resolved. If disabled, Camel will throw an exception
identifying the invalid endpoint URI.

streaming false If enabled, Camel will process replies out-of-order - that
is, in the order received in reply from each recipient. If
disabled, Camel will process replies in the same order
as specified by the Expression.

timeout Specifies a processing timeout milliseconds. If the
Recipient List hasn't been able to send and process all
replies within this timeframe, then the timeout triggers
and the Recipient List breaks out, with message flow
continuing to the next element. Note that if you provide
a TimeoutAwareAggregationStrategy, its {{timeout}}
method is invoked before breaking out.

onPrepareRef A custom Processor to prepare the copy of the
[Exchange] each recipient will receive. This allows
you to perform arbitrary transformations, such as deep-
cloning the message payload (or any other custom
logic).

shareUnitOfWork false Whether the unit of work should be shared. See the same
option with the Splitter EIP for more details.

2.38.2. Static Recipient List

The following example shows how to route a request from an input queue:a endpoint to a static list of destinations

Using Annotations You can use the RecipientList Annotation on a POJO to create a Dynamic Recipient List. For
more details see the Bean Integration.

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
    public void configure() {
        errorHandler(deadLetterChannel("mock:error"));

        from("seda:a")
            .multicast().to("seda:b", "seda:c", "seda:d");
    }

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/TimeoutAwareAggregationStrategy.html
http://camel.apache.org/recipientlist-annotation.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/fluent-builders.html


Dynamic Recipient List

62 Talend Mediation Developer Guide

};

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" 
    xmlns="http://camel.apache.org/schema/spring">
    <route>
        <from uri="seda:a"/>
        <multicast>
            <to uri="seda:b"/>
            <to uri="seda:c"/>
            <to uri="seda:d"/>
        </multicast>
    </route>
</camelContext>

2.38.3. Dynamic Recipient List

Usually one of the main reasons for using the Recipient List pattern is that the list of recipients is dynamic
and calculated at runtime. The following example demonstrates how to create a dynamic recipient list using an
Expression (which in this case it extracts a named header value dynamically) to calculate the list of endpoints
which are either of type Endpoint or are converted to a String and then resolved using the endpoint URIs.

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
    public void configure() {
        errorHandler(deadLetterChannel("mock:error"));

        from("seda:a")
            .recipientList(header("foo"));
    }
};

The above assumes that the header contains a list of endpoint URIs. The following takes a single string header
and tokenizes it

from("direct:a").recipientList(
        header("recipientListHeader").tokenize(","));

2.38.3.1. Iteratable value

The dynamic list of recipients that are defined in the header must be iteratable such as:

• java.util.Collection

• java.util.Iterator

• arrays

• org.w3c.dom.NodeList

http://camel.apache.org/spring-xml-extensions.html
http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/fluent-builders.html


Request Reply

Talend Mediation Developer Guide 63

• a single String with values separated with comma

• any other type will be regarded as a single value

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" 
    xmlns="http://camel.apache.org/schema/spring">
    <route>
        <from uri="seda:a"/>
        <recipientList>
            <xpath>$foo</xpath>
        </recipientList>
    </route>
</camelContext>

For further examples of this pattern in use you could look at one of the junit test case

2.38.3.2. Using delimiter in Spring XML

In Spring DSL you can set the delimiter attribute for setting a delimiter to be used if the header value is a
single String with multiple separated endpoints. By default Camel uses comma as delimiter, but this option lets
you specify a customer delimiter to use instead.

<route>
  <from uri="direct:a" />
  <!-- use comma as a delimiter for String based values -->
  <recipientList delimiter=",">
    <header>myHeader</header>
  </recipientList>
</route>

So if myHeader contains a String with the value "activemq:queue:foo, activemq:topic:hello ,
log:bar" then Camel will split the String using the delimiter given in the XML that was comma, resulting into
3 endpoints to send to. You can use spaces between the endpoints as Camel will trim the value when it lookup
the endpoint to send to.

Note: In Java DSL you use the tokenizer to archive the same. The route above in Java DSL:

from("direct:a").recipientList(header("myHeader").tokenize(","));

In Camel 2.1 it is a bit easier as you can pass in the delimiter as second parameter:

from("direct:a").recipientList(header("myHeader"), "#");

2.39. Request Reply
Camel supports the Request Reply from the EIP patterns by supporting the Exchange Pattern on a Section 2.22,
“Message” which can be set to InOut to indicate a request/reply. Camel Components then implement this pattern
using the underlying transport or protocols.

See also the related Section 2.16, “Event Message” EIP.

http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RecipientListTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/RequestReply.html
http://camel.apache.org/exchange-pattern.html


Resequencer

64 Talend Mediation Developer Guide

For example when using Section 3.24, “JMS” with InOut the component will by default perform these actions

• create by default a temporary inbound queue

• set the JMSReplyTo destination on the request message

• set the JMSCorrelationID on the request message

• send the request message

• consume the response and associate the inbound message to the request using the JMSCorrelationID (as you
may be performing many concurrent request/responses).

When consuming messages from Section 3.24, “JMS” a Request-Reply is indicated by the presence of the
JMSReplyTo header. You can explicitly force an endpoint to be in Request Reply mode by setting the exchange
pattern on the URI. e.g.

jms:MyQueue?exchangePattern=InOut

You can also specify the exchange pattern in DSL rule or Spring configuration, see the Request-Reply EIP page
on the Apache Camel site for the latest updated example.

2.40. Resequencer
The Resequencer from the EIP patterns allows you to reorganise messages based on some comparator. By default
in Camel we use an Expression to create the comparator; so that you can compare by a message header or the
body or a piece of a message etc.

Camel supports two resequencing algorithms:

http://camel.apache.org/request-reply.html#RequestReply-ExplicitlyspecifyingInOut
http://www.enterpriseintegrationpatterns.com/Resequencer.html
http://camel.apache.org/expression.html


Batch Resequencing

Talend Mediation Developer Guide 65

• Batch resequencing collects messages into a batch, sorts the messages and sends them to their output.

• Stream resequencing re-orders (continuous) message streams based on the detection of gaps between
messages.

By default the Section 2.40, “Resequencer” does not support duplicate messages and will only keep the last
message, in case a message arrives with the same message expression. However in the batch mode you can enable
it to allow duplicates. For Batch mode, in Java DSL there is a allowDuplicates() method and in Spring
XML there is an allowDuplicates=true attribute on the <batch-config/> you can use to enable it.

2.40.1. Batch Resequencing

The following example shows how to use the batch-processing resequencer so that messages are sorted in order
of the body() expression. That is messages are collected into a batch (either by a maximum number of messages
per batch or using a timeout) then they are sorted in order and then sent out to their output.

Using the Fluent Builders

from("direct:start")
    .resequence().body()
    .to("mock:result");

This is equivalent to

from("direct:start")
    .resequence(body()).batch()
    .to("mock:result");

The batch-processing resequencer can be further configured via the size() and timeout() methods.

from("direct:start")
    .resequence(body()).batch().size(300).timeout(4000L)
    .to("mock:result")

This sets the batch size to 300 and the batch timeout to 4000 ms (by default, the batch size is 100 and the timeout
is 1000 ms). Alternatively, you can provide a configuration object.

from("direct:start")
    .resequence(body()).batch(new BatchResequencerConfig(300, 4000L))
    .to("mock:result")

So the above example will reorder messages from endpoint direct:a in order of their bodies, to the endpoint
mock:result. Typically you'd use a header rather than the body to order things; or maybe a part of the body. So
you could replace this expression with

resequencer(header("mySeqNo"))

for example to reorder messages using a custom sequence number in the header mySeqNo.

You can of course use many different Expression languages such as XPath, XQuery, SQL or various Scripting
Languages.

Using the Spring XML Extensions

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">

http://camel.apache.org/fluent-builders.html
http://camel.apache.org/expression.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/spring-xml-extensions.html


Stream Resequencing

66 Talend Mediation Developer Guide

  <route>
    <from uri="direct:start" />
    <resequence>
      <simple>body</simple>
      <to uri="mock:result" />
      <!-- 
        batch-config can be ommitted for default (batch) resequencer settings
      -->
      <batch-config batchSize="300" batchTimeout="4000" />
    </resequence>
  </route>
</camelContext>

In the batch mode, you can also reverse the expression ordering. By default the order is based on 0..9,A..Z,
which would let messages with low numbers be ordered first, and thus also also outgoing first. In some cases you
want to reverse order, which is now possible.

In Java DSL there is a reverse() method and in Spring XML there is an reverse=true attribute on the
<batch-config/> you can use to enable it.

2.40.2. Stream Resequencing

The next example shows how to use the stream-processing resequencer. Messages are re-ordered based on their
sequence numbers given by a seqnum header using gap detection and timeouts on the level of individual messages.

Using the Fluent Builders

from("direct:start").resequence(header("seqnum")).
   stream().to("mock:result");

The stream-processing resequencer can be further configured via the capacity() and timeout() methods.

from("direct:start")
    .resequence(header("seqnum")).stream().capacity(5000).timeout(4000L)
    .to("mock:result")

This sets the resequencer's capacity to 5000 and the timeout to 4000 ms (by default, the capacity is 1000 and the
timeout is 1000 ms). Alternatively, you can provide a configuration object.

from("direct:start")
    .resequence(header("seqnum")).stream(
    new StreamResequencerConfig(5000, 4000L)).to("mock:result")

The stream-processing resequencer algorithm is based on the detection of gaps in a message stream rather than
on a fixed batch size. Gap detection in combination with timeouts removes the constraint of having to know the
number of messages of a sequence (i.e. the batch size) in advance. Messages must contain a unique sequence
number for which a predecessor and a successor is known. For example a message with the sequence number 3
has a predecessor message with the sequence number 2 and a successor message with the sequence number 4. The
message sequence 2,3,5 has a gap because the sucessor of 3 is missing. The resequencer therefore has to retain
message 5 until message 4 arrives (or a timeout occurs).

If the maximum time difference between messages (with successor/predecessor relationship with respect to the
sequence number) in a message stream is known, then the resequencer's timeout parameter should be set to this
value. In this case it is guaranteed that all messages of a stream are delivered in correct order to the next processor.
The lower the timeout value is compared to the out-of-sequence time difference the higher is the probability for

http://camel.apache.org/fluent-builders.html


Stream Resequencing

Talend Mediation Developer Guide 67

out-of-sequence messages delivered by this resequencer. Large timeout values should be supported by sufficiently
high capacity values. The capacity parameter is used to prevent the resequencer from running out of memory.

By default, the stream resequencer expects long sequence numbers but other sequence numbers types can be
supported as well by providing a custom expression.

public class MyFileNameExpression implements Expression {
    
    public String getFileName(Exchange exchange) {
        return exchange.getIn().getBody(String.class);
    }
    
    public Object evaluate(Exchange exchange) {
        // parse the file name with YYYYMMDD-DNNN pattern
        String fileName = getFileName(exchange);
        String[] files = fileName.split("-D");
        Long answer = Long.parseLong(files[0]) * 1000 + 
           Long.parseLong(files[1]);
        return answer;
    }
    

    public <T> T evaluate(Exchange exchange, Class<T> type) {
        Object result = evaluate(exchange);
        return exchange.getContext().getTypeConverter().convertTo(type, 
           result);
    }

}

or custom comparator via the comparator() method

ExpressionResultComparator<Exchange> comparator = new MyComparator();
from("direct:start")
    .resequence(header("seqnum")).stream().comparator(comparator)
    .to("mock:result");

or via a StreamResequencerConfig object.

ExpressionResultComparator<Exchange> comparator = new MyComparator();
StreamResequencerConfig config = new StreamResequencerConfig(100, 1000L, 
comparator);

from("direct:start")
    .resequence(header("seqnum")).stream(config)
    .to("mock:result");

Using the Spring XML Extensions

<camelContext id="camel" 
  xmlns="http://camel.apache.org/schema/spring">
  <route>
    <from uri="direct:start"/>
    <resequence>
      <simple>in.header.seqnum</simple>
      <to uri="mock:result" />
      <stream-config capacity="5000" timeout="4000"/>
    </resequence>
  </route>

http://camel.apache.org/spring-xml-extensions.html


Further Examples

68 Talend Mediation Developer Guide

</camelContext>

2.40.3. Further Examples

See the Camel Website for further examples of this component in use.

2.41. Return Address
Camel supports the Return Address from the EIP patterns by using the JMSReplyTo header.

For example when using Section 3.24, “JMS” with InOut the component will by default return to the address
given in JMSReplyTo.

Requestor Code:

getMockEndpoint("mock:bar").expectedBodiesReceived("Bye World");
template.sendBodyAndHeader("direct:start", "World", "JMSReplyTo", 
   "queue:bar");

Route Using the Fluent Builders:

from("direct:start").to("activemq:queue:foo?preserveMessageQos=true");
from("activemq:queue:foo").transform(body().prepend("Bye "));
from("activemq:queue:bar?disableReplyTo=true").to("mock:bar");

Route Using the Spring XML Extensions:

<route>
<from uri="direct:start"/>
<to uri="activemq:queue:foo?preserveMessageQos=true"/>

http://camel.apache.org/resequencer.html
http://www.enterpriseintegrationpatterns.com/ReturnAddress.html


Routing Slip

Talend Mediation Developer Guide 69

</route>

<route>
<from uri="activemq:queue:foo"/>
<transform>
<simple>Bye ${in.body}</simple>
</transform>
</route>

<route> <from uri="activemq:queue:bar?disableReplyTo=true"/> <to uri="mock:bar"/> </route> {code}

For a complete example of this pattern, see this JUnit test case

2.42. Routing Slip
The Routing Slip from the EIP patterns allows you to route a message consecutively through a series of processing
steps where the sequence of steps is not known at design time and can vary for each message.

2.42.1. Example

The following route will take any messages sent to the Apache ActiveMQ queue SomeQueue and pass them into
the Routing Slip pattern.

from("activemq:SomeQueue").routingSlip("headerName");

Messages will be checked for the existance of the "headerName" header. The value of this header should be a
comma-delimited list of endpoint URIs you wish the message to be routed to. The Section 2.22, “Message” will
be routed in a pipeline fashion (i.e. one after the other).

From Camel 2.5 the Section 2.42, “Routing Slip” will set a property ( Exchange.SLIP_ENDPOINT ) on the
Exchange which contains the current endpoint as it advanced though the slip. This allows you to know how far
we have processed in the slip.

The Section 2.42, “Routing Slip” will compute the slip beforehand which means, the slip is only computed once.
If you need to compute the slip on-the-fly then use the Section 2.14, “Dynamic Router” pattern instead.

For further examples of this pattern in use see the Camel routing slip test cases.

http://svn.apache.org/viewvc/camel/trunk/components/camel-jms/src/test/java/org/apache/camel/component/jms/JmsInOnlyWithReplyToAsHeaderTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/RoutingTable.html
http://activemq.apache.org
http://www.enterpriseintegrationpatterns.com/RoutingTable.html
http://camel.apache.org/uris.html
http://camel.apache.org/exchange.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/routingslip


Configuration options

70 Talend Mediation Developer Guide

2.42.2. Configuration options

Here we set the header name and the URI delimiter to something different.

Using the Fluent Builders

from("direct:c").routingSlip("aRoutingSlipHeader", "#");

Using the Spring XML Extensions

<camelContext id="buildRoutingSlip" 
xmlns="http://activemq.apache.org/camel/schema/spring">
  <route>
    <from uri="direct:c"/>
    <routingSlip headerName="aRoutingSlipHeader" uriDelimiter="#"/>
  </route>
</camelContext>

2.42.3. Ignore invalid endpoints

The Section 2.42, “Routing Slip” now supports ignoreInvalidEndpoints which the Section 2.38,
“Recipient List” also supports. You can use it to skip endpoints which are invalid.

from("direct:a").routingSlip("myHeader").ignoreInvalidEndpoints();

And in Spring XML it is an attribute on the recipient list tag.

<route>
       <from uri="direct:a"/>
       <routingSlip headerName="myHeader" ignoreInvalidEndpoints="true"/>
</route>

Then let's say the myHeader contains the following two endpoints direct:foo,xxx:bar. The first endpoint
is valid and works. However the second is invalid and will just be ignored. Camel logs at INFO level about, so
you can see why the endpoint was invalid.

2.42.4. Expression supporting

The Section 2.42, “Routing Slip” now supports to take the expression parameter as the Section 2.38, “Recipient
List” does. You can tell Camel the expression that you want to use to get the routing slip.

from("direct:a").routingSlip(header("myHeader")).ignoreInvalidEndpoints();

And in Spring XML it is an attribute on the recipient list tag.

<route>
       <from uri="direct:a"/>
       <!--NOTE you need to specify the expression element
           inside of the routingSlip element -->
       <routingSlip ignoreInvalidEndpoints="true">
           <header>myHeader</header>
       </routingSlip>
</route>

http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html


Sampling

Talend Mediation Developer Guide 71

2.43. Sampling
A sampling throttler allows you to extract a sample of the exchanges from the traffic through a route. It is
configured with a sampling period during which only a single exchange is allowed to pass through. All other
exchanges will be stopped.

Will by default use a sample period of 1 second. Options:

Name Default Value Description

messageFrequency (none) Samples the message every N'th message. You can use
either frequency or period.

samplePeriod 1 Samples the message every N'th message. You can use
either frequency or period.

units seconds Time unit as an enum of java.util.concurrent.TimeUnit
from the JDK.

You can use this EIP with the sample DSL as shown in the following examples:

Using the Fluent Builders  These samples also show how you can use the different syntax to configure the
sampling period:

from("direct:sample")
    .sample()
    .to("mock:result");

from("direct:sample-configured")
    .sample(1, TimeUnit.SECONDS)
    .to("mock:result");

from("direct:sample-configured-via-dsl")
    .sample().samplePeriod(1).timeUnits(TimeUnit.SECONDS)
    .to("mock:result");

from("direct:sample-messageFrequency")
    .sample(10)
    .to("mock:result");

from("direct:sample-messageFrequency-via-dsl")
    .sample().sampleMessageFrequency(5)
    .to("mock:result");

Using the Spring XML Extensions  And the same example in Spring XML is:

<route>
    <from uri="direct:sample"/>
    <sample samplePeriod="1" units="seconds">
        <to uri="mock:result"/>
    </sample>
</route>            
<route>
    <from uri="direct:sample-messageFrequency"/>
    <sample messageFrequency="10">
        <to uri="mock:result"/>
    </sample>
</route>
<route>

http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html


Scatter-Gather

72 Talend Mediation Developer Guide

    <from uri="direct:sample-messageFrequency-via-dsl"/>
    <sample messageFrequency="5">
        <to uri="mock:result"/>
    </sample>
</route>

And since it uses a default of 1 second you can omit this configuration in case you also want to use 1 second

<route>
    <from uri="direct:sample"/>
    <!-- will by default use 1 second period -->
    <sample>
        <to uri="mock:result"/>
    </sample>
</route>

2.44. Scatter-Gather
The Scatter-Gather from the EIP patterns allows you to route messages to a number of dynamically specified
recipients and re-aggregate the responses back into a single message.

2.44.1. Dynamic Scatter-Gather Example

In this example we want to get the best quote for beer from several different vendors. We use a dynamic
Section 2.38, “Recipient List” to get the request for a quote to all vendors and an Section 2.2, “Aggregator” to
pick the best quote out of all the responses. The routes for this are defined as:

<camelContext xmlns="http://camel.apache.org/schema/spring">
  <route>
    <from uri="direct:start"/>
    <recipientList>
      <header>listOfVendors</header>

http://www.enterpriseintegrationpatterns.com/BroadcastAggregate.html


Dynamic Scatter-Gather Example

Talend Mediation Developer Guide 73

    </recipientList>
  </route>
  <route>
    <from uri="seda:quoteAggregator"/>
    <aggregate strategyRef="aggregatorStrategy" completionTimeout="1000">
      <correlationExpression>
        <header>quoteRequestId</header>
      </correlationExpression>
      <to uri="mock:result"/>
    </aggregate>
  </route>
</camelContext>

So in the first route you see that the Section 2.38, “Recipient List” is looking at the listOfVendors header for
the list of recipients. So, we need to send a message like

Map<String, Object> headers = new HashMap<String, Object>();
headers.put("listOfVendors", "bean:vendor1, bean:vendor2, bean:vendor3");
headers.put("quoteRequestId", "quoteRequest-1");
template.sendBodyAndHeaders("direct:start", "<quote_request item=\"beer\"/>", 
headers);

This message will be distributed to the following Endpoint s: bean:vendor1, bean:vendor2, and
bean:vendor3. These are all beans which look like

public class MyVendor {
    private int beerPrice;
    
    @Produce(uri = "seda:quoteAggregator")
    private ProducerTemplate quoteAggregator;
            
    public MyVendor(int beerPrice) {
        this.beerPrice = beerPrice;
    }
        
    public void getQuote(@XPath("/quote_request/@item") String item, 
        Exchange exchange) throws Exception {
        if ("beer".equals(item)) {
            exchange.getIn().setBody(beerPrice);
            quoteAggregator.send(exchange);
        } else {
            throw new Exception("No quote available for " + item);
        }
    }
}

and are loaded up in Spring like

<bean id="aggregatorStrategy" class=
    "org.apache.camel.spring.processor.scattergather. \\ 
     LowestQuoteAggregationStrategy"/>

<bean id="vendor1" 
    class="org.apache.camel.spring.processor.scattergather.MyVendor">
  <constructor-arg>
    <value>1</value>
  </constructor-arg>
</bean>

http://camel.apache.org/endpoint.html


Static Scatter-Gather Example

74 Talend Mediation Developer Guide

<bean id="vendor2" 
    class="org.apache.camel.spring.processor.scattergather.MyVendor">
  <constructor-arg>
    <value>2</value>
  </constructor-arg>
</bean>

<bean id="vendor3" 
    class="org.apache.camel.spring.processor.scattergather.MyVendor">
  <constructor-arg>
    <value>3</value>
  </constructor-arg>
</bean>

Each bean is loaded with a different price for beer. When the message is sent to each bean endpoint, it will arrive
at the MyVendor.getQuote method. This method does a simple check whether this quote request is for beer
and then sets the price of beer on the exchange for retrieval at a later step. The message is forwarded on to the
next step using POJO Producing (see the @Produce annotation).

At the next step we want to take the beer quotes from all vendors and find out which one was the best (i.e. the
lowest!). To do this we use an Section 2.2, “Aggregator” with a custom aggregation strategy. The Section 2.2,
“Aggregator” needs to be able to compare only the messages from this particular quote; this is easily done by
specifying a correlationExpression equal to the value of the quoteRequestId header. As shown above in the
message sending snippet, we set this header to quoteRequest-1. This correlation value should be unique or
you may include responses that are not part of this quote. To pick the lowest quote out of the set, we use a custom
aggregation strategy like

public class LowestQuoteAggregationStrategy implements AggregationStrategy {
    public Exchange aggregate(Exchange oldExchange, Exchange newExchange) {
        // the first time we only have the new exchange
        if (oldExchange == null) {
            return newExchange;
        }

        if (oldExchange.getIn().getBody(int.class) 
            < newExchange.getIn().getBody(int.class)) {
            return oldExchange;
        } else {
            return newExchange;
        }
    }
}

Finally, we expect to get the lowest quote of $1 out of $1, $2, and $3.

result.expectedBodiesReceived(1); // expect the lowest quote

You can find the full example source here:

camel-spring/src/test/java/org/apache/camel/spring/processor/scattergather/

camel-spring/src/test/resources/org/apache/camel/spring/processor/scattergather/scatter-gather.xml

2.44.2. Static Scatter-Gather Example

You can lock down which recipients are used in the Scatter-Gather by using a static Section 2.38, “Recipient List”.
It looks something like this

http://camel.apache.org/pojo-producing.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/scattergather/
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/scattergather/scatter-gather.xml


Selective Consumer

Talend Mediation Developer Guide 75

from("direct:start").multicast().to("seda:vendor1", "seda:vendor2", 
    "seda:vendor3");

from("seda:vendor1").to("bean:vendor1").to("seda:quoteAggregator");
from("seda:vendor2").to("bean:vendor2").to("seda:quoteAggregator");
from("seda:vendor3").to("bean:vendor3").to("seda:quoteAggregator");

from("seda:quoteAggregator")
    .aggregate(header("quoteRequestId"), new LowestQuoteAggregationStrategy()).to(
    "mock:result")

2.45. Selective Consumer
The Selective Consumer from the EIP patterns can be implemented in two ways

The first solution is to provide a Message Selector to the underlying URIs when creating your consumer. For
example when using Section 3.24, “JMS” you can specify a selector parameter so that the message broker will
only deliver messages matching your criteria.

The other approach is to use a Section 2.27, “Message Filter” which is applied; then if the filter matches the
message your consumer is invoked as shown in the following example

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
    public void configure() {
        errorHandler(deadLetterChannel("mock:error"));

        from("seda:a")
            .filter(header("foo").isEqualTo("bar"))
                .process(myProcessor);
    }
};

Using the Spring XML Extensions

<bean id="myProcessor" class="org.apache.camel.builder.MyProcessor"/>

<camelContext errorHandlerRef="errorHandler" 
xmlns="http://camel.apache.org/schema/spring">
    <route>
        <from uri="seda:a"/>
        <filter>
            <xpath>$foo = 'bar'</xpath>
            <process ref="myProcessor"/>

http://www.enterpriseintegrationpatterns.com/MessageSelector.html
http://camel.apache.org/uris.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html


Service Activator

76 Talend Mediation Developer Guide

        </filter>
    </route>
</camelContext>

2.46. Service Activator
Camel has several endpoint components that support the Service Activator from the EIP patterns.

Components like Section 3.3, “Bean”, Section 3.8, “CXF” and Pojo provide a a way to bind the message exchange
to a Java interface/service where the route defines the endpoints and wires it up to the bean.

In addition you can use the Bean Integration to wire messages to a bean using annotation.

Here is a simple example of using a Direct endpoint to create a messaging interface to a Pojo Bean service. Using
the Fluent Builders:

from("direct:invokeMyService").to("bean:myService");

Using the Spring XML Extensions:

<route>
    <from uri="direct:invokeMyService"/>
    <to uri="bean:myService"/>
</route>
      

2.47. Sort
Sort can be used to sort a message. Imagine you consume text files and before processing each file you want to
be sure the content is sorted.

Sort will by default sort the body using a default comparator that handles numeric values or uses the string
representation. You can provide your own comparator, and even an expression to return the value to be sorted.

http://www.enterpriseintegrationpatterns.com/MessagingAdapter.html
http://camel.apache.org/pojo.html
http://camel.apache.org/bean-integration.html


Java DSL Example

Talend Mediation Developer Guide 77

Sort requires the value returned from the expression evaluation is convertible to java.util.List as this is
required by the JDK sort operation.

Name Default Value Description

comparatorRef A->Z sorting Refers to a custom java.util.Comparator to use for
sorting the message body. Camel will by default use a
comparator which does a A..Z sorting.

2.47.1. Java DSL Example

In the route below it will read the file content and tokenize by line breaks so each line can be sorted.

from("file://inbox").sort(body().tokenize("\n")).to(
"bean:MyServiceBean.processLine");

You can pass in your own comparator as a second argument:

from("file://inbox").sort(body().tokenize("\n"), new MyReverseComparator())
   .to("bean:MyServiceBean.processLine");

2.47.2. Spring DSL Example

In the route below it will read the file content and tokenize by line breaks so each line can be sorted.

Example 2.1. Camel 2.7 onwards

<route>
  <from uri="file://inbox"/>
  <sort>
    <simple>body</simple>
  </sort>
  <beanRef ref="myServiceBean" method="processLine"/>
</route>

Example 2.2. Camel 2.6 or older

<route>
  <from uri="file://inbox"/>
  <sort>
    <expression>
      <simple>body</simple>
    </expression>
  </sort>
  <beanRef ref="myServiceBean" method="processLine"/>
</route>

And to use our own comparator we can refer to it as a Spring bean:



Splitter

78 Talend Mediation Developer Guide

Example 2.3. Camel 2.7 or older

<route>
  <from uri="file://inbox"/>
  <sort comparatorRef="myReverseComparator">
    <simple>body</simple>
  </sort>
  <beanRef ref="MyServiceBean" method="processLine"/>
</route>

<bean id="myReverseComparator" class="com.mycompany.MyReverseComparator"/>

Example 2.4. Camel 2.6 or older

<route>
  <from uri="file://inbox"/>
  <sort comparatorRef="myReverseComparator">
    <expression>
      <simple>body</simple>
    </expression>
  </sort>
  <beanRef ref="MyServiceBean" method="processLine"/>
</route>

<bean id="myReverseComparator" class="com.mycompany.MyReverseComparator"/>

Besides <simple>, you can supply an expression using any language you like, so long as it returns a list.

2.48. Splitter
The Splitter from the EIP patterns allows you split a message into a number of pieces and process them individually

You need to specify a Splitter as split(). In earlier versions of Camel, you need to use splitter().

Options:

Name Default Value Description

strategyRef Refers to an AggregationStrategy to be used to assemble
the replies from the sub-messages, into a single outgoing
message from the Splitter. See the defaults described
below in What the Splitter returns.

parallelProcessing false If enables then processing the sub-messages occurs
concurrently. Note the caller thread will still wait until

http://camel.apache.org/languages.html
http://www.enterpriseintegrationpatterns.com/Sequencer.html


Splitter

Talend Mediation Developer Guide 79

Name Default Value Description

all sub-messages has been fully processed, before it
continues.

executorServiceRef Refers to a custom Thread Pool to be used for parallel
processing. Notice if you set this option, then parallel
processing is automatic implied, and you do not have to
enable that option as well.

stopOnException false Camel 2.2: Whether or not to stop continue processing
immediately when an exception occurred. If disable,
then Camel continue splitting and process the sub-
messages regardless if one of them failed. You can deal
with exceptions in the AggregationStrategy class where
you have full control how to handle that.

streaming false If enabled then Camel will split in a streaming fashion,
which means it will split the input message in chunks.
This reduces the memory overhead. For example if
you split big messages its recommended to enable
streaming. If streaming is enabled then the sub-message
replies will be aggregated out-of-order, eg in the order
they come back. If disabled, Camel will process sub-
message replies in the same order as they where splitted.

timeout Camel 2.5: Sets a total timeout specified in millis. If
the Recipient List hasn't been able to split and process
all replies within the given timeframe, then the timeout
triggers and the Splitter breaks out and continues. Notice
if you provide a TimeoutAwareAggregationStrategy
then the timeout method is invoked before breaking out.

onPrepareRef Camel 2.8: Refers to a custom Processor to prepare the
sub-message of the Exchange, before its processed. This
allows you to do any custom logic, such as deep-cloning
the message payload if that's needed etc.

shareUnitOfWork false Camel 2.8: Whether the unit of work should be shared.
See further below for more details.

Exchange Properties:

Property Type Description

CamelSplitIndex int Camel 2.0: A split counter that increases for each Exchange being split.
The counter starts from 0.

CamelSplitSize int Camel 2.0: The total number of Exchanges that was splitted. This
header is not applied for stream based splitting. From Camel 2.9
onwards this header is also set in stream based splitting, but only on
the completed Exchange.

CamelSplitComplete boolean Whether or not this Exchange is the last.

What does the splitter return?

The Section 2.48, “Splitter” will by default return the last splitted message.

The Section 2.48, “Splitter” will by default return the original input message.

For all versions You can override this by suppling your own strategy as an AggregationStrategy.
See the Camel Website for the split aggregate request/reply sample. It uses the same strategy the
Section 2.2, “Aggregator” supports. This Section 2.48, “Splitter” can be viewed as having a build in light
weight Section 2.2, “Aggregator”.

http://camel.apache.org/splitter.html#Splitter-Splitaggregaterequest/replysample


Example

80 Talend Mediation Developer Guide

2.48.1. Example

The following example shows how to take a request from the queue:a endpoint the split it into pieces using an
Expression, then forward each piece to queue:b

Using the Fluent Builders

RouteBuilder builder = new RouteBuilder() {
    public void configure() {
        errorHandler(deadLetterChannel("mock:error"));

        from("seda:a")
            .split(body(String.class).tokenize("\n"))
                .to("seda:b");
    }
};

The splitter can use any Expression language so you could use any of the Languages Supported such as XPath,
XQuery, SQL or one of the Scripting Languages to perform the split. e.g.

from("activemq:my.queue").split(xpath("//foo/bar")).convertBodyTo(
    String.class).to("file://some/directory")

Using the Spring XML Extensions

<camelContext errorHandlerRef="errorHandler" 
    xmlns="http://camel.apache.org/schema/spring">
    <route>
        <from uri="seda:a"/>
        <split>
            <xpath>/invoice/lineItems</xpath>
            <to uri="seda:b"/>
        </split>
    </route>
</camelContext>

For further examples of this pattern in use you could look at one of the junit test case

Using Tokenizer from Spring XML Extensions

You can use the tokenizer expression in the Spring DSL to split bodies or headers using a token. This is a common
use-case, so we provided a special tokenizer tag for this. In the sample below we split the body using a @ as
separator. You can of course use comma or space or even a regex pattern, also set regex=true.

<camelContext xmlns="http://camel.apache.org/schema/spring">
    <route>
        <from uri="direct:start"/>
        <split>
            <tokenize token="@"/>
            <to uri="mock:result"/>
        </split>
    </route>
</camelContext>

Splitting the body in Spring XML is a bit harder as you need to use the Simple language to dictate this

<split>
   <simple>${body}</simple>

http://camel.apache.org/expression.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/expression.html
http://localhost:8080/confluence/pages/viewpage.action?pageId=3244472
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/SplitterTest.java?view=markup
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/simple.html


Exchange properties

Talend Mediation Developer Guide 81

   <to uri="mock:result"/>
</split>

2.48.2. Exchange properties

The following properties is set on each Exchange that is split:

header type description

CamelSplitIndex int A split counter that increases for each Exchange being
split. The counter starts from 0.

CamelSplitSize int The total number of Exchanges that was splitted. This
header is not applied for stream based splitting.

CamelSplitComplete boolean Whether or not this Exchange is the last.

2.48.3. Parallel execution of distinct 'parts'

If you want to execute all parts in parallel you can use special notation of split() with two arguments, where
the second one is a boolean flag if processing should be parallel. e.g.

XPathBuilder xPathBuilder = new XPathBuilder("//foo/bar"); 
from("activemq:my.queue").split(xPathBuilder, true).to(
   "activemq:my.parts");

In the boolean option has been refactored into a builder method parallelProcessing so it is easier to
understand what the route does when we use a method instead of true|false.

XPathBuilder xPathBuilder = new XPathBuilder("//foo/bar"); 
from("activemq:my.queue").split(xPathBuilder).parallelProcessing().
    to("activemq:my.parts");

2.48.4. Stream based

The XPath engine in Java and XQuery will load the entire XML content into memory. And thus they are not well
suited for very big XML payloads. Instead you can use a custom Expression which will iterate the XML payload
in a streamed fashion. From Camel 2.9 onwards you can use the Tokenizer language which supports this when
you supply the start and end tokens.

You can split streams by enabling the streaming mode using the streaming builder method.

from("direct:streaming").split(body().tokenize(",")).streaming().
    to("activemq:my.parts");

You can also supply your custom splitter to use with streaming like this:

import static org.apache.camel.builder.ExpressionBuilder.beanExpression;
from("direct:streaming")
     .split(beanExpression(new MyCustomIteratorFactory(),  "iterator"))
     .streaming().to("activemq:my.parts")



Streaming big XML payloads using Tokenizer language

82 Talend Mediation Developer Guide

2.48.5. Streaming big XML payloads using Tokenizer
language

If you have a big XML payload, from a file source, and want to split it in streaming mode, then you can use the
Tokenizer language with start/end tokens to do this with low memory footprint. (Note the Camel StAX component
can also be used to split big XML files in a streaming mode.) See the Camel Website for an example.

2.48.6. Specifying a custom aggregation strategy

This is specified similar to the Section 2.2, “Aggregator”.

2.48.7. Specifying a custom ThreadPoolExecutor

You can customize the underlying ThreadPoolExecutor used in the parallel splitter. In the Java DSL try something
like this:

XPathBuilder xPathBuilder = new XPathBuilder("//foo/bar"); 

ExecutorService pool = ...

from("activemq:my.queue")
    .split(xPathBuilder).parallelProcessing().executorService(pool)
        .to("activemq:my.parts");

2.48.8. Using a Pojo to do the splitting

As the Section 2.48, “Splitter” can use any Expression to do the actual splitting we leverage this fact and use a
method expression to invoke a Section 3.3, “Bean” to get the splitted parts. The Section 3.3, “Bean” should return
a value that is iterable such as: java.util.Collection, java.util.Iterator or an array.

In the route we define the Expression as a method call to invoke our Section 3.3, “Bean” that we have registered
with the id mySplitterBean in the Registry.

from("direct:body")
    // here we use a POJO bean mySplitterBean to do the split of the payload
    .split().method("mySplitterBean", "splitBody")
    .to("mock:result");
from("direct:message")
    // here we use a POJO bean mySplitterBean to do the split of the message 
    // with a certain header value
    .split().method("mySplitterBean", "splitMessage")
    .to("mock:result");

And the logic for our Section 3.3, “Bean” is as simple as. Notice we use Camel Bean Binding to pass in the
message body as a String object.

public class MySplitterBean {

    /**

http://camel.apache.org/splitter.html#Splitter-StreamingbigXMLpayloadsusingTokenizerlanguage
http://camel.apache.org/expression.html
http://camel.apache.org/expression.html
http://camel.apache.org/registry.html
http://camel.apache.org/bean-binding.html


Stop processing in case of exceptions

Talend Mediation Developer Guide 83

     * The split body method returns something that is iteratable 
     * such as a java.util.List.
     *
     * @param body the payload of the incoming message
     * @return a list containing each part splitted
     */
    public List<String> splitBody(String body) {
        // since this is based on an unit test you can of cause
        // use different logic for splitting as Camel have out
        // of the box support for splitting a String based on comma
        // but this is for show and tell, since this is Java code
        // you have the full power how you like to split your messages
        List<String> answer = new ArrayList<String>();
        String[] parts = body.split(",");
        for (String part : parts) {
            answer.add(part);
        }
        return answer;
    }
    
    /**
     * The split message method returns something that is iteratable 
     * such as a java.util.List.
     *
     * @param header the header of the incoming message with the name user
     * @param body the payload of the incoming message
     * @return a list containing each part splitted
     */
    public List<Message> splitMessage(@Header(value = "user") 
        String header, @Body String body) {
        // we can leverage the Parameter Binding Annotations  
        // http://camel.apache.org/parameter-binding-annotations.html
        // to access the message header and body at same time, 
        // then create the message that we want, splitter will
        // take care rest of them.
        // *NOTE* this feature requires Camel version >= 1.6.1
        List<Message> answer = new ArrayList<Message>();
        String[] parts = header.split(",");
        for (String part : parts) {
            DefaultMessage message = new DefaultMessage();
            message.setHeader("user", part);
            message.setBody(body);
            answer.add(message);
        }
        return answer;
    }
}

2.48.9. Stop processing in case of exceptions

The Section 2.48, “Splitter” will by default continue to process the entire Exchange even in case of one of the
splitted message will throw an exception during routing. For example if you have an Exchange with 1000 rows
that you split and route each sub message. During processing of these sub messages an exception is thrown at the
17th. What Camel does by default is to process the remainder 983 messages. You have the chance to remedy or
handle this in the AggregationStrategy.

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html


Sharing Unit of Work

84 Talend Mediation Developer Guide

But sometimes you just want Camel to stop and let the exception be propagated back, and let the Camel error
handler handle it. You can do this by specifying that it should stop in case of an exception occurred. This is done
by the stopOnException option as shown below:

from("direct:start")
        .split(body().tokenize(",")).stopOnException()
            .process(new MyProcessor())
            .to("mock:split");

And using XML DSL you specify it as follows:

<route>
            <from uri="direct:start"/>
            <split stopOnException="true">
                <tokenize token=","/>
                <process ref="myProcessor"/>
                <to uri="mock:split"/>
            </split>
        </route>

2.48.10. Sharing Unit of Work

The Splitter will by default not share a unit of work between the parent exchange and each splitted exchange. This
means each sub exchange has its own individual unit of work. For example you may have an use case, where you
want to split a big message, and you want to regard that process as an atomic isolated operation that either is a
success or failure. In case of a failure you want that big message to be moved into a dead letter queue. To support
this use case, you would have to share the unit of work on the Splitter. See the online example maintained on the
Apache Camel site for more information.

XPathBuilder xPathBuilder = new XPathBuilder("//foo/bar"); 
from("activemq:my.queue").split(xPathBuilder).parallelProcessing().
    to("activemq:my.parts");

2.49. Throttler
The Throttler Pattern allows you to ensure that a specific endpoint does not get overloaded, or that we don't exceed
an agreed SLA with some external service.

Options:

Name Default Value Description

maximumRequestsPerPeriod Maximum number of requests per period to throttle.
This option must be provided and a positive number.
Note, in the XML DSL, from Camel 2.8 onwards this
option is configured using an Expression instead of an
attribute.

timePeriodMillis 1000 The time period in millis, in which the throttler will
allow at most maximumRequestsPerPeriod number of
messages.

asyncDelayed false If enabled then any messages which is delayed happens
asynchronously using a scheduled thread pool.

http://camel.apache.org/splitter.html#Splitter-Sharingunitofwork


Transactional Client

Talend Mediation Developer Guide 85

Name Default Value Description

executorServiceRef Refers to a custom Thread Pool to be used if asyncDelay
has been enabled.

callerRunsWhenRejected true Is used if asyncDelayed was enabled. This controls if the
caller thread should execute the task if the thread pool
rejected the task.

Using the Fluent Builders

from("seda:a").throttle(3).timePeriodMillis(10000).to("log:result", 
    "mock:result");

The above example will throttle messages all messages received on seda:a before being sent to mock:result
ensuring that a maximum of 3 messages are sent in any 10 second window. Note that typically you would often
use the default time period of a second. So to throttle requests at 100 requests per second between two endpoints
it would look more like this...

from("seda:a").throttle(100).to("seda:b");

For further examples of this pattern in use you could look at the junit test case

Using the Spring XML Extensions

<route>
  <from uri="seda:a" />
  <throttle timePeriodMillis="10000"/>
    <constant>3</constant>
    <to uri="mock:result" />
  </throttle>
</route>

You can let the Section 2.49, “Throttler” use non-blocking asynchronous delaying, which means Camel will use
a scheduler to schedule a task to be executed in the future. The task will then continue routing. This allows the
caller thread to not block and be able to service other messages etc.

from("seda:a").throttle(100).asyncDelayed().to("seda:b");

2.50. Transactional Client
Camel recommends supporting the Transactional Client from the EIP patterns using Spring transactions.

http://camel.apache.org/fluent-builders.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ThrottlerTest.java?view=markup
http://camel.apache.org/spring-xml-extensions.html
http://www.enterpriseintegrationpatterns.com/TransactionalClient.html


Transaction Policies

86 Talend Mediation Developer Guide

Transaction Oriented Endpoints ( Camel Toes ) like Section 3.24, “JMS” support using a transaction for both
inbound and outbound message exchanges. Endpoints that support transactions will participate in the current
transaction context that they are called from.

Configuration of Redelivery

The redelivery in transacted mode is not handled by Camel but by the backing system (the transaction
manager). In such cases you should resort to the backing system how to configure the redelivery.

You should use the SpringRouteBuilder to setup the routes since you will need to setup the Spring context with
the TransactionTemplate s that will define the transaction manager configuration and policies.

For inbound endpoint to be transacted, they normally need to be configured to use a Spring
PlatformTransactionManager. In the case of the JMS component, this can be done by looking it up in the Spring
context.

You first define needed object in the Spring configuration.

<bean id="jmsTransactionManager" 
    class="org.springframework.jms.connection.JmsTransactionManager">
    <property name="connectionFactory" ref="jmsConnectionFactory" />
  </bean>
  
  <bean id="jmsConnectionFactory" 
    class="org.apache.activemq.ActiveMQConnectionFactory">
    <property name="brokerURL" value="tcp://localhost:61616"/>
  </bean>

Then you look them up and use them to create the JmsComponent.

PlatformTransactionManager transactionManager = 
   (PlatformTransactionManager) spring.getBean("jmsTransactionManager");
   ConnectionFactory connectionFactory = (ConnectionFactory) spring.getBean(
      "jmsConnectionFactory");
   JmsComponent component = JmsComponent.jmsComponentTransacted(
      connectionFactory, transactionManager);
   component.getConfiguration().setConcurrentConsumers(1);
   ctx.addComponent("activemq", component);

2.50.1. Transaction Policies

Outbound endpoints will automatically enlist in the current transaction context. But what if you do not want your
outbound endpoint to enlist in the same transaction as your inbound endpoint? The solution is to add a Transaction
Policy to the processing route. You first have to define transaction policies that you will be using. The policies
use a Spring TransactionTemplate under the covers for declaring the transaction demarcation to use. So you will
need to add something like the following to your Spring XML:

<bean id="PROPAGATION_REQUIRED" 
class="org.apache.camel.spring.spi.SpringTransactionPolicy">
    <property name="transactionManager" ref="jmsTransactionManager"/>
  </bean>

  <bean id="PROPAGATION_REQUIRES_NEW" 
    class="org.apache.camel.spring.spi.SpringTransactionPolicy">
    <property name="transactionManager" ref="jmsTransactionManager"/>

http://localhost:8080/confluence/pages/viewpage.action?pageId=3244447
http://camel.apache.org/maven/current/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html
http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://www.springframework.org/docs/api/org/springframework/transaction/PlatformTransactionManager.html
http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html


OSGi Blueprint

Talend Mediation Developer Guide 87

    <property name="propagationBehaviorName" 
        value="PROPAGATION_REQUIRES_NEW"/>
  </bean>

Then in your SpringRouteBuilder, you just need to create new SpringTransactionPolicy objects for each of the
templates.

public void configure() {
   ...
   Policy requried = bean(SpringTransactionPolicy.class, 
       "PROPAGATION_REQUIRED"));
   Policy requirenew = bean(SpringTransactionPolicy.class, 
       "PROPAGATION_REQUIRES_NEW"));
   ...
}

Once created, you can use the Policy objects in your processing routes:

// Send to bar in a new transaction
   from("activemq:queue:foo").policy(requirenew).to("activemq:queue:bar");

   // Send to bar without a transaction.
   from("activemq:queue:foo").policy(notsupported ).to("activemq:queue:bar");

2.50.2. OSGi Blueprint

If you are using OSGi Blueprint then you most likely have to explicit declare a policy and refer to the policy from
the transacted in the route.

  <bean id="required" 
    class="org.apache.camel.spring.spi.SpringTransactionPolicy">
    <property name="transactionManager" ref="jmsTransactionManager"/>
    <property name="propagationBehaviorName" value="PROPAGATION_REQUIRED"/>
  </bean>

And then refer to "required" from the route:

<route>
  <from uri="activemq:queue:foo"/>
  <transacted ref="required"/>
  <to uri="activemq:queue:bar"/>
</route>
}

2.50.3. Database Sample

In this sample we want to ensure that two endpoints are under transaction control. These two endpoints insert data
into a database. The sample appears in full in a unit test.

First of all we setup the normal Spring configuration file. Here we have defined a DataSource to the HSQLDB
and a most importantly the Spring DataSource TransactionManager that is doing the heavy lifting of ensuring our
transactional policies. You are of course free to use any of the Spring based TransactionMananger, eg. if you are
in a full blown J2EE container you could use JTA or the WebLogic or WebSphere specific managers.

http://camel.apache.org/maven/current/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html
http://svn.apache.org/viewvc/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/interceptor/TransactionalClientDataSourceMinimalConfigurationTest.java?view=log


Database Sample

88 Talend Mediation Developer Guide

As we use the new convention over configuration we do not need to configure a transaction policy bean, so we
do not have any PROPAGATION_REQUIRED beans. All the beans needed to be configured is standard Spring
beans only, eg. there are no Camel specific configuration at all.

<!-- this example uses JDBC so we define a data source -->
<bean id="dataSource" 
    class="org.springframework.jdbc.datasource.DriverManagerDataSource">
    <property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
    <property name="url" value="jdbc:hsqldb:mem:camel"/>
    <property name="username" value="sa"/>
    <property name="password" value=""/>
</bean>

<!-- Spring transaction manager -->
<!-- this is the transaction manager Camel will use for transacted routes -->
<bean id="txManager" 
    class="org.springframework.jdbc.datasource.DataSourceTransactionManager">
    <property name="dataSource" ref="dataSource"/>
</bean>

<!-- bean for book business logic -->
<bean id="bookService" 
    class="org.apache.camel.spring.interceptor.BookService">
    <property name="dataSource" ref="dataSource"/>
</bean>

Then we are ready to define our Camel routes. We have two routes: 1 for success conditions, and 1 for a forced
rollback condition. This is after all based on a unit test. Notice that we mark each route as transacted using the
transacted tag.

<camelContext xmlns="http://camel.apache.org/schema/spring">
    <route>
        <from uri="direct:okay"/>
        <!-- We mark this route as transacted. Camel will lookup the Spring 
             transaction manager and use it by default. We can optimally 
             pass in arguments to specify a policy to use that is configured 
             with a Spring transaction manager of choice. However Camel 
             supports convention over configuration as we can just use the 
             defaults out of the box suitable for most situations -->
        <transacted/>
        <setBody>
            <constant>Tiger in Action</constant>
        </setBody>
        <bean ref="bookService"/>
        <setBody>
            <constant>Elephant in Action</constant>
        </setBody>
        <bean ref="bookService"/>
    </route>

    <route>
        <from uri="direct:fail"/>
        <!-- we mark this route as transacted. See comments above. -->
        <transacted/>
        <setBody>
            <constant>Tiger in Action</constant>
        </setBody>
        <bean ref="bookService"/>
        <setBody>



JMS Sample

Talend Mediation Developer Guide 89

            <constant>Donkey in Action</constant>
        </setBody>
        <bean ref="bookService"/>
    </route>
</camelContext>

That is all that is needed to configure a Camel route as being transacted. Just remember to use the transacted
DSL. The rest is standard Spring XML to setup the transaction manager.

2.50.4. JMS Sample

In this sample we want to listen for messages on a queue and process the messages with our business logic Java
code and send them along. Since it is based on a unit test the destination is a mock endpoint.

First we configure the standard Spring XML to declare a JMS connection factory, a JMS transaction manager and
our ActiveMQ component that we use in our routing.

<!-- setup JMS connection factory -->
<bean id="jmsConnectionFactory" 
    class="org.apache.activemq.ActiveMQConnectionFactory">
    <property name="brokerURL" 
        value="vm://localhost?broker.persistent=false&broker.useJmx=false"/>
</bean>

<!-- setup Spring jms TX manager -->
<bean id="jmsTransactionManager" 
    class="org.springframework.jms.connection.JmsTransactionManager">
    <property name="connectionFactory" ref="jmsConnectionFactory"/>
</bean>

<!-- define our activemq component -->
<bean id="activemq" 
    class="org.apache.activemq.camel.component.ActiveMQComponent">
    <property name="connectionFactory" ref="jmsConnectionFactory"/>
    <!-- define the jms consumer/producer as transacted -->
    <property name="transacted" value="true"/>
    <!-- setup the transaction manager to use -->
    <!-- if not provided then Camel will automatically use a 
         JmsTransactionManager, however if you for instance use a JTA  
         transaction manager then you must configure it -->
    <property name="transactionManager" ref="jmsTransactionManager"/>
</bean>

And then we configure our routes. Notice that all we have to do is mark the route as transacted using the transacted
tag.

<camelContext xmlns="http://camel.apache.org/schema/spring">
    <!-- disable JMX during testing -->
    <jmxAgent id="agent" disabled="true"/>
    <route>
        <!-- 1: from the jms queue -->
        <from uri="activemq:queue:okay"/>
        <!-- 2: mark this route as transacted -->
        <transacted/>
        <!-- 3: call our business logic that is myProcessor -->
        <process ref="myProcessor"/>

http://svn.apache.org/viewvc/camel/trunk/components/camel-jms/src/test/java/org/apache/camel/component/jms/tx/TransactionMinimalConfigurationTest.java?view=log


Validate

90 Talend Mediation Developer Guide

        <!-- 4: if success then send it to the mock -->
        <to uri="mock:result"/>
    </route>
</camelContext>

<bean id="myProcessor" 
    class="org.apache.camel.component.jms.tx.JMSTransactionalClientTest \\ 
    $MyProcessor"/>

Transaction error handler

When a route is marked as transacted using transacted Camel will automatically use the
TransactionErrorHandler as Error Handler. It supports basically the same feature set as the
DefaultErrorHandler, so you can for instance use Exception Clause as well.

2.51. Validate
Validate uses an expression or predicates to validate the contents of a message. It is useful for ensuring that
messages are valid before attempting to process them.

You can use the validate DSL with all kind of Predicates and Expressions. Validate evaluates the Predicate/
Expression and if it is false a PredicateValidationException is thrown. If it is true message processing
continues.

2.51.1. Using from Java DSL

The route below will read the file contents and validate them against a regular expression.

from("file://inbox")
  .validate(body(String.class).regex("^\\w{10}\\,\\d{2}\\,\\w{24}$"))
.to("bean:MyServiceBean.processLine");

Validate is not limited to the message body. You can also validate the message header.

from("file://inbox")
  .validate(header("bar").isGreaterThan(100))
.to("bean:MyServiceBean.processLine");

You can also use validate together with simple.

from("file://inbox")
  .validate(simple("${in.header.bar} == 100"))
.to("bean:MyServiceBean.processLine");

2.51.2. Using from Spring DSL

To use validate in the Spring DSL, the easiest way is to use simple expressions.

<route>
  <from uri="file://inbox"/>

http://camel.apache.org/transactionerrorhandler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/defaulterrorhandler.html
http://camel.apache.org/exception-clause.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html


Wire Tap

Talend Mediation Developer Guide 91

  <validate>
    <simple>${body} regex ^\\w{10}\\,\\d{2}\\,\\w{24}$</simple>
  </validate>
  <beanRef ref="myServiceBean" method="processLine"/>
</route>

<bean id="myServiceBean" class="com.mycompany.MyServiceBean"/>

The XML DSL to validate the message header would looks like this:

<route>
  <from uri="file://inbox"/>
  <validate>
    <simple>${in.header.bar} == 100</simple>
  </validate>
  <beanRef ref="myServiceBean" method="processLine"/>
</route>

<bean id="myServiceBean" class="com.mycompany.MyServiceBean"/>

2.52. Wire Tap
The Wire Tap from the EIP patterns allows you to route messages to a separate tap location while it is forwarded
to the ultimate destination.

Options:

Name Default Value Description

uri The URI of the endpoint to which the wire-tapped
message will be sent. You should use either uri or ref.

ref Reference identifier of the endpoint to which the wire-
tapped message will be sent. You should use either uri
or ref.

executorServiceRef Reference identifier of a custom Thread Pool to use
when processing the wire-tapped messages. If not set,
Camel will use a default thread pool.

processorRef Reference identifier of a custom Processor to use for
creating a new message (e.g., the "send a new message"
mode).

http://www.enterpriseintegrationpatterns.com/WireTap.html


WireTap node

92 Talend Mediation Developer Guide

Name Default Value Description

copy true Whether to copy the Exchange before wire-tapping the
message.

onPrepareRef Reference identifier of a custom Processor to prepare
the copy of the Exchange to be wire-tapped. This allows
you to do any custom logic, such as deep-cloning the
message payload.

2.52.1. WireTap node

Camel's WireTap node supports two flavors when tapping an Exchange.

• With the traditional Wire Tap, Camel will copy the original Exchange and set its Exchange Pattern to InOnly,
as we want the tapped Exchange to be sent in a fire and forget style. The tapped Exchange is then sent in a
separate thread so it can run in parallel with the original.

• Camel also provides an option of sending a new Exchange allowing you to populate it with new values. See the
Camel Website for dynamically maintained examples of this pattern in use.

2.52.2. Sending a copy (traditional wire tap)

Using the Fluent Builders

from("direct:start")
    .to("log:foo")
    .wireTap("direct:tap")
    .to("mock:result");

Using the Spring XML Extensions

<route>
    <from uri="direct:start"/>
    <to uri="log:foo"/>
    <wireTap uri="direct:tap"/>
    <to uri="mock:result"/>
</route>

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/wire-tap.html#WireTap-SendinganewExchange
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html


Talend Mediation Developer Guide

Chapter 3. Components
The following Camel components are discussed within this guide:

Component / ArtifactId / URI Description

Section 3.1, “ActiveMQ” / activemq-camel

activemq:[topic:]destinationName

For JMS Messaging with Apache ActiveMQ

Section 3.2, “Atom” / camel-atom

atom:uri

Working with Apache Abdera for atom integration, such
as consuming an atom feed.

Section 3.3, “Bean” / camel-core

bean:beanName[?method=someMethod]

Uses the Camel Bean Binding to bind message
exchanges to beans in the Camel Registry. Is also
used for exposing and invoking POJO (Plain Old Java
Objects).

Section 3.4, “Cache” / camel-cache

cache://cachename[?options]

The cache component facilitates creation of caching
endpoints and processors using EHCache as the cache
implementation.

Section 3.5, “Class” / camel-core

class:className[?method=someMethod]

Uses the Camel Bean Binding to bind message
exchanges to beans in the Camel Registry. Is also
used for exposing and invoking POJOs (Plain Old Java
Objects).

Section 3.6, “Context” / camel-context

context:camelContextId:
localEndpointName

Used to refer to endpoints within a separate
CamelContext to provide a simple black box
composition approach so that routes can be combined
into a CamelContext and then used as a black box
component inside other routes in other CamelContexts

Section 3.7, “Crypto (Digital Signatures)”

crypto:sign:name[?options]
crypto:verify:name[?options]

Used to sign and verify exchanges using the Signature
Service of the Java Cryptographic Extension.

Section 3.8, “CXF” / camel-cxf Working with Apache CXF for web services integration

http://activemq.apache.org/
http://incubator.apache.org/abdera/
http://ehcache.org/
http://apache.org/cxf/


94 Talend Mediation Developer Guide

Component / ArtifactId / URI Description

cxf:address[?serviceClass=...]

Section 3.9, “CXF Bean Component” / camel-cxf

cxf:bean name

Process the exchange using a JAX WS or JAX
RS annotated bean from the registry. Requires less
configuration than the above CXF Component

Section 3.10, “CXFRS” / camel-cxf

cxfrs:address[?resourcesClasses=...]

Working with Apache CXF for REST services
integration

Section 3.11, “Direct” / camel-core

direct:name

Synchronous call to another endpoint from same
CamelContext

Section 3.12, “Event” / camel-spring

event://default
spring-event://default

Working with Spring ApplicationEvents

Section 3.13, “Exec” / camel-exec

exec://executable[?options]

For executing system commands

Section 3.14, “File” / camel-core

file://nameOfFileOrDirectory

Sending messages to a file or polling a file or directory.

Section 3.15, “Flatpack” / camel-flatpack

flatpack:[fixed|delim]:configFile

Processing fixed width or delimited files or messages
using the FlatPack library

Section 3.16, “Freemarker” / camel-freemarker

freemarker:someTemplateResource

Generates a response using a Freemarker template

Section 3.17, “FTP” / camel-ftp

ftp://host[:port]/fileName

Sending and receiving files over FTP.

Section 3.17, “FTP” / camel-ftp (FTPS)

ftps://host[:port]/fileName

Sending and receiving files over FTP Secure (TLS and
SSL).

Section 3.18, “Hl7”

mina:tcp://hostname[:port]

For working with the HL7 MLLP protocol and the HL7
model using the HAPI library.

Section 3.19, “HTTP4” / camel-http4

http4://hostname[:port]

For calling out to external HTTP servers using Apache
HTTP Client 4.x

Section 3.30, “Mail” / camel-mail

imap://hostname[:port]

Receiving email using IMap

Section 3.20, “Jasypt” / camel-jasypt

jasypt: uri

Simplified on-the-fly encryption library, integrated with
Camel.

Section 3.21, “JCR” / camel-jcr

jcr://user:password@repository/
path/to/node

Storing a message in a JCR (JSR-170) compliant
repository like Apache Jackrabbit

Section 3.22, “JDBC” / camel-jdbc

jdbc:dataSourceName?options

For performing JDBC queries and operations

Section 3.23, “Jetty” / camel-jetty For exposing services over HTTP

http://apache.org/cxf/
http://flatpack.sourceforge.net
http://freemarker.org/
http://jackrabbit.apache.org


Talend Mediation Developer Guide 95

Component / ArtifactId / URI Description

jetty:url

Section 3.24, “JMS” / camel-jms

jms:[topic:]destinationName

Working with JMS providers

Section 3.25, “JMX” / camel-jmx

jmx://platform?options

For working with JMX notification listeners

Section 3.26, “JPA” / camel-jpa

jpa://entityName

For using a database as a queue via the JPA specification
for working with OpenJPA, Hibernate or TopLink

Section 3.27, “Jsch” / camel-jsch

scp://localhost/destination

Support for the scp protocol.

Section 3.28, “Log” / camel-core

log:loggingCategory[?level=ERROR]

Uses Jakarta Commons Logging to log the message
exchange to some underlying logging system like log4j

Section 3.29, “Lucene” / camel-lucene

lucene:searcherName:insert
[?analyzer=<analyzer>]
 

Uses Apache Lucene to perform Java-based indexing
and full text based searches using advanced analysis/
tokenization capabilities

Section 3.30, “Mail” / camel-mail

mail://user-info@host:port

Sending and receiving email

Section 3.31, “Mock” / camel-core

mock:name

For testing routes and mediation rules using mocks

Section 3.30, “Mail” / camel-mail

pop3://user-info@host:port

Receiving email using POP3 and JavaMail

Section 3.32, “MyBatis” / camel-mybatis

mybatis://statementName

Performs a query, poll, insert, update or delete in a
relational database using MyBatis

Section 3.33, “Properties” / camel-core

properties://key[?options]

The properties component facilitates using property
placeholders directly in endpoint uri definitions.

Section 3.34, “Quartz” / camel-quartz

quartz://groupName/timerName

Provides a scheduled delivery of messages using the
Quartz scheduler

Section 3.35, “Ref” / camel-core

ref:name

Component for lookup of existing endpoints bound in
the Camel Registry.

Section 3.36, “RMI” / camel-rmi

rmi://host[:port]

Working with RMI

Section 3.37, “RSS” / camel-rss

rss:uri

Working with ROME for RSS integration, such as
consuming an RSS feed.

Section 3.38, “SEDA” / camel-core

seda:name

Asynchronous call to another endpoint in the same
Camel Context

Section 3.39, “Servlet” / camel-servlet For exposing services over HTTP through the servlet
which is deployed into the Web container.

http://openjpa.apache.org/
http://www.hibernate.org/
http://mybatis.org/
http://www.opensymphony.com/quartz/
http://rometools.org/


96 Talend Mediation Developer Guide

Component / ArtifactId / URI Description

servlet:uri

Section 3.17, “FTP” / camel-ftp (SFTP)

sftp://host[:port]/fileName

Sending and receiving files over SFTP (FTP over SSH).

Section 3.30, “Mail” / camel-mail

smtp://user-info@host[:port]

Sending email using SMTP and JavaMail

Section 3.41, “SMPP” / camel-smpp

smpp://user-info@host[:port]?options

To send and receive SMS using Short Messaging
Service Center using the JSMPP library

Section 3.42, “SNMP” / camel-snmp

snmp://host[:port]?options

Polling OID values and receiving traps using SNMP via
SNMP4J library

Section 3.43, “Spring Integration” / camel-spring-
integration

spring-integration:defaultChannelName

The bridge component of Camel and Spring Integration

Section 3.45, “SQL Component” / camel-sql

sql:select * from table where id=#

Performing SQL queries using JDBC

Section 3.46, “SSH” / camel-ssh

ssh:[username[:password]@]host[:port][?options]

For sending commands to a SSH server

Section 3.47, “Stub”

stub:someOtherCamelUri

Allows you to stub out some physical middleware
endpoint for easier testing or debugging

Section 3.48, “Test” / camel-spring

test:expectedMessagesEndpointUri

Creates a Section 3.31, “Mock” endpoint which expects
to receive all the message bodies that could be polled
from the given underlying endpoint

Section 3.49, “Timer” / camel-core

timer://name

A timer endpoint

Section 3.50, “Velocity” / camel-velocity

velocity:someTemplateResource

Generates a response using an Apache Velocity
template

Section 3.51, “VM” / camel-core

vm:name

Asynchronous call to another endpoint in the same JVM

Section 3.52, “XQuery Endpoint” / camel-saxon

xquery:someXQueryResource

Generates a response using an XQuery template

Section 3.53, “XSLT” / camel-spring

xslt:someTemplateResource

Generates a response using an XSLT template

Section 3.54, “Zookeeper”

zookeeper://host:port/path

Working with ZooKeeper cluster(s)

http://code.google.com/p/jsmpp/
http://snmp4j.com
http://www.springframework.org/spring-integration
http://velocity.apache.org/
http://www.w3.org/TR/xslt
http://camel.apache.org/zookeeper.html


ActiveMQ

Talend Mediation Developer Guide 97

3.1. ActiveMQ
The ActiveMQ component allows messages to be sent to a JMS Queue or Topic or messages to be consumed from
a JMS Queue or Topic using Apache ActiveMQ.

This component is based on JMS Component and uses Spring's JMS support for declarative transactions, using
Spring's JmsTemplate for sending and a MessageListenerContainer for consuming. All the options
from the Section 3.24, “JMS” component also apply for this component.

To use this component make sure you have the activemq.jar or activemq-core.jar on your
classpath along with any Camel dependencies such as camel-core.jar, camel-spring.jar and camel-
jms.jar.

3.1.1. URI format and Options

activemq:[queue:|topic:]destinationName

where destinationName is an ActiveMQ queue or topic name. By default, the destinationName is interpreted as
a queue name. For example, to connect to the queue, FOO.BAR, use:

activemq:FOO.BAR

You can include the optional queue: prefix, if you prefer:

activemq:queue:FOO.BAR

To connect to a topic, you must include the topic: prefix. For example, to connect to the topic,
Stocks.Prices, use:

activemq:topic:Stocks.Prices

For options, see the Section 3.24, “JMS” component as all these options also apply for this component.

3.1.2. Configuring the Connection Factory

This test case shows how to add an ActiveMQComponent to the CamelContext using the activeMQComponent()
method while specifying the brokerURL used to connect to ActiveMQ.

camelContext.addComponent("activemq", activeMQComponent(
      "vm://localhost?broker.persistent=false"));

3.1.3. Configuring the Connection Factory using
Spring XML

You can configure the ActiveMQ broker URL on the ActiveMQComponent as follows

<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

http://java.sun.com/products/jms/
http://activemq.apache.org/
http://svn.apache.org/repos/asf/activemq/trunk/activemq-camel/src/test/java/org/apache/activemq/camel/component/ActiveMQRouteTest.java
http://activemq.apache.org/configuring-transports.html


Using connection pooling

98 Talend Mediation Developer Guide

       xsi:schemaLocation="
http://www.springframework.org/schema/beans 
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://camel.apache.org/schema/spring 
http://camel.apache.org/schema/spring/camel-spring.xsd">

   <camelContext xmlns="http://camel.apache.org/schema/spring">
   </camelContext>

   <bean id="activemq" 
      class="org.apache.activemq.camel.component.ActiveMQComponent">
      <property name="brokerURL" value="tcp://somehost:61616"/>
   </bean>
</beans>

3.1.4. Using connection pooling

When sending to an ActiveMQ broker using Camel it is recommended to use a pooled connection factory to
efficiently handle pooling of JMS connections, sessions and producers. This is documented on the ActiveMQ
Spring Support page.

You can grab ActiveMQ's org.apache.activemq.pool.PooledConnectionFactory with Maven:

<dependency>
   <groupId>org.apache.activemq</groupId>
   <artifactId>activemq-pool</artifactId>
   <version>5.3.2</version>
</dependency>

And then setup the activemq Camel component as follows:

<bean id="jmsConnectionFactory" 
   class="org.apache.activemq.ActiveMQConnectionFactory">
   <property name="brokerURL" value="tcp://localhost:61616" />
</bean>

<bean id="pooledConnectionFactory" 
   class="org.apache.activemq.pool.PooledConnectionFactory">
   <property name="maxConnections" value="8" />
   <property name="maximumActive" value="500" />
   <property name="connectionFactory" ref="jmsConnectionFactory" />
</bean>

<bean id="jmsConfig" 
   class="org.apache.camel.component.jms.JmsConfiguration">
   <property name="connectionFactory" ref="pooledConnectionFactory"/>
   <property name="transacted" value="false"/>
   <property name="concurrentConsumers" value="10"/>
</bean>

<bean id="activemq" 
   class="org.apache.activemq.camel.component.ActiveMQComponent">
   <property name="configuration" ref="jmsConfig"/>
</bean>

http://activemq.apache.org/spring-support.html
http://activemq.apache.org/spring-support.html


Invoking MessageListener POJOs in a Camel route

Talend Mediation Developer Guide 99

3.1.5. Invoking MessageListener POJOs in a Camel
route

The ActiveMQ component also provides a helper TypeConverter from a JMS MessageListener to a Processor. This
means that the Bean component is capable of invoking any JMS MessageListener bean directly inside any route.

So for example you can create a MessageListener in JMS like this:

public class MyListener implements MessageListener {
   public void onMessage(Message jmsMessage) {
       // ...
   }
}

Then use it in your Camel route as follows

from("file://foo/bar").
  bean(MyListener.class);

That is, you can reuse any of the Camel Components and easily integrate them into your JMS
MessageListener POJO.

3.1.6. Consuming Advisory Messages

ActiveMQ can generate Advisory messages which are put in topics that you can consume. Such messages can
help you send alerts in case you detect slow consumers or to build statistics (number of messages/produced per
day, etc.) The following Spring DSL example shows you how to read messages from a topic.

The below route starts by reading the topic ActiveMQ.Advisory.Connection. To watch another
topic, simply change the name according to the name provided in ActiveMQ Advisory
Messages documentation. The parameter mapJmsMessage=false allows for converting the
org.apache.activemq.command.ActiveMqMessage object from the JMS queue. Next, the body
received is converted into a String for the purposes of this example and a carriage return is added. Finally, the
string is added to a file:

<route>
    <from uri="activemq:topic:ActiveMQ.Advisory.Connection?
mapJmsMessage=false" />

    <convertBodyTo type="java.lang.String"/>
    <transform>
         <simple>${in.body}&#13;</simple>
    </transform>
    <to uri="file://data/activemq/?fileExist=Append&amp;
fileName=advisoryConnection-${date:now:yyyyMMdd}.txt" />

</route>

If you consume a message on a queue, you should see the following files under the data/activemq folder :

advisoryConnection-20100312.txt advisoryProducer-20100312.txt

and containing string:

ActiveMQMessage {commandId = 0, responseRequired = false, 
messageId = ID:dell-charles-3258-1268399815140-1:0:0:0:221, 
originalDestination = null, originalTransactionId = null, producerId = ID:

http://activemq.apache.org/advisory-message.html


Getting Component JARs

100 Talend Mediation Developer Guide

dell-charles-3258-1268399815140-1:0:0:0, destination = 
topic://ActiveMQ.Advisory.Connection, transactionId = null, expiration = 0, 
timestamp = 0, arrival = 0, brokerInTime = 1268403383468, brokerOutTime = 
1268403383468, correlationId = null, replyTo = null, persistent = false, 
type = Advisory, priority = 0, groupID = null, groupSequence = 0, 
targetConsumerId = null, compressed = false, userID = null, content = null, 
marshalledProperties = org.apache.activemq.util.ByteSequence@17e2705, 
dataStructure = ConnectionInfo {commandId = 1, responseRequired = true, 
connectionId = ID:dell-charles-3258-1268399815140-2:50, clientId = 
ID:dell-charles-3258-1268399815140-14:0, userName = , password = *****, 
brokerPath = null, brokerMasterConnector = false, manageable = true, 
clientMaster = true}, redeliveryCounter = 0, size = 0, properties = 
{originBrokerName=master, 
originBrokerId=ID:dell-charles-3258-1268399815140-0:0, 
originBrokerURL=vm://master}, readOnlyProperties = true, 
readOnlyBody = true, droppable = false}

3.1.7. Getting Component JARs

You will need these dependencies

• camel-jms

• activemq-camel

3.1.7.1. camel-jms

You must have the camel-jms as dependency as Section 3.1, “ActiveMQ” is an extension to the Section 3.24,
“JMS” component.

<dependency>
  <groupId>org.apache.camel</groupId>
  <artifactId>camel-jms</artifactId>
  <version>1.6.0</version>
</dependency>

The ActiveMQ Camel component is released with the ActiveMQ project itself. For Maven 2 users you simply
need to add the following dependency to your project.

3.1.7.2. ActiveMQ 5.2 or later

<dependency>
  <groupId>org.apache.activemq</groupId>
  <artifactId>activemq-camel</artifactId>
  <version>5.2.0</version>
</dependency>

3.1.7.3. ActiveMQ 5.1.0

For 5.1.0 it is in the activemq-core library



Atom

Talend Mediation Developer Guide 101

<dependency>
  <groupId>org.apache.activemq</groupId>
  <artifactId>activemq-core</artifactId>
  <version>5.1.0</version>
</dependency>

Alternatively you can download the component jar directly from the Maven repository:

• activemq-camel-5.2.0.jar

• activemq-core-5.1.0.jar

3.2. Atom
The atom: component is used for polling Atom feeds.

Camel will poll the feed every 60 seconds by default. Note: The component currently only supports polling
(consuming) feeds.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
   <groupId>org.apache.camel</groupId>
   <artifactId>camel-atom</artifactId>
   <version>x.x.x</version>
   <!-- use the same version as your Camel core version -->
</dependency>

See the Apache Camel website for examples of this component in use.

3.2.1. URI format and options

atom://atomUri[?options]

where atomUri is the URI to the Atom feed to poll.

Options

Property Default Description

splitEntries true If true Camel will poll the feed and for the subsequent
polls return each entry poll by poll. For example, if the
feed contains seven entries then Camel will return the
first entry on the first poll, the second entry on the next
poll, until no more entries where as Camel will do a new
update on the feed. If false then Camel will poll a
fresh feed on every invocation.

filter true is only used by the split entries to filter the
entries to return. Camel will default use the
UpdateDateFilter that only returns new entries
from the feed. So the client consuming from the feed
never receives the same entry more than once. The filter
will return the entries ordered by the newest last.

http://repo2.maven.org/maven2/org/apache/activemq/activemq-camel/5.2.0/activemq-camel-5.2.0.jar
http://repo2.maven.org/maven2/org/apache/activemq/activemq-core/5.1.0/activemq-core-5.1.0.jar
http://camel.apache.org/atom.html


Exchange data format

102 Talend Mediation Developer Guide

Property Default Description

lastUpdate null Is only used when filter=true. It defines the
starting timestamp for selecting newer entries
(uses the entry.updated timestamp). Syntax
format is: yyyy-MM-ddTHH:MM:ss. Example:
2007-12-24T17:45:59.

throttleEntries true Sets whether all entries identified in a single feed
poll should be delivered immediately. If true, only
one entry is processed per consumer.delay. Only
applicable when splitEntries is set to true.

feedHeader true Sets whether to add the Abdera Feed object as a header.

sortEntries false If splitEntries is true, this sets whether to sort
those entries by updated date.

consumer.delay 60000 Delay in milliseconds between each poll.

consumer.initialDelay 1000 Millis before polling starts.

consumer.userFixedDelay false If true, use fixed delay between pools, otherwise fixed
rate is used. See ScheduledExecutorService in JDK for
details.

You can append query options to the URI in the following format, ?option=value&option=value&...

3.2.2. Exchange data format

Camel will set the In body on the returned Exchange with the entries. Depending on the splitEntries flag
Camel will either return one Entry or a List<Entry>.

Option Value Behavior

splitEntries true Only a single entry from the currently being processed feed is
set: exchange.in.body(Entry)

splitEntries false The entire list of entries from the feed is set:
exchange.in.body(List<Entry>)

Camel can set the Feed object on the In header (see feedHeader option to disable this).

3.2.3. Message Headers

Camel atom uses these headers:

Header Description

CamelAtomFeed When consuming the
org.apache.abdera.model.Feed object is set
to this header.

3.3. Bean
The bean: component binds beans to Camel message exchanges.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html


URI format and options

Talend Mediation Developer Guide 103

3.3.1. URI format and options

bean:beanID[?options]

where beanID can be any string which is used to look up the bean in the Camel Registry.

Options

Name Type Default Description

method String null The method name from the bean that will be invoked. If
not provided, Camel will try to pick the method itself.
In case of ambiguity an exception will be thrown. See
Camel Bean Binding for more details.

cache boolean false If enabled, Camel will cache the result of the first
Registry look-up. Cache can be enabled if the bean in
the Registry is defined as a singleton scope.

multi-
Parameter-
Array

boolean false How to treat the parameters which are passed from the
message body; if it is true, the In message body should
be an array of parameters.

You can append query options to the URI in the following format, ?option=value&option=value&...

3.3.2. Using

The object instance that is used to consume messages must be explicitly registered with the Camel Registry. For
example, if you are using Spring you must define the bean in the Spring configuration, spring.xml ; or if you
don't use Spring, by registering the bean in JNDI, as described here:

// let's populate the context with the services we need
// note that we could just use a spring.xml file to avoid this step
JndiContext context = new JndiContext();
context.bind("bye", new SayService("Good Bye!"));

CamelContext camelContext = new DefaultCamelContext(context);  

Once an endpoint has been registered, you can build Camel routes that use it to process exchanges.

// let's add simple route
camelContext.addRoutes(new RouteBuilder() {
    public void configure() {
        from("direct:hello").to("bean:bye");
    }
});  

Note: A bean: endpoint cannot be defined as the input to the route; that is you cannot consume from it, you can
only route from some inbound message endpoint to the bean endpoint as output. So consider using a direct: or
queue: endpoint as the input.

You can use the createProxy() methods on ProxyHelper to create a proxy that will generate BeanExchanges
and send them to any endpoint:

Endpoint endpoint = camelContext.getEndpoint("direct:hello");

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html


Bean as endpoint

104 Talend Mediation Developer Guide

ISay proxy = ProxyHelper.createProxy(endpoint, ISay.class);
String rc = proxy.say();
assertEquals("Good Bye!", rc);

And the same route using Spring DSL:

<route>
   <from uri="direct:hello">
   <to uri="bean:bye"/>
</route>

3.3.3. Bean as endpoint

Camel also supports invoking Section 3.3, “Bean” as an Endpoint. In the route below:

<camelContext xmlns="http://camel.apache.org/schema/spring">
  <route>
    <from uri="direct:start"/>
    <to uri="myBean"/>
    <to uri="mock:results"/>
  </route>
</camelContext>

<bean id="myBean" class="org.apache.camel.spring.bind.ExampleBean"/>

What happens is that when the exchange is routed to the myBean Camel will use the Bean Binding to invoke the
bean. The source for the bean is just a plain POJO:

public class ExampleBean {

    public String sayHello(String name) {
        return "Hello " + name + "!";
    }
}

Camel will use the Bean Binding to invoke the sayHello method, by converting the Exchange's In body to the
String type and storing the output of the method on the Exchange Out body.

3.3.4. Bean Binding

How bean methods to be invoked are chosen (if they are not specified explicitly through the method parameter)
and how parameter values are constructed from the Message are all defined by the Bean Binding mechanism. This
is used throughout all of the various Bean Integration mechanisms in Camel.

3.4. Cache
The cache component enables you to perform caching operations using EHCache as the Cache Implementation.
The cache itself is created on demand or if a cache of that name already exists then it is simply utilized with its
original settings.

This component supports producer and event based consumer endpoints.



URI format and Options

Talend Mediation Developer Guide 105

The Cache consumer is an event based consumer and can be used to listen and respond to specific cache activities.
If you need to perform selections from a pre-existing cache, use the processors defined for the cache component.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
   <groupId>org.apache.camel</groupId>
   <artifactId>camel-cache</artifactId>
   <version>x.x.x</version>
   <!-- use the same version as your Camel core version -->
</dependency>

3.4.1. URI format and Options

cache://cacheName[?options]

You can append query options to the URI in the following format, ?option=value&option=value&...

Options

Name Default Value Description

maxElementsInMemory 1000 The numer of elements that may be stored in the defined
cache

memoryStore-
EvictionPolicy

MemoryStore-
EvictionPolicy .LFU

The number of elements that may be stored in the
defined cache. Options include

• MemoryStoreEvictionPolicy.LFU - Least frequently
used

• MemoryStoreEvictionPolicy.LRU - Least recently
used

• MemoryStoreEvictionPolicy.FIFO - first in first out,
the oldest element by creation time

overflowToDisk true Specifies whether cache may overflow to disk

eternal false Sets whether elements are eternal. If eternal, timeouts
are ignored and the element never expires.

timeToLiveSeconds 300 The maximum time between creation time and when
an element expires. Is used only if the element is not
eternal.

timeToIdleSeconds 300 The maximum amount of time between accesses before
an element expires

diskPersistent false Whether the disk store persists between restarts of the
Virtual Machine.

diskExpiryThread-
IntervalSeconds

120 The number of seconds between runs of the disk expiry
thread.

cacheManagerFactory null If you want to use a custom factory
which instantiates and creates the EHCache
net.sf.ehcache.CacheManager. Use type
of abstract org.apache.camel.
component.cache. CacheManagerFactory.

eventListenerRegistry null Sets a list of EHCache
net.sf.ehcache.event.CacheEventListener for all new



Sending/Receiving Messages to/from the cache

106 Talend Mediation Developer Guide

Name Default Value Description

caches - no need to define it per cache in
EHCache xml config anymore. Use type of
org.apache.camel. component.cache.
CacheEventListenerRegistry.

cacheLoaderRegistry null Sets a list of org.apache.camel. component.cache.
CacheLoaderWrapper that extends EHCache
net.sf.ehcache.loader.CacheLoader for all new caches
- no need to define it per cache in EHCache xml
config anymore. Use type of org.apache.camel.
component.cache. CacheLoaderRegistry

key null To configure using a cache key by default. If a key is
provided in the message header, then the key from the
header takes precedence.

operation null To configure using an cache operation by default. If an
operation in the message header, then the operation from
the header takes precedence.

3.4.2. Sending/Receiving Messages to/from the cache

3.4.2.1. Message Headers

Header Description

CamelCacheOperation The operation to be performed on the cache. These headers are removed
from the exchange after the cache operation is performed. Valid options are

• CamelCacheGet

• CamelCacheCheck

• CamelCacheAdd

• CamelCacheUpdate

• CamelCacheDelete

• CamelCacheDeleteAll

CamelCacheKey The cache key used to store the Message in the cache. The cache key is
optional if the CamelCacheOperation is CamelCacheDeleteAll.

3.4.2.2. Cache Producer

Sending data to the cache involves the ability to direct payloads in exchanges to be stored in a pre-existing or
created-on-demand cache. The mechanics of doing this involve

• setting the Message Exchange Headers shown above.

• ensuring that the Message Exchange Body contains the message directed to the cache



Cache Usage Samples

Talend Mediation Developer Guide 107

3.4.2.3. Cache Consumer

Receiving data from the cache involves the ability of the CacheConsumer to listen on a pre-existing or created-
on-demand Cache using an event Listener and receive automatic notifications when any cache activity take place
(i.e., Add, Update, Delete, or DeleteAll). Upon such an activity taking place

• an exchange containing Message Exchange Headers and a Message Exchange Body containing the just added/
updated payload is placed and sent.

• in case of a CamelCacheDeleteAll operation, the Message Exchange Header CamelCacheKey and the Message
Exchange Body are not populated.

3.4.2.4. Cache Processors

There are a set of nice processors with the ability to perform cache lookups and selectively replace payload content
at the

• body

• token

• xpath level

3.4.3. Cache Usage Samples

3.4.3.1. Example: Configuring the cache

from("cache://MyApplicationCache" +
         "?maxElementsInMemory=1000" + 
         "&memoryStoreEvictionPolicy=" +
         "MemoryStoreEvictionPolicy.LFU" +
         "&overflowToDisk=true" +
         "&eternal=true" +
         "&timeToLiveSeconds=300" + 
         "&timeToIdleSeconds=true" +
         "&diskPersistent=true" +
         "&diskExpiryThreadIntervalSeconds=300")

3.4.3.2. Example: Adding keys to the cache

RouteBuilder builder = new RouteBuilder() {
   public void configure() {
      from("direct:start")
         .setHeader(CacheConstants.CACHE_OPERATION, 
             constant(CacheConstants.CACHE_OPERATION_ADD)) 
         .setHeader(CacheConstants.CACHE_KEY, 
             constant("Ralph_Waldo_Emerson")) 
         .to("cache://TestCache1")
   }
};



Cache Usage Samples

108 Talend Mediation Developer Guide

3.4.3.3. Example: Updating existing keys in a cache

RouteBuilder builder = new RouteBuilder() {
   public void configure() {
      from("direct:start")
         .setHeader(CacheConstants.CACHE_OPERATION, 
             constant(CacheConstants.CACHE_OPERATION_UPDATE)) 
         .setHeader(CacheConstants.CACHE_KEY, 
             constant("Ralph_Waldo_Emerson"))
         .to("cache://TestCache1")
   }
};

3.4.3.4. Example: Deleting existing keys in a cache

RouteBuilder builder = new RouteBuilder() {
   public void configure() {
      from("direct:start")
         .setHeader(CacheConstants.CACHE_OPERATION, 
             constant(CacheConstants.CACHE_DELETE)) 
         .setHeader(CacheConstants.CACHE_KEY, 
             constant("Ralph_Waldo_Emerson"))
         .to("cache://TestCache1")
   }
};

3.4.3.5. Example: Deleting all existing keys in a cache

RouteBuilder builder = new RouteBuilder() {
   public void configure() {
      from("direct:start")
         .setHeader(CacheConstants.CACHE_OPERATION, 
             constant(CacheConstants.CACHE_DELETEALL)) 
         .to("cache://TestCache1");
   }
};

3.4.3.6. Example: Notifying any changes registering in a Cache to
Processors and other Producers

RouteBuilder builder = new RouteBuilder() {
   public void configure() {
      from("cache://TestCache1").process(new Processor() {
         public void process(Exchange exchange) throws Exception {
            String operation = 
               (String) exchange.getIn().getHeader(
               CacheConstants.CACHE_OPERATION);
            String key = (String) 
               exchange.getIn().getHeader(CacheConstants.CACHE_KEY);
            Object body = exchange.getIn().getBody();
           // Do something



Cache Usage Samples

Talend Mediation Developer Guide 109

         } 
      })
   } 
};

3.4.3.7. Example: Using Processors to selectively replace payload
with cache values

RouteBuilder builder = new RouteBuilder() {
   public void configure() {
     //Message Body Replacer
      from("cache://TestCache1")
         .filter(header(CacheConstants.CACHE_KEY).isEqualTo("greeting")) 
         .process(new CacheBasedMessageBodyReplacer(
            "cache://TestCache1","farewell"))
         .to("direct:next");  
      //Message Token replacer
      from("cache://TestCache1")
         .filter(header(CacheConstants.CACHE_KEY).isEqualTo("quote"))
         .process(new CacheBasedTokenReplacer(
           "cache://TestCache1","novel","#novel#"))
         .process(new CacheBasedTokenReplacer(
           "cache://TestCache1","author","#author#"))
         .process(new CacheBasedTokenReplacer(
           "cache://TestCache1","number","#number#"))
         .to("direct:next");

      //Message XPath replacer
      from("cache://TestCache1")
         .filter(header(CacheConstants.CACHE_KEY).isEqualTo("XML_FRAGMENT")) 
         .process(new CacheBasedXPathReplacer(
           "cache://TestCache1","book1","/books/book1"))
         .process (new CacheBasedXPathReplacer(
           "cache://TestCache1","book2","/books/book2"))
         .to("direct:next");
   }
};

3.4.3.8. Example: Getting an entry from the Cache

from("direct:start")
   // Prepare headers
   .setHeader(CacheConstants.CACHE_OPERATION, constant(
           CacheConstants.CACHE_OPERATION_GET))
   .setHeader(CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson")).
   .to("cache://TestCache1").
    // Check if entry was not found
    .choice().when(header(
        CacheConstants.CACHE_ELEMENT_WAS_FOUND).isNull()).
        // If not found, get the payload and put it to cache
        .to("cxf:bean:someHeavyweightOperation")
        .setHeader(CacheConstants.CACHE_OPERATION, constant(



Management of EHCache

110 Talend Mediation Developer Guide

              CacheConstants.CACHE_OPERATION_ADD))
        .setHeader(CacheConstants.CACHE_KEY, 
            constant("Ralph_Waldo_Emerson"))
        .to("cache://TestCache1")
    .end()
    .to("direct:nextPhase");

3.4.3.9. Example: Checking for an entry in the Cache

Note: The CHECK command tests existence of an entry in the cache but doesn't place a message in the body.

from("direct:start")
   // Prepare headers
   .setHeader(CacheConstants.CACHE_OPERATION, 
           constant(CacheConstants.CACHE_OPERATION_CHECK))
   .setHeader(CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson")).
   .to("cache://TestCache1").
   // Check if entry was not found
   .choice().when(header(CacheConstants.CACHE_ELEMENT_WAS_FOUND).isNull()).
      // If not found, get the payload and put it to cache
      .to("cxf:bean:someHeavyweightOperation").
      .setHeader(CacheConstants.CACHE_OPERATION, 
          constant(CacheConstants.CACHE_OPERATION_ADD))
      .setHeader(CacheConstants.CACHE_KEY, constant("Ralph_Waldo_Emerson"))
      .to("cache://TestCache1")
   .end();

3.4.4. Management of EHCache

EHCache has its own statistics and management from JMX.

Here's a snippet on how to expose them via JMX in a Spring application context:

<bean id="ehCacheManagementService" 
   class="net.sf.ehcache.management.ManagementService" 
   init-method="init" lazy-init="false">
   <constructor-arg>
      <bean class="net.sf.ehcache.CacheManager" 
         factory-method="getInstance"/>
   </constructor-arg>
   <constructor-arg>
      <bean class="org.springframework.jmx.support.JmxUtils" 
          factory-method="locateMBeanServer"/>
   </constructor-arg>
   <constructor-arg value="true"/>
   <constructor-arg value="true"/>
   <constructor-arg value="true"/>
   <constructor-arg value="true"/>
</bean>

Of course the same thing can be done in straight Java:

http://ehcache.org/
http://camel.apache.org/camel-jmx.html


Class

Talend Mediation Developer Guide 111

ManagementService.registerMBeans(
 CacheManager.getInstance(), mbeanServer, true, true, true, true);

You can get cache hits, misses, in-memory hits, disk hits, size stats this way. You can also change
CacheConfiguration parameters on the fly.

3.5. Class

3.5.1. Class Component

The class: component binds beans to Camel message exchanges. It works in the same way as the Section 3.3,
“Bean” component but instead of looking up beans from a Registry it creates the bean based on the class name.

3.5.1.1. URI format

class:className[?options]

where className is the fully qualified class name to create and use as bean.

3.5.1.2. Options

Name Type Default Description

method String null The method name that bean will be invoked. If not
provided, Camel will try to pick the method itself.
In case of ambiguity an exception is thrown. See
Bean Binding for more details.

multi-
Parameter-
Array

boolean false How to treat the parameters which are passed from
the message body; if it is true, the In message
body should be an array of parameters.

You can append query options to the URI in the following format, ?option=value&option=value&...

3.5.1.3. Using

You simply use the class component just as the Section 3.3, “Bean” component but by specifying the fully qualified
classname instead. For example to use the MyFooBean you have to do as follows:

from("direct:start")
   .to("class:org.apache.camel.component.bean.MyFooBean")
   .to("mock:result");

You can also specify which method to invoke on the MyFooBean, for example hello :

from("direct:start")
   .to("class:org.apache.camel.component.bean.MyFooBean?method=hello")
   .to("mock:result");

http://camel.apache.org/registry.html
http://camel.apache.org/bean-binding.html


Setting properties on the created instance

112 Talend Mediation Developer Guide

3.5.2. Setting properties on the created instance

In the endpoint uri you can specify properties to set on the created instance, for example, if it has a setPrefix
method:

from("direct:start")
   .to("class:org.apache.camel.component.bean.MyPrefixBean?prefix=Bye")
   .to("mock:result");

You can also use the # syntax to refer to properties to be looked up in the Registry .

from("direct:start")
   .to("class:org.apache.camel.component.bean.MyPrefixBean?cool=#foo")
   .to("mock:result");

This will lookup a bean from the Registry with the id foo and invoke the setCool method on the created instance
of the MyPrefixBean class.

See more

See more details at the Section 3.3, “Bean” component as the class component works in much the same
way.

3.6. Context
Available as of Camel 2.7

The context component allows you to create new Camel Components from a CamelContext with a number of
routes which is then treated as a black box, allowing you to refer to the local endpoints within the component
from other CamelContexts.

It is similar to the Routebox component in idea, though the Context component tries to be really simple for end
users; just a simple convention over configuration approach to refer to local endpoints inside the CamelContext
Component.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-context</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

3.6.1. URI format

context:camelContextId:localEndpointName[?options]

Or you can omit the "context:" prefix.

camelContextId:localEndpointName[?options]

• camelContextId is the ID you used to register the CamelContext into the Registry.

• localEndpointName can be a valid Camel URI evaluated within the black box CamelContext. Or it can
be a logical name which is mapped to any local endpoints. For example if you locally have endpoints like

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/routebox.html
http://camel.apache.org/registry.html


Example

Talend Mediation Developer Guide 113

direct:invoices and seda:purchaseOrders inside a CamelContext of id supplyChain, then you can just use
the URIs supplyChain:invoices or supplyChain:purchaseOrders to omit the physical endpoint kind and use
pure logical URIs.

You can append query options to the URI in the following format, ?option=value&option=value&...

3.6.2. Example

In this example we'll create a black box context, then we'll use it from another CamelContext.

3.6.2.1. Defining the context component

First you need to create a CamelContext, add some routes in it, start it and then register the CamelContext into
the Registry (JNDI, Spring, Guice or OSGi etc).

This can be done in the usual Camel way from this test case (see the createRegistry() method); this example shows
Java and JNDI being used:

// let's create our black box as a Camel context and a set of routes
DefaultCamelContext blackBox = new DefaultCamelContext(registry);
blackBox.setName("blackBox");
blackBox.addRoutes(new RouteBuilder() {
   @Override
   public void configure() throws Exception {
      // receive purchase orders, let's process it in some way then send         
      // an invoice to our invoice endpoint
      from("direct:purchaseOrder")
         .setHeader("received")
         .constant("true")
         .to("direct:invoice");
   }
});
blackBox.start();

registry.bind("accounts", blackBox);

Notice in the above route we are using pure local endpoints ( direct and seda ). Also note we expose this
CamelContext using the accounts ID. We can do the same thing in Spring via:

<camelContext id="accounts" xmlns="http://camel.apache.org/schema/spring">
   <route> 
      <from uri="direct:purchaseOrder"/>
      ...
      <to uri="direct:invoice"/>
   </route>
</camelContext>

3.6.2.2. Using the context component

Then in another CamelContext we can then refer to this "accounts black box" by just sending to
accounts:purchaseOrder and consuming from accounts:invoice .

http://camel.apache.org/registry.html
http://svn.apache.org/viewvc/camel/trunk/components/camel-context/src/test/java/org/apache/camel/component/context/JavaDslBlackBoxTest.java?revision=1069442&view=markup


Crypto (Digital Signatures)

114 Talend Mediation Developer Guide

If you prefer to be more verbose and explicit you could use context:accounts:purchaseOrder or even
context:accounts:direct://purchaseOrder if you prefer. But using logical endpoint URIs is preferred as it hides
the implementation detail and provides a simple logical naming scheme.

For example, if we wish to subsequently expose this accounts black box on some middleware (outside of the black
box) we can do things like:

<camelContext xmlns="http://camel.apache.org/schema/spring">
   <route> 
      <!-- consume from an ActiveMQ into the black box -->
      <from uri="activemq:Accounts.PurchaseOrders"/>
      <to uri="accounts:purchaseOrders"/>
   </route>
   <route>   
      <!-- let's send invoices from the black box -->
      <!-- to a different ActiveMQ Queue -->
      <from uri="accounts:invoice"/>
      <to uri="activemq:UK.Accounts.Invoices"/>
   </route>
</camelContext>

3.6.2.3. Naming endpoints

A context component instance can have many public input and output endpoints that can be accessed from outside
its CamelContext. When there are many it is recommended that you use logical names for them to hide the
middleware as shown above.

However when there is only one input, output or error/dead letter endpoint in a component we recommend using
the common posix shell names in, out and err

3.7. Crypto (Digital Signatures)
Using Camel cryptographic endpoints and Java's Cryptographic extension it is easy to create Digital Signatures
for Exchanges. Camel provides a pair of flexible endpoints which get used in concert to create a signature for an
exchange in one part of the exchange's workflow and then verify the signature in a later part of the workflow.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-crypto</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

3.7.1. Introduction

Digital signatures make use of Asymmetric Cryptographic techniques to sign messages. From a (very) high level,
the algorithms use pairs of complimentary keys with the special property that data encrypted with one key can
only be decrypted with the other. One, the private key, is closely guarded and used to 'sign' the message while the
other, public key, is shared around to anyone interested in verifying the signed messages. Messages are signed
by using the private key to encrypting a digest of the message. This encrypted digest is transmitted along with



URI Format

Talend Mediation Developer Guide 115

the message. On the other side the verifier recalculates the message digest and uses the public key to decrypt the
the digest in the signature. If both digests match the verifier knows only the holder of the private key could have
created the signature.

Camel uses the Signature service from the Java Cryptographic Extension to do all the heavy cryptographic lifting
required to create exchange signatures.

3.7.2. URI Format

As mentioned Camel provides a pair of crypto endpoints to create and verify signatures:

crypto:sign:name[?options]
crypto:verify:name[?options]

• crypto:sign creates the signature and stores it in the Header keyed by the constant Exchange.SIGNATURE, i.e.
"CamelDigitalSignature".

• crypto:sign creates the signature and stores it in the Header keyed by the constant Exchange.SIGNATURE, i.e.
"CamelDigitalSignature".

In order to correctly function, the sign and verify process needs a pair of keys to be shared, signing requiring a
PrivateKey and verifying a PublicKey (or a Certificate containing one). Using the JCE it is very simple to generate
these key pairs but it is usually most secure to use a KeyStore to house and share your keys. The DSL is very
flexible about how keys are supplied and provides a number of mechanisms.

The most basic way to way to sign an verify an exchange is with a KeyPair as follows:

from("direct:keypair").to("crypto:sign://basic?privateKey=#myPrivateKey", 
            "crypto:verify://basic?publicKey=#myPublicKey", "mock:result");

The same can be achieved with the Spring XML Extensions using references to keys:

<route>
    <from uri="direct:keypair"/>
    <to uri="crypto:sign://basic?privateKey=#myPrivateKey"/>
    <to uri="crypto:verify://basic?publicKey=#myPublicKey"/>
    <to uri="mock:result"/>
</route>
        

See the Camel Website for the most up-to-date examples of more advanced usages of this component.

3.7.3. Options

Name Type Default Description

algorithm String DSA The name of the JCE Signature algorithm that will
be used.

alias String null An alias name that will be used to select a key from
the keystore.

bufferSize Integer 2048 The size of the buffer used in the signature process.

certificate Certificate null A Certificate used to verify the signature of the
exchange's payload. Either this or a Public Key is
required.

http://camel.apache.org/crypto-digital-signatures.html#Crypto%28DigitalSignatures%29-Using


CXF

116 Talend Mediation Developer Guide

Name Type Default Description

keystore KeyStore null A reference to a JCE Keystore that stores keys and
certificates used to sign and verify.

provider String null The name of the JCE Security Provider that should
be used.

privateKey PrivateKey null The private key used to sign the exchange's payload.

publicKey PublicKey null The public key used to verify the signature of the
exchange's payload.

secureRandom secureRandom null A reference to a SecureRandom object that will be
used to initialize the Signature service.

password char[] null The password for the keystore.

clearHeaders String true Remove camel crypto headers from Message after a
verify operation (value can be "true"/"false").

3.8. CXF
When using CXF as a consumer, the Section 3.9, “CXF Bean Component” allows you to factor out how
message payloads are received from their processing as a RESTful or SOAP web service. This has the
potential of using a multitude of transports to consume web services. The bean component's configuration
is also simpler and provides the fastest method to implement web services using Camel and CXF.

The cxf: component provides integration with Apache CXF for connecting to JAX-WS services hosted in CXF.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-cxf</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

CXF dependencies

If you want to learn about CXF dependencies you can checkout the  WHICH-JARS  text file.

3.8.1. URI format

There are two scenarios:

cxf:bean:cxfEndpoint[?options]

where cxfEndpoint represents a bean ID that references a bean in the Spring bean registry. With this URI format,
most of the endpoint details are specified in the bean definition.

cxf://someAddress[?options]

where someAddress specifies the CXF endpoint's address. With this URI format, most of the endpoint details
are specified using options.

For either style above, you can append options to the URI as follows:

http://cxf.apache.org
http://svn.apache.org/repos/asf/cxf/trunk/distribution/src/main/release/lib/WHICH_JARS


Options

Talend Mediation Developer Guide 117

cxf:bean:cxfEndpoint?wsdlURL=wsdl/hello_world.wsdl&dataFormat=PAYLOAD

3.8.2. Options

Name Required Description

wsdlURL No The location of the WSDL. It is obtained from endpoint address by
default.

Example: file://local/wsdl/hello.wsdl or wsdl/
hello.wsdl

serviceClass Yes The name of the SEI (Service Endpoint Interface) class. This class
can have, but does not require, JSR181 annotations.

Since 2.0, this option is only required by POJO mode. If
the wsdlURL option is provided, serviceClass is not required
for PAYLOAD and MESSAGE mode. When wsdlURL option
is used without serviceClass, the serviceName and portName
(endpointName for Spring configuration) options MUST be
provided. It is possible to use # notation to reference a
serviceClass object instance from the registry. For example,
serviceClass=#beanName.

Since 2.8, it is possible to omit both wsdlURL and serviceClass
options for PAYLOAD and MESSAGE mode. When they are
omitted, arbitrary XML elements can be put in CxfPayload's body
in PAYLOAD mode to facilitate CXF Dispatch Mode.

Please be advised that the referenced object cannot be
a Proxy (Spring AOP Proxy is OK) as it relies on
Object.getClass().getName() method for non Spring
AOP Proxy.

Example: org.apache.camel.Hello

serviceClassInstance Yes Use either serviceClass or serviceClassInstance.

Deprecated in 2.x. In 1.6.x serviceClassInstance
works like serviceClass=#beanName, which looks up a
serviceObject instance from the registry.

Example: serviceClassInstance= beanName

serviceName No* The service name this service is implementing, it maps to the
wsdl:service@name

*Required for camel-cxf consumer since camel-2.2.0 or if more
than one serviceName is present in WSDL.

Example: {http:-//org.apache.camel}ServiceName

portName No* The port name this service is implementing, it maps to the
wsdl:port@name

*Required for camel-cxf consumer since camel-2.2.0 or if more
than one portName is present under serviceName. Example:
{http:-//org.apache.camel}PortName

dataFormat No The data type messages supported by the CXF endpoint.



Options

118 Talend Mediation Developer Guide

Name Required Description

Default: POJO
Example: POJO,PAYLOAD,MESSAGE
                      

relayHeaders No Please see the Description of relayHeaders option section for
this option in 2.0. Should a CXF endpoint relay headers along the
route. Currently only available when dataFormat=POJO

Default: true
Example:true,false
     

wrapped No Which kind of operation that CXF endpoint producer will invoke.

Default:false
Example:true,false
     

wrappedStyle No New in 2.5.0 The WSDL style that describes how parameters are
represented in the SOAP body. If the value is false, CXF will chose
the document-literal unwrapped style. If the value is true, CXF will
chose the document-literal wrapped style.

Default: Null
Example:true,false
     

setDefaultBus No This will set the default bus when CXF endpoint create a bus by
itself.

Default: false
Example:true,false
     

bus No New in 2.0. A default bus created by CXF Bus Factory. Use #
notation to reference a bus object from the registry. The referenced
object must be an instance of org.apache.cxf.Bus .

Example: bus=#busName

cxfBinding No New in 2.0, use # notation to reference a CXF binding object
from the registry. The referenced object must be an instance of
org.apache.camel.component.cxf.CxfBinding (use
an instance of org.apache.camel.component.cxf.
DefaultCxfBinding).

Example: cxfBinding=#bindingName

headerFilterStrategy No New in 2.0, use # notation to reference a header filter strategy object
from the registry. The referenced object must be an instance of
org.apache.camel.spi.HeaderFilterStrategy (use
an instance of org.apache.camel.component.cxf.
CxfHeaderFilter-Strategy). .

Example: headerFilterStrategy=#strategyName



Options

Talend Mediation Developer Guide 119

Name Required Description

loggingFeatureEnabled No New in 2.3, this option enables CXF Logging Feature which writes
inbound and outbound SOAP messages to log.

Default:false
Example:loggingFeatureEnabled=true
                      

defaultOperationName No New in 2.4, this option will set the default operationName that will
be used by the CxfProducer which invokes the remote service.

Default: null
Example:defaultOperationName=greetMe
                      

defaultOperationName-
Space

No New in 2.4, this option will set the default operationNamespace that
will be used by the CxfProducer which invokes the remote service.

Default: null
Example:defaultOperationNamespace=
http://apache.org/hello_world_soap_http         
                      

synchronous No New in 2.5, this option will let cxf endpoint decide to use sync or
async API to do the underlying work. The default value is false
which means camel-cxf endpoint will try to use async API by
default.

Default: false
Example: synchronous=true
                    

publishedEndpointUrl No New in 2.5, this option can override the endpointUrl that published
from the WSDL which can be accessed with service address url
plus ?wsdl.

Default: null
Example: publshedEndpointUrl=http://example.com/service
                    

The serviceName and portName are QNames, so if you provide them, be sure to prefix them with their
{namespace} as shown in the examples above. NOTE: the serviceClass for a CXF producer (that is, the to
endpoint) should be a Java interface.

3.8.2.1. The descriptions of the dataformats

DataFormat Description

POJO POJOs (Plain old Java objects) are the Java parameters to the method being invoked
on the target server. Both Protocol and Logical JAX-WS handlers are supported.

PAYLOAD PAYLOAD is the message payload (the contents of the soap:body ) after message
configuration in the CXF endpoint is applied. Only Protocol JAX-WS handler is
supported. Logical JAX-WS handler is not supported.

http://en.wikipedia.org/wiki/QName


Options

120 Talend Mediation Developer Guide

DataFormat Description

MESSAGE MESSAGE is the raw message that is received from the transport layer. JAX-WS
handler is not supported.

You can determine the data format mode of an exchange by retrieving the
exchange property, CamelCXFDataFormat. The exchange key constant is defined in
org.apache.camel.component.cxf.CxfConstants.DATA_FORMAT_PROPERTY .

3.8.2.2. How to enable CXF's LoggingOutInterceptor in MESSAGE
mode

CXF's LoggingOutInterceptor outputs outbound message that goes on the wire to logging system (Java
Util Logging). Since the LoggingOutInterceptor is in PRE_STREAM phase (but PRE_STREAM phase is
removed in MESSAGE mode), you have to configure LoggingOutInterceptor to be run during the WRITE
phase. The following is an example:

 
<bean id="loggingOutInterceptor" 
              class="org.apache.cxf.interceptor.LoggingOutInterceptor">
   <!-- it really should have been user-prestream, -->
   <!-- but CXF does have such phase! -->
   <constructor-arg value="write"/> 
</bean>
     
<cxf:cxfEndpoint id="serviceEndpoint" 
         address="http://localhost:9002/helloworld"  
         serviceClass="org.apache.camel.component.cxf.HelloService">
   <cxf:outInterceptors>
      <ref bean="loggingOutInterceptor"/>
   </cxf:outInterceptors>
   <cxf:properties>
      <entry key="dataFormat" value="MESSAGE"/>
   </cxf:properties>
</cxf:cxfEndpoint> 
          

3.8.2.3. Description of relayHeaders option

There are in-band and out-of-band on-the-wire headers from the perspective of a JAXWS WSDL-first developer.

The in-band headers are headers that are explicitly defined as part of the WSDL binding contract for an endpoint
such as SOAP headers.

The out-of-band headers are headers that are serialized over the wire, but are not explicitly part of the WSDL
binding contract.

Headers relaying/filtering is bi-directional.

When a route has a CXF endpoint and the developer needs to have on-the-wire headers, such as SOAP headers,
be relayed along the route to be consumed say by another JAXWS endpoint, then relayHeaders should be
set to true, which is the default value.



Options

Talend Mediation Developer Guide 121

The relayHeaders=true express an intent to relay the headers. The decision on whether a given header is
relayed is delegated to a pluggable instance that implements the MessageHeadersRelay interface. A concrete
implementation of MessageHeadersRelay will be consulted to decide if a header needs to be relayed or not.
There is already an implementation of SoapMessageHeadersRelay which binds itself to well-known SOAP
name spaces. Currently only out-of-band headers are filtered, and in-band headers will always be relayed when
relayHeaders=true . If there is a header on the wire, whose name space is unknown to the runtime, then a
fall back DefaultMessageHeadersRelay will be used, which simply allows all headers to be relayed.

The relayHeaders=false setting asserts that all headers in-band and out-of-band will be dropped.

• POJO and PAYLOAD modes are supported. In POJO mode, only out-of-band message headers are available
for filtering as the in-band headers have been processed and removed from header list by CXF. The in-band
headers are incorporated into the MessageContentList in POJO mode. If filtering of in-band headers is
required, please use PAYLOAD mode or plug in a (pretty straightforward) CXF interceptor/JAXWS Handler
to the CXF endpoint.

• The Message Header Relay mechanism has been merged into CxfHeaderFilterStrategy . The
relayHeaders option, its semantics, and default value remain the same, but it is a property of
CxfHeaderFilterStrategy . Here is an example of configuring it:

<bean id="dropAllMessageHeadersStrategy" 
   class="org.apache.camel.component.cxf.CxfHeaderFilterStrategy">
    <!--  Set relayHeaders to false to drop all SOAP headers -->
    <property name="relayHeaders" value="false"/>
    
</bean>
                

Then, your endpoint can reference the CxfHeaderFilterStrategy .

<route>
    <from uri="cxf:bean:routerNoRelayEndpoint?headerFilterStrategy
=#dropAllMessageHeadersStrategy"/>          
    <to uri="cxf:bean:serviceNoRelayEndpoint?headerFilterStrategy
=#dropAllMessageHeadersStrategy"/>
</route>

• The MessageHeadersRelay interface has changed slightly and has been renamed to
MessageHeaderFilter . It is a property of CxfHeaderFilterStrategy . Here is an example of
configuring user defined Message Header Filters:

<bean id="customMessageFilterStrategy" 
   class="org.apache.camel.component.cxf.CxfHeaderFilterStrategy">
   <property name="messageHeaderFilters">
      <list>
         <!-- SoapMessageHeaderFilter is the built in filter.  -->
         <!-- It can be removed by omitting it. -->
         <bean class=
            "org.apache.camel.component.cxf.SoapMessageHeaderFilter"/>          
            
         <!--  Add custom filter here -->    
         <bean class=
            "org.apache.camel.component.cxf.soap.CustomHeaderFilter"/>
      </list>
   </property>
</bean>



Configure the CXF endpoints with Spring

122 Talend Mediation Developer Guide

              

• Other than relayHeaders, there are new properties that can be configured in
CxfHeaderFilterStrategy.

Name Description type Required? Default value

relayHeaders All message headers will be
processed by Message Header Filters

boolean No true

relayAll-
MessageHeaders

All message headers will be
propagated (without processing by
Message Header Filters)

boolean No false

allowFilter-
NamespaceClash

If two filters overlap in activation
namespace, the property control how
it should be handled. If the value is
true, last one wins. If the value is
false, it will throw an exception

boolean No false

3.8.3. Configure the CXF endpoints with Spring

You can configure the CXF endpoint with the Spring configuration file shown below, and you can also embed
the endpoint into the camelContext tags. When you are invoking the service endpoint, you can set the
operationName and operationNamespace headers to explicitly state which operation you are calling.

<beans xmlns="http://www.springframework.org/schema/beans"
         xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
         xmlns:cxf="http://camel.apache.org/schema/cxf"
         xsi:schemaLocation="
http://www.springframework.org/schema/beans 
            http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://camel.apache.org/schema/cxf 
            http://camel.apache.org/schema/cxf/camel-cxf.xsd
http://camel.apache.org/schema/spring 
            http://camel.apache.org/schema/spring/camel-spring.xsd     ">

   <cxf:cxfEndpoint id="routerEndpoint" 
         address="http://localhost:9003/CamelContext/RouterPort"
         serviceClass="org.apache.hello_world_soap_http.GreeterImpl"/>
            
   <cxf:cxfEndpoint id="serviceEndpoint" 
         address="http://localhost:9000/SoapContext/SoapPort"
         wsdlURL="testutils/hello_world.wsdl"
         serviceClass="org.apache.hello_world_soap_http.Greeter"
         endpointName="s:SoapPort"
         serviceName="s:SOAPService"
         xmlns:s="http://apache.org/hello_world_soap_http" />
                  
    <camelContext id="camel" 
         xmlns="http://activemq.apache.org/camel/schema/spring">
         <route>
            <from uri="cxf:bean:routerEndpoint" />
            <to uri="cxf:bean:serviceEndpoint" />
         </route>
   </camelContext>



Configure the CXF endpoints with Spring

Talend Mediation Developer Guide 123

</beans>

Be sure to include the JAX-WS schemaLocation attribute specified on the root beans element. This
allows CXF to validate the file and is required. Also note the namespace declarations at the end of the
<cxf:cxfEndpoint/> tag--these are required because the combined { namespace}localName syntax is
presently not supported for this tag's attribute values.

The cxf:cxfEndpoint element supports many additional attributes:

Name Value

PortName The endpoint name this service is implementing, it maps to the
wsdl:port@name . In the format of ns:PORT_NAME where ns is a
namespace prefix valid at this scope.

serviceName The service name this service is implementing, it maps to the
wsdl:service@name . In the format of ns:SERVICE_NAME where
ns is a namespace prefix valid at this scope.

wsdlURL The location of the WSDL. Can be on the classpath, file system, or be
hosted remotely.

bindingId The bindingId for the service model to use.

address The service publish address.

bus The bus name that will be used in the JAX-WS endpoint.

serviceClass The class name of the SEI (Service Endpoint Interface) class which could
have JSR181 annotation or not.

It also supports many child elements:

Name Value

cxf:inInterceptors The incoming interceptors for this endpoint. A list of <bean> or <ref>.

cxf:inFaultInterceptors The incoming fault interceptors for this endpoint. A list of <bean> or
<ref> .

cxf:outInterceptors The outgoing interceptors for this endpoint. A list of <bean> or <ref> .

cxf:outFaultInterceptors The outgoing fault interceptors for this endpoint. A list of <bean> or
<ref> .

cxf:properties A properties map which should be supplied to the JAX-WS endpoint. See
below.

cxf:handlers A JAX-WS handler list which should be supplied to the JAX-WS endpoint.
See below.

cxf:dataBinding You can specify the which DataBinding will be use in the endpoint. This
can be supplied using the Spring <bean class="MyDataBinding"/
> syntax.

cxf:binding You can specify the BindingFactory for this endpoint to use. This can
be supplied using the Spring <bean class="MyBindingFactory"/
> syntax.

cxf:features The features that hold the interceptors for this endpoint. A list of
{{<bean>}}s or {{<ref>}}s

cxf:schemaLocations The schema locations for endpoint to use. A list of {{<schemaLocation>}}s

cxf:serviceFactory The service factory for this endpoint to use. This can be supplied using the
Spring <bean class="MyServiceFactory"/> syntax

You can find more advanced examples which show how to provide interceptors , properties and handlers here.

http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html


How to make the camel-cxf component use log4j instead of java.util.logging

124 Talend Mediation Developer Guide

NOTE You can use cxf:properties to set the camel-cxf endpoint's dataFormat and setDefaultBus properties from
Spring configuration file.

<cxf:cxfEndpoint id="testEndpoint" address="http://localhost:9000/router"
     serviceClass="org.apache.camel.component.cxf.HelloService"
     endpointName="s:PortName"
     serviceName="s:ServiceName"
     xmlns:s="http://www.example.com/test">
     <cxf:properties>
       <entry key="dataFormat" value="MESSAGE"/>
       <entry key="setDefaultBus" value="true"/>
     </cxf:properties>
   </cxf:cxfEndpoint>

3.8.4. How to make the camel-cxf component use log4j
instead of java.util.logging

CXF's default logger is java.util.logging . If you want to change it to log4j, proceed as follows. Create a
file, in the classpath, named META-INF/cxf/org.apache.cxf.logger . This file should contain the fully-
qualified name of the class, org.apache.cxf.common.logging.Log4jLogger, with no comments, on
a single line.

3.8.5. How to consume a message from a camel-cxf
endpoint in POJO data format

The camel-cxf endpoint consumer POJO data format is based on the cxf invoker, so the message header has
a property with the name of CxfConstants.OPERATION_NAME and the message body is a list of the SEI
method parameters.

public class PersonProcessor implements Processor {

   private static final transient Logger LOG = 
         LoggerFactory.getLogger(PersonProcessor.class);

   @SuppressWarnings("unchecked")
   public void process(Exchange exchange) throws Exception {
      LOG.info("processing exchange in camel");

      BindingOperationInfo boi = (BindingOperationInfo)exchange.getProperty(
            BindingOperationInfo.class.toString());
      if (boi != null) {
         LOG.info("boi.isUnwrapped" + boi.isUnwrapped());
      }
      // Get the parameters list which element is the holder.
      MessageContentsList msgList = (
            MessageContentsList)exchange.getIn().getBody();
            
      Holder<String> personId = (Holder<String>)msgList.get(0);
      Holder<String> ssn = (Holder<String>)msgList.get(1);
      Holder<String> name = (Holder<String>)msgList.get(2);

http://cwiki.apache.org/CXF20DOC/invokers.html


How to prepare the message for the camel-cxf endpoint in POJO data format

Talend Mediation Developer Guide 125

      if (personId.value == null || personId.value.length() == 0) {
         LOG.info("person id 123, so throwing exception");
         // Try to throw out the soap fault message
         org.apache.camel.wsdl_first.types.UnknownPersonFault personFault =
               new org.apache.camel.wsdl_first.types.UnknownPersonFault();
         personFault.setPersonId("");
         org.apache.camel.wsdl_first.UnknownPersonFault fault =
               new org.apache.camel.wsdl_first.UnknownPersonFault(
                  "Get the null value of person name", personFault);
         // Since Camel has its own exception handler framework, we can't 
         // throw the exception to trigger it. We set the fault message
         // in the exchange for camel-cxf component handling and return
         exchange.getOut().setFault(true);
         exchange.getOut().setBody(fault);
         return;
      }

      name.value = "Bonjour";
      ssn.value = "123";
      LOG.info("setting Bonjour as the response");
      // Set the response message, first element is the return value of 
      // the operation, the others are the holders of method parameters
      exchange.getOut().setBody(new Object[] {null, personId, ssn, name});
   }
}

3.8.6. How to prepare the message for the camel-cxf
endpoint in POJO data format

The camel-cxf endpoint producer is based on the cxf client API. First you need to specify the operation name
in the message header, then add the method parameters to a list, and initialize the message with this parameter list.
The response message's body is a messageContentsList; you can get the result from that list.

Note: the message body is a MessageContentsList. If you want to get the object array from the message
body, you can get the body using message.getbody(Object[].class), as follows:

Exchange senderExchange = new DefaultExchange(context, ExchangePattern.InOut);
final List<String> params = new ArrayList<String>();

// Prepare the request message for the camel-cxf procedure
params.add(TEST_MESSAGE);
senderExchange.getIn().setBody(params);
senderExchange.getIn().setHeader(CxfConstants.OPERATION_NAME, ECHO_OPERATION);

Exchange exchange = template.send("direct:EndpointA", senderExchange);

org.apache.camel.Message out = exchange.getOut();

// The response message's body is a MessageContentsList whose first element 
// is the return value of the operation. If there are some holder parameters, 
// the holder parameter will be filled in the rest of List. The result will 
// be extracted from the MessageContentsList with the String class type
MessageContentsList result = (MessageContentsList)out.getBody();

https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java


How to deal with the message for a camel-cxf endpoint in PAYLOAD data format

126 Talend Mediation Developer Guide

LOG.info("Received output text: " + result.get(0));
Map<String, Object> responseContext = 
         CastUtils.cast((Map)out.getHeader(Client.RESPONSE_CONTEXT));
assertNotNull(responseContext);
assertEquals("We should get the response context here", "UTF-8", 
         responseContext.get(org.apache.cxf.message.Message.ENCODING));
assertEquals("Reply body on Camel is wrong", "echo " + 
         TEST_MESSAGE, result.get(0));

3.8.7. How to deal with the message for a camel-cxf
endpoint in PAYLOAD data format

PAYLOAD means that you process the payload message from the SOAP envelope. You can use the
Header.HEADER_LIST as the key to set or get the SOAP headers and use the List<Element> to set or
get SOAP body elements.

We use the common Camel DefaultMessageImpl underlayer. Message.getBody() will return an
org.apache.camel.component.cxf.CxfPayload object, which has getters for SOAP message
headers and Body elements. This change enables decoupling the native CXF message from the Camel message.

protected RouteBuilder createRouteBuilder() {
   return new RouteBuilder() {
      public void configure() {
         from(SIMPLE_ENDPOINT_URI + "&dataFormat=PAYLOAD")
                     .to("log:info").process(new Processor() {
            @SuppressWarnings("unchecked")
            public void process(final Exchange exchange) throws Exception {
               CxfPayload<SoapHeader> requestPayload = 
                     exchange.getIn().getBody(CxfPayload.class);
               List<Element> inElements = requestPayload.getBody();
               List<Element> outElements = new ArrayList<Element>();
               // You can use a customer toStringConverter to turn a 
               // CxfPayLoad message into String as you want                        
               String request = exchange.getIn().getBody(String.class);
               XmlConverter converter = new XmlConverter();
               String documentString = ECHO_RESPONSE;
               if (inElements.get(0).getLocalName().equals("echoBoolean")) {
                  documentString = ECHO_BOOLEAN_RESPONSE;
                  assertEquals("Get a wrong request", 
                        ECHO_BOOLEAN_REQUEST, request);
               } else {
                  assertEquals("Get a wrong request", ECHO_REQUEST, request);
               }
               Document outDocument = converter.toDOMDocument(documentString);
               outElements.add(outDocument.getDocumentElement());
               // set the payload header with null
               CxfPayload<SoapHeader> responsePayload = 
                        new CxfPayload<SoapHeader>(null, outElements);
               exchange.getOut().setBody(responsePayload); 
            }
         });
      }
   };
}



How to get and set SOAP headers in POJO mode

Talend Mediation Developer Guide 127

3.8.8. How to get and set SOAP headers in POJO mode

POJO means that the data format is a "list of Java objects" when the Camel-cxf endpoint produces or consumes
Camel exchanges. Even though Camel expose message body as POJOs in this mode, Camel-cxf still provides
access to read and write SOAP headers. However, since CXF interceptors remove in-band SOAP headers from
Header list after they have been processed, only out-of-band SOAP headers are available to Camel-cxf in POJO
mode.

The following example illustrate how to get/set SOAP headers. Suppose we have a route that forwards from one
Camel-cxf endpoint to another. That is, SOAP Client -> Camel -> CXF service. We can attach two processors
to obtain/insert SOAP headers at (1) before request goes out to the CXF service and (2) before response comes
back to the SOAP Client. Processor (1) and (2) in this example are InsertRequestOutHeaderProcessor and
InsertResponseOutHeaderProcessor. Our route looks like this:

<route>
    <from uri="cxf:bean:routerRelayEndpointWithInsertion"/>
    <process ref="InsertRequestOutHeaderProcessor" />
    <to uri="cxf:bean:serviceRelayEndpointWithInsertion"/>
    <process ref="InsertResponseOutHeaderProcessor" />
</route>     

In 2.x SOAP headers are propagated to and from Camel Message headers. The Camel
message header name is "org.apache.cxf.headers.Header.list" which is a constant defined in CXF
(org.apache.cxf.headers.Header.HEADER_LIST). The header value is a List of CXF SoapHeader objects
(org.apache.cxf.binding.soap.SoapHeader). The following snippet is the InsertResponseOutHeaderProcessor
(that inserts a new SOAP header in the response message). The way to access SOAP headers in both
InsertResponseOutHeaderProcessor and InsertRequestOutHeaderProcessor is the same. The only difference
between the two processors is setting the direction of the inserted SOAP header.

public static class InsertResponseOutHeaderProcessor implements Processor {

   @SuppressWarnings("unchecked")
   public void process(Exchange exchange) throws Exception {
      List<SoapHeader> soapHeaders = 
               (List)exchange.getIn().getHeader(Header.HEADER_LIST);

      // Insert a new header
      String xml = 
            "<?xml version=\"1.0\" encoding=\"utf-8\"?><outofbandHeader "
            + "xmlns=\"http://cxf.apache.org/outofband/Header\" "
            + "hdrAttribute=\"testHdrAttribute\" "
            + "xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\" "
            + "soap:mustUnderstand=\"1\"><name>"
            + "New_testOobHeader</name><value>New_testOobHeaderValue"
            + "</value></outofbandHeader>";
            
        SoapHeader newHeader = new SoapHeader(soapHeaders.get(0).getName(),
              DOMUtils.readXml(new StringReader(xml)).
                 getDocumentElement());
                 
        // make sure direction is OUT since it is a response message.
        newHeader.setDirection(Direction.DIRECTION_OUT);
        //newHeader.setMustUnderstand(false);
        soapHeaders.add(newHeader);
        
    }



How to get and set SOAP headers in POJO mode

128 Talend Mediation Developer Guide

    
}

In 1.x SOAP headers are not propagated to and from Camel Message headers. Users have to go deeper into CXF
APIs to access SOAP headers. Also, accessing the SOAP headers in a request message is slight different than in a
response message. The InsertRequestOutHeaderProcessor and InsertResponseOutHeaderProcessor are as follows:

public static class InsertRequestOutHeaderProcessor implements Processor {
    public void process(Exchange exchange) throws Exception {
        CxfMessage message = exchange.getIn().getBody(CxfMessage.class);
        Message cxf = message.getMessage();
        List<SoapHeader> soapHeaders = (List)cxf.get(Header.HEADER_LIST);

        // Insert a new header
        String xml = 
            "<?xml version=\"1.0\" encoding=\"utf-8\"?><outofbandHeader "
            + "xmlns=\"http://cxf.apache.org/outofband/Header\" "
            + "hdrAttribute=\"testHdrAttribute\" "
            + "xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\""
            + " soap:mustUnderstand=\"1\"><name>"
            + "New_testOobHeader</name><value>New_testOobHeaderValue"
            + "</value></outofbandHeader>";
        
        SoapHeader newHeader = new SoapHeader(soapHeaders.get(0).getName(),
            DOMUtils.readXml(new StringReader(xml)).getDocumentElement());

        // make sure direction is IN since it is a request message.
        newHeader.setDirection(Direction.DIRECTION_IN);
        //newHeader.setMustUnderstand(false);
        soapHeaders.add(newHeader);       
    }
}

public static class InsertResponseOutHeaderProcessor implements Processor {
    public void process(Exchange exchange) throws Exception {
        CxfMessage message = exchange.getIn().getBody(CxfMessage.class);
        Map responseContext = 
                 (Map)message.getMessage().get(Client.RESPONSE_CONTEXT);
        List<SoapHeader> soapHeaders = 
                 (List)responseContext.get(Header.HEADER_LIST);
   
        // Insert a new header
        String xml = "<?xml version=\"1.0\" encoding=\"utf-8\"?>"
            + "<outofbandHeader xmlns="
            + "\"http://cxf.apache.org/outofband/Header\" "
            + "hdrAttribute=\"testHdrAttribute\" "
            + "xmlns:soap=\"http://schemas.xmlsoap.org/soap/envelope/\" "
            + "soap:mustUnderstand=\"1\">"
            + "<name>New_testOobHeader</name><value>"
            + "New_testOobHeaderValue</value></outofbandHeader>";
            
        SoapHeader newHeader = new SoapHeader(soapHeaders.get(0).getName(),
           DOMUtils.readXml(new StringReader(xml)).getDocumentElement()
        );
 
        // make sure direction is OUT since it is a response message.
        newHeader.setDirection(Direction.DIRECTION_OUT);
        //newHeader.setMustUnderstand(false);



How to get and set SOAP headers in PAYLOAD mode

Talend Mediation Developer Guide 129

        soapHeaders.add(newHeader);
                                       
    }
}

3.8.9. How to get and set SOAP headers in PAYLOAD
mode

We've already shown how to access SOAP message (CxfPayload object) in PAYLOAD mode (See "How to deal
with the message for a camel-cxf endpoint in PAYLOAD data format").

In 2.x Once you obtain a CxfPayload object, you can invoke the CxfPayload.getHeaders() method that returns a
List of DOM Elements (SOAP headers).

from(getRouterEndpointURI()).process(new Processor() {
   @SuppressWarnings("unchecked")
   public void process(Exchange exchange) throws Exception {
       CxfPayload<SoapHeader> payload = 
                exchange.getIn().getBody(CxfPayload.class);
       List<Element> elements = payload.getBody();
       assertNotNull("We should get the elements here", elements);
       assertEquals("Get the wrong elements size", 1, elements.size());
       assertEquals("Get the wrong namespace URI", 
                "http://camel.apache.org/pizza/types", 
                elements.get(0).getNamespaceURI());
            
       List<SoapHeader> headers = payload.getHeaders();
       assertNotNull("We should get the headers here", headers);
       assertEquals("Get the wrong headers size", headers.size(), 1);
       assertEquals("Get the wrong namespace URI", 
                ((Element)(headers.get(0).getObject())).getNamespaceURI(), 
                "http://camel.apache.org/pizza/types");         
   }  
})
.to(getServiceEndpointURI());

3.8.10. SOAP headers are not available in MESSAGE
mode

SOAP headers are not available in MESSAGE mode as SOAP processing is skipped.

3.8.11. How to throw a SOAP Fault from Camel

If you are using a camel-cxf endpoint to consume the SOAP request, you may need to throw the SOAP Fault
from the Camel context. Basically, you can use the throwFault DSL to do that; it works for POJO, PAYLOAD
and MESSAGE data format. You can define the soap fault like this

SOAP_FAULT = new SoapFault(EXCEPTION_MESSAGE, SoapFault.FAULT_CODE_CLIENT);



How to propagate a camel-cxf endpoint's request and response context

130 Talend Mediation Developer Guide

Element detail = SOAP_FAULT.getOrCreateDetail();
Document doc = detail.getOwnerDocument();
Text tn = doc.createTextNode(DETAIL_TEXT);
detail.appendChild(tn);

Then throw it as you like:

from(routerEndpointURI).setFaultBody(constant(SOAP_FAULT));

If your CXF endpoint is working in the MESSAGE data format, you could set the SOAP Fault message in the
message body and set the response code in the message header.

from(routerEndpointURI).process(new Processor() {

    public void process(Exchange exchange) throws Exception {
        Message out = exchange.getOut();
        // Set the message body with the 
        out.setBody(this.getClass().
              getResourceAsStream("SoapFaultMessage.xml"));
        // Set the response code here
        out.setHeader(
              org.apache.cxf.message.Message.RESPONSE_CODE, new Integer(500));
    }

});

Same for using POJO data format. You can set the SOAPFault on the out body and also indicate it is a fault by
calling Message.setFault(true):

from("direct:start").onException(SoapFault.class)
         .maximumRedeliveries(0).handled(true)
         .process(new Processor() {
            public void process(Exchange exchange) throws Exception {
               SoapFault fault = exchange
                .getProperty(Exchange.EXCEPTION_CAUGHT, SoapFault.class);
               exchange.getOut().setFault(true);
               exchange.getOut().setBody(fault);
            }
         }
    ).end().to(SERVICE_URI);

3.8.12. How to propagate a camel-cxf endpoint's
request and response context

cxf client API provides a way to invoke the operation with request and response context. If you are using a camel-
cxf endpoint producer to invoke the outside web service, you can set the request context and get response context
with the following code:

CxfExchange exchange = 
         (CxfExchange)template.send(getJaxwsEndpointUri(), new Processor() {
   public void process(final Exchange exchange) {
      final List<String> params = new ArrayList<String>();
      params.add(TEST_MESSAGE);
      // Set the request context to the inMessage

https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java


Attachment Support

Talend Mediation Developer Guide 131

      Map<String, Object> requestContext = 
               new HashMap<String, Object>();
      requestContext.put(BindingProvider.ENDPOINT_ADDRESS_PROPERTY, 
               JAXWS_SERVER_ADDRESS);
      exchange.getIn().setBody(params);
      exchange.getIn().setHeader(Client.REQUEST_CONTEXT , requestContext);
      exchange.getIn().setHeader(
               CxfConstants.OPERATION_NAME, GREET_ME_OPERATION);
   }
});

   org.apache.camel.Message out = exchange.getOut();
   // The output is an object array, 
   // the first element of the array is the return value
   Object\[\] output = out.getBody(Object\[\].class);
   LOG.info("Received output text: " + output\[0\]);
   // Get the response context form outMessage
   Map<String, Object> responseContext = 
      CastUtils.cast((Map)out.getHeader(Client.RESPONSE_CONTEXT));
   assertNotNull(responseContext);
   assertEquals("Get the wrong wsdl opertion name", 
      "{http://apache.org/hello_world_soap_http}greetMe",
      responseContext.get("javax.xml.ws.wsdl.operation").toString());
         

3.8.13. Attachment Support

POJO Mode: Both SOAP with Attachment and MTOM are supported (see example in Payload Mode for enabling
MTOM). However, SOAP with Attachment is not tested. Since attachments are marshalled and unmarshalled into
POJOs, users typically do not need to deal with the attachment themselves. Attachments are propagated to Camel
message's attachments since 2.1. So, it is possible to retrieve attachments by Camel Message API

DataHandler Message.getAttachment(String id)

.

Payload Mode: MTOM is supported since 2.1. Attachments can be retrieved by Camel Message APIs mentioned
above. SOAP with Attachment (SwA) is supported and attachments can be retrieved since 2.5. SwA is the default
(same as setting the CXF endpoint property "mtom_enabled" to false).

To enable MTOM, set the CXF endpoint property "mtom_enabled" to true . (I believe you can only do it with
Spring.)

<cxf:cxfEndpoint id="routerEndpoint" 
            address="http://localhost:9091/jaxws-mtom/hello"
   wsdlURL="mtom.wsdl"
   serviceName="ns:HelloService"
   endpointName="ns:HelloPort"
   xmlns:ns="http://apache.org/camel/cxf/mtom_feature">

   <cxf:properties>
   <!--  enable mtom by setting this property to true -->
   <entry key="mtom-enabled" value="true"/>
         
   <!--  set the camel-cxf endpoint data fromat to PAYLOAD mode -->



Attachment Support

132 Talend Mediation Developer Guide

   <entry key="dataFormat" value="PAYLOAD"/>
</cxf:properties>      

You can produce a Camel message with attachment to send to a CXF endpoint in Payload mode.

Exchange exchange = context.createProducerTemplate().send(
            "direct:testEndpoint", new Processor() {

   public void process(Exchange exchange) throws Exception {
      exchange.setPattern(ExchangePattern.InOut);
      List<Element> elements = new ArrayList<Element>();
      
      elements.add(DOMUtils.readXml(
         new StringReader(MtomTestHelper.REQ_MESSAGE)).getDocumentElement());
      CxfPayload<SoapHeader> body = new CxfPayload<SoapHeader>(
         new ArrayList<SoapHeader>(),elements);
         
      exchange.getIn().setBody(body);
      exchange.getIn().addAttachment(MtomTestHelper.REQ_PHOTO_CID, 
         new DataHandler(new ByteArrayDataSource(
            MtomTestHelper.REQ_PHOTO_DATA, "application/octet-stream")));

      exchange.getIn().addAttachment(MtomTestHelper.REQ_IMAGE_CID, 
         new DataHandler(new ByteArrayDataSource(
            MtomTestHelper.requestJpeg, "image/jpeg")));
   }
});

// process response 

CxfPayload<SoapHeader> out = exchange.getOut().getBody(CxfPayload.class);
Assert.assertEquals(1, out.getBody().size());

Map<String, String> ns = new HashMap<String, String>();
ns.put("ns", MtomTestHelper.SERVICE_TYPES_NS);
ns.put("xop", MtomTestHelper.XOP_NS);

XPathUtils xu = new XPathUtils(ns);
Element ele = (Element)xu.getValue(
            "//ns:DetailResponse/ns:photo/xop:Include", 
            out.getBody().get(0),XPathConstants.NODE);
            
String photoId = ele.getAttribute("href").substring(4); // skip "cid:"

ele = (Element)xu.getValue(
            "//ns:DetailResponse/ns:image/xop:Include", 
            out.getBody().get(0),XPathConstants.NODE);
            
String imageId = ele.getAttribute("href").substring(4); // skip "cid:"

DataHandler dr = exchange.getOut().getAttachment(photoId);
Assert.assertEquals("application/octet-stream", dr.getContentType());
MtomTestHelper.assertEquals(
            MtomTestHelper.RESP_PHOTO_DATA, 
            IOUtils.readBytesFromStream(dr.getInputStream()));
   
dr = exchange.getOut().getAttachment(imageId);



Attachment Support

Talend Mediation Developer Guide 133

Assert.assertEquals("image/jpeg", dr.getContentType());

BufferedImage image = ImageIO.read(dr.getInputStream());
Assert.assertEquals(560, image.getWidth());
Assert.assertEquals(300, image.getHeight());

You can also consume a Camel message received from a CXF endpoint in Payload mode.

public static class MyProcessor implements Processor {

   @SuppressWarnings("unchecked")
   public void process(Exchange exchange) throws Exception {
      CxfPayload<SoapHeader> in = exchange.getIn().getBody(CxfPayload.class);
        
      // verify request
      Assert.assertEquals(1, in.getBody().size());
        
      Map<String, String> ns = new HashMap<String, String>();
      ns.put("ns", MtomTestHelper.SERVICE_TYPES_NS);
      ns.put("xop", MtomTestHelper.XOP_NS);

      XPathUtils xu = new XPathUtils(ns);
      Element ele = (Element)xu.getValue("//ns:Detail/ns:photo/xop:Include", 
                  in.getBody().get(0),XPathConstants.NODE);
                  
      String photoId = ele.getAttribute("href").substring(4); // skip "cid:"
      Assert.assertEquals(MtomTestHelper.REQ_PHOTO_CID, photoId);

      ele = (Element)xu.getValue("//ns:Detail/ns:image/xop:Include", 
                  in.getBody().get(0), XPathConstants.NODE);
                  
      String imageId = ele.getAttribute("href").substring(4); // skip "cid:"
      Assert.assertEquals(MtomTestHelper.REQ_IMAGE_CID, imageId);

      DataHandler dr = exchange.getIn().getAttachment(photoId);
      Assert.assertEquals("application/octet-stream", dr.getContentType());
      MtomTestHelper.assertEquals(MtomTestHelper.REQ_PHOTO_DATA, 
                  IOUtils.readBytesFromStream(dr.getInputStream()));
   
      dr = exchange.getIn().getAttachment(imageId);
      Assert.assertEquals("image/jpeg", dr.getContentType());
      MtomTestHelper.assertEquals(MtomTestHelper.requestJpeg, 
            IOUtils.readBytesFromStream(dr.getInputStream()));

        // create response
      List<Element> elements = new ArrayList<Element>();
      elements.add(DOMUtils.readXml(new StringReader(
            MtomTestHelper.RESP_MESSAGE)).getDocumentElement());
      CxfPayload<SoapHeader> body = new CxfPayload<SoapHeader>(
            new ArrayList<SoapHeader>(),elements);
      exchange.getOut().setBody(body);
      exchange.getOut().addAttachment(MtomTestHelper.RESP_PHOTO_CID, 
            new DataHandler(new ByteArrayDataSource(
               MtomTestHelper.RESP_PHOTO_DATA, "application/octet-stream")));

      exchange.getOut().addAttachment(MtomTestHelper.RESP_IMAGE_CID, 



CXF Bean Component

134 Talend Mediation Developer Guide

            new DataHandler(new ByteArrayDataSource(
               MtomTestHelper.responseJpeg, "image/jpeg")));

    }
}

Message Mode: Attachments are not supported as it does not process the message at all.

3.9. CXF Bean Component
The cxfbean: component allows other Camel endpoints to send exchange and invoke Web service bean objects.
(Currently, it only supports JAXRS, JAXWS(new to camel2.1) annotated service bean.)

Note : CxfBeanEndpoint is a ProcessorEndpoint so it has no consumers. It works similarly to a Bean
component.

3.9.1. URI format

cxfbean:serviceBeanRef

where serviceBeanRef is a registry key to look up the service bean object. If serviceBeanRef references a
List object, elements of the List are the service bean objects accepted by the endpoint.

3.9.2. Options

Name Required Description

cxfBeanBinding No CXF bean binding specified by the # notation.
The referenced object must be an instance
of org.apache.camel.component.cxf.cxfbean.
CxfBeanBinding.

Default: DefaultCxfBeanBinding
Example: cxfBinding=#bindingName
                    

bus No CXF bus reference specified by the # notation. The referenced
object must be an instance of org.apache.cxf.Bus.

Default: Default bus created by CXF Bus Factory
Example: bus=#busName
                    

headerFilterStrategy No Header filter strategy specified by the # notation.
The referenced object must be an instance of
org.apache.camel.spi.HeaderFilterStrategy.

Default: CxfHeaderFilterStrategy
Example: headerFilterStrategy=#strategyName
                    



Headers

Talend Mediation Developer Guide 135

Name Required Description

setDefaultBus No This will set the default bus when CXF endpoint create a bus by
itself.

Default: false
Example: true,false
                    

populateFromClass No Since 2.3, the wsdlLocation annotated in the POJO is ignored
(by default) unless this option is set to false. Prior to 2.3, the
wsdlLocation annotated in the POJO is always honored and it is not
possible to ignore.

Default: true
Example: true,false
                    

providers No Since 2.5, setting the providers for the CXFRS endpoint.

Default: null
Example: providers=#providerRef1,#providerRef2
                    

3.9.3. Headers

Compatiblity

Currently, CXF Bean component has (only) been tested with Jetty HTTP component -- it can understand
headers from Jetty HTTP component without requiring conversion.

Name Required Description

CamelHttpCharacterEncoding
(before 2.0-m2: CamelCxfBean-
CharacterEncoding )

None Character encoding

Type:String
In/Out:In
Default: None
Example: ISO-8859-1
                      

CamelContentType (before 2.0-
m2:
CamelCxfBeanContentType )

No Content type

Type: String                    
In/Out:In
Default: */*
Example: text/xml
                      

CamelHttpBaseUri (2.0-m3 and
before:
CamelCxfBeanRequestBasePath
)

Yes The value of this header will be set in the CXF message as
the Message.BASE_PATH property. It is needed by CXF
JAX-RS processing. Basically, it is the scheme, host and port
portion of the request URI.



A Working Sample

136 Talend Mediation Developer Guide

Name Required Description

Type: String                    
In/Out:In
Default:The Endpoint URI of the source endpoint in the Camel
exchange
Example: http://localhost:9000
                      

CamelHttpPath (before 2.0-m2:
CamelCxfBeanRequestPath )

Yes Request URI's path

Type: String                    
In/Out:In
Default: None
Example: consumer/123
                      

CamelHttpMethod (before 2.0-
m2: CamelCxfBeanVerb )

Yes RESTful request verb

Type: String                    
In/Out:In
Default: None
Example: GET,PUT,POST,DELETE
                      

CamelHttpResponseCode No HTTP response code

Type: Integer                    
In/Out:Out
Default: None
Example: 200
                      

3.9.4. A Working Sample
This sample shows how to create a route that starts a Jetty HTTP server. The route sends requests to a CXF Bean
and invokes a JAXRS annotated service.

First, create a route as follows. The from endpoint is a Jetty HTTP endpoint that is listening on port 9000. Notice
that the matchOnUriPrefix option must be set to true because RESTful request URI will not match the
endpoint's URI http:-//localhost:9000 exactly.

<route>
   <from uri="jetty:http://localhost:9000?matchOnUriPrefix=true" />
   <to uri="cxfbean:customerServiceBean" />
</route>

The to endpoint is a CXF Bean with bean name customerServiceBean . The name will be looked up from
the registry. Next, we make sure our service bean is available in Spring registry. We create a bean definition in the
Spring configuration. In this example, we create a List of service beans (of one element). We could have created
just a single bean without a List.

<util:list id="customerServiceBean">
   <bean class="org.apache.camel.component.cxf.testbean.CustomerService"/>
</util:list>



CXFRS

Talend Mediation Developer Guide 137

<bean class="org.apache.camel.wsdl_first.PersonImpl" id="jaxwsBean" />

That's it. Once the route is started, the web service is ready for business. A HTTP client can make a request and
receive response.

url = new URL(
    "http://localhost:9000/customerservice/orders/223/products/323");
in = url.openStream();
assertEquals("{\"Product\":{\"description\":\"product 323\",\"id\":323}}", 
            CxfUtils.getStringFromInputStream(in));

3.10. CXFRS
When using CXF as a consumer, the Section 3.9, “CXF Bean Component” allows you to factor out how
message payloads are received from their processing as a RESTful or SOAP web service. This has the
potential of using a multitude of transports to consume web services. The bean component's configuration
is also simpler and provides the fastest method to implement web services using Camel and CXF.

The cxfrs: component provides integration with Apache CXF for connecting to JAX-RS services hosted in CXF.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
   <groupId>org.apache.camel</groupId>
   <artifactId>camel-cxf</artifactId>
   <!-- use the same version as your Camel core version -->
   <version>x.x.x</version>  
</dependency>

3.10.1. URI format
cxfrs://address?options

where address represents the CXF endpoint's address

cxfrs:bean:rsEndpoint

where rsEndpoint represents the Spring bean's name which presents the CXFRS client or server

For either style above, you can append options to the URI as follows:

cxfrs:bean:cxfEndpoint?resourceClasses=org.apache.camel.rs.Example

3.10.2. Options

Name Required Description

resourceClasses No The resource classes which you want to export as REST service.
Multiple classes can be separated by comma.

Default: None
Example: resourceClasses=
org.apache.camel.rs.Example1, 

http://incubator.apache.org/cxf/


Direct

138 Talend Mediation Developer Guide

Name Required Description

org.apache.camel.rs.Exchange2
     

httpClientAPI No If it is true, the CxfRsProducer will use the HttpClientAPI to
invoke the service If it is false, the CxfRsProducer will use the
ProxyClientAPI to invoke the service

Default: true
Example: httpClientAPI=true
                      

synchronous No New in 2.5, this option will let CxfRsConsumer decide to use sync
or async API to do the underlying work. The default value is false
which means it will try to use async API by default.

                        Default:false
                        Example:synchronous=true
                      

throwExceptionOnFailure No New in 2.6, this option tells the CxfRsProducer to inspect return
codes and will generate an Exception if the return code is larger
than 207.

Default:true
Example:throwExceptionOnFailure=true
                      

maxClientCacheSize No New in 2.6, you can set a IN message header
CamelDestinationOverrideUrl to dynamically override the target
destination Web Service or REST Service defined in your routes.
The implementation caches CXF clients or ClientFactoryBean
in CxfProvider and CxfRsProvider. This option allows you to
configure the maximum size of the cache.

Default:10
Example:maxClientCacheSize=5
                      

setDefaultBus false If true, will set the default bus when CXF endpoint create a bus by
itself.

bus A default bus created by CXF Bus Factory. Prefix bus name with a
# to reference a bus object from the registry. The referenced object
must be an instance of org.apache.cxf.Bus.

You can also configure the CXF REST endpoint through the Spring configuration. Since there are lots of difference
between the CXF REST client and CXF REST Server, we provides different configuration for them. Please check
out the schema file and CXF REST user guide for more information.

See the Camel Website for the latest examples of this component in use.

3.11. Direct
The direct: component provides direct, synchronous invocation of any consumers when a producer sends a
message exchange. This endpoint can be used to connect existing routes in the same Camel context.

http://svn.apache.org/repos/asf/camel/trunk/components/camel-cxf/src/main/resources/schema/cxfEndpoint.xsd
http://cwiki.apache.org/CXF20DOC/jax-rs.html
http://camel.apache.org/cxfrs.html


URI format

Talend Mediation Developer Guide 139

Asynchronous

The Section 3.38, “SEDA” component provides asynchronous invocation of any consumers when a
producer sends a message exchange.

Connection to other Camel contexts

The Section 3.51, “VM” component provides connections between Camel contexts as long they run in
the same JVM .

3.11.1. URI format

direct:someName[?options]

where someName can be any string to uniquely identify the endpoint.

3.11.2. Samples

In the route below we use the direct component to link the two routes together:

from("activemq:queue:order.in")
    .to("bean:orderServer?method=validate")
    .to("direct:processOrder");

from("direct:processOrder")
    .to("bean:orderService?method=process")
    .to("activemq:queue:order.out");

and the sample using Spring DSL:

<route>
     <from uri="activemq:queue:order.in"/>
     <to uri="bean:orderService?method=validate"/>
     <to uri="direct:processOrder"/>
  </route>

  <route>
     <from uri="direct:processOrder"/>
     <to uri="bean:orderService?method=process"/>
     <to uri="activemq:queue:order.out"/>
  </route>

See also samples from the Section 3.38, “SEDA” component, how they can be used together.

3.12. Event
The event: component provides access to the Spring ApplicationEvent objects. This allows you to publish
ApplicationEvent objects to a Spring ApplicationContext or to consume them. You can then use Enterprise
Integration Patterns to process them such as Section 2.27, “Message Filter” .



URI format

140 Talend Mediation Developer Guide

3.12.1. URI format

spring-event://default

3.13. Exec
The exec component can be used to execute system commands. For this component, Maven users will need to
add the following dependency to their pom.xml file:

<dependency>
   <groupId>org.apache.camel</groupId>
   <artifactId>camel-exec</artifactId>
   <version>${camel-version}</version>
</dependency>

replacing ${camel-version} with the precise version used.

This component has URI format of:

exec://executable[?options]

where executable is the name, or file path, of the system command that will be executed. If executable name
is used (for example, exec:java), the executable must be in the system path.

3.13.1. URI options

Name Default value Description

args null The arguments of the executable- they may
be one or many whitespace-separated tokens,
that can be quoted with ", for example,
args="arg 1" arg2 will use two
arguments arg 1 and arg2. To include the
quotes, enclose them in another set of quotes;
for example, args=""arg 1"" arg2 will
use the arguments "arg 1" and arg2.

workingDir null The directory in which the command should be
executed. If null, the working directory of the
current process will be used.

timeout Long.MAX_VALUE The timeout, in milliseconds, after which the
executable should be terminated. If execution
has not completed within this period, the
component will send a termination request.

outFile null The name of a file, created by the executable,
that should be considered as output of the
executable. If no outFile is set, the standard
output (stdout) of the executable will be used
instead.

binding a DefaultExecBinding
instance

A reference to an org.apache.commons.
exec.ExecBinding in the Registry .

http://camel.apache.org/registry.html


Message headers

Talend Mediation Developer Guide 141

Name Default value Description

commandExecutor a DefaultCommand-
Executor instance

A reference to an org.apache.commons.
exec.ExecCommandExecutor in the
Registry, that customizes the command
execution. The default command executor
utilizes the commons-exec library. which adds
a shutdown hook for every executed command.

useStderrOnEmpty-
Stdout

false A boolean which dictates when stdin is
empty, it should fallback and use stderr in
the Camel Message Body. This option is default
false .

3.13.2. Message headers

The supported headers are defined in org.apache.camel.component.exec.ExecBinding .

Name Message Description

ExecBinding.
EXEC_COMMAND_EXECUTABLE

in The name of the system command that will be
executed. Overrides the executable in the URI.

Type: String

ExecBinding.EXEC_COMMAND_ARGS in The arguments of the executable. The arguments
are used literally, no quoting is applied. Overrides
existing args in the URI.

Type:  java.util.List<String>

ExecBinding.EXEC_COMMAND_ARGS in The arguments of the executable as a single string
where each argument is whitespace separated (see
args in URI option). The arguments are used
literally, no quoting is applied. Overrides existing
args in the URI.

Type:  String

ExecBinding.
EXEC_COMMAND_OUT_FILE

in The name of a file, created by the executable, that
should be considered as output of the executable.
Overrides existing outFile in the URI.

Type:  String

ExecBinding.
EXEC_COMMAND_TIMEOUT

in The timeout, in milliseconds, after which the
executable should be terminated. Overrides existing
timeout in the URI.

Type:  long

ExecBinding.
EXEC_COMMAND_WORKING_DIR

in The directory in which the command should be
executed. Overrides existing workingDir in the
URI.

Type:  String

ExecBinding.EXEC_EXIT_VALUE out The value of this header is the exit value of the
executable. Non-zero exit values typically indicate
abnormal termination. Note that the exit value is OS-
dependent.

http://camel.apache.org/registry.html
http://commons.apache.org/exec/


Message body

142 Talend Mediation Developer Guide

Name Message Description

Type:  int

ExecBinding.EXEC_STDERR out The value of this header points to the standard error
stream (stderr) of the executable. If no stderr is
written, the value is null.

Type:  java.io.InputStream

ExecBinding.
EXEC_USE_STDERR_ON_EMPTY_STDOUT

in Indicates when the stdin is empty, should we
fallback and use stderr as the body of the Camel
message. By default this option is false.

Type:  boolean

3.13.3. Message body

If the in message body, that the Exec component receives is convertible to java.io.InputStream, it is used
to feed the input of the executable via its stdin. After the execution, the message body is the result of the execution,
that is org.apache.camel.components.exec.ExecResult instance containing the stdout, stderr, exit
value and out file. The component supports the following ExecResult type converters for convenience:

From To

ExecResult java.io.InputStream

ExecResult String

ExecResult byte []

ExecResult org.w3c.dom.Document

If out file is used (the endpoint is configured with outFile, or there is
ExecBinding.EXEC_COMMAND_OUT_FILE header) the converters return the content of the out file. If no
out file is used, then the converters will use the stdout of the process for conversion to the target type.

For an example, the below executes wc (word count, Linux) to count the words in file /usr/share/dict/
words . The word count (output) is written in the standard output stream of wc.

from("direct:exec")
.to("exec:wc?args=--words /usr/share/dict/words")
.process(new Processor() {
     public void process(Exchange exchange) throws Exception {
       // By default, the body is ExecResult instance
       assertIsInstanceOf(ExecResult.class, exchange.getIn().getBody());
       // Use the Camel Exec String type converter to convert the ExecResult 
       // to String. In this case, the stdout is considered as output.
       String wordCountOutput = exchange.getIn().getBody(String.class);
       // do something with the word count
       ...
     }
});

3.14. File
The File component provides access to file systems. The main functionality that this facilitates is:

http://camel.apache.org/exchange.html
http://camel.apache.org/type-converter.html


URI format

Talend Mediation Developer Guide 143

• files may be processed by other Camel Components. A typical pattern is that files are written to a directory
(or subdirectories) by one or more components (producers). Other components (consumers) may subsequently
read, process (and move or delete) these files. Consumers may generate new files based on templates or filters
being applied to the existing files. Temporary subdirectories or files may be created or used by consumers or
producers as part of the processing.

• messages from other components may be saved to disk, and this may also involve applying filters to the contents,
logging information in the messages, and so on.

Avoid reading files currently being written by another application

Beware the JDK File IO API is somewhat limited in detecting whether another application is currently
writing or copying a file. The implementation semantics can also vary, depending on the OS platform.
This could lead to the situation where Camel thinks the file is not locked by another process and starts
consuming it. You may need to check how this is implemented for your specific environment.

If needed, to assist you with this issue, Camel provides different readLock options and a
doneFileOption option that you can use. See also the section Consuming files from folders where
others drop files directly.

Should you ever need to activate debugging for this component it logs at level trace.

3.14.1. URI format
file:directoryName[?options]

or

file://directoryName[?options]

where directoryName represents the underlying file directory.

You can append query options to the URI in the following format, ?option=value&option=value&...

Only directories

Camel 2.0 onwards only supports endpoints configured with a starting directory. So the directoryName
must be a directory.

If you want to consume a single file only, specify the starting directory, and then use the fileName option,
for example by setting fileName=info.xml.

Note: the starting directory must not contain dynamic expressions with ${ } placeholders; again, use the
fileName option to specify the dynamic part of the filename.

3.14.2. URI Options

3.14.2.1. Common

Name Default Value Description

autoCreate true Automatically create missing directories in the file's pathname. For
the file consumer, that means creating the starting directory. For
the file producer, it means creating the directory the files should be
written to.



URI Options

144 Talend Mediation Developer Guide

Name Default Value Description

bufferSize 128kb Write buffer, sized in bytes.

fileName null Use Expression such as File Language to dynamically set the
filename. For consumers, it is used as a filename filter. For
producers, it is used to evaluate the filename to write. If an
expression is set, it take precedence over the CamelFileName
header. ( Note: The header itself can also be an Expression).

The expression options support both String and Expression
types. If the expression is a String type, it is always evaluated
using the File Language.

If the expression is an Expression type, the specified
Expression type is used; this allows you, for instance,
to use OGNL expressions. For the consumer, you can use
it to filter filenames, so you can for instance consume
today's file using the File Language syntax: mydata-
${date:now:yyyyMMdd}.txt .

flatten false Flatten is used to flatten the file name path to strip any leading paths,
so it is purely the file name. This allows you to consume recursively
into sub-directories. However, for example, if you write the files to
another directory they will be written in a (flat) single directory.

Setting this to true on the producer ensures that any file name
received in CamelFileName header will be stripped of any
leading paths.

charset null This option is used to specify the encoding of the file, and camel
will set the Exchange property with Exchange.CHARSET_NAME
with the value of this option. You can use this on the consumer, to
specify the encodings of the files, which allow Camel to know the
charset it should load the file content in case the file content is being
accessed. Likewise when writing a file, you can use this option to
specify which charset to write the file as well.

copyAndDelete
OnRenameFail

true Whether to fallback and do a copy and delete file, in case the file
could not be renamed directly. This option is not available for the
[FTP|FTP2] component.

3.14.2.2. Consumer

Name Default Value Description

initialDelay 1000 Milliseconds before polling the file or directory starts.

delay 500 Milliseconds before the next poll of the file or directory.

useFixedDelay true Controls if fixed delay or fixed rate is used. See
ScheduledExecutorService in JDK for details.

runLoggingLevel TRACE The consumer logs a start/complete log line when it polls. This option
allows you to configure the logging level for that.

recursive false if it is consuming a directory, it will look for files in all the sub-
directories as well.

delete false If true, the file will be deleted after it is processed

noop false If true, the file is not moved or deleted in any way. This
option is good for readonly data, or for ETL type requirements. If

http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/ognl.html
http://camel.apache.org/file-language.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://camel.apache.org/etl.html


URI Options

Talend Mediation Developer Guide 145

Name Default Value Description

noop=true, Camel will set idempotent=true as well, to avoid
consuming the same files over and over again.

preMove null If a file is to be moved before processing, use Expression such as
File Language to dynamically specify the target directory name. For
example to move in-progress files into the order directory set this
value to order.

move .camel If a file is to be moved after processing, use Expression such as File
Language to dynamically set the target directory name. To move files
into a .done subdirectory just enter .done.

moveFailed null Expression (such as File Language) used to dynamically set a different
target directory when moving files after processing (configured via
move setting defined above) failed. For example, to move files into
a .error subdirectory use: .error. Note: When moving the files
to the “fail” location Camel will handle the error and will not pick up
the file again.

include null Is used to include files, if filename matches the regex pattern.

exclude null Is used to exclude files, if filename matches the regex pattern.

antInclude null Ant style filter inclusion, for example {{antInclude=\*\*/\*.txt}}.
Multiple inclusions may be specified in comma-delimited format.

antExclude null Ant style filter exclusion. If both antInclude and antExclude
the latter takes precedence. Multiple exclusions may be specified in
comma-delimited format.

idempotent false Option to use the Section 2.18, “Idempotent Consumer” EIP pattern
to let Camel skip already processed files. This will by default use a
memory based LRUCache that holds 1000 entries. If noop=true
then idempotent will be enabled as well to avoid consuming the same
files over and over again.

idempotent-
Repository

null Pluggable repository as a org.apache.camel.
processor.idempotent.MessageIdRepository class. This will by
default use MemoryMessageIdRepository if none is specified
and idempotent is true .

inProgress-
Repository

memory A pluggable in-progress repository org.apache.camel.spi.
IdempotentRepository. The in-progress repository is used to account
the current in-progress files being consumed. By default a memory
based repository is used.

filter null Pluggable filter as a org.apache.camel.component.file.
GenericFileFilter class. This will skip files if filter returns
false in its accept() method.

sorter null Pluggable sorter as a java.util.Comparator
<org.apache.camel.component.file.GenericFile> class.

sortBy null Built-in sort using the File Language. Supports nested sorts, so you
can have a sort by file name and as a second group sort by modified
date. See sorting section below for details.

readLock marker-
File

Used by consumer, to only poll the files if it has exclusive read-lock
on the file (that is, the file is not in-progress or being written). Camel
will wait until the file lock is granted. This option provides the built-
in strategies:

markerFile is where Camel will create a marker file and hold
a lock on the marker file. This option is not avail for the FTP
component.

http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/IdempotentRepository.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/IdempotentRepository.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Comparator.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Comparator.html
http://camel.apache.org/file-language.html


URI Options

146 Talend Mediation Developer Guide

Name Default Value Description

changed is using file length/modification timestamp to detect
whether the file is currently being copied or not. This will at least use
1 sec. to determine this, so this option cannot consume files as fast as
the others, but can be more reliable as the JDK IO API cannot always
determine whether a file is currently being used by another process.
This option is not avail for the FTP component.

fileLock is for using java.nio.channels.FileLock. This
option is not available for the FTP component. This approach should
be avoided when accessing a remote file system via a mount/share
unless that file system supports distributed file locks.

rename is for using a try to rename the file as a test if we can get
exclusive read-lock.

none is for no read locks at all. Note from Camel 2.10 onwards
the read locks changed, fileLock and rename will also use a
markerFile as well, to ensure not picking up files that may be
in process by another Camel consumer running on another node (eg
cluster). This is supported only by the file component (not the ftp
component).

readLockTimeout 10000 Optional timeout in milliseconds for the read-lock, if supported by
the read-lock. If the read-lock could not be granted and the timeout
triggered, then Camel will skip the file. At next poll Camel, will try
the file again, and this time maybe the read-lock could be granted.
Use a value of 0 or lower to indicate forever. Currently fileLock,
changed and rename support the timeout.

readLockCheck-
Interval

1000 Interval in milliseconds for the read-lock, if supported by the read
lock. This interval is used for sleeping between attempts to acquire
the read lock. For example when using the changed read lock, you
can set a higher interval period to cater for slow writes . The default
of 1 sec. may be too fast if the producer is very slow writing the file.

directoryMust-
Exist

false Similar to startingDirectoryMustExist but this applies
during polling recursive sub directories.

doneFileName null If provided, Camel will only consume files if a done file exists. This
option configures what file name to use. Either you can specify a fixed
name, or you can use dynamic placeholders. The done file is always
expected in the same folder as the original file. See using done file
and writing done file sections for examples.

exclusiveRead-
LockStrategy

null Pluggable read-lock as a
org.apache.camel.component.file.
GenericFileExclusiveReadLockStrategy
implementation.

maxMessages-
PerPoll

0 An integer that defines the maximum number of messages to gather
per poll. By default, no maximum is set. It can be used to set a limit of,
for example, 1000 to avoid having the server read thousands of files
as it starts up. Set a value of 0 or negative to disable it. You can use
the eagerMaxMessagesPerPoll option and set this to false
to allow to scan all files first and then sort afterwards.

eagerMax-
MessagesPerPoll

true Allows for controlling whether the limit from
maxMessagesPerPoll is eager or not. If eager then the limit is
during the scanning of files. Whereas false would scan all files,
and then perform sorting. Setting this option to false allows to sort



URI Options

Talend Mediation Developer Guide 147

Name Default Value Description

all files first, and then limit the poll. Note that this requires a higher
memory usage as all file details are in memory to perform the sorting.

minDepth 0 The minimum depth to start processing when recursively processing
a directory. Using minDepth=1 means the base directory. Using
minDepth=2 means the first sub directory.

maxDepth Integer.
MAX_VALUE

The maximum depth to traverse when recursively processing a
directory.

processStrategy null A pluggable org.apache.camel.component.file.
GenericFileProcessStrategy allowing you to implement
your own readLock option or similar. Can also be used when
special conditions must be met before a file can be consumed, such
as a special ready file exists. If this option is set then the readLock
option does not apply.

startingDirect-
oryMustExist

false whether the starting directory must exist. Keep in mind that the
autoCreate option is default enabled, which means the starting
directory is normally auto created if it doesn't exist. You can disable
autoCreate and enable this to ensure the starting directory must
exist. It will then throw an exception if the directory doesn't exist.

pollStrategy null A pluggable
org.apache.camel.PollingConsumerPollStrategy
allowing you to provide your custom implementation to control error
handling usually occurred during the poll operation *before* an
Exchange has been created and routed in Camel. In other words
the error occurred while the polling was gathering information, for
instance access to a file network failed so Camel cannot access it
to scan for files. The default implementation will log the caused
exception at WARN level and ignore it.

sendEmpty-
MessageWhenIdle

false If the polling consumer did not poll any files, you can enable this
option to send an empty message (no body) instead.

consumer.bridge-
ErrorHandler

false Allows for bridging the consumer to the Camel routing Error Handler,
which mean any exceptions occurred while trying to pickup files,
or the likes, will now be processed as a message and handled by
the routing Error Handler. By default the consumer will use the
org.apache.camel.spi.ExceptionHandler to deal with exceptions, that
by default will be logged at WARN/ERROR level and ignored.

3.14.2.3. Default behavior for file consumer

• By default the file is locked for the duration of the processing.

• After the route has completed, files are moved into the .camel subdirectory, so that they appear to be deleted.

• The File Consumer will always skip any file whose name starts with a dot, such as ., .camel, .m2 or
.groovy.

• Only files (not directories) are matched for valid filename, if options such as: include or exclude are used.



URI Options

148 Talend Mediation Developer Guide

3.14.2.4. Producer

Name Default Value Description

fileExist Override this specifies what to do if a file already exists with the same name.
The following values can be specified: Override, Append, Fail
and Ignore.

• Override, which is the default, replaces the existing file.

• Append adds content to the existing file.

• Fail throws a GenericFileOperation-Exception,
indicating that there is already an existing file.

• Ignore silently ignores the problem and does not override the
existing file, but assumes everything is okay.

tempPrefix null This option is used to write the file using a temporary name and
then, after the write is complete, rename it to the real name. Can be
used to identify files being written and also avoid consumers (not
using exclusive read locks) reading in-progress files. Is often used
by FTP when uploading big files.

tempFileName null The same as tempPrefix option but offering a more fine grained
control on the naming of the temporary filename as it uses the File
Language .

keepLastModified false If enabled, will keep the last modified timestamp from
the source file (if any). This will use the Exchange.
FILE_LAST_MODIFIED header to located the timestamp. This
header can contain either a java.util.Date or long with the
timestamp. If the timestamp exists and the option is enabled it will
set this timestamp on the written file. Note: This option only applies
to the file producer. You cannot use this option with any of the ftp
producers.

eagerDeleteTarget-
File

true Whether or not to eagerly delete any existing target file. (This
option only applies when you use fileExists=Override and
the tempFileName option). You can use this to disable deleting
the target file before the temp file is written. For example you may
have large files and want the target file to persist while the temp
file is being written. Setting eagerDeleteTargetFile to false
ensures the target file is only deleted until the very last moment,
just before the temp file is being renamed to the target filename.

doneFileName null Camel 2.6: If provided, then Camel will write a second done file
when the original file has been written. The done file will be empty.
This option configures what file name to use. Either you can specify
a fixed name. Or you can use dynamic placeholders. The done file
will always be written in the same folder as the original file. See
writing done file section for examples.

3.14.2.5. Default behavior for file producer

By default it will override any existing file, if one exist with the same name.

http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html


Move and Delete operations

Talend Mediation Developer Guide 149

Override is default

Override is the default for the file producer. This is also the default file operation using
java.io.File - and also the default for the FTP library we use in the camel-ftp component.

3.14.3. Move and Delete operations

Any move or delete operation is executed after the routing has completed (post command); so during processing
of the Exchange the file is still located in the inbox folder.

Let's illustrate this with an example:

from("file://inbox?move=.done").to("bean:handleOrder");

When a file is dropped in the inbox folder, the file consumer notices this and creates a new FileExchange
that is routed to the handleOrder bean. The bean then processes the File object. At this point in time the file
is still located in the inbox folder. After the bean completes, and thus the route is completed, the file consumer
will perform the move operation and move the file to the .done sub-folder.

The move and preMove options should be a directory name, which can be either relative or absolute. If relative,
the directory is created as a sub-folder from within the folder where the file was consumed.

By default, Camel will move consumed files to the .camel sub-folder relative to the directory where the file
was consumed.

If you want to delete the file after processing, the route should be:

from("file://inobox?delete=true").to("bean:handleOrder");

We have introduced a pre move operation to move files before they are processed. This allows you to mark which
files have been scanned as they are moved to this sub folder before being processed.

from("file://inbox?preMove=inprogress").to("bean:handleOrder");

You can combine the pre move and the regular move:

from("file://inbox?preMove=inprogress&move=.done").to("bean:handleOrder");

So in this situation, the file is in the inprogress folder when being processed and after it is processed, it is
moved to the .done folder.

3.14.3.1. Fine grained control over Move and PreMove option

The move and preMove option is Expression -based, so we have the full power of the File Language to do
advanced configuration of the directory and name pattern. Camel will, in fact, internally convert the directory name
you enter into a File Language expression. So, for example, when we enter move=.done Camel will convert
this into:  ${file:parent}/.done/${file:onlyname}. This only happens if Camel detects that you
have not provided a ${ } in the option value. So when you enter a ${ } Camel will not convert it and thus you
have full control.

So, if we want to move the file into a backup folder with today's date as the pattern, we can do:

move=backup/${date:now:yyyyMMdd}/${file:name}

http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html


Message Headers

150 Talend Mediation Developer Guide

3.14.3.2. About moveFailed

The moveFailed option allows you to move files that could not be processed succesfully to another location
such as a error folder of your choice. For example to move the files in an error folder with a timestamp you
can use  moveFailed=/error/${file:name.noext}-${date:now:yyyyMMddHHmmssSSS}.
${file:ext}.

See more examples in File Language

3.14.4. Message Headers

The following headers are supported by this component:

3.14.4.1. File producer only

Header Description

CamelFileName Specifies the name of the file to write (relative to the endpoint
directory). The name can be a String ; a String with a File
Language or Simple expression; or an Expression object. If it
is null then Camel will auto-generate a filename based on the
message unique ID.

CamelFileNameProduced The absolute filepath (path + name) for the output file that was
written. This header is set by Camel and its purpose is providing
end-users with the name of the file that was written.

3.14.4.2. File consumer only

Header Description

CamelFileName Name of the consumed file as a relative file path with offset from
the starting directory configured on the endpoint.

CamelFileNameOnly Just the file name (the name with no leading paths).

CamelFileAbsolute A boolean option specifying whether the consumed file denotes
an absolute path or not. It should normally be false for relative
paths. Absolute paths should normally not be used but we added to
the move option to allow moving files to absolute paths; it can also
be used elsewhere.

CamelFileAbsolutePath The absolute path to the file. For relative files this path holds the
relative path instead.

CamelFilePath The file path. For relative files this is the starting directory + the
relative filename. For absolute files this is the absolute path.

CamelFileRelativePath The relative path.

CamelFileParent The parent path.

CamelFileLength A long value containing the file size.

CamelFileLastModified A Date value containing the last modified timestamp of the file.

http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/simple.html
http://camel.apache.org/expression.html


Batch Consumer

Talend Mediation Developer Guide 151

3.14.5. Batch Consumer
This component implements the Batch Consumer .

3.14.5.1. Exchange Properties, file consumer only

As the file consumer is BatchConsumer it supports batching the files it polls. By batching it means that Camel
will add some properties to the Exchange so you know the number of files polled, and the current index, in that
order.

Property Description

CamelBatchSize The total number of files that was polled in this batch.

CamelBatchIndex The current index of the batch. Starts from 0.

CamelBatchComplete A boolean value indicating the last Exchange in the batch. Is only
true for the last entry.

This would allow you, for example, to know how many files exist in the batch and use that information to let the
Section 2.2, “Aggregator” aggregate that precise number of files.

3.14.6. Common gotchas with folder and filenames
When Camel is producing files (writing files) there are a few gotchas affecting how to set a filename of your
choice. By default, Camel will use the message ID as the filename, and since the message ID is normally a unique
generated ID, you will end up with filenames such as: ID-MACHINENAME-2443-1211718892437-1-0 . If
such a filename is not desired, then you must provide a filename in the CamelFileName message header. The
constant, Exchange.FILE_NAME, can also be used.

The sample code below produces files using the message ID as the filename:

from("direct:report").to("file:target/reports");

To use report.txt as the filename you have to do:

from("direct:report").setHeader(Exchange.FILE_NAME, constant("report.txt"))
      .to( "file:target/reports");
             

... the same as above, but with CamelFileName :

from("direct:report").setHeader("CamelFileName", constant("report.txt"))
      .to( "file:target/reports");
            

An example of a syntax where we set the filename on the endpoint with the fileName URI option:

from("direct:report").to("file:target/reports/?fileName=report.txt");

3.14.7. Filename Expression
Filename can be set either using the expression option or as a string-based File Language expression in the
CamelFileName header. See the File Language for syntax and samples.

http://camel.apache.org/batch-consumer.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html


Consuming files from folders where others drop files directly

152 Talend Mediation Developer Guide

3.14.8. Consuming files from folders where others
drop files directly

Warning: there may be difficulties if you consume files from a directory where other applications directly write
files. Please look at the different readLock options to see if they can help.

If you are writing files to the folder, then the best approach is to write to another folder and after the write, move
the file in the drop folder.

However if you need to write files directly to the drop folder then the option changed could better detect whether
a file is currently being written/copied. changed uses a file changed algorithm to see whether the file size or
modification changes over a period of time. The other readLock options rely on Java File API which is not
always good at detecting file changes. You may also want to look at the doneFileName option, which uses a
marker file (done) to signal when a file is done and ready to be consumed.

3.14.9. Using done files

Available as of Camel 2.6

See also section writing done files below.

If you want only to consume files when a done file exists, then you can use the doneFileName option on the
endpoint.

from("file:bar?doneFileName=done");

This will only consume files from the bar folder, if a file name done exists in the same directory as the target files.
For versions prior to 2.9.3, Camel will automatically delete the done file when it is finished consuming the files.

However it's more common to have one done file per target file. This means there is a 1:1 correlation. To do this
you must use dynamic placeholders in the doneFileName option. Currently Camel supports the following two
dynamic tokens:  file:name  and  file:name.noext  which must be enclosed in ${ }. The consumer
only supports the static part of the done file name as either prefix or suffix (not both).

from("file:bar?doneFileName=${file:name}.done");

In this example only files will be polled if there exists a done file with the name file name .done. For example

• hello.txt is the file to be consumed

• hello.txt.done is the associated done file

You can also use a prefix for the done file, such as:

from("file:bar?doneFileName=ready-${file:name}");

• hello.txt is the file to be consumed

• ready-hello.txt is the associated done file

3.14.10. Writing done files

Available as of Camel 2.6



Samples

Talend Mediation Developer Guide 153

After you have written a file you may want to write an additional done file as a kind of marker, to indicate to
others that the file is finished and has been written. To do that you can use the doneFileName option on the
file producer endpoint.

.to("file:bar?doneFileName=done");

This will simply create a file named done in the same directory as the target file.

However it's more common to have one done file per target file. This means there is a 1:1 correlation. To do this
you must use dynamic placeholders in the doneFileName option. Currently Camel supports the following two
dynamic tokens:  file:name  and  file:name.noext  which must be enclosed in ${ }.

.to("file:bar?doneFileName=done-${file:name}");

This will for example create a file named done-foo.txt if the target file was foo.txt in the same directory
as the target file.

.to("file:bar?doneFileName=${file:name}.done");

This will for example create a file named foo.txt.done if the target file was foo.txt in the same directory
as the target file.

.to("file:bar?doneFileName=${file:name.noext}.done");

This will for example create a file named foo.done if the target file was foo.txt in the same directory as
the target file.

3.14.11. Samples

3.14.11.1. Read from a directory and write to another directory

from("file://inputdir/?delete=true").to("file://outputdir")

Listen on a directory and create a message for each file dropped there. Copy the contents to the outputdir and
delete the file in the inputdir .

3.14.11.2. Reading recursively from a directory and writing to
another

from("file://inputdir/?recursive=true&delete=true").to("file://outputdir")

Listen on a directory and create a message for each file dropped there. Copy the contents to the outputdir and
delete the file in the inputdir. This will scan recursively into sub-directories, and lay out the files in the same
directory structure in the outputdir as the inputdir, including any sub-directories.

inputdir/foo.txt
inputdir/sub/bar.txt

This will result in the following output layout:

outputdir/foo.txt
outputdir/sub/bar.txt



Samples

154 Talend Mediation Developer Guide

Using flatten

If you want to store the files in the outputdir directory in the same directory, disregarding the source directory
layout (for example to flatten out the path), you add the flatten=true option on the file producer side:

from("file://inputdir/?recursive=true&delete=true")
         .to("file://outputdir?flatten=true")

This will result in the following output layout:

outputdir/foo.txt
outputdir/bar.txt

3.14.11.3. Reading from a directory and the default move
operation

Camel will by default move any processed file into a .camel subdirectory in the directory the file was consumed
from.

from("file://inputdir/?recursive=true&delete=true").to("file://outputdir")

Affects the layout as follows:

before

inputdir/foo.txt
inputdir/sub/bar.txt

after

inputdir/.camel/foo.txt
inputdir/sub/.camel/bar.txt
outputdir/foo.txt
outputdir/sub/bar.txt

3.14.11.4. Read from a directory and process the message in java

from("file://inputdir/").process(new Processor() {
  public void process(Exchange exchange) throws Exception {
    Object body = exchange.getIn().getBody();
    // do some business logic with the input body
    ...
  }
});

The body will be a File object that points to the file that was just dropped into the inputdir directory.

3.14.11.5. Writing to files

Camel is of course also able to write files, that is, produce files. In the sample below we receive some reports on
the SEDA queue that we process before the reports are written to a directory.

public void testToFile() throws Exception {



Samples

Talend Mediation Developer Guide 155

    MockEndpoint mock = getMockEndpoint("mock:result");
    mock.expectedMessageCount(1);
    mock.expectedFileExists("target/test-reports/report.txt");

    template.sendBody("direct:reports", "This is a great report");

    assertMockEndpointsSatisfied();
}

protected JndiRegistry createRegistry() throws Exception {
    // bind our processor in the registry with the given id
    JndiRegistry reg = super.createRegistry();
    reg.bind("processReport", new ProcessReport());
    return reg;
}

protected RouteBuilder createRouteBuilder() throws Exception {
    return new RouteBuilder() {
        public void configure() throws Exception {
            // the reports from the seda queue are processed by our 
            // processor before they are written to files in the 
            // target/reports directory
            from("direct:reports").processRef("processReport")
                  .to("file://target/test-reports", "mock:result");
        }
    };
}

private class ProcessReport implements Processor {

    public void process(Exchange exchange) throws Exception {
        String body = exchange.getIn().getBody(String.class);
        // do some business logic here
        ...
        // set the output to the file
        exchange.getOut().setBody(body);

        // set the output filename using java code logic, notice that this 
        // is done by setting a special header property of the out exchange
        exchange.getOut().setHeader(Exchange.FILE_NAME, "report.txt");
    }

}

3.14.11.6. Write to subdirectory using Exchange.FILE_NAME

Using a single route, it is possible to write a file to any number of subdirectories. If you have a route setup as such:

<route>
   <from uri="bean:myBean"/>
   <to uri="file:/rootDirectory"/>
</route>

You can have myBean set the header Exchange.FILE_NAME to values such as:

Exchange.FILE_NAME = hello.txt => /rootDirectory/hello.txt
Exchange.FILE_NAME = foo/bye.txt => /rootDirectory/foo/bye.txt



Avoiding reading the same file more than once (idempotent consumer)

156 Talend Mediation Developer Guide

This allows you to have a single route to write files to multiple destinations.

3.14.11.7. Using expression for filenames

In this sample we want to move consumed files to a backup folder using today's date as a sub-folder name:

from("file://inbox?move=backup/${date:now:yyyyMMdd}/${file:name}").to("...");

See File Language for more samples.

3.14.12. Avoiding reading the same file more than
once (idempotent consumer)

Camel supports Section 2.18, “Idempotent Consumer” directly within the component so it will skip already
processed files. This feature can be enabled by setting the idempotent=true option.

from("file://inbox?idempotent=true").to("...");

By default Camel uses a in memory based store for keeping track of consumed files, it uses a least recently
used cache holding up to 1000 entries. You can plugin your own implementation of this store by using the
idempotentRepository option using the # sign in the value to indicate it is a referring to a bean in the
Registry with the specified id .

<!-- define our store as a plain Spring bean -->
   <bean id="myStore" class="com.mycompany.MyIdempotentStore"/>

<route>
   <from uri=
      "file://inbox?idempotent=true&amp;idempotentRepository=#myStore"/>
   <to uri="bean:processInbox"/>
</route>

Camel will log at DEBUG level if it skips a file because it has been consumed before:

DEBUG FileConsumer is idempotent and the file has been consumed before. 
This will skip this file: target\idempotent\report.txt
            

3.14.13. Filter using
org.apache.camel.component.file.GenericFileFilter

Camel supports pluggable filtering strategies. You can then configure the endpoint with such a filter to skip certain
files being processed.

In the sample we have built our own filter that skips files starting with skip in the filename:

public class MyFileFilter implements GenericFileFilter {
    public boolean accept(GenericFile pathname) {
        // we don't accept any files starting with skip in the name
        return !pathname.getFileName().startsWith("skip");
    }

http://camel.apache.org/file-language.html
http://camel.apache.org/registry.html


Filter using org.apache.camel.component.file.GenericFileFilter

Talend Mediation Developer Guide 157

}

Then we can configure our route using the filter attribute to reference our filter (using # notation) that we have
defines in the Spring XML file:

<!-- define our sorter as a plain Spring bean -->
   <bean id="myFilter" class="com.mycompany.MyFileSorter"/>

  <route>
    <from uri="file://inbox?filter=#myFilter"/>
    <to uri="bean:processInbox"/>
  </route>

3.14.13.1. Filtering using ANT path matcher

There are also antInclude and antExclude options to make it easy to specify ANT style include/
exclude without having to define the filter. See the URI options above for more information.

The ANT path matcher is shipped out-of-the-box in the camel-spring jar. So you need to depend on camel-spring
if you are using Maven. The reason is that we leverage Spring's AntPathMatcher to do the matching.

The file paths is matched with the following rules:

• ? matches one character

• * matches zero or more characters

• ** matches zero or more directories in a path

The sample below demonstrates how to use it:

<camelContext xmlns="http://camel.apache.org/schema/spring">
    <template id="camelTemplate"/>

    <!-- use myFilter as filter to allow setting 
            ANT paths for which files to scan for -->
    <endpoint id="myFileEndpoint" uri=
        "file://target/antpathmatcher?recursive=true&filter=#myAntFilter"/>

    <route>
        <from ref="myFileEndpoint"/>
        <to uri="mock:result"/>
    </route>
</camelContext>

<!-- we use the antpath file filter to use ant paths -->
<!-- for includes and excludes -->
<bean id="myAntFilter" 
    class="org.apache.camel.component.file.AntPathMatcherGenericFileFilter">
    <!-- include and file in the subfolder that has 'day' in the name -->
    <property name="includes" value="**/subfolder/**/*day*"/>
    <!-- exclude all files with 'bad' in name or .xml files. -->
    <!-- Use comma to separate multiple excludes -->
    <property name="excludes" value="**/*bad*,**/*.xml"/>
</bean>
            
            

http://static.springsource.org/spring/docs/3.0.x/api/org/springframework/util/AntPathMatcher.html


Sorting using Comparator

158 Talend Mediation Developer Guide

3.14.14. Sorting using Comparator

Camel supports pluggable sorting strategies. This strategy it to use the built in java.util.Comparator in
Java. You can then configure the endpoint with such a comparator and have Camel sort the files before being
processed.

In the sample we have built our own comparator that sorts by file name:

public class MyFileSorter implements Comparator<GenericFile> {
    public int compare(GenericFile o1, GenericFile o2) {
        return o1.getFileName().compareToIgnoreCase(o2.getFileName());
    }
}

Then we can configure our route using the sorter option to reference to our sorter ( mySorter ) we have defined
in the Spring XML file:

<!-- define our sorter as a plain Spring bean -->
   <bean id="mySorter" class="com.mycompany.MyFileSorter"/>

  <route>
    <from uri="file://inbox?sorter=#mySorter"/>
    <to uri="bean:processInbox"/>
  </route>

URI options can reference beans using the # syntax

In the Spring DSL route, notice that we can refer to beans in the Registry by prefixing the id with # .
So writing sorter=#mySorter, will instruct Camel to go look in the Registry for a bean with the
ID, mySorter .

3.14.15. Sorting using sortBy

Camel supports pluggable sorting strategies. This strategy it to use the File Language to configure the sorting. The
sortBy option is configured as follows:

sortBy=group 1;group 2;group 3;...

where each group is separated with semi colon. In the simple situations you just use one group, so a simple example
could be:

sortBy=file:name

This will sort by file name, you can reverse the order by prefixing reverse: to the group, so the sorting is
now Z..A:

sortBy=reverse:file:name

As we have the full power of File Language we can use some of the other parameters, so if we want to sort by
file size we do:

sortBy=file:length

You can configure to ignore the case, using ignoreCase: for string comparison, so if you want to use file name
sorting but to ignore the case then we do:

sortBy=ignoreCase:file:name

You can combine ignore case and reverse, however reverse must be specified first:

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html


Using GenericFileProcessStrategy

Talend Mediation Developer Guide 159

sortBy=reverse:ignoreCase:file:name

In the sample below we want to sort by last modified file, so we do:

sortBy=file:modifed

Then we want to group by name as a second option so files with same modification is sorted by name:

sortBy=file:modifed;file:name

Now there is an issue here, can you spot it? Well the modified timestamp of the file is too fine as it will be in
milliseconds, but what if we want to sort by date only and then subgroup by name? Well as we have the true power
of File Language we can use the its date command that supports patterns. So this can be solved as:

sortBy=date:file:yyyyMMdd;file:name

That is powerful. You can also use reverse per group, so we could reverse the file names:

sortBy=date:file:yyyyMMdd;reverse:file:name

3.14.16. Using GenericFileProcessStrategy
The option processStrategy can be used to use a custom GenericFileProcessStrategy that allows
you to implement your own begin, commit and rollback logic. For instance let's assume a system writes a file in
a folder you should consume. But you should not start consuming the file before another ready file have been
written as well.

So by implementing our own GenericFileProcessStrategy we can implement this as:

• In the begin() method we can test whether the special ready file exists. The begin method returns a boolean
to indicate if we can consume the file or not.

• In the abort() (Camel 2.10) special logic can be executed in case the begin operation returned false, for
example to cleanup resources, etc.

• in the commit() method we can move the file and also delete the ready file.

3.15. Flatpack

3.15.1. Flatpack Component
The Flatpack component supports fixed width and delimited file parsing via the FlatPack library.

Notice:
This component only supports consuming from flatpack files to Object model. You can not (yet) write
from Object model to flatpack format.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-flatpack</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

http://camel.apache.org/file-language.html
http://flatpack.sourceforge.net


Flatpack Component

160 Talend Mediation Developer Guide

3.15.1.1. URI format

flatpack:[delim|fixed]:flatPackConfig.pzmap.xml[?options]

Or for a delimited file handler with no configuration file use

flatpack:someName[?options]

You can append query options to the URI in the following format, ?option=value&option=value&...

3.15.1.2. URI Options

Name Default Value Description

delimiter , The default character delimiter for delimited files.

textQualifier " The text qualifier for delimited files.

ignoreFirstRecord true Whether the first line is ignored for delimited files (for
the column headers).

splitRows true The component can either process each row one by one
or the entire content at once.

allowShortLines false Allows for lines to be shorter than expected and ignores
the extra characters.

ignoreExtraColumns false Allows for lines to be longer than expected and ignores
the extra characters.

3.15.1.3. Examples

• flatpack:fixed:foo.pzmap.xml creates a fixed-width endpoint using the foo.pzmap.xml file
configuration.

• flatpack:delim:bar.pzmap.xml creates a delimited endpoint using the bar.pzmap.xml file
configuration.

• flatpack:foo creates a delimited endpoint called foo with no file configuration.

3.15.1.4. Message Headers

Camel will store the following headers on the IN message:

Header Description

camelFlatpackCounter The current row index. For splitRows=false the
counter is the total number of rows.

3.15.1.5. Message Body

The component delivers the data in the IN message as a
org.apache.camel.component.flatpack.DataSetList object that has converters for

• java.util.Map

• java.util.List



Flatpack Component

Talend Mediation Developer Guide 161

Usually you want the Map if you process one row at a time ( splitRows=true ). Use List for the entire
content ( splitRows=false ), where each element in the list is a Map . Each Map contains the key for the
column name and its corresponding value.

For example to get the firstname from the sample below:

Map row = exchange.getIn().getBody(Map.class);
  String firstName = row.get("FIRSTNAME");

However, you can also always get it as a List (even for splitRows=true ). The same example:

List data = exchange.getIn().getBody(List.class);
  Map row = (Map)data.get(0);
  String firstName = row.get("FIRSTNAME");

3.15.1.6. Header and Trailer records

The header and trailer notions in Flatpack are supported. However, you must use fixed record IDs:

• header for the header record (must be lowercase)

• trailer for the trailer record (must be lowercase)

The example below illustrates this fact that we have a header and a trailer. You can omit one or both of them
if not needed.

<RECORD id="header" startPosition="1" endPosition="3" indicator="HBT">
        <COLUMN name="INDICATOR" length="3"/>
        <COLUMN name="DATE" length="8"/>
    </RECORD>

    <COLUMN name="FIRSTNAME" length="35" />
    <COLUMN name="LASTNAME" length="35" />
    <COLUMN name="ADDRESS" length="100" />
    <COLUMN name="CITY" length="100" />
    <COLUMN name="STATE" length="2" />
    <COLUMN name="ZIP" length="5" />

    <RECORD id="trailer" startPosition="1" endPosition="3" indicator="FBT">
        <COLUMN name="INDICATOR" length="3"/>
        <COLUMN name="STATUS" length="7"/>
    </RECORD>

3.15.1.7. Using the endpoint

A common use case is sending a file to this endpoint for further processing in a separate route. For example:

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
   <route>
      <from uri="file://someDirectory"/>
      <to uri="flatpack:foo"/>
   </route>

   <route>
      <from uri="flatpack:foo"/>
      ...
   </route>



Flatpack DataFormat

162 Talend Mediation Developer Guide

</camelContext>

You can also convert the payload of each message created to a Map for easy Bean Integration

3.15.2. Flatpack DataFormat
The Section 3.15, “Flatpack” component ships with the Flatpack data format that can be used to format between
fixed width or delimited text messages to a List of rows as Map .

• marshal = from List<Map<String, Object>> to OutputStream (can be converted to String )

• unmarshal = from java.io.InputStream (such as a File or String ) to a java.util.List as an
org.apache.camel.component.flatpack.DataSetList instance. The result of the operation will
contain all the data. If you need to process each row one by one you can split the exchange, using Section 2.48,
“Splitter” .

Notice: The Flatpack library does currently not support header and trailers for the marshal operation.

3.15.2.1. Options

The data format has the following options:

Option Default Description

definition null The flatpack pzmap configuration file. Can be omitted in
simpler situations, but it is preferred to use the pzmap.

fixed false Delimited or fixed.

ignoreFirstRecord true Whether the first line is ignored for delimited files (for the
column headers).

textQualifier " If the text is qualified with a char such as " .

delimiter , The delimiter char (could be ; , or similar)

parserFactory null Uses the default Flatpack parser factory.

3.15.2.2. Usage

To use the data format, simply instantiate an instance and invoke the marhsal or unmarshal operation in the route
builder:

FlatpackDataFormat fp = new FlatpackDataFormat();
  fp.setDefinition(new ClassPathResource("INVENTORY-Delimited.pzmap.xml"));
  ...
  from("file:order/in").unmarshal(df).to("seda:queue:neworder");

The sample above will read files from the order/in folder and unmarshal the input using the Flatpack
configuration file INVENTORY-Delimited.pzmap.xml that configures the structure of the files. The result
is a DataSetList object we store on the SEDA queue.

FlatpackDataFormat df = new FlatpackDataFormat();
df.setDefinition(new ClassPathResource("PEOPLE-FixedLength.pzmap.xml"));
df.setFixed(true);
df.setIgnoreFirstRecord(false);

from("seda:people").marshal(df).convertBodyTo(String.class)

http://camel.apache.org/bean-integration.html


Freemarker

Talend Mediation Developer Guide 163

      .to("jms:queue:people");
            

In the code above we marshal the data from a Object representation as a List of rows as Maps. The rows as
Map contains the column name as the key, and the corresponding value. This structure can be created in Java code
(for example from a processor). We marshal the data according to the Flatpack format and convert the result as
a String object and store it on a JMS queue.

3.15.2.3. Dependencies

To use Flatpack in your Camel routes, you need to add the a dependency on camel-flatpack which implements
this data format.

If you use Maven you could add the following to your pom.xml, substituting the version number for the latest
release (see the download page for the latest versions ).

<dependency>
   <groupId>org.apache.camel</groupId>
   <artifactId>camel-flatpack</artifactId>
   <version>1.5.0</version>
</dependency>

3.16. Freemarker
The freemarker component allows for processing a message using a FreeMarker template. This can be ideal when
using Templating to generate responses for requests.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-freemarker</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

3.16.1. URI format
freemarker:templateName[?options]

where templateName is the classpath-local URI of the template to invoke; or the complete URL of the remote
template (for example: file://folder/myfile.ftl").

You can append query options to the URI in the following format, ?option=value&option=value&...

3.16.2. Options

Option Default Description

contentCache true Cache for the resource content when it is loaded. Note:
Cached resource content can be cleared via JMX using
the endpoint's {{clearContentCache}} operation.

http://localhost:8080/confluence/pages/viewpage.action?pageId=3244313
http://freemarker.org/
http://camel.apache.org/templating.html


Headers

164 Talend Mediation Developer Guide

Option Default Description

encoding null Character encoding of the resource content.

templateUpdateDelay 5 Character encoding of the resource content.

3.16.3. Headers
Headers set during the FreeMarker evaluation are returned to the message and added as headers. This provides a
mechanism for the FreeMarker component to return values to the Message.

An example: Set the header value of fruit in the Freemarker template:

${request.setHeader('fruit', 'Apple')}

The header, fruit, is now accessible from the message.out.headers .

3.16.4. Freemarker Context
Camel will provide exchange information in the Freemarker context (just a Map ). The Exchange is transferred
as:

key value

exchange The Exchange itself.

exchange.properties The Exchange properties.

headers The headers of the In message.

camelContext The Camel Context.

request The In message.

body The In message body.

response The Out message (only for InOut message exchange pattern).

3.16.5. Hot reloading
The Freemarker template resource is by default not hot reloadable for both file and classpath resources (expanded
jar). If you set contentCache=false, then Camel will not cache the resource and hot reloading is thus enabled.
This scenario can be used in development.

3.16.6. Dynamic templates
Camel provides two headers by which you can define a different resource location for a template or the template
content itself. If any of these headers is set then Camel uses this over the endpoint configured resource. This allows
you to provide a dynamic template at runtime.

Header Type Description

FreemarkerConstants.
FREEMARKER_RESOURCE_URI

String A URI for the template resource to use instead of the endpoint
configured.

FreemarkerConstants.
FREEMARKER_TEMPLATE

String The template to use instead of the endpoint configured.



Samples

Talend Mediation Developer Guide 165

3.16.7. Samples

For example you could use something like:

from("activemq:My.Queue")
  .to("freemarker:com/acme/MyResponse.ftl");

to use a FreeMarker template to formulate a response for a message for InOut message exchanges (where there
is a JMSReplyTo header).

If you want to use InOnly and consume the message and send it to another destination you could use:

from("activemq:My.Queue")
  .to("freemarker:com/acme/MyResponse.ftl")
  .to("activemq:Another.Queue");

To disable the content cache, for example, for development usage where the .ftl template should be hot reloaded:

from("activemq:My.Queue")
  .to("freemarker:com/acme/MyResponse.ftl?contentCache=false")
  .to("activemq:Another.Queue");

A file-based resource:

from("activemq:My.Queue")
  .to("freemarker:file://myfolder/MyResponse.ftl?contentCache=false")
  .to("activemq:Another.Queue");

In it is possible to specify what template the component should use dynamically via a header, so for example:

from("direct:in").setHeader(FreemarkerConstants.FREEMARKER_RESOURCE_URI).
          constant("path/to/my/template.ftl").to("freemarker:dummy");
        

3.17. FTP
This component provides access to remote file systems over the FTP and SFTP protocols.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-ftp</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

Using FTPS

FTPS (also known as FTP Secure) is an extension to FTP that adds support for the Transport Layer
Security (TLS) and the Secure Sockets Layer (SSL) cryptographic protocols.

Libraries used

This component uses two different libraries for the FTP work. FTP and FTPS uses Apache Commons
Net while SFTP uses JCraft JSCH .

http://commons.apache.org/net/
http://commons.apache.org/net/
http://www.jcraft.com/jsch/


URI format and Options

166 Talend Mediation Developer Guide

3.17.1. URI format and Options
ftp://[username@]hostname[:port]/directoryname[?options]
sftp://[username@]hostname[:port]/directoryname[?options]
ftps://[username@]hostname[:port]/directoryname[?options]

where directoryname represents the underlying directory, which can contain nested folders.

If no username is provided, then anonymous login is attempted using no password. If no port number is
provided, Camel will provide default values according to the protocol (ftp = 21, sftp = 22, ftps = 2222).

You can append query options to the URI in the following format, ?option=value&option=value&...

URI Options

Name Default
Value

Description

username null Specifies the username to use to log into the remote file
system.

password null Specifies the password to use to log into the remote file system.

binary false Specifies the file transfer mode, BINARY or ASCII. Default
is ASCII ( false ).

disconnect false Whether or not to disconnect from remote FTP server right
after use. Can be used for both consumer and producer.
Disconnect will only disconnect the current connection to the
FTP server. If you have a consumer which you want to stop,
then you need to stop the consumer/route instead.

localWorkDirectory null When consuming, a local work directory can be used to store
the remote file content directly in local files, to avoid loading
the content into memory. This is beneficial if you consume a
very big remote file and thus can conserve memory. See below
for more details.

passiveMode false FTP and FTPS only : Specifies whether to use passive mode
connections. Default is active mode ( false ).

securityProtocol TLS FTPS only: Sets the underlying security protocol. The
following values are defined: TLS : Transport Layer Security
SSL : Secure Sockets Layer

disableSecureDataChannel-
Defaults

false FTPS only : Whether or not to disable using default values for
execPbsz and execProt when using secure data transfer.
You can set this option to true if you want to be in absolute
full control what the options execPbsz and execProt
should be used.

execProt null FTPS only : This will use option P by default, if secure data
channel defaults hasn't been disabled. Possible values are: C
: Clear S : Safe (SSL protocol only) E : Confidential (SSL
protocol only) P : Private

execPbsz null FTPS only : This option specifies the buffer size of the secure
data channel. If option useSecureDataChannel has been
enabled and this option has not been explicit set, then value
0 is used.

isImplicit false FTPS only: Sets the security mode(implicit/explicit). Default
is explicit ( false ).

knownHostsFile null SFTP only: Sets the known_hosts file, so that the SFTP
endpoint can do host key verification.



URI format and Options

Talend Mediation Developer Guide 167

Name Default
Value

Description

privateKeyFile null SFTP only: Set the private key file to that the SFTP endpoint
can do private key verification.

privateKeyFilePassphrase null SFTP only: Set the private key file passphrase to that the SFTP
endpoint can do private key verification.

strictHostKeyChecking no SFTP only: Sets whether to use strict host key checking.
Possible values are: no, yes and ask. Note: ask does not
make sense to use as Camel cannot answer the question for
you as it is meant for human intervention.

maximumReconnectAttempts 3 Specifies the maximum reconnect attempts Camel performs
when it tries to connect to the remote FTP server. Use 0 to
disable this behavior.

reconnectDelay 1000 Delay in milliseconds Camel will wait before performing a
reconnect attempt.

connectTimeout 10000 the connect timeout in milliseconds. This corresponds to using
ftpClient.connectTimeout for the FTP/FTPS. For
SFTP this option is also used when attempting to connect.

soTimeout null FTP and FTPS Only: the
SocketOptions.SO_TIMEOUT value in milliseconds.
Note SFTP will automatic use the connectTimeout as the
soTimeout .

timeout 30000 FTP and FTPS Only: the data timeout in milliseconds. This
corresponds to using ftpClient.dataTimeout for the
FTP/FTPS. For SFTP there is no data timeout.

throwExceptionOnConnect-
Failed

false Whether or not to throw an exception if a successful
connection and login could not be established. This allows
a custom pollStrategy to deal with the exception, for
example to stop the consumer.

siteCommand null FTP and FTPS Only: To execute site commands after
successful login. Multiple site commands can be separated
using a new line character (\n). Use help site to see which
site commands your FTP server supports.

stepwise true Camel 2.6 onwards: Whether or not stepwise traversing
directories should be used or not. Stepwise means that it will
'cd' one directory at a time. See more details below. You can
disable this in case you can't use this approach.

separator Auto Camel 2.6 onwards: Dictates what path separator char to use
when uploading files. Auto = Use the path provided without
altering it. UNIX = Use unix style path separators. Windows
= Use Windows style path separators.

ftpClient null FTP and FTPS Only: Allows you to use a custom
org.apache.commons.net.ftp.FTPClient
instance.

ftpClientConfig null FTP and FTPS Only: Allows you to use a custom
org.apache.commons.net.ftp.FTPClientConfig
instance.

ftpClient.trustStore.filenull FTPS Only: Sets the trust store file, so that the FTPS client
can look up for trusted certificates.

ftpClient.trustStore.typeJKS FTPS Only: Sets the trust store type.



URI format and Options

168 Talend Mediation Developer Guide

Name Default
Value

Description

ftpClient.trustStore.
algorithm

SunX509 FTPS Only: Sets the trust store algorithm.

ftpClient.trustStore.
password

null FTPS Only: Sets the trust store password.

ftpClient.keyStore.file null FTPS Only: Sets the key store file, so that the FTPS client can
look up for the private certificate.

ftpClient.keyStore.type JKS FTPS Only: Sets the key store type.

ftpClient.keyStore.
algorithm

SunX509 FTPS Only: Sets the key store algorithm.

ftpClient.keyStore.
password

null FTPS Only: Sets the key store password.

ftpClient.keyStore.
keyPassword

null FTPS Only: Sets the private key password.

FTPS component default trust store

By default, the FTPS component trust store accepts all certificates. If you only want to trust selective
certificates, you have to configure the trust store with the ftpClient.trustStore.xxx options or
by configuring a custom ftpClient.

You can configure additional options on the ftpClient and ftpClientConfig from the URI directly by
using the ftpClient. or ftpClientConfig. prefix.

For example to set the setDataTimeout on the FTPClient to 30 seconds you can do:

   from("ftp://foo@myserver?password=secret&ftpClient.dataTimeout=30000")
      .to("bean:foo");
            

You can mix and match and have use both prefixes, for example to configure date format or timezones.

   from("ftp://foo@myserver?password=secret&ftpClient.dataTimeout=30000&" + 
      "ftpClientConfig.serverLanguageCode=fr").to("bean:foo");
            

You can have as many of these options as you like.

See the documentation of the Apache Commons FTP FTPClientConfig for possible options and more details, and
also Apache Commons FTP FTPClient.

If you do not like having complex configurations inserted in the url you can use ftpClient or
ftpClientConfig by letting Camel look in the Registry for it. For example:

<bean id="myConfig" class="org.apache.commons.net.ftp.FTPClientConfig">
   <property name="lenientFutureDates" value="true"/>
   <property name="serverLanguageCode" value="fr"/>
</bean>

And then let Camel lookup this bean when you use the # notation in the url.

from("ftp://foo@myserver?password=secret&ftpClientConfig=#myConfig")
      .to("bean:foo");

http://commons.apache.org/net/api/org/apache/commons/net/ftp/FTPClientConfig.html
http://commons.apache.org/net/api/org/apache/commons/net/ftp/FTPClient.html
http://camel.apache.org/registry.html


More URI options

Talend Mediation Developer Guide 169

3.17.2. More URI options
See Section 3.14, “File” as all the options there also apply to this component.

3.17.3. Stepwise changing directories
Camel FTP can operate in two modes in terms of traversing directories when consuming files (for example,
downloading) or producing files (for example, uploading)

• stepwise

• not stepwise

You may want to pick either one (Camel 2.6 onwards) depending on your situation and security issues (some
Camel end users can only download files if they use stepwise, while others can only download if they do not).
You can use the stepwise option to control the behavior.

Note that stepwise changing of directory will in most cases only work when the user is confined to its home
directory and when the home directory is reported as "/" .

The difference between the two behaviours is best illustrated with an example. Suppose we have the following
directory structure on the remote FTP server we need to traverse and download files:

/
/one
/one/two
/one/two/sub-a
/one/two/sub-b

And that we have a file in each of sub-a (a.txt) and sub-b (b.txt) folder.

3.17.3.1. Using stepwise=true (default mode)

TYPE A
200 Type set to A
PWD
257 "/" is current directory.
CWD one
250 CWD successful. "/one" is current directory.
CWD two
250 CWD successful. "/one/two" is current directory.
SYST
215 UNIX emulated by FileZilla
PORT 127,0,0,1,17,94
200 Port command successful
LIST
150 Opening data channel for directory list.
226 Transfer OK
CWD sub-a
250 CWD successful. "/one/two/sub-a" is current directory.
PORT 127,0,0,1,17,95
200 Port command successful
LIST
150 Opening data channel for directory list.
226 Transfer OK



Stepwise changing directories

170 Talend Mediation Developer Guide

CDUP
200 CDUP successful. "/one/two" is current directory.
CWD sub-b
250 CWD successful. "/one/two/sub-b" is current directory.
PORT 127,0,0,1,17,96
200 Port command successful
LIST
150 Opening data channel for directory list.
226 Transfer OK
CDUP
200 CDUP successful. "/one/two" is current directory.
CWD /
250 CWD successful. "/" is current directory.
PWD
257 "/" is current directory.
CWD one
250 CWD successful. "/one" is current directory.
CWD two
250 CWD successful. "/one/two" is current directory.
PORT 127,0,0,1,17,97
200 Port command successful
RETR foo.txt
150 Opening data channel for file transfer.
226 Transfer OK
CWD /
250 CWD successful. "/" is current directory.
PWD
257 "/" is current directory.
CWD one
250 CWD successful. "/one" is current directory.
CWD two
250 CWD successful. "/one/two" is current directory.
CWD sub-a
250 CWD successful. "/one/two/sub-a" is current directory.
PORT 127,0,0,1,17,98
200 Port command successful
RETR a.txt
150 Opening data channel for file transfer.
226 Transfer OK
CWD /
250 CWD successful. "/" is current directory.
PWD
257 "/" is current directory.
CWD one
250 CWD successful. "/one" is current directory.
CWD two
250 CWD successful. "/one/two" is current directory.
CWD sub-b
250 CWD successful. "/one/two/sub-b" is current directory.
PORT 127,0,0,1,17,99
200 Port command successful
RETR b.txt
150 Opening data channel for file transfer.
226 Transfer OK
CWD /
250 CWD successful. "/" is current directory.
QUIT
221 Goodbye



Examples

Talend Mediation Developer Guide 171

disconnected.

As you can see when stepwise is enabled, it will traverse the directory structure using CD xxx.

3.17.3.2. Using stepwise=false

230 Logged on
TYPE A
200 Type set to A
SYST
215 UNIX emulated by FileZilla
PORT 127,0,0,1,4,122
200 Port command successful
LIST one/two
150 Opening data channel for directory list
226 Transfer OK
PORT 127,0,0,1,4,123
200 Port command successful
LIST one/two/sub-a
150 Opening data channel for directory list
226 Transfer OK
PORT 127,0,0,1,4,124
200 Port command successful
LIST one/two/sub-b
150 Opening data channel for directory list
226 Transfer OK
PORT 127,0,0,1,4,125
200 Port command successful
RETR one/two/foo.txt
150 Opening data channel for file transfer.
226 Transfer OK
PORT 127,0,0,1,4,126
200 Port command successful
RETR one/two/sub-a/a.txt
150 Opening data channel for file transfer.
226 Transfer OK
PORT 127,0,0,1,4,127
200 Port command successful
RETR one/two/sub-b/b.txt
150 Opening data channel for file transfer.
226 Transfer OK
QUIT
221 Goodbye
disconnected.

As you can see when not using stepwise, there are no CD operation invoked at all.

3.17.4. Examples

   ftp://someone@someftpserver.com/public/upload/images/holiday2008?password=
secret&binary=true
   ftp://someoneelse@someotherftpserver.co.uk:12049/reports/2008/password=



Default when consuming files

172 Talend Mediation Developer Guide

secret&binary=false
   ftp://publicftpserver.com/download
            

FTP Consumer does not support concurrency

The FTP consumer (with the same endpoint) does not support concurrency (the backing FTP client is not
thread safe). You can use multiple FTP consumers to poll from different endpoints. It is only a single
endpoint that does not support concurrent consumers.

The FTP producer does not have this issue, it supports concurrency.

In the future we will add consumer pooling to Camel to allow this consumer to support concurrency as
well.

More information

This component is an extension of the Section 3.14, “File” component, and there are more samples and
details on the Section 3.14, “File” component page.

3.17.5. Default when consuming files

The FTP consumer will by default leave the consumed files untouched on the remote FTP server. You have to
configure it explicitly if you want it to delete the files or move them to another location. For example, you can use
delete=true to delete the files, or use move=.done to move the files into a hidden done subdirectory.

The regular File consumer is different as it will (by default) move files to a .camel sub directory. The reason
Camel does not do this by default for the FTP consumer is that it may lack permissions by default to be able to
move or delete files.

3.17.5.1. limitations

The option readLock can be used to force Camel not to consume files that is currently in the progress of being
written. However, this option is turned off by default, as it requires that the user has write access. There are only a
few options supported for FTP. There are other solutions to avoid consuming files that are currently being written
over FTP; for instance, you can write the file to a temporary destination and move the file after it has been written.

When moving files using move or preMove option the files are restricted to the FTP_ROOT folder. That prevents
you from moving files outside the FTP area. If you want to move files to another area, you can use soft links and
move files into a soft linked folder.

3.17.6. Message Headers

The following message headers can be used to affect the behavior of the component

Header Description

CamelFileName Specifies the output file name (relative to the endpoint directory)
to be used for the output message when sending to the endpoint.
If neither CamelFileName or an expression are specified, then a
generated message ID is used as the filename instead.

https://issues.apache.org/activemq/browse/CAMEL-1682


About timeouts

Talend Mediation Developer Guide 173

Header Description

CamelFileNameProduced The absolute filepath (path + name) for the output file that was
written. This header is set by Camel and its purpose is providing
end-users the name of the file that was written.

CamelFileBatchIndex Current index out of total number of files being consumed in this
batch.

CamelFileBatchSize Total number of files being consumed in this batch.

CamelFileHost The remote hostname.

CamelFileLocalWorkPath Path to the local work file, if local work directory is used.

3.17.7. About timeouts

The two set of libraries (see top) has different API for setting timeout. You can use the connectTimeout option
for both of them to set a timeout in milliseconds to establish a network connection. An individual soTimeout
can also be set on the FTP/FTPS, which corresponds to using ftpClient.soTimeout. Notice SFTP will
automatically use connectTimeout as its soTimeout. The timeout option only applies for FTP/FTSP
as the data timeout, which corresponds to the ftpClient.dataTimeout value. All timeout values are in
milliseconds.

3.17.8. Using Local Work Directory

Camel supports consuming from remote FTP servers and downloading the files directly into a local work directory.
This avoids reading the entire remote file content into memory as it is streamed directly into the local file using
FileOutputStream .

Camel will store to a local file with the same name as the remote file, though with .inprogress as extension
while the file is being downloaded. Afterwards, the file is renamed to remove the .inprogress suffix. And
finally, when the Exchange is complete the local file is deleted.

So if you want to download files from a remote FTP server and store it as files then you need to route to a file
endpoint such as:

from("ftp://someone@someserver.com?password=secret&localWorkDirectory=/tmp")
      .to("file://inbox");

Optimization by renaming work file

The route above is ultra efficient as it avoids reading the entire file content into memory. It will download
the remote file directly to a local file stream. The java.io.File handle is then used as the Exchange
body. The file producer leverages this fact and can work directly on the work file java.io.File handle
and perform a java.io.File.rename to the target filename. As Camel knows it is a local work file,
it can optimize and use a rename instead of a file copy, as the work file is meant to be deleted anyway.

3.17.9. Samples

In the sample below we set up Camel to download all the reports from the FTP server once every hour (60 min)
as BINARY content and store it as files on the local file system.

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html


Samples

174 Talend Mediation Developer Guide

protected RouteBuilder createRouteBuilder() throws Exception {
   return new RouteBuilder() {
   public void configure() throws Exception {
      // we use a delay of 60 minutes 
      //(for example, once per hour we poll the FTP server)
      long delay = 60 * 60 * 1000L;

      // from the given FTP server we poll (= download) all the files
      // from the public/reports folder as BINARY types and store this as 
      // files in a local directory. Camel will use the filenames from the 

      // FTPServer. Notice that the FTPConsumer properties must be prefixed 
      // with "consumer.". In the URL the delay parameter is from the 
      // FileConsumer component so we should use consumer.delay as
      // the URI parameter name. The FTP Component is an extension of the 
      // File Component.
      from("ftp://tiger:scott@localhost/public/reports?binary=true&
consumer.delay=" + delay).to("file://target/test-reports");
      }
   };
}

And the route using Spring DSL:

<route>
   <from uri="ftp://scott@localhost/public/reports?password=
tiger&amp;binary=true&amp;delay=60000"/>

   <to uri="file://target/test-reports"/>
</route>

3.17.9.1. Consuming a remote FTPS server (implicit SSL) and
client authentication

from(
"ftps://admin@localhost:2222/public/camel?password=admin&securityProtocol=
SSL&isImplicit=true&ftpClient.keyStore.file=./src/test/resources/server.jks
&ftpClient.keyStore.password=password&
ftpClient.keyStore.keyPassword=password").to("bean:foo");

3.17.9.2. Consuming a remote FTPS server (explicit TLS) and a
custom trust store configuration

from("ftps://admin@localhost:2222/public/camel?password=admin&ftpClient.
trustStore.file=./src/test/resources/server.jks&ftpClient.trustStore.
password=password").to("bean:foo");



Filter using org.apache.camel.component.file.GenericFileFilter

Talend Mediation Developer Guide 175

3.17.10. Filter using
org.apache.camel.component.file.GenericFileFilter

Camel supports pluggable filtering strategies. This strategy it to use the built in
org.apache.camel.component.file.GenericFileFilter in Java. You can then configure the
endpoint with such a filter to skip certain filters before being processed.

In the sample we have build our own filter that only accepts files starting with report in the filename.

public class MyFileFilter implements GenericFileFilter {

    public boolean accept(GenericFile file) {
        // we only want report files 
        return file.getFileName().startsWith("report");
    }
}

And then we can configure our route using the filter attribute to reference our filter (using # notation) that we
have defined in the Spring XML file:

<!-- define our sorter as a plain Spring bean -->
   <bean id="myFilter" class="com.mycompany.MyFileFilter"/>

  <route>
    <from uri=
    "ftp://someuser@someftpserver.com?password=secret&amp;filter=#myFilter"/>
    <to uri="bean:processInbox"/>
  </route>

3.17.11. Filtering using ANT path matcher

The ANT path matcher is a filter that is shipped out-of-the-box in the camel-spring jar. So you need to depend on
camel-spring if you are using Maven. The reason is that we leverage Spring's AntPathMatcher to do the matching.

The file paths are matched with the following rules:

• ? matches one character

• * matches zero or more characters

• ** matches zero or more directories in a path

The sample below demonstrates how to use it:

<camelContext xmlns="http://camel.apache.org/schema/spring">
    <template id="camelTemplate"/>
    <!-- use myFilter as filter to allow setting ANT paths for which -->
    <!-- filesto scan for -->
    <endpoint id="myFTPEndpoint" 
       uri="ftp://admin@localhost:20123/antpath?password=admin&recursive=true&
delay=10000&initialDelay=2000&filter=#myAntFilter"/>

    <route>
        <from ref="myFTPEndpoint"/>

http://static.springsource.org/spring/docs/3.0.x/api/org/springframework/util/AntPathMatcher.html


Debug logging

176 Talend Mediation Developer Guide

        <to uri="mock:result"/>
    </route>
</camelContext>

<!-- we use the AntPathMatcherRemoteFileFilter to use ant paths for -->
<!-- includes and excludes -->
<bean id="myAntFilter" 
   class="org.apache.camel.component.file.AntPathMatcherGenericFileFilter">
   
   <!-- include and file in the subfolder that has day in the name -->
   <property name="includes" value="**/subfolder/**/*day*"/>
   <!-- exclude all files with bad in name or .xml files. -->
   <!-- Use comma to separate multiple excludes -->
   <property name="excludes" value="**/*bad*,**/*.xml"/>
</bean>         
          

3.17.12. Debug logging

This component has log level TRACE that can be helpful if you have problems.

3.18. Hl7
The hl7 component is used for working with the HL7 MLLP protocol and the HL7 model using the HAPI library.
This component supports the following:

• HL7 MLLP codec for Mina

• Agnostic data format using either plain String objects or HAPI HL7 model objects.

• Type Converter from/to HAPI and String

• HL7 DataFormat using HAPI library

• Even more ease-of-use as it's integrated well with the camel-mina component.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-hl7</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

3.18.1. HL7 MLLP protocol

HL7 is often used with the HL7 MLLP protocol that is a text based TCP socket based protocol. This component
ships with a Mina Codec that conforms to the MLLP protocol so you can easily expose a HL7 listener that
accepts HL7 requests over the TCP transport. To expose a HL7 listener service we reuse the existing camel-mina
component where we just use HL7MLLPCodec as codec.

http://www.hl7.org/
http://hl7api.sourceforge.net/
http://mina.apache.org/


HL7 MLLP protocol

Talend Mediation Developer Guide 177

The HL7 MLLP codec has the following options:

Name Default Value Description

startByte 0x0b The start byte spanning the HL7 payload.

endByte1 0x1c The first end byte spanning the HL7 payload.

endByte2 0x0d The 2nd end byte spanning the HL7 payload.

charset JVM Default The encoding (is a charset name) to use for the codec.

convertLFtoCR true Will convert \n to \r (0x0d, 13 decimal) as HL7
usually uses \r as segment terminators. The HAPI library
requires the use of \r.

validate true Whether HAPI Parser should validate or not.

3.18.1.1. Exposing a HL7 listener

In our Spring XML file, we configure an endpoint to listen for HL7 requests using TCP:

<endpoint id="hl7listener" 
   uri="mina:tcp://localhost:8888?sync=true&codec=#hl7codec"/>

Notice we configure it to use camel-mina with TCP on the localhost on port 8888. We use sync=true to indicate
that this listener is synchronous and therefore will return a HL7 response to the caller. Then we setup mina to use
our HL7 codec with codec=#hl7codec. Notice that hl7codec is just a Spring bean ID, so we could have named it
mygreatcodecforhl7 or whatever. The codec is also set up in the Spring XML file:

<bean id="hl7codec" class="org.apache.camel.component.hl7.HL7MLLPCodec">
   <property name="charset" value="iso-8859-1"/>
</bean>

And here we configure the charset encoding to use, and iso-8859-1 is commonly used.

The endpoint hl7listener can then be used in a route as a consumer, as this java DSL example illustrates:

from("hl7socket").to("patientLookupService");

This is a very simple route that will listen for HL7 and route it to a service named patientLookupService that is
also a Spring bean ID we have configured in the Spring XML as:

<bean id="patientLookupService" 
   class="com.mycompany.healtcare.service.PatientLookupService"/>
            

Another powerful feature of Camel is that we can have our business logic in POJO classes that is not tied to Camel
as shown here:

public class PatientLookupService {
    public Message lookupPatient(Message input) throws HL7Exception {
        QRD qrd = (QRD)input.get("QRD");
        String patientId = 
           qrd.getWhoSubjectFilter(0).getIDNumber().getValue();

        // find patient data based on the patient id and 
        // create a HL7 model object with the response
        Message response = ... create and set response data
        return response



HL7 Model using java.lang.String

178 Talend Mediation Developer Guide

    }

Notice that this class uses just imports from the HAPI library and none from Camel.

3.18.2. HL7 Model using java.lang.String

The HL7MLLP codec uses plain Strings as its data format. Camel uses its Type Converter to convert to/from
strings to the HAPI HL7 model objects. However, you can use plain String objects if you prefer, for instance if
you wish to parse the data yourself.

3.18.3. HL7 Model using HAPI

The HL7 model uses Java objects from the HAPI library. Using this library, we can encode and decode from the
EDI format (ER7) that is mostly used with HL7. With this model you can code with Java objects instead of the
EDI based HL7 format that can be hard for humans to read and understand.

The ER7 sample below is a request to lookup a patient with the patient ID, 0101701234.

MSH|^~\\&|MYSENDER|MYRECEIVER|MYAPPLICATION||200612211200
||QRY^A19|1234|P|2.4
QRD|200612211200|R|I|GetPatient|||1^RD|0101701234|DEM||

Using the HL7 model we can work with the data as a ca.uhn.hl7v2.model.Message.Message object. To retrieve
the patient ID for the patient in the ER7 above, you can do this in Java code:

Message msg = exchange.getIn().getBody(Message.class);
QRD qrd = (QRD)msg.get("QRD");
String patientId = qrd.getWhoSubjectFilter(0).getIDNumber().getValue();

Camel has built-in type converters, so when this operation is invoked:

Message msg = exchange.getIn().getBody(Message.class);

Camel will convert the received HL7 data from String to Message. This is powerful when combined with the HL7
listener, then you as the end-user don't have to work with byte[], String or any other simple object formats. You
can just use the HAPI HL7 model objects.

3.18.4. Message Headers

The unmarshal operation adds these MSH fields as headers on the Camel message:

Key MSH field Example

CamelHL7SendingApplication MSH-3 MYSERVER

CamelHL7SendingFacility MSH-4 MYSERVERAPP

CamelHL7ReceivingApplication MSH-5 MYCLIENT



Options

Talend Mediation Developer Guide 179

Key MSH field Example

CamelHL7ReceivingFacility MSH-6 MYCLIENTAPP

CamelHL7Timestamp MSH-7 20071231235900

CamelHL7Security MSH-8 null

CamelHL7MessageType MSH-9-1 ADT

CamelHL7TriggerEvent MSH-9-2 A01

CamelHL7MessageControl MSH-10 1234

CamelHL7ProcessingId MSH-11 P

CamelHL7VersionId MSH-12 2.4

3.18.5. Options

The HL7 Data Format supports the following options:

Option Default Description

validate true Whether the HAPI Parser should validate.

3.18.6. Dependencies

To use HL7 in your Camel routes you'll need to add a Maven dependency on camel-hl7 listed above, which
implements this data format. The HAPI library is split into a base library and several structures libraries, one for
each HL7v2 message version.

By default camel-hl7 only references the HAPI base library. Applications are responsible for including structures
libraries themselves. For example, if a application works with HL7v2 message versions 2.4 and 2.5 then the
following dependencies must be added:

<dependency>
    <groupId>ca.uhn.hapi</groupId>
    <artifactId>hapi-structures-v24</artifactId>
    <version>1.0</version>
</dependency>

<dependency>
    <groupId>ca.uhn.hapi</groupId>
    <artifactId>hapi-structures-v25</artifactId>
    <version>1.0</version>
</dependency>

Alternatively, an OSGi bundle containing the base library, all structure libraries and required dependencies (on
the bundle classpath) can be downloaded from the HAPI Maven repository:

<dependency>
    <groupId>ca.uhn.hapi</groupId>
    <artifactId>hapi-osgi-base</artifactId>
    <version>1.0.1</version>
</dependency>

See the Camel Website for examples of this component in use.

http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-base/1.0/
http://hl7api.sourceforge.net/m2/ca/uhn/hapi
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-osgi-base/
http://camel.apache.org/hl7.html


HTTP4

180 Talend Mediation Developer Guide

3.19. HTTP4
The http4: component provides HTTP based endpoints for consuming external HTTP resources (as a client to
call external servers using HTTP).

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-http4</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

3.19.1. URI format

http4:hostname[:port][/resourceUri][?options]

This will by default use port 80 for HTTP and 443 for HTTPS.

You can append query options to the URI in the following format, ?option=value&option=value&...

camel-http4 vs camel-jetty

You can produce only to endpoints generated by the HTTP4 component. Therefore it should never be
used as input into your Camel routes. To bind/expose an HTTP endpoint via a HTTP server as input to
a Camel route, use the Jetty Component instead.

3.19.2. HttpEndpoint Options

Name Default
Value

Description

x509HostnameVerifier See
Description

Default value: org.apache.http.conn.ssl.
BrowserCompatHostnameVerifier

Camel 2.7 onwards: You can refer
to a different org.apache.http.conn.ssl.
X509HostnameVerifier instance in the
Registry such as org.apache.http.conn.ssl.
StrictHostnameVerifier or
org.apache.http.conn.ssl.
AllowAllHostnameVerifier .

throwExceptionOnFailure true Option to disable throwing the
HttpOperationFailedException in case of failed
responses from the remote server. This allows you to get all
responses regardless of the HTTP status code.

bridgeEndpoint false If true, HttpProducer will ignore the Exchange.HTTP_URI
header, and use the endpoint's URI for requests. You may
also set the throwExceptionOnFailure to be false to let the
HttpProducer send all the fault response back. Also if set

http://camel.apache.org/endpoint.html
http://camel.apache.org/registry.html


HttpEndpoint Options

Talend Mediation Developer Guide 181

Name Default
Value

Description

to true HttpProducer and CamelServlet will skip the gzip
processing if the content-encoding is "gzip".

disableStreamCache false DefaultHttpBinding will copy the request input stream into a
stream cache and put it into message body if this option is false
to support multiple reads, otherwise DefaultHttpBinding will
set the request input stream directly in the message body.

httpBindingRef null Reference to a Camel HttpBinding object in the Registry .
Recommended to use the httpBinding option instead.

httpBinding null To use a custom HttpBinding.

httpClientConfigurerRef null Reference to a Camel HttpClientConfigurer
object in the Registry . Recommended to use the
httpClientConfigurer option instead.

httpContext null To use a custom HttpContext when executing requests.

httpContextRef null Reference to a custom org.apache.http.protocol.HttpContext
in the Registry. Recommended to use the httpContext option
instead.

httpClientConfigurer null Reference to a
org.apache.camel.component.http.
HttpClientConfigurer in the Registry .

httpClient.XXX null Setting options on the BasicHttpParams . For
instance httpClient.soTimeout=5000 will set the
SO_TIMEOUT to 5 seconds. Look on the setter
methods of the following parameter beans for a
complete reference: AuthParamBean, ClientParamBean,
ConnConnectionParamBean, ConnRouteParamBean,
CookieSpecParamBean, HttpConnectionParamBean and
HttpProtocolParamBean

clientConnectionManager null To use a custom org.apache.http.conn.
ClientConnectionManager .

transferException false If enabled and an Exchange failed processing on the
consumer side, and if the caused Exception was send
back serialized in the response as a application/x-
java-serialized-object content type (for example
using Section 3.23, “Jetty” or Section 3.39, “Servlet”
Camel components). On the producer side the exception
will be deserialized and thrown as is, instead of
the HttpOperationFailedException . The caused
exception is required to be serialized.

maxTotalConnections 200 The maximum number of connections.

connectionsPerRoute 20 The maximum number of connections per route.

The following authentication options can also be set on the HttpEndpoint:

3.19.2.1. Setting Basic Authentication and Proxy

Name Default
Value

Description

username null Username for authentication.

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://hc.apache.org/httpcomponents-core-ga/httpcore/apidocs/org/apache/http/params/BasicHttpParams.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/auth/params/AuthParamBean.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/client/params/ClientParamBean.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/params/ConnConnectionParamBean.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/params/ConnRouteParamBean.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/cookie/params/CookieSpecParamBean.html
http://hc.apache.org/httpcomponents-core-ga/httpcore/apidocs/org/apache/http/params/HttpConnectionParamBean.html
http://hc.apache.org/httpcomponents-core-ga/httpcore/apidocs/org/apache/http/params/HttpProtocolParamBean.html
http://camel.apache.org/exchange.html


HttpComponent Options

182 Talend Mediation Developer Guide

Name Default
Value

Description

password null Password for authentication.

domain null The domain name for authentication.

host null The host name authentication.

proxyHost null The proxy host name

proxyPort null The proxy port number

proxyUsername null Username for proxy authentication

proxyPassword null Password for proxy authentication

proxyDomain null The proxy domain name

proxyNtHost null The proxy Nt host name

3.19.3. HttpComponent Options

Name Default
Value

Description

httpBinding null To use a custom org.apache.camel.component.
http.HttpBinding .

httpClientConfigurer null To use a custom org.apache.camel.component.
http.HttpClientConfigurer .

httpConnectionManager null To use a custom org.apache.commons.httpclient.
HttpConnectionManager .

httpContext null To use a custom HttpContext when executing requests.

x509HostnameVerifier null Camel 2.7 onwards: To use a custom
org.apache.http.conn.ssl.
X509HostnameVerifier

3.19.4. Message Headers

Name Type Description

Exchange.HTTP_URI String URI to call. This will override existing URI set directly on the
endpoint.

Exchange.HTTP_PATH String Request URI's path, the header will be used to build the request
URI with the HTTP_URI.

Exchange.HTTP_QUERY String URI parameters. This will override existing URI parameters
set directly on the endpoint.

Exchange.
HTTP_RESPONSE_CODE

int The HTTP response code from the external server. Is 200 for
OK.

Exchange.
HTTP_CHARACTER_ENCODING

String Character encoding.

Exchange.CONTENT_TYPE String The HTTP content type. Is set on both the IN and OUT
message to provide a content type, such as text/html .

Exchange.CONTENT_ENCODINGString The HTTP content encoding. Is set on both the IN and OUT
message to provide a content encoding, such as gzip .



Message Body

Talend Mediation Developer Guide 183

3.19.5. Message Body

Camel will store the HTTP response from the external server on the OUT body. All headers from the IN message
will be copied to the OUT message, so headers are preserved during routing. Additionally Camel will add the
HTTP response headers as well to the OUT message headers.

3.19.6. Response code

Camel will handle according to the HTTP response code:

• Response code is in the range 100..299, Camel regards it as a success response.

• Response code is in the range 300..399, Camel regards it as a redirection response and will throw a
HttpOperationFailedException with the information.

• Response code is 400+, Camel regards it as an external server failure and will throw a
HttpOperationFailedException with the information.

throwExceptionOnFailure

The option, throwExceptionOnFailure, can be set to false to prevent the
HttpOperationFailedException from being thrown for failed response codes. This allows
you to get any response from the remote server. There is a sample below demonstrating this.

3.19.7. HttpOperationFailedException

This exception contains the following information:

• The HTTP status code

• The HTTP status line (text of the status code)

• Redirect location, if server returned a redirect

• Response body as a java.lang.String, if server provided a body as response

3.19.8. Calling using GET or POST

The following algorithm is used to determine whether the GET or POST HTTP method should be used: 1. Use
method provided in header. 2. GET if query string is provided in header. 3. GET if endpoint is configured with a
query string. 4. POST if there is data to send (body is not null). 5. GET otherwise.

3.19.9. How to get access to HttpServletRequest and
HttpServletResponse

You can get access to these two using the Camel type converter system using NOTE You can get the request and
response not just from the processor after the camel-jetty or camel-cxf endpoint.

HttpServletRequest request = exchange.getIn().getBody(



Configuring URI to call

184 Talend Mediation Developer Guide

   HttpServletRequest.class);
HttpServletRequest response = 
      exchange.getIn().getBody(HttpServletResponse.class);

3.19.10. Configuring URI to call

You can set the HTTP producer's URI directly form the endpoint URI. In the route below, Camel will call out to
the external server, oldhost, using HTTP.

from("direct:start").to("http4://oldhost");

And the equivalent Spring sample:

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
  <route>
    <from uri="direct:start"/>
    <to uri="http4://oldhost"/>
  </route>
</camelContext>

You can override the HTTP endpoint URI by adding a header with the key, HttpConstants.HTTP_URI, on
the message.

from("direct:start")
   .setHeader(HttpConstants.HTTP_URI, constant("http://newhost"))
   .to("http4://oldhost");

In the sample above Camel will call the http://newhost despite the fact the endpoint is configured with http4://
oldhost. where Constants is the class, org.apache.camel.component.http4.Constants .

3.19.11. Configuring URI Parameters

The http producer supports URI parameters to be sent to the HTTP server. The URI parameters can either be set
directly on the endpoint URI or as a header with the key Exchange.HTTP_QUERY on the message.

from("direct:start").to("http4://oldhost?order=123&detail=short");

Or options provided in a header:

from("direct:start")
   .setHeader(Exchange.HTTP_QUERY, constant("order=123&detail=short"))
   .to("http4://oldhost");

3.19.12. How to set the http method (GET/POST/
PUT/DELETE/HEAD/OPTIONS/TRACE) to the HTTP
producer

The HTTP4 component provides a way to set the HTTP request method by setting the message header. Here is
an example;



Configuring a Proxy

Talend Mediation Developer Guide 185

from("direct:start")
   .setHeader(Exchange.HTTP_METHOD, 
         constant(org.apache.camel.component.http4.HttpMethods.POST))
   .to("http4://www.google.com")
   .to("mock:results");

The method can be written a bit shorter using the string constants:

.setHeader("CamelHttpMethod", constant("POST"))

And the equivalent Spring sample:

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
   <route>
      <from uri="direct:start"/>
      <setHeader headerName="CamelHttpMethod">
         <constant>POST</constant>
      </setHeader>
      <to uri="http4://www.google.com"/>
      <to uri="mock:results"/>
   </route>
</camelContext>

3.19.13. Configuring a Proxy

The HTTP4 component provides a way to configure a proxy.

from("direct:start")
      .to("http4://oldhost?proxyHost=www.myproxy.com&proxyPort=80");

There is also support for proxy authentication via the proxyUsername and proxyPassword options.

3.19.13.1. Using proxy settings outside of URI

To avoid System properties conflicts, you can set proxy configuration only from the CamelContext or URI. Java
DSL:

context.getProperties().put("http.proxyHost", "172.168.18.9");
 context.getProperties().put("http.proxyPort" "8080");

Spring XML

<camelContext>
       <properties>
           <property key="http.proxyHost" value="172.168.18.9"/>
           <property key="http.proxyPort" value="8080"/>
      </properties>
   </camelContext>

Camel will first set the settings from Java System or CamelContext Properties and then the endpoint proxy options
if provided. So you can override the system properties with the endpoint options.



Configuring charset

186 Talend Mediation Developer Guide

3.19.14. Configuring charset

If you are using POST to send data you can configure the charset using the Exchange property:

exchange.setProperty(Exchange.CHARSET_NAME, "ISO-8859-1");

3.19.14.1. Sample with scheduled poll

This sample polls the Google homepage every 10 seconds and write the page to the file message.html:

from("timer://foo?fixedRate=true&delay=0&period=10000")
    .to("http4://www.google.com")
    .setHeader(FileComponent.HEADER_FILE_NAME, "message.html")
    .to("file:target/google");

3.19.14.2. URI Parameters from the endpoint URI

In this sample we have the complete URI endpoint that is just what you would have typed in a web browser.
Multiple URI parameters can of course be set using the & character as separator, just as you would in the web
browser. Camel does no tricks here.

// we query for Camel at the Google page
template.sendBody("http4://www.google.com/search?q=Camel", null);

3.19.14.3. URI Parameters from the Message

Map headers = new HashMap();
headers.put(HttpProducer.QUERY, "q=Camel&lr=lang_en");
// we query for Camel and English language at Google
template.sendBody("http4://www.google.com/search", null, headers);

In the header value above notice that it should not be prefixed with ? and you can separate parameters as usual
with the & char.

3.19.14.4. Getting the Response Code

You can get the HTTP response code from the HTTP4 component by getting the value from the Out message
header with HttpProducer.HTTP_RESPONSE_CODE .

Exchange exchange = 
      template.send("http4://www.google.com/search", new Processor() {
   public void process(Exchange exchange) throws Exception {
      exchange.getIn().setHeader(
            HttpProducer.QUERY, constant("hl=en&q=activemq"));
   }
});



Disabling Cookies

Talend Mediation Developer Guide 187

Message out = exchange.getOut();
int responseCode = out.getHeader(HttpProducer.HTTP_RESPONSE_CODE, 
   Integer.class);

3.19.15. Disabling Cookies

To disable cookies you can set the HTTP Client to ignore cookies by adding this URI option:
httpClient.cookiePolicy=ignoreCookies

3.19.16. Advanced Usage

If you need more control over the HTTP producer you should use the HttpComponent where you can set various
classes to give you custom behavior.

3.19.16.1. Setting up SSL for HTTP Client

Basically camel-http4 component is built on the top of Apache HTTP client.
Please refer to SSL/TLS customization for details or have a look into the
org.apache.camel.component.http4.HttpsServerTestSupport unit test base class. You can
also implement a custom org.apache.camel.component.http4.HttpClientConfigurer to do
some configuration on the http client if you need full control of it.

However if you just want to specify the keystore and truststore you can do this with Apache HTTP
HttpClientConfigurer, for example:

KeyStore keystore = ...;
KeyStore truststore = ...;

SchemeRegistry registry = new SchemeRegistry();
registry.register(new Scheme("https", 443, new SSLSocketFactory(
      keystore, "mypassword", truststore)));

And then you need to create a class that implements HttpClientConfigurer, and registers https protocol
providing a keystore or truststore per example above. Then, from your Camel route builder class you can hook
it up like so:

HttpComponent httpComponent = 
      getContext().getComponent("http4", HttpComponent.class);
httpComponent.setHttpClientConfigurer(new MyHttpClientConfigurer());

If you are doing this using the Spring DSL, you can specify your HttpClientConfigurer using the URI.
For example:

<bean id="myHttpClientConfigurer"
 class="my.https.HttpClientConfigurer">
</bean>

<to uri="https4://myhostname.com:443/myURL?httpClientConfigurer=
myHttpClientConfigurer"/>

http://hc.apache.org/
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html#d4e537


Jasypt

188 Talend Mediation Developer Guide

As long as you implement the HttpClientConfigurer and configure your keystore and truststore as described above,
it will work fine.

3.20. Jasypt
Jasypt is a simplified encryption library which makes encryption and decryption easy. Camel integrates with Jasypt
to allow sensitive information in Section 3.33, “Properties” files to be encrypted. By dropping  camel-jasypt
on the classpath those encrypted values will automatic be decrypted on-the-fly by Camel. This ensures that human
eyes can't easily spot sensitive information such as usernames and passwords.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-jasypt</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

3.20.1. Tooling

The Section 3.20, “Jasypt” component provides a little command line tooling to encrypt or decrypt values.

The console output the syntax and which options it provides:

Apache Camel Jasypt takes the following options

  -h or -help = Displays the help screen
  -c or -command <command> = Command either encrypt or decrypt
  -p or -password <password> = Password to use
  -i or -input <input> = Text to encrypt or decrypt
  -a or -algorithm <algorithm> = Optional algorithm to use

For example to encrypt the value tiger you run with the following parameters. In the apache Camel kit, you
cd into the lib folder and run the following java cmd, where <CAMEL_HOME> is where you have downloaded
and extract the Camel distribution.

$ cd <CAMEL_HOME>/lib
$ java -jar camel-jasypt-2.5.0.jar -c encrypt -p secret -i tiger

Which outputs the following result

Encrypted text: qaEEacuW7BUti8LcMgyjKw==

This means the encrypted representation qaEEacuW7BUti8LcMgyjKw== can be decrypted back to tiger if
you know the master password which was secret . If you run the tool again then the encrypted value will return
a different result. But decrypting the value will always return the correct original value.

So you can test it by running the tooling using the following parameters:

$ cd <CAMEL_HOME>/lib
$ java -jar camel-jasypt-2.5.0.jar -c decrypt -p secret 
      -i qaEEacuW7BUti8LcMgyjKw==

http://www.jasypt.org/


URI Options

Talend Mediation Developer Guide 189

Which outputs the following result:

Decrypted text: tiger

The idea is then to use those encrypted values in your Section 3.33, “Properties” files. Notice how the password
value is encrypted and the value has the tokens surrounding ENC(value here)

# refer to a mock endpoint name by that encrypted password
cool.result=mock:{{cool.password}}

# here is a password which is encrypted
cool.password=ENC(bsW9uV37gQ0QHFu7KO03Ww==)

3.20.1.1. Tooling dependencies for Camel 2.6

The tooling requires the following JARs in the classpath, which has been enlisted in the MANIFEST.MF file of
camel-jasypt with optional/ as prefix. Hence why the java cmd above can pickup the needed JARs from
the Apache Distribution in the optional directory.

jasypt-1.6.jar commons-lang-2.4.jar commons-codec-1.4.jar icu4j-4.0.1.jar

Java 1.5 users

The icu4j-4.0.1.jar is only needed when running on JDK 1.5.

This JAR is not distributed by Apache Camel and you have to download it manually and copy it to the
lib/optional directory of the Camel distribution. You can download it from Apache Central Maven
repo .

3.20.1.2. Tooling dependencies for Camel 2.7 onwards

Jasypt 1.7 onwards is now fully standalone so no additional JARs is needed.

3.20.2. URI Options

The options below are exclusive for the Section 3.20, “Jasypt” component.

Name Default Value Type Description

password null String Specifies the master password to use for
decrypting. This option is mandatory. See
below for more details.

algorithm null String Name of an optional algorithm to use.

3.20.3. Protecting the master password

The master password used by Section 3.20, “Jasypt” must be provided, so it is capable of decrypting the values.
However having this master password out in the open may not be an ideal solution. Therefore you could for

http://repo2.maven.org/maven2/com/ibm/icu/icu4j/4.0.1/
http://repo2.maven.org/maven2/com/ibm/icu/icu4j/4.0.1/


Example with Java DSL

190 Talend Mediation Developer Guide

example provide it as a JVM system property or as a OS environment setting. If you decide to do so then the
password option supports prefixes which dictates this. sysenv: means to lookup the OS system environment
with the given key. sys: means to lookup a JVM system property.

For example you could provided the password before you start the application

$ export CAMEL_ENCRYPTION_PASSWORD=secret

Then start the application, such as running the start script.

When the application is up and running you can unset the environment

$ unset CAMEL_ENCRYPTION_PASSWORD

The password option is then a matter of defining as follows:
password=sysenv:CAMEL_ENCRYPTION_PASSWORD .

3.20.4. Example with Java DSL

In Java DSL you need to configure Section 3.20, “Jasypt” as a JasyptPropertiesParser instance and set
it on the Section 3.33, “Properties” component as shown below:

// create the jasypt properties parser
JasyptPropertiesParser jasypt = new JasyptPropertiesParser();
// and set the master password
jasypt.setPassword("secret");

// create the properties component
PropertiesComponent pc = new PropertiesComponent();
pc.setLocation(
   "classpath:org/apache/camel/component/jasypt/myproperties.properties");
// and use the jasypt properties parser so we can decrypt values
pc.setPropertiesParser(jasypt);

// add properties component to Camel context
context.addComponent("properties", pc);

The properties file myproperties.properties then contain the encrypted value, such as shown below.
Notice how the password value is encrypted and the value has the tokens surrounding ENC(value here)

# refer to a mock endpoint name by that encrypted password
cool.result=mock:{{cool.password}}

# here is a password which is encrypted
cool.password=ENC(bsW9uV37gQ0QHFu7KO03Ww==)

3.20.5. Example with Spring XML

In Spring XML you need to configure the JasyptPropertiesParser which is shown below. Then the Camel
Section 3.33, “Properties” component is told to use jasypt as the properties parser, which means Section 3.20,
“Jasypt” have its chance to decrypt values looked up in the properties.



JCR

Talend Mediation Developer Guide 191

<!-- define the jasypt properties parser with the given password -->
<bean id="jasypt" 
      class="org.apache.camel.component.jasypt.JasyptPropertiesParser">
    <property name="password" value="secret"/>
</bean>

<!-- define the Camel properties component -->
<bean id="properties" 
      class="org.apache.camel.component.properties.PropertiesComponent">
    <!-- the properties file is in the classpath -->
    <property name="location" 
          value=
       "classpath:org/apache/camel/component/jasypt/myprops.properties"/>
    <!-- and let it leverage the jasypt parser -->
    <property name="propertiesParser" ref="jasypt"/>
</bean>
        

The Section 3.33, “Properties” component can also be inlined inside the <camelContext> tag which is shown
below. Notice how we use the propertiesParserRef attribute to refer to Section 3.20, “Jasypt” .

<!-- define the jasypt properties parser with the given password -->
<bean id="jasypt" 
      class="org.apache.camel.component.jasypt.JasyptPropertiesParser">
   <!-- password is mandatory, you can prefix it with sysenv: or sys: 
      to indicate it should use an OS environment or JVM system property 
      value, so you don't have the master password defined here -->
   <property name="password" value="secret"/>
</bean>

<camelContext xmlns="http://camel.apache.org/schema/spring">
   <!-- define the Camel properties placeholder and let it use jasypt -->
   <propertyPlaceholder 
      id="properties"
      location=
         "classpath:org/apache/camel/component/jasypt/myproperties.properties"
         propertiesParserRef="jasypt"/>
   <route>
      <from uri="direct:start"/>
      <to uri="{{cool.result}}"/>
   </route>
</camelContext>

3.21. JCR
The  jcr  component allows you to add nodes to a JCR (JSR-170) compliant content repository (for example,
Apache Jackrabbit ).

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-jcr</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->

http://jackrabbit.apache.org/


URI format

192 Talend Mediation Developer Guide

</dependency>

3.21.1. URI format

jcr://user:password@repository/path/to/node

3.21.2. Usage

The repository element of the URI is used to look up the JCR Repository object in the Camel context
registry.

If a message is sent to a JCR producer endpoint:

• A new node is created in the content repository,

• All the message properties of the IN message are transformed to JCR Value instances and added to the new
node,

• The node's UUID is returned in the OUT message.

3.21.3. Message properties

All message properties are converted to node properties, except for the CamelJcrNodeName property (you can
refer to JcrConstants.NODE_NAME in your code), which is used to determine the node name.

3.21.4. Example

The snippet below creates a node named node under the /home/test node in the content repository. One
additional attribute is added to the node as well: my.contents.property which will contain the body of the
message being sent.

from("direct:a").setProperty(JcrConstants.JCR_NODE_NAME, constant("node"))
    .setProperty("my.contents.property", body())
    .to("jcr://user:pass@repository/home/test");

3.22. JDBC
The jdbc component enables you to access databases through JDBC, where SQL queries and operations are sent
in the message body. This component uses the standard JDBC API, unlike the Section 3.45, “SQL Component”
component, which uses spring-jdbc.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-jdbc</artifactId>



URI format

Talend Mediation Developer Guide 193

    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

This component can only be used to define producer endpoints, which means that you cannot use the
JDBC component in a from() statement.

This component can not be used as a Transactional Client. If you need transaction support in your route,
you should use the Section 3.45, “SQL Component” component instead.

3.22.1. URI format

jdbc:dataSourceName[?options]

This component only supports producer endpoints.

You can append query options to the URI in the following format, ?option=value&option=value&...

3.22.2. Options

Name Default
Value

Description

readSize 0 The default maximum number of rows that can be read by a
polling query. The default value is 0.

statement.<xxx> null Sets additional options on the java.sql.Statement that
is used behind the scenes to execute the queries. For instance,
statement.maxRows=10 . For detailed documentation,
see the  java.sql.Statement javadoc  documentation.

useJDBC4ColumnNameAnd-
LabelSemantics

true Sets whether to use JDBC 4/3 column label/name semantics.
You can use this option to turn it false in case you have
issues with your JDBC driver to select data. This only applies
when using SQL SELECT using aliases (for example, SQL
SELECT id as identifier, name as given_name
from persons ).

resetAutoCommit true Camel will set the autoCommit on the JDBC connection to
be false, commit the change after executing the statement
and reset the autoCommit flag of the connection at the end,
if the resetAutoCommit is true. If the JDBC connection
doesn't support resetting the autoCommit flag, you can set the
resetAutoCommit flag to be false, and Camel will not try to
reset the autoCommit flag.

3.22.3. Result

The result is returned in the OUT body as an ArrayList<HashMap<String, Object>> . The List object
contains the list of rows and the Map objects contain each row with the String key as the column name.

Note: This component fetches ResultSetMetaData to be able to return the column name as the key in the
Map .

http://camel.apache.org/transactional-client.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html


Samples

194 Talend Mediation Developer Guide

3.22.3.1. Message Headers

Header Description

CamelJdbcRowCount If the query is a SELECT, query the row count is returned in this OUT
header.

CamelJdbcUpdateCount If the query is an UPDATE, query the update count is returned in this OUT
header.

CamelGeneratedKeysRows Rows that contain the generated keys. If you insert data using SQL
INSERT, setting this value to true causes the generated keys to be returned
in headers.

CamelGeneratedKeys-
RowCount

The number of rows in the header that contains generated keys.

3.22.4. Samples

In the following example, we fetch the rows from the customer table.

First we register our datasource in the Camel registry as testdb :

JndiRegistry reg = super.createRegistry();
reg.bind("testdb", ds);
return reg;

Then we configure a route that routes to the JDBC component, so the SQL will be executed. Note how we refer
to the testdb datasource that was bound in the previous step:

// let's add a simple route
public void configure() throws Exception {
    from("direct:hello").to("jdbc:testdb?readSize=100");
}

Or you can create a DataSource in Spring like this:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
  <route>
     <from uri="timer://kickoff?period=10000"/>
     <setBody>
       <constant>select * from customer</constant>
     </setBody>
     <to uri="jdbc:testdb"/>
     <to uri="mock:result"/>
  </route>
</camelContext>

<!-- Just add a demo to show how to 
    bind a date source for Camel in Spring-->
<bean id="testdb" 
      class="org.springframework.jdbc.datasource.DriverManagerDataSource">
   <property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
   <property name="url" value="jdbc:hsqldb:mem:camel_jdbc" />
   <property name="username" value="sa" />
   <property name="password" value="" />
</bean> 



Jetty

Talend Mediation Developer Guide 195

        

We create an endpoint, add the SQL query to the body of the IN message, and then send the exchange. The result
of the query is returned in the OUT body:

// first we create our exchange using the endpoint
Endpoint endpoint = context.getEndpoint("direct:hello");
Exchange exchange = endpoint.createExchange();
// then we set the SQL on the in body
exchange.getIn().setBody("select * from customer order by ID");

// now we send the exchange to the endpoint, and receive Camel response
Exchange out = template.send(endpoint, exchange);

// assertions of the response
assertNotNull(out);
assertNotNull(out.getOut());
ArrayList<HashMap<String, Object>> data = out.getOut().getBody(
    ArrayList.class);
assertNotNull("out body could not be converted to an ArrayList - was: "
    + out.getOut().getBody(), data);
assertEquals(2, data.size());
HashMap<String, Object> row = data.get(0);
assertEquals("cust1", row.get("ID"));
assertEquals("jbloggs", row.get("NAME"));
row = data.get(1);
assertEquals("cust2", row.get("ID"));
assertEquals("nsandhu", row.get("NAME"));

If you want to work on the rows one by one instead of the entire ResultSet at once you need to use the Section 2.48,
“Splitter” EIP such as:

from("direct:hello")
        // here we split the data from the testdb into new messages one by one
        // so the mock endpoint will receive a message per row in the table
    .to("jdbc:testdb").split(body()).to("mock:result");

3.23. Jetty
The jetty component provides HTTP-based endpoints for consuming HTTP requests. That is, the Jetty component
behaves as a simple Web server. Jetty can also be used as a http client which mean you can also use it with Camel
as a Producer.

Note Jetty is stream based, which means the input it receives is submitted to Camel as a stream. That means you
will only be able to read the content of the stream once. If you find a situation where the message body appears
to be empty or you need to access the data multiple times (for example,: doing multicasting, or redelivery error
handling) you should use Stream Caching or convert the message body to a String which is safe to be re-read
multiple times.

3.23.1. URI format

jetty:http://hostname[:port][/resourceUri][?options]

http://camel.apache.org/endpoint.html
http://camel.apache.org/stream-caching.html


Options

196 Talend Mediation Developer Guide

You can append query options to the URI in the following format, ?option=value&option=value&...

3.23.2. Options

Name Default
Value

Description

sessionSupport false Specifies whether to enable the session manager on the server
side of Jetty.

httpClient.XXX null Configuration of Jetty's HttpClient . For example,
setting httpClient.idleTimeout=30000 sets the idle
timeout to 30 seconds.

httpBindingRef null Reference to an Camel HttpBinding object in the Registry
. HttpBinding can be used to customize how a response
should be written for the consumer.

jettyHttpBindingRef null Reference to a Camel JettyHttpBinding object in the
Registry . JettyHttpBinding can be used to customize
how a response should be written for the producer.

matchOnUriPrefix false Whether or not the CamelServlet should try to find a target
consumer by matching the URI prefix if no exact match is
found. See here How do I let Jetty match wildcards .

handlers null Specifies a comma-delimited set of
org.mortbay.jetty.Handler instances in your
Registry (such as your Spring ApplicationContext).
These handlers are added to the Jetty servlet context (for
example, to add security).

chunked true If this option is false Jetty servlet will disable the HTTP
streaming and set the content-length header on the response

enableJmx false If this option is true, Jetty JMX support will be enabled for this
endpoint. See Jetty JMX support for more details.

disableStreamCache false Determines whether or not the raw input stream from Jetty is
cached or not (Camel will read the stream into a in memory/
overflow to file, Stream Caching ) cache. By default Camel
will cache the Jetty input stream to support reading it multiple
times to ensure it Camel can retrieve all data from the stream.
However you can set this option to true when you for
example need to access the raw stream, such as streaming it
directly to a file or other persistent store. DefaultHttpBinding
will copy the request input stream into a stream cache and put
it into message body if this option is false to support reading
the stream multiple times. If you use [Jetty] to bridge/proxy
an endpoint then consider enabling this option to improve
performance, in case you do not need to read the message
payload multiple times.

bridgeEndpoint false If the option is true, HttpProducer will ignore the
Exchange.HTTP_URI header, and use the endpoint's URI for
request. You may also set the throwExceptionOnFailure to
be false to let the HttpProducer send all the fault response
back. If the option is true, HttpProducer and CamelServlet will
skip the gzip processing if the content-encoding is "gzip". Also
consider setting *disableStreamCache* to true to optimize
when bridging.

http://wiki.eclipse.org/Jetty/Tutorial/HttpClient
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://localhost:8080/confluence/pages/viewpage.action?pageId=3244612
http://camel.apache.org/registry.html
http://camel.apache.org/stream-caching.html


Message Headers

Talend Mediation Developer Guide 197

Name Default
Value

Description

enableMultipartFilter true Whether Jetty org.eclipse. jetty.servlets.
MultiPartFilter is enabled or not. You should set this
value to false when bridging endpoints, to ensure multipart
requests is proxied/bridged as well.

multipartFilterRef null Camel 2.6 onwards: Allows using a custom multipart filter.
Note: setting multipartFilterRef forces the value of
enableMultipartFilter to true .

FiltersRef null Camel 2.9: Allows using a custom filter which is put into a list
and can be found in the Registry

sslContextParametersRef null Camel 2.8: Reference to an org.apache.camel.util.jsse.
SSLContextParameters object in the Camel Registry. This
reference overrides any configured SSLContextParameters at
the component level.

traceEnabled false Specifies whether to enable HTTP TRACE for this Jetty
consumer. By default TRACE is turned off.

continuationTimeout null Camel 2.6 onwards: Allows to set a timeout in milliseconds
when using Section 3.23, “Jetty” as consumer (server). By
default Jetty uses 30000. You can use a value of <= 0 to never
expire. If a timeout occurs then the request will be expired
and Jetty will return back a http error 503 to the client. This
option is only in use when using Section 3.23, “Jetty” with the
Asynchronous Routing Engine .

useContinuation true Camel 2.6 onwards: Whether or not to use Jetty continuations
for the Jetty Server.

3.23.3. Message Headers
Camel uses the same message headers as the Section 3.19, “HTTP4” component. It also uses
(Exchange.HTTP_CHUNKED,CamelHttpChunked) header to turn on or turn off the chunked encoding on the
camel-jetty consumer.

Camel also populates all request.parameter and request.headers. For example, given a client request with the URL,
http://myserver/myserver?orderid=123 , the exchange will contain a header named orderid with
the value 123.

You can get the request.parameter from the message header not only from Get Method, but also other HTTP
methods.

3.23.4. Usage
The Jetty component only supports consumer endpoints. Therefore a Jetty endpoint URI should be used only as
the input for a Camel route (in a from() DSL call). To issue HTTP requests against other HTTP endpoints,
use the HTTP4 Component

3.23.5. Component Options
The JettyHttpComponent provides the following options:

http://camel.apache.org/asynchronous-routing-engine.html
http://wiki.eclipse.org/Jetty/Feature/Continuations


Sample

198 Talend Mediation Developer Guide

Name Default
Value

Description

enableJmx false If this option is true, Jetty JMX support will be enabled for this
endpoint. See Jetty JMX support for more details.

sslKeyPassword null Consumer only : The password for the keystore when using
SSL.

sslPassword null Consumer only : The password when using SSL.

sslKeystore null Consumer only : The path to the keystore.

minThreads null Consumer only : To set a value for minimum number of
threads in server thread pool.

maxThreads null Consumer only : To set a value for maximum number of
threads in server thread pool.

threadPool null Consumer only : To use a custom thread pool for the server.

sslSocketConnectors null Consumer only: A map which contains per port number
specific SSL connectors. See section SSL support for more
details.

socketConnectors null Consumer only: A map which contains per port number
specific HTTP connectors. Uses the same principle as
sslSocketConnectors and therefore see section SSL
support for more details.

sslSocketConnector-
Properties

null Consumer only. A map which contains general SSL
connector properties. See section SSL support for more details.

socketConnectorPropertiesnull Consumer only. A map which contains general HTTP
connector properties. Uses the same principle as
sslSocketConnectorProperties and therefore see
section SSL support for more details.

httpClient null Producer only : To use a custom HttpClient with the jetty
producer.

httpClientMinThreads null Producer only : To set a value for minimum number of threads
in HttpClient thread pool.

httpClientMaxThreads null Producer only : To set a value for maximum number of
threads in HttpClient thread pool.

httpClientThreadPool null Producer only : To use a custom thread pool for the client.

sslContextParameters null To configure a custom SSL/TLS configuration options at the
component level.

3.23.6. Sample

In this sample we define a route that exposes a HTTP service at  http://localhost:8080/myapp/
myservice  :

from("jetty:http://localhost:{{port}}/myapp/myservice").process(
   new MyBookService());

Usage of localhost

When you specify localhost in a URL, Camel exposes the endpoint only on the local TCP/IP network
interface, so it cannot be accessed from outside the machine it operates on.



Session Support

Talend Mediation Developer Guide 199

If you need to expose a Jetty endpoint on a specific network interface, the numerical IP address of this
interface should be used as the host. If you need to expose a Jetty endpoint on all network interfaces, the
0.0.0.0 address should be used.

Our business logic is implemented in the MyBookService class, which accesses the HTTP request contents and
then returns a response. Note: The assert call appears in this example, because the code is part of an unit test.

public class MyBookService implements Processor {
    public void process(Exchange exchange) throws Exception {
        // just get the body as a string
        String body = exchange.getIn().getBody(String.class);
        // we have access to the HttpServletRequest here and we can grab it 
        // if we need it
        HttpServletRequest req = 
              exchange.getIn().getBody(HttpServletRequest.class);
        assertNotNull(req);

        // for unit testing
        assertEquals("bookid=123", body);

        // send a html response
        exchange.getOut().setBody(
           "<html><body>Book 123 is Factory Patterns</body></html>");
    }
}

The following sample shows a content-based route that routes all requests containing the URI parameter, one, to
the endpoint, mock:one, and all others to mock:other.

from("jetty:" + serverUri)
    .choice()
    .when().simple("in.header.one").to("mock:one")
    .otherwise()
    .to("mock:other");

So if a client sends the HTTP request,  http://serverUri?one=hello , the Jetty component will copy
the HTTP request parameter, one to the exchange's in.header. We can then use the Simple language to route
exchanges that contain this header to a specific endpoint and all others to another. If we used a language more
powerful than Simple -- such as EL or OGNL --we could also test for the parameter value and do routing based
on the header value as well.

3.23.7. Session Support
The session support option, sessionSupport, can be used to enable a HttpSession object and access the
session object while processing the exchange. For example, the following route enables sessions:

<route>
    <from uri="jetty:http://0.0.0.0/myapp/myservice/?sessionSupport=true"/>
    <processRef ref="myCode"/>
<route>

The myCode Processor can be instantiated by a Spring bean element:

<bean id="myCode"class="com.mycompany.MyCodeProcessor"/>

where the processor implementation can access the HttpSession as follows:

public void process(Exchange exchange) throws Exception {

http://camel.apache.org/simple.html
http://camel.apache.org/el.html
http://camel.apache.org/ognl.html
http://camel.apache.org/processor.html


SSL Support (HTTPS)

200 Talend Mediation Developer Guide

    HttpSession session = exchange.getIn(HttpMessage.class).getRequest()
        .getSession(); 
    ...
}

3.23.8. SSL Support (HTTPS)

The Jetty component supports SSL/TLS configuration through the Camel JSSE Configuration Utility This utility
greatly decreases the amount of component specific code you need to write and is configurable at the endpoint
and component levels. The following examples demonstrate how to use the utility with the Jetty component.

Programmatic configuration of the component:

KeyStoreParameters ksp = new KeyStoreParameters();
ksp.setResource("/users/home/server/keystore.jks");
ksp.setPassword("keystorePassword");

KeyManagersParameters kmp = new KeyManagersParameters();
kmp.setKeyStore(ksp);
kmp.setKeyPassword("keyPassword");

SSLContextParameters scp = new SSLContextParameters();
scp.setKeyManagers(kmp);

JettyComponent jettyComponent = getContext().getComponent("jetty", 
    JettyComponent.class);
jettyComponent.setSslContextParameters(scp);

Spring DSL based configuration of endpoint

...
<camel:sslContextParameters
id="sslContextParameters">
<camel:keyManagers
keyPassword="keyPassword">
<camel:keyStore
resource="/users/home/server/keystore.jks"
password="keystorePassword"/>
</camel:keyManagers>
</camel:sslContextParameters>...
...
<to uri="jetty:https://127.0.0.1/mail/?sslContextParametersRef=... \
    sslContextParameters"/>
...

You can also configure Jetty for SSL directly. In this case, simply format the URI with the https:// prefix---
for example:

<from uri="jetty:https://0.0.0.0/myapp/myservice/"/>

Jetty also needs to know where to load your keystore from and what passwords to use in order to load the correct
SSL certificate. Set the following JVM System Properties:

• org.eclipse.jetty.ssl.keystore specifies the location of the Java keystore file, which contains the
Jetty server's own X.509 certificate in a key entry . A key entry stores the X.509 certificate (effectively, the
public key ) and also its associated private key.

http://camel.apache.org/camel-configuration-utilities.html


SSL Support (HTTPS)

Talend Mediation Developer Guide 201

• org.eclipse.jetty.ssl.password the store password, which is required to access the keystore file
(this is the same password that is supplied to the keystore command's -storepass option).

• org.eclipse.jetty.ssl.keypassword the key password, which is used to access the certificate's key
entry in the keystore (this is the same password that is supplied to the keystore command's -keypass
option).

For details of how to configure SSL on a Jetty endpoint, read the Jetty documentation here.

The value you use as keys in the above map is the port you configure Jetty to listen on.

3.23.8.1. Configuring general SSL properties

Instead of a per port number specific SSL socket connector (as shown above) you can now configure general
properties which applies for all SSL socket connectors (which is not explicit configured as above with the port
number as entry).

<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
    <property name="sslSocketConnectorProperties">
        <properties>
            <property name="password"value="..."/>
            <property name="keyPassword"value="..."/>
            <property name="keystore"value="..."/>
            <property name="needClientAuth"value="..."/>
            <property name="truststore"value="..."/>
        </properties>
    </property>
</bean>

3.23.8.2. Configuring general HTTP properties

Instead of a per port number specific HTTP socket connector (as shown above) you can now configure general
properties which applies for all HTTP socket connectors (which is not explicit configured as above with the port
number as entry).

<bean id="jetty" class="org.apache.camel.component.jetty.JettyHttpComponent">
    <property name="socketConnectorProperties">
        <properties>
            <property name="acceptors" value="4"/>
            <property name="maxIdleTime" value="300000"/>
        </properties>
    </property>
</bean>

3.23.8.3. Default behavior for returning HTTP status codes

The default behavior of HTTP status codes is defined by the
org.apache.camel.component.http.DefaultHttpBinding class, which handles how a response
is written and also sets the HTTP status code.

If the exchange was processed successfully, the 200 HTTP status code is returned. If the exchange failed with an
exception, the 500 HTTP status code is returned, and the stacktrace is returned in the body. If you want to specify
which HTTP status code to return, set the code in the HttpProducer.HTTP_RESPONSE_CODE header of
the OUT message.

http://docs.codehaus.org/display/JETTY/How+to+configure+SSL


JMS

202 Talend Mediation Developer Guide

3.23.8.4. Jetty JMX support

Camel-jetty supports the enabling of Jetty's JMX capabilities at the component and endpoint level with the endpoint
configuration taking priority. Note that JMX must be enabled within the Camel context in order to enable JMX
support in this component as the component provides Jetty with a reference to the MBeanServer registered with
the Camel context. Because the camel-jetty component caches and reuses Jetty resources for a given protocol/
host/port pairing, this configuration option will only be evaluated during the creation of the first endpoint to use
a protocol/host/port pairing.

For example, given two routes created from the following XML fragments, JMX support would remain enabled
for all endpoints listening on "https://0.0.0.0".

<from uri="jetty:https://0.0.0.0/myapp/myservice1/?enableJmx=true"/>

<from uri="jetty:https://0.0.0.0/myapp/myservice2/?enableJmx=false"/>

The camel-jetty component also provides for direct configuration of the Jetty MBeanContainer. Jetty creates
MBean names dynamically. If you are running another instance of Jetty outside of the Camel context and sharing
the same MBeanServer between the instances, you can provide both instances with a reference to the same
MBeanContainer in order to avoid name collisions when registering Jetty MBeans.

3.24. JMS
Using ActiveMQ

If you are using Apache ActiveMQ, you should prefer the Section 3.1, “ActiveMQ” component as it
has been optimized for it. . All of the options and samples on this page are also valid for the ActiveMQ
component.

The JMS component allows messages to be sent to (or consumed from) a JMS Queue or Topic. The implementation
of the JMS Component uses Spring's JMS support for declarative transactions, using Spring's JmsTemplate for
sending and a MessageListenerContainer for consuming.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-jms</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

3.24.1. URI format
jms:[queue:|topic:]destinationName[?options]

where destinationName is a JMS queue or topic name. By default, the destinationName is interpreted
as a queue name. For example, to connect to the queue, FOO.BAR, use:

jms:FOO.BAR

You can include the optional queue: prefix, if you prefer:

jms:queue:FOO.BAR

To connect to a topic, you must include the topic: prefix. For example, to connect to the topic,
Stocks.Prices, use:

http://activemq.apache.org/
http://java.sun.com/products/jms/


Notes

Talend Mediation Developer Guide 203

jms:topic:Stocks.Prices

Append query options to the URI using the following format, ?option=value&option=value&...

3.24.2. Notes

If you are using ActiveMQ

Note that the JMS component reuses Spring 2's JmsTemplate for sending messages. This is not ideal
for use in a non-J2EE container and typically requires some caching in the JMS provider to avoid poor
performance .

If you intend to use Apache ActiveMQ as your Message Broker, then we recommend that you either:

• Use the Section 3.1, “ActiveMQ” component, which is already configured to use ActiveMQ efficiently,
or

• Use the PoolingConnectionFactory in ActiveMQ.

If you are consuming messages and using transactions (transacted=true) then the default settings for cache level
can impact performance. If you are using XA transactions then you cannot cache as it can cause the XA transaction
not to work properly. If you are not using XA, then you should consider caching as it speeds up performance, such
as setting cacheLevelName=CACHE_CONSUMER.

The default setting for cacheLevelName is CACHE_AUTO. This default auto detects the mode and sets the cache
level accordingly to: CACHE_CONSUMER if transacted is false, or CACHE_NONE if transacted is true. So you can
say the default setting is conservative. Consider using cacheLevelName=CACHE_CONSUMER if you are using
non-XA transactions.

If you wish to use durable topic subscriptions, you need to specify both clientId and durableSubscriptionName.
The value of the clientId must be unique and can only be used by a single JMS connection instance in your
entire network. You may prefer to use Virtual Topics instead to avoid this limitation. More background on durable
messaging is available on the ActiveMQ site.

When using message headers, the JMS specification states that header names must be valid Java identifiers. So,
by default, Camel ignores any headers that do not match this rule. So try to name your headers as if they are valid
Java identifiers. One benefit of doing this is that you can then use your headers inside a JMS Selector (whose
SQL92 syntax mandates Java identifier syntax for headers).

A simple strategy for mapping header names is used by default. The strategy is to replace any dots in the header
name with the underscore character and to reverse the replacement when the header name is restored from a JMS
message sent over the wire. What does this mean? No more losing method names to invoke on a bean component,
no more losing the filename header for the File Component, and so on.

The current header name strategy for accepting header names in Camel is as follows:

• Dots are replaced by _DOT_ and the replacement is reversed when Camel consumes the message. (for example,
org.apache.camel.MethodName becomes org_DOT_apache_DOT_camel_DOT_MethodName).

• Hyphen is replaced by _HYPHEN_ and the replacement is reversed when Camel consumes the message.

• Test if the name is a valid java identifier using the JDK core classes.

• If the test success, the header is added and sent over the wire; otherwise it is dropped (and logged at DEBUG
level).

Are you using transactions?

If you are consuming messages, and have transacted=true, then the default settings for cache level can
impact performance. Unfortunately the default setting is always CACHE_CONSUMER. However when

http://activemq.apache.org/jmstemplate-gotchas.html
http://activemq.apache.org/jmstemplate-gotchas.html
http://activemq.apache.org/
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html


Options

204 Talend Mediation Developer Guide

you use transaction the cache level should be set to CACHE_NONE. This has been corrected in Camel
2.8 onwards where it auto detects the mode and set the level appropriately (the level is CACHE_AUTO).
So the workaround is to set cacheLevelName=CACHE_NONE if you are using transactions.

3.24.3. Options

You can configure many different properties on the JMS endpoint which map to properties on the
JMSConfiguration POJO. Note: Many of these properties map to properties on Spring JMS, which Camel uses for
sending and receiving messages. You can get more information about these properties by consulting the relevant
Spring documentation.

The options is divided into two tables, the first one with the most common options used. The latter contains the rest.

3.24.3.1. Most commonly used options

Option Default Value Description

clientId null Sets the JMS client ID to use. Note that this
value, if specified, must be unique and can only
be used by a single JMS connection instance.
It is typically only required for durable topic
subscriptions. You may prefer to use Virtual
Topics instead.

concurrentConsumers 1 Specifies the default number of concurrent
consumers.

disableReplyTo false If true, a producer will behave like a InOnly
exchange with the exception that JMSReplyTo
header is sent out and not be suppressed like in the
case of InOnly. Like InOnly the producer will
not wait for a reply. A consumer with this flag will
behave like InOnly. This feature can be used to
bridge InOut requests to another queue so that
a route on the other queue will send it´s response
directly back to the original JMSReplyTo.

durableSubscriptionName null The durable subscriber name for specifying
durable topic subscriptions. The clientId
option must be configured as well.

maxConcurrentConsumers 1 Specifies the maximum number of concurrent
consumers.

preserveMessageQos false Set to true, if you want to send message
using the QoS settings specified on the message,
instead of the QoS settings on the JMS endpoint.
The following three headers are considered
JMSPriority, JMSDeliveryMode, and
JMSExpiration. You can provide all or only
some of them. If not provided, Camel will
fall back to use the values from the endpoint
instead. So, when using this option, the headers
override the values from the endpoint. The
explicitQosEnabled option, by contrast,
will only use options set on the endpoint, and not
values from the message header.

http://camel.apache.org/maven/current/camel-jms/apidocs/org/apache/camel/component/jms/JmsConfiguration.html
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/virtual-destinations.html


Options

Talend Mediation Developer Guide 205

Option Default Value Description

replyTo null Provides an explicit ReplyTo destination,
which overrides any incoming value of
Message.getJMSReplyTo(). If you do
[Request Reply] over JMS then read the section
further below for more details.

replyToType null Allows to explicit specify which kind of
strategy to use for replyTo queues when doing
request/reply over JMS. Possible values are:
{{Temporary}}, {{Shared}}, or {{Exclusive}}.
By default Camel will use temporary queues.
However if {{replyTo}} has been configured,
then {{Shared}} is used by default. This option
allows you to use exclusive instead of shared
queues. Check the Camel website for more about
this option.

requestTimeout 20000 (Producer only) The timeout for waiting for
a reply when using the InOut Exchange
Pattern (in milliseconds). See also the
requestTimeoutCheckerInterval option.

selector null Sets the JMS Selector, which is an SQL 92
predicate that is used to filter messages within
the broker. You may have to encode special
characters such as = as %3D.

timeToLive null When sending messages, specifies the time-to-
live of the message (in milliseconds).

transacted false Specifies whether to use transacted mode for
sending/receiving messages using the InOnly
Exchange Pattern.

testConnectionOnStartup false Specifies whether to test the connection on
startup. This ensures that when Camel starts
that all JMS consumers and producers have
a valid connection to the JMS broker. If a
connection cannot be granted then Camel throws
an exception on startup. This ensures that Camel
is not started with failed connections.

All the other options

Option Default Value Description

acceptMessagesWhile-
Stopping

false Specifies whether the consumer accept messages
while it is stopping. You may consider enabling
this option, if you start and stop JMS routes at
runtime, while there are still messages enqued on
the queue. If this option is false, and you stop
the JMS route, then messages may be rejected,
and the JMS broker would have to attempt
redeliveries, which yet again may be rejected, and
eventually the message may be moved at a dead
letter queue on the JMS broker. To avoid this its
recommended to enable this option.

acknowledgementModeName AUTO_ACKNOWLEDGE The JMS acknowledgement name, which is one
of: TRANSACTED, CLIENT_ACKNOWLEDGE,
AUTO_ACKNOWLEDGE,
DUPS_OK_ACKNOWLEDGE

http://camel.apache.org/jms.html#JMS-RequestreplyoverJMSandusinganexclusivefixedreplyqueue
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/exchange-pattern.html


Options

206 Talend Mediation Developer Guide

Option Default Value Description

acknowledgementMode -1 The JMS acknowledgement mode defined as
an Integer. Allows you to set vendor-specific
extensions to the acknowledgment mode. For
the regular modes, it is preferable to use the
acknowledgementModeName instead.

alwaysCopyMessage false If true, Camel will always make a JMS message
copy of the message when it is passed to
the producer for sending. Copying the message
is needed in some situations, such as when
a replyToDestinationSelectorName
is set (incidentally, Camel will set the
alwaysCopyMessage option to true, if
a replyToDestinationSelectorName is
set)

asyncStartListener false Whether to startup the JmsConsumer message
listener asynchronously, when starting a route.
For example if a JmsConsumer cannot get a
connection to a remote JMS broker, then it may
block while retrying and/or failover. This will
cause Camel to block while starting routes. By
setting this option to true, you will let routes
startup, while the JmsConsumer connects to
the JMS broker using a dedicated thread in
asynchronous mode. If this option is used, then
beware that if the connection could not be
established, then an exception is logged at WARN
level, and the consumer will not be able to receive
messages; You can then restart the route to retry.

asyncStopListener false (In Camel 2.10 only) Whether to stop the
JmsConsumer message listener asynchronously,
when stopping a route.

autoStartup true Specifies whether the consumer container should
auto-startup.

asyncConsumer false Whether the JmsConsumer processes
the Exchange asynchronously using the
Asynchronous Routing Engine. If enabled then
the JmsConsumer may pick up the next message
from the JMS queue, while the previous message
is being processed asynchronously. This means
that messages may be processed not 100%
strictly in order. If disabled (as default) then
the Exchange is fully processed before the
JmsConsumer will pickup the next message from
the JMS queue. Note if transactions have been
enabled, then asyncConsumer=true does not run
asynchronously, as transactions must be executed
synchronously.

cacheLevelName CACHE_CONSUMER Sets the cache level by name for the
underlying JMS resources. Possible values
are: CACHE_AUTO, CACHE_CONNECTION,
CACHE_CONSUMER, CACHE_NONE, and
CACHE_SESSION. See the Spring
documentation and see the warning above.

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jms/listener/DefaultMessageListenerContainer.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jms/listener/DefaultMessageListenerContainer.html


Options

Talend Mediation Developer Guide 207

Option Default Value Description

cacheLevel -1 Sets the cache level by ID for the underlying JMS
resources.

consumerType Default The consumer type to use, which can
be one of: Simple, Default or
ServerSessionPool. The consumer type
determines which Spring JMS listener to use.

• Default will use
org.springframework.jms.listener.
DefaultMessageListenerContainer

• Simple will use
org.springframework.jms.listener.
SimpleMessageListenerContainer

• ServerSessionPool will use
org.springframework.jms.listener.
serversession.ServerSession-
Message-ListenerContainer.

• If the option, useVersion102=true,
Camel will use the JMS 1.0.2 Spring classes
instead.

connectionFactory null The default JMS connection factory to use
for the listenerConnectionFactory and
templateConnectionFactory, if neither
is specified.

deliveryPersistent true Specifies whether persistent delivery is used by
default.

destination null Specifies the JMS Destination object to use on
this endpoint.

destinationName null Specifies the JMS destination name to use on this
endpoint.

destinationResolver null A pluggable
org.springframework.jms.support.
destination.DestinationResolver
that allows you to use your own resolver (for
example, to lookup the real destination in a JNDI
registry).

disableTimeToLive false Use this option to force disabling time to
live. For example when you do request/reply
over JMS, then Camel will by default use the
{{requestTimeout}} value as time to live on the
message being sent. The problem is that the
sender and receiver systems have to have their
clocks synchronized, so they are in sync. This
is not always so easy to archive. So you can
use {{disableTimeToLive=true}} to *not* set a
time to live value on the send message. Then the
message will not expire on the receiver system.

eagerLoadingOfProperties false Enables eager loading of JMS properties as soon
as a message is received, which is generally
inefficient, because the JMS properties might
not be required. However, this feature can



Options

208 Talend Mediation Developer Guide

Option Default Value Description

sometimes catch any issues with the underlying
JMS provider and the use of JMS properties at
an early stage. This feature can also be used for
testing purposes, to ensure JMS properties can be
understood and handled correctly.

exceptionListener null Specifies the JMS Exception Listener that is to be
notified of any underlying JMS exceptions.

errorHandler null Specifies a
org.springframework.util.ErrorHandler to be
invoked in case of any uncaught exceptions
thrown while processing a message. By default
these exceptions will be logged at the WARN
level, if no errorHandler has been configured.
From Camel 2.9.1 onwards you can configure
logging level and whether stack traces should be
logged using the below two options. This makes
it much easier to configure, than having to code a
custom errorHandler.

errorHandlerLoggingLevel WARN Allows for configuring the default errorHandler
logging level for logging uncaught exceptions.

errorHandlerLogStackTracetrue Allows to control whether stacktraces should be
logged or not, by the default errorHandler.

explicitQosEnabled false Set if the deliveryMode, priority or
timeToLive qualities of service should be used
when sending messages. This option is based on
Spring's JmsTemplate. The deliveryMode,
priority and timeToLive options are
applied to the current endpoint. This contrasts
with the preserveMessageQos option,
which operates at message granularity, reading
QoS properties exclusively from the Camel In
message headers.

exposeListenerSession true Specifies whether the listener session should be
exposed when consuming messages.

forceSendOriginalMessage false When using mapJmsMessage=false Camel
will create a new JMS message to send to a new
JMS destination if you touch the headers (get or
set) during the route. Set this option to true to
force Camel to send the original JMS message
that was received.

idleConsumerLimit 1 Specify the limit for the number of consumers that
are allowed to be idle at any given time.

idleTaskExecutionLimit 1 Specifies the limit for idle executions of a receive
task, not having received any message within its
execution. If this limit is reached, the task will
shut down and leave receiving to other executing
tasks (in the case of dynamic scheduling; see the
maxConcurrentConsumers setting).

jmsMessageType null Allows you to force the use of a specific
javax.jms.Message implementation for
sending JMS messages. Possible values are:
Bytes, Map, Object, Stream, Text. By
default, Camel would determine which JMS



Options

Talend Mediation Developer Guide 209

Option Default Value Description

message type to use from the In body type. This
option allows you to specify it.

jmsKeyFormatStrategy default Pluggable strategy for encoding and decoding
JMS keys so they can be compliant with
the JMS specification. Camel provides two
implementations out of the box: default
and passthrough. The default strategy
will safely marshal dots ('.') and hyphens
('-') The passthrough strategy leaves the
key as is. Can be used for JMS brokers
which do not care whether JMS header
keys contain illegal characters. You can
provide your own implementation of the
org.apache.camel.component.jms.
JmsKeyFormatStrategy and refer to it
using the # notation.

jmsOperations null Allows you to use your own implementation of
the org.springframework.jms.core.
JmsOperations interface. Camel uses
JmsTemplate as default. Can be used for
testing purpose (rarely used, as stated in the
Spring API docs) .

lazyCreateTransaction-
Manager

true If true, Camel will create a
JmsTransactionManager, if there is no
transactionManager injected when option
transacted=true.

listenerConnection-
Factory

null The JMS connection factory used for consuming
messages.

mapJmsMessage true Specifies whether Camel should auto map the
received JMS message to an appropiate payload
type, such as javax.jms.TextMessage to
a String etc. See section about how mapping
works below for more details.

maxMessagesPerTask -1 The number of messages per task. -1 is unlimited.

maximumBrowseSize -1 Limits the number of messages fetched at most,
when browsing endpoints using Browse or JMX
API.

messageConverter null To use a custom Spring
org.springframework.jms.support.
converter.MessageConverter so you
can be totally in control how to map to and from
a javax.jms.Message.

messageIdEnabled true When sending, specifies whether message IDs
should be added.

messageTimestampEnabled true Specifies whether timestamps should be enabled
by default on sending messages.

password null The password for the connector factory.

priority 4 Values greater than 1 specify the message priority
when sending (where 0 is the lowest priority and
9 is the highest). The explicitQosEnabled
option must also be enabled in order for this
option to have any effect.



Options

210 Talend Mediation Developer Guide

Option Default Value Description

pubSubNoLocal false Specifies whether to inhibit the delivery of
messages published by its own connection.

receiveTimeout None The timeout for receiving messages (in
milliseconds).

recoveryInterval 5000 Specifies the interval between recovery attempts,
that is, when a connection is being refreshed, in
milliseconds. The default is 5000 ms, that is, 5
seconds.

replyToCacheLevelName - Sets the cache level by name for the reply
consumer when doing request/reply over JMS.
This option only applies when using fixed
reply queues (not temporary). Camel will by
default use: CACHE_CONSUMER for exclusive
or shared w/ {{replyToSelectorName}}.
And CACHE_SESSION for shared without
replyToSelectorName. Some JMS brokers
such as IBM WebSphere may require to set
the replyToCacheLevelName=CACHE_NONE to
work.

replyToDestination-
SelectorName

null Sets the JMS Selector using the fixed name to be
used so you can filter out your own replies from
the others when using a shared queue (that is, if
you are not using a temporary reply queue).

replyToDelivery-
Persistent

true Specifies whether to use persistent delivery by
default for replies.

requestTimeout-
CheckerInterval

1000 Configures how often Camel should check for
timed out Exchanges when doing request/reply
over JMS. By default Camel checks once per
second. But if you must react faster when
a timeout occurs, then you can lower this
interval, to check more frequently. The timeout is
determined by the requestTimeout option.

subscriptionDurable false @deprecated: Enabled by default, if you
specify a durableSubscriberName and a
clientId.

taskExecutor null Allows you to specify a custom task executor for
consuming messages.

taskExecutorSpring2 null Camel 2.6: To use when using Spring 2.x with
Camel. Allows you to specify a custom task
executor for consuming messages.

templateConnection-
Factory

null The JMS connection factory used for sending
messages.

transactedInOut false @deprecated: Specifies whether to use
transacted mode for sending messages using the
InOut Exchange Pattern. Applies only to producer
endpoints. See section Enabling Transacted
Consumption for more details.

transactionManager null The Spring transaction manager to use.

transactionName JmsConsumer
[destinationName]

The name of the transaction to use.

http://camel.apache.org/exchange-pattern.html


Options

Talend Mediation Developer Guide 211

Option Default Value Description

transactionTimeout null The timeout value of the transaction, if using
transacted mode.

transferException false If enabled and you are using Section 2.39,
“Request Reply” messaging (InOut) and an
Exchange failed on the consumer side, then
the caused Exception will be send back in
response as a javax.jms.ObjectMessage.
If the client is Camel, the returned Exception
is rethrown. This allows you to use Camel
Section 3.24, “JMS” as a bridge in your routing;
for example, using persistent queues to enable
robust routing. Notice that if you also have
transferExchange enabled, this option takes
precedence. The caught exception is required
to be serializable. The original Exception
on the consumer side can be wrapped in an
outer exception such as org.apache.camel.
RuntimeCamelException when returned to
the producer.

transferExchange false You can transfer the exchange over the wire
instead of just the body and headers. The
following fields are transferred: In body, Out
body, Fault body, In headers, Out headers,
Fault headers, exchange properties, exchange
exception. This requires that the objects are
serializable. Camel will exclude any non-
serializable objects and log it at WARN level. You
*must* enable this option on both the producer
and consumer side, so Camel knows the payloads
form an Exchange and not a regular payload.

username null The username for the connector factory.

useMessageIDAs-
CorrelationID

false Specifies whether JMSMessageID should
always be used as JMSCorrelationID for
InOut messages.

Message Mapping between JMS and CamelCamel automatically maps messages between
javax.jms.Message and org.apache.camel.Message. When sending a JMS message, Camel
converts the message body to the following JMS message types:

Body Type JMS Message Comment

String javax.jms.TextMessage

org.w3c.dom.Node javax.jms.TextMessage The DOM will be converted to
String.

Map javax.jms.MapMessage

java.io.Serializable javax.jms.ObjectMessage

byte[] javax.jms.BytesMessage

java.io.File javax.jms.BytesMessage

java.io.Reader javax.jms.BytesMessage

java.io.InputStream javax.jms.BytesMessage

java.nio.ByteBuffer javax.jms.BytesMessage

When receiving a JMS message, Camel converts the JMS message to the following body type:

http://camel.apache.org/exchange.html


Message format when sending

212 Talend Mediation Developer Guide

JMS Message Body Type

javax.jms.TextMessage String

javax.jms.BytesMessage byte[]

javax.jms.MapMessage Map<String, Object>

javax.jms.ObjectMessage Object

3.24.4. Message format when sending

The exchange that is sent over the JMS wire must conform to the JMS Message spec.

For the exchange.in.header the following rules apply for the header keys :

• Keys starting with JMS or JMSX are reserved.

• exchange.in.headers keys must be literals and all be valid Java identifiers (do not use dots in the key
name).

• Camel replaces dots and hyphens with underscores in key names ('.' is replaced by _DOT_ and '_' is replaced
by _HYPHEN_). This replacement is reversed when Camel consumes JMS messages.

• See also the option jmsKeyFormatStrategy, which allows you to use your own custom strategy for
formatting keys.

For the exchange.in.header, the following rules apply for the header values :

• The values must be primitives or their counter objects (such as Integer, Long, Character). The types,
String, CharSequence, Date, BigDecimal and BigInteger are all converted to their toString()
representation. All other types are dropped.

Camel will log with category org.apache.camel.component.jms.JmsBinding at DEBUG level if it
drops a given header value. For example:

2008-07-09 06:43:04,046 [main           ] DEBUG JmsBinding  
- Ignoring non primitive header: order of class: org.apache.camel.component
.jms.issues.DummyOrder with value: DummyOrder{orderId=333, itemId=4444, 
quantity=2}

3.24.5. Message format when receiving

Camel adds the following properties to the Exchange when it receives a message:

Property Type Description

org.apache.camel.jms.
replyDestination

javax.jms.Destination The reply destination.

Camel adds the following JMS properties to the In message headers when it receives a JMS message:

Header Type Description

JMSCorrelationID String The JMS correlation ID.

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html


Message format when receiving

Talend Mediation Developer Guide 213

Header Type Description

JMSDeliveryMode int The JMS delivery mode.

JMSDestination javax.jms.Destination The JMS destination.

JMSExpiration long The JMS expiration.

JMSMessageID String The JMS unique message ID.

JMSPriority int The JMS priority (with 0 as the
lowest priority and 9 as the highest).

JMSRedelivered boolean the JMS message redelivered.

JMSReplyTo javax.jms.Destination The JMS reply-to destination.

JMSTimestamp long The JMS timestamp.

JMSType String The JMS type.

JMSXGroupID String The JMS group ID.

As all the above information is standard JMS you can check the JMS documentation for further details.

Using Camel JMS to send and receive messages

The JMS component is complex and you have to pay close attention to how it works in some cases. So
this is a short summary of some of the areas/pitfalls to look for.

When Camel sends a message using its JMSProducer, it checks the following conditions:

• The message exchange pattern,

• Whether a JMSReplyTo was set in the endpoint or in the message headers,

• Whether any of the following options have been set on the JMS endpoint: disableReplyTo,
preserveMessageQos, explicitQosEnabled.

All this can be complex to understand and configure to support your use case.

3.24.6.1. JmsProducer

The JmsProducer behaves as follows, depending on configuration:

Exchange Pattern Other options Description

InOut - Camel will expect a reply, set a temporary
JMSReplyTo, and after sending the message, it will
start to listen for the reply message on the temporary
queue.

InOut JMSReplyTo is set Camel will expect a reply and, after sending the
message, it will start to listen for the reply message on
the specified JMSReplyTo queue.

InOnly - Camel will send the message and not expect a reply.

InOnly JMSReplyTo is set By default, Camel discards the JMSReplyTo
destination and clears the JMSReplyTo header
before sending the message. Camel then sends the
message and does not expect a reply. Camel logs
this in the log at DEBUG level. You can use
preserveMessageQuo=true to instruct Camel
to keep the JMSReplyTo. In all situations the

http://java.sun.com/javaee/5/docs/api/javax/jms/Message.html


Configuring different JMS providers

214 Talend Mediation Developer Guide

Exchange Pattern Other options Description

JmsProducer does not expect any reply and thus
continue after sending the message.

3.24.6.2. JmsConsumer

The JmsConsumer behaves as follows, depending on configuration:

Exchange Pattern Other options Description

InOut - Camel will send the reply back to the JMSReplyTo
queue.

InOnly - Camel will not send a reply back, as the pattern is
InOnly.

- disableReplyTo=trueThis option suppresses replies.

Thus, pay attention to the message exchange pattern set on your exchanges.

If you send a message to a JMS destination in the middle of your route you can specify the exchange pattern to use,
see more at Section 2.39, “Request Reply”. This is useful if you want to send an InOnly message to a JMS topic:

from("activemq:queue:in")
   .to("bean:validateOrder")
   .to(ExchangePattern.InOnly, "activemq:topic:order")
   .to("bean:handleOrder");

3.24.7. Configuring different JMS providers

You can configure your JMS provider in Spring XML as follows:

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
    <jmxAgent id="agent" disabled="true"/>
</camelContext>

<bean id="activemq" 
      class="org.apache.activemq.camel.component.ActiveMQComponent">
  <property name="connectionFactory">
    <bean class="org.apache.activemq.ActiveMQConnectionFactory">
      <property name="brokerURL" value=
         "vm://localhost?broker.persistent=false&broker.useJmx=false"/>
    </bean>
  </property>
</bean>

Basically, you can configure as many JMS component instances as you wish and give them  a unique name
using the id attribute . The preceding example configures an activemq component. You could do the same
to configure MQSeries, TibCo, BEA, Sonic and so on.

Once you have a named JMS component, you can then refer to endpoints within that component using URIs.
For example for the component name, activemq, you can then refer to destinations using the URI format,
activemq:[queue:|topic:]destinationName. You can use the same approach for all other JMS
providers.

http://camel.apache.org/spring.html


Samples

Talend Mediation Developer Guide 215

This works by the SpringCamelContext lazily fetching components from the Spring context for the scheme name
you use for Endpoint URIs and having the Component resolve the endpoint URIs.

3.24.8. Samples

JMS is used in many examples for other components as well. But we provide a few samples below to get started.

3.24.8.1. Receiving from JMS

In the following sample we configure a route that receives JMS messages and routes the message to a POJO:

from("jms:queue:foo").
     to("bean:myBusinessLogic");

You can of course use any of the EIP patterns so the route can be context based. For example, here's how to filter
an order topic for the big spenders:

from("jms:topic:OrdersTopic").
  filter().method("myBean", "isGoldCustomer").
    to("jms:queue:BigSpendersQueue");

3.24.8.2. Sending to a JMS

In the sample below we poll a file folder and send the file content to a JMS topic. As we want the content of the
file as a TextMessage instead of a BytesMessage, we need to convert the body to a String :

from("file://orders").
  convertBodyTo(String.class).
  to("jms:topic:OrdersTopic");

3.24.8.3. Using Annotations

Camel also has annotations so you can use POJO Consuming and POJO Producing.

3.24.8.4. Spring DSL sample

The preceding examples use the Java DSL. Camel also supports Spring XML DSL. Here is the big spender sample
using Spring DSL:

<route>
  <from uri="jms:topic:OrdersTopic"/>
  <filter>
    <method bean="myBean" method="isGoldCustomer"/>
    <to uri="jms:queue:BigSpendersQueue"/>
  </filter>
</route>

http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-producing.html


JMX

216 Talend Mediation Developer Guide

3.24.8.5. Other samples

JMS appears in many of the examples for other components and EIP patterns, as well in the online Apache Camel
documentation. A recommended tutorial is this one that uses JMS but focuses on how well Spring Remoting and
Camel work together Tutorial-JmsRemoting.

3.25. JMX
Available as of Camel 2.6

Component allows consumers to subscribe to an mbean's Notifications. The component supports passing the
Notification object directly through the Exchange or serializing it to XML according to the schema provided within
this project. This is a consumer only component. Exceptions are thrown if you attempt to create a producer for it.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-jmx</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

3.25.1. URI Format
The component can connect to the local platform mbean server with the following URI:

jmx://platform?options

A remote mbean server url can be provided following the initial JMX scheme like so:

jmx:service:jmx:rmi:///jndi/rmi://localhost:1099/jmxrmi?options

You can append query options to the URI in the following format, ?options=value&option2=value&...

3.25.2. URI Options

Property Required Default Description

format no xml Format for the message body. Either "xml" or "raw". If xml, the
notification is serialized to xml. If raw, then the raw java object is
set as the body.

user no Credentials for making a remote connection.

password no Credentials for making a remote connection.

objectDomain yes The domain for the mbean you're connecting to.

objectName no The name key for the mbean you're connecting to. This value is
mutually exclusive with the object properties that get passed. (see
below)

notificationFilter no Reference to a bean that implements the
NotificationFilter. The #ref syntax should be used to
reference the bean via the Registry.

http://camel.apache.org/tutorial-jmsremoting.html
http://camel.apache.org/registry.html


ObjectName Construction

Talend Mediation Developer Guide 217

Property Required Default Description

handback no Value to handback to the listener when a notification is received.
This value will be put in the message header with the key
"jmx.handback"

3.25.3. ObjectName Construction

The URI must always have the objectDomain property. In addition, the URI must contain either objectName or
one or more properties that start with "key."

3.25.4. Domain with Name property

When the objectName property is provided, the following constructor is used to build the ObjectName? for the
mbean:

ObjectName(String domain, String key, String value)

The key value in the above will be "name" and the value will be the value of the objectName property.

3.25.5. Domain with Hashtable

ObjectName(String domain, Hashtable<String,String> table)

The Hashtable is constructed by extracting properties that start with "key." The properties will have the "key."
prefixed stripped prior to building the Hashtable. This allows the URI to contain a variable number of properties
to identify the mbean.

3.25.6. Example

from("jmx:platform?objectDomain=jmxExample&key.name=simpleBean").
        to("log:jmxEvent");

A full example is here.

3.26. JPA
The jpa component enables you to store and retrieve Java objects from persistent storage using EJB 3's Java
Persistence Architecture (JPA), which is a standard interface layer that wraps Object/Relational Mapping (ORM)
products such as OpenJPA, Hibernate, TopLink, and so on.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-jpa</artifactId>
    <version>x.x.x</version>

http://camel.apache.org/jmx-component-example.html


Sending to the endpoint

218 Talend Mediation Developer Guide

    <!-- use the same version as your Camel core version -->
</dependency>

3.26.1. Sending to the endpoint

You can store a Java entity bean in a database by sending it to a JPA producer endpoint. The body of the In
message is assumed to be an entity bean (that is, a POJO with an @Entity annotation on it) or a collection or
array of entity beans.

If the body does not contain one of the previous listed types, put a Section 2.29, “Message Translator” in front of
the endpoint to perform the necessary conversion first.

3.26.2. Consuming from the endpoint

Consuming messages from a JPA consumer endpoint removes (or updates) entity beans in the database. This
allows you to use a database table as a logical queue: consumers take messages from the queue and then delete/
update them to logically remove them from the queue.

If you do not wish to delete the entity bean when it has been processed, you can specify
consumeDelete=false on the URI. This will result in the entity being processed each poll.

If you would rather perform some update on the entity to mark it as processed (such as to exclude it from a future
query) then you can annotate a method with @Consumed which will be invoked on your entity bean when the
entity bean is consumed.

3.26.3. URI format

jpa:[entityClassName][?options]

For sending to the endpoint, the entityClassName is optional. If specified, it helps the Type Converter to ensure
the body is of the correct type.

For consuming, the entityClassName is mandatory.

You can append query options to the URI in the following format, ?option=value&option=value&...

3.26.4. Options

Name Default Value Description

entityType entityClassName Overrides the entityClassName from the URI.

persistenceUnit camel The JPA persistence unit used by default.

consumeDelete true JPA consumer only: If true, the entity is
deleted after it is consumed; if false, the entity
is not deleted.

consumeLockEntity true JPA consumer only: Specifies whether or not to
set an exclusive lock on each entity bean while
processing the results from polling.

http://java.sun.com/javaee/5/docs/api/javax/persistence/Entity.html
http://camel.apache.org/maven/current/camel-jpa/apidocs/org/apache/camel/component/jpa/Consumed.html
http://camel.apache.org/type-converter.html


Message Headers

Talend Mediation Developer Guide 219

Name Default Value Description

flushOnSend true JPA producer only: Flushes the EntityManager
after the entity bean has been persisted.

maximumResults -1 JPA consumer only: Set the maximum number
of results to retrieve on the Query.

transactionManager null Specifies the transaction manager to use.
If none provided, Camel will use a
JpaTransactionManager by default. Can
be used to set a JTA transaction manager (for
integration with an EJB container).

consumer.delay 500 JPA consumer only: Delay in milliseconds
between each poll.

consumer.initialDelay 1000 JPA consumer only: Milliseconds before polling
starts.

consumer.useFixedDelay false JPA consumer only: Set to true to use fixed
delay between polls, otherwise fixed rate is
used. See ScheduledExecutorService in JDK for
details.

maxMessagesPerPoll 0 JPA consumer only: An integer value to define
the maximum number of messages to gather per
poll. By default, no maximum is set. Can be used
to avoid polling many thousands of messages
when starting up the server. Set a value of 0 or
negative to disable.

consumer.query JPA consumer only: To use a custom query
when consuming data.

consumer.namedQuery JPA consumer only: To use a named query when
consuming data.

consumer.nativeQuery JPA consumer only: To use a custom native
query when consuming data.

consumer.resultClass Camel 2.7: JPA consumer only: Defines the
type of the returned payload (we will call
entityManager.createNativeQuery
(nativeQuery, resultClass) instead
of entityManager.createNativeQuery
(nativeQuery) ). Without this option, we
will return an object array. Only has an affect
when using in conjunction with native query
when consuming data.

usePersist false JPA producer only: Indicates to
use entityManager.persist(entity)
instead of
entityManager.merge(entity). Note:
entityManager.persist(entity)
doesn't work for detached entities (where the
EntityManager has to execute an UPDATE
instead of an INSERT query)!

3.26.5. Message Headers
Camel adds the following message headers to the exchange:

http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html


Configuring EntityManagerFactory

220 Talend Mediation Developer Guide

Header Type Description

CamelJpaTemplate JpaTemplate The JpaTemplate object that is used to access
the entity bean. You need this object in some
situations, for instance in a type converter or when
you are doing some custom processing.

3.26.6. Configuring EntityManagerFactory

It is strongly advised to configure the JPA component to use a specific EntityManagerFactory instance. If
failed to do so each JpaEndpoint will auto create their own instance of EntityManagerFactory which
most often is not what you want.

For example, you can instantiate a JPA component that references the myEMFactory entity manager factory,
as follows:

<bean id="jpa" class="org.apache.camel.component.jpa.JpaComponent">
   <property name="entityManagerFactory" ref="myEMFactory"/>
</bean>

In Camel 2.3 the JpaComponent will auto lookup the EntityManagerFactory from the Registry which
means you do not need to configure this on the JpaComponent as shown above. You only need to do so if there
is ambiguity, in which case Camel will log a WARN.

3.26.7. Configuring TransactionManager

It is strongly advised to configure the TransactionManager instance used by the JPA component. If failed
to do so each JpaEndpoint will auto create their own instance of TransactionManager which most often
is not what you want.

For example, you can instantiate a JPA component that references the myTransactionManager transaction
manager, as follows:

<bean id="jpa" class="org.apache.camel.component.jpa.JpaComponent">
   <property name="entityManagerFactory" ref="myEMFactory"/>
   <property name="transactionManager" ref="myTransactionManager"/>
</bean>

In Camel 2.3 the JpaComponent will auto lookup the TransactionManager from the Registry which
means you do not need to configure this on the JpaComponent as shown above. You only need to do so if there
is ambiguity, in which case Camel will log a WARN.

3.26.8. Using a consumer with a named query

For consuming only selected entities, you can use the consumer.namedQuery URI query option. First, you
have to define the named query in the JPA Entity class:

@Entity
@NamedQuery(name = "step1", 
   query = "select x from MultiSteps x where x.step = 1")
public class MultiSteps {
   ...
}

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html


Using a consumer with a query

Talend Mediation Developer Guide 221

After that you can define a consumer uri like this one:

from("jpa://org.apache.camel.examples.MultiSteps?consumer.namedQuery=step1")
.to("bean:myBusinessLogic");

3.26.9. Using a consumer with a query

For consuming only selected entities, you can use the consumer.query URI query option. You only have to
define the query option:

from("jpa://org.apache.camel.examples.MultiSteps?consumer.query=
select o from org.apache.camel.examples.MultiSteps o where o.step = 1")
.to("bean:myBusinessLogic");

3.26.10. Using a consumer with a native query

For consuming only selected entities, you can use the consumer.nativeQuery URI query option. You only
have to define the native query option:

from("jpa://org.apache.camel.examples.MultiSteps?consumer.nativeQuery=
select * from MultiSteps where step = 1")
.to("bean:myBusinessLogic");

If you use the native query option, you will receive an object array in the message body.

3.26.11. Example

See Tracer Example for an example using Section 3.26, “JPA” to store traced messages into a database.

3.27. Jsch
The camel-jsch component supports the SCP protocol using the Client API of the Jsch project. Jsch is already used
in Camel by the FTP component for the sftp: protocol. Maven users will need to add the following dependency
to their pom.xml for this component:

<dependency>
   <groupId>org.apache.camel</groupId>
   <artifactId>camel-jsch</artifactId>
   <version>x.x.x</version>
   <!-- use the same version as your Camel core version -->
</dependency>

3.27.1. URI format and options

scp://host[:port]/destination[?options]

You can append query options to the URI in the following format: ?option=value&option=value&...

http://camel.apache.org/tracer-example.html
http://en.wikipedia.org/wiki/Secure_copy
http://www.jcraft.com/jsch/


Limitations

222 Talend Mediation Developer Guide

The file name can be specified either in the <path> part of the URI or as a "CamelFileName" header on the message
(Exchange.FILE_NAME if used in code).

Options

Name Default Description

username null Specifies the username to use to log in to the remote file
system.

password null Specifies the password to use to log in to the remote file
system.

knownHostsFile null Sets the known_hosts file, so that the scp endpoint can
do host key verification.

strictHostKeyChecking no Sets whether to use strict host key checking. Possible
values are: no, yes

chmod null Allows you to set chmod on the stored file. For example
chmod=664.

3.27.2. Limitations

Currently camel-jsch only supports a Producer (i.e. copy files to another host). The reason is that the scp protocol
does not offer the possibility to scan (list) the content of a directory. As such a polling consumer cannot watch for
changes and trigger events on changes. It is possible however to use camel-jsch in sink mode for one time copy
from a remote host using a ConsumerTemplate (see Polling Consumer for more details). If continuous monitoring
of a directory on a remote host and secure transfer is required, you can consider using the sftp protocol.

3.28. Log
The log: component logs message exchanges to the underlying logging mechanism.

Camel uses commons-logging which allows you to configure logging via

• Log4j

• JDK 1.4 logging

• Avalon

• SimpleLog - a simple provider in commons-logging

Refer to the commons-logging user guide for a more complete overview of how to use and configure commons-
logging.

3.28.1. URI format and Options

log:loggingCategory[?options]

where loggingCategory is the name of the logging category to use. You can append query options to the URI in
the following format, ?option=value&option=value&...

For example, a log endpoint typically specifies the logging level using the level option, as follows:

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Producer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ConsumerTemplate.html
https://cwiki.apache.org/confluence/display/CAMEL/Polling+Consumer
http://commons.apache.org/logging/
http://logging.apache.org/log4j/
http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/package-summary.html
http://commons.apache.org/logging/commons-logging-1.1.1/guide.html


Formatting

Talend Mediation Developer Guide 223

log:org.apache.camel.example?level=DEBUG

The default logger logs every exchange ( regular logging ). But Camel also ships with the Throughput logger,
which is used whenever the groupSize option is specified.

Also a log in the DSL

There is also a log directly in the DSL, but it has a different purpose. It is meant for lightweight and
human logs. See more details at Section 2.20, “Log”.

Options

Option Default Type Description

level INFO String Logging level to use. Possible values:
FATAL, ERROR, WARN, INFO, DEBUG,
TRACE, OFF

marker null String An optional Marker name to use.

groupSize null Integer An integer that specifies a group size for
throughput logging.

groupInterval null Integer If specified will group message stats by this
time interval (in milliseconds)

groupDelay 0 Integer Set the initial delay for stats (in
milliseconds)

groupActiveOnlytrue boolean If true, will hide stats when no new messages
have been received for a time interval,
if false, show stats regardless of message
traffic.

Note: groupDelay and groupActiveOnly are only applicable when using groupInterval

3.28.2. Formatting

The log formats the execution of exchanges to log lines. By default, the log uses LogFormatter to format the
log output, where LogFormatter has the following options:

Option Default Description

showAll false Quick option for turning all options on. (multiline, maxChars
has to be manually set if to be used)

showExchangeId false Show the unique exchange ID.

showExchangePattern true Shows the Message Exchange Pattern (or MEP for short).

showProperties false Show the exchange properties.

showHeaders false Show the In message headers.

showBodyType true Show the In body Java type.

showBody true Show the In body.

showOut false If the exchange has an Out message, show the Out message.

showException false If the exchange has an exception, show the exception message
(no stack trace).

showCaughtException false If the exchange has a caught exception, show the
exception message (no stack trace). A caught exception
is stored as a property on the exchange (using the

http://www.slf4j.org/api/org/slf4j/Marker.html


Regular logger sample

224 Talend Mediation Developer Guide

Option Default Description

key Exchange.EXCEPTION_CAUGHT) and for instance a
doCatch can catch exceptions. See Try Catch Finally.

showStackTrace false Show the stack trace, if an exchange has an exception.
Only effective if one of showAll, showException or
showCaughtException are enabled.

showFiles false Whether Camel should show file bodies or not (eg such as
java.io.File).

showFuture false Whether Camel should show
java.util.concurrent.Future bodies or not. If
enabled Camel could potentially wait until the Future task
is done. By default, this will not wait.

showStreams false Whether Camel should show stream bodies or not (eg such
as java.io.InputStream). Beware if you enable this option then
you may not be able later to access the message body as the
stream have already been read by this logger. To remedy this
you will have to use Stream Caching.

multiline false If true, each piece of information is logged on a new line.

maxChars Limits the number of characters logged per line.

3.28.3. Regular logger sample

In the route below we log the incoming orders at DEBUG level before the order is processed:

from("activemq:orders")
   .to("log:com.mycompany.order?level=DEBUG")
   .to("bean:processOrder");

Or using Spring XML to define the route:

<route>
   <from uri="activemq:orders"/>
   <to uri="log:com.mycompany.order?level=DEBUG"/>
   <to uri="bean:processOrder"/>
</route>

3.28.4. Regular logger with formatter sample

In the route below we log the incoming orders at INFO level before the order is processed.

from("activemq:orders")
   .to("log:com.mycompany.order?showAll=true&multiline=true")
   .to("bean:processOrder");

3.28.5. Throughput logger with groupSize sample

In the route below we log the throughput of the incoming orders at DEBUG level grouped by 10 messages.

http://camel.apache.org/try-catch-finally.html
http://camel.apache.org/stream-caching.html


Throughput logger with groupInterval sample

Talend Mediation Developer Guide 225

from("activemq:orders")
    .to("log:com.mycompany.order?level=DEBUG?groupSize=10")
    .to("bean:processOrder");

3.28.6. Throughput logger with groupInterval sample

This route will result in message stats logged every 10s, with an initial 60s delay and stats displayed even if there
isn't any message traffic.

from("activemq:orders")
      .to("log:com.mycompany.order?level=DEBUG?groupInterval=10000&group
Delay=60000&groupActiveOnly=false")
      .to("bean:processOrder");

The following will be logged:

"Received: 1000 new messages, with total 2000 so far. Last group took: 
10000 millis which is: 100 messages per second. average: 100"

s

3.29. Lucene
The lucene component is based on the Apache Lucene project. Apache Lucene is a powerful high-performance,
full-featured text search engine library written entirely in Java. For more details about Lucene, please see the
following links

• http://lucene.apache.org/java/docs/

• http://lucene.apache.org/java/docs/features.html

The lucene component in Camel facilitates integration and utilization of Lucene endpoints in enterprise integration
patterns and scenarios. The lucene component does the following

• builds a searchable index of documents when payloads are sent to the Lucene Endpoint

• facilitates performing of indexed searches in Camel

This component only supports producer endpoints.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-lucene</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

3.29.1. URI format

lucene:searcherName:insert[?options]
lucene:searcherName:query[?options]



Insert Options

226 Talend Mediation Developer Guide

You can append query options to the URI in the following format, ?option=value&option=value&...

3.29.2. Insert Options

Name Default Value Description

analyzer StandardAnalyzer An Analyzer builds TokenStreams, which analyze
text. It thus represents a policy for extracting
index terms from text. The value for analyzer
can be any class that extends the abstract
class org.apache.lucene.analysis.Analyzer. Lucene also
offers a rich set of analyzers out of the box

indexDir ./indexDirectory A file system directory in which index files are created
upon analysis of the document by the specified analyzer

srcDir null An optional directory containing files to be used to be
analyzed and added to the index at producer startup.

3.29.3. Query Options

Name Default Value Description

analyzer StandardAnalyzer An Analyzer builds TokenStreams, which analyze
text. It thus represents a policy for extracting
index terms from text. The value for analyzer
can be any class that extends the abstract
class org.apache.lucene.analysis.Analyzer. Lucene also
offers a rich set of analyzers out of the box

indexDir ./indexDirectory A file system directory in which index files are created
upon analysis of the document by the specified analyzer

maxHits 10 An integer value that limits the result set of the search
operation

3.29.4. Sending/Receiving Messages to/from the cache

3.29.4.1. Message Headers

Header Description

QUERY The Lucene Query to performed on the index. The query may include
wildcards and phrases

3.29.4.2. Lucene Producers

This component supports two producer endpoints.

• insert: the insert producer builds a searchable index by analyzing the body in incoming exchanges and
associating it with a token ("content").



Lucene Usage Samples

Talend Mediation Developer Guide 227

• query: the query producer performs searches on a pre-created index. The query uses the searchable index
to perform score & relevance based searches. Queries are sent via the incoming exchange contains a header
property name called 'QUERY'. The value of the header property 'QUERY' is a Lucene Query. For more details
on how to create Lucene Queries check out http://lucene.apache.org/java/3_0_0/queryparsersyntax.html

3.29.4.3. Lucene Processor

There is a processor called LuceneQueryProcessor available to perform queries against lucene without the need
to create a producer.

3.29.5. Lucene Usage Samples

3.29.5.1. Example: Creating a Lucene index

RouteBuilder builder = new RouteBuilder() {
   public void configure() {
      from("direct:start")
         .to("lucene:whitespaceQuotesIndex:insert?analyzer=
            #whitespaceAnalyzer&indexDir=#whitespace&srcDir=#load_dir")
         .to("mock:result");
   }
};

3.29.5.2. Example: Loading properties into the JNDI registry in the
Camel Context

@Override
protected JndiRegistry createRegistry() throws Exception {
   JndiRegistry registry = new JndiRegistry(createJndiContext());
   registry.bind("whitespace", new File("./whitespaceIndexDir"));
   registry.bind("load_dir", new File("src/test/resources/sources"));
   registry.bind("whitespaceAnalyzer", new WhitespaceAnalyzer());
   return registry;
}
...
CamelContext context = new DefaultCamelContext(createRegistry());

3.29.5.3. Example: Performing searches using a Query Producer

RouteBuilder builder = new RouteBuilder() {
   public void configure() {
      from("direct:start").
        setHeader("QUERY", constant("Seinfeld")).
        to("lucene:searchIndex:query?
          analyzer=#whitespaceAnalyzer&indexDir=#whitespace&maxHits=20").
        to("direct:next");



Lucene Usage Samples

228 Talend Mediation Developer Guide

            
      from("direct:next").process(new Processor() {
        public void process(Exchange exchange) throws Exception {
          Hits hits = exchange.getIn().getBody(Hits.class);
          printResults(hits);
        }

        private void printResults(Hits hits) {
           LOG.debug("Number of hits: " + hits.getNumberOfHits());
           for (int i = 0; i < hits.getNumberOfHits(); i++) {
             LOG.debug("Hit " + i + " Index Location:" 
               + hits.getHit().get(i).getHitLocation());
             LOG.debug("Hit " + i + " Score:" 
               + hits.getHit().get(i).getScore());
             LOG.debug("Hit " + i + " Data:" 
               + hits.getHit().get(i).getData());
           }
         }
      }).to("mock:searchResult");
   }
};

3.29.5.4. Example: Performing searches using a Query Processor

RouteBuilder builder = new RouteBuilder() {
   public void configure() {         
      try {
         from("direct:start").
            setHeader("QUERY", constant("Rodney Dangerfield")).
            process(new LuceneQueryProcessor(
                 "target/stdindexDir", analyzer, null, 20)).
            to("direct:next");
      } catch (Exception e) {
         e.printStackTrace();
      }
            
      from("direct:next").process(new Processor() {
         public void process(Exchange exchange) throws Exception {
            Hits hits = exchange.getIn().getBody(Hits.class);
            printResults(hits);
         }
               
         private void printResults(Hits hits) {
            LOG.debug("Number of hits: " + hits.getNumberOfHits());
            for (int i = 0; i < hits.getNumberOfHits(); i++) {
               LOG.debug("Hit " + i + " Index Location:" + 
                    hits.getHit().get(i).getHitLocation());
               LOG.debug("Hit " + i + " Score:" + 
                    hits.getHit().get(i).getScore());
               LOG.debug("Hit " + i + " Data:" + 
                    hits.getHit().get(i).getData());
            }
         }
      }).to("mock:searchResult");
   }
};



Mail

Talend Mediation Developer Guide 229

3.30. Mail
The mail component provides access to Email via Spring's Mail support and the underlying JavaMail system.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-mail</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

3.30.1. URI format
Mail endpoints can have one of the following URI formats (for the protocols, SMTP, POP3, or IMAP,
respectively):

smtp://[username@]host[:port][?options]
pop3://[username@]host[:port][?options]
imap://[username@]host[:port][?options]

The mail component also supports secure variants of these protocols (layered over SSL). You can enable the secure
protocols by adding s to the scheme:

smtps://[username@]host[:port][?options]
pop3s://[username@]host[:port][?options]
imaps://[username@]host[:port][?options]

You can append query options to the URI in the following format, ?option=value&option=value&...

3.30.1.1. Sample endpoints

Typically, you specify a URI with login credentials as follows (taking SMTP as an example):

smtp://[username@]host[:port][?password=somepwd]

Alternatively, it is possible to specify both the user name and the password as query options:

smtp://host[:port]?password=somepwd&username=someuser

For example:

smtp://mycompany.mailserver:30?password=tiger&username=scott

3.30.1.2. Default ports

Default port numbers are supported. If the port number is omitted, Camel determines the port number to use based
on the protocol.

Protocol Default Port Number

SMTP 25

SMTPS 465

POP3 110



Options

230 Talend Mediation Developer Guide

Protocol Default Port Number

POP3S 995

IMAP 143

IMAPS 993

3.30.2. Options

Property Default Description

host The host name or IP address to connect to.

port See DefaultPorts The TCP port number to connect on.

username The user name on the email server.

password null The password on the email server.

ignoreUriScheme false If false, Camel uses the scheme to determine the
transport protocol (POP, IMAP, SMTP etc.)

defaultEncoding null The default encoding to use for Mime Messages.

contentType text/plain The mail message content type. Use text/html for
HTML mails.

folderName INBOX The folder to poll.

destination username@host @deprecated Use the to option instead. The TO
recipients (receivers of the email).

to username@host The TO recipients (the receivers of the mail). Separate
multiple email addresses with a comma.

replyTo alias@host The Reply-To recipients (the receivers of the response
mail). Separate multiple email addresses with a comma.

CC null The CC recipients (the receivers of the mail). Separate
multiple email addresses with a comma.

BCC null The BCC recipients (the receivers of the mail). Separate
multiple email addresses with a comma.

from camel@localhost The FROM email address.

subject The Subject of the message being sent. Note: Setting the
subject in the header takes precedence over this option.

delete false Deletes the messages after they have been processed.
This is done by setting the DELETED flag on the mail
message. If false, the SEEN flag is set instead.

unseen true Is used to fetch only unseen messages (that is, new
messages). Note that POP3 does not support the SEEN
flag; use IMAP instead.

fetchSize -1 This option sets the maximum number of messages
to consume during a poll. This can be used to avoid
overloading a mail server, if a mailbox folder contains a
lot of messages. Default value of -1 means no fetch size
and all messages will be consumed. Setting the value to
0 is a special corner case, where Camel will not consume
any messages at all.

alternativeBody-
Header

CamelMailAlternat-
iveBody

Specifies the key to an IN message header that contains
an alternative email body. For example, if you send
emails in text/html format and want to provide an



Options

Talend Mediation Developer Guide 231

Property Default Description

alternative mail body for non-HTML email clients, set
the alternative mail body with this key as a header.

debugMode false It is possible to enable debug mode on the underlying
mail framework. The SUN Mail framework logs the
debug messages to System.out by default.

connectionTimeout 30000 The connection timeout can be configured in
milliseconds. Default is 30 seconds.

consumer.
initialDelay

1000 Milliseconds before the polling starts.

consumer.delay 60000 The default consumer delay is now 60 seconds. Camel
will therefore only poll the mailbox once a minute to
avoid overloading the mail server.

consumer.
useFixedDelay

false Set to true to use a fixed delay between
polls, otherwise fixed rate is used. See
ScheduledExecutorService in JDK for details.

disconnect false Whether the consumer should disconnect after polling.
If enabled this forces Camel to connect on each poll.

mail.XXX null You can set any additional java mail properties.
For instance if you want to set a special
property when using POP3 you can now
provide the option directly in the URI such
as: mail.pop3.forgettopheaders=true. You
can set multiple such options, for example:
mail.pop3.forgettopheaders=true&
mail.mime.encodefilename=true.

mapMailMessage true Specifies whether Camel should map the received mail
message to Camel body/headers. If set to true, the body
of the mail message is mapped to the body of the
Camel IN message and the mail headers are mapped
to IN headers. If this option is set to false then the
IN message contains a raw javax.mail.Message.
You can retrieve this raw message by calling
exchange.getIn().getBody(javax.mail.Message.class).

maxMessagesPerPoll 0 Specifies the maximum number of messages to gather
per poll. By default, no maximum is set. Can be used to
set a limit of, for example, 1000 to avoid downloading
thousands of files when the server starts up. Set a value
of 0 or negative to disable this option.

javaMailSender null Specifies a pluggable
org.springframework.mail.javamail.
JavaMailSender instance in order to
use a custom email implementation. If
none provided, Camel uses the default,
org.springframework.mail.javamail.
JavaMailSenderImpl.

ignoreUnsupported-
Charset

false Option to let Camel ignore unsupported charset in
the local JVM when sending mails. If the charset
is unsupported then charset=XXX (where XXX
represents the unsupported charset) is removed from the
content-type and it relies on the platform default
instead.

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/products/javamail/javadocs/index.html


SSL support

232 Talend Mediation Developer Guide

Property Default Description

sslContextParametersnull Reference to a
org.apache.camel.util.jsse.SSLContextParameters
in the Registry. This reference overrides any configured
SSLContextParameters at the component level. See
Using the JSSE Configuration Utility for more
information.

3.30.3. SSL support

The underlying mail framework is responsible for providing SSL support. Camel uses SUN JavaMail, which only
trusts certificates issued by well known Certificate Authorities. So if you issue your own certificate, you have to
import it into the local Java keystore file (see SSLNOTES.txt in JavaMail for details).

3.30.4. Mail Message Content

Camel uses the message exchange's IN body as the MimeMessage text content. The body is converted to
String.class.

Camel copies all of the exchange's IN headers to the MimeMessage headers.

The subject of the MimeMessage can be configured using a header property on the IN message. The code below
demonstrates this:

from("direct:a").setHeader("subject", constant(subject))
      .to("smtp://joe2@localhost");

The same applies for other MimeMessage headers such as recipients, so you can use a header property as To :

Map<String, Object> map = new HashMap<String, Object>();
map.put("To", "jenshansen@gmail.com");
map.put("From", "jbloggs@gmail.com");
map.put("Subject", "Camel rocks");

String body = "Hello Jens.\nYes it does.\n\nRegards Joe.";
template.sendBodyAndHeaders("smtp://jenshansen@gmail.com", body, map);

3.30.5. Headers take precedence over pre-configured
recipients

The recipients specified in the message headers always take precedence over recipients pre-configured in the
endpoint URI. The idea is that if you provide any recipients in the message headers, that is what you get. The
recipients pre-configured in the endpoint URI are treated as a fallback.

In the sample code below, the email message is sent to jenshansen@gmail.com, because it takes precedence
over the pre-configured recipient, info@mycompany.com. Any CC and BCC settings in the endpoint URI are
also ignored and those recipients will not receive any mail. The choice between headers and pre-configured settings
is all or nothing: the mail component either takes the recipients exclusively from the headers or exclusively from
the pre-configured settings. It is not possible to mix and match headers and pre-configured settings.

http://camel.apache.org/registry.html
http://camel.apache.org/http4.html#HTTP4-UsingtheJSSEConfigurationUtility
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html


Multiple recipients for easier configuration

Talend Mediation Developer Guide 233

Map<String, Object> headers = new HashMap<String, Object>();
        headers.put("to", "jenshansen@gmail.com");

        template.sendBodyAndHeaders(
              "smtp://admin@localhost?to=info@mycompany.com", 
              "Hello World", headers);
          

3.30.6. Multiple recipients for easier configuration

It is possible to set multiple recipients using a comma-separated or a semicolon-separated list. This applies both
to header settings and to settings in an endpoint URI. For example:

Map<String, Object> headers = new HashMap<String, Object>();
        headers.put("to", 
           "jenshansen@gmail.com ; jbloggs@gmail.com ; janedoe@gmail.com");

The preceding example uses a semicolon, ;, as the separator character.

3.30.7. Setting sender name and email

You can specify recipients in the format, name <email>, to include both the name and the email address of
the recipient.

For example, you define the following headers on the a Section 2.22, “Message” :

Map headers = new HashMap();
map.put("To", "Jens Hansen <jenshansen@gmail.com>");
map.put("From", "Joe Bloggs <jbloggs@gmail.com>");
map.put("Subject", "Camel is cool");

3.30.8. SUN JavaMail

SUN JavaMail is used under the hood for consuming and producing mails. We encourage end-users to consult
these references when using either POP3 or IMAP protocol. Note particularly that POP3 has a much more limited
set of features than IMAP, so end users are recommended to use IMAP where possible.

• SUN POP3 API

• SUN IMAP API

• And generally about the MAIL Flags

3.30.9. Samples

We start with a simple route that sends the messages received from a JMS queue as emails. The email account is
the admin account on mymailserver.com.

http://java.sun.com/products/javamail/
http://java.sun.com/products/javamail/javadocs/com/sun/mail/pop3/package-summary.html
http://java.sun.com/products/javamail/javadocs/com/sun/mail/imap/package-summary.html
http://java.sun.com/products/javamail/javadocs/javax/mail/Flags.html


Mock

234 Talend Mediation Developer Guide

       from("jms://queue:subscription")
             .to("smtp://admin@mymailserver.com?password=secret");

In the next sample, we poll a mailbox for new emails once every minute. Notice that we use the special consumer
option for setting the poll interval, consumer.delay, as 60000 milliseconds = 60 seconds.

from("imap://admin@mymailserver.com
     password=secret&unseen=true&consumer.delay=60000")
    .to("seda://mails");

In this sample we want to send a mail to multiple recipients.

// all the recipients of this mail are:
// To: camel@riders.org , easy@riders.org
// CC: me@you.org
// BCC: someone@somewhere.org
String recipients = 
   "&To=camel@riders.org,easy@riders.org&
CC=me@you.org&BCC=someone@somewhere.org";

from("direct:a")
   .to("smtp://you@mymailserver.com?password=secret&From=you@apache.org" 
      + recipients);

Check the Apache Camel website for several more examples, including handling mail attachments and SSL
configuration.

3.31. Mock
Testing of distributed and asynchronous processing is notoriously difficult. The Section 3.31, “Mock”,
Section 3.48, “Test” and DataSet endpoints work great with the Camel Testing Framework to simplify your unit
and integration testing using Enterprise Integration Patterns and Camel's large range of Components together with
the powerful Bean Integration.

The Mock component provides a powerful declarative testing mechanism, which is similar to jMock in that it
allows declarative expectations to be created on any Mock endpoint before a test begins. Then the test is run,
which typically fires messages to one or more endpoints, and finally the expectations can be asserted in a test case
to ensure the system worked as expected.

This allows you to test various things like:

• The correct number of messages are received on each endpoint,

• The correct payloads are received, in the right order,

• Messages arrive on an endpoint in order, using some Expression to create an order testing function,

• Messages arrive match some kind of Predicate such as that specific headers have certain values, or that parts of
the messages match some predicate, such as by evaluating an XPath or XQuery Expression.

Note that there is also the Test endpoint which is a Mock endpoint, but which uses a second endpoint to provide
the list of expected message bodies and automatically sets up the Mock endpoint assertions. In other words, it is
a Mock endpoint that automatically sets up its assertions from some sample messages in a Section 3.14, “File”
or database, for example.

http://camel.apache.org/mail.html#Mail-Sendingmailwithattachmentsample
http://camel.apache.org/testing.html
http://camel.apache.org/dataset.html
http://camel.apache.org/testing.html
http://camel.apache.org/bean-integration.html
http://jmock.org
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/expression.html


URI format

Talend Mediation Developer Guide 235

Mock endpoints keep received Exchanges in memory indefinitely

Remember that Mock is designed for testing. When you add Mock endpoints to a route, each Exchange
sent to the endpoint will be stored (to allow for later validation) in memory until explicitly reset or the
JVM is restarted. If you are sending high volume and/or large messages, this may cause excessive memory
use. If your goal is to test deployable routes inline, consider using NotifyBuilder or AdviceWith in your
tests instead of adding Mock endpoints to routes directly.

From Camel 2.10 onwards there are two new options retainFirst and retainLast that can be
used to limit the number of messages the Mock endpoints keep in memory.

3.31.1. URI format

mock:someName[?options]

where someName can be any string that uniquely identifies the endpoint.

You can append query options to the URI in the following format, ?option=value&option=value&...

3.31.2. Options

Option Default Description

reportGroup null A size to use a throughput logger for
reporting

3.31.3. Simple Example

Here's a simple example of Mock endpoint in use. First, the endpoint is resolved on the context. Then we set an
expectation, and then, after the test has run, we assert that our expectations have been met.

MockEndpoint resultEndpoint = 
      context.resolveEndpoint("mock:foo", MockEndpoint.class);

resultEndpoint.expectedMessageCount(2);

// send some messages
...

// now let's assert that the mock:foo endpoint received two messages
resultEndpoint.assertIsSatisfied();

You typically always call the assertIsSatisfied() method to test that the expectations were met after running a test.

Camel will by default wait 10 seconds when the assertIsSatisfied() is invoked. This can be configured
by setting the setResultWaitTime(milliseconds) method.

When the assertion is satisfied then Camel will stop waiting and continue from the assertIsSatisfied
method. That means if a new message arrives on the mock endpoint, just a bit later, that arrival will not affect the
outcome of the assertion. Suppose you do want to test that no new messages arrives after a period thereafter, then
you can do that by setting the setAssertPeriod method.

http://camel.apache.org/notifybuilder.html
http://camel.apache.org/advicewith.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied()


Setting expectations

236 Talend Mediation Developer Guide

3.31.3.1. Using assertPeriod

When the assertion is satisfied then Camel will stop waiting and continue from the assertIsSatisfied
method. That means if a new message arrives on the mock endpoint, just a bit later, that arrival will not affect the
outcome of the assertion. Suppose you do want to test that no new messages arrives after a period thereafter, then
you can do that by setting the setAssertPeriod method, for example:

MockEndpoint resultEndpoint = context.resolveEndpoint("mock:foo", 
   MockEndpoint.class);
resultEndpoint.setAssertPeriod(5000);
resultEndpoint.expectedMessageCount(2);

// send some messages
...

// now let's assert that the mock:foo endpoint received two messages
resultEndpoint.assertIsSatisfied();

3.31.4. Setting expectations

You can see from the javadoc of MockEndpoint the various helper methods you can use to set expectations. The
main methods are as follows:

Method Description

expectedMessageCount(int) To define the expected message count on the endpoint.

expectedMinimumMessageCount(int) To define the minimum number of expected messages on the
endpoint.

expectedBodiesReceived(...) To define the expected bodies that should be received (in order).

expectedHeaderReceived(...) To define the expected header that should be received

expectsAscending(Expression) To add an expectation that messages are received in order, using
the given Expression to compare messages.

expectsDescending(Expression) To add an expectation that messages are received in order, using
the given Expression to compare messages.

expectsNoDuplicates(Expression) To add an expectation that no duplicate messages are received;
using an Expression to calculate a unique identifier for each
message. This could be something like the JMSMessageID if
using JMS, or some unique reference number within the message.

Here's another example:

resultEndpoint.expectedBodiesReceived("firstMessageBody", "secondMessageBody", 
      "thirdMessageBody");

3.31.4.1. Adding expectations to specific messages

In addition, you can use the message(int messageIndex) method to add assertions about a specific message that
is received.

For example, to add expectations of the headers or body of the first message (using zero-based indexing like
java.util.List ), you can use the following code:

httphttp://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMinimumMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedBodiesReceived(java.lang.Object...)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedHeaderReceived(java.lang.String,%20java.lang.String)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsAscending(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsDescending(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsNoDuplicates(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#message(int)


Mocking existing endpoints

Talend Mediation Developer Guide 237

resultEndpoint.message(0).header("foo").isEqualTo("bar");

There are some examples of the Mock endpoint in use in the camel-core processor tests .

3.31.5. Mocking existing endpoints

Available as of Camel 2.7

Camel now allows you to automatically mock existing endpoints in your Camel routes.

How it works

Important: The endpoints are still in action, what happens is that a Section 3.31, “Mock” endpoint is
injected and receives the message first, and then it delegates the message to the target endpoint. You can
view this as a kind of intercept and delegate or endpoint listener.

Suppose you have the given route below:

@Override
protected RouteBuilder createRouteBuilder() throws Exception {
    return new RouteBuilder() {
        @Override
        public void configure() throws Exception {
            from("direct:start").to("direct:foo").to("log:foo").to(
               "mock:result");

            from("direct:foo").transform(constant("Bye World"));
        }
    };
}

You can then use the adviceWith feature in Camel to mock all the endpoints in a given route from your unit
test, as shown below:

public void testAdvisedMockEndpoints() throws Exception {
    // advice the first route using the inlined AdviceWith route builder
    // which has extended capabilities than the regular route builder
    context.getRouteDefinitions().get(0)
          .adviceWith(context, new AdviceWithRouteBuilder() {
        @Override
        public void configure() throws Exception {
            // mock all endpoints
            mockEndpoints();
        }
    });

    getMockEndpoint("mock:direct:start").
        expectedBodiesReceived("Hello World");
    getMockEndpoint("mock:direct:foo").
        expectedBodiesReceived("Hello World");
    getMockEndpoint("mock:log:foo").expectedBodiesReceived("Bye World");
    getMockEndpoint("mock:result").expectedBodiesReceived("Bye World");

    template.sendBody("direct:start", "Hello World");

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/


Mocking existing endpoints

238 Talend Mediation Developer Guide

    assertMockEndpointsSatisfied();

    // additional test to ensure correct endpoints in registry
    assertNotNull(context.hasEndpoint("direct:start"));
    assertNotNull(context.hasEndpoint("direct:foo"));
    assertNotNull(context.hasEndpoint("log:foo"));
    assertNotNull(context.hasEndpoint("mock:result"));
    // all the endpoints was mocked
    assertNotNull(context.hasEndpoint("mock:direct:start"));
    assertNotNull(context.hasEndpoint("mock:direct:foo"));
    assertNotNull(context.hasEndpoint("mock:log:foo"));
}

Notice that the mock endpoints is given the uri mock:<endpoint>, for example mock:direct:foo. Camel
logs at INFO level the endpoints being mocked:

INFO  Adviced endpoint [direct://foo] with mock endpoint [mock:direct:foo]

Mocked endpoints are without parameters

Endpoints which are mocked will have their parameters stripped off. For example the endpoint "log:foo?
showAll=true" will be mocked to the following endpoint "mock:log:foo". Notice the parameters have
been removed.

It is also possible to only mock certain endpoints using a pattern. For example to mock all log endpoints you
do as shown:

public void testAdvisedMockEndpointsWithPattern() throws Exception {
    // advice the first route using the inlined AdviceWith route builder
    // which has extended capabilities than the regular route builder
    context.getRouteDefinitions().get(0)
          .adviceWith(context, new AdviceWithRouteBuilder() {
        @Override
        public void configure() throws Exception {
            // mock only log endpoints
            mockEndpoints("log*");
        }
    });

    // now we can refer to log:foo as a mock and set our expectations
    getMockEndpoint("mock:log:foo").expectedBodiesReceived("Bye World");

    getMockEndpoint("mock:result").expectedBodiesReceived("Bye World");

    template.sendBody("direct:start", "Hello World");

    assertMockEndpointsSatisfied();

    // additional test to ensure correct endpoints in registry
    assertNotNull(context.hasEndpoint("direct:start"));
    assertNotNull(context.hasEndpoint("direct:foo"));
    assertNotNull(context.hasEndpoint("log:foo"));
    assertNotNull(context.hasEndpoint("mock:result"));
    // only the log:foo endpoint was mocked
    assertNotNull(context.hasEndpoint("mock:log:foo"));
    assertNull(context.hasEndpoint("mock:direct:start"));
    assertNull(context.hasEndpoint("mock:direct:foo"));
}



Limiting the number of messages to keep

Talend Mediation Developer Guide 239

The pattern supported can be a wildcard or a regular expression. See more details about this functionality on the
Apache Camel website.

Mind that mocking endpoints causes the messages to be copied when they arrive on the mock. That means
Camel will use more memory. This may not be suitable when you send in a lot of messages.

3.31.6. Limiting the number of messages to keep

The Mock endpoints will by default keep a copy of every Exchange that it received. So if you test with a lot of
messages, then it will consume memory. From Camel 2.10 onwards we have introduced two options retainFirst
and retainLast that can be used to specify to only keep N'th of the first and/or last Exchanges. For example in the
code below, we only want to retain a copy of the first 5 and last 5 Exchanges the mock receives.

MockEndpoint mock = getMockEndpoint("mock:data");
mock.setRetainFirst(5);
mock.setRetainLast(5);
mock.expectedMessageCount(2000);
...
mock.assertIsSatisfied();

Using this has some limitations. The getExchanges() and getReceivedExchanges() methods on the MockEndpoint
will return only the retained copies of the Exchanges. So in the example above, the list will contain 10 Exchanges;
the first five, and the last five. The retainFirst and retainLast options also have limitations on which expectation
methods you can use. For example the expectedXXX methods that work on message bodies, headers, etc. will
operate only on the retained messages. In the example above they can test only the expectations on the 10 retained
messages.

3.31.7. Testing with arrival times

The Section 3.31, “Mock” endpoint stores the arrival time of the message as a property on the Exchange.

Date time = exchange.getProperty(Exchange.RECEIVED_TIMESTAMP, Date.class);

You can use this information to know when the message arrived on the mock. But it also provides foundation
to know the time interval between the previous and next message arrived on the mock. You can use this to set
expectations using the arrives DSL on the Section 3.31, “Mock” endpoint.

For example to say that the first message should arrive between 0-2 seconds before the next you can do:

mock.message(0).arrives().noLaterThan(2).seconds().beforeNext();

You can also define this as that the second message (0 index based) should arrive no later than 0-2 seconds after
the previous:

mock.message(1).arrives().noLaterThan(2).seconds().afterPrevious();

You can also use between to set a lower bound. For example suppose that it should be between 1-4 seconds:

mock.message(1).arrives().between(1, 4).seconds().afterPrevious();

You can also set the expectation on all messages, for example to say that the gap between them should be at most
1 second:

mock.allMessages().arrives().noLaterThan(1).seconds().beforeNext();

http://camel.apache.org/mock.html#Mock-Mockingexistingendpoints
http://camel.apache.org/exchange.html


MyBatis

240 Talend Mediation Developer Guide

time units

In the example above we use seconds as the time unit, but Camel offers milliseconds, and
minutes as well.

3.32. MyBatis
The MyBatis component allows you to query, poll, insert, update and delete data in a relational database using
MyBatis.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-mybatis</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

3.32.1. URI format

mybatis:statementName[?options]

Where statementName is the statement name in the MyBatis XML configuration file which maps to the query,
insert, update or delete operation you wish to evaluate.

You can append query options to the URI in the following format, ?option=value&option=value&...

This component will by default load the MyBatis SqlMapConfig file from the root of the classpath with the
expected name of SqlMapConfig.xml. If the file is located in another location, you will need to configure the
configurationUri option on the MyBatisComponent component.

3.32.2. Options

Option Type Default Description

consumer.onConsume String null Statements to run after consuming. Can
be used, for example, to update rows after
they have been consumed and processed
in Camel. Multiple statements can be
separated with commas.

consumer. useIterator boolean true If true each row returned when polling
will be processed individually. If false
the entire List of data is set as the IN
body.

consumer.
routeEmptyResultSet

boolean false Sets whether empty result sets should be
routed.

statementType StatementType null Mandatory to specify for the Producer
to control which kind of operation

http://mybatis.org/


Message Headers

Talend Mediation Developer Guide 241

Option Type Default Description

to invoke. The enum values are:
SelectOne, SelectList, Insert,
InsertList, Update, Delete.

maxMessagesPerPoll int 0 An integer to define the maximum
messages to gather per poll. By default,
no maximum is set. Can be used to set
a limit of, for example, 1000 to avoid
when starting up the server that there are
thousands of files. Set a value of 0 or
negative to disable it.

3.32.3. Message Headers

Camel will populate the result message, either IN or OUT with a header with the statement used:

Header Type Description

CamelMyBatis-
StatementName

String The statementName used (for example: insertAccount).

CamelMyBatisResult Object The response returned from MyBatis in any of the operations.
For instance an INSERT could return the auto-generated key,
or number of rows etc.

3.32.4. Message Body

The response from MyBatis will only be set as body if it is a SELECT statement. That means, for example, for
INSERT statements Camel will not replace the body. This allows you to continue routing and keep the original
body. The response from MyBatis is always stored in the header with the key CamelMyBatisResult.

3.32.5. Samples

For example if you wish to consume beans from a JMS queue and insert them into a database you could do the
following:

from("activemq:queue:newAccount")
   .to("mybatis:insertAccount?statementType=Insert");

Notice we have to specify the statementType, as we need to instruct Camel which kind of operation to invoke.
The insertAccount value given above is the MyBatis ID in the SQL map file:

<!-- Insert example, using the Account parameter class -->
   <insert id="insertAccount" parameterClass="Account">
      insert into ACCOUNT (
         ACC_ID,
         ACC_FIRST_NAME,
         ACC_LAST_NAME,
         ACC_EMAIL
      )



Using StatementType for better control of MyBatis

242 Talend Mediation Developer Guide

      values (
         #id#, #firstName#, #lastName#, #emailAddress#
      )
   </insert>

3.32.6. Using StatementType for better control of
MyBatis

When routing to an MyBatis endpoint you will want more fine grained control so you can control whether the
SQL statement to be executed is a SELECT, UPDATE, DELETE or INSERT etc. So for instance if we want to
route to an MyBatis endpoint in which the IN body contains parameters to a SELECT statement we can do:

from("direct:start")
    .to("mybatis:selectAccountById?statementType=QueryForObject")
    .to("mock:result");

In the code above we invoke the MyBatis statement selectAccountById and the IN body should contain the
account id we want to retrieve, such as an Integer type.

We can do the same for some of the other operations, such as SelectList :

from("direct:start")
    .to("mybatis:selectAllAccounts?statementType=SelectList")
    .to("mock:result");

And the same for UPDATE, where we can send an Account object as the IN body to MyBatis:

from("direct:start")
    .to("mybatis:updateAccount?statementType=Update")
    .to("mock:result");

3.32.6.1. Using onConsume

This component supports executing statements after data have been consumed and processed by Camel. This
allows you to do post updates in the database. Notice all statements must be UPDATE statements. Camel supports
executing multiple statements whose names should be separated by commas.

The route below illustrates executing the consumeAccount statement after the data is processed. This allows us
to change the status of the row in the database to "processed", so we avoid consuming it twice or more.

from("mybatis:selectUnprocessedAccounts?consumer.
onConsume=consumeAccount").to("mock:results");

And the statements in the sqlmap file:

<select id="selectUnprocessedAccounts" resultMap="AccountResult">
   select * from ACCOUNT where PROCESSED = false
</select>
<update id="consumeAccount" parameterClass="Account">
   update ACCOUNT set PROCESSED = true where ACC_ID = #id#
</update>



Properties

Talend Mediation Developer Guide 243

3.33. Properties

3.33.1. Properties Component

3.33.1.1. URI format

properties:key[?options]

where key is the key for the property to lookup

3.33.1.2. Options

Name Type Default Description

cache boolean true Whether or not to cache loaded properties.

locations String null A list of locations to load properties.
You can use comma to separate multiple
locations. This option will override any
default locations and only use the locations
from this option.

3.33.2. Using PropertyPlaceholder

Camel now provides a new PropertiesComponent in camel-core which allows you to use property
placeholders when defining Camel Endpoint URIs. This works much like you would do if using Spring's
<property-placeholder> tag. However Spring have a limitation which prevents 3rd party frameworks to
leverage Spring property placeholders to the fullest. See more at How do I use Spring Property Placeholder with
Camel XML .

The property placeholder is generally in use when doing:

• lookup or creating endpoints

• lookup of beans in the Registry

• additional supported in Spring XML (see below in examples)

• using Blueprint PropertyPlaceholder with Camel Section 3.33, “Properties” component

3.33.2.1. Syntax

The syntax to use Camel's property placeholder is to use {{ key }} for example {{ file.uri }} where
file.uri is the property key. You can use property placeholders in parts of the endpoint URI's which for
example you can use placeholders for parameters in the URIs.

http://camel.apache.org/endpoint.html
http://localhost:8080/confluence/pages/viewpage.action?pageId=3244150
http://localhost:8080/confluence/pages/viewpage.action?pageId=3244150
http://camel.apache.org/registry.html


Using PropertyPlaceholder

244 Talend Mediation Developer Guide

3.33.2.2. PropertyResolver

As usual Camel provides a pluggable mechanism which allows 3rd part to provide
their own resolver to lookup properties. Camel provides a default implementation
org.apache.camel.component.properties.DefaultPropertiesResolver which is capable
of loading properties from the file system, classpath or Registry. You can prefix the locations with either:

• ref: to lookup in the Registry

• file: to load the from file system

• classpath: to load from classpath (this is also the default if no prefix is provided)

• blueprint: Camel 2.7: to use a specific OSGi blueprint placeholder service

3.33.2.3. Defining location

The PropertiesResolver need to know a location(s) where to resolve the properties. You can define one
to many locations. If you define the location in a single String property you can separate multiple locations with
comma such as:

pc.setLocation(
   "com/mycompany/myprop.properties,com/mycompany/other.properties");

Using system and environment variables in locations

Available as of Camel 2.7

The location now supports using placeholders for JVM system properties and OS environments variables.

For example:

location=file:${karaf.home}/etc/foo.properties

In the location above we defined a location using the file scheme using the JVM system property with key
karaf.home.

To use an OS environment variable instead you would have to prefix with env:

location=file:${env:APP_HOME}/etc/foo.properties

where APP_HOME is an OS environment.

You can have multiple placeholders in the same location, such as:

location=file:${env:APP_HOME}/etc/${prop.name}.properties

3.33.2.4. Configuring in Java DSL

You have to create and register the PropertiesComponent under the name properties such as:

PropertiesComponent pc = new PropertiesComponent();
pc.setLocation("classpath:com/mycompany/myprop.properties");
context.addComponent("properties", pc);

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html


Using PropertyPlaceholder

Talend Mediation Developer Guide 245

3.33.2.5. Configuring in Spring XML

Spring XML offers two variations to configure. You can define a Spring bean as a PropertiesComponent
which resembles the way done in Java DSL. Or you can use the <propertyPlaceholder> tag.

<bean id="properties" 
      class="org.apache.camel.component.properties.PropertiesComponent">
   <property name="location" 
      value="classpath:com/mycompany/myprop.properties"/>
</bean>

Using the <propertyPlaceholder> tag makes the configuration a bit more fresh such as:

<camelContext ...>
   <propertyPlaceholder id="properties" 
         location="com/mycompany/myprop.properties"/>
</camelContext>

3.33.2.6. Using a Properties from the Registry

For example in OSGi you may want to expose a service which returns the properties as a
java.util.Properties object.

Then you could setup the Section 3.33, “Properties” component as follows:

<propertyPlaceholder id="properties" location="ref:myProperties"/>

where myProperties is the id to use for lookup in the OSGi registry. Notice we use the ref: prefix to tell
Camel that it should lookup the properties for the Registry.

3.33.2.7. Examples using properties component

When using property placeholders in the endpoint URIs you can either use the properties: component or
define the placeholders directly in the URI. We will show example of both cases, starting with the former.

// properties
cool.end=mock:result

// route
from("direct:start").to("properties:{{cool.end}}");

You can also use placeholders as a part of the endpoint uri:

// properties
cool.foo=result

// route
from("direct:start").to("properties:mock:{{cool.foo}}");

In the example above the to endpoint will be resolved to mock:result.

You can also have properties with refer to each other such as:

// properties
cool.foo=result
cool.concat=mock:{{cool.foo}}

http://camel.apache.org/registry.html


Using PropertyPlaceholder

246 Talend Mediation Developer Guide

// route
from("direct:start").to("properties:mock:{{cool.concat}}");

Notice how cool.concat refer to another property.

The properties: component also offers you to override and provide a location in the given uri using the
locations option:

from("direct:start")
      .to("properties:bar.end?locations=com/mycompany/bar.properties");

3.33.2.8. Examples

You can also use property placeholders directly in the endpoint uris without having to use properties:.

// properties
cool.foo=result

// route
from("direct:start").to("mock:{{cool.foo}}");

And you can use them in multiple wherever you want them:

// properties
cool.start=direct:start
cool.showid=true
cool.result=result

// route
from("{{cool.start}}")
    .to("log:{{cool.start}}?showBodyType=false"
    + "&showExchangeId={{cool.showid}}")
    .to("mock:{{cool.result}}");

You can also your property placeholders when using ProducerTemplate for example:

template.sendBody("{{cool.start}}", "Hello World");

3.33.2.9. Example with Simple language

The Simple language now also support using property placeholders, for example in the route below:

// properties
cheese.quote=Camel rocks

// route
from("direct:start")
    .transform().simple(
    "Hi ${body} do you think ${properties:cheese.quote}?");

You can also specify the location in the Simple language for example:

// bar.properties
bar.quote=Beer tastes good

http://camel.apache.org/producertemplate.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html


Using PropertyPlaceholder

Talend Mediation Developer Guide 247

// route
from("direct:start")
   .transform()
   .simple(
      "Hi ${body}. ${properties:com/mycompany/bar.properties:bar.quote}.");

3.33.2.10. Additional property placeholder supported in Spring
XML

The property placeholders is also supported in many of the Camel Spring XML tags such as <package>,
<packageScan>, <contextScan>, <jmxAgent>, <endpoint>, <routeBuilder>,
<proxy> and the others.

The example below has property placeholder in the <jmxAgent> tag:

<camelContext xmlns="http://camel.apache.org/schema/spring">
   <propertyPlaceholder id="properties" 
      location="org/apache/camel/spring/jmx.properties"/>

   <!-- we can use propery placeholders when we define the JMX agent -->
   <jmxAgent id="agent" 
         registryPort="{{myjmx.port}}" disabled="{{myjmx.disabled}}"
      usePlatformMBeanServer="{{myjmx.usePlatform}}"
      createConnector="true"
      statisticsLevel="RoutesOnly"/>

   <route id="foo" autoStartup="false">
      <from uri="seda:start"/>
      <to uri="mock:result"/>
   </route>
</camelContext>
          
          
          

You can also define property placeholders in the various attributes on the <camelContext> tag such as trace
as shown here:

<camelContext trace="{{foo.trace}}" 
         xmlns="http://camel.apache.org/schema/spring">
    <propertyPlaceholder 
         id="properties" 
         location="org/apache/camel/spring/processor/myprop.properties"/>

    <template id="camelTemplate" defaultEndpoint="{{foo.cool}}"/>

    <route>
       <from uri="direct:start"/>
       <setHeader headerName="{{foo.header}}">
           <simple>${in.body} World!</simple>
       </setHeader>
       <to uri="mock:result"/>
   </route>
</camelContext>
          



Using PropertyPlaceholder

248 Talend Mediation Developer Guide

3.33.2.11. Overriding a property setting using a JVM System
Property

It is possible to override a property value at runtime using a JVM System property without the need to restart
the application to pick up the change. This may also be accomplished from the command line by creating a JVM
System property of the same name as the property it replaces with a new value. An example of this is given below

PropertiesComponent pc = 
      context.getComponent("properties", PropertiesComponent.class);
pc.setCache(false);
        
System.setProperty("cool.end", "mock:override");
System.setProperty("cool.result", "override");

context.addRoutes(new RouteBuilder() {
    @Override
    public void configure() throws Exception {
        from("direct:start").to("properties:cool.end");
        from("direct:foo").to("properties:mock:{{cool.result}}");
    }
});
context.start();

getMockEndpoint("mock:override").expectedMessageCount(2);

template.sendBody("direct:start", "Hello World");
template.sendBody("direct:foo", "Hello Foo");

System.clearProperty("cool.end");
System.clearProperty("cool.result");
        
assertMockEndpointsSatisfied();

3.33.2.12. Using property placeholders for any kind of attribute in
the XML DSL

Available as of Camel 2.7

Previously it was only the xs:string type attributes in the XML DSL that support placeholders. For example
often a timeout attribute would be a xs:int type and thus you cannot set a string value as the placeholder key.
This is now possible from Camel 2.7 onwards using a special placeholder namespace.

In the example below we use the prop prefix for the namespace  http://camel.apache.org/schema/
placeholder  by which we can use the prop prefix in the attributes in the XML DSLs. Notice how we use
that in the Section 2.32, “Multicast” to indicate that the option stopOnException should be the value of the
placeholder with the key "stop".

<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:prop="http://camel.apache.org/schema/placeholder"
       xsi:schemaLocation="
http://www.springframework.org/schema/beans 



Using PropertyPlaceholder

Talend Mediation Developer Guide 249

             http://www.springframework.org/schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring 
             http://camel.apache.org/schema/spring/camel-spring.xsd
    ">

   <!-- Notice in the declaration above, we have defined the prop -->
   <!-- prefix as the Camel placeholder namespace -->

   <bean id="damn" class="java.lang.IllegalArgumentException">
      <constructor-arg index="0" value="Damn"/>
   </bean>

   <camelContext xmlns="http://camel.apache.org/schema/spring">

   <propertyPlaceholder id="properties" location=
      "classpath:org/apache/camel/component/properties/myprop.properties"
      xmlns="http://camel.apache.org/schema/spring"/>

      <route>
            <from uri="direct:start"/>
            <!-- use prop namespace, to define a property placeholder, 
                 which maps to option stopOnException={{stop}} -->
            <multicast prop:stopOnException="stop">
                <to uri="mock:a"/>
                <throwException ref="damn"/>
                <to uri="mock:b"/>
            </multicast>
        </route>

    </camelContext>

</beans>
          
          

In our properties file we have the value defined as

stop=true

3.33.2.13. Using property placeholder in the Java DSL

Available as of Camel 2.7

Likewise we have added support for defining placeholders in the Java DSL using the new placeholder DSL
as shown in the following equivalent example:

from("direct:start")
    // use a property placeholder for the option stopOnException on the 
    // Multicast EIP which should have the value of {{stop}}  
    // key being looked up in the properties file
    .multicast()
       .placeholder("stopOnException", "stop")
       .to("mock:a")
       .throwException(new IllegalAccessException("Damn"))
       .to("mock:b");



Using PropertyPlaceholder

250 Talend Mediation Developer Guide

3.33.2.14. Using Blueprint property placeholder with Camel routes

Available as of Camel 2.7

Camel supports Blueprint which also offers a property placeholder service. Camel supports convention over
configuration, so all you have to do is to define the OSGi Blueprint property placeholder in the XML file as shown
below:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.0.0"
   xsi:schemaLocation="
http://www.osgi.org/xmlns/blueprint/v1.0.0 
            http://www.osgi.org/xmlns/blueprint/v1.0.0/blueprint.xsd">

   <!-- OSGI blueprint property placeholder -->
   <cm:property-placeholder id="myblueprint.placeholder" 
         persistent-id="camel.blueprint">
      <!-- list some properties for this test -->
      <cm:default-properties>
         <cm:property name="result" value="mock:result"/>
      </cm:default-properties>
   </cm:property-placeholder>

   <camelContext xmlns="http://camel.apache.org/schema/blueprint">

   <!-- in the route we can use {{ }} placeholders which will lookup in -->
   <!-- blueprint as Camel will auto detect the OSGi blueprint property -->
   <!-- placeholder and use it -->
      <route>
         <from uri="direct:start"/>
         <to uri="mock:foo"/>
         <to uri="{{result}}"/>
      </route>
   </camelContext>
</blueprint>

By default Camel detects and uses OSGi blueprint property placeholder service. You can disable this by setting
the attribute useBlueprintPropertyResolver to false on the <camelContext> definition.

About placeholder syntaxes

Notice how we can use the Camel syntax for placeholders {{ }} in the Camel route, which will lookup the
value from OSGi blueprint. The blueprint syntax for placeholders is ${ }. So outside the <camelContext>
you must use the ${ } syntax. Whereas inside <camelContext> you must use {{ }} syntax. OSGi blueprint
allows you to configure the syntax, so you can align those if you want.

You can also explicit refer to a specific OSGi blueprint property placeholder by its id. For that you need to use
the Camel's <propertyPlaceholder> as shown in the example below:

<blueprint xmlns="http://www.osgi.org/xmlns/blueprint/v1.0.0"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns:cm="http://aries.apache.org/blueprint/xmlns/blueprint-cm/v1.0.0"
   xsi:schemaLocation="
http://www.osgi.org/xmlns/blueprint/v1.0.0 http://www.osgi.org/xmlns/
blueprint/v1.0.0/blueprint.xsd">

http://camel.apache.org/using-osgi-blueprint-with-camel.html


Quartz

Talend Mediation Developer Guide 251

   <!-- OSGI blueprint property placeholder -->
   <cm:property-placeholder id="myblueprint.placeholder" 
         persistent-id="camel.blueprint">
       <!-- list some properties for this test -->
       <cm:default-properties>
          <cm:property name="result" value="mock:result"/>
       </cm:default-properties>
   </cm:property-placeholder>

   <camelContext xmlns="http://camel.apache.org/schema/blueprint">

      <!-- using Camel properties component and refer to the blueprint  -->
      <!-- property placeholder by its id -->
      <propertyPlaceholder id="properties" 
            location="blueprint:myblueprint.placeholder"/>

      <!-- in the route we can use {{ }} placeholders which will lookup -->
      <!-- in blueprint -->
      <route>
         <from uri="direct:start"/>
         <to uri="mock:foo"/>
         <to uri="{{result}}"/>
       </route>

   </camelContext>

</blueprint>

Notice how we use the blueprint scheme to refer to the OSGi blueprint placeholder by its id. This allows you
to mix and match, for example you can also have additional schemes in the location. For example to load a file
from the classpath you can do:

location="blueprint:myblueprint.placeholder,
   classpath:myproperties.properties"

Each location is separated by comma.

3.34. Quartz
The quartz: component provides a scheduled delivery of messages using the Quartz scheduler. Each endpoint
represents a different timer (in Quartz terms, a Trigger and JobDetail).

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-quartz</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

Using cron expressions

Configuring the cron expression is based on a URI option. Note: it is possible to use the / cron special
character (for increments). However, you may need to escape certain URI characters such as using ? in
the quartz cron expression.

http://www.opensymphony.com/quartz/
http://www.december.com/html/spec/esccodes.html


URI format

252 Talend Mediation Developer Guide

3.34.1. URI format

quartz://timerName?options
quartz://groupName/timerName?options
quartz://groupName/timerName/cronExpression       (@deprecated)
quartz://groupName/timerName/?cron=expression     (Camel 2.0)
quartz://timerName?cron=expression                (Camel 2.0)

The component uses either a CronTrigger or a SimpleTrigger. If no cron expression is provided, the
component uses a simple trigger. If no groupName is provided, the quartz component uses the Camel group
name.

You can append query options to the URI in the following format, ?option=value&option=value&...

3.34.2. Options

Parameter Default Description

cron None Specifies a cron expression (not compatible with the
trigger.* or job.* options).

trigger.repeatCount0 SimpleTrigger: How many times should the timer
repeat?

trigger.repeatInterval0 SimpleTrigger: The amount of time in milliseconds
between repeated triggers.

job.name null Sets the job name.

job.XXX null Sets the job option with the XXX setter name.

trigger.XXX null Sets the trigger option with the XXX setter name.

stateful false Uses a Quartz StatefulJob instead of the default
job.

fireNow false If it is true will fire the trigger when the route is start
when using SimpleTrigger.

For example, the following routing rule will fire two timer events to the mock:results endpoint:

from(
   "quartz://myGroup/myTimerName?trigger.repeatInterval=2"
      + "&trigger.repeatCount=1")
      .routeId("myRoute").to("mock:result");

When using a StatefulJob, the JobDataMap is re-persisted after every execution of the job, thus preserving state
for the next execution.

If you run in OSGi such as within Apache Karaf and have multiple bundles with Camel routes that start from
Quartz endpoints, then make sure if you assign an id to the <camelContext> that this id is unique, as this is required
by the QuartzScheduler in the OSGi container. If you do not set any id on <camelContext> then an unique id will
be auto assigned instead.

3.34.3. Configuring quartz.properties file

By default Quartz will look for a quartz.properties file in the root of the classpath. If you are using WAR
deployments this means just drop the quartz.properties in WEB-INF/classes.

http://www.quartz-scheduler.org/docs/api/org/quartz/StatefulJob.html
http://www.quartz-scheduler.org/docs/api/org/quartz/JobDataMap.html


Starting the Quartz scheduler

Talend Mediation Developer Guide 253

However the Camel Section 3.34, “Quartz” component also allows you to configure properties:

Parameter Default Type Description

properties null Properties You can configure a
java.util.Propoperties instance.

propertiesFile null String File name of the properties to load from the
classpath

To do this you can configure this in Spring XML as follows

<bean id="quartz" 
   class="org.apache.camel.component.quartz.QuartzComponent">
   <property name="propertiesFile" 
   value="com/mycompany/myquartz.properties"/>
</bean>

3.34.4. Starting the Quartz scheduler

The Section 3.34, “Quartz” component offers an option to let the Quartz scheduler be started delayed, or not auto
started at all.

Parameter Default Type Description

startDelayedSeconds 0 int Seconds to wait before starting the quartz
scheduler.

autoStartScheduler true boolean Whether or not the scheduler should be auto
started.

To do this you can configure this in Spring XML as follows

<bean id="quartz" 
    class="org.apache.camel.component.quartz.QuartzComponent">
    <property name="startDelayedSeconds" value="5"/>
</bean>

3.34.5. Clustering

If you use Quartz in clustered mode, for example, the JobStore is clustered. Then from Camel 2.4 onwards the
Section 3.34, “Quartz” component will not pause/remove triggers when a node is being stopped/shutdown. This
allows the trigger to keep running on the other nodes in the cluster.

Note : When running in clustered node no checking is done to ensure unique job name/group for endpoints.

3.34.6. Message Headers

Camel adds the getters from the Quartz Execution Context as header values. The following headers are
added: calendar, fireTime, jobDetail, jobInstance, jobRuntTime, mergedJobDataMap,
nextFireTime, previousFireTime, refireCount, result, scheduledFireTime, scheduler,
trigger, triggerName, triggerGroup.

The fireTime header contains the java.util.Date of when the exchange was fired.



Using Cron Triggers

254 Talend Mediation Developer Guide

3.34.7. Using Cron Triggers

Quartz supports Cron-like expressions for specifying timers in a handy format. You can use these expressions in
the cron URI parameter; though to preserve valid URI encoding we allow + to be used instead of spaces. Quartz
provides a little tutorial on how to use cron expressions.

For example, the following will fire a message every five minutes starting at 12pm (noon) to 6pm on weekdays:

from("quartz://myGroup/myTimerName?cron=0+0/5+12-18+?+*+MON-FRI")
      .to("activemq:Totally.Rocks");

which is equivalent to using the cron expression

0 0/5 12-18 ? * MON-FRI

The following table shows the URI character encodings we use to preserve valid URI syntax:

URI Character Cron character

+ Space

3.35. Ref
The ref: component is used for lookup of existing endpoints bound in the Registry.

3.35.1. URI format

ref:someName

where someName is the name of an endpoint in the Registry (usually, but not always, the Spring registry). If you
are using the Spring registry, someName would be the bean ID of an endpoint in the Spring registry.

3.35.2. Runtime lookup

This component can be used when you need dynamic discovery of endpoints in the Registry where you can
compute the URI at runtime. Then you can look up the endpoint using the following code:

// lookup the endpoint
   String myEndpointRef = "bigspenderOrder";
   Endpoint endpoint = context.getEndpoint("ref:" + myEndpointRef);
   
   Producer producer = endpoint.createProducer();
   Exchange exchange = producer.createExchange();
   exchange.getIn().setBody(payloadToSend);
   // send the exchange
   producer.process(exchange);
   ...

And you could have a list of endpoints defined in the Registry such as:

http://www.opensymphony.com/quartz/api/org/quartz/CronTrigger.html
http://www.opensymphony.com/quartz/wikidocs/CronTriggers%20Tutorial.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html


Sample

Talend Mediation Developer Guide 255

<camelContext id="camel" 
      xmlns="http://activemq.apache.org/camel/schema/spring">
   <endpoint id="normalOrder" uri="activemq:order.slow"/>
   <endpoint id="bigspenderOrder" uri="activemq:order.high"/>
      ...
</camelContext>

3.35.3. Sample

In the sample below we use the ref: in the URI to reference the endpoint with the Spring ID, endpoint2 :

<bean id="mybean" class="org.apache.camel.spring.example.DummyBean">
  <property name="endpoint" ref="endpoint1"/>
</bean>

<camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
  <jmxAgent id="agent" disabled="true"/>
  <endpoint id="endpoint1" uri="direct:start"/>
  <endpoint id="endpoint2" uri="mock:end"/>

  <route>
    <from ref="endpoint1"/>
    <to uri="ref:endpoint2"/>
  </route>
</camelContext>

You could, of course, have used the ref attribute instead:

<to ref="endpoint2"/>

Which is the more common way to write it.

3.36. RMI
The rmi: component binds PojoExchanges to the RMI protocol (JRMP).

Since this binding is just using RMI, normal RMI rules still apply regarding what methods can be invoked. This
component supports only PojoExchanges that carry a method invocation from an interface that extends the Remote
interface. All parameters in the method should be either Serializable or Remote objects.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-rmi</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

3.36.1. URI format

rmi://rmi-regisitry-host:rmi-registry-port/registry-path[?options]

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://java.sun.com/j2se/1.3/docs/api/java/rmi/Remote.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html


Options

256 Talend Mediation Developer Guide

For example:

rmi://localhost:1099/path/to/service

You can append query options to the URI in the following format, ?option=value&option=value&...

3.36.2. Options

Name Default Value Description

method null You can set the name of the method to invoke.

remoteInterfaces null It is now possible to use this option from Camel 2.7:
in the XML DSL. It can be a list of interface names
separated by comma.

3.36.3. Using

To call out to an existing RMI service registered in an RMI registry, create a route similar to the following:

from("pojo:foo").to("rmi://localhost:1099/foo");

To bind an existing Camel processor or service in an RMI registry, define an RMI endpoint as follows:

RmiEndpoint endpoint= (RmiEndpoint) endpoint("rmi://localhost:1099/bar");
endpoint.setRemoteInterfaces(ISay.class);
from(endpoint).to("pojo:bar");

Note that when binding an RMI consumer endpoint, you must specify the Remote interfaces exposed.

In XML DSL you can do as follows from Camel 2.7 onwards:

<camel:route>
        <from uri="rmi://localhost:37541/helloServiceBean?remoteInterfaces=
org.apache.camel.example.osgi.HelloService"/>
        <to uri="bean:helloServiceBean"/>
    </camel:route>

3.37. RSS
The rss: component is used for polling RSS feeds. Camel will default poll the feed every 60th seconds.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-rss</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>



URI format

Talend Mediation Developer Guide 257

The RSS component ships with an RSS dataformat that can be used to convert between String (as XML) and
ROME RSS model objects, as well as filter out certain entries. Camel's Bean Integration can also be used for
filtering out RSS entries. See the Camel Website for examples of this component in use.

Note: The component currently only supports polling (consuming) feeds.

3.37.1. URI format

rss:rssUri

where rssUri is the URI to the RSS feed to poll.

You can append query options to the URI in the following format, ?option=value&option=value&...

3.37.2. Options

Property Default Description

splitEntries true If true, Camel splits a feed into its individual entries
and returns each entry, poll by poll. For example, if a
feed contains seven entries, Camel returns the first entry
on the first poll, the second entry on the second poll, and
so on. When no more entries are left in the feed, Camel
contacts the remote RSS URI to obtain a new feed. If
false, Camel obtains a fresh feed on every poll and
returns all of the feed's entries.

filter true Use in combination with the splitEntries option in
order to filter returned entries. By default, Camel applies
the UpdateDateFilter filter, which returns only
new entries from the feed, ensuring that the consumer
endpoint never receives an entry more than once. The
filter orders the entries chronologically, with the newest
returned last.

throttleEntries true Sets whether all entries identified in a single feed poll
should be delivered immediately. If true, only one entry
is processed per consumer.delay. Only applicable when
splitEntries is set to true.

lastUpdate null Use in combination with the filter option
to block entries earlier than a specific date/
time (uses the entry.updated timestamp). The
format is: yyyy-MM-ddTHH:MM:ss. Example:
2007-12-24T17:45:59.

feedHeader true Specifies whether to add the ROME SyndFeed object
as a header.

sortEntries false If splitEntries is true, this specifies whether to
sort the entries by updated date.

consumer.delay 60000 Delay in milliseconds between each poll.

consumer.initialDelay 1000 Milliseconds before polling starts.

consumer.userFixedDelay false Set to true to use fixed delay between pools, otherwise
fixed rate is used. See ScheduledExecutorService in
JDK for details.

http://camel.apache.org/bean-integration.html
http://camel.apache.org/rss.html#RSS-RSSDataformat
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html


Exchange data types

258 Talend Mediation Developer Guide

3.37.3. Exchange data types
Camel initializes the In body on the Exchange with a ROME SyndFeed. Depending on the value of the
splitEntries flag, Camel returns either a SyndFeed with one SyndEntry or a java.util.List of
SyndEntrys.

Option Value Behavior

splitEntries true A single entry from the current feed is set in the
exchange.

splitEntries false The entire list of entries from the current feed is set in
the exchange.

3.37.4. Message Headers

Header Description

CamelRssFeed The entire SyncFeed object.

3.38. SEDA
The seda: component provides asynchronous SEDA behavior, so that messages are exchanged on a
BlockingQueue and consumers are invoked in a separate thread from the producer.

Note that queues are only visible within a single CamelContext. If you want to communicate across
CamelContext instances (for example, communicating between Web applications), see the Section 3.51, “VM”
component.

This component does not implement any kind of persistence or recovery, if the VM terminates while messages
are yet to be processed. If you need persistence, reliability or distributed SEDA, try using either Section 3.24,
“JMS” or Section 3.1, “ActiveMQ”.

Synchronous

The Section 3.11, “Direct” component provides synchronous invocation of any consumers when a
producer sends a message exchange.

3.38.1. URI format and options
seda:someName[?options]

where someName can be any string that uniquely identifies the endpoint within the current CamelContext.

You can append query options to the URI in the following format, ?option=value&option=value&...

Note: the same queue name must be used for both producer and consumer.

An exactly identical Section 3.38, “SEDA” queue name must be used for both the producer endpoint and the
consumer endpoint. Otherwise Camel will create a second Section 3.38, “SEDA” endpoint, even though the
someName portion of the queue is identical. For example:

from("direct:foo").to("seda:bar?concurrentConsumers=5");

http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/camelcontext.html


Use of Request Reply

Talend Mediation Developer Guide 259

from("seda:bar?concurrentConsumers=5").to("file://output");

Options

Name Default Description

size The maximum size (= capacity of the number of
messages it can max hold) of the SEDA queue. The size
is unbounded by default.

concurrent-
Consumers

1 the number of concurrent threads to process exchanges.

waitForTaskTo-
Complete

IfReplyExpected option to specify whether the caller should wait
for the async task to complete or not before
continuing. The following three options are supported:
Always, Never or IfReplyExpected. The first
two values are self-explanatory. The last value,
IfReplyExpected, will only wait if the message is
Section 2.39, “Request Reply” based. The default option
is IfReplyExpected. See more information about
Async messaging.

timeout 30000 Timeout in milliseconds a seda producer will at
most waiting for an async task to complete. See
waitForTaskToComplete and Async for more
details. You can disable timeout by using 0 or a negative
value.

multipleConsumers false Specifies whether multiple consumers is allowed or
not. If enabled you can use Section 3.38, “SEDA” for
a pubsub style messaging. Send a message to a seda
queue and have multiple consumers receive a copy of
the message. This option should be specified on every
consumer endpoint, if in use.

limitConcurrent-
Consumers

true Whether to limit the concurrentConsumers to maximum
500. If it is configured with a higher number an
exception will be thrown. You can disable this check by
turning this option off.

blockWhenFull false Whether to block the current thread when sending a
message to a SEDA endpoint, and the SEDA queue
is full (capacity hit). By default an exception will be
thrown stating the queue is full. By setting this option to
true the caller thread will instead block and wait until
the message can be delivered to the SEDA queue.

queueSize The maximum size (capacity of the number of messages
it can hold) of the SEDA queue.

pollTimeout 1000 Consumer only. The timeout used when polling. When a
timeout occurs then the consumer can check whether its
allowed to continue to run. Setting a lower value allows
the consumer to react faster upon shutting down.

See the Camel Website for the most up-to-date examples of this component in use.

3.38.2. Use of Request Reply
The Section 3.38, “SEDA” component supports using Section 2.39, “Request Reply”, where the caller will wait
for the Async route to complete. For instance:

http://camel.apache.org/async.html
http://camel.apache.org/async.html
http://camel.apache.org/seda.html#SEDA-Sample
http://camel.apache.org/async.html


Concurrent consumers

260 Talend Mediation Developer Guide

from("mina:tcp://0.0.0.0:9876?textline=true&sync=true").to("seda:input");

from("seda:input").to("bean:processInput").to("bean:createResponse");

In the route above, we have a TCP listener on port 9876 that accepts incoming requests. The request is routed to
the seda:input queue. As it is a Section 2.39, “Request Reply” message, we wait for the response. When the
consumer on the seda:input queue is complete, it copies the response to the original message response.

Using Section 2.39, “Request Reply” over Section 3.38, “SEDA” or Section 3.51, “VM”, you can chain as many
endpoints as you like.

3.38.3. Concurrent consumers

By default, the SEDA endpoint uses a single consumer thread, but you can configure it to use concurrent consumer
threads. So instead of thread pools you can use:

from("seda:stageName?concurrentConsumers=5").process(...)

As for the difference between the two, note a thread pool can increase/shrink dynamically at runtime depending
on load, whereas the number of concurrent consumers is always fixed.

3.38.4. Thread pools

Be aware that adding a thread pool to a SEDA endpoint by doing something like:

from("seda:stageName").thread(5).process(...)

Can wind up with two BlockQueues : one from the SEDA endpoint, and one from the workqueue of the thread
pool, which may not be what you want. Instead, you might wish to configure a Section 3.11, “Direct” endpoint
with a thread pool, which can process messages both synchronously and asynchronously. For example:

from("direct:stageName").thread(5).process(...)

You can also directly configure number of threads that process messages on a SEDA endpoint using the
concurrentConsumers option.

3.39. Servlet
The servlet: component provides HTTP based endpoints for consuming HTTP requests that arrive at a HTTP
endpoint and this endpoint is bound to a published Servlet.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-servlet</artifactId>
    <version>x.x.x</version>
    <\!-\- use the same version as your Camel core version \-->
</dependency>

Servlet is stream based, which means the input it receives is submitted to Camel as a stream. That means you will
only be able to read the content of the stream once. If you find a situation where the message body appears to
be empty or you need to access the data multiple times (eg: doing multicasting, or redelivery error handling) you
should use Stream Caching or convert the message body to a String which is safe to be read multiple times.

http://camel.apache.org/endpoint.html


URI format and options

Talend Mediation Developer Guide 261

3.39.1. URI format and options
servlet://relative_path[?options]

You can append query options to the URI in the following format, ?option=value&option=value&...

Options

Name Default
Value

Description

httpBindingRef null Reference to an Camel HttpBinding object in the Registry.
A HttpBinding implementation can be used to customize
how to write a response.

matchOnUriPrefix false Whether or not the CamelServlet should try to find a target
consumer by matching the URI prefix, if no exact match is
found.

servletName CamelServletSpecifies the servlet name that the servlet endpoint will bind
to. This name should match the name you define in web.xml
file.

3.39.2. Message Headers
Camel will apply the same Message Headers as the Section 3.19, “HTTP4” component.

Camel will also populate all request.parameter and request.headers. For example, if a client request
has the URL,  http://myserver/myserver?orderid=123 , the exchange will contain a header named
orderid with the value 123.

3.39.3. Usage
You can only consume from endpoints generated by the Servlet component. Therefore, it should only be used as
input into your Camel routes. To issue HTTP requests against other HTTP endpoints, use the HTTP4 Component.

3.39.4. Sample
In this sample, we define a route that exposes a HTTP service at  http://localhost:8080/camel/
services/hello . First, you need to publish the CamelHttpTransportServlet through the normal Web
Container, or OSGi Service. Use the Web.xml file to publish the CamelHttpTransportServlet as follows:

<web-app>

  <servlet>
    <servlet-name>CamelServlet</servlet-name>
    <display-name>Camel Http Transport Servlet</display-name>
    <servlet-class>
       org.apache.camel.component.servlet.CamelHttpTransportServlet
    </servlet-class>
  </servlet>

  <servlet-mapping>

http://camel.apache.org/registry.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java


Shiro Security

262 Talend Mediation Developer Guide

    <servlet-name>CamelServlet</servlet-name>
    <url-pattern>/services/*</url-pattern>
  </servlet-mapping>

</web-app>

Then you can define your route as follows:

from("servlet:///hello?matchOnUriPrefix=true").process(new Processor() {
   public void process(Exchange exchange)                     
      throws Exception {
      String contentType = 
         exchange.getIn().getHeader(Exchange.CONTENT_TYPE, String.class);
      String path = 
         exchange.getIn().getHeader(Exchange.HTTP_PATH, String.class);
      assertEquals("Got a wrong content type", CONTENT_TYPE, contentType);
      // assert Camel http header
      String charsetEncoding = exchange.getIn()
         .getHeader(Exchange.HTTP_CHARACTER_ENCODING, String.class);
      assertEquals("Got a wrong charset name from the message header", 
         "UTF-8", charsetEncoding);
      // assert exchange charset
      assertEquals("Got a wrong charset name from the exchange property", 
         "UTF-8", exchange.getProperty(Exchange.CHARSET_NAME));
      exchange.getOut().setHeader(Exchange.CONTENT_TYPE, contentType + 
         "; charset=UTF-8");                        
      exchange.getOut().setHeader("PATH", path);
      exchange.getOut().setBody("<b>Hello World</b>");
   }
});

Specify the relative path for camel-servlet endpoint

Since we are binding the Http transport with a published servlet, and we don't know the servlet's
application context path, the camel-servlet endpoint uses the relative path to specify the endpoint's
URL. A client can access the camel-servlet endpoint through the servlet publish address:
("http://localhost:8080/camel/services") + RELATIVE_PATH("/hello").

See the Camel Website for more examples of this component in use.

3.40. Shiro Security
The shiro-security component in Camel is a security focused component, based on the Apache Shiro security
project.

Apache Shiro is a powerful and flexible open-source security framework that cleanly handles authentication,
authorization, enterprise session management and cryptography. The objective of the Apache Shiro project is to
provide the most robust and comprehensive application security framework available while also being very easy
to understand and extremely simple to use.

This Camel shiro-security component allows authentication and authorization support to be applied to different
segments of a Camel route.

Shiro security is applied on a route using a Camel Policy. A Policy in Camel utilizes a strategy pattern for applying
interceptors on Camel Processors. It offering the ability to apply cross-cutting concerns (for example. security,
transactions etc) on sections/segments of a Camel route.

http://camel.apache.org/servlet.html#SERVLET-Sample


Shiro Security Basics

Talend Mediation Developer Guide 263

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-shiro</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

3.40.1. Shiro Security Basics

To employ Shiro security on a Camel route, a ShiroSecurityPolicy object must be instantiated with security
configuration details (including users, passwords, roles etc). This object must then be applied to a Camel route. This
ShiroSecurityPolicy Object may also be registered in the Camel registry (JNDI or ApplicationContextRegistry)
and then utilized on other routes in the Camel Context.

Configuration details are provided to the ShiroSecurityPolicy using an Ini file (properties file) or an Ini object.
The Ini file is a standard Shiro configuration file containing user/role details as shown below

[users]
# user 'ringo' with password 'starr' and the 'sec-level1' role
ringo = starr, sec-level1
george = harrison, sec-level2
john = lennon, sec-level3
paul = mccartney, sec-level3

[roles]
# 'sec-level3' role has all permissions, indicated by the 
# wildcard '*'
sec-level3 = *

# The 'sec-level2' role can do anything with access of permission 
# readonly (*) to help
sec-level2 = zone1:*

# The 'sec-level1' role can do anything with access of permission 
# readonly   
sec-level1 = zone1:readonly:*

3.40.2. Instantiating a ShiroSecurityPolicy Object

A ShiroSecurityPolicy object is instantiated as follows

private final String iniResourcePath = "classpath:shiro.ini";
        private final byte[] passPhrase = {
            (byte) 0x08, (byte) 0x09, (byte) 0x0A, (byte) 0x0B,
            (byte) 0x0C, (byte) 0x0D, (byte) 0x0E, (byte) 0x0F,
            (byte) 0x10, (byte) 0x11, (byte) 0x12, (byte) 0x13,
            (byte) 0x14, (byte) 0x15, (byte) 0x16, (byte) 0x17};
        List<permission> permissionsList = new ArrayList<permission>();
        Permission permission = new WildcardPermission("zone1:readwrite:*");
        permissionsList.add(permission);

        final ShiroSecurityPolicy securityPolicy = 



ShiroSecurityPolicy Options

264 Talend Mediation Developer Guide

           new ShiroSecurityPolicy(iniResourcePath, passPhrase, true, 
              permissionsList);

3.40.3. ShiroSecurityPolicy Options

Name Default Value Type Description

iniResourcePath
or ini

none Resource String or
Ini Object

A mandatory Resource String for the
iniResourcePath or an instance of an Ini
object must be passed to the security policy.
Resources can be acquired from the file
system, classpath, or URLs when prefixed
with "file:, classpath:, or url:" respectively.
For e.g "classpath:shiro.ini"

passPhrase An AES 128
based key

byte[] A passPhrase to decrypt
ShiroSecurityToken(s) sent along with
Message Exchanges

alwaysReauth-
enticate

true boolean Setting to ensure re-authentication on every
individual request. If set to false, the user
is authenticated and locked such than only
requests from the same user going forward
are authenticated.

permissionsListnone List<Permission> A List of permissions required in order for
an authenticated user to be authorized to
perform further action i.e continue further
on the route. If no Permissions list is
provided to the ShiroSecurityPolicy object,
then authorization is deemed as not required

cipherService AES org.apache.shiro.
crypto.CipherService

Shiro ships with AES & Blowfish based
CipherServices. You may use one these or
pass in your own Cipher implementation

3.40.4. Applying Shiro Authentication on a Camel
Route
The ShiroSecurityPolicy, tests and permits incoming message exchanges containing a encrypted SecurityToken
in the Message Header to proceed further following proper authentication. The SecurityToken object contains a
Username/Password details that are used to determine where the user is a valid user.

protected RouteBuilder createRouteBuilder() throws Exception {
        final ShiroSecurityPolicy securityPolicy = 
            new ShiroSecurityPolicy("classpath:shiro.ini", passPhrase);
        
        return new RouteBuilder() {
            public void configure() {
                onException(UnknownAccountException.class).
                    to("mock:authenticationException");
                onException(IncorrectCredentialsException.class).
                    to("mock:authenticationException");
                onException(LockedAccountException.class).
                    to("mock:authenticationException");
                onException(AuthenticationException.class).



Applying Shiro Authorization on a Camel Route

Talend Mediation Developer Guide 265

                    to("mock:authenticationException");
                
                from("direct:secureEndpoint").
                    to("log:incoming payload").
                    policy(securityPolicy).
                    to("mock:success");
            }
        };
    }

3.40.5. Applying Shiro Authorization on a Camel Route

Authorization can be applied on a Camel route by associating a Permissions List with the ShiroSecurityPolicy.
The Permissions List specifies the permissions necessary for the user to proceed with the execution of the route
segment. If the user does not have the proper permission set, the request is not authorized to continue any further.

protected RouteBuilder createRouteBuilder() throws Exception {
        final ShiroSecurityPolicy securityPolicy = 
            new ShiroSecurityPolicy(
               "./src/test/resources/securityconfig.ini", passPhrase);
        
        return new RouteBuilder() {
            public void configure() {
                onException(UnknownAccountException.class).
                    to("mock:authenticationException");
                onException(IncorrectCredentialsException.class).
                    to("mock:authenticationException");
                onException(LockedAccountException.class).
                    to("mock:authenticationException");
                onException(AuthenticationException.class).
                    to("mock:authenticationException");
                
                from("direct:secureEndpoint").
                    to("log:incoming payload").
                    policy(securityPolicy).
                    to("mock:success");
            }
        };
    }

3.40.6. Creating a ShiroSecurityToken and injecting it
into a Message Exchange

A ShiroSecurityToken object may be created and injected into a Message Exchange using a Shiro Processor called
ShiroSecurityTokenInjector. An example of injecting a ShiroSecurityToken using a ShiroSecurityTokenInjector
in the client is shown below

ShiroSecurityToken shiroSecurityToken = 
      new ShiroSecurityToken("ringo", "starr");
   ShiroSecurityTokenInjector shiroSecurityTokenInjector = 
      new ShiroSecurityTokenInjector(shiroSecurityToken, 
      passPhrase);



Sending Messages to routes secured by a ShiroSecurityPolicy

266 Talend Mediation Developer Guide

   from("direct:client")
      .process(shiroSecurityTokenInjector)
      .to("direct:secureEndpoint");

3.40.7. Sending Messages to routes secured by a
ShiroSecurityPolicy

Messages and Message Exchanges sent along the Camel route where the security policy is applied need to be
accompanied by a SecurityToken in the Exchange Header. The SecurityToken is an encrypted object that holds
a Username and Password. The SecurityToken is encrypted using AES 128 bit security by default and can be
changed to any cipher of your choice.

Given below is an example of how a request may be sent using a ProducerTemplate in Camel along with a
SecurityToken

@Test
   public void testSuccessfulShiroAuthenticationWithNoAuthorization() 
             throws Exception {        
      //Incorrect password
      ShiroSecurityToken shiroSecurityToken = 
             new ShiroSecurityToken("ringo", "stirr");

      // TestShiroSecurityTokenInjector extends ShiroSecurityTokenInjector
      TestShiroSecurityTokenInjector shiroSecurityTokenInjector = 
          new TestShiroSecurityTokenInjector(shiroSecurityToken, passPhrase);
        
      successEndpoint.expectedMessageCount(1);
      failureEndpoint.expectedMessageCount(0);
        
      template.send("direct:secureEndpoint", shiroSecurityTokenInjector);
        
      successEndpoint.assertIsSatisfied();
      failureEndpoint.assertIsSatisfied();
   }

3.41. SMPP
This component provides access to an SMSC (Short Message Service Center) over the SMPP protocol to send
and receive SMS. The JSMPP is used.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-smpp</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

This component has log level DEBUG, which can be helpful in debugging problems. If you use log4j, you can
add the following line to your configuration:

log4j.logger.org.apache.camel.component.smpp=DEBUG

http://smsforum.net/SMPP_v3_4_Issue1_2.zip
http://code.google.com/p/jsmpp/


URI Format

Talend Mediation Developer Guide 267

3.41.1. URI Format

smpp://[username@]hostname[:port][?options]
smpps://[username@]hostname[:port][?options]

If no username is provided, then Camel will provide the default value smppclient. If no port number is
provided, then Camel will provide the default value 2775. If the protocol name is "smpps", camel-smpp with try
to use SSLSocket to init a connection to the server.

You can append query options to the URI in the following format, ?option=value&option=value&...

3.41.2. URI Options

Name Default Value Description

password password Specifies the password to use to log into the SMSC.

systemType cp This parameter is used to categorize the type of ESME
(External Short Message Entity) that is binding to the
SMSC (max. 13 characters).

alphabet 0 Defines encoding of data according the SMPP 3.4
specification, section 5.2.19. Example data encodings are:
0 : SMSC Default Alphabet 4 : 8 bit Alphabet 8 : UCS2
Alphabet

encoding ISO-8859-1 Defines the encoding scheme of the short message user
data. Only for SubmitSm, ReplaceSm and SubmitMulti.

enquireLinkTimer 5000 Defines the interval in milliseconds between the
confidence checks. The confidence check is used to test the
communication path between an ESME and an SMSC.

transactionTimer 10000 Defines the maximum period of inactivity allowed after a
transaction, after which an SMPP entity may assume that
the session is no longer active. This timer may be active
on either communicating SMPP entity (that is, SMSC or
ESME).

initialReconnectDelay 5000 Defines the initial delay in milliseconds after the consumer/
producer tries to reconnect to the SMSC, after the
connection was lost.

reconnectDelay 5000 Defines the interval in milliseconds between the reconnect
attempts, if the connection to the SMSC was lost and the
previous was not succeed.

registeredDelivery 1 Only for SubmitSm, ReplaceSm and SubmitMulti and
DataSm. Is used to request an SMSC delivery receipt
and/or SME originated acknowledgements. The following
values are defined: 0 : No SMSC delivery receipt
requested. 1 : SMSC delivery receipt requested where
final delivery outcome is success or failure. 2 : SMSC
delivery receipt requested where the final delivery outcome
is delivery failure.

serviceType CMT The service type parameter can be used to indicate the
SMS Application service associated with the message. The
following generic service_types are defined: CMT : Cellular
Messaging CPT : Cellular Paging VMN : Voice Mail
Notification VMA : Voice Mail Alerting WAP : Wireless



URI Options

268 Talend Mediation Developer Guide

Name Default Value Description

Application Protocol USSD : Unstructured Supplementary
Services Data

sourceAddr 1616 Defines the address of SME (Short Message Entity) which
originated this message.

destAddr 1717 Only for SubmitSm, SubmitMulti, CancelSm and DataSm.
Defines the destination SME address. For mobile
terminated messages, this is the directory number of the
recipient MS.

sourceAddrTon 0 Defines the type of number (TON) to be used in the SME
originator address parameters. The following TON values
are defined: 0 : Unknown 1 : International 2 : National 3 :
Network Specific 4 : Subscriber Number 5 : Alphanumeric
6 : Abbreviated

destAddrTon 0 Only for SubmitSm, SubmitMulti, CancelSm and DataSm.
Defines the type of number (TON) to be used in
the SME destination address parameters. Same as the
sourceAddrTon URI options listed above.

sourceAddrNpi 0 Defines the numeric plan indicator (NPI) to be used in
the SME originator address parameters. The following NPI
values are defined: 0 : Unknown 1 : ISDN (E163/E164) 2
: Data (X.121) 3 : Telex (F.69) 6 : Land Mobile (E.212) 8
: National 9 : Private 10 : ERMES 13 : Internet (IP) 18 :
WAP Client Id (to be defined by WAP Forum)

destAddrNpi 0 Only for SubmitSm, SubmitMulti, CancelSm and DataSm.
Defines the numeric plan indicator (NPI) to be used in
the SME destination address parameters. Same as the
sourceAddrNpi URI options listed above.

priorityFlag 1 Only for SubmitSm, SubmitMulti. Allows the originating
SME to assign a priority level to the short message. Four
Priority Levels are supported: 0 : Level 0 (lowest) priority
1 : Level 1 priority 2 : Level 2 priority 3 : Level 3 (highest)
priority

replaceIfPresentFlag 0 Only for SubmitSm, SubmitMulti. Used to request the
SMSC to replace a previously submitted message, that is
still pending delivery. The SMSC will replace an existing
message provided that the source address, destination
address and service type match the same fields in the new
message. The following replace if present flag values are
defined: 0 : Don't replace 1 : Replace

typeOfNumber 0 Defines the type of number (TON) to be used in the SME.
Same as the sourceAddrTon URI options listed above.

numberingPlanIndicator 0 Defines the numeric plan indicator (NPI) to be used in the
SME. Same as the sourceAddrNpi URI options listed
above.

lazySessionCreation false Sessions can be lazily created to avoid exceptions, if the
SMSC is not available when the Camel producer is started.

httpProxyHost null If you need to tunnel SMPP through a HTTP proxy, set this
attribute to the hostname or ip address of your HTTP proxy.

httpProxyPort 3128 If you need to tunnel SMPP through a HTTP proxy, set this
attribute to the port of your HTTP proxy.



Producer Message Headers

Talend Mediation Developer Guide 269

Name Default Value Description

httpProxyUsername null If your HTTP proxy requires basic authentication, set this
attribute to the username required for your HTTP proxy.

httpProxyPassword null If your HTTP proxy requires basic authentication, set this
attribute to the password required for your HTTP proxy.

You can have as many of these options as you like, for example:

smpp://smppclient@localhost:2775?password=password&enquireLinkTimer=
3000&transactionTimer=5000&systemType=consumer

3.41.3. Producer Message Headers
The following message headers can be used to affect the behavior of the SMPP producer

Header Type Description

CamelSmppDestAddr List/String Only for SubmitSm, SubmitMulti, CancelSm and
DataSm. Defines the destination SME address. For
mobile terminated messages, this is the directory
number of the recipient MS.

CamelSmppDestAddrTon Byte Only for SubmitSm, SubmitMulti, CancelSm and
DataSm. Defines the type of number (TON) to be used
in the SME destination address parameters. Same as the
sourceAddrTon URI options listed above.

CamelSmppDestAddrNpi Byte Only for SubmitSm, SubmitMulti, CancelSm and
DataSm. Defines the numeric plan indicator (NPI) to be
used in the SME destination address parameters. Same
as the sourceAddrNpi URI options listed above.

CamelSmppSourceAddr String Defines the address of SME (Short Message Entity)
which originated this message.

CamelSmppSourceAddrTon Byte Defines the type of number (TON) to be used in
the SME originator address parameters. Same as the
sourceAddrTon URI options listed above.

CamelSmppSourceAddrNpi Byte Defines the numeric plan indicator (NPI) to be used
in the SME originator address parameters. Same as the
sourceAddrNpi URI options listed above.

CamelSmppServiceType String The service type parameter can be used to indicate the
SMS Application service associated with the message.
Same as the serviceType URI options listed above.

CamelSmppRegistered
Delivery

Byte Only for SubmitSm, SubmitMulti, CancelSm and
DataSm. Same as the registeredDelivery URI
options listed above.

CamelSmppPriorityFlag Byte Only for SubmitSm and SubmitMulti. Same as the
priorityFlag URI options listed above.

CamelSmppSchedule
DeliveryTime

Date Only for SubmitSm, SubmitMulti, ReplaceSm. This
parameter specifies the scheduled time at which the
message delivery should be first attempted. It defines
either the absolute date and time or relative time from
the current SMSC time at which delivery of this message
will be attempted by the SMSC. It can be specified in
either absolute time format or relative time format. The



Consumer Message Headers

270 Talend Mediation Developer Guide

Header Type Description

encoding of a time format is specified in Chapter 7.1.1.
in the SMPP specification v3.4.

CamelSmppValidityPeriod String/Date Only for SubmitSm, SubmitMulti and ReplaceSm. The
validity period parameter indicates the SMSC expiration
time, after which the message should be discarded if not
delivered to the destination. It can be defined in absolute
time format or relative time format. The encoding of
absolute and relative time format is specified in chapter
7.1.1 in the smpp specification v3.4.

CamelSmppReplace
IfPresentFlag

Byte The replace if present flag parameter is used to request
the SMSC to replace a previously submitted message,
that is still pending delivery. The SMSC will replace
an existing message provided that the source address,
destination address and service type match the same
fields in the new message. The following values are
defined: 0 : Don't replace 1 : Replace

CamelSmppAlphabet Byte Only for SubmitSm, SubmitMulti and ReplaceSm.
Same as the alphabet URI options listed above.

The following message headers are used by the SMPP producer to set the response from the SMSC in the message
header

Header Type Description

CamelSmppId String or
List<String>

the id to identify the submitted short
message for later use (delivery receipt,
query sm, cancel sm, replace sm). In case
of a ReplaceSm, QuerySm, CancelSm
and DataSm this header value is a String.
In case of a SubmitSm or SubmitMultiSm
this header vaule is a List<String>.

CamelSmppSent MessageCount Integer For SubmitSm and SubmitMultiSm only
- the total number of messages which has
been sent.

CamelSmppError Map<String,
List<Map<String,
Object>>>

For SubmitMultiSm only -
The errors which occurred by
sending the short message(s) the
form Map<String, List<Map<String,
Object>>>}} (messageID : (destAddr :
address, error : errorCode)).

3.41.4. Consumer Message Headers

The following message headers are used by the SMPP consumer to set the request data from the SMSC in the
message header

Header Description

CamelSmppSequenceNumber only for alert notification, deliver sm and data sm : A sequence
number allows a response PDU to be correlated with a request PDU.
The associated SMPP response PDU must preserve this field.

CamelSmppCommandId only for alert notification, deliver sm and data sm : The
command id field identifies the particular SMPP PDU. For the



Consumer Message Headers

Talend Mediation Developer Guide 271

Header Description

complete list of defined values see chapter 5.1.2.1 in the smpp
specification v3.4.

CamelSmppSourceAddr only for alert notification, deliver sm and data sm : Defines
the address of SME (Short Message Entity) which originated this
message.

CamelSmppSourceAddrNpi only for alert notification and data sm : Defines the numeric
plan indicator (NPI) to be used in the SME originator address
parameters. Same as the sourceAddrNpi URI options listed
above.

CamelSmppSourceAddrTon only for alert notification and data sm : Defines the type
of number (TON) to be used in the SME originator address
parameters. Same as the sourceAddrTon URI options listed
above.

CamelSmppEsmeAddr only for alert notification : Defines the destination ESME address.
For mobile terminated messages, this is the directory number of the
recipient MS.

CamelSmppEsmeAddrNpi only for alert notification : Defines the numeric plan indicator
(NPI) to be used in the ESME originator address parameters. Same
as the sourceAddrNpi URI options listed above.

CamelSmppEsmeAddrTon only for alert notification : Defines the type of number (TON) to
be used in the ESME originator address parameters. The following
TON values are defined: Same as the sourceAddrTon URI
options listed above.

CamelSmppId only for smsc delivery receipt and data sm : The message ID
allocated to the message by the SMSC when originally submitted.

CamelSmppDelivered only for smsc delivery receipt : Number of short messages
delivered. This is only relevant where the original message was
submitted to a distribution list.The value is padded with leading
zeros if necessary.

CamelSmppDoneDate only for smsc delivery receipt : The time and date at which the
short message reached its final state. The format is as follows:
YYMMDDhhmm.

CamelSmppStatus only for smsc delivery receipt and data sm : The final status of the
message. The following values are defined: DELIVRD : Message
is delivered to destination EXPIRED : Message validity period
has expired. DELETED : Message has been deleted. UNDELIV :
Message is undeliverable ACCEPTD : Message is in accepted state
(that is, has been manually read on behalf of the subscriber by
customer service) UNKNOWN : Message is in invalid state REJECTD
: Message is in a rejected state

CamelSmppError only for smsc delivery receipt : Where appropriate this may hold
a Network specific error code or an SMSC error code for the
attempted delivery of the message. These errors are Network or
SMSC specific and are not included here.

CamelSmppSubmitDate only for smsc delivery receipt : The time and date at which the
short message was submitted. In the case of a message which
has been replaced, this is the date that the original message was
replaced. The format is as follows: YYMMDDhhmm.

CamelSmppSubmitted only for smsc delivery receipt : Number of short messages
originally submitted. This is only relevant when the original



Samples

272 Talend Mediation Developer Guide

Header Description

message was submitted to a distribution list.The value is padded
with leading zeros if necessary.

CamelSmppDestAddr only for deliver sm and data sm : Defines the destination SME
address. For mobile terminated messages, this is the directory
number of the recipient MS.

CamelSmppScheduleDeliveryTime only for deliver sm and data sm : This parameter specifies
the scheduled time at which the message delivery should be first
attempted. It defines either the absolute date and time or relative
time from the current SMSC time at which delivery of this message
will be attempted by the SMSC. It can be specified in either absolute
time format or relative time format. The encoding of a time format
is specified in Section 7.1.1. in the smpp specification v3.4.

CamelSmppValidityPeriod only for deliver sm : The validity period parameter indicates the
SMSC expiration time, after which the message should be discarded
if not delivered to the destination. It can be defined in absolute
time format or relative time format. The encoding of absolute
and relative time format is specified in Section 7.1.1 in the smpp
specification v3.4.

CamelSmppServiceType only for deliver sm and data sm : The service type parameter
indicates the SMS Application service associated with the message.

CamelSmppRegisteredDelivery Only for DataSm. Is used to request an delivery receipt
and/or SME originated acknowledgements. Same as the
registeredDelivery URI options listed above.

CamelSmppDestAddrNpi Only for DataSm. Defines the numeric plan indicator (NPI) in the
destination address parameters. Same as the sourceAddrNpi
URI options listed above.

CamelSmppDestAddrTon Only for DataSm. Defines the type of number (TON) in the
destination address parameters. Same as the sourceAddrTon
URI options listed above.

CamelSmppMessageType Identifies the type of an incoming message:
AlertNotification : an SMSC alert notification DataSm :
an SMSC data short message DeliveryReceipt : an SMSC
delivery receipt DeliverSm : an SMSC deliver short message

JSMPP library

See the documentation of the JSMPP Library for more details about the underlying library.

3.41.5. Samples

A route which sends an SMS using the Java DSL:

from("direct:start")
   .to("smpp://smppclient@localhost:2775?
      password=password&enquireLinkTimer=3000&transactionTimer=
         5000&systemType=producer");
          

A route which sends an SMS using the Spring XML DSL:

http://code.google.com/p/jsmpp/


SNMP

Talend Mediation Developer Guide 273

<route>
   <from uri="direct:start"/>
   <to uri="smpp://smppclient@localhost:2775?
      password=password&amp;enquireLinkTimer=3000&amp;transactionTimer=
         5000&amp;systemType=producer"/>
</route>

A route which receives an SMS using the Java DSL:

from("smpp://smppclient@localhost:2775?password=password&enquireLinkTimer=
   3000&transactionTimer=5000&systemType=consumer")
   .to("bean:foo");

A route which receives an SMS using the Spring XML DSL:

<route>
   <from uri="smpp://smppclient@localhost:2775?
         password=password&amp;enquireLinkTimer=3000&amp;
         transactionTimer=5000&amp;systemType=consumer"/>
   <to uri="bean:foo"/>
</route>

SMSC simulator

If you need an SMSC simulator for your test, you can use the simulator provided by Logica.

3.42. SNMP
The snmp: component gives you the ability to poll SNMP capable devices or receiving traps.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-snmp</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

3.42.1. URI format
snmp://hostname[:port][?Options]

The component supports polling OID values from an SNMP enabled device and receiving traps.

You can append query options to the URI in the following format, ?option=value&option=value&...

3.42.2. Options

Name Default Value Description

type none The type of action you want to perform. You can enter
here POLL or TRAP. The value POLL will instruct the

http://opensmpp.logica.com/CommonPart/Download/download2.html#simulator


The result of a poll

274 Talend Mediation Developer Guide

Name Default Value Description

endpoint to poll a given host for the supplied OID keys.
If you put in TRAP you will setup a listener for SNMP
Trap Events.

address none This is the IP address and the port of the host to
poll or where to setup the Trap Receiver. Example:
127.0.0.1:162

protocol udp Here you can select which protocol to use. You can use
either udp or tcp.

retries 2 Defines how often a retry is made before canceling the
request.

timeout 1500 Sets the timeout value for the request in milliseconds.

snmpVersion 0 (which means SNMPv1) Sets the snmp version for the request.

snmpCommunity public Sets the community octet string for the snmp request.

delay 60 seconds Defines the delay in seconds between to poll cycles.

oids none Defines which values you are interested in. Please have
a look at the Wikipedia to get a better understanding.
You may provide a single OID or a comma separated
list of OIDs. Example: oids="1.3.6.1.2.1.1.3.0 ,
1.3.6.1.2.1.25.3.2.1.5.1 , 1.3.6.1.2 .1.25.3.5.1.1.1 ,
1.3.6.1.2.1.43.5.1.1.11.1"

3.42.3. The result of a poll

Given the situation, that I poll for the following OIDs:

Example 3.1. oids

1.3.6.1.2.1.1.3.0
1.3.6.1.2.1.25.3.2.1.5.1
1.3.6.1.2.1.25.3.5.1.1.1
1.3.6.1.2.1.43.5.1.1.11.1

The result will be the following:

http://en.wikipedia.org/wiki/Object_identifier


Examples

Talend Mediation Developer Guide 275

Example 3.2. Result of toString conversion

<?xml version="1.0" encoding="UTF-8"?>
<snmp>
  <entry>
    <oid>1.3.6.1.2.1.1.3.0</oid>
    <value>6 days, 21:14:28.00</value>
  </entry>
  <entry>
    <oid>1.3.6.1.2.1.25.3.2.1.5.1</oid>
    <value>2</value>
  </entry>
  <entry>
    <oid>1.3.6.1.2.1.25.3.5.1.1.1</oid>
    <value>3</value>
  </entry>
  <entry>
    <oid>1.3.6.1.2.1.43.5.1.1.11.1</oid>
    <value>6</value>
  </entry>
  <entry>
    <oid>1.3.6.1.2.1.1.1.0</oid>
    <value>My Very Special Printer Of Brand Unknown</value>
  </entry>
</snmp>

As you maybe recognized there is one more result than requested....1.3.6.1.2.1.1.1.0. This one is filled in by
the device automatically in this special case. So it may absolutely happen, that you receive more than you
requested...be prepared.

3.42.4. Examples

Polling a remote device:

snmp:192.168.178.23:161?protocol=udp&type=POLL&oids=1.3.6.1.2.1.1.5.0

Setting up a trap receiver ( Note that no OID info is needed here! ):

snmp:127.0.0.1:162?protocol=udp&type=TRAP

Starting with Camel 2.10.0, you can get the community of SNMP TRAP with message header 'securityName', and
the peer address of the SNMP TRAP with message header 'peerAddress'.

Routing example in Java: (converts the SNMP PDU to XML String)

from("snmp:192.168.178.23:161?protocol=udp&type=POLL"
   + "&oids=1.3.6.1.2.1.1.5.0").convertBodyTo(String.class).
   to("activemq:snmp.states");

3.43. Spring Integration
The spring-integration: component provides a bridge for Camel components to talk to Spring integration
endpoints.

Maven users will need to add the following dependency to their pom.xml for this component:

http://camel.apache.org/springintegration.html
http://camel.apache.org/springintegration.html


URI format

276 Talend Mediation Developer Guide

<dependency>
   <groupId>org.apache.camel</groupId>
   <artifactId>camel-spring-integration</artifactId>
   <version>x.x.x</version>
   <!-- use the same version as your Camel core version -->
</dependency>

3.43.1. URI format

spring-integration:defaultChannelName[?options]

where defaultChannelName represents the default channel name which is used by the Spring Integration
Spring context. It will equal to the inputChannel name for the Spring Integration consumer and the
outputChannel name for the Spring Integration provider.

You can append query options to the URI in the following format, ?option=value&option=value&...

3.43.2. Options

Name Type Description

inputChannel String The Spring integration input channel name that this
endpoint wants to consume from, where the specified
channel name is defined in the Spring context.

outputChannel String The Spring integration output channel name that is used
to send messages to the Spring integration context.

inOut String The exchange pattern that the Spring integration
endpoint should use. If inOut=true then a reply
channel is expected, either from the Spring Integration
Message header or configured on the endpoint.

3.43.3. Usage

The Spring integration component is a bridge that connects Camel endpoints with Spring integration endpoints
through the Spring integration's input channels and output channels. Using this component, we can send Camel
messages to Spring Integration endpoints or receive messages from Spring integration endpoints in a Camel routing
context.

3.43.4. Examples

3.43.4.1. Using the Spring integration endpoint

You can set up a Spring integration endpoint using a URI, as follows:

<beans:beans xmlns="http://www.springframework.org/schema/integration"



Examples

Talend Mediation Developer Guide 277

   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns:beans="http://www.springframework.org/schema/beans"
   xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

   <!-- Spring integration channels -->
   <channel id="inputChannel"/>
   <channel id="outputChannel"/>
   <channel id="onewayChannel"/>

   <!-- Spring integration service activators -->
   <service-activator input-channel="inputChannel" ref="helloService" 
         method="sayHello"/>
   <service-activator input-channel="onewayChannel" ref="helloService" 
         method="greet"/>

   <!-- custom bean -->
   <beans:bean id="helloService" class=
      "org.apache.camel.component.spring.integration.HelloWorldService"/>

   <camelContext id="camel" xmlns="http://camel.apache.org/schema/spring">
       <route>
           <from uri="direct:twowayMessage"/>
           <to uri="spring-integration:inputChannel?inOut=true&
                 inputChannel=outputChannel"/>
       </route>
       <route>
           <from uri="direct:onewayMessage"/>
           <to uri="spring-integration:onewayChannel?inOut=false"/>
       </route>
    </camelContext>

<!-- Spring integration channels -->
<channel id="requestChannel"/>
<channel id="responseChannel"/>

<!-- cusom Camel processor -->
<beans:bean id="myProcessor" 
      class="org.apache.camel.component.spring.integration.MyProcessor"/>

<!-- Camel route -->
<camelContext  xmlns="http://camel.apache.org/schema/spring">
   <route>
       <from uri=
        "spring-integration://requestChannel?outputChannel=responseChannel
&inOut=true"/>
       <process ref="myProcessor"/>
   </route>
</camelContext>

Or directly using a Spring integration channel name:



Examples

278 Talend Mediation Developer Guide

<beans:beans xmlns="http://www.springframework.org/schema/integration"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns:beans="http://www.springframework.org/schema/beans"
   xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd">

   <!-- Spring integration channel -->
   <channel id="outputChannel"/>

   <camelContext xmlns="http://camel.apache.org/schema/spring">
      <route>
         <from uri="outputChannel"/>
         <to uri="mock:result"/>
      </route>
   </camelContext>

3.43.4.2. The Source and Target adapter

Spring integration also provides the Spring integration's source and target adapters, which can route messages
from a Spring integration channel to a Camel endpoint or from a Camel endpoint to a Spring integration channel.

This example uses the following namespaces:

<beans:beans xmlns="http://www.springframework.org/schema/integration"
       xmlns:beans="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:camel-si="http://camel.apache.org/schema/spring/integration"
       xsi:schemaLocation="
http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/integration
http://www.springframework.org/schema/integration/spring-integration.xsd
http://camel.apache.org/schema/spring/integration       
http://camel.apache.org/schema/spring/integration/camel-spring-integration.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd
    ">

You can bind your source or target to a Camel endpoint as follows:

<!-- Create the Camel context here -->
<camelContext id="camelTargetContext" 
      xmlns="http://camel.apache.org/schema/spring">
   <route>
      <from uri="direct:EndpointA" />
      <to uri="mock:result" />
   </route>
   <route>
      <from uri="direct:EndpointC"/>
      <process ref="myProcessor"/>
   </route>



Spring Security

Talend Mediation Developer Guide 279

</camelContext>

<!-- We can bind the camelTarget to the Camel context's endpoint by -->
<!-- specifying the camelEndpointUri attribute -->
<camel-si:camelTarget id="camelTargetA" 
      camelEndpointUri="direct:EndpointA" expectReply="false">
    <camel-si:camelContextRef>
       camelTargetContext
    </camel-si:camelContextRef>
</camel-si:camelTarget>

<camel-si:camelTarget id="camelTargetB" camelEndpointUri="direct:EndpointC" 
                     replyChannel="channelC" expectReply="true">
   <camel-si:camelContextRef>
      camelTargetContext
   </camel-si:camelContextRef>
</camel-si:camelTarget>

<camel-si:camelTarget id="camelTargetD" camelEndpointUri="direct:EndpointC" 
                     expectReply="true">
   <camel-si:camelContextRef>
      camelTargetContext
   </camel-si:camelContextRef>
</camel-si:camelTarget>

<beans:bean id="myProcessor" 
   class="org.apache.camel.component.spring.integration.MyProcessor"/>

3.44. Spring Security
The camel-spring-security component provides role-based authorization for Camel routes. It leverages the
authentication and user services provided by Spring Security (formerly Acegi Security) and adds a declarative,
role-based policy system to control whether a route can be executed by a given principal.

If you are not familiar with the Spring Security authentication and authorization system, please review the current
reference documentation on the SpringSource web site linked above.

3.44.1. Creating authorization policies

Access to a route is controlled by an instance of a SpringSecurityAuthorizationPolicy object. A
policy object contains the name of the Spring Security authority (role) required to run a set of endpoints and
references to Spring Security AuthenticationManager and AccessDecisionManager objects used to
determine whether the current principal has been assigned that role. Policy objects may be configured as Spring
beans or by using an <authorizationPolicy> element in Spring XML.

The <authorizationPolicy> element may contain the following attributes:

Name Default Value Description

id null The unique Spring bean identifier which is used to
reference the policy in routes (required)

access null The Spring Security authority name that is passed to the
access decision manager (required)

http://static.springsource.org/spring-security/site/index.html


Controlling access to Camel routes

280 Talend Mediation Developer Guide

Name Default Value Description

authentication-
Manager

authentication-
Manager

The name of the Spring Security
AuthenticationManager object in the context

accessDecision-
Manager

accessDecision-
Manager

The name of the Spring Security
AccessDecisionManager object in the context

authentication-
Adapter

DefaultAuthentication-
Adapter

The name of a camel-spring-security
AuthenticationAdapter object in the
context that is used to convert a
javax.security.auth.Subject into a Spring
Security Authentication instance.

useThreadSecurity-
Context

true If a javax.security.auth.Subject cannot
be found in the In message header under
Exchange.AUTHENTICATION, check the Spring
Security SecurityContextHolder for an
Authentication object.

always-
Reauthenticate

false If set to true, the
SpringSecurityAuthorizationPolicy will
always call
AuthenticationManager.authenticate()
each time the policy is accessed.

3.44.2. Controlling access to Camel routes

A Spring Security AuthenticationManager and AccessDecisionManager are required to use this
component. Here is an example of how to configure these objects in Spring XML using the Spring Security
namespace:

<beans xmlns="http://www.springframework.org/schema/beans"
   xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
   xmlns:spring-security="http://www.springframework.org/schema/security"
   xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security.xsd">
   <bean id="accessDecisionManager" 
      class="org.springframework.security.access.vote.AffirmativeBased">
      <property name="allowIfAllAbstainDecisions" value="true"/>
      <property name="decisionVoters">
         <list>
            <bean class="org.springframework.security.access.vote.RoleVoter"/>
         </list>
      </property>
   </bean>
    
   <spring-security:authentication-manager alias="authenticationManager">
      <spring-security:authentication-provider 
                     user-service-ref="userDetailsService"/>
   </spring-security:authentication-manager>
   
   <spring-security:user-service id="userDetailsService">
      <spring-security:user name="jim" 
               password="jimspassword" authorities="ROLE_USER, ROLE_ADMIN"/>



Authentication

Talend Mediation Developer Guide 281

      <spring-security:user name="bob" 
               password="bobspassword" authorities="ROLE_USER"/>
   </spring-security:user-service>

</beans>

Now that the underlying security objects are set up, we can use them to configure an authorization policy and use
that policy to control access to a route:

<beans xmlns="http://www.springframework.org/schema/beans"
       xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
       xmlns:spring-security="http://www.springframework.org/schema/security"
       xsi:schemaLocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans.xsd
http://camel.apache.org/schema/spring
http://camel.apache.org/schema/spring/camel-spring.xsd
http://camel.apache.org/schema/spring-security
http://camel.apache.org/schema/spring-security/camel-spring-security.xsd
http://www.springframework.org/schema/security
http://www.springframework.org/schema/security/spring-security-3.0.3.xsd">

    <!-- import the Spring security configuration  -->
   <import resource=
   "classpath:org/apache/camel/component/spring/security/commonSecurity.xml"/>

   <authorizationPolicy id="admin" access="ROLE_ADMIN"
         authenticationManager="authenticationManager"
         accessDecisionManager="accessDecisionManager"
         xmlns="http://camel.apache.org/schema/spring-security"/>

   <camelContext id="myCamelContext" 
         xmlns="http://camel.apache.org/schema/spring">
         <route>
            <from uri="direct:start"/>
            <!-- The exchange should be authenticated with the role of  -->
            <!-- ADMIN before it is send to mock:endpoint -->
            <policy ref="admin">
                <to uri="mock:end"/>
            </policy>
         </route>
   </camelContext>

</beans>

In this example, the endpoint mock:end will not be executed unless a Spring Security Authentication
object that has been or can be authenticated and contains the ROLE_ADMIN authority can be located by the admin
SpringSecurityAuthorizationPolicy.

3.44.3. Authentication

The process of obtaining security credentials that are used for authorization is not specified by this component. You
can write your own processors or components which get authentication information from the exchange depending
on your needs. For example, you might create a processor that gets credentials from an HTTP request header
originating in the camel-jetty component. No matter how the credentials are collected, they need to be placed in
the In message or the SecurityContextHolder so the camel-spring-security component can access them:

import javax.security.auth.Subject;



Handling authentication and authorization errors

282 Talend Mediation Developer Guide

import org.apache.camel.*;
import org.apache.commons.codec.binary.Base64;
import org.springframework.security.authentication.*;

public class MyAuthService implements Processor {
   public void process(Exchange exchange) throws Exception {
      // get the username and password from the HTTP header
      // http://en.wikipedia.org/wiki/Basic_access_authentication
        
      String userpass = new String(Base64.decodeBase64(
            exchange.getIn().getHeader("Authorization", String.class)));
      String[] tokens= userpass.split(":");
        
      // create an Authentication object
      UsernamePasswordAuthenticationToken authToken = 
            new UsernamePasswordAuthenticationToken(tokens[0], tokens[1]);

      // wrap it in a Subject
      Subject subject = new Subject();
      subject.getPrincipals().add(token);

      // place the Subject in the In message
      exchange.getIn().setHeader(Exchange.AUTHENTICATION, subject);

      // you could also do this if useThreadSecurityContext is set to true
      // SecurityContextHolder.getContext().setAuthentication(authToken);
   }
}

The SpringSecurityAuthorizationPolicy will automatically authenticate the Authentication
object if necessary.

There are two issues to be aware of when using the SecurityContextHolder instead of or in addition
to the Exchange.AUTHENTICATION header. First, the context holder uses a thread-local variable to hold
the Authentication object. Any routes that cross thread boundaries, like seda or jms, will lose the
Authentication object. Second, the Spring Security system appears to expect that an Authentication
object in the context is already authenticated and has roles (see the Technical Overview section 5.3.1 for more
details).

The default behavior of camel-spring-security is to look for a Subject in the
Exchange.AUTHENTICATION header. This Subject must contain at least one principal, which
must be a subclass of org.springframework.security.core.Authentication. You can
customize the mapping of Subject to Authentication object by providing an implementation
of the org.apache.camel.component.spring.security.AuthenticationAdapter to your
<authorizationPolicy> bean. This can be useful if you are working with components that do not
use Spring Security but do provide a Subject. At this time, only the camel-cxf component populates the
Exchange.AUTHENTICATION header.

3.44.4. Handling authentication and authorization
errors

If authentication or authorization fails in the SpringSecurityAuthorizationPolicy, a
CamelAuthorizationException will be thrown. This can be handled using Camel's standard exception
handling methods, like the Exception clause. The CamelAuthorizationException will have a reference

http://static.springsource.org/spring-security/site/docs/3.0.x/reference/technical-overview.html#tech-intro-authentication


Dependencies

Talend Mediation Developer Guide 283

to the ID of the policy which threw the exception so you can handle errors based on the policy as well as the
type of exception:

<onException>
  <exception>org.springframework.security.authentication.
        AccessDeniedException</exception>
  <choice>
    <when>
      <simple>${exception.policyId} == 'user'</simple>
      <transform>
        <constant>You do not have ROLE_USER access!</constant>
      </transform>
    </when>
    <when>
      <simple>${exception.policyId} == 'admin'</simple>
      <transform>
        <constant>You do not have ROLE_ADMIN access!</constant>
      </transform>
    </when>
  </choice>
</onException>

3.44.5. Dependencies

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency> 
  <groupId>org.apache.camel</groupId> 
  <artifactId>camel-spring-security</artifactId> 
  <version>2.4.0</version> 
</dependency>

This dependency will also pull in org.springframework.security:spring-
security-core:3.0.3.RELEASE and org.springframework.security:spring-security-
config:3.0.3.RELEASE.

3.45. SQL Component
The sql: component allows you to work with databases using JDBC queries. The difference between this
component and Section 3.22, “JDBC” component is that in case of SQL the query is a property of the endpoint
and it uses message payload as parameters passed to the query.

This component uses spring-jdbc behind the scenes for the SQL handling.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
   <groupId>org.apache.camel</groupId>
   <artifactId>camel-sql</artifactId>
   <version>x.x.x</version>
   <!-- use the same version as your Camel core version -->
</dependency>



URI format

284 Talend Mediation Developer Guide

The SQL component also supports:

• a JDBC based repository for the Section 2.18, “Idempotent Consumer” EIP pattern. See further below.

• a JDBC based repository for the Aggregator EIP pattern. See further below.

3.45.1. URI format

The SQL component can only be used to define producer endpoints. In other words, you cannot define
an SQL endpoint in a from() statement.

The SQL component uses the following endpoint URI notation:

sql:select * from table where id=# order by name[?options]

Notice that the standard ? symbol that denotes the parameters to an SQL query is substituted with the # symbol,
because the ? symbol is used to specify options for the endpoint. The ? symbol replacement can be configured
on endpoint basis.

You can append query options to the URI in the following format, ?option=value&option=value&...

3.45.2. Options

Option Type Default Description

dataSourceRef String null Reference to a DataSource to look up in the registry.

placeholder String # Specifies a character that will be replaced to ? in SQL query.
Notice, that it is simple String.replaceAll() operation and
no SQL parsing is involved (quoted strings will also change)

template.<xxx> null Sets additional options on the Spring JdbcTemplate that is
used behind the scenes to execute the queries. For instance,
template.maxRows=10. For detailed documentation, see the
JdbcTemplate javadoc documentation.

3.45.3. Treatment of the message body

The SQL component tries to convert the message body to an object of java.util.Iterator type and then
uses this iterator to fill the query parameters (where each query parameter is represented by a # symbol (or
configured placeholder) in the endpoint URI). If the message body is not an array or collection, the conversion
results in an iterator that iterates over only one object, which is the body itself.

For example, if the message body is an instance of java.util.List, the first item in the list is substituted into
the first occurrence of # in the SQL query, the second item in the list is substituted into the second occurrence
of #, and so on.

3.45.4. Result of the query

For select operations, the result is an instance of List<Map<String, Object>> type, as returned by the
JdbcTemplate.queryForList() method. For update operations, the result is the number of updated rows, returned
as an Integer.

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jdbc/core/JdbcTemplate.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jdbc/core/JdbcTemplate.html#queryForList(java.lang.String,%20java.lang.Object%91%93)


Header values

Talend Mediation Developer Guide 285

3.45.5. Header values

When performing update operations, the SQL Component stores the update count in the following message
headers:

Header Description

CamelSqlUpdateCount The number of rows updated for update operations, returned as
an Integer object.

CamelSqlRowCount The number of rows returned for select operations, returned as
an Integer object.

3.45.6. Configuration in Camel

The SQL component must be configured before it can be used. In Spring, you can configure it as follows:

<bean id="sql" class="org.apache.camel.component.sql.SqlComponent">
    <property name="dataSource" ref="myDS"/>
</bean>

<bean id="myDS" 
      class="org.springframework.jdbc.datasource.DriverManagerDataSource">
   <property name="driverClassName" value="com.mysql.jdbc.Driver" />
   <property name="url" value="jdbc:mysql://localhost:3306/ds" />
   <property name="username" value="username" />
   <property name="password" value="password" />
</bean>

You can now set a reference to a DataSource in the URI directly:

sql:select * from table where id=# order by name?dataSourceRef=myDS

3.45.8. Sample

In the sample below we execute a query and retrieve the result as a List of rows, where each row is a
Map<String, Object and the key is the column name.

First, we set up a table to use for our sample. As this is based on an unit test, we'll do it using java code:

// this is the database we create with some initial data for our unit test
jdbcTemplate.execute("create table projects (id integer primary key,"
                     + "project varchar(10), license varchar(5))");
jdbcTemplate.execute("insert into projects values (1, 'Camel', 'ASF')");
jdbcTemplate.execute("insert into projects values (2, 'AMQ', 'ASF')");
jdbcTemplate.execute("insert into projects values (3, 'Linux', 'XXX')");

Then we configure our route and our sql component. Notice that we use a direct endpoint in front of the sql
endpoint. This allows us to send an exchange to the direct endpoint with the URI, direct:simple, which
is much easier for the client to use than the long sql: URI. Note that the DataSource is looked up up in the
registry, so we can use standard Spring XML to configure our DataSource.

   from("direct:simple")



Using the JDBC based idempotent repository

286 Talend Mediation Developer Guide

   .to("sql:select * from projects where license=# order by id?dataSourceRef=
jdbc/myDataSource").to("mock:result");   

And then we fire the message into the direct endpoint that will route it to our sql component that queries
the database.

MockEndpoint mock = getMockEndpoint("mock:result");
mock.expectedMessageCount(1);
// send the query to direct that will route it to the sql where we will 
// execute the query and bind the parameters with the data from the body. 
// The body only contains one value in this case (XXX) but if we should use 
// multiple values then the body will be iterated so we could supply a 
// List<String> instead containing each binding value.
template.sendBody("direct:simple", "XXX");

mock.assertIsSatisfied();

// the result is a List
List received = assertIsInstanceOf(
      List.class, mock.getReceivedExchanges().get(0).getIn().getBody());

// and each row in the list is a Map
Map row = assertIsInstanceOf(Map.class, received.get(0));

// and we should be able the get the project 
// from the map that should be Linux
assertEquals("Linux", row.get("PROJECT"));

We could configure the DataSource in Spring XML as follows:

<jee:jndi-lookup id="myDS" jndi-name="jdbc/myDataSource"/>

3.45.9. Using the JDBC based idempotent repository

Available as of Camel 2.7 : In this section we will use the JDBC based idempotent repository.

First we need to setup a javax.sql.DataSource in the Spring XML file:

<bean id="dataSource" 
   class="org.springframework.jdbc.datasource.SingleConnectionDataSource">
   <property name="driverClassName" value="org.hsqldb.jdbcDriver"/>
   <property name="url" value="jdbc:hsqldb:mem:camel_jdbc"/>
   <property name="username" value="sa"/>
   <property name="password" value=""/>
</bean>
        

And we can create our JDBC idempotent repository in the Spring XML file as well:

<bean id="messageIdRepository" class=
   "org.apache.camel.processor.idempotent.jdbc.JdbcMessageIdRepository">
   <constructor-arg ref="dataSource" />
   <constructor-arg value="myProcessorName" />
</bean>



Using the JDBC based aggregation repository

Talend Mediation Developer Guide 287

<camel:camelContext>

   <camel:errorHandler 
      id="deadLetterChannel" type="DeadLetterChannel" 
          deadLetterUri="mock:error">
          <camel:redeliveryPolicy maximumRedeliveries="0" 
             maximumRedeliveryDelay="0" logStackTrace="false" />
   </camel:errorHandler>
 
   <camel:route id="JdbcMessageIdRepositoryTest" 
               errorHandlerRef="deadLetterChannel">
      <camel:from uri="direct:start" />
      <camel:idempotentConsumer 
         messageIdRepositoryRef="messageIdRepository">
         <camel:header>messageId</camel:header>
         <camel:to uri="mock:result" />
      </camel:idempotentConsumer>
   </camel:route>
</camel:camelContext>

3.45.10. Using the JDBC based aggregation repository

Available as of Camel 2.6

Using JdbcAggregationRepository in Camel 2.6

In Camel 2.6, the JdbcAggregationRepository is provided in the camel-jdbc-aggregator
component. From Camel 2.7 onwards, the JdbcAggregationRepository is provided in the
camel-sql component.

JdbcAggregationRepository is an AggregationRepository which on the fly persists the
aggregated messages. This ensures that you will not loose messages, as the default aggregator will use an in
memory only AggregationRepository. The JdbcAggregationRepository allows together with
Camel to provide persistent support for the Aggregator.

It has the following options:

Option Type Description

dataSource DataSource Mandatory: The
javax.sql.DataSource to use for
accessing the database.

repositoryName String Mandatory: The name of the repository.

transactionManager TransactionManager Mandatory: The
org.springframework.transaction.
PlatformTransactionManager to
mange transactions for the database. The
TransactionManager must be able to support
databases.

lobHandler LobHandler A
org.springframework.jdbc.support.
lob.LobHandler to handle Lob types in
the database. Use this option to use a vendor
specific LobHandler, for example when using
Oracle.



Using the JDBC based aggregation repository

288 Talend Mediation Developer Guide

Option Type Description

returnOldExchange boolean Whether the get operation should return the old
existing Exchange if any existed. By default this
option is false to optimize as we do not need
the old exchange when aggregating.

useRecovery boolean Whether or not recovery is enabled. This option
is by default true. When enabled the Camel
Aggregator automatic recover failed aggregated
exchange and have them resubmitted.

recoveryInterval long If recovery is enabled then a background task is
run every x'th time to scan for failed exchanges
to recover and resubmit. By default this interval
is 5000 milliseconds.

maximumRedeliveries int Allows you to limit the maximum number of
redelivery attempts for a recovered exchange.
If enabled then the Exchange will be moved to
the dead letter channel if all redelivery attempts
failed. By default this option is disabled. If
this option is used then the deadLetterUri
option must also be provided.

deadLetterUri String An endpoint uri for a Section 2.10, “Dead
Letter Channel” where exhausted recovered
Exchanges will be moved. If this option is used
then the maximumRedeliveries option
must also be provided.

3.45.10.1. What is preserved when persisting

JdbcAggregationRepository will only preserve any Serializable compatible data types. If a data
type is not such a type it is dropped and a WARN is logged. And it only persists the Message body and the
Message headers. The Exchange properties are not persisted.

3.45.10.2. Recovery

The JdbcAggregationRepository will by default recover any failed Exchange. It does this by having a
background tasks that scans for failed Exchange s in the persistent store. You can use the checkInterval
option to set how often this task runs. The recovery works as transactional which ensures that Camel will try to
recover and redeliver the failed Exchange. Any Exchange which was found to be recovered will be restored from
the persistent store and resubmitted and send out again.

The following headers is set when an Exchange is being recovered/redelivered:

Header Type Description

Exchange.REDELIVERED Boolean Is set to true to indicate the Exchange is being
redelivered.

Exchange.
REDELIVERY_COUNTER

Integer The redelivery attempt, starting from 1.

Only when an Exchange has been successfully processed it will be marked as complete which happens when the
confirm method is invoked on the AggregationRepository. This means if the same Exchange fails again
it will be kept retried until it success.

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html


Using the JDBC based aggregation repository

Talend Mediation Developer Guide 289

You can use option maximumRedeliveries to limit the maximum number of redelivery attempts for a given
recovered Exchange. You must also set the deadLetterUri option so Camel knows where to send the Exchange
when the maximumRedeliveries was hit.

You can see some examples in the unit tests of camel-sql, for example this test.

3.45.10.3. Database

To be operational, each aggregator uses two table: the aggregation and completed one. By convention the
completed has the same name as the aggregation one suffixed with "_COMPLETED". The name must be
configured in the Spring bean with the RepositoryName property. In the following example aggregation will
be used.

The table structure definition of both table are identical: in both case a String value is used as key ( id ) whereas a
Blob contains the exchange serialized in byte array. However one difference should be remembered: the id field
does not have the same content depending on the table. In the aggregation table id holds the correlation Id used
by the component to aggregate the messages. In the completed table, id holds the id of the exchange stored in
corresponding the blob field.

Here is the SQL query used to create the tables, just replace "aggregation" with your aggregator repository
name.

CREATE TABLE aggregation (
   id varchar(255) NOT NULL,
   exchange blob NOT NULL,
   constraint aggregation_pk PRIMARY KEY (id)
);
CREATE TABLE aggregation_completed (
   id varchar(255) NOT NULL,
   exchange blob NOT NULL,
   constraint aggregation_completed_pk PRIMARY KEY (id)
);

3.45.10.4. Codec (Serialization)

Since they can contain any type of payload, Exchanges are not serializable by design. It is converted into a byte
array to be stored in a database BLOB field. All those conversions are handled by the JdbcCodec class. One
detail of the code requires your attention: the ClassLoadingAwareObjectInputStream.

The ClassLoadingAwareObjectInputStream has been reused from the Apache ActiveMQ project.
It wraps an ObjectInputStream and use it with the ContextClassLoader rather than the
currentThread one. The benefit is to be able to load classes exposed by other bundles. This allows the
exchange body and headers to have custom types object references.

3.45.10.5. Transaction

A Spring PlatformTransactionManager is required to orchestrate transaction.

3.45.10.6. Service (Start/Stop)

The start method verify the connection of the database and the presence of the required tables. If anything is
wrong it will fail during starting.

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
https://svn.apache.org/repos/asf/camel/trunk/components/camel-sql/src/test/java/org/apache/camel/processor/aggregate/jdbc/JdbcAggregateRecoverDeadLetterChannelTest.java
http://activemq.apache.org/


SSH

290 Talend Mediation Developer Guide

3.45.10.7. Aggregator configuration

Depending on the targeted environment, the aggregator might need some configuration. As you already know,
each aggregator should have its own repository (with the corresponding pair of table created in the database)
and a data source. If the default lobHandler is not adapted to your database system, it can be injected with the
lobHandler property.

Here is the declaration for Oracle:

<bean id="lobHandler" 
      class="org.springframework.jdbc.support.lob.OracleLobHandler">
   <property name="nativeJdbcExtractor" ref="nativeJdbcExtractor"/>
</bean>
        
<bean id="nativeJdbcExtractor" class=
"org.springframework.jdbc.support.nativejdbc.CommonsDbcpNativeJdbcExtractor"/>

<bean id="repo" class=
   "org.apache.camel.processor.aggregate.jdbc.JdbcAggregationRepository">
   <property name="transactionManager" ref="transactionManager"/>
   <property name="repositoryName" value="aggregation"/>
   <property name="dataSource" ref="dataSource"/>
   <!-- Only with Oracle, else use default -->
   <property name="lobHandler" ref="lobHandler"/>
</bean>

3.46. SSH
The SSH component enables access to SSH servers such that you can send an SSH command, and process the
response. Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-ssh</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

3.46.1. URI Format

ssh:[username[:password]@]host[:port][?options]

3.46.2. Options

Name Default Value Description

host Hostname of SSH Server

host Hostname of SSH Server



Stub

Talend Mediation Developer Guide 291

Name Default Value Description

port 22 SSH Server port

username Username to authenticate with SSH Server

password Password used for authenticating with SSH Server.
Used if keyPairProvider is null.

keyPairProvider Refers to a org.apache.sshd.common.KeyPairProvider
to use for loading keys for authentication. If this option
is used, then password is not used.

keyType ssh-rsa Refers to a key type to load from keyPairProvider. The
key types can for example be "ssh-rsa" or "ssh-dss".

certFilename File name of the keyPairProvider.

timeout 30000 Milliseconds to wait beforing timing out connection to
SSH Server.

initialDelay 1000 Consumer only: Milliseconds before polling the SSH
server starts.

delay 500 Consumer only: Milliseconds before the next poll of the
SSH Server.

useFixedDelay true Consumer only: Controls if fixed delay or fixed rate is
used. See ScheduledExecutorService in JDK for details.

pollCommand Consumer only: Command to send to SSH Server during
each poll cycle. Used only when acting as Consumer.

3.47. Stub
The stub: component provides a simple way to stub out any physical endpoints for easy testing. Just add stub: in
front of any endpoint URI in order to stub out the endpoint. This is useful in development where you might wish
to try a route without needing to connect to a specific SMTP or HTTP endpoint.

Internally the Stub component creates VM endpoints. The main difference between Stub and VM is that VM will
validate the URI and parameters you give it, so putting vm: in front of a typical URI with query arguments will
usually fail. Stub won't though as it basically ignores all query parameters to let you quickly stub out one or more
endpoints in your route temporarily.

3.47.1. URI Format

stub:someUri

Where someUri can be any URI with any query parameters.

3.47.2. Samples

Here are some samples:

stub:smtp://somehost.foo.com?user=whatnot&something=else

stub:http://somehost.bar.com/something

http://camel.apache.org/vm.html


Test

292 Talend Mediation Developer Guide

3.48. Test
Testing of distributed and asynchronous processing is notoriously difficult. The Section 3.31, “Mock”,
Section 3.48, “Test” and DataSet endpoints work great with the Camel Testing Framework to simplify your unit
and integration testing using Enterprise Integration Patterns and Camel's large range of Components together with
the powerful Bean Integration.

The test component extends the Section 3.31, “Mock” component to support pulling messages from another
endpoint on startup to set the expected message bodies on the underlying Section 3.31, “Mock” endpoint. That
is, you use the test endpoint in a route and messages arriving on it will be implicitly compared to some expected
messages extracted from some other location.

So you can use, for example, an expected set of message bodies as files. This will then set up a properly configured
Section 3.31, “Mock” endpoint, which is only valid if the received messages match the number of expected
messages and their message payloads are equal.

3.48.1. URI format

test:expectedMessagesEndpointUri

where expectedMessagesEndpointUri refers to some other Component URI that the expected message bodies
are pulled from before starting the test.

3.48.2. Example

For example, you could write a test case as follows:

from("seda:someEndpoint").
  to("test:file://data/expectedOutput?noop=true");

If your test then invokes the MockEndpoint.assertIsSatisfied(camelContext) method, your test case will perform
the necessary assertions.

Here is a real example test case using Mock and Spring along with its Spring XML.

To see how you can set other expectations on the test endpoint, see the Section 3.31, “Mock” component.

3.49. Timer
The timer: component is used to generate message exchanges when a timer fires You can only consume events
from this endpoint.

3.49.1. URI format

timer:name[?options]

where name is the name of the Timer object, which is created and shared across endpoints. So if you use the
same name for all your timer endpoints, only one Timer object and thread will be used.

http://camel.apache.org/testing.html
http://camel.apache.org/dataset.html
http://camel.apache.org/testing.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
http://svn.apache.org/viewvc/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/component/test/TestEndpointTest.java?view=markup
https://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/test/TestEndpointTest-context.xml


Options

Talend Mediation Developer Guide 293

You can append query options to the URI in the following format, ?option=value&option=value&...

Note: The IN body of the generated exchange is null. So exchange.getIn().getBody() returns null.

Advanced Scheduler

See also the Section 3.34, “Quartz” component that supports much more advanced scheduling.

Specify time in human friendly format

You can specify the time in human friendly syntax.

3.49.2. Options

Name Default Value Description

time null A java.util.Date the first event should be
generated. If using the URI, the pattern expected
is: yyyy-MM-dd HH:mm:ss or yyyy-MM-
dd'T'HH:mm:ss.

pattern null Allows you to specify a custom Date pattern to use for
setting the time option using URI syntax.

period 1000 If greater than 0, generate periodic events every
period milliseconds.

delay 0 The number of milliseconds to wait before the first event
is generated. Should not be used in conjunction with the
time option.

fixedRate false Events take place at approximately regular intervals,
separated by the specified period.

daemon true Specifies whether or not the thread associated with the
timer endpoint runs as a daemon.

3.49.3. Exchange Properties

When the timer is fired, it adds the following information as properties to the Exchange :

Name Type Description

org.apache.camel.timer.name String The value of the name option.

org.apache.camel.timer.time Date The value of the time option.

org.apache.camel.timer.period long The value of the period option.

org.apache.camel.timer.
firedTime

Date The time when the consumer fired.

3.49.4. Message Headers

When the timer is fired, it adds the following information as headers to the IN message

http://camel.apache.org/how-do-i-specify-time-period-in-a-human-friendly-syntax.html


Sample

294 Talend Mediation Developer Guide

Name Type Description

firedTime java.util.Date The time when the consumer fired

3.49.5. Sample

To set up a route that generates an event every 60 seconds:

from("timer://foo?fixedRate=true&period=60000").
      to("bean:myBean?method=someMethodName");

The above route will generate an event and then invoke the someMethodName method on the bean called
myBean in the Registry such as JNDI or Spring.

And the route in Spring DSL:

<route>
    <from uri="timer://foo?fixedRate=true&amp;period=60000"/>
    <to uri="bean:myBean?method=someMethodName"/>
  </route>

3.50. Velocity
The velocity: component allows you to process a message using an Apache Velocity template. This can be ideal
when using Templating to generate responses for requests.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-velocity</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

3.50.1. URI format

velocity:templateName[?options]

where templateName is the classpath-local URI of the template to invoke; or the complete URL of the remote
template (for example: file://folder/myfile.vm").

You can append query options to the URI in the following format, ?option=value&option=value&...

3.50.2. Options

Option Default Description

loaderCache true Velocity based file loader cache.

http://camel.apache.org/registry.html
http://camel.apache.org/spring.html
http://velocity.apache.org/
http://camel.apache.org/templating.html


Message Headers

Talend Mediation Developer Guide 295

Option Default Description

contentCache true Cache for the resource content when it is
loaded.

encoding null Character encoding of the resource content.

propertiesFile null The URI of the properties file which is used
for VelocityEngine initialization.

3.50.3. Message Headers

The velocity component sets a couple headers on the message (you can't set these yourself and velocity component
will not set these headers which will cause some side effect on the dynamic template support):

Header Description

CamelVelocityResourceUri The templateName as a String object.

Headers set during the Velocity evaluation are returned to the message and added as headers. Then it's possible
to return values from Velocity to the Message.

For example, to set the header value of fruit in the Velocity template .tm :

$in.setHeader('fruit', 'Apple')

The fruit header is now accessible from the message.out.headers.

3.50.4. Velocity Context

Camel will provide exchange information in the Velocity context (just a Map ). The Exchange is transfered as:

key value

exchange The Exchange itself.

headers The headers of the In message.

camelContext The Camel Context intance.

request The In message.

in The In message.

body The In message body.

out The Out message (only for InOut message exchange pattern).

response The Out message (only for InOut message exchange pattern).

3.50.5. Hot reloading

The Velocity template resource is, by default, hot reloadable for both file and classpath resources (expanded jar).
If you set contentCache=true, Camel will only load the resource once, and thus hot reloading is not possible.
This scenario can be used in production, when the resource never changes.



Dynamic templates

296 Talend Mediation Developer Guide

3.50.6. Dynamic templates

Camel provides two headers by which you can define a different resource location for a template or the template
content itself. If any of these headers is set then Camel uses this over the endpoint configured resource. This allows
you to provide a dynamic template at runtime.

Header Type Description

CamelVelocityResourceUri String A URI for the template resource to use instead of the endpoint
configured.

CamelVelocityTemplate String The template to use instead of the endpoint configured.

3.50.7. Samples

For example you could use something like

from("activemq:My.Queue")
  .to("velocity:com/acme/MyResponse.vm");

To use a Velocity template to formulate a response to a message for InOut message exchanges (where there is
a JMSReplyTo header).

If you want to use InOnly and consume the message and send it to another destination, you could use the following
route:

from("activemq:My.Queue")
   .to("velocity:com/acme/MyResponse.vm")
   .to("activemq:Another.Queue");

And to use the content cache, for example, for use in production, where the .vm template never changes:

from("activemq:My.Queue")
   .to("velocity:com/acme/MyResponse.vm?contentCache=true")
   .to("activemq:Another.Queue");

And a file based resource:

from("activemq:My.Queue")
   .to("velocity:file://myfolder/MyResponse.vm?contentCache=true")
   .to("activemq:Another.Queue");

In it is possible to specify what template the component should use dynamically via a header, so for example:

from("direct:in")
   .setHeader("CamelVelocityResourceUri")
   .constant("path/to/my/template.vm")
   .to("velocity:dummy");

In it is possible to specify a template directly as a header the component should use dynamically via a header,
so for example:

from("direct:in")
   .setHeader("CamelVelocityTemplate")
   .constant("Hi this is a velocity template" + 
   "that can do templating ${body}")
   .to("velocity:dummy");



VM

Talend Mediation Developer Guide 297

3.51. VM
The vm: component provides asynchronous SEDA behavior so that messages are exchanged on a BlockingQueue
and consumers are invoked in a separate thread pool to the producer.

This component differs from the Section 3.38, “SEDA” component in that VM supports communication across
CamelContext instances, so you can use this mechanism to communicate across web applications, provided that
the camel-core.jar is on the system/boot classpath.

This component is an extension to the Section 3.38, “SEDA” component.

3.51.1. URI format

vm:someName[?options]

where someName can be any string to uniquely identify the endpoint within the JVM (or at least within the
classloader which loaded the camel-core.jar)

You can append query options to the URI in the following format, ?option=value&option=value&...

3.51.2. Options

See the Section 3.38, “SEDA” component for options and other important usage as the same rules apply for this
Section 3.51, “VM” component.

3.51.3. Samples

In the route below we send the exchange to the VM queue that is working across CamelContext instances:

from("direct:in").bean(MyOrderBean.class).to("vm:order.email");

And then in another Camel context such as deployed as in another .war application:

from("vm:order.email").bean(MyOrderEmailSender.class);

3.52. XQuery Endpoint
The xquery: component allows you to process a message using an XQuery template. This can be ideal when using
Templating to generate responses for requests.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-saxon</artifactId>
    <version>x.x.x</version>

http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://camel.apache.org/xquery.html
http://camel.apache.org/templating.html


URI format

298 Talend Mediation Developer Guide

    <!-- use the same version as your Camel core version -->
</dependency>

3.52.1. URI format

xquery:templateName

where templateName is the classpath-local URI of the template to invoke; or the complete URL of the remote
template.

For example you could use something like this:

from("activemq:My.Queue").
  to("xquery:com/acme/mytransform.xquery");

To use an XQuery template to formulate a response to a message for InOut message exchanges (where there is
a JMSReplyTo header).

If you want to use InOnly, consume the message, and send it to another destination, you could use the following
route:

from("activemq:My.Queue")
   .to("xquery:com/acme/mytransform.xquery")
   .to("activemq:Another.Queue");

3.53. XSLT
The xslt: component allows you to process a message using an XSLT template. This can be ideal when using
Templating to generate responses for requests.

3.53.1. URI format

xslt:templateName[?options]

where templateName is the classpath-local URI of the template to invoke; or the complete URL of the remote
template. Refer to the Spring Documentation for more detail of the URI syntax

You can append query options to the URI in the following format, ?option=value&option=value&...

Here are some example URIs

URI Description

xslt:com/acme/mytransform.xsl refers to the file com/acme/mytransform.xsl on the
classpath

xslt:file:///foo/bar.xsl refers to the file /foo/bar.xsl

xslt:http://acme.com/cheese/foo.xsl refers to the remote http resource

Maven users will need to add the following dependency to their pom.xml for this component:

http://www.w3.org/TR/xslt
http://camel.apache.org/templating.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/core/io/DefaultResourceLoader.html


Options

Talend Mediation Developer Guide 299

<dependency>
   <groupId>org.apache.camel</groupId>
   <artifactId>camel-spring</artifactId>
   <version>x.x.x</version>
   <!-- use the same version as your Camel core version -->
</dependency>

3.53.2. Options

Name Default Value Description

converter null Option to override default XmlConverter. This
will lookup for the converter in the Registry.
The provided converted must be of type
org.apache.camel.converter.jaxp.XmlConverter.

transformerFactory null Camel 1.6 Option to override default
TransformerFactory. This will lookup for
the transformerFactory in the Registry. The
provided transformer factory must be of type
javax.xml.transform.TransformerFactory.

transformerFactoryClass null Camel 1.6 Option to override default
TransformerFactory. This will create a
TransformerFactoryClass instance and set it to the
converter.

uriResolver null Camel 2.3 : Allows you to use a custom
javax.xml.transformation.URIResolver.
Camel will by default use its own implementation
org.apache.camel.builder.xml.
XsltUriResolver which is capable of loading from
classpath.

resultHandlerFactory null Camel 2.3: Allows you to use a
custom org.apache.camel.builder.xml.
ResultHandlerFactory which is capable of using
custom org.apache.camel.builder.xml.
ResultHandler types.

failOnNullBody true Camel 2.3: Whether or not to throw an exception if the
input body is null.

deleteOutputFile false Camel 2.6: If you have output=file then this option
dictates whether or not the output file should be deleted
when the Exchange is done processing. For example
suppose the output file is a temporary file, then it can be
a good idea to delete it after use.

output string Camel 2.3: Option to specify which output type to use.
Possible values are: string, bytes, DOM, file.
The first three options are all in memory based, where
as file is streamed directly to a java.io.File.
For file you must specify the filename in the IN
header with the key Exchange.XSLT_FILE_NAME
which is also CamelXsltFileName. Also any paths
leading to the filename must be created beforehand,
otherwise an exception is thrown at runtime.

contentCache true Camel 2.6: Cache for the resource content (the
stylesheet file) when it is loaded. If set to false

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/converter/jaxp/XmlConverter.html
http://camel.apache.org/registry.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/transform/TransformerFactory.html
http://camel.apache.org/registry.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/transform/TransformerFactory.html
http://camel.apache.org/exchange.html


Using XSLT endpoints

300 Talend Mediation Developer Guide

Name Default Value Description

Camel will reloader the stylesheet file on each message
processing. This is good for development.

3.53.3. Using XSLT endpoints

For example you could use something like

from("activemq:My.Queue")
   .to("xslt:com/acme/mytransform.xsl");

To use an XSLT template to formulate a response for a message for InOut message exchanges (where there is
a JMSReplyTo header).

If you want to use InOnly and consume the message and send it to another destination you could use the following
route:

from("activemq:My.Queue")
   .to("xslt:com/acme/mytransform.xsl")
   .to("activemq:Another.Queue");

3.53.4. Getting Parameters into the XSLT to work with

By default, all headers are added as parameters which are available in the XSLT. To do this you will need to
declare the parameter so it is then useable.

<setHeader headerName="myParam"><constant>42</constant></setHeader>
<to uri="xslt:MyTransform.xsl"/>

And the XSLT just needs to declare it at the top level for it to be available:

<xsl: ...... >

   <xsl:param name="myParam"/>
  
    <xsl:template ...>

3.53.5. Spring XML versions

To use the above examples in Spring XML you would use something like

<camelContext xmlns="http://activemq.apache.org/camel/schema/spring">
   <route>
       <from uri="activemq:My.Queue"/>
       <to uri="xslt:org/apache/camel/spring/processor/example.xsl"/>
       <to uri="activemq:Another.Queue"/>
    </route>
 </camelContext>

There is a test case along with its Spring XML if you want a concrete example.

http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/XsltTest.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/XsltTest-context.xml


Using xsl:include

Talend Mediation Developer Guide 301

3.53.6. Using xsl:include

Camel provides its own implementation of URIResolver which allows Camel to load included files from the
classpath and more intelligent than before.

For example this include:

<xsl:include href="staff_template.xsl"/>

This will now be located relative from the starting endpoint, which for example could be:

.to("xslt:org/apache/camel/component/xslt/staff_include_relative.xsl")

Which means Camel will locate the file in the classpath as org/apache/camel/component/xslt/
staff_template.xsl. This allows you to use xsl include and have xsl files located in the same folder such
as we do in the example org/apache/camel/component/xslt.

You can use the following two prefixes classpath: or file: to instruct Camel to look either in classpath
or file system. If you omit the prefix then Camel uses the prefix from the endpoint configuration. If that neither
has one, then classpath is assumed.

You can also refer back in the paths such as

<xsl:include href="../staff_other_template.xsl"/>

Which then will resolve the xsl file under org/apache/camel/component.

3.54. Zookeeper
The ZooKeeper component allows interaction with a ZooKeeper cluster and exposes the following features to
Camel:

• Creation of nodes in any of the ZooKeeper create modes.

• Get and Set the data contents of arbitrary cluster nodes.

• Create and retrieve the list the child nodes attached to a particular node.

• A Distributed RoutePolicy that leverages a Leader election coordinated by ZooKeeper to determine if exchanges
should get processed.

Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
    <groupId>org.apache.camel</groupId>
    <artifactId>camel-zookeeper</artifactId>
    <version>x.x.x</version>
    <!-- use the same version as your Camel core version -->
</dependency>

3.54.1. URI Format and Options

zookeeper://zookeeper-server[:port][/path][?options]

The path from the uri specifies the node in the ZooKeeper server (aka znode) that will be the target of the endpoint.



Use cases

302 Talend Mediation Developer Guide

Options

Name Default Value Description

sessionId null The session id used to identify a connection to the cluster

password null The password to use when making a connection

awaitCreation true Should the endpoint await the creation of a node that
does not yet exist.

listChildren false Whether the children of the node should be listed

repeat false Should changes to the znode be 'watched' and repeatedly
processed.

backoff 5000 The time interval to backoff for after an error before
retrying.

timeout 5000 The time interval to wait on connection before timing
out.

create false Should the endpoint create the node if it does not
currently exist.

createMode EPHEMERAL The create mode that should be used for the newly
created node (see below).

sendEmptyMessage-
OnDelete

true Camel 2.10: Upon the delete of a znode, should an
empty message be send to the consumer.

3.54.2. Use cases

3.54.2.1. Reading from a znode

The following snippet will read the data from the znode '/somepath/somenode/' provided that it already exists. The
data retrieved will be placed into an exchange and passed onto the rest of the route.

from("zookeeper://localhost:39913/somepath/somenode").to("mock:result");

If the node does not yet exist then a flag can be supplied to have the endpoint await its creation:

from("zookeeper://localhost:39913/somepath/somenode?awaitCreation=true").
   to("mock:result");

Starting with Camel 2.10, when data is read due to a WatchedEvent received from the ZooKeeper ensemble, the
CamelZookeeperEventType header will hold the ZooKeeper's EventType value from that WatchedEvent. If the
data is read initially (not triggered by a WatchedEvent) the CamelZookeeperEventType header will not be set.

3.54.2.2. Writing to a znode

The following snippet will write the payload of the exchange into the znode at '/somepath/somenode/' provided
that it already exists:

from("direct:write-to-znode").
    to("zookeeper://localhost:39913/somepath/somenode");



ZooKeeper enabled Route policy

Talend Mediation Developer Guide 303

For flexibility, the endpoint allows the target znode to be specified dynamically as a message header. If a header
keyed by the string 'CamelZooKeeperNode' is present then the value of the header will be used as the path to the
znode on the server. For instance using the same route definition above, the following code snippet will write the
data not to '/somepath/somenode' but to the path from the header '/somepath/someothernode'

Exchange e = createExchangeWithBody(testPayload);
template.sendBodyAndHeader("direct:write-to-znode", 
    e, "CamelZooKeeperNode", "/somepath/someothernode");

To also create the node if it does not exist the 'create' option should be used.

from("direct:create-and-write-to-znode").
    to("zookeeper://localhost:39913/somepath/somenode?create=true");

ZooKeeper nodes can have different types, they can be 'Ephemeral' or 'Persistent' and 'Sequenced' or
'Unsequenced'. Information of each type is described on the ZooKeeper site. By default endpoints will create
unsequenced, ephemeral nodes, but the type can be easily manipulated via a uri config parameter or via a special
message header. The values expected for the create mode are simply the names from the CreateMode enumeration

• PERSISTENT

• PERSISTENT_SEQUENTIAL

• EPHEMERAL

• EPHEMERAL_SEQUENTIAL

For example to create a persistent znode via the URI config:

from("direct:create-and-write-to-persistent-znode").
    to("zookeeper://localhost:39913/somepath/somenode?create=true
    &createMode=PERSISTENT");

Or using the header 'CamelZookeeperCreateMode'

Exchange e = createExchangeWithBody(testPayload);
template.sendBodyAndHeader("direct:create-and-write-to-persistent-znode", 
   e, "CamelZooKeeperCreateMode", "PERSISTENT");

3.54.3. ZooKeeper enabled Route policy

ZooKeeper allows for very simple and effective leader election out of the box. This component exploits this
election capability in a RoutePolicy to control when and how routes are enabled. This policy would typically be
used in fail-over scenarios, to control identical instances of a route across a cluster of Camel based servers. A very
common scenario is a simple 'Master-Slave' setup where there are multiple instances of a route distributed across
a cluster but only one of them, that of the master, should be running at a time. If the master fails, a new master
should be elected from the available slaves and the route in this new master should be started.

The policy uses a common znode path across all instances of the RoutePolicy that will be involved in the election.
Each policy writes its id into this node and zookeeper will order the writes in the order it received them. The policy
then reads the listing of the node to see what postion of its id; this postion is used to determine if the route should
be started or not. The policy is configured at startup with the number of route instances that should be started
across the cluster and if its position in the list is less than this value then its route will be started. For a Master-slave
scenario, the route is configured with 1 route instance and only the first entry in the listing will start its route. All
policies watch for updates to the listing and if the listing changes they recalculate if their route should be started.
The following example uses the node '/someapplication/somepolicy' for the election and is set up to start only the
top '1' entries in the node listing i.e. elect a master:

http://zookeeper.apache.org/doc/trunk/zookeeperProgrammers.html#Ephemeral+Nodes


ZooKeeper enabled Route policy

304 Talend Mediation Developer Guide

ZooKeeperRoutePolicy policy = new ZooKeeperRoutePolicy("
    zookeeper:localhost:39913/someapp/somepolicy", 1);
    from("direct:policy-controlled").routePolicy(policy).to(
        "mock:controlled");



Talend Mediation Developer Guide

Chapter 4. Talend ESB Mediation Examples
The samples folder of the Talend ESB download contain examples that are provided by the Apache Camel project,
as well as Talend ESB-specific examples showing multiple usages of Camel routing. Each Talend ESB sample
has its own README file providing a full description of the sample along with deployment information using
embedded Jetty or Talend OSGi container. The examples provided by the Apache Camel project and bundled with
the Talend ESB are listed and explained on the Camel website; the below listing provides a summary of additional
mediation examples provided in the Talend ESB distribution.

Example Description

blueprint Provides an example of deploying Camel routes as an OSGi bundle in the
TESB container.

claimcheck EAI patterns example demonstrating use of the Claim Check, Splitter,
Reswquencer and Delayer patterns.

jaxrs-jms-http Shows how a JAX-RS service can be offered an used with Camel transports.

jaxws-jms Shows how to publish and call a CXF service using SOAP/JMS using
Camel as a CXF transport.

spring-security Example shows how to leverage Spring Security to secure Camel routes
in general and also specifically when combined with CXF JAX-WS and
JAX-RS endpoints.

http://camel.apache.org/examples.html


Talend Mediation Developer Guide


	Talend Mediation
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Enterprise Integration Patterns
	2.1. List of EIPs
	2.1.1. Messaging Systems
	2.1.2. Messaging Channels
	2.1.3. Message Construction
	2.1.4. Message Routing
	2.1.5. Message Transformation
	2.1.6. Messaging Endpoints
	2.1.7. System Management

	2.2. Aggregator
	2.2.1. Aggregator Pattern
	2.2.2. Aggregator options
	2.2.3. Exchange Properties
	2.2.4. About AggregationStrategy
	2.2.5. About completion

	2.3. Claim Check
	2.4. Competing Consumers
	2.5. Composed Message Processor
	2.6. Content Based Router
	2.7. Content Enricher
	2.7.1. Content enrichment using a Message Translator or a Processor
	2.7.2. Content enrichment using the enrich DSL element
	2.7.3. Aggregation strategy is optional
	2.7.4. Content enrichment using pollEnrich

	2.8. Content Filter
	2.9. Correlation Identifier
	2.10. Dead Letter Channel
	2.10.1. Redelivery
	2.10.2. About moving Exchange to dead letter queue and using handled
	2.10.3. About moving Exchange to dead letter queue and using the original message
	2.10.4. OnRedelivery
	2.10.5. Redelivery default values
	2.10.6. Redeliver Delay Pattern
	2.10.7. Redelivery header
	2.10.8. Determining location of endpoint failures
	2.10.9. Samples

	2.11. Delayer
	2.11.1. Asynchronous delaying
	2.11.1.1. From Java DSL
	2.11.1.2. From Spring XML

	2.11.2. Creating a custom delay

	2.12. Detour
	2.13. Durable Subscriber
	2.14. Dynamic Router
	2.14.1. Java DSL
	2.14.2. Spring XML
	2.14.3. @DynamicRouter annotation

	2.15. Event Driven Consumer
	2.16. Event Message
	2.17. Guaranteed Delivery
	2.18. Idempotent Consumer
	2.18.1. Options
	2.18.2. Using the Fluent Builders
	2.18.3. Spring XML example

	2.19. Load Balancer
	2.19.1. Built-in load balancing policies
	2.19.2. Round Robin
	2.19.3. Failover
	2.19.3.1. Using failover in Spring DSL
	2.19.3.2. Using failover in round robin mode

	2.19.4. Weighted Round-Robin and Random Load Balancing

	2.20. Log
	2.20.1. Using log DSL from Spring
	2.20.2. Using slf4j Marker

	2.21. Loop
	2.22. Message
	2.23. Message Bus
	2.24. Message Channel
	2.25. Message Dispatcher
	2.26. Message Endpoint
	2.27. Message Filter
	2.27.1. Using stop
	2.27.2. Knowing if Exchange was filtered or not

	2.28. Message Router
	2.29. Message Translator
	2.30. Messaging Gateway
	2.31. Messaging Mapper
	2.32. Multicast
	2.32.1. Example
	2.32.2. Stop processing in case of exception
	2.32.3. Using onPrepare to execute custom logic when preparing messages

	2.33. Normalizer
	2.34. Pipes and Filters
	2.35. Point to Point Channel
	2.36. Polling Consumer
	2.36.1. ConsumerTemplate
	2.36.2. Scheduled Poll Components
	2.36.3. About error handling and scheduled polling consumers
	2.36.3.1. Controlling the error handling using PollingConsumerPollStrategy
	2.36.3.2. Configuring an Endpoint to use PollingConsumerPollStrategy


	2.37. Publish Subscribe Channel
	2.38. Recipient List
	2.38.1. Options
	2.38.2. Static Recipient List
	2.38.3. Dynamic Recipient List
	2.38.3.1. Iteratable value
	2.38.3.2. Using delimiter in Spring XML


	2.39. Request Reply
	2.40. Resequencer
	2.40.1. Batch Resequencing
	2.40.2. Stream Resequencing
	2.40.3. Further Examples

	2.41. Return Address
	2.42. Routing Slip
	2.42.1. Example
	2.42.2. Configuration options
	2.42.3. Ignore invalid endpoints
	2.42.4. Expression supporting

	2.43. Sampling
	2.44. Scatter-Gather
	2.44.1. Dynamic Scatter-Gather Example
	2.44.2. Static Scatter-Gather Example

	2.45. Selective Consumer
	2.46. Service Activator
	2.47. Sort
	2.47.1. Java DSL Example
	2.47.2. Spring DSL Example

	2.48. Splitter
	2.48.1. Example
	2.48.2. Exchange properties
	2.48.3. Parallel execution of distinct 'parts'
	2.48.4. Stream based
	2.48.5. Streaming big XML payloads using Tokenizer language
	2.48.6. Specifying a custom aggregation strategy
	2.48.7. Specifying a custom ThreadPoolExecutor
	2.48.8. Using a Pojo to do the splitting
	2.48.9. Stop processing in case of exceptions
	2.48.10. Sharing Unit of Work

	2.49. Throttler
	2.50. Transactional Client
	2.50.1. Transaction Policies
	2.50.2. OSGi Blueprint
	2.50.3. Database Sample
	2.50.4. JMS Sample

	2.51. Validate
	2.51.1. Using from Java DSL
	2.51.2. Using from Spring DSL

	2.52. Wire Tap
	2.52.1. WireTap node
	2.52.2. Sending a copy (traditional wire tap)


	Chapter 3. Components
	3.1. ActiveMQ
	3.1.1. URI format and Options
	3.1.2. Configuring the Connection Factory
	3.1.3. Configuring the Connection Factory using Spring XML
	3.1.4. Using connection pooling
	3.1.5. Invoking MessageListener POJOs in a Camel route
	3.1.6. Consuming Advisory Messages
	3.1.7. Getting Component JARs
	3.1.7.1. camel-jms
	3.1.7.2. ActiveMQ 5.2 or later
	3.1.7.3. ActiveMQ 5.1.0


	3.2. Atom
	3.2.1. URI format and options
	3.2.2. Exchange data format
	3.2.3. Message Headers

	3.3. Bean
	3.3.1. URI format and options
	3.3.2. Using
	3.3.3. Bean as endpoint
	3.3.4. Bean Binding

	3.4. Cache
	3.4.1. URI format and Options
	3.4.2. Sending/Receiving Messages to/from the cache
	3.4.2.1. Message Headers
	3.4.2.2. Cache Producer
	3.4.2.3. Cache Consumer
	3.4.2.4. Cache Processors

	3.4.3. Cache Usage Samples
	3.4.3.1. Example: Configuring the cache
	3.4.3.2. Example: Adding keys to the cache
	3.4.3.3. Example: Updating existing keys in a cache
	3.4.3.4. Example: Deleting existing keys in a cache
	3.4.3.5. Example: Deleting all existing keys in a cache
	3.4.3.6. Example: Notifying any changes registering in a Cache to Processors and other Producers
	3.4.3.7. Example: Using Processors to selectively replace payload with cache values
	3.4.3.8. Example: Getting an entry from the Cache
	3.4.3.9. Example: Checking for an entry in the Cache

	3.4.4. Management of EHCache

	3.5. Class
	3.5.1. Class Component
	3.5.1.1. URI format
	3.5.1.2. Options
	3.5.1.3. Using

	3.5.2. Setting properties on the created instance

	3.6. Context
	3.6.1. URI format
	3.6.2. Example
	3.6.2.1. Defining the context component
	3.6.2.2. Using the context component
	3.6.2.3. Naming endpoints


	3.7. Crypto (Digital Signatures)
	3.7.1. Introduction
	3.7.2. URI Format
	3.7.3. Options

	3.8. CXF
	3.8.1. URI format
	3.8.2. Options
	3.8.2.1. The descriptions of the dataformats
	3.8.2.2. How to enable CXF's LoggingOutInterceptor in MESSAGE mode
	3.8.2.3. Description of relayHeaders option

	3.8.3. Configure the CXF endpoints with Spring
	3.8.4. How to make the camel-cxf component use log4j instead of java.util.logging
	3.8.5. How to consume a message from a camel-cxf endpoint in POJO data format
	3.8.6. How to prepare the message for the camel-cxf endpoint in POJO data format
	3.8.7. How to deal with the message for a camel-cxf endpoint in PAYLOAD data format
	3.8.8. How to get and set SOAP headers in POJO mode
	3.8.9. How to get and set SOAP headers in PAYLOAD mode
	3.8.10. SOAP headers are not available in MESSAGE mode
	3.8.11. How to throw a SOAP Fault from Camel
	3.8.12. How to propagate a camel-cxf endpoint's request and response context
	3.8.13. Attachment Support

	3.9. CXF Bean Component
	3.9.1. URI format
	3.9.2. Options
	3.9.3. Headers
	3.9.4. A Working Sample

	3.10. CXFRS
	3.10.1. URI format
	3.10.2. Options

	3.11. Direct
	3.11.1. URI format
	3.11.2. Samples

	3.12. Event
	3.12.1. URI format

	3.13. Exec
	3.13.1. URI options
	3.13.2. Message headers
	3.13.3. Message body

	3.14. File
	3.14.1. URI format
	3.14.2. URI Options
	3.14.2.1. Common
	3.14.2.2. Consumer
	3.14.2.3. Default behavior for file consumer
	3.14.2.4. Producer
	3.14.2.5. Default behavior for file producer

	3.14.3. Move and Delete operations
	3.14.3.1. Fine grained control over Move and PreMove option
	3.14.3.2. About moveFailed

	3.14.4. Message Headers
	3.14.4.1. File producer only
	3.14.4.2. File consumer only

	3.14.5. Batch Consumer
	3.14.5.1. Exchange Properties, file consumer only

	3.14.6. Common gotchas with folder and filenames
	3.14.7. Filename Expression
	3.14.8. Consuming files from folders where others drop files directly
	3.14.9. Using done files
	3.14.10. Writing done files
	3.14.11. Samples
	3.14.11.1. Read from a directory and write to another directory
	3.14.11.2. Reading recursively from a directory and writing to another
	Using flatten

	3.14.11.3. Reading from a directory and the default move operation
	3.14.11.4. Read from a directory and process the message in java
	3.14.11.5. Writing to files
	3.14.11.6. Write to subdirectory using Exchange.FILE_NAME
	3.14.11.7. Using expression for filenames

	3.14.12. Avoiding reading the same file more than once (idempotent consumer)
	3.14.13. Filter using org.apache.camel.component.file.GenericFileFilter
	3.14.13.1. Filtering using ANT path matcher

	3.14.14. Sorting using Comparator
	3.14.15. Sorting using sortBy
	3.14.16. Using GenericFileProcessStrategy

	3.15. Flatpack
	3.15.1. Flatpack Component
	3.15.1.1. URI format
	3.15.1.2. URI Options
	3.15.1.3. Examples
	3.15.1.4. Message Headers
	3.15.1.5. Message Body
	3.15.1.6. Header and Trailer records
	3.15.1.7. Using the endpoint

	3.15.2. Flatpack DataFormat
	3.15.2.1. Options
	3.15.2.2. Usage
	3.15.2.3. Dependencies


	3.16. Freemarker
	3.16.1. URI format
	3.16.2. Options
	3.16.3. Headers
	3.16.4. Freemarker Context
	3.16.5. Hot reloading
	3.16.6. Dynamic templates
	3.16.7. Samples

	3.17. FTP
	3.17.1. URI format and Options
	3.17.2. More URI options
	3.17.3. Stepwise changing directories
	3.17.3.1. Using stepwise=true (default mode)
	3.17.3.2. Using stepwise=false

	3.17.4. Examples
	3.17.5. Default when consuming files
	3.17.5.1. limitations

	3.17.6. Message Headers
	3.17.7. About timeouts
	3.17.8. Using Local Work Directory
	3.17.9. Samples
	3.17.9.1. Consuming a remote FTPS server (implicit SSL) and client authentication
	3.17.9.2. Consuming a remote FTPS server (explicit TLS) and a custom trust store configuration

	3.17.10. Filter using org.apache.camel.component.file.GenericFileFilter
	3.17.11. Filtering using ANT path matcher
	3.17.12. Debug logging

	3.18. Hl7
	3.18.1. HL7 MLLP protocol
	3.18.1.1. Exposing a HL7 listener

	3.18.2. HL7 Model using java.lang.String
	3.18.3. HL7 Model using HAPI
	3.18.4. Message Headers
	3.18.5. Options
	3.18.6. Dependencies

	3.19. HTTP4
	3.19.1. URI format
	3.19.2. HttpEndpoint Options
	3.19.2.1. Setting Basic Authentication and Proxy

	3.19.3. HttpComponent Options
	3.19.4. Message Headers
	3.19.5. Message Body
	3.19.6. Response code
	3.19.7. HttpOperationFailedException
	3.19.8. Calling using GET or POST
	3.19.9. How to get access to HttpServletRequest and HttpServletResponse
	3.19.10. Configuring URI to call
	3.19.11. Configuring URI Parameters
	3.19.12. How to set the http method (GET/POST/PUT/DELETE/HEAD/OPTIONS/TRACE) to the HTTP producer
	3.19.13. Configuring a Proxy
	3.19.13.1. Using proxy settings outside of URI

	3.19.14. Configuring charset
	3.19.14.1. Sample with scheduled poll
	3.19.14.2. URI Parameters from the endpoint URI
	3.19.14.3. URI Parameters from the Message
	3.19.14.4. Getting the Response Code

	3.19.15. Disabling Cookies
	3.19.16. Advanced Usage
	3.19.16.1. Setting up SSL for HTTP Client


	3.20. Jasypt
	3.20.1. Tooling
	3.20.1.1. Tooling dependencies for Camel 2.6
	3.20.1.2. Tooling dependencies for Camel 2.7 onwards

	3.20.2. URI Options
	3.20.3. Protecting the master password
	3.20.4. Example with Java DSL
	3.20.5. Example with Spring XML

	3.21. JCR
	3.21.1. URI format
	3.21.2. Usage
	3.21.3. Message properties
	3.21.4. Example

	3.22. JDBC
	3.22.1. URI format
	3.22.2. Options
	3.22.3. Result
	3.22.3.1. Message Headers

	3.22.4. Samples

	3.23. Jetty
	3.23.1. URI format
	3.23.2. Options
	3.23.3. Message Headers
	3.23.4. Usage
	3.23.5. Component Options
	3.23.6. Sample
	3.23.7. Session Support
	3.23.8. SSL Support (HTTPS)
	3.23.8.1. Configuring general SSL properties
	3.23.8.2. Configuring general HTTP properties
	3.23.8.3. Default behavior for returning HTTP status codes
	3.23.8.4. Jetty JMX support


	3.24. JMS
	3.24.1. URI format
	3.24.2. Notes
	3.24.3. Options
	3.24.3.1. Most commonly used options

	3.24.4. Message format when sending
	3.24.5. Message format when receiving
	3.24.6. 
	3.24.6.1. JmsProducer
	3.24.6.2. JmsConsumer

	3.24.7. Configuring different JMS providers
	3.24.8. Samples
	3.24.8.1. Receiving from JMS
	3.24.8.2. Sending to a JMS
	3.24.8.3. Using Annotations
	3.24.8.4. Spring DSL sample
	3.24.8.5. Other samples


	3.25. JMX
	3.25.1. URI Format
	3.25.2. URI Options
	3.25.3. ObjectName Construction
	3.25.4. Domain with Name property
	3.25.5. Domain with Hashtable
	3.25.6. Example

	3.26. JPA
	3.26.1. Sending to the endpoint
	3.26.2. Consuming from the endpoint
	3.26.3. URI format
	3.26.4. Options
	3.26.5. Message Headers
	3.26.6. Configuring EntityManagerFactory
	3.26.7. Configuring TransactionManager
	3.26.8. Using a consumer with a named query
	3.26.9. Using a consumer with a query
	3.26.10. Using a consumer with a native query
	3.26.11. Example

	3.27. Jsch
	3.27.1. URI format and options
	3.27.2. Limitations

	3.28. Log
	3.28.1. URI format and Options
	3.28.2. Formatting
	3.28.3. Regular logger sample
	3.28.4. Regular logger with formatter sample
	3.28.5. Throughput logger with groupSize sample
	3.28.6. Throughput logger with groupInterval sample

	3.29. Lucene
	3.29.1. URI format
	3.29.2. Insert Options
	3.29.3. Query Options
	3.29.4. Sending/Receiving Messages to/from the cache
	3.29.4.1. Message Headers
	3.29.4.2. Lucene Producers
	3.29.4.3. Lucene Processor

	3.29.5. Lucene Usage Samples
	3.29.5.1. Example: Creating a Lucene index
	3.29.5.2. Example: Loading properties into the JNDI registry in the Camel Context
	3.29.5.3. Example: Performing searches using a Query Producer
	3.29.5.4. Example: Performing searches using a Query Processor


	3.30. Mail
	3.30.1. URI format
	3.30.1.1. Sample endpoints
	3.30.1.2. Default ports

	3.30.2. Options
	3.30.3. SSL support
	3.30.4. Mail Message Content
	3.30.5. Headers take precedence over pre-configured recipients
	3.30.6. Multiple recipients for easier configuration
	3.30.7. Setting sender name and email
	3.30.8. SUN JavaMail
	3.30.9. Samples

	3.31. Mock
	3.31.1. URI format
	3.31.2. Options
	3.31.3. Simple Example
	3.31.3.1. Using assertPeriod

	3.31.4. Setting expectations
	3.31.4.1. Adding expectations to specific messages

	3.31.5. Mocking existing endpoints
	3.31.6. Limiting the number of messages to keep
	3.31.7. Testing with arrival times

	3.32. MyBatis
	3.32.1. URI format
	3.32.2. Options
	3.32.3. Message Headers
	3.32.4. Message Body
	3.32.5. Samples
	3.32.6. Using StatementType for better control of MyBatis
	3.32.6.1. Using onConsume


	3.33. Properties
	3.33.1. Properties Component
	3.33.1.1. URI format
	3.33.1.2. Options

	3.33.2. Using PropertyPlaceholder
	3.33.2.1. Syntax
	3.33.2.2. PropertyResolver
	3.33.2.3. Defining location
	Using system and environment variables in locations

	3.33.2.4. Configuring in Java DSL
	3.33.2.5. Configuring in Spring XML
	3.33.2.6. Using a Properties from the Registry
	3.33.2.7. Examples using properties component
	3.33.2.8. Examples
	3.33.2.9. Example with Simple language
	3.33.2.10. Additional property placeholder supported in Spring XML
	3.33.2.11. Overriding a property setting using a JVM System Property
	3.33.2.12. Using property placeholders for any kind of attribute in the XML DSL
	3.33.2.13. Using property placeholder in the Java DSL
	3.33.2.14. Using Blueprint property placeholder with Camel routes


	3.34. Quartz
	3.34.1. URI format
	3.34.2. Options
	3.34.3. Configuring quartz.properties file
	3.34.4. Starting the Quartz scheduler
	3.34.5. Clustering
	3.34.6. Message Headers
	3.34.7. Using Cron Triggers
	3.34.8. 

	3.35. Ref
	3.35.1. URI format
	3.35.2. Runtime lookup
	3.35.3. Sample

	3.36. RMI
	3.36.1. URI format
	3.36.2. Options
	3.36.3. Using

	3.37. RSS
	3.37.1. URI format
	3.37.2. Options
	3.37.3. Exchange data types
	3.37.4. Message Headers

	3.38. SEDA
	3.38.1. URI format and options
	3.38.2. Use of Request Reply
	3.38.3. Concurrent consumers
	3.38.4. Thread pools

	3.39. Servlet
	3.39.1. URI format and options
	3.39.2. Message Headers
	3.39.3. Usage
	3.39.4. Sample

	3.40. Shiro Security
	3.40.1. Shiro Security Basics
	3.40.2. Instantiating a ShiroSecurityPolicy Object
	3.40.3. ShiroSecurityPolicy Options
	3.40.4. Applying Shiro Authentication on a Camel Route
	3.40.5. Applying Shiro Authorization on a Camel Route
	3.40.6. Creating a ShiroSecurityToken and injecting it into a Message Exchange
	3.40.7. Sending Messages to routes secured by a ShiroSecurityPolicy

	3.41. SMPP
	3.41.1. URI Format
	3.41.2. URI Options
	3.41.3. Producer Message Headers
	3.41.4. Consumer Message Headers
	3.41.5. Samples

	3.42. SNMP
	3.42.1. URI format
	3.42.2. Options
	3.42.3. The result of a poll
	3.42.4. Examples

	3.43. Spring Integration
	3.43.1. URI format
	3.43.2. Options
	3.43.3. Usage
	3.43.4. Examples
	3.43.4.1. Using the Spring integration endpoint
	3.43.4.2. The Source and Target adapter


	3.44. Spring Security
	3.44.1. Creating authorization policies
	3.44.2. Controlling access to Camel routes
	3.44.3. Authentication
	3.44.4. Handling authentication and authorization errors
	3.44.5. Dependencies

	3.45. SQL Component
	3.45.1. URI format
	3.45.2. Options
	3.45.3. Treatment of the message body
	3.45.4. Result of the query
	3.45.5. Header values
	3.45.6. Configuration in Camel
	3.45.7. 
	3.45.8. Sample
	3.45.9. Using the JDBC based idempotent repository
	3.45.10. Using the JDBC based aggregation repository
	3.45.10.1. What is preserved when persisting
	3.45.10.2. Recovery
	3.45.10.3. Database
	3.45.10.4. Codec (Serialization)
	3.45.10.5. Transaction
	3.45.10.6. Service (Start/Stop)
	3.45.10.7. Aggregator configuration


	3.46. SSH
	3.46.1. URI Format
	3.46.2. Options

	3.47. Stub
	3.47.1. URI Format
	3.47.2. Samples

	3.48. Test
	3.48.1. URI format
	3.48.2. Example

	3.49. Timer
	3.49.1. URI format
	3.49.2. Options
	3.49.3. Exchange Properties
	3.49.4. Message Headers
	3.49.5. Sample

	3.50. Velocity
	3.50.1. URI format
	3.50.2. Options
	3.50.3. Message Headers
	3.50.4. Velocity Context
	3.50.5. Hot reloading
	3.50.6. Dynamic templates
	3.50.7. Samples

	3.51. VM
	3.51.1. URI format
	3.51.2. Options
	3.51.3. Samples

	3.52. XQuery Endpoint
	3.52.1. URI format

	3.53. XSLT
	3.53.1. URI format
	3.53.2. Options
	3.53.3. Using XSLT endpoints
	3.53.4. Getting Parameters into the XSLT to work with
	3.53.5. Spring XML versions
	3.53.6. Using xsl:include

	3.54. Zookeeper
	3.54.1. URI Format and Options
	3.54.2. Use cases
	3.54.2.1. Reading from a znode
	3.54.2.2. Writing to a znode

	3.54.3. ZooKeeper enabled Route policy


	Chapter 4. Talend ESB Mediation Examples

