talend

*open IHLEUIHUE]H solutions

Talend Service Factory
User Guide

5.1 b (Apache CXF 2.5.x/2.6.x series)

Talend Service Factory: User Guide

Publication date 5 July 2012
Copyright © 2011-2012 Talend Inc.

Copyleft

This documentation is provided under the terms of the Creative Commons Public License (CCPL). For more information about what you can
and cannot do with this documentation in accordance with the CCPL, please read: http://creativecommons.org/licenses/by-nc-sa/2.0/

This document may include documentation produced at The Apache Software Foundation which is licensed under The Apache License 2.0.

Notices
Talend and Talend ESB are trademarks of Talend, Inc.

Apache CXF, CXF, Apache Karaf, Karaf, Apache Cellar, Cellar, Apache Camel, Camel, Apache Maven, Maven, Apache Archiva, Archiva
are trademarks of The Apache Foundation.

Eclipse Equinox is a trademark of the Eclipse Foundation, Inc. SoapUl is a trademark of SmartBear Software. Hyperic is a trademark of
VMware, Inc. Nagios is atrademark of Nagios Enterprises, LLC.

All other brands, product names, company names, trademarks and service marks are the properties of their respective owners.

Table of Contents

1. Introduction to Service Creation with TAlend ESBcccoviiiiiiiiiiii e 1
2. JAX-WS DEVEIOPIMENT ...ttt et e et e e e e e eenas 3
2.1 JAX-WS OVEIVIBIW ...ttt ettt ettt e e et e e et e e e et e e e ennneeees 3
2.1.1. SPring INEEOratiONoiueieiieei et e e e e aans 3
2,02, TIANGPOITS ..ttt ettt e e e e eans 3
2.1.3. Support for Various Databindings between XML and Java..............ccooeeeunneene 4

204, BINGINGS -ttt et 4
2.1.5. Message Interception and Modificationocouoviieiiiiiiiiiii e 4
2.1.6. JAX-WS HENAIENS ...ttt 4
207, INEEICEPLOISeeeee ettt et e e e e e e e e e ens 4
2.1.8. Transmitting Binary Dalac..oceuumiieiniiiiieii e 4
2.0.9. WS SUPPOIT .ttt ettt et et e e et e e e e e e e e ees 5
2.1.00. INVOKESS ...ttt ettt e e e e e nneas 5

2.2. JAX-WS Service Devel opment OPLiONSoieeuieriiiiieeie e e 5
2.2.1. JAX-WS Annotated Services from JaVacceevuvieiiiinieiiiiineeecee e 5
2.2.2. JAX-WS Annotated Services from WSDLoovviiiiiiiiiicei e 6
2.2.3. Developing a Service using JAX-WS ..o 6
2.2.4. JAX-WS CONfIQUIELTIONoeeeniiieiei et ea e 19
225, JAX-WS ProVIGErS ..cooviieiiiii ettt 28
2.2.6. WEDSEIVICECONEXTeevviieieeiii et 34

2.3. JAX-WS Client Devel opment OPLIONScceuueieeeiii it e eane 35
2.3.1. WSDL2Java generated CHEeNtcoouuiiiiiiiiiiiiee e 35
2.3.2. JAX-WS PrOXY evveieeeeitie ettt ettt 35
2.3.3. JAX-WS DiSPaCh APISoiiiiiiiie e 35
2.3.4. USAOE MOUES ... ettt ettt et e 36
2.3.5. DELA TYPES ..eueeeiteitee ettt ettt a e 37
2.3.6. Working with Dispatch OBJECEScvvviiiiiiii e, 38
2.3.7. Developing @ CONSUIMESiuuuiitieeie et e e e e e e et e e e e aanas 41

2.4. Data Binding OPLIONSiiuuiiieiei e et e ean e 56
240, AABOIS ettt 57
2.4.2. JAXB e 66
2.4.3. MTOM AttachmentS With JAXBccooviiiiiiiiiie e 69
244, SDO ... 72

245, XIMLBEANSciiiiiieiie et 73

2.5, CXF TFANSPOMS ...ctieit ettt ettt e et e e et et et et e e e e e e e e e e eneees 74
250 HTTP TranSpOrtc.nceeeie ettt e e e e ees 74
2.5.2. IMS TIANSPOMT ...eieneieeeie ettt et et e e e e e e eanes 94

2.6 WS SUPPOIT ...ttt ettt et et et e e et e e e enaas 110
2.6.1. WS- AAArESSING ..evvneieeiiieieeii et e 110
2.6.2. WSPOIICY ...ttt 111
2.6.3. WS-Reliabl&MESSAgINGueevnieiiiaiiieeie e 121
2.6.4, WS-SeCUr€CONVEISALIONcvveriiieieeii e eeeii et e e e e e e e enees 122
2.6.5. WS SECUMEY ...eeeitiiee ettt et et 123
2.6.6. WS-SECUNLYPOIICY ..coovviieeiiiie e 133
2.6.7. WSTIUSE ..ttt e e e enens 136

2.7. CXF CUSIOMIZALTIONSeeeeiiiieeeeei ettt e et e e e et e e e et e e e enn e eeees 139
2.7. 0 ANNOLBEIONS ...eeetei ettt et e r e e e e 139
2.7.2. DYNAMIC CHENES ..evutiiieiii et e e e eaens 142

2.8. CXF Command-Line TOOISeviiiiiiiiii e 143
2.8. 1. WSDL 10 JAVA ...ceevviieeeeiii ettt 144
2.8.2. JAVATO WS ... 145

2.9. JAX-WS Development With ECHPSEc.uiiiiniiiiiiii e 147
3. JAX-RS DEVEIOPIMENT ...ttt 155
3L JAX-RS OVEIVIBIV ...ttt et 155
3.1.1. Root Resources and SUD RESOUICESuuevieriieeiiiieeeeet e 155
3.1.2. Path, HTTP Method and MediaType annotationsc.coceuveeuiieeennennn. 157

Talend Enterprise Service Factory User Guide

Talend Service Factory

3.1.3. Request Message, Parameters and ContextSccuveviiieiiineeiineiiiieecineens 158

3.1.4. Responses from Resource Methodscooevviveiiiiiiiiececeece e, 159

3.1.5. EXCeption Handlingccovuiiiiiiiii e e e 159

3.1.6. Custom JAX-RS ProVIGErSccccuuieiiiiiiieiiiiie e ee e e et e et eens 160

I O T o) N P 160
3.2 L HTTP CentriC APl ..ottt 160

B.2.2. PrOXY APl o 161

3.2.3. Reading and Writing HTTP MESSAgEScvvvuieiiieiiii e e e e 162

3.2.4. EXCeption Handlingcccouuieiiiiiiiii e e e 163

3.3. Working With Attachmentscocoiiiiiiiii e 163
3.3.1. Reading AttaChmentScc.uieiiiiiiii e e e e 163

3.3.2. Writing AtaChMENESvuiiiici e e s 164

3.3.3. Uploading fil€S ..vuiie i 166

3.3.4. FOrms and MUIIPartScc.uoeeuuiiiiiiieii e e e e e 166

3.3.5. XOP SUPPIOI . vuttiiineie ittt e e e e e e e e e e et e e e e e 168

I3/ @)y T 1W =i o] o 168
3.4.1. Configuration of ENAPOINSoiuiiiiiieiiii e ce e e e e e e 168

3.4.2. Configuration Of CHENESccuuiiiiiiiiii e e e 170

ST U (o= PSP 170
3.5.1. Creating a Basic JAX-RS endpointcccoeuuieiiiieiiiieiiiieeneeee e e 170

4. JAX-RS @N0 OAULN2 ...ouii e aaaa 175
4.1, Introduction t0 OAULNZiiei e 175

4.2, Developing OAULN2 SEIVEISu.iiii i e e e e aans 176
4.2.1. AULhOrIZEHION SEIVICE ..vvuiiiiiii e e 176

4.2.2. ACCESSTOKENSEIVICE ..evvvueiiiiiieeeiie e et s et e et e et e e et e e e et 179

4.2.3. Writing OAUthDataProVIercocovviiiiiiiiice e 180

4.2.4. OAuth Server JAX-RS endpOintScouveiiiieiiiiieiii e e e e e 181

4.3. Protecting resources with OAULh2 filtersccooevii i 182

4.4. How to get the user [0gin NAMEiiiiiiiiiii e 182

I O T= 01 Bt Yo LI T o] oo o A 183

4.6. OAUth2 without Explicit AUthOMZationcooviiieiiii e 184

4.7. OAUth2 WIthOUL @ BIOWSEYuiiiiiiii e e 184

4.8. Controlling the AcCess t0 RESOUICE SEIVEScccvuiiiiiieeiiieiii e 184
4.8.1. Sharing the same access path between end users and clients....................... 185

4.8.2. Providing different access points to end users and clients.......................... 186

5. Combining JAX-WS and JAX-RScouiiiiiiiii e 187
5.1. Using Java-First APProachccoouuiiiiiiiiii e 187

5.2. Using Document-First APProachccuviiiiiiiiiiiiie e 188

6. Talend ESB Service Recommended Project Structurecovvvevvieiiiiniiii e 189
7. Talend ESB Service EXaMPIESccvuiiiiiiii e e e e e e e e e e 191
8. Configuring JIMX INEEGIaioNccuueiiiieiii e e e e e e e e e e e e e e eaen 193
8.1. Example Configurationc..oiiiiiiiiiii i 194

8.2. How to get web service performance MetriCsooovuvveviiiiiiiiiii e 195

iv Talend Enterprise Service Factory User Guide

List of Examples

2.1. Implementation of the Greeter SEIVICEc.uu i 8
2.2, SIMPLE SEL oo e 10
2.3, Implementation fOor SEI ... 10
2.4. Interface with the @WebService ANNOLALIONvuivieiiiie e e e 12
2.5. Annotated Service Implementation Classcouuiiiiiiiiiiiii e 12
2.6. Specifying an RPC/LITERAL SOAP BiNdiNgc..oceuuiiiiiiiiiiieiieeii e 14
2.7. SEI with Annotated MEthOdSocvviiiieie e 16
2.8. Fully Annotated SEIooiiiiii e 18
2.9. Outline of a Generated SErViCe ClaSSiiiieriiieiiiiie et e 46
2.10. The Greeter Service Endpoint INterface ..o, 47
2.11. Setting a Request Context Property on the Client Side..........c.ooeveiiiiiiiiieee, 49
2.12. Reading a Response Context Property on the Client Side............cooiviiiiiiiiiiinecieeen, 50
2.13. Template for an Asynchronous Binding Declarationcccoiviiiiiiiiniiiniiiineeees 52
2.14. Service Endpoint Interface with Methods for Asynchronous Invocations......................... 53
2.15. Polling Approach for an Asynchronous Operation Callccoiiiiiiiiiiiiiiiies 54
2.16. The javax.xml.ws AsyncHandler Interfaceoooeeiiiiiiii e 55
2.17. The TestAsyncHandler Callback Classcouuiiiiiiiiiii e 55
2.18. Callback Approach for an Asynchronous Operation Callccooviiiiiiiiiiiiiiiiiiieenn, 56
2.19. HTTP Consumer Configuration NaMESPACEccuuueerueernaiiiaeeieeet e eaiaeeiiaeeeieeennnes 76
2.20. http-conf:conduit EIEMENtcoouiii e 76
2.21. HTTP Consumer Endpoint Configurationooieuiiiuiiiiieiiieee e 79
2.22. HTTP conduit configuration disabling HTTP URL hostname verification (usage of

ToTor= 1 0o 1S F = (o) R PP UPTR PP 80
2.23. HTTP Consumer WSDL Element's NamMESPACEccuuneietniiiiaeeieeeiieeeeieeaie e e e 81
2.24. WSDL to Configure an HTTP Consumer Endpointcocouiiiiiiiiiiiiiiieeceeeeen, 81
2.25. Adding the Configuration NaMESPECEccuuniieiieeieiei ettt e e 86
2.26. http-conf:destination EIEMENtoiiuniiii e e 86
2.27. HTTP Service Provider Endpoint Configurationooeuuieiuiiiiiieiieeiineeieeeeieee 88
2.28. HTTP Provider WSDL Element's NamMESPACEccuuuierneeiieeiiieeeiaeeieeeiaeeaiaeeeiaaes 88
2.29. WSDL to Configure an HTTP Service Provider Endpointocouiiiiiiiiiiiiiiiiies 88
2.30. IMS EXIENSION NAMESPECE ... cevneeeiieiii et e ettt ettt e et e et e e e e e e e ea e ean e 95
2.31. IMS Configuration NAMESPACESuuieuneiieeii et e e e e e et e e e e et e aeaeaeens 95
2.32. IMS WSDL POrt SPeCifiCatioNnoveieeiiiieiiiiie et 97
2.33. Addressing Information in a Configuration File ..o, 98
2.34. Configuration for a IMS Consumer ENAPOINtoceuuiiuiiiiiieiieeei e 99
2.35. Configuration for a JIMS Service ENdPOintccuuviiiiiiiiiiieee e 101
2.36. IMS Session Pool CONfIGUIELTIONceuuiiieiii e e e 102
2.37. IMS Consumer Endpoint Runtime Configurationcoceeiiieiiiiiieiieeieeeeeeen, 103
2.38. IMS Service Endpoint Runtime Configurationccoveeiiiiiiniiiiieeeeeeee e 103

Talend Enterprise Service Factory User Guide

Talend Enterprise Service Factory User Guide

Chapter 1. Introduction to Service Creation
with Talend ESB

Talend ESB provides users with an easy-to-use solution for service enablement. Talend ESB incorporates the
industry leading open source Apache CXF implementation of JAX-WS and helps you create new services and
also service enable your existing applications and interfaces. It provides a lightweight, modular architecture that
is based on the popular Spring Framework, so it works with your application, regardless of the platform on which
it is running. It can be run as a stand-alone Java applications, as part of a servlet engine, such as Tomcat, as an
OSGi bundle on an OSGi container such as Equinox, or within a JEE server.

Talend ESB supportsthe creation of SOAP and REST web services, with full WS-*functionality, including support
for WS- Addressing, WS-Reliable Messaging, and WS-Security over both HTTP and JM S transports. Developers
use a declarative, policy-centric approach to enable different qualities of service through configuration, rather
than code.

CXF hasbeen certified and tested against the broadest set of vendor implementationsfor the various WS standards.
Users benefit from this interoperability testing, which reduces the overall cost and complexity for application
integration.

The Talend ESB distribution goes beyond Apache CXF, with support for OSGi containers along with illustrative
examples, freely available for download. CXF development tools include support for Maven plug-ins, WSDL
document creation, and Spring configuration generation.

Talend Enterprise Service Factory User Guide

Talend Enterprise Service Factory User Guide

Chapter 2. JAX-WS Development

2.1. JAX-WS Overview

CXF implements the JAX-WS APIs which make building web services easy. JAX-WS encompasses many
different areas. Generating WSDL from Java classes and generating Java classes from WSDL, a Provider API
which alows you to create simple messaging receiving server endpoints, and a Dispatch APl which allows you
to send raw XML messages to server endpoints. Apache CXF supports a variety of web service specifications
including WS-Addressing, WS-Policy, WS-ReliableM essaging and WS-Security. Architectural aspects of CXF
include the following:

2.1.1. Spring Integration

Spring is afirst class citizen with Apache CXF. CXF supports the Spring 2.0 XML syntax, making it trivial to
declare endpoints which are backed by Spring and inject clients into your application.

2.1.2. Transports

CXF works with many different transports. Currently CXF includes support for HTTP, IMS, and Local (that is,
"in-JVM") transports. The local transport is unique in that it will not work across machines, but simply sends
messages in memory. Y ou can also configure thelocal transport to avoid serialization by using the Object binding
or the colocation feature if desired. Y ou can also write your own transport.

Talend Enterprise Service Factory User Guide

Support for Various Databindings between XML and Java

2.1.3. Support for Various Databindings between XML
and Java

CXF provides support for multiple databindings, including JAXB, XML Beans, and Aegis Databinding (2.0.x),
is our own databinding library that makes devel opment of code-first web servicesincredibly easy. Unlike JAXB,
you don't need annotations at all. It also works correctly with a variety of datatypes such as Lists, Maps, Dates,
etc. right out of the box. If you're building a prototype web services that's really invaluable as it means you have
to do very little work to get up and running.

2.1.4. Bindings

Bindings map a particular service's messages to a particular protocol. CXF includes support for several different
bindings. The SOAP binding, which is the default, maps messages to SOAP and can be used with the various
WS-* modulesinside CXF. The Pure XML binding avoids serialization of a SOAP envelope and just sends araw
XML message. Thereisaso an HTTP Binding which maps a serviceto HTTP using RESTful semantics.

2.1.5. Message Interception and Modification

Many times you may want to provide functionality for your application that works at a low level with XML
messages. This commonly occurs through functionality referred to as Handlers or Interceptors. Handlers/
Interceptors are useful for:

 Performing authentication based on Headers
 Processing custom headers

» Transforming amessage (i.e. viaXSLT or GZip)
» Redirecting a message

» Getting access to the raw 1/O or XML stream

2.1.6. JAX-WS Handlers

If you are using the JAX-WS frontend, JAX-WS supports the concept of logical and protocol handlers. Protocol
handlers allow you to manipulate the message in its raw, often XML-based, form - i.e. a SAAJ SOAPMessage.
Logica handlers allow you to manipul ate the message after its already been bound from the protocol to the JAXB
object that your service will receive.

2.1.7. Interceptors

Interceptors provide access to all the features that CXF has to offer - alowing you to do just about anything,
including manipulating the raw bytes or XML of the message.

2.1.8. Transmitting Binary Data

CXF provides facilities to transmit binary data efficiently via a standard called MTOM. Normally binary data
inside an XML message must be Base64 encoded. This results in processing overhead and increases message

4 Talend Enterprise Service Factory User Guide

http://localhost:8080/confluence/pages/viewpage.action?pageId=1343563

WS-* Support

size by 30%. If you use MTOM, CXF will send/receive MIME messages with the message stored as a MIME
attachment, just likeemail. Thisresultsin much moreefficient communication and allowsyou to transmit messages
much larger than memory.

2.1.9. WS-* Support

CXF supports a variety of web service specifications including WS-Addressing, WS-Policy, WS-
ReliableMessaging and WS-Security.

2.1.10. Invokers

Invokersallow you to customize how aparticular method or backend service object isexecuted. Thisisparticularly
useful if your underlying service objects are not plain javabeans and instead need to be created or looked up via
acustom factory.

2.2. JAX-WS Service Development Options

2.2.1. JAX-WS Annotated Services from Java

The JAX-WS APIsinclude a set of annotations which allow you to build services using annotated classes. These
services are based on a single class which contains a set of operations.

Here's asimple example:

@\ebService
public class Hello {
public String sayHi (String nanme) {
return "Hello " + naneg;

}
}

JAX-WS includes many more annotations as well such as:

* @WebMethod - allowsyou to customize the operation name, excludethe operation frominclusioninthe service,
etc

* @WebParam - alows you to customize a parameter's name, namespace, direction (IN or OUT), etc
* @WebResult - allows you to customize the return value of the web service call

Datais marshalled from XML to Java and vice versaviathe JAXB data-binding.

Services are publish via one of two means:

» The JAX-WS standard Endpoint APIs

» CXF's XML configuration format - i.e. <jaxws.endpoint ... />

Talend Enterprise Service Factory User Guide 5

https://jax-ws.dev.java.net/jax-ws-ea3/docs/annotations.html#1.%20Overview%7Coutline

JAX-WS Annotated Services from WSDL

2.2.2. JAX-WS Annotated Services from WSDL

If you have existing WSDLs for your service or wish to write your WSDL first and then generate classes, CXF
has many tools to help you do this.

The WSDL 2Java tool will generate a JAX-WS annotated service and server stub from your WSDL. Y ou can run
it one of three ways:

* The command line
» The Maven plugin
* With the WSDL 2Java APl

Note that CXF generally restricts WSDL support to WSI-BP, not the full WSDL 1.1 specification.

2.2.3. Developing a Service using JAX-WS

Y ou can develop a service using one of two approaches:
 Start with aWSDL contract and generate Java objects to implement the service.

 Start with a Java object and service enable it using annotations. For new development the preferred path is
to design your services in WSDL and then generate the code to implement them. This approach enforces the
concept that aserviceisan abstract entity that isimplementation neutral. It also meansyou can spend moretime
working out the exact interface your service requires before you start coding.

However, there are many cases where you may need to service enable an existing application. While JAX-WS
eases the process, it does require that you make some changes to source code of your application. Y ou will need
to add annotations to the source. It also requires that you migrate your code to Java 5.0.

2.2.3.1. WSDL First Development

Using the WSDL first model of service development, you start with a WSDL document that defines the service
you wish to implement. This WSDL document could be obtained from another developer, a system architect, a
UDDI registry, or you could writeit yourself. The document must contain at least afully specified logical interface
before you can begin generating code fromit.

Once you have aWSDL document, the process for developing a JAX-WS service is three steps:
1. Generate starting point code.
2. Implement the service's operations.

3. Publish the implemented service.

Generating the Starting Point Code

JAX-WS specifiesadetailed mapping from aservice defined in WSDL to the Java classes that will implement that
service. Thelogical interface, defined by thewsdl : por t Type element, ismapped to aservice endpoint interface
(SEI). Any complex types defined in the WSDL are mapped into Java classes following the mapping defined
by the Java Architecture for XML Binding (JAXB) specification. The endpoint defined by thewsdl : ser vi ce
element isalso generated into a Java classthat is used by consumersto access endpointsimplementing the service.

6 Talend Enterprise Service Factory User Guide

Developing a Service using JAX-WS

The wsdl2java command automates the generation of this code. It also provides options for generating starting
point code for your implementation and an ant based makefile to build the application. wsdl2java provides a
number of arguments for controlling the generated code.

Running wsdl2java

Y ou can generate the code needed to develop your service using the following command: wsdl2java -ant -impl
-server -d outputDir myService.wsdl

The command does the following:
» The-ant argument generates a Ant makefile, called bui | d. xm , for your application.
e The-i npl argument generatesashell implementation classfor each portType element inthe WSDL document.

» The-server argument generatesasimple mai n() to launch your service as a stand aone application.

The-d out put Di r argument tells wsdl2java to write the generated code to a directory called outputDir.

* nyServi ce. wsdl isthe WSDL document from which code is generated.

Generated code

Tablel [7] describes the files generated for creating a service.

Table 1. Generated Classesfor a Service

File Description

port TypeNane. j ava The SEI. This file contains the interface your service
implements. Y ou should not edit thisfile.

servi ceNane. j ava The endpoint. This file contains the Java class your
clientswill use to make requests on the service.

port TypeNanel npl . j ava The skeleton implementation class. You will modify
thisfile to implement your service.

port TypeNane_port TypeNane. .. A basic server mai n() that allows you to deploy your

| mpl Port _Server.java service as a stand alone process.

Implementing the Service

Once the starting point code is generated, you must provide the business logic for each of the operations defined
in the service'sinterface.

Generating the implementation code
Y ou generate the implementation class for your service with wsdl2java's-i npl flag.
i Tip

If your service's contract included any custom typesdefined in XML Schema, you will also need to ensure
that the classes for the types are also generated and available.

Talend Enterprise Service Factory User Guide 7

Developing a Service using JAX-WS

Generated code
The service implementation code consists of two files:
» port TypeNane. j ava isthe service interface(SEl) for the service.

e port TypeNanel npl . j ava istheclass you will use to implement the operations defined for the service.

Implement the operation's logic

You provide the business logic for your service's operations by completing the stub methods in
port TypeNanel npl . j ava . For the most part, you use standard Javato implement the businesslogic. If your
service uses custom XML Schema types, you will need to use the generated classes for each type to manipulate
them. There are also some CXF specific APIs that you can use to access some advanced features.

Example

For example, an implementation class for a service that defined the operations sayH and gr eet Me may look
like the below example.

Example 2.1. Implementation of the Greeter Service

package deno. hw. server;
i mport org.apache. hell o_world _soap_http. Greeter;

@ avax.jws. WebServi ce(port Nane = "SoapPort", serviceNane = "SQAPServi ce",
t ar get Namespace = "http://apache.org/hello world_soap_http",
endpoi ntI nterface = "org. apache. hel | o_worl d_soap_http. Geeter")

public class Greeterlnpl inplements Geeter {

public String greetMe(String nme) {
System out. println("Executing operation greetMe");
Systemout. println("Mssage received: " + me + "\n");
return "Hello " + ne;

}

public String sayHi () {
System out. println("Executing operation sayH \n");
return "Bonjour";

2.2.3.2. Java First Development

To create a service starting from Java you need to do the following:
1. Create a Service Endpoint Interface (SEI) that defines the methods you wish to expose as a service.
i Tip

Y ou can work directly from a Java class, but working from an interface is the recommended approach.
Interfaces are better for sharing with the developers who will be responsible for developing the

8 Talend Enterprise Service Factory User Guide

Developing a Service using JAX-WS

applications consuming your service. Theinterfaceis smaller and does not provide any of the service's
implementation details.

2. Add the required annotations to your code.
3. Generate the WSDL contract for your service.
i Tip
If you intend to use the SEI as the service's contract, it is not necessary to generate a WSDL contract

4, Publish the service.

Creating the SEI

The service endpoint interface (SEI) is the piece of Java code that is shared between a service and the consumers
that make requests on it. When starting with a WSDL contract, the SEI is generated by the code generators.
However, when starting from Java, it is the up to a developer to create the SEI.

There are two basic patterns for creating an SEl:

» Green field development Y ou are developing a new service from the ground up. When starting fresh, it is best
to start by creating the SEI first. You can then distribute the SEI to any developers that are responsible for
implementing the services and consumers that use the SEI.

Note

The recommended way to do green field service development is to start by creating a WSDL contract
that defines the service and itsinterfaces.

» Service enablement In this pattern, you typically have an existing set of functionality that is implemented as a
Java class and you want to service enable it. This means that you will need to do two things:

1. Create an SEI that contains only the operations that are going to be exposed as part of the service.

2. Modify the existing Java class so that it implements the SEI.

Note

Y ou can add the JAX-WS annotations to a Java class, but that is not recommended.

Writing the interface

The SEI is a standard Java interface. It defines a set of methods that a class will implement. It can also define a
number of member fields and constants to which the implementing class has access.

In the case of an SEI the methods defined are intended to be mapped to operations exposed by a service. The SEI
correspondstoawsdl : port Type element. The methods defined by the SEI correspondtowsdl : oper ati on
elementsinthewsdl : port Type element.

i Tip

JAX-WS defines an annotation that allowsyou to specify methodsthat are not exposed as part of aservice.
However, the best practice is to leave such methods out of the SEI.

The below shows asimple SEI for a stock updating service.

Talend Enterprise Service Factory User Guide 9

Developing a Service using JAX-WS

Example 2.2. Simple SEI

package org. apache. cxf;

public interface QuoteReporter

{
public Quote getQuote(String ticker);

}

Implementing the interface

Because the SEl isastandard Javainterface, the classthat implementsit isjust astandard Javaclass. If you started
with aJavaclassyou will need to modify it to implement theinterface. If you are starting fresh, the implementation
class will need to implement the SEI.

The below shows a class for implementing the above [10] interface. .

Example 2.3. Implementation for SEI

package org. apache. cxf;
i mport java.util.*;

public class StockQuot eReporter inplenments QuoteReporter
{

public Quote getQuote(String ticker)
{

Quote retVal = new Quote();
retVal .setl D(ticker);
ret Val . set Val (Board. check(ticker));[1]
Date retDate = new Date();
retVal .setTinme(retDate.toString());
return(retVval);

Annotating the Code

JAX-WS relies on the annotation feature of Java 5. The JAX-WS annotations are used to specify the metadata
used to map the SEI to a fully specified service definition. Among the information provided in the annotations
are the following:

» Thetarget namespace for the service.
» The name of the class used to hold the request message.
» The name of the class used to hold the response message.

« If an operation is aone way operation.

The binding style the service uses.

e The name of the class used for any custom exceptions.

10 Talend Enterprise Service Factory User Guide

Developing a Service using JAX-WS

 The namespaces under which the types used by the service are defined.

i Tip

Most of the annotations have sensible defaults and do not need to be specified. However, the more
information you provide in the annotations, the better defined your service definition. A solid service
definition increases the likely hood that all parts of a distributed application will work together.

Required Annotations

In order to create a service from Java code you are only required to add one annotation to your code. Y ou must
add the @\ébSer vi ce() annotation on both the SEI and the implementation class.

The @WebService annotation

The @\¥bSer vi ce annotation is defined by thej avax. j ws. WebSer vi ce interface and it is placed on an
interface or a class that is intended to be used as a service. @\ébSer vi ce hasthe following properties:

Property

Description

name

Specifiesthe name of the serviceinterface. Thisproperty ismapped to the name
attribute of thewsdl : por t Type element that defines the service's interface
inaWSDL contract. The default is to append Por t Type to the name of the
implementation class.

targetNamespace

Specifies the target namespace under which the service is defined. If this
property is not specified, the target namespace is derived from the package
name.

serviceName

Specifies the name of the published service. This property is mapped to the
nane attribute of the wsdl : servi ce element that defines the published
service. The default is to use the name of the service's implementation class.
Note: Not allowed on the SEI

wsdlL ocation

Specifiesthe URI at which the service's WSDL contract is stored. The default
isthe URI at which the service is deployed.

endpointInterface

Specifies the full name of the SEI that the implementation class implements.
This property is only used when the attribute is used on a service
implementation class. Note: Not allowed on the SEI

portName Specifies the name of the endpoint at which the service is published. This
property is mapped to the nane attribute of the wsdl : port element that
specifies the endpoint details for a published service. The default isthe append
Port to the name of the service's implementation class. Note: Not allowed
on the SEI

i Tip

Y ou do not need to provide values for any of the @\ebSer vi ce annotation's properties. However, it is
recommended that you provide as much information as you can.

Annotating the SEI

The SEI requiresthat you add the @\¥bSer vi ce annotation. Sincethe SEI isthe contract that definesthe service,
you should specify as much detail as you can about the service in the @\ébSer vi ce annotation's properties.

Talend Enterprise Service Factory User Guide 11

Developing a Service using JAX-WS

The below shows the interface defined in above [10] with the @\¥bSer vi ce annotation.

Example 2.4. I nterface with the @WebService Annotation
package com nyconpany. deno;
i mport javax.jws.?*;

@\ebServi ce(name="quot eUpdater ",

t ar get Namespace="http://cxf. apache. org",

wsdl Locati on="htt p://somewher e. cont quot eExanpl eSer vi ce?wsdl ")
public interface QuoteReporter

{
public Quote get Quote(@¥bParam nane="ticker") String ticker);

}

The @\bSer vi ce annotation above does the following:

1. Specifiesthat the value of the name attribute of thewsdl : port Type element defining the service interface
isquot eUpdat er .

2. Specifiesthat the target namespace of the service is http://cxf.apache.org.

3. Specifies that the service will use the pre-defined WSDL contract published at http://somewhere.com/
guoteExampleServicewsdl.

The @WebParam annotation is necessary as java interfaces do not store the Parameter name in the .classfile. So
if you leave out the annotation your parameter will be named argO.

Annotating the service implementation

In addition to annotating the SEI with the @\bSer vi ce annotation, you also have to annotate the
service implementation class with the @\ebSer vi ce annotation. When adding the annotation to the service
implementation class you only need to specify the endpoi nt | nt er f ace property. As shown in the next
exampl e the property needs to be set to the full name of the SEI.

Example 2.5. Annotated Service | mplementation Class
package org. apache. cxf;
i mport javax.jws.*;

@\ebServi ce(endpoi nt I nterface="org. apache. cxf. quot eReporter"”,
t ar get Namespace="http://cxf. apache. org",
port Nane=" St ockQuot ePort ",
servi ceNane=" St ockQuot eReporter",

)
public class StockQuot eReporter inplenments QuoteReporter

{
public Quote getQuote(String ticker)

{

}

12 Talend Enterprise Service Factory User Guide

Developing a Service using JAX-WS

Optional Annotations

Whilethe @\ébSer vi ce annotation is sufficient for service enabling a Javainterface or a Javaclass, it does not
provide alot of information about how the service will be exposed as an endpoint. The JAX-WS programming
model uses a number of optional annotations for adding details about your service, such as the binding it uses, to
the Java code. Y ou add these annotations to the service's SEI.

i Tip

The more details you provide in the SElthe easier it will be for developers to implement applications that
can use the functionality it defines. It will also provide for better generated WSDL contracts.

Defining the Binding Properties with Annotations

If you are using a SOAP binding for your service, you can use JAX-WS annotations to specify a number of the
bindings properties. These properties correspond directly to the properties you can specify in a service's WSDL
contract.

The @SOAPBiInding annotation

The @OAPBI ndi ng annotation is defined by thej avax. j ws. soap. SOAPBI ndi ng interface. It provides
details about the SOAP binding used by the service when it is deployed. If the @SOAPBI ndi ng annotation is not
specified, a service is published using awrapped doc/literal SOAP binding.

You can put the @QOAPBI ndi ng annotation on the SEI and any of the SEl's methods. When it is used on a
method, setting of the method's @OAPBI ndi ng annotation take precedent.

The following table shows the properties for the @SOA PBinding annotation.

Property Values Description
style St yl e. DOCUMENT (default) | Specifies the style of the SOAP
Styl e. RPC message. If RPC style is specified, each

message part within the SOAP body is
a parameter or return value and will
appear inside a wrapper element within
thesoap: body element. The message
parts within the wrapper element
correspond to operation parameters
and must appear in the same order
as the parameters in the operation.
If DOCUMENT style is specified, the
contents of the SOAP body must be a
valid XML document, but itsformis not
astightly constrained.

use Use. LI TERAL (default) | Specifies how the data of the SOAP
Use. ENCODED message is streamed.

parameterStyle Par anet er Styl e. BARE Specifies how the method parameters,
Par anet er St yl e. WRAPPED which correspond to message parts in
(default) a WSDL contract, are placed into the

SOAP message body. A parameter style
of BARE means that each parameter
is placed into the message body as
a child element of the message root.

Talend Enterprise Service Factory User Guide 13

Developing a Service using JAX-WS

Property

Values Description

A parameter style of WRAPPED means
that all of the input parameters are
wrapped into a single element on a
request message and that all of the
output parameters are wrapped into a
single element in the response message.
If you set the style to RPC you must use
the WRAPPED parameter style.

The below shows an SEI that uses rpc/literal SOAP messages.

Example 2.6. Specifying an RPC/LITERAL SOAP Binding

package org.eric. deno;

i mport javax.jws.*;

i mport javax.jws.soap.*;
i mport javax.jws.soap. SOAPBi ndi ng. *;

@\¢bSer vi ce(nane="quot eReporter")
@0APBI ndi ng(styl e=Styl e. RPC, use=Use. LI TERAL)
public interface QuoteReporter

{
}

Defining Operation Properties with Annotations

When the runtime maps your Java method definitionsinto XML operation definitionsit fillsin details such as:

» what the exchanged messages look likein XML.

« if the message can be optimized as a one way message.

« the namespaces where the messages are defined.

The @WebMethod annotation

The @\¥bMet hod annotation is defined by the j avax. j ws. WebMet hod interface. It is placed on the
methods in the SEI. The @\¥bMet hod annotation provides the information that is normally represented in the
wsdl : oper at i on element describing the operation to which the method is associated.

The following table describes the properties of the @¥bMet hod annotation.

Property

Description

operationName

Specifiesthevalue of the associatedwsdl : oper at i on element'sname. The
default value is the name of the method.

action Specifies the value of the soapAct i on attribute of thesoap: oper ati on
element generated for the method. The default value is an empty string.

exclude Specifies if the method should be excluded from the service interface. The
defaultisf al se .

14 Talend Enterprise Service Factory User Guide

Developing a Service using JAX-WS

The @RequestWrapper annotation

The @Request W apper annotation is defined by the j avax. xm . ws. Request W apper interface. It is
placed on the methods in the SEI. As the name implies, @Request W apper specifies the Java class that
implements the wrapper bean for the method parameters that are included in the request message sent in aremote
invocation. It is also used to specify the element names, and namespaces, used by the runtime when marshalling
and unmarshalling the request messages.

The following table describes the properties of the @RequestWrapper annotation.

Property Description

localName Specifiesthe local name of the wrapper element in the XML representation of
the request message. The default value is the name of the method or the value
of the @\ébMet hod annotation's oper at i onNane property.

targetNamespace Specifies the namespace under which the XML wrapper element is defined.
The default value is the target namespace of the SEI.
className Specifies the full name of the Java class that implements the wrapper element.
i Tip

Only the cl assNarme property is required.

The @ResponseWrapper annotation

The @ResponseW apper annotation is defined by the j avax. xm . ws. ResponseW apper interface. It
is placed on the methods in the SEI. As the name implies, @ResponseW apper specifies the Java class that
implementsthe wrapper bean for the method parametersthat areincluded in the response message sent in aremote
invocation. It is also used to specify the element names, and namespaces, used by the runtime when marshalling
and unmarshalling the response messages.

The following table describes the properties of the @ResponseW apper annotation.

Property Description

localName Specifies the local name of the wrapper element in the XML representation
of the response message. The default value is the name of the method
with Response appended or the value of the @\bMet hod annotation's
oper at i onName property with Response appended.

targetNamespace Specifies the namespace under which the XML wrapper element is defined.
The default value is the target namespace of the SEI.
className Specifies the full name of the Java class that implements the wrapper element.
i Tip

Only the cl assNane property is required.

The @WebFault annotation

The @¥bFaul t annotationisdefined by thej avax. xm . ws. WebFaul t interface. Itisplaced on exceptions
that are thrown by your SEI. The @\¥bFaul t annotation is used to map the Java exceptionto awsdl : f aul t

Talend Enterprise Service Factory User Guide 15

Developing a Service using JAX-WS

element. This information is used to marshall the exceptions into a representation that can be processed by both
the service and its consumers.

The following table describes the properties of the @\bFaul t annotation.

Property Description
name Specifies the local name of the fault element.
targetNamespace Specifies the namespace under which the fault element is defined. The default
value is the target namespace of the SEI.
faultName Specifies the full name of the Java class that implements the exception.
| mportant

The nane property is required.

The @Oneway annotation

The @neway annotationisdefined by thej avax. j ws. Oneway interface. Itisplaced onthe methodsinthe SEI
that will not require aresponse from the service. The @neway annotation tells the run time that it can optimize
the execution of the method by not waiting for aresponse and not reserving any resources to process a response.

Example

The next example shows an SEI whose methods are annotated.

Example 2.7. SEI with Annotated M ethods
package org. apache. cxf;

i mport javax.jws.*;
i mport javax.xm .ws.*;

@\éebSer vi ce(name="quot eReporter")
public interface QuoteReporter
{
@\ebMet hod(oper at i onNane="get St ockQuot e")
@Request W apper (t ar get Nanespace="htt p: // denp. myconpany. coni t ypes",
cl assNane="j ava. |l ang. String")
@ResponseW apper (t ar get Nanmespace="htt p:// deno. nyconpany. conf t ypes",
cl assNane="org. eri c. denp. Quot e")
public Quote getQuote(String ticker);

Defining Parameter Properties with Annotations

The method parametersin the SEI coresspond to thewsdl : message elementsand their wsdl : part elements.
JAX-WS provides annotations that allow you to describe the wsdl : part elements that are generated for the
method parameters.

16 Talend Enterprise Service Factory User Guide

Developing a Service using JAX-WS

The @WebParam annotation

The @\bPar amannotation isdefined by thej avax. j ws. WebPar aminterface. It is placed on the parameters
on the methods defined in the SEI. The @\bPar am annotation allows you to specify the direction of the
parameter, if the parameter will be placed in the SOAP header, and other properties of the generatedwsdl : part .

The following table describes the properties of the @\bPar amannotation.

Property Description

name Specifies the name of the parameter as it appears in the WSDL. For RPC
bindings, this is name of the wsdl : part representing the parameter. For
document bindings, this is the local name of the XML element representing
the parameter. Per the JAX-WS specification, the default isargN , where N is
replaced with the zero-based argument index (i.e., arg0, argl , etc.)

targetNamespace Specifies the namespace for the parameter. It is only used with document
bindings where the parameter maps to an XML element. The defaultsisto use
the service's namespace.

mode Specifies the direction of the parameter: Mode.IN (default), Mode.OUT,
Mode.INOUT

header Specifiesif the parameter is passed as part of the SOAP header. Vaues of true
or false (default).

partName Specifies the value of the name attribute of the wsdl : part element for the

parameter when the binding is document.

The @WebResult annotation

The @¥bResul t annotation is defined by the j avax. j ws. WebResul t interface. It is placed on the
methods defined in the SEI. The @¥bResul t annotation allows you to specify the properties of the generated
wsdl : part that isgenerated for the method's return value.

The following table describes the properties of the @¥bResul t annotation.

Property Description

name Specifies the name of the return value as it appears in the WSDL. For RPC
bindings, thisis name of the wsdl : part representing the return value. For
document bindings, thisisthelocal name of the XML element representing the
return value. The default valueis return.

targetNamespace Specifies the namespace for the return value. It is only used with document
bindings where the return value maps to an XML element. The defaultsis to
use the service's namespace.

header Specifiesif the return value is passed as part of the SOAP header.

artName ecifies the value of the name attribute of the wsdl : part element for the
partN ifies the value of th ib f th dl:p el for th
return value when the binding is document.

Example

This example shows an SEI that is fully annotated.

Talend Enterprise Service Factory User Guide 17

Developing a Service using JAX-WS

Example 2.8. Fully Annotated SEI
package org. apache. cxf;

i mport javax.jws.*;

i mport javax.xm .ws.*;

i mport javax.jws.soap.*;

i mport javax.jws.soap. SOAPBi ndi ng. *;
i mport javax.jws.WbParam *;

@\ébSer vi ce(name="quot eReporter")
@0APBI ndi ng(styl e=Styl e. RPC, use=Use. LI TERAL)
public interface QuoteReporter

{
@\ébMet hod(oper at i onNanme="get St ockQuot e")
@Request W apper (t ar get Nanmespace="htt p:// denp. myconpany. coni t ypes",
cl assNane="j ava. |l ang. Stri ng")
@ResponseW apper (t ar get Namespace="htt p:// deno. nyconpany. conf t ypes",
cl assNane="org. eri c. denp. Quot e")
@¢bResul t (target Namespace="htt p://denp. myconpany. coni types"”,
nane="updat edQuot e")
public Quote get Quote(
@\¢bPar an(t ar get Nanespace="htt p://deno. nyconpany. com t ypes",
nane="st ockTi cker", node=Mode. | N)
String ticker
);
}

Generating WSDL

Once you have annotated your code, you can generate a WSDL contract for your service using the java2wsdl
command.

Generated WSDL from an SEI

The below example shows the WSDL contract generated for the SEI shown above.

<?xm version="1.0" encodi ng="UTF-8""?>
<wsdl : definitions target Nanespace="http://denp.eric.org/"
xm ns:tns="http://denp.eric.org/"
xm ns: ns1=""
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schena"
xm ns: ns2="http://denp. eric.org/types"
xm ns: soap="http://schemas. xn soap. or g/ wsdl / soap/"
xm ns: wsdl ="htt p://schenmas. xn soap. or g/ wsdl /" >
<wsdl : types>
<xsd: schema>
<xs: conpl exType nane="quote">
<XS:sequence>
<xs: el enent name="1D" type="xs:string" m nCccurs="0"/>
<xs: el enent nane="tine" type="xs:string" m nCccurs="0"/>
<xs: el enent nanme="val" type="xs:float"/>
</ xs: sequence>

18 Talend Enterprise Service Factory User Guide

JAX-WS Configuration

</ xs: conpl exType>
</ xsd: schenma>
</ wsdl : types>
<wsdl : message nane="get St ockQuot e" >
<wsdl : part name="st ockTi cker" type="xsd:string">
</ wsdl : part >
</ wsdl : nressage>
<wsdl : message nane="get St ockQuot eResponse" >
<wsdl : part name="updat edQuote" type="tns: quote">
</ wsdl : part >
</ wsdl : nressage>
<wsdl : port Type nane="quot eReporter">
<wsdl : operati on name="get St ockQuot e" >
<wsdl : i nput nane="get Quot e" nessage="tns: get St ockQuot e" >
</ wsdl : i nput >
<wsdl : out put nane="get Quot eResponse”
message="t ns: get St ockQuot eResponse" >
</ wsdl : out put >
</ wsdl : oper ati on>
</ wsdl : port Type>
<wsdl : bi ndi ng nanme="quot eReporterBi ndi ng" type="tns: quot eReporter">
<soap: bi ndi ng styl e="rpc"
transport="http://schemas. xnl soap. or g/ soap/ http"/>
<wsdl : operati on name="get St ockQuot e" >
<soap: operation style="rpc"/>
<wsdl : i nput name="get Quot e" >
<soap: body use="literal"/>
</ wsdl : i nput >
<wsdl : out put nanme="get Quot eResponse” >
<soap: body use="literal"/>
</ wsdl : out put >
</ wsdl : oper ati on>
</ wsdl : bi ndi ng>
<wsdl : servi ce name="quot eReporter Service">
<wsdl : port name="quot eReporterPort"
bi ndi ng="t ns: quot eReport er Bi ndi ng" >
<soap: address | ocati on=
"http://1ocal host: 9000/ quot eReport er Servi ce"/ >
</ wsdl : port >
</wsdl : service>

</ wsdl : definitions>

2.2.4. JAX-WS Configuration

The following sections list JAX-WS specific configuration items.

2.2.4.1. Configuring an Endpoint

A JAX-WS Endpoint can be configured in XML in addition to using the JAX-WS APIs. Once you've created your
server implementation , you simply need to provide the class name and an address. Here is a ssimple example:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

Talend Enterprise Service Factory User Guide 19

JAX-WS Configuration

xm ns: jaxws="http://cxf.apache. org/jaxws"
Xsi : schenmaLocat i on="
htt p: // www. spri ngf ranewor k. or g/ scherma/ beans
htt p: // www. spri ngf ranewor k. or g/ scherma/ beans/ spri ng- beans- 2. 0. xsd
http://cxf.apache. org/j axws
http://cxf.apache. or g/ schemas/j axws. xsd" >

<j axws: endpoi nt

i d="cl assl npl "

i mpl enent or =" or g. apache. cxf.j axws. servi ce. Hel | o"

endpoi nt Nanme="e: Hel | oEndpoi nt Cust o zed"

servi ceNane="s: Hel | oSer vi ceCust om zed"
address="http://1 ocal host:8080/test"

xm ns: e="http://service.jaxws. cxf.apache. org/ endpoi nt"
xm ns:s="http://service.jaxws.cxf.apache. org/service"/>

</ beans>

Be sure to include the JAX-WS schenalLocat i on attribute specified on the root beans element. This allows
CXFtovalidatethefile and is required. Also note the namespace declarations at the end of the <jaxws:endpoint/
> tag--these are required because the combined "{ namespace} localName" syntax is presently not supported for

this tag's attribute values.

The j axws: endpoi nt element (which appears to create an Endpointimpl under the covers) supports many

additional attributes:

Name

Value

endpointName

The endpoint name this service is implementing, it maps to the
wsdl:port@name. In the format of "nssENDPOINT_NAME" where ns is a
namespace prefix valid at this scope.

publish Whether the endpoint should be published now, or whether it will be published
at alater point.

serviceName The service name this service is implementing, it maps to the
wsdl:service@name. In the format of "ns:SERVICE_NAME" where nsis a
namespace prefix valid at this scope.

wsdlL ocation The location of the WSDL. Can be on the classpath, file system, or be hosted
remotely.

bindingUri The URI, or ID, of the message binding for the endpoint to use. For SOAP the
binding URI(ID) is specified by the JAX-WS specification. For other message
bindings the URI is the namespace of the WSDL extensions used to specify
the binding.

address The service publish address

bus The bus name that will be used in the jaxws endpoint.

implementor The implementor of jaxws endpoint. You can specify the implementor class

name here, or just the ref bean name in the format of "#REF_BEAN_NAME"

implementorClass

The implementor class name, it is really useful when you specify the
implementor with the ref bean which iswrapped by using Spring AOP

createdFromAPI

This indicates that the endpoint bean was aready created using jaxws API's
thus at runtime when parsing the bean spring can use these values rather than
the default ones. It's important that when thisis true, the "name" of the bean
is set to the port name of the endpoint being created in the form "{http://
service.target.namespace} PortName".

publishedEndpointUrl

The URL that is placed in the address element of the wsdl when the wsdl is
retrieved. If not specified, the address listed above is used. This parameter
alows setting the "public" URL that may not be the same as the URL the

20

Talend Enterprise Service Factory User Guide

http://cxf.apache.org/javadoc/latest/org/apache/cxf/jaxws/EndpointImpl.html

JAX-WS Configuration

Name

Value

service is deployed on. (for example, the service is behind a proxy of some
sort).

It also supports many child elements:

Name

Value

jaxws:executor

A Java executor which will be used for the service. This can be supplied using
the Spring <bean class="MyExecutor"/> syntax.

jaxws:inlnterceptors

The incoming interceptors for this endpoint. A list of <bean>s or
<ref>s. Each should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

jaxws.inFaultinterceptors

The incoming fault interceptors for this endpoint. A list of <bean>s
or <ref>s. Each should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

jaxws:.outl nterceptors

The outgoing interceptors for this endpoint. A list of <bean>s or
<ref>s. Each should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

jaxws:outFaultinterceptors

The outgoing fault interceptors for this endpoint. A list of <bean>s or
<ref>s. Each should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

jaxws:handlers

The JAX-WS handlers for this endpoint. A list of <bean>s
or <ref>s. Each should implement javax.xml.wshandler.Handler or
javax.xml.ws.handler.soap.SOAPHandler (Note that @Handl er Chain
annotations on the service bean appear to be ignored)

jaxws:.properties

A properties map which should be supplied to the JAX-WS endpoint. See
below.

jaxws:dataBinding

Y ou can specify the which DataBinding will be use in the endpoint , This can
be supplied using the Spring <bean class="MyDataBinding"/> syntax.

jaxws:binding

You can specify the BindingFactory for this endpoint to use. This can be
supplied using the Spring <bean class="MyBindingFactory"/> syntax.

jaxws:features The features that hold the interceptors for this endpoint. A list of <bean>s or
<ref>s
jaxws.invoker Theinvoker which will be supplied to thisendpoint. This can be supplied using

the Spring <bean class="Mylnvoker"/> syntax.

jaxws.schemalocations

The schema locations for endpoint to use. A list of <schemal ocation>s

jaxws:serviceFactory

The service factory for this endpoint to use. This can be supplied using the
Spring <bean class="MyServiceFactory"/> syntax

Here is amore advanced example which shows how to provide interceptors and properties:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: jaxws="http://cxf.apache. org/jaxws"
xm ns: soap="htt p://cxf.apache. or g/ bi ndi ngs/ soap"
Xsi : schemaLocat i on="
htt p: // ww. spri ngf ranmewor k. or g/ scherma/ beans
htt p: // ww. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
htt p: // cxf. apache. or g/ bi ndi ngs/ soap
http://cxf. apache. or g/ schemas/ confi gurati on/ soap. xsd
http://cxf. apache. or g/ j axws
htt p: //cxf. apache. or g/ schemas/ | axws. xsd" >

Talend Enterprise Service Factory User Guide 21

http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/Handler.html
http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/soap/SOAPHandler.html

JAX-WS Configuration

<i mport resource="cl asspat h: META- | NF/ cxf/cxf.xm "/ >
<i nport resource="cl asspat h: META- | NF/ cxf/ cxf - ext ensi on-soap. xm "/ >

<j axws: endpoi nt
i d="hel | oVor |l d"
i mpl enent or =" deno. spri ng. Hel | oWor | dl npl ™
address="http://1 ocal host/ Hel | oVor| d">
<j axws:inlnterceptors>
<bean cl ass="com acne. Sonel nterceptor”/>
<ref bean="anot herlnterceptor"”/>
</jaxws:inlnterceptor>
<j axws: properti es>
<entry key="ntom enabl ed" val ue="true"/>
</jaxws: properties>
</ j axws: endpoi nt >

<bean id="anot herlnterceptor" class="com acne. Sonel nterceptor"/>

<j axws: endpoi nt id="si npl eWt hBi ndi ng"
i mpl enent or =" #greeter™
address="http://1 ocal host: 8080/ si npl eW t hAddr ess" >
<j axws: bi ndi ng>
<soap: soapBi ndi ng nt onEnabl ed="true" version="1.2"/>
</ j axws: bi ndi ng>
</ j axws: endpoi nt >

<j axws: endpoi nt id="inlinelnvoker"
address="http://1 ocal host: 8080/ si npl eW t hAddr ess" >
<j axws: i mpl enent or >
<bean cl ass="org. apache. hell o_worl d_soap_http. G eeterlnpl"/>
</jaxws:inpl ement or >
<j axws: i nvoker >
<bean cl ass="org. apache. cxf.jaxws. spring. Nul I I nvoker"/>
</jaxws:invoker>
</ j axws: endpoi nt >

</ beans>

If you are a Spring user, you'll notice that thej axws: pr operti es element follows the Spring Map syntax.

2.2.4.2. Configuring a Spring Client (Option 1)

Thistechnique lets you add a Web Services client to your Spring application. Y ou can inject it into other
Spring beans, or manually retrieve it from the Spring context for use by non-Spring-aware client code.

Theeasiest way to add a\Web Services client to a Spring context isto usethe<j axws: cl i ent > element (similar
tothe <j axws: endpoi nt > element used for the server side). Here's a simple example:

<?xm version="1.0" encodi ng="UTF-8"7?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: jaxws="http://cxf.apache. org/jaxws"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
Xsi : schenmaLocat i on="
htt p: // ww. spri ngfranmewor k. or g/ scherma/ beans
htt p: //ww. spri ngfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://cxf.apache. org/j axws

22 Talend Enterprise Service Factory User Guide

JAX-WS Configuration

http://cxf.apache. or g/ schemas/j axws. xsd" >

id="hell oCient"
servi ceC ass="denp. s

<j axws: cl i ent

pring. Hel | oWor | d"

address="http://1 ocal host: 9002/ Hel | oWor | d* />

</ beans>

The attributes available on <j axws: cl i ent > include:

Name

Type

Description

id

String

A unique identified for the client, which is how other
beans in the context will reference it

address

URL

The URL to connect to in order to invoke the service

serviceClass

Class

The fully-qualified name of the interface that the
bean should implement (typically, same as the service
interface used on the server side)

serviceName

QName

Thenameof theservicetoinvoke, if thisaddress’WSDL
hosts several. It maps to the wsdl:service@name. In
the format of "ns:SERVICE_NAME" where ns is a
namespace prefix valid at this scope.

endpointName

QName

The name of the endpoint to invoke, if this address/
WSDL hosts several. It maps to the wsdl:port@name.
In the format of "ns:ENDPOINT_NAME" where nsis
anamespace prefix valid at this scope.

bindingld

URI

TheURI, or ID, of the message binding for the endpoint
to use. For SOAP the binding URI(ID) is specified by
the JAX-WS specification. For other message bindings
the URI isthe namespace of the WSDL extensions used
to specify the binding.

bus

Bean Reference

The bus name that will be used in the jaxws endpoint
(defaultsto cxf).

username

String

password

String

wsdlL ocation

URL

A URL to connect to in order to retrieve the WSDL for
the service. Thisis not required.

createdFromAPI

boolean

This indicates that the client bean was already created
using jaxws API's thus at runtime when parsing the
bean spring can use these values rather than the default
ones. It'simportant that when thisistrue, the "name" of
the bean is set to the port name of the endpoint being
created in the form "{ http://service.target.namespace}
PortName".

It also supports many child elements:

Name

Description

jaxws.inlnterceptors

The incoming interceptors for this endpoint. A list of <bean> or <r ef >
elements. Each should implement org.apache.cxf.interceptor.I nterceptor or
org.apache.cxf.phase.Phasel nterceptor

jaxws:inFaultl nterceptors

The incoming fault interceptors for this endpoint.
A list of <bean> or <ref> elements. Each
should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

Talend Enterprise Service Factory User Guide 23

http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html

JAX-WS Configuration

Name

Description

jaxws:outl nterceptors The outgoing interceptors for this endpoint. A list of <bean> or <r ef >

elements. Each should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

jaxws.outFaultl nterceptors The outgoing fault interceptors for this endpoint.

A list of <bean> or <ref> elements. Each
should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

jaxws:features The features that hold the interceptors for this endpoint. A list of <bean>

or <r ef > elements

jaxws:handlers The JAX-WS handlers for this endpoint. A list of <bean> or

<r ef > elements. Each should implement javax.xml.ws.handler.Handler
or javax.xml.ws.handler.soap. SOAPHandler . These are more portablethan
CXF interceptors, but may cause the full messageto beloadedinasaDOM
(slower for large messages).

jaxws:properties A properties map which should be supplied to the JAX-WS endpoint. See

below.

jaxws.dataBinding Y ou can specify the which DataBinding will be use in the endpoint , This

can be supplied using the Spring <bean class="MyDataBinding"/> syntax.

jaxws.binding Y ou can specify the BindingFactory for this endpoint to use. This can be

supplied using the Spring <bean class="MyBindingFactory"/> syntax.

jaxws.conduitSel ector

Here is a more advanced example which shows how to provide interceptors, JAX-WS handlers, and properties:

<?xm version="1.0" encodi ng="UTF-8"7?>
<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"

xm ns: jaxws="http://cxf.apache. org/jaxws"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
Xsi : schemaLocat i on="
htt p: // ww. spri ngfranmewor k. or g/ scherma/ beans
htt p: //ww. spri ngfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://cxf.apache. or g/ j axws
htt p://cxf. apache. or g/ schemas/ | axws. xsd" >

<l-- Interceptors extend
e.g. org.apache. cxf. phase. Abstract Phasel nterceptor -->
<bean id="anotherlnterceptor"” class="..." />
<l-- Handl ers inpl emrent
e.g. javax.xm .ws. handl er. soap. SOAPHandl er -->
<bean id="jaxwsHandl er" class="..." />

<!-- The SOAP client bean -->
<jaxws:client id="helloCient"
servi ceC ass="deno. spri ng. Hel | oWor | d"
address="http://| ocal host: 9002/ Hel | oWor | d" >
<j axws:inlnterceptors>
<bean cl ass="org. apache. cxf.interceptor.Loggi nglnlnterceptor"/>
<ref bean="anot herlnterceptor"/>
</jaxws:inlnterceptor>
<j axws: handl er s>
<ref bean="jaxwsHandler" />
</j axws: handl er s>
<j axws: properti es>

24

Talend Enterprise Service Factory User Guide

http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/Handler.html
http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/soap/SOAPHandler.html

JAX-WS Configuration

<entry key="ntom enabl ed" val ue="true"/>
</jaxws: properties>
</jaxws:client>
</ beans>

2.2.4.3. Configuring a Spring Client (Option 2)

Building a Client using this configuration is only applicable for those wishing to inject a Client into their
Spring ApplicationContext.

This approach requires more explicit Spring bean configuration than the previous option, and may require more
configuration data depending on which features are used. To configure a client this way, you'll need to declare a
proxy factory bean and also a client bean which is created by that proxy factory. Here is an example:

<beans xm ns="http://ww. spri ngframework. or g/ schenma/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schemna- i nst ance"

xm ns: jaxws="http://cxf.apache. org/jaxws"

xsi : schermaLocat i on="
htt p: // ww. spri ngf ranewor k. or g/ scherma/ beans
htt p: // ww. spri ngf ranewor k. or g/ scherma/ beans/ spri ng- beans- 2. 0. xsd
http://cxf.apache. org/jaxws
http://cxf. apache. or g/ schemas/j axws. xsd" >

<bean i d="proxyFactory"
cl ass="org. apache. cxf.j axws. Jax\WsPr oxyFact or yBean" >
<property nane="servi ceC ass" val ue="deno. spring. Hel | oWor| d"/ >

<property nane="address" value="http://| ocal host: 9002/ Hel | oWor | d"/ >
</ bean>

<bean id="client" class="deno.spring.Hell oWrld"
factory-bean="proxyFactory" factory-method="create"/>

</ beans>

The JaxWsProxyFactoryBean in this case takes two properties. The service class, which is the interface of the
Client proxy you wish to create. The address is the address of the service you wish to call.

The second bean definition is for the client. In this case it implements the HelloWorld interface and is created by
the proxyFactory <bean> by calling the create() method. Y ou can then reference this "client" bean and inject it
anywhere into your application. Here is an example of avery simple Java class which accesses the client bean:
i ncl ude org. springframework. cont ext. support. C assPat hXm Appl i cati onCont ext ;
public final class HelloWwrlddient {

private HellowbrldCient() { }

public static void main(String args[]) throws Exception {
Cl assPat hXm Appl i cati onCont ext context =
new Cl assPat hXm Appl i cati onCont ext (
new String[]{"my/path/to/client-beans.xm"});

Hel l oworl d client = (Hell owrl d)context.getBean("client");

String response = client.sayH ("Dan");
Systemout. println("Response: " + response);

Talend Enterprise Service Factory User Guide 25

JAX-WS Configuration

System exit(0);

}

The JaxWsProxyFactoryBean supports many other properties:

Name

Description

clientFactoryBean

The ClientFactoryBean used in construction of this proxy.

password The password which the transport should use.

username The username which the transport should use.

wsdlURL Thewsdl URL the client should use to configure itself.

wsdlL ocation Appears to be the same aswsdlURL ?

serviceName The name of the serviceto invoke, if this address'WSDL hosts several. It maps

to the wsdl:service@name. In the format of "ns:SERVICE_NAME" where ns
is anamespace prefix valid at this scope.

endpointName

The name of the endpoint to invoke, if this addressWSDL hosts several.
It maps to the wsdl:port@name. In the format of "nsENDPOINT_NAME"
where nsis a namespace prefix valid at this scope.

inlnterceptors

The incoming interceptors for this endpoint. A list of <bean> or <r ef >
elements. Each should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

inFaultl nterceptors

Theincoming fault interceptors for this endpoint. A list of <bean> or <r ef >
elements. Each should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

outlnterceptors

The outgoing interceptors for this endpoint. A list of <bean> or <ref >
elements. Each should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

outFaultinterceptors

The outgoing fault interceptors for thisendpoint. A list of <bean> or <r ef >
elements. Each should implement org.apache.cxf.interceptor.Interceptor or
org.apache.cxf.phase.Phasel nterceptor

features The features that hold the interceptors for this endpoint. A list of <bean> or
<r ef > elements
handlers A list of <bean> or <r ef > elements pointing to JAX-WS handler classesto

be used for this client. Each should implement javax.xml.ws.handler.Handler
or javax.xml.ws.handler.soap.SOAPHandler . These are more portable than
CXF interceptors, but may cause the full message to be loaded in as a DOM
(slower for large messages).

bindingConfig

bindingld The URI, or ID, of the message binding for the endpoint to use. For SOAP the
binding URI(ID) is specified by the JAX-WS specification. For other message
bindings the URI is the namespace of the WSDL extensions used to specify
the binding.

bus A reference to a CXF bus bean. Must be provided if, for example, handlers
are used. May require additional Spring context imports (e.g. to bring in the
default CXF bus bean).

conduitSelector

dataBinding Y ou can specify the which DataBinding will be use in the endpoint , This can
be supplied using the Spring <bean class="MyDataBinding"/> syntax.

properties A properties map which should be supplied to the JAX-WS endpoint.

serviceFactory

26

Talend Enterprise Service Factory User Guide

http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/interceptor/Interceptor.html
http://cxf.apache.org/javadoc/latest/org/apache/cxf/phase/PhaseInterceptor.html
http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/Handler.html
http://java.sun.com/javase/6/docs/api/javax/xml/ws/handler/soap/SOAPHandler.html

JAX-WS Configuration

Using some of the propertieswill require additional configuration in the Spring context. For instance, using JAX-
WS handlersrequires that you explicitly import several CXF Spring configurations, and assign the "bus" property
of the JaxWsProxyFactory bean like this:

<i nport resource="cl asspat h: META- | NF/ cxf/cxf.xm " />
<i nport resource="cl asspat h: META- | NF/ cxf/ cxf - ext ensi on-soap. xm " />
<i nport resource="cl asspat h: META- | NF/ cxf/ cxf-extension-http.xm" />

<bean id="clientFactory"
cl ass="org. apache. cxf.j axws. JaxWsPr oxyFact or yBean" >
<property nane="serviceC ass" val ue="deno. spri ng. Hel | oWor| d"/>
<property nane="address" value="http://| ocal host: 9002/ Hel | oWor | d"/ >
<property nane="bus" ref="cxf" />

</ bean>

2.2.4.4. Configuring an Endpoint/Client Proxy Using CXF APIs

JAX-WS endpoints and client proxies are implemented on top of CXF's frontend-neutral endpoint API. You can
therefore use CXF APIsto enhance the functionality of aJAX-WS endpoint or client proxy, for example by adding
interceptors.

To cast aclient proxy to a CXF client;

GreeterService gs = new GeeterService();
Greeter greeter = gs.getGeeterPort();

org. apache. cxf.endpoint.Cient client =

org. apache. cxf.frontend. CientProxy.getCient(greeter);

or g. apache. cxf . endpoi nt. Endpoi nt cxf Endpoi nt = client. get Endpoi nt ();
cxf Endpoi nt. getQutinterceptors().add(...);

To cast aJAX-WS endpoint to a CXF server;

j avax. xm . ws. Endpoi nt jaxwsEndpoi nt =

j avax. xm . ws. Endpoi nt . publ i sh(

"http://1ocal host: 9020/ SoapCont ext/ G eet er Port",

new Greeterlnpl ());
or g. apache. cxf.j axws. Endpoi nt | npl j axwsEndpoi ntlnpl =
(org. apache. cxf.j axws. Endpoi nt | npl) j axwsEndpoi nt ;
or g. apache. cxf. endpoi nt. Server server = jaxwsEndpointlnpl. getServer();
or g. apache. cxf. endpoi nt. Endpoi nt cxf Endpoi nt = server. get Endpoi nt ();
cxf Endpoi nt. getQut I nterceptors().add(...);
org. apache. cxf. service. Servi ce cxfService = cxfEndpoi nt. get Service();
cxfService.getQutinterceptors().add(...);

2.2.4.5. Configure the JAXWS Server/Client Using Spring

CXF provides<jaxws:server>, <jaxws.:client> to configure the server/client side endpoint. Here are some exmples:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: jaxws="http://cxf.apache. org/jaxws"
xm ns: soap="htt p://cxf.apache. or g/ bi ndi ngs/ soap"

Talend Enterprise Service Factory User Guide 27

JAX-WS Providers

Xsi : schenmaLocat i on="
htt p: // www. spri ngf ranewor k. or g/ scherma/ beans
htt p: // www. spri ngf ranewor k. or g/ scherma/ beans/ spri ng- beans- 2. 0. xsd
htt p: // cxf. apache. or g/ bi ndi ngs/ soap
http://cxf.apache. or g/ schemas/ confi gurati on/ soap. xsd
http://cxf.apache. org/j axws
http://cxf.apache. or g/ schemas/j axws. xsd" >
<j axws: server id="inlinelnplenmentor”
address="http://1 ocal host: 8080/ si npl eW t hAddr ess" >
<j axws: servi ceBean>
<bean cl ass="org. apache. hell o_worl d_soap_http. G eeterlnpl"/>
</jaxws: servi ceBean>
</jaxws:server>

<j axws: server id="bookServer"
servi ceC ass="org. myor g. nyt ype. AnonynousConpl exTypel npl "
address="http://| ocal host: 8080/ act"
bus="cxf">
<j axws: i nvoker >
<bean cl ass="org. nyorg. servi ce. i nvoker. Beanl nvoker" >
<constructor-arg>
<bean cl ass="org. nyorg. myt ype. AnonynousConpl exTypel npl "/ >
</ constructor-arg>
</ bean>
</jaxws:invoker>
<j axws: dat aBi ndi ng>
<bean cl ass="org. apache. cxf.j axb. JAXBDat aBi ndi ng" >
<property nanme="nanmespaceMap">

<map>
<entry>
<key>
<val ue>
http://cxf. apache. or g/ anon_conpl ex_t ype/
</ val ue>
</ key>
<val ue>BeepBeep</ val ue>
</entry>
</ map>
</ property>
</ bean>

</ j axws: dat aBi ndi ng>
</jaxws:server>

<jaxws:client id="bookdient"
servi ceC ass="org. myorg. nyt ype. AnonynousConpl exType"
address="http://1 ocal host: 8080/ act"/>

</ beans>

2.2.5. JAX-WS Providers

JAX-WS Providers allow you to create services which work at the message level - as opposed to the operation
level as with annotated classes. The have a single operation "invoke" which receives either the message payload
(i.e. the SOAP Body) or the whole message itself (i.e. the SOAP Envelope).

Here's asimple example:

28 Talend Enterprise Service Factory User Guide

JAX-WS Providers

@\ebSer vi ceProvi der
public class Hell oProvider {
public Source invoke(Source request) ({
return;

}
}

Services are publish via one of two means:
» The JAX-WS standard Endpoint APIs

e CXF's XML configuration format - i.e. <jaxws.endpoint ... />

2.2.5.1. Messaging Modes

Overview

Objects that implement the Pr ovi der interface have two messaging modes :
» Message mode
 Payload mode

The messaging mode you specify determines the level of messaging detail that is passed to your implementation.

Message mode

When using message mode, aPr ovi der implementation works with complete messages. A compl ete message
includes any binding specific headers and wrappers. For example, aPr ovi der implementation that usesa SOAP
binding would receive requests asfully specified SOAP message. Any response returned from the implementation
would also need to be afully specified SOAP message.

You specify that a Provider implementation uses message mode by providing the value
java. xm . ws. Servi ce. Mbde. MESSAGE as the vaue to the javax.xm .ws. ServiceMdde
annotation.

@\ebSer vi ceProvi der
@ber vi ceMode(val ue=Servi ce. Mode. MESSAGE)
public class stockQuoteProvider inplenments Provider <SOAPMessage>

{
}

Payload mode

In payload mode a Pr ovi der implementation works with only the payload of a message. For example, a
Pr ovi der implementation working in payload mode works only with the body of a SOAP message. The binding
layer processes any binding level wrappers and headers.

Talend Enterprise Service Factory User Guide 29

JAX-WS Providers

When working with abinding that does not use special wrappers, such asthe XML binding, payload mode
and message mode provide the same results.

You specify that a Provider implementation uses payload mode by providing the vaue
java. xm . ws. Servi ce. Mbde. PAYLOAD as the vaue to the javax.xm .ws. Servi ceMbde
annotation.

@\ebSer vi ceProvi der
@Ber vi ceMode(val ue=Ser vi ce. Mode. PAYLOAD)
public class stockQuoteProvider inplenents Provider <DOVBour ce>

{
}

If you do not provide the @er vi ceMbde annotation, the Pr ovi der implementation will default to
using payload mode.

2.2.5.2. Data Types

Overview

Pr ovi der implementations, because they are low-level objects, cannot use the same JAXB generated types as
the higher level consumer APIs. Provider implementations work with the following types of objects:

e javax.xm . transform Source
e javax. xm . soap. SOAPMessage

e javax. activation. Dat aSour ce

Using Source objects

A Provider implementation can accept and return objects that are derived from the
javax.xm . transform Source interface. Source objects are low level objects that hold XML
documents. Each Sour ce implementation provides methods that access the stored XML documents and
manipulate its contents. The following objects implement the Sour ce interface:

» DOVBour ce holds XML messages as a Document Object Model(DOM) tree. The XML message is stored as
a set of Node objects that can be accessed using the get Node() method. Nodes can be updated or added to
the DOM tree using the set Node() method.

* SAXSour ce holds XML messages as a Simple APl for XML (SAX) object. SAX objects contain an
I nput Sour ce object that contains the raw data and an XM_Reader object that parses the raw data.

» StreanBSour ce holds XML messages as a data stream. The data stream can be manipulated as would any
other data stream.

1 When using Sour ce objectsthe developer isresponsible for ensuring that all required binding specific

—~ wrappers are added to the message. For example, when interacting with a service expecting SOAP
messages, the devel oper must ensure that the required SOAP envelopeis added to the outgoing request
and that the SOAP envel ope's contents are correct.

30 Talend Enterprise Service Factory User Guide

JAX-WS Providers

Using SOAPMessage objects

Provi der implementations can use j avax. xnl . soap. SOAPMessage objects when the following
conditions are true:

» thePr ovi der implementation is using the SOAP binding.

» theProvi der implementation is using message mode.

A SOAPMessage object, as the name implies, holds a SOAP message. They contain one SOAPPar t object
and zero or more At t achnent Part objects. The SOAPPart object contains the SOAP specific portions

of the SOAP message including the SOAP envelope, any SOAP headers, and the SOAP message body. The
At t achment Par t objects contain binary data that was passed as an attachment.

Using DataSource objects

Provider implementations can use objects that implement the j avax. acti vati on. Dat aSour ce interface
when the following conditions are true:

* theimplementation is using the HTTP binding.
* theimplementation is using message mode.

Dat aSour ce objects provide a mechanism for working with MIME typed data from a variety of sources
including URLSs, files, and byte arrays.

Implementing a Provider Object

Overview

The Pr ovi der interface is relatively easy to implement. It only has one method, invoke(), that needs to be
implemented. In addition it has three simple requirements:

* Animplementation must have the @\¥bSer vi cePr ovi der annotation.

» Animplementation must have a default public constructor.

* An implementation must implement a typed version of the Provider interface. In other words, you cannot
implement aPr ovi der <T> interface. Y ou must implement aversion of the interface that uses a concrete data

type. For example, you can implement an instance of aPr ovi der <SAXSour ce> .

The complexity of implementing the Provider interface surrounds handling the request messages and building the
proper responses.

Working with messages

Unlike the higher-level SEI based service implementations, Pr ovi der implementations receive requests as raw
XML data and must send responses asraw XML data. This requires that the developer has intimate knowledge of

Talend Enterprise Service Factory User Guide 31

JAX-WS Providers

the messages used by the service being implemented. These details can typically be found in the WSDL document
describing the service.

WS- Basic Profile provides guidelines about the messages used by services including:

e Theroot element of arequest is based in the value of the name attribute of the wsdl : oper at i on element
that corresponds to the operation being invoked.

If the service uses doc/literal bare messages, the root element of the request will be based on the value
of name attribute of thewsdl : part element referred to by thewsdl : oper at i on element.

» Theroot element of all messages will be namespace qualified.
« If the service uses rpc/literal messages, the top-level elementsin the messages will not be namespace qualified.

The children of top-level elements may be namespace qualified. To be certain you will need to check
their schema definitions.

* If the service uses rpc/literal messages, none of the top-level elements can be null.

* If the service uses doc/literal messages, the schema definition of the message determinesif any of the elements
are namespace qualified.

Implementing the invoke() method

The Provi der interface has only one method, i nvoke() , that needs to be implemented. i nvoke()
receives the incoming request packaged into the type of object declared by the type of Pr ovi der interface
being implemented and returns the response message packaged into the same type of object. For example, an
implementation of a Pr ovi der <SOAPMessage> interface would receive the request as a SOAPMessage
object and return the response as a SOAPMes sage object.

The messaging mode used by the Provi der implementation determines the amount of binding specific
information the request and response messages contain. Implementation using message mode receive al of the
binding specific wrappers and headers along with the request. They must also add all of the binding specific
wrappers and headers to the response message. |mplementations using payload mode only receive the body of
the request. The XML document returned by an implementation using payload mode will be placed into the body
of the request message.

Examples

The following showsaPr ovi der implementation that works with SOAPMessage objects in message mode.

i mport javax.xm .ws. Provider;

i mport javax.xm .ws. Servi ce;

i mport javax.xm .ws. Servi ceMbde;

i mport javax.xm .ws.\WbServi ceProvi der;

@\ebSer vi ceProvi der (port Nane="st ockQuot eReporterPort"
servi ceNane="st ockQuot eReporter")
@ber vi ceMode(val ue="Servi ce. Mode. MESSACE")
public class stockQuoteReporterProvider inplenments Provider<SOAPMessage>

{
public stockQuoteReporterProvider() {}

publ i c SOAPMessage i nvoke(SOAPMessage request)

32 Talend Enterprise Service Factory User Guide

JAX-WS Providers

{
SOAPBody request Body = request. get SOAPBody/() ;

i f(request Body. get El enent Nane. get Local Name. equal s("get St ockPrice"))
{

MessageFactory nf = MessageFactory. newl nstance();
SQAPFact ory sf = SOAPFact ory. newl nstance();

SOAPMessage response = nf.createMessage();

SOAPBody respBody = response. get SOAPBody() ;

Nane bodyName = sf.createNanme("get St ockPri ceResponse");

r espBody. addBodyEl enment (bodyNane) ;

SOAPEI enent respContent = respBody. addChi |l dEl enent (" price");
respCont ent . set Val ue("123. 00");

response. saveChanges();

return response;

}

}
}

The code does the following:

1. Specifies that the following class implements a Pr ovi der object that implements the service whose
wsdl : servi ce element is named st ockQuot eReport er and whose wsdl : port element is named
st ockQuot eReporterPort .

2. Specifiesthat this Pr ovi der implementation uses message mode.
3. Providesthe required default public constructor.

4. Provides an implementation of the i nvoke() method that takesa SOAPMessage object and returns a
SOAPMessage object.

5. Extracts the request message from the body of the incoming SOAP message.

6. Checksthe root element of the request message to determine how to process the request.

7. Creates the factories needed for building the response.

8. Builds the SOAP message for the response.

9. Returnsthe response as a SOAPMessage object.

The following shows an example of a Provider implementation using DOM Source objectsin payload mode.

i mport javax.xm .ws. Provider;

i mport javax.xm .ws. Servi ce;

i mport javax.xm .ws. Servi ceMode;

i mport javax.xm .ws.\WbServi ceProvi der;

@\ebSer vi ceProvi der (port Nanme="st ockQuot eReporterPort"
servi ceNane="st ockQuot eReporter")
@Ber vi ceMode(val ue="Servi ce. Mbde. PAYLOAD")
public class stockQuoteReporterProvider inplenments Provider<DOVSour ce>
public stockQuot eReporterProvider()
{
}

publ i ¢ DOVBour ce i nvoke(DOVBource request)
{

Talend Enterprise Service Factory User Guide 33

WebserviceContext

}

DOVBour ce response = new DOMSour ce();

return response,;

}

The code does the following:

1

Specifies that the class implements a Provi der object that implements the service whose
wsdl : servi ce element is named st ockQuot eReport er and whose wsdl : port element is named

st ockQuot eReporterPort .

. Specifies that this Provider implementation uses payload mode.
. Providesthe required default public constructor.

. Provides an implementation of the i nvoke() method that takes a DOMSour ce object and returns a

DOVBour ce object.

2.2.6. WebserviceContext

The WebserviceContext interface is part of the JAX-WS specification. It allows you to access severa context

informations the runtime has associated to your service call.

The following code fragment show how to use some parts of the WebserviceContext.

public class CustonerServicelnpl inplenments CustonerService {
@resour ce
WebSer vi ceCont ext wsCont ext ;

publ i c List<Customer> get CustormersByNanme(String nane)

t hrows NoSuchCust omer Excepti on {
Principal pr = wsContext.getUserPrincipal();

/1 Only joe may access this service operation
if (pr == null || !"joe".equal s(pr.getNane())) {
t hrow new Runti neExcepti on("Access deni ed");

}

/1 Only the sales role may access this operation
if (!'wsContext.isUserlnRole("sales")) {
t hrow new Runti neExcepti on("Access deni ed");

}

MessageCont ext nCont ext = wsCont ext. get MessageCont ext () ;

/1 See which contents the nessage context has
Set<String> s = nmContext. keySet ();

/1 Using this cxf specific code you can access

/1 the CXF Message and Exchange objects

W appedMessageCont ext wnt = (W appedMessageCont ext) nCont ext ;
Message m = wnt. get W appedMessage() ;

Exchange ex = m get Exchange();

Talend Enterprise Service Factory User Guide

JAX-WS Client Development Options

2.3. JAX-WS Client Development Options

2.3.1. WSDL2Java generated Client

One of the most common scenariosisthat where you have a service which you may or not manage and this service
hasaWSDL. In this case you'll often want to generate a client from the WSDL . This provides you with astrongly
typed interface by which to interact with the service. Once you've generated a client, typical usage of it will ook
like so:

Hel | oService service = new Hel |l oService();
Hell o client = service.getHell oHttpPort();

String result = client.sayH ("Joe");

The WSDL 2Java tool will generate JAX-WS clients from your WSDL. You can run WSDL 2java one of three
ways:

* The command line
» The Maven Plugin
* With the WSDL 2Java APl

For more in depth information read Developing a JAX-WS consumer or see the Hello World demos inside the
distribution.

2.3.2. JAX-WS Proxy

Instead of using awsdl2java-generated stub client directly, you can use Service.create to create Service instances,
the following code illustrates this process:

i mport java. net. URL;
i mport javax.xm .ws. Servi ce;

URL wsdl URL = new URL("http://local host/hell o?wsdl");

MNane SERVI CE_NAME = new QNane("http://apache.org/ hello_world_soap_http",
" SOAPSer vi ce") ;

Service service = Service.create(wsdl URL, SERVI CE_NAME);

Greeter client = service.getPort (G eeter.class);

String result = client.greetMe("test");

2.3.3. JAX-WS Dispatch APIs

JAX-WS provides the "dispatch" mechanism which makesit easy to dynamically invoke services which you have
not generated a client for. Using the Dispatch mechanism you can create messages (which can be JAXB objects,
Source objects, or a SAAIMessage) and dispatch them to the server. A simple example might look like this:

i mport java. net. URL;

Talend Enterprise Service Factory User Guide 35

http://localhost:8080/confluence/pages/viewpage.action?pageId=1343584
http://localhost:8080/confluence/pages/viewpage.action?pageId=1343571_UsingCXFwithmaven-MavenPlugin
http://localhost:8080/confluence/pages/viewpage.action?pageId=1343602

Usage Modes

i mport javax.xm .transform Source;
i mport javax.xm .ws. Di spatch;
i mport javax.xm .ws. Servi ce;

URL wsdl URL = new URL("http://local host/hell o?wsdl");

Service service = Service.create(wsdl URL, new QNane("Hel | oService"));

Di spat ch<Source> di sp = service. createbDi spatch(new QNane("Hel | oPort"),
Sour ce. cl ass, Service. Mbde. PAYLOAD) ;

Sour ce request = new StreantSource("<hello/>")
Source response = disp.invoke(request);

NOTE: you can also use dispatches without aWSDL.

For more in depth information see the Hello World demos inside the distribution.

2.3.4. Usage Modes

2.3.4.1. Overview

Di spat ch objects have two usage modes :
» Message mode
» Message Payload mode (Payload mode)

The usage mode you specify for aDi spat ch object determines the amount of detail is passed to the user level
code.

2.3.4.2. Message mode

In message mode , a Di spat ch object works with complete messages. A complete message includes any
binding specific headers and wrappers. For example, a consumer interacting with a service that requires SOAP
messages would need to provide the Di spat ch object'si nvoke() method a fully specified SOAP message.
Thei nvoke() method will also return afully specified SOAP message. The consumer code is responsible for
completing and reading the SOA P message's headers and the SOAP message's envel ope information.

Message mode is not ideal when you wish to work with JAXB objects.

You specify that a Dispatch object uses message mode by providing the vaue
java. xm . ws. Servi ce. Mbde. MESSAGE when creating the Dispatch object.

2.3.4.3. Payload mode

In payload mode , also called message payload mode, a Di spat ch object works with only the payload of a
message. For example, a Di spat ch object working in payload mode works only with the body of a SOAP

36 Talend Enterprise Service Factory User Guide

Data Types

message. The binding layer processes any binding level wrappers and headers. When a result is returned from
i nvoke() the binding level wrappers and headers are already striped away and only the body of the message
isleft.

When working with a binding that does not use special wrappers, such as the Artix ESB XML binding,
payload mode and message mode provide the same results.

You specify that a Dispatch object wuses payload mode by providing the vaue
java. xm . ws. Servi ce. Mbde. PAYLOAD when creating the Di spat ch object.

2.3.5. Data Types

2.3.5.1. Overview

Di spat ch objects, because they are low-level objects, are not optimized for using the same JAXB generated
types as the higher level consumer APIs. Di spat ch objects work with the following types of objects:

e javax. xnl .transf orm Source
* javax. xm . soap. SOAPMessage
e javax. activati on. Dat aSour ce

+ JAXB

2.3.5.2. Using Source objects

A Dispatch object can accept and return objects that are derived from the
j avax. xm . t ransf or m Sour ce interface. Source objects are low level objects that hold XML documents.
Each Sour ce implementation provides methods that access the stored XML documents and manipulate its
contents. The following objects implement the Sour ce interface:

» DOVBour ce

» SAXSour ce

» StreanfSour ce
1 When using Sour ce objectsthe devel oper isresponsi blefpr ensuﬁ ng th_at al requ_i red bindi ng specific
—~ wrappers are added to the message. For example, when interacting with a service expecting SOAP

messages, the devel oper must ensure that the required SOAP envelopeis added to the outgoing request
and that the SOAP envel ope's contents are correct.

2.3.5.3. Using SOAPMessage objects

Di spat ch objectscanusej avax. xnl . soap. SOAPMessage objectswhenthefollowing conditionsaretrue:

» the Di spat ch object isusing the SOAP binding.

Talend Enterprise Service Factory User Guide 37

Working with Dispatch Objects

 the Di spat ch object is using message mode.

2.3.5.4. Using DataSource objects

Di spat ch objects can use objects that implement the j avax. acti vati on. Dat aSour ce interface when
the following conditions are true:

» the Di spat ch object isusing the HTTP binding.
» theDi spat ch object is using message mode.

Dat aSour ce objects provide a mechanism for working with MIME typed data from a variety of sources
including URLSs, files, and byte arrays.

2.3.5.5. Using JAXB objects

While Di spat ch objects are intended to be low level API that allows you to work with raw messages, they
also alow you to work with JAXB objects. To work with JAXB objects a Di spat ch object must be passed
a JAXBCont ext that knows how to marshal and unmarshal the JAXB objects in use. The JAXBCont ext is
passed when the Di spat ch object is created.

You can pass any JAXB object understood by the JAXBCont ext object as the parameter to the i nvoke()
method. Y ou can also cast the returned message into any JAXB object understood by the JAXBCont ext object.

2.3.6. Working with Dispatch Objects

2.3.6.1. Procedure

To use a Dispatch object to invoke a remote service you do the following:
1. Create aDi spat ch object.

2. Construct areguest message.

3. Call the proper i nvoke() method.

4. Parse the response message.

2.3.6.2. Creating a Dispatch object

To createaDi spat ch object do the following:

1. Create a Servi ce object to represent the wsdl : servi ce element defining the service on which the
Di spat ch object will make invocations.

2. Createthe Di spat ch object using the Ser vi ce object'scr eat eDi spat ch() method.

38 Talend Enterprise Service Factory User Guide

Working with Dispatch Objects

publ i c Di spat ch<T> creat eDi spat ch(Q\ame port Nane,
java.l ang. C ass<T> type, Service.Mde node) throws WbServi ceException;

If you are using JAXB objects the method signature for cr eat eDi spat ch() is:

publ i c D spatch<T> creat eDi spatch(Q\anme port Nane,
j avax. xm . bi nd. JAXBCont ext context, Service. Mbde node)
throws WebServi ceException;

The following table describes the parametersfor cr eat eDi spat ch() .

Par ameter Description

portName Specifies the QName of the wsdl : port element that represent the service
provider on which the Di spat ch object will make invocations.

type Specifies the data type of the objects used by the Di spat ch object.

mode Specifies the usage mode for the Di spat ch object.

The code bellow creates a Di spat ch object that works with DOVBour ce objectsin payload mode.
package com nyconpany. deno;

i mport javax.xm . nanespace. QNane;
i mport javax.xm .ws. Service;

public class Cient
{
public static void main(String args[])
{
Q\ane servi ceNane = new QNane("http://org. apache. cxf",
"st ockQuot eReporter");
Service s = Service.create(servi ceNane);

Q\ane portName = new QName("http://org.apache. cxf",
"st ockQuot eReporterPort");
Di spat ch<DOVSour ce> di spatch = creat eD spat ch(port Nane,
DOvVBour ce. cl ass,
Servi ce. Mode. PAYLQOAD) ;

2.3.6.3. Constructing request messages

When working with Di spat ch objects requests must be built from scratch. The developer is responsible for
ensuring that the messages passed to a Di spat ch object match a request that the targeted service provider can
process. This requires precise knowledge about the messages used by the service provider and what, if any, header
information it requires.

Thisinformation can be provided by aWSDL document or an XML Schema document that defines the messages.
While service providers vary greatly there are afew guidelines that can be foll owed:

» Theroot element of the request is based in the value of the name attribute of thewsdl| : oper at i on element
that corresponds to the operation being invoked.

\ If the service being invoked uses doc/literal bare messages, the root element of the request will be
s based on the value of name attribute of thewsdl : part element referedto by thewsdl : oper ati on
element.

Talend Enterprise Service Factory User Guide 39

Working with Dispatch Objects

e Theroot element of the request will be namespace qualified.

* If theservicebeinginvoked usesrpc/literal messages, thetop-level elementsin therequest will not be namespace
qualified.

1 The children of top-level elements may be namespace qualified. To be certain you will need to check
their schema definitions.

* If the service being invoked uses rpc/literal messages, none of the top-level elements can be null.

« If the service being invoked uses doc/literal messages, the schema definition of the message determines if any
of the elements are namespace qualified.

For more information about how services use XML messages see the WS-| Basic Profile.

2.3.6.4. Synchronous invocation

For consumers that make synchronous invocations that generate a response, you use the Di spat ch object's
i nvoke() method shown bellow.

T i nvoke(T nsQ)
t hrows WebServi ceExcepti on;

Thetype of both the response and the request passed to thei nvoke() method are determined when the Dispatch
object is created. For example if you created a Di spat ch object using cr eat eDi spat ch(port Nane,
SOAPMessage. cl ass, Servi ce. Mode. MESSAGE) the response and the request would both be
SOAPMessage abjects.

When using JAXB objects, the response and the request can be of any type the provided JAXBCont ext
¥ object can marshal and unmarshal. Also, the response and the regquest can be different JAXB objects.

The code bel ow makes a synchronous invocation on aremote service using a DOVSour ce object.

/1 Creating a DOVBource Object for the request
Docunent Bui | der db = Docunent Bui | der Fact ory. newDocunent Bui | der () ;
Docunent requestDoc = db. newDocunent ();
El ement root = requestDoc. creat eEl ement NS(
"http://org.apache. cxf/ st ockExanpl e", "getStockPrice");
root . set NodeVal ue(" DOW) ;
DOVBour ce request = new DOVSour ce(request Doc);

/1 Dispatch disp created previously
DOVBour ce response = di sp.invoke(request);

Asynchronous invocation

Di spat ch objectsalso support asynchronousinvocations. Aswith the higher level asynchronous APIsdiscussed
in Chapter 4, Di spat ch objects can use both the polling approach and the callback approach.

When using the polling approach the i nvokeAsync() method returns a Response<t > object that can be
periodically polled to seeif the response has arrived.

Response <T> invokeAsync(T mnsQ)
t hrows WebServi ceExcepti on;

40 Talend Enterprise Service Factory User Guide

Developing a Consumer

When using the callback approach thei nvokeAsync() methodtakesan AsyncHandl er implementation that
processes the response when it is returned.

Fut ure<?> i nvokeAsync(T nsg, AsyncHandl er <T> handl er)
t hrows WebServi ceExcepti on;

As with the synchronous i nvoke() method, the type of the response and the type of the request are
¥ determined when you create the Di spat ch object.

Oneway invocation

When a request does not generate a response, you make remote invocations using the Di spat ch object's
i nvokeOneWay() .

voi d i nvokeOneVay (T mnsQ)
t hrows WebSer vi ceExcepti on;

The type of object used to package the request is determined when the Di spat ch object is created. For
example if the Di spat ch object is created using cr eat eDi spat ch(port Nane, DOVSour ce. cl ass,
Servi ce. Mode. PAYLOAD) the request would be packaged into a DOVMSour ce object.

When using JAXB objects, the response and the request can be of any type the provided JAXBCont ext
¥ object can marshal and unmarshal. Also, the response and the request can be different JAXB objects.

The code below makes a one way invocation on aremote service using a JAXB object.

/1l Creating a JAXBContext and an Unmarshaller for the request
JAXBCont ext jbc = JAXBCont ext.newl nstance("org. myconpany. St ockExanpl e") ;
Unmarshal ler u = jbc.createUnmarshal l er();

/1 Read the request fromdisk
File rf = new File("request.xm");
Get St ockPrice request = (Get StockPrice)u.unmarshal (rf);

/1 Dispatch disp created previously
di sp. i nvokeOneWay(r equest) ;

2.3.7. Developing a Consumer

2.3.7.1. Generating the Stub Code

The starting point for developing a service consumer (or client) in CXF isa WSDL contract, complete with port
type, binding, and service definitions. Y ou can then use the wsdl2java utility to generate the Java stub code from
the WSDL contract. The stub code provides the supporting code that is required to invoke operations on the remote
service. For CXF clients, the wsdl2java utility can generate the following kinds of code:

* Stub code - supporting files for implementing a CXF client.

« Client starting point code - sample client code that connects to the remote service and invokes every operation
on the remote service.

e Anthbuildfile-abui | d. xm fileintended for use with the ant build utility. It hastargets for building and for
running the sample client application.

Talend Enterprise Service Factory User Guide 41

http://cwiki.apache.org/CXF20DOC/wsdl-to-java.html

Developing a Consumer

Basic HelloWorld WSDL contract

The below shows the Helloworld WSDL contract. This contract defines a single port type, G eet er , with a
SOAPbinding, Gr eet er _SOAPBI ndi ng, andaservice, SOAPSer vi ce , which hasasingleport, SoapPor t

<?xm version="1.0" encodi ng="UTF-8"7?>
<wsdl : definitions name="Hel | oWorl d"
t ar get Nanmespace="htt p://apache. org/ hell o_worl d _soap_http"
xm ns="http://schemas. xm soap. org/ wsdl /"
xm ns: soap="http://schemas. xn soap. or g/ wsdl / soap/"
xm ns:tns="http://apache.org/hell o world _soap_http"
xm ns: x1="http://apache. org/ hell o_worl d _soap_http/types"
xm ns: wsdl ="htt p://schenmas. xn soap. org/ wsdl /"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schenma" >
<wsdl : types>
<schenm t ar get Nanespace=
"http://apache.org/hello world _soap_http/types"
xm ns="http://ww. w3. or g/ 2001/ XM_LSchema"
xm ns:tns="http://apache.org/hell o worl d _soap_http/types"
el ement For mDef aul t ="qual i fi ed" >
<si npl eType name="M/Stri ngType">
<restriction base="string">
<maxLength val ue="30" />
</restriction>
</ si npl eType>

<el enent name="sayH ">
<conpl exType/ >
</ el emrent >
<el enent name="sayH Response" >
<conpl exType>
<sequence>
<el enent name="responseType" type="string"/>
</ sequence>
</ conpl exType>
</ el emrent >
<el enent name="greet ">
<conpl exType>
<sequence>
<el enent nanme="request Type"
type="tns: MyStringType"/>
</ sequence>
</ conpl exType>
</ el emrent >
<el enent name="gr eet MeResponse" >
<conpl exType>
<sequence>
<el enent name="responseType" type="string"/>
</ sequence>
</ conpl exType>
</ el emrent >
<el enent name="gr eet MeOneVay" >
<conpl exType>
<sequence>
<el enent name="request Type" type="string"/>
</ sequence>

42 Talend Enterprise Service Factory User Guide

Developing a Consumer

</ conpl exType>
</ el ement >
<el enent name="pi nghe" >
<conpl exType/ >
</ el ement >
<el enent name="pi ngMeResponse" >
<conpl exType/ >
</ el ement >
<el ement nane="faul t Detail ">
<conpl exType>
<sequence>
<el enent name="m nor" type="short"/>
<el enent name="mgj or" type="short"/>
</ sequence>
</ conpl exType>
</ el ement >
</ schema>
</ wsdl : types>
<wsdl : message nanme="sayH Request" >
<wsdl : part el erent="x1:sayH " nanme="in"/>
</ wsdl : nressage>
<wsdl : message nanme="sayH Response" >
<wsdl : part el enent ="x1: sayH Response" nane="out"/>
</ wsdl : nressage>
<wsdl : message nane="gr eet MeRequest " >
<wsdl : part el enent ="x1: greet " nanme="in"/>
</ wsdl : nressage>
<wsdl : message nane="gr eet MeResponse” >
<wsdl : part el ement ="x1: gr eet MeResponse” nanme="out"/>
</ wsdl : nressage>
<wsdl : message nanme="gr eet MeOneWayRequest " >
<wsdl : part el enent ="x1: gr eet MeOneV\ay" nane="in"/>
</ wsdl : nressage>
<wsdl : message nane="pi ngMeRequest " >
<wsdl : part name="in" el erent="x1: pi ngMe"/ >
</ wsdl : nressage>
<wsdl : message nane="pi ngMeResponse" >
<wsdl : part name="out" el enent ="x1: pi ngMeResponse"/ >
</ wsdl : nressage>
<wsdl : message nane="pi ngMeFaul t ">
<wsdl : part name="faultDetail" el enment="x1:faultDetail"/>
</ wsdl : nressage>

<wsdl : port Type nane="G eeter">
<wsdl : operati on name="sayH ">
<wsdl : i nput nessage="tns: sayH Request"” nane="sayH Request"/>
<wsdl : out put message="tns: sayH Response"
nane="sayH Response"/ >
</ wsdl : oper ati on>

<wsdl : operati on name="greet V">
<wsdl : i nput nessage="tns: greet MeRequest ™"
nane="gr eet MeRequest "/ >
<wsdl : out put message="tns: gr eet MeResponse”
nane="gr eet MeResponse"/ >
</ wsdl : oper ati on>

<wsdl : operati on name="gr eet MeOneWay" >

Talend Enterprise Service Factory User Guide 43

Developing a Consumer

<wsdl : i nput nessage="tns: greet MeOneWayRequest "
nane="gr eet MeOneVayRequest "/ >
</ wsdl : oper ati on>

<wsdl| : operati on name="pi nge" >
<wsdl : i nput nanme="pi ngMeRequest"” nessage="t ns: pi ngMeRequest "/ >
<wsdl : out put nane="pi ngMeResponse”
message="t ns: pi ngMeResponse"/ >
<wsdl : fault name="pi ngMeFaul t" message="tns: pi ngMeFaul t"/ >
</ wsdl : oper ati on>
</ wsdl : port Type>
<wsdl : bi ndi ng nanme="G eet er _SOAPBI ndi ng" type="tns: G eeter">
<soap: bi ndi ng styl e="docunent"
transport="http://schemas. xnl soap. or g/ soap/ http"/ >

<wsdl : operati on name="sayH ">
<soap: operati on soapAction= styl e="docunent"/>
<wsdl : i nput nanme="sayH Request ">
<soap: body use="literal"/>
</ wsdl : i nput >
<wsdl : out put nane="sayH Response">
<soap: body use="literal"/>
</ wsdl : out put >
</ wsdl : oper ati on>

<wsdl| : operati on name="greet Me">
<soap: operati on soapAction= styl e="docunent"/>
<wsdl : i nput name="gr eet MeRequest " >
<soap: body use="literal"/>
</ wsdl : i nput >
<wsdl : out put nanme="gr eet MeResponse" >
<soap: body use="literal"/>
</ wsdl : out put >
</ wsdl : oper ati on>

<wsdl : operati on name="gr eet MeOneWay" >
<soap: operation soapAction="" style="docunent"/>
<wsdl : i nput name="gr eet MeOneVayRequest " >
<soap: body use="literal"/>
</ wsdl : i nput >
</ wsdl : oper ati on>

<wsdl| : oper ati on name="pi ngme" >
<soap: operation styl e="docunment"/>
<wsdl : i nput >
<soap: body use="literal"/>
</ wsdl : i nput >
<wsdl : out put >
<soap: body use="literal"/>
</ wsdl : out put >
<wsdl : fault name="pi ngMeFaul t ">
<soap:fault name="pi ngMeFault" use="literal"/>
</wsdl : faul t>
</ wsdl : oper ati on>

</ wsdl : bi ndi ng>
<wsdl : servi ce name="SOAPSer vi ce" >
<wsdl : port bindi ng="tns: G eet er _SOAPBi ndi ng" name="SoapPort">

44 Talend Enterprise Service Factory User Guide

Developing a Consumer

<soap: addr ess
| ocation="http://1 ocal host: 9000/ SoapCont ext / SoapPort"/ >
</ wsdl : port >
</wsdl : service>
</wsdl : definitions>

The Gr eet er port type from the example above [42] defines the following WSDL operations:
e sayH - hasasingleoutput parameter, of xsd: string.
» greet Me - hasan input parameter, of xsd: st ri ng, and an output parameter, of xsd: stri ng .

e greet MeOneWay - has a single input parameter, of xsd: st ri ng . Because this operation has no output
parameters, CXF can optimize this call to be aoneway invocation (that is, the client does not wait for aresponse
from the server).

* pi ngMe - has no input parameters and no output parameters, but it can raise afault exception.

The above example [42] also defines a binding, Gr eet er _SOAPBI ndi ng , for the SOAP protocol. In
practice, the binding is normally generated automatically - for example, by running either of the CXF wsdl2soap
or wsdl2xml utilities. Likewise, the SOAPSer vi ce service can be generated automatically by running the CXF
wsdl2service utility.

Generating the stub code

After defining the WSDL contract, you can generate client code using the CXF wsdl2java utility. Enter the
following command at a command-line prompt:

wsdl 2j ava -ant -client -d CientDir hello_world. wsdl

Where ClientDir is the location of a directory where you would like to put the generated files and
hel | o_wor | d. wsdl isafile containing the contract shown in the above WSDL. The - ant option generates
anantbui | d. xm file, for use with the ant build utility. The- cl i ent option generates starting point code for
aclient mai n() method.

The preceding wsdl2java command generates the following Java packages:

» org.apache. hell o_worl d_soap_htt p This package name is generated from the http://apache.org/
hello_world_soap_http target namespace. All of the WSDL entities defined in this target namespace (for
example, the Greeter port type and the SOAPService service) map to Java classes in the corresponding Java
package.

e org.apache. hell o_worl d _soap_http.types This package name is generated from the http://
apache.org/hello_world _soap_http/types’ target namespace. All of the XML types defined in this target
namespace (that is, everything defined in thewsdl : t ypes element of the HelloWorld contract) map to Java
classes in the corresponding Java package.

The stub files generated by the wsdl2java command fall into the following categories:

 Classes representing WSDL entities (in the or g. apache. hel | o_wor| d_soap_htt p package) - the
following classes are generated to represent WSDL entities:

* G eet er isaJavainterfacethat representsthe Greeter WSDL port type. In JAX-WS terminology, this Java
interface is a service endpoint interface.

e SQOAPSer vi ce isaJavaclassthat represents the SOAPService WSDL ser vi ce element.

e Pi ngMeFaul t is a Java exception class (extending j ava. | ang. Excepti on) that represents the
pingMeFault WSDL f aul t element.

Talend Enterprise Service Factory User Guide 45

Developing a Consumer

 Classesrepresenting XML types(intheor g. apache. hel | o_wor | d_soap_htt p. t ypes package) - in
the HellowWorld example, the only generated types are the various wrappers for the request and reply messages.
Some of these data types are useful for the asynchronous invocation model.

2.3.7.2. Implementing a CXF Client

This section describes how to write the code for a simple Java client, based on the WSDL contract above. To
implement the client, you need to use the following stub classes:

» Service class (that is, SOAPSer vi ce).

» Service endpoint interface (that is, Gr eet er).

Generated service class

The next example shows the typical outline a generated service class, Ser vi ceNane , which extends the
javax. xm . ws. Ser vi ce baseclass.

Example 2.9. Outline of a Generated Service Class

public class ServiceNanme extends javax.xm .ws. Service

{

public Servi ceName(URL wsdl Locati on, QNane serviceNane) { }
public ServiceName() { }

public Geeter getPortName() { }

}

The Ser vi ceNarme class above defines the following methods:
 Constructor methods - the following forms of constructor are defined:

e Servi ceName(URL wsdl Locati on, QNane servi ceNane) constructs aservice object based on
the datain the serviceName service in the WSDL contract that is obtainable from wsdlLocation .

e Servi ceNane() isthe default constructor, which constructs a service object based on the service name
and WSDL contract that were provided at the time the stub code was generated (for example, when running
the CeltiXfire wsdl2java command). Using this constructor presupposes that the WSDL contract remains
available at its original location.

» get Port Nane_() methods- for every PortName port defined on the ServiceName service, CXF generates
a corresponding get _Port Name_() method in Java. Therefore, awsdl : servi ce element that defines
multiple ports will generate a service class with multipleget _Por t Nane_ () methods.

Service endpoint interface

For every port type defined in the original WSDL contract, you can generate a corresponding service endpoint
interface in Java. A service endpoint interface is the Java mapping of a WSDL port type. Each operation defined

46 Talend Enterprise Service Factory User Guide

Developing a Consumer

inthe original WSDL port type maps to a corresponding method in the service endpoint interface. The operation's
parameters are mapped as follows:;

1. Theinput parameters are mapped to method arguments.
2. Thefirst output parameter is mapped to areturn value.

3. If there is more than one output parameter, the second and subsequent output parameters map to method
arguments (moreover, the values of these arguments must be passed using Holder types).

The next example shows the Greeter service endpoint interface, which is generated from the Greeter port type
defined in the WSDL above. For simplicity, this example omits the standard JAXB and JAX-WS annotations.

Example 2.10. The Greeter Service Endpoint Interface
/* Cenerated by WsDLToJava Conpiler. */

package org. obj ectweb. hell o_worl d_soap_http;

public interface Greeter

{ public java.lang.String sayHi ();
public java.lang. String greetMe(java.lang. String request Type);
public void greet MeOneWay(j ava. |l ang. String request Type);

} public void pingMe() throws PingMeFault;

Client main function

This example shows the Java code that implements the HelloWorld client. In summary, the client connectsto the
SoapPort port on the SOAPSer vi ce service and then proceeds to invoke each of the operations supported
by the G- eet er port type.

package deno. hw. client;

i mport java.io.File;

i mport java. net. URL;

i mport javax.xm . nanespace. QNane;

i mport org.apache. hell o _world soap_http. Greeter;

i mport org.apache. hell o world soap_http. Pi ngMeFaul t;
i mport org.apche. hell o world _soap_http. SOAPSer vi ce;

public final class dient {

private static final QNanme SERVI CE_ NAME =
new QNane("http://apache.org/ hello_world soap http",
" SOAPSer vi ce");

private Cient()

{
}

public static void main(String args[]) throws Exception

{

Talend Enterprise Service Factory User Guide 47

Developing a Consumer

if (args.length == 0)

{
System out. println("please specify wsdl");
Systemexit(1l);

}

URL wsdl URL;

File wsdlFile = new File(args[O0]);
if (wsdlFile.exists())

{

wsdl URL = wsdl File.toURL();
}
el se
{

wsdl URL = new URL(args[0]);
}

System out . printl n(wsdl URL) ;

SOAPServi ce ss = new SOAPServi ce(wsdl URL, SERVI CE_NAME) ;
Greeter port = ss.getSoapPort();

String resp;

Systemout.println("lnvoking sayH ...");
resp = port.sayHi();
Systemout.println("Server responded with:
Systemout.println();

+ resp);

Systemout.println("lnvoking greetMe...");

resp = port.greet Me(System get Property("user.nanme"));
Systemout. println("Server responded with: " + resp);
Systemout.println();

System out. println("Ilnvoking greet MeOneVy...");

port.greet MeOneWay(Syst em get Property("user.nane"));
Systemout.println("No response fromserver as nmethod is OneVay");
Systemout.println();

try {
System out. println("Invoking pingMe, expecting exception...");

port. pi ngMe();

} catch (PingMeFault ex) ({
System out . printl n(

"Expected exception: PingMeFault has occurred.");

Systemout.println(ex.toString());

}

System exit(0);

}
}

Thed i ent . mai n() function from the above example proceeds as follows.</para>

1. The CXF runtimeisimplicitly initialized - that is, provided the CXF runtime classes are loaded. Hence, there
isno need to call aspecial function in order to initialize CXF.

2. The client expects a single string argument that gives the location of the WSDL contract for HelloWorld. The
WSDL location is stored inwsdl URL .

3. A new port object (which enables you to access the remote server endpoint) is created in two steps, as shown
in the following code fragment:

48 Talend Enterprise Service Factory User Guide

Developing a Consumer

2

SOAPServi ce ss = new SOAPServi ce(wsdl URL, SERVI CE_NAME) ;
Greeter port = ss.getSoapPort();

To create anew port object, you first create a service object (passing in the WSDL location and service name)
and then call the appropriate get Port Name () method to obtain an instance of the particular port you
need. In this case, the SOAPSer vi ce service supports only the SoapPor t port, whichisof Gr eet er type.

The client proceeds to call each of the methods supported by the G- eet er service endpoint interface.

In the case of the pi ngMe() operation, the example code shows how to catch the Pi ngMeFaul t fault
exception.

.3.7.3. Setting Connection Properties with Contexts

Y ou can use JAX-WS contexts to customize the properties of aclient proxy. In particular, contexts can be used to
modify connection properties and to send data in protocol headers. For example, you could use contexts to add a
SOAP header, either to aregquest message or to aresponse message. The following types of context are supported
on the client side:

Request context - on the client side, the request context enables you to set properties that affect outbound
messages. Request context properties are applied to a specific port instance and, once set, the properties affect
every subsequent operation invocation made on the port, until such time as a property is explicitly cleared. For
example, you might use a request context property to set a connection timeout or to initialize data for sending
in a header.</para>

Response context - on the client side, you can access the response context to read the property values set by the
inbound message from the last operation invocation. Response context properties are reset after every operation
invocation. For example, you might access a response context property to read header information received
from the last inbound message.

Setting a request context

To set a particular request context property, ContextPropertyName , to the value, PropertyValue , use the code
shown in the below example.

Example 2.11. Setting a Request Context Property on the Client Side

/1

Set request context property.

java.util.Map<String, Object> requestContext =

((javax.xm . ws. Bi ndi ngProvi der) port) . get Request Cont ext ();

request Cont ext . put (Cont ext Propert yNane, PropertyVal ue);

/1

I nvoke an operati on.

port. SomeQperation();

Y ou haveto cast the port objecttoj avax. xm . ws. Bi ndi ngPr ovi der inorder to accessthe request context.
Therequest context itself isof type,j ava. uti | . Map<St ri ng, Obj ect >, whichisahash mapthat haskeys

of

St ri ng and values of arbitrary type. Usej ava. uti | . Map. put () to create anew entry in the hash map.

Reading aresponse context

To retrieve a particular response context property, ContextPropertyName , use the code shown below.

Talend Enterprise Service Factory User Guide 49

Developing a Consumer

Example 2.12. Reading a Response Context Property on the Client Side

/1 1nvoke an operation.
port. SonmeQperation();

/1 Read response context property.
java.util.Map<String, Object> responseContext =

((javax. xm . ws. Bi ndi ngProvi der) port). get ResponseCont ext () ;
PropertyType propVal ue = (PropertyType)

r esponseCont ext . get (Cont ext Propert yNane) ;

The response context is of type, j ava. uti | . Map<String, Object >, whichisahash map that has keys
of type St ri ng and values of an arbitrary type. Usej ava. uti | . Map. get () to access an entry in the hash
map of response context properties.

Supported contexts

CXF supports the following context properties:

Context Property Name Context Property Type

or g. apache. cxf . ws. addressing . |org.apache. c¢xf . ws.addressing
JAXWSAConst ant s . |Addr essi ngProperties

CLI ENT_ADDRESSI NG_PROPERTI ES

2.3.7.4. Asynchronous Invocation Model

In additionto theusual synchronous mode of invocation, CXF also supportstwo forms of asynchronousinvocation,
asfollows:

 Palling approach - in this case, to invoke the remote operation, you call a special method that has no output
parameters, but returnsaj avax. xm . ws. Response instance. The Response object (which inheritsfrom
the j avax. util. concurrency. Fut ur e interface) can be polled to check whether or not a response
message has arrived.

» Callback approach - in this case, to invoke the remote operation, you call another special method that takes a
referenceto acallback object (of j avax. xml . ws. AsyncHandl er type) asone of its parameters. Whenever
the response message arrives at the client, the CXF runtime calls back on the AsyncHandl er object to give
it the contents of the response message.

Both of these asynchronous invocation approaches are described here and illustrated by code examples.

Contract for asynchronous example

The below example shows the WSDL contract that is used for the asynchronous example. The contract defines a
single port type, G eet er Async , which contains asingle operation, gr eet MeSonet i e .

<wsdl : definitions xm ns="http://schemas. xnl soap. org/ wsdl /"
xm ns: soap="http://schemas. xn soap. or g/ wsdl / soap/"
xm ns:tns="http://apache.org/hell o worl d _async_soap_http"
xm ns: x1="http://apache. org/ hell o _world async_soap_http/types"
xm ns: wsdl ="htt p://schenmas. xn soap. or g/ wsdl /"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schenma"
t ar get Namespace="htt p://apache. org/ hell o_worl d _async_soap_http"
name="Hel | oWor | d" >

50 Talend Enterprise Service Factory User Guide

Developing a Consumer

<wsdl : types>
<schenma t ar get Nanmespace=
"http://apache.org/hell o _world_async_soap_http/types"
xm ns="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns: x1="http://apache. org/ hell o_worl d_async_soap_http/types”
el ement For mDef aul t ="qual i fi ed">
<el enent name="gr eet MeSoneti ne" >
<conpl exType>
<sequence>
<el enent nanme="request Type" type="xsd:string"/>
</ sequence>
</ conpl exType>
</ el ement >
<el enent name="gr eet MeSonet i neResponse” >
<conpl exType>
<sequence>
<el enent nanme="responseType" type="xsd:string"/>
</ sequence>
</ conpl exType>
</ el ement >
</ schema>
</ wsdl : types>
<wsdl : message nane="gr eet MeSonet i neRequest " >
<wsdl : part name="in" el ement="x1:greet MeSoneti ne"/>
</ wsdl : nressage>
<wsdl : message nane="gr eet MeSonet i neResponse” >
<wsdl : part name="out" el enent="x1: greet MeSonet i mreResponse"/ >
</ wsdl : nressage>
<wsdl : port Type nane=" G eet er Async" >
<wsdl| : operati on name="gr eet MeSoneti ne" >
<wsdl : i nput nane="greet MeSonet i reRequest "
message="t ns: gr eet MeSonet i neRequest "/ >
<wsdl : out put nanme="gr eet MeSonet i mreResponse”
message="t ns: gr eet MeSonet i neResponse”/ >
</ wsdl : oper ati on>
</ wsdl : port Type>
<wsdl : bi ndi ng nanme="G eet er Async_SQAPBI ndi ng"
type="tns: G eeter Async" >
<soap: bi ndi ng styl e="docunent"
transport="http://schemas. xnl soap. or g/ soap/ http"/>
<wsdl| : operati on name="gr eet MeSoneti ne" >
<soap: operation styl e="docunment"/>
<wsdl : i nput >
<soap: body use="literal"/>
</ wsdl : i nput >
<wsdl : out put >
<soap: body use="literal"/>
</ wsdl : out put >
</ wsdl : oper ati on>
</ wsdl : bi ndi ng>
<wsdl : servi ce nanme="SOAPSer vi ce" >
<wsdl| : port name="SoapPort"
bi ndi ng="t ns: G eet er Async_SQAPBI ndi ng" >
<soap: addr ess
| ocation="http://1 ocal host: 9000/ SoapCont ext / SoapPort"/ >
</ wsdl : port >
</ wsdl : service>
</wsdl : definitions>

Talend Enterprise Service Factory User Guide 51

Developing a Consumer

Generating the asynchronous stub code

The asynchronous style of invocation requires extra stub code (for example, dedicated asychronous methods
defined on the service endpoint interface). This specia stub codeis not generated by default, however. To switch
on the asynchronous feature and generate the requisite stub code, you must use the mapping customization feature
from the WSDL 2.0 specification.

Customization enables you to modify the way the wsdl2java utility generates stub code. In particular, it enables
you to modify the WSDL -to-Java mapping and to switch on certain features. Here, customization is used to switch
on the asynchronous invocation feature. Customizations are specified using a binding declaration, which you
define using aj axws: bi ndi ngs tag (where the jaxws prefix is tied to the http://java.sun.com/xml/ng/jaxws’
namespace). There are two aternative ways of specifying a binding declaration:

» External binding declaration - thej axws: bi ndi ngs elementisdefinedin afile separately fromthe WSDL
contract. Y ou specify the location of the binding declaration file to the wsdl2java utility when you generate
the stub code.

» Embedded binding declaration - you can also embed the j axws: bi ndi ngs element directly in a WSDL
contract, treating it as a WSDL extension. In this case, the settings in j axws: bi ndi ngs apply only to the
immediate parent element.

This section considers only the first approach, the external binding declaration. The template for a binding
declaration file that switches on asynchronous invocations is shown below.

Example 2.13. Template for an Asynchronous Binding Declaration

<bi ndi ngs xm ns: xsd="htt p://wwmv. wW3. or g/ 2001/ XM_Schema"
xm ns:wsdl ="http://schemas. xm soap. org/ wsdl /"
wsdl Locat i on=" @\5DL_LOCATI ON@ hel | o_wor | d_async. wsdl "
xm ns="http://java. sun. conl xm / ns/j axws" >
<bi ndi ngs node="wsdl : definitions">
<enabl eAsyncMappi ng>t r ue</ enabl eAsyncMappi ng>
</ bi ndi ngs>
</ bi ndi ngs>

<para>Where AffectedWSDLContract specifies the URL of the WSDL contract that is affected by this binding
declaration. The AffectedNode is an XPath value that specifies which node (or nodes) from the WSDL contract
are affected by this binding declaration. Y ou can set AffectedNode to wsdl : defi ni ti ons , if you want the
entire WSDL contract to be affected. The {jaxws.enableAsyncMapping}} element isset tot r ue to enable the
asynchronous invocation feature.

For example, if you want to generate asynchronous methods only for the Gr eet er Async port type, you could
specify <bi ndi ngs node="wsdl : defi ni ti ons/wsdl : port Type[@ane=" G eet er Async']">
in the preceding binding declaration.

Assuming that the binding declaration is stored in afile, async_bi ndi ng. xm , you can generate the requisite
stub files with asynchronous support by entering the following wsdl2java command:

wsdl 2j ava -ant -client -d dientDir -b async_bi ndi ng. xm hel | o_wor| d. wsdl

When you run the wsdl2java command, you specify the location of the binding declaration file using the -b
option. After generating the stub code in this way, the G- eet er Async service endpoint interface (in the file
Greet er Async. j ava) isdefined as shown below.

52 Talend Enterprise Service Factory User Guide

Developing a Consumer

Example 2.14. Service Endpoint I nterface with Methods for Asynchronous I nvocations

/* Generated by WBDLToJava Conpiler. */
package org. apache. hell o_worl| d_async_soap_htt p;

i mport java.util.concurrent. Future;
i mport javax.xm .ws. AsyncHandl er;
i mport javax.xm .ws. Response;

public interface GeeterAsync {

publ i c Future<?> greet MeSoneti meAsync(
java.lang. String request Type,
AsyncHandl er <or g. myorg. types. G eet MeSonet i neResponse>
asyncHandl er

)

publ i c Response<org. nyorg.types. G eet MeSonet i reResponse>
gr eet MeSonet i meAsync(
java.lang. String request Type

);

public java.lang. String greet MeSoneti me(
java.lang. String request Type

)
}

In addition to the usual synchronous method, gr eet MeSonet i ne() , two asynchronous methods are also
generated for the gr eet MeSormret i me operation, as follows:

e greet MeSoneti neAsync() method with Future<?> return type and an extra
j avax. xm . ws. AsyncHandl er parameter - call this method for the callback approach to asynchronous
invocation.

e greet MeSoneti neAsync() method with Response<G eet MeSonet i meResponse> return type -
call this method for the polling approach to asynchronous invocation.

The details of the callback approach and the polling approach are discussed in the following subsections.

Implementing an asynchronous client with the polling approach

The next exampleillustrates the polling approach to making an asynchronous operation call. Using this approach,
the client invokes the operation by calling the special Javamethod, _Oper at i onNanme_Async() , that returns
aj avax. xm . ws. Response<T> object, where T is the type of the operation's response message. The
Response<T> object can be polled at alater stageto check whether the operation'sresponse message has arrived.

Talend Enterprise Service Factory User Guide 53

Developing a Consumer

Example 2.15. Polling Approach for an Asynchronous Operation Call
package deno. hw. client;

i mport java.io.File;
i mport java.util.concurrent. Future;

i mport javax.xm . namespace. QNane;
i mport javax.xm .ws. Response;

i mport org.apache. hel |l o_async_soap_http. G eet er Async;
i mport org.apache. hell o_async_soap_htt p. SOAPSer vi ce;
i mport org.apache. hel | o_async_soap_http.types. G eet MeSonet i meResponse;

public final class dient {
private static final QName SERVI CE_NAME
= new QNane("http://objectweb. org/hello_async_soap_http",
" SOAPSer vi ce") ;

private Cient() {}
public static void main(String args[]) throws Exception {

/1 Polling approach:

Response<G eet MeSonet i reResponse> gr eet MeSoneTi neResp =
port.greet MeSoneti neAsync(Syst em get Property("user. nanme"));
whil e (!greet MeSonmeTi neResp.isDone()) {

Thr ead. sl eep(100);

}
G eet MeSonet i meResponse reply = greet MeSoneTi meResp. get () ;

.Sil.stem exit(0);
}
}

The greet MeSoneti meAsync() method invokes the greet MeSonetinmes operation,
transmitting the input parameters to the remote service and returning a reference to a
j avax. xm . ws. Response<G eet MeSonet i neResponse> object. The Response classis defined by
extendingthestandardj ava. uti | . concurrency. Fut ur e<T> interface, whichisspecifically designed for
polling the outcome of work performed by a concurrent thread. There are essentially two basic approaches to
polling using the Response object:

» Non-blocking polling - before attempting to get the result, check whether the response has arrived by calling
the non-blocking Response<T>. i sDone() method. For example:

Response<G eet MeSonet i nreResponse> greet MeSoneTi neResp = ...

if (greetMeSonmeTi neResp.isDone()) {
G eet MeSonet i mreResponse reply = greet MeSoneTi neResp. get () ;

}

* Blocking polling - call Response<T>. get () right away and block until the response arrives (optionally
specifying atimeout). For example, to poll for aresponse, with a 60 second timeout:

Response<G eet MeSonet i neResponse> greet MeSoneTi neResp = .. .;

G eet MeSonet i mreResponse reply = greet MeSoneTi neResp. get (
60L,
java. util.concurrent. Ti meUni t . SECONDS

54 Talend Enterprise Service Factory User Guide

Developing a Consumer

Implementing an asynchronous client with the callback approach

An dternative approach to making an asynchronous operation invocation is to implement a callback class,
by deriving from the j avax. xm . ws. AsyncHandl er interface. This callback class must implement a
handl eResponse() method, which is called by the CXF runtime to notify the client that the response has
arrived. The below example shows an outline of the AsyncHandl er interface that you need to implement.

Example 2.16. The javax.xml.ws.AsyncHandler Interface
package javax.xm .ws;

public interface AsyncHandl er <T>
{

}

In this example, acallback class, Test AsyncHandl er , isdefined as shown in the example below.

voi d handl eResponse(Response<T> res);

Example 2.17. The TestAsyncHandler Callback Class
package deno. hw. client;

i mport javax.xm .ws. AsyncHandl er;
i mport javax.xm .ws. Response;

i mport org.apache. hel | o_async_soap. types. G eet MeSonet i meResponse,;

public class Test AsyncHandl er inplenments
AsyncHandl er <G eet MeSonet i neResponse> {
private G eet MeSoneti neResponse reply;

public void handl eResponse(Response<G eet MeSonet i neResponse>
response) {
try {
reply = response. get();
} catch (Exception ex) {
ex. print StackTrace();
}
}

public String getResponse() {
return reply. get ResponseType();
}
}

The implementation of handl eResponse() shown in Examplell [55] ssimply gets the response data and
storesit in amember variable, r epl y . The extraget Response() method isjust a convenience method that
extracts the sole output parameter (that is, r esponseType) from the response.

Examplel2 [56] illustrates the callback approach to making an asynchronous operation call. Using this
approach, the client invokes the operation by calling the special Java method, _Qper ati onNane_Async()

Talend Enterprise Service Factory User Guide 55

Data Binding Options

, that returns a java. util.concurrency. Future<?> object and takes an extra parameter of
AsyncHandl er <T>.

Example 2.18. Callback Approach for an Asynchronous Operation Call
package denvo. hw. client;

i mport java.io.File;
i mport java.util.concurrent. Future;

i mport javax.xm . namespace. QNane;
i mport javax.xm .ws. Response;

i mport org.apache. hel |l o_async_soap_http. G eet er Async;
i mport org.apache. hell o_async_soap_htt p. SOAPSer vi ce;
i mport org.apache. hel | o_async_soap_http.types. G eet MeSonet i meResponse;

public final class Oient {
private static final QName SERVI CE_NAME
= new QNane("http://apache.org/ hello_world_async_soap_http",
" SOAPSer vi ce") ;

private Cient() {}
public static void main(String args[]) throws Exception {

/1 Cal |l back approach
Test AsyncHandl er test AsyncHandl er = new Test AsyncHandl er () ;
System out . printl n(

"I nvoki ng greet MeSoreti neAsync using cal | back object...");
Fut ure<?> response = port.greet MeSometi neAsync(

System get Property("user. nanme"), testAsyncHandl er);
whil e (!response.isbDone()) {

Thr ead. sl eep(100);

}
resp = testAsyncHandl er. get Response();

Syst emexit(0);
}
}

The Fut ur e<?> object returned by gr eet MeSonet i neAsync() can be used only to test whether or not a

response has arrived yet - for example, by calling r esponse. i sDone() . The value of the response is only
made available to the callback object, t est AsyncHandl er .

2.4. Data Binding Options

CXF uses JAXB 2.x asits default databinding.

CXF aso includes other data bindings. There is the Aegis data binding which will turn nearly any Java object
into something that can be represented using schema, including Maps, Lists, and unannotated javatypes. CXF 2.1
added an XML Beans databinding, and CXF 2.3.0 added an SDO databinding.

56 Talend Enterprise Service Factory User Guide

Aegis

2.4.1. Aegis

2.4.1.1. What is Aegis?

Aegisisadatabinding. That is, it isasubsystem that can map Java objectsto XML documents described by XML
schema, and vica-versa. Aegisis designed to give useful mappings with a minimum of programmer effort, while
allowing detailed control and customization.

Aegis began as part of XFire, and moved with XFire into Apache CXF.

Y ou can use Aegis independently of CXF as a mechanism for mapping Java objectsto and from XML. This page,
however, describes Aegis as used inside of CXF.

Aegis has some advantages over JAXB for some applications. Some users find that it produces a more natural
XML mapping for less configuration. For example, Aegishasadefault setting for 'nillable’, allowing you to declare
it for your entire service in one place instead of having to annotate every single element. The biggest advantage of
Aegis, however, isaconvenient way to customize the mapping without adding (@)annotations to your Java code.
This allows you to avoid class |oading dependencies between your data classes and your web service binding.

2.4.1.2. Getting Started: Basic Use of Aegis

You can configure any web service to use the Aegis data binding. A service configured with Aegis will yield
avalid WSDL description, and you can use that to configure any client that you like. You can talk to an Aegis
service with JAXB, or .NET, or ascripted language, or ... Aegisitself.

You can use Aegis as aclient to talk to Aegis, by using the very same Java classes and configuration filesin the
client environment that you use on the server. However, it's not all that practical to use Aegisasaclient totalk to
some a service using some other data binding, since Aegis lacks a'wsdl2java tool.

Using Aegis on the client side also carries severe risks of compatibility problems. Since there is no WSDL to
specify the contract, small changesin your code or in CXF can result in a situation where the client and the server
are incompatible. If you want to use Aegis on the client side, you should be sure to use exactly the same version
of CXF on both sides. If you cannot do that, you should consider generating JAX-WS/JAX-B code for the client
using wsdl2java.

Every CXF service and client uses afront end: JAX-WS, Simple, etc. Each of these provides a place to configure
the data binding, both in Spring and via Java code.

For example, hereis a Simple front-end service using Aegis as a data binding.

<si npl e: server id="pojoservice" serviceC ass="deno. hw. server. Hel | oWor| d"
address="/hell o_worl d">
<si npl e: servi ceBean>
<bean cl ass="deno. hw. server. Hel | oWorldlmpl" />
</ si npl e: servi ceBean>
<si npl e: dat aBi ndi ng>
<bean cl ass="org. apache. cxf. aegi s. dat abi ndi ng. Aegi sDat abi ndi ng"/ >
</ si npl e: dat aBi ndi ng>
</ sinpl e: server>
</ bean>

AegisDatabinding is the class that integrates Aegisinto CXF as a databinding.

Note that AegisDatabinding beans, like all databinding beans, are not reusable . The example above uses an
anonymous nested bean for the databinding. If you make a first-class bean for a databinding, be sure to use
scope="prototype’ if you are inclined to define more than one endpoint.

Talend Enterprise Service Factory User Guide 57

Aegis

2.4.1.3. Aegis Operations - The Simple Case

How does Aegiswork? Aegis maintains, for each service, a set of mappings from Javatypes (Class<?> objects) to
XML Schematypes. It usesthat mapping to read and write XML. Let'slook at asimple service, where all the Java
types involved are either Java built-in types, other types with predefined mappings to XML Schema, or simple
bean-pattern classes that have properties that (recursively) are ssimple.

Let's start with serializing : mapping from Javato XML. (JAXB calls this marshalling, and cannot decide how
many 'lI'sto usein spellingit.) Given aJavaobject, Aegislooksto seeif it hasamapping. By default, Aegishasaset
of default mappings for the basic types defined in XML Schema, plus afew other special items. These mappings
areimplemented by Java classes, parts of Aegis, that can turn objectsinto XML and visaversa. In particular, note
that Aegiswill map a DataSource or DataHandler to an MTOM attachment.

What if Aegisfindsno mapping for atype? Inthe default configuration, Aegisinvokesthe type creatorsto createa
mapping. Type creators use several mechanismsto create XML schemafrom Javaobjects. Thisinclude reflection,
annotations, and XML type mappings files. As part of the mapping process, Aegis will assign a hamespace
URI based on the Java package. (Note : Aegis does not support elementForm="unqualified' at this time.) These
mappings are implemented by a generic mapping class, and stored away.

How about the reverse process: deserializing ? (JAXB calls this unmarshalling.) In this case, by default, Aegisis
presented with an XML element and asked to produce a Java object. Recall, however, that the Aegis maintains a
mapping from Java types to XML Schema Types. By default, an XML instance document offers no information
asto the type of agiven element. How can Aegis determine the Java type? Outside of CXF, the application would
have to tell Aegis the expected type for the root element of a document.

Or, as an dternative, Aegis can add xsi:type attributes to top-level elements when writing. It will always respect
them when reading.

Inside CXF, Aegis gets the benefit of the Message and Part information for the service. The WSDL service
configuration for a service gives enough information to associate an XML Schema type with each part. Once the
front-end has determined the part, it can call Aegis with the QName for the schema type, and Aegis can look it
up in the mapping.

Will it bein the mapping? Y es, inside CXF because Aegis precreates mappings for the typesin the service's parts.
Aegis cannot dynamically create or choose a Java class based on XML schema, so the type creators cannot start
from XML. Thus, outside CXF you are responsible for ensuring that your top-level types are mapped.

Schema Validation

As of CXF 2.3, the Aegis databinding can leverage the Schema Validation capabilities built into the Woodstox
4.x Stax parser to validate incoming requests. To enable this, you must do the following:

1. Make sureyou are using the Woodstox 4.x Stax parser and not a 3.x or other parser. By default, CXF 2.3 ships
with an appropriate version of Woodstox.

2. If not using the CXF bundle jar, (example, if using maven), you'll need to add the cxf-wstx-msv-
validation-2.3.0.jar to the classpath

3. If not using maven or similar to obtain the cxf-wstx-msv-validation jar, you'll aso need to add themsv validation
jars as CXF does not ship them by default. Y ou will need:

i sorel ax-20030108. j ar

nsv- core-2009.1.jar

r el axngDat at ype- 20020414. j ar
xerceslmpl-2.9.1.jar

xm -resolver-1.2.jar

xsdl i b-2009.1.j ar

4. If not using adefault bus (such as configuring your own spring context), you'll need to add:

58 Talend Enterprise Service Factory User Guide

Aegis

<i nport resource=
"cl asspat h: META- | NF/ cxf/ cxf - ext ensi on-wst x- nsv-val i dati on. xm "/ >

to load the validator utilities that Aegiswill use.

5. Turn on schema validation like you would for JAXB by using the @SchemaV alidation annotation or setting
the "schema-validation-enabled" property on the endpoint to "true".

2.4.1.4. Using Java Classes That Aren't Visible to the Service
Interface

Many web service programmerswant to use typesthat are not directly visible by reflection of the serviceinterface.
Here are some popular examples of types that programmers want to use for property or parameter types:

» Declare abase type, but transfer any one of a number of classes that extend it.

» Declarearaw Collection class, such as a Set, List, or Map, and send arbitrary objects as keys and values.
» Declare a base exception type for 'throws, and then throw other exception classes that derive from it.

» Declare an interface or an abstract type.

Aegis can handle all of these. For all except interfaces, there are two mechanismsinvolved: the root classlist and
Xsi‘type attributes.

As explained above, Aegis can write ‘anything', but it can only read objects of types that are mapped. Y ou must
give Aegisalist of al the types that you want to use over and above those visible from the service, and you must
instruct Aegisto send xsi:type attributes when sending objects of such types. These type attributes allow Aegisto
identify the type of these additional objects and ook them up in the mappings.

Interfaces and abstract types require one further step. Obviously, Aegis cannot instantiate (run 'new’) on an
interface. Thus, knowing that a particular XML Schema type maps to an interface is not enough information. To
be ableto read an XML element that correspondsto an interface, Aegis must know a'proxy class' that implements
the interface. Y ou must give Aegis a mapping from interface types to proxy class names.

How does this work? The core of Aegis is the AegisContext class. Each AegisDatabinding object has an
AegisContext. (It is probably not possible to share an AegisContext amongst databindings.)

By default, AegisDatabinding will create its own AegisContext with default properties. To configure additional
types, as well control other options that we will examine later on, you must create the AegisContext for yourself
and specify some of its properties. Then you pass your AegisContext object into your AegisDatabinding object.

To use additional classes or interfaces, you need to set two (or three) properties of your AegisContext.

 rootClassesisacollection of Java Class<?> objects. These are added to thelist of types known to Aegis. Aegis
will create a mapping for each. For convenience, there is arootClassNames property for use from Spring. Itis
alist of Strings containing class names.

o writeXsiTypesisaboolean. Set it to true to send xsi:type attributes.

» beanlmplementationM ap is a mapping from Class<?> to class nhames. Use this to specify proxy classes for
interfaces (or abstract classes).

2.4.1.5. Global Type Creation Options

There are a few global options to the default type mapping process. You can control these by creating a
org.apache.cxf.aegis.type. TypeCreationOptions and passing it into your AegisContext object.

Talend Enterprise Service Factory User Guide 59

Aegis

There are four propertiesin the class, of which two are much more commonly used.

« defaultNillabledefinesthe default value of the nillableattribute of xsd:element itemsin the xsd: sequences built
for non-primitive types. By default, it istrue, since any Java reference can be null. However, nillable="true’ has
annoying consequences in some wsdl2java tools (turning scalars into arrays, €.g.), and So many programmers
prefer to default to false.

» defaultMinOccurs defines the default value of the minOccurs attribute of xsd:element items in the
xsd:sequences built for Java arrays. In combination with nillable, programmers often want to adjust this value
from 0 to 1 to get amore useful mapping of an array.

+ defaultExtensibleElements causes each sequence to end with an xsd:any. Theideahereisto alow for schema
evolution; aclient that has generated Javafrom oneversion of the servicewill tolerate datafrom anewer version
that has additional elements. Usethisfeature with care; version management of web servicesisacomplex topic,
and xsd:any may have unexpected conseguences.

» defaultExtensibleAttributes causes each element to permit any attribute. By default, Aegis doesn't map any
properties or parameters to attributes. As with the element case, careis called for.

Note that these are options to the default type creators. If you take the step of creating a customized type creator,
it will be up to you to respect or ignore these options.

Here's a quick example of Java code setting these options. In Spring you would do something analogous with
properties.

TypeCreationOptions tOpts = new TypeCreati onQptions();
t Opts. set Defaul t M nCccurs(1);

tOpts.setDefaul tNi || abl e(fal se);

Aegi sDat abi ndi ng aDB = new Aegi sDat abi ndi ng() ;

aDB. get Aegi sCont ext (). set TypeCreati onOptions(tOpts);
sFactory. get Servi ceFact ory() . set Dat aBi ndi ng(aDB) ;

2.4.1.6. Detailed Control of Bean Type Mapping

This page has descended, gradually, from depending on Aegis defaults toward exercising more detailed control
over the process. The next level of detail is to customize the default type creators behavior via XML mapping
files and annotations.

XML Mapping Files

XML mapping files are amajor distinguishing feature of Aegis. They allow you to specify details of the mapping
process without either (a) modifying your Java source for your types or (b) maintaining a central file of somekind
containing mapping instructions.

Aegis XML mapping applies to services and to beans. By "beans,” we mean "Java classes that follow the bean
pattern, used in aweb service." "Services," you ask? Aren't they the responsibility of the CXF front end? There
is some overlap in the responsibilities of front-ends and databindings.

By and large, front-ends map servicesto XML schema, filling in XML Schema elements and types for messages
and parts. Data bindings then map from those schema items to Java. However, Aegis also provides XML
configuration for methods and parameters, which 'poach’ in the territory of the front end. This works well for
the Simple front end, which has no other way to control these mappings. The present author is not sure what
will happen in the event of a conflict between Aegis and any other front-end, like JAX-WS, that has explicit
configuration. Thus, Aegis service configuration is best used with the Simple front end.

For both bean and service customization, Aegis looks for customization in files found by the classloader. If your
class is my.hovercraft.is.full.of .E€els, Aegis will search the classpath for /my/hovercraft/ig/full/of/Eels.aegis.xml.
In other words, if E€els.classis sitting in aJJAR file or adirectory, Eels.aegis.xml can be sitting right next to it.

60 Talend Enterprise Service Factory User Guide

Aegis

Or, on the other hand, it can be in a completely different JAR or tree, so long as it ends up in the same logical
location. In other words, you can create XML files for classes when you don't even have their source.

Thisisacopy of the XML Schemafor mapping XML files that is annotated with comments.

Bean Mapping

Hereisavery simple mapping. It takes a property named 'horse, renamesit to ‘feathers, and makesit an attribute
instead of an element.

<mappi ngs>
<mappi ng name="">
<property nane="horse" mappedName="Feat hers" style="attribute"/>
</ mappi ng>
</ mappi ngs>

Names and Namespaces

Y ou can also specify the full QName of the bean itself. The following mapping causes a class to have the QName
{ urn:north-pol e:operations} Employee.

<mappi ngs xm ns: np="urn: nort h-pol e: operati ons">
<mappi ng nanme="np: Enpl oyee" >
</ mappi ng>

</ mappi ngs>

Notice that the namespace was declared on the mappings element and then the prefix was used to specify the
element QNames for the name/title properties.

Thiswill result in amapping like so:

<np: Enpl oyee xm ns: np="urn: nort h- pol e: operati ons">
<np: Name>Sant a Cl aus</ np: Nane>
<np: Title>Chief Present Oficer (CPO</np:Title>
</ np: Enpl oyee>

Ignoring properties
If you don't want to serialize a certain property it is easy toignore it:

<mappi ngs>
<mappi ng>
<property nane="propertyNane" ignore="true"/>
</ mappi ng>
</ mappi ngs>

MinOccurs and Nillable

The default Aegis mapping is to assume that, since any Java object can be null, that the corresponding schema
elements should have minOccurs of 0 and nillable of true. There are properties on the mappings for to control this.

<mappi ngs>
<nmappi ng>
<property nane='everpresentProperty' m nCccurs="1"'

Talend Enterprise Service Factory User Guide 61

Aegis

nillable="false />
</ mappi ng>
<mappi ngs>

Alternative Type Binding

Later on, we will explain how to replace the default mappings that Aegis provides for basic types. However,
there are some cases where you may want to simply specify one of the provided type mappings for one of your
properties. Y ou can do that from the XML mapping file without creating any Java customization.

By default, for example, if Aegis maps a property as a Date, it uses the XML schema type xsd:dateTime. Here
isan example that uses xsd:date, instead.

<mappi ngs xm ns: xsd="htt p:// ww. w3. or g/ 2001/ XM_Schema" >
<mappi ng>
<property nane="birthDate"
t ype="org. apache. cxf. aegi s. t ype. basi c. Dat eType"
t ypeNane="xsd: dat e"
/>
</ mappi ng>
</ mappi ngs>

Collections

If you use a'raw' collection type, Aegiswill map it as a collection of xsd:any particles. If you want the WSDL to
show it as a collection of some specific type, the easiest thing to do is to use Java generics instead of raw types.
If, for some reason, you can't do that, you can use the componentType and keyType attributes of a property to
specify the Java classes.

Multiple mappings for Different Services

What if you want to specify different mapping behavior for different services on the same types? The 'mapping'
element of the file accepts a 'uri’ attribute. Each AegisContext has a ‘mappingNamespaceURI" attribute. If a
mapping in a.aegis.xml file has a uri attribute, it must match the current service's uri.

Services and Parameters

For a service, mapping files specify attributes of operations and parameters.

This example specifiesthat getUnannotatedStrings returns an element named UnannotatedStringCollection which
isaraw collection of String values. It then specifies the first parameter of getValuesis also araw collection of
String values.

<mappi ngs>
<mappi ng>
<nmet hod name="get Unannot at edStri ngs" >
<return-type nane="Unannot at edStri ngCol | ecti on"
conponent Type="j ava. | ang. Stri ng"/ >
</ met hod>
<nmet hod name="get Val ues" >
<par anet er index="0" conponent Type="java. |l ang. String"/>
</ met hod>
</ mappi ng>

62 Talend Enterprise Service Factory User Guide

Aegis

</ mappi ngs>

Annotations

Like JAXB, Aegis supports some Java annotations to control the mapping process. These attributes are modelled
after JAXB. Aegis defines them in the package org.apache.cxf.aegis.type.javab. They are:

« XmlAttribute

o XmiType

* XmlElement

* XmiReturnType

e Xmllgnore

In addition, Aegiswill respect actual JAXB annotations from the following list:
 javax.jws.WebParam

* javax.jwsWebResult

* javax.xml.bind.annotation.X mlAttribute
* javax.xml.bind.annotation.XmlElement
* javax.xml.bind.annotation.X mlSchema
* javax.xml.bind.annotation.Xml Type

* javax.xml.bind.annotation.XmlTransient

Note, however, that Aegisdoesnot handle package-info.javaclasses, and so XmlSchemamust be appliedto aclass.

2.4.1.7. Creating Your Own Type Mappings

If you want complete control on the mapping between Javaand XML, you must create your own type mappings.
To do this, you should make a class that extends org.apache.cxf.aegis.type. Type, and then you must register it in
atype mapping for your service.

To see how these classes work, read the source code.
To register your type mappings, you have two choices.

If you just want to add a custom type mapping into your service, the easiest thing to do is to retrieve the
TypeMapping from the AegisContext, and register your type as amapping from Class<?> to your custom mapping
object.

If you want complete control over the process, you can create your own TypeMapping. The class
DefaultTypeMapping is the standard type map. Y ou can use these, or you can create your own implementation of
TypeMapping. Set up your type mapping asyou like, and install it in your context before the service isinitialized.

2.4.1.8. Customizing Type Creation

What if you want to change how Aegis builds new type mappings and types from Java classes? Y ou can create
your own TypeCreator, and either put it in the front of the list of type creators or replace the entire standard list.

Talend Enterprise Service Factory User Guide 63

Aegis

As with type mappings, reading the source is the only way to learn the details. Type creators are associated with
type mappings; you can call setTypeCreator on an instance of DefaultTypeMapping to install yours.

2.4.1.9. Aegis Default Mappings

For services declared to operate with Soap 1.1, Aegis sets up two sets of mappings.

Soap 1.1 SOAP mappings

Type SOAP Mapping
boolean Soap-encoded boolean
Boolean Soap-encoded boolean
int Soap-encoded int
Integer Soap-encoded int

short Soap-encoded int

Short Soap-encoded int
double Soap-encoded double
Double Soap-encoded double
float Soap-Encoded float
Float Soap-Encoded float
long Soap-encoded long
Long Soap-encoded long

char Soap-encoded char
Character Soap-encoded char
String Soap-encoded String
java.sgl.Date Soap-encoded date-time
java.util.Calendar Soap-encoded date-time
byted(] soap-encoded Base64
BigDecimal Soap-encoded Decimal
Biglnteger Soap-encoded Biglnteger

Soap 1.1 XSD mappings

Type XSD Mapping
boolean XSD boolean
Boolean XSD boolean
int XSD int
Integer XSD int

short XSD int

Short XSD int

64 Talend Enterprise Service Factory User Guide

Aegis

Type XSD Mapping

double XSD double

Double XSD double

float XSD float

Float XSD float

long XSD long

Long XSD long

char XSD char

Character XSD char

String XSD String

java.sgl.Date XSD date-time

javasgl.Time XSD time

java.util.Calendar XSD date-time

byte[] XSD Base64

BigDecimal XSD Decimal

Biglnteger XSD Integer

org.w3c.Document XSD Any

org.jdom.Document XSD Any

org.jdom.Element XSD Any

javax.xml.transform.source XSD Any

javax.xml.stream.X ML StreamReader XSD Any

Object XSD Any

javax.activation.DataSource XSD Base64 via MTOM data source type (See
org.apache.cxf.argis.type.mtom)

javax.activation.DataHandler XSD Base64 via MTOM data source type (See
org.apache.cxf.argis.type.mtom)

Services that Don't Use Soap 1.1

The type mappings for non-Soap-1.1 services start out with the same X SD types as the Soap-1.1 services

Type XSD Mapping
boolean XSD boolean
Boolean XSD boolean
int XSD int
Integer XSD int
short XSD int
Short XSD int
double XSD double
Double XSD double
float XSD float
Float XSD float
long XSD long

Talend Enterprise Service Factory User Guide 65

JAXB

Type XSD Mapping

Long XSD long

char XSD char

Character XSD char

String XSD String

java.sgl.Date XSD date-time

java.sgl.Time XSD time

java.util.Calendar XSD date-time

byte[] XSD Base64

BigDecimal XSD Decimal

Biglnteger XSD Integer

org.w3c.Document XSD Any

org.jdom.Document XSD Any

org.jdom.Element XSD Any

javax.xml.transform.source XSD Any

javax.xml.stream.X ML StreamReader XSD Any

Object XSD Any

javax.activation.DataSource Base64 via MTOM data source type (See
org.apache.cxf.argis.type.mtom)

javax.activation.DataHandler Bases54 MTOM data source type (See
org.apache.cxf.argis.type.mtom)

These services get some additional mappings, as well:

Type Mapping
javax.xml.datatype.Duration XSD Duration
javax.xml.datatype. X ML GregorianCalendar XSD Date
javax.xml.datatype.X ML GregorianCalendar XSD Time
javax.xml.datatype.X ML GregorianCalendar XSD gDay
javax.xml.datatype.X M L GregorianCalendar XSD gMonth
javax.xml.datatype.X ML GregorianCalendar XSD gMonthDay
javax.xml.datatype.X ML GregorianCalendar XSD gYear
javax.xml.datatype.X M L GregorianCalendar XSD gYearMonth
javax.xml.datatype.X M L GregorianCalendar XSD Date-Time

2.4.2. JAXB

2.4.2.1. Introduction

JAXB is the default data binding for CXF. If you don't specify one of the other data bindings in your Spring
configuration or through the API, you will get JAXB. CXF 2.0.x branch supplies JAXB 2.0, CXF 2.1.x and CXF
2.2xuseJAXB 2.1.

66 Talend Enterprise Service Factory User Guide

JAXB

JAXB uses Java annotation combined with files found on the classpath to build the mapping between XML and
Java. JAXB supports both code-first and schema-first programming. The schema-first support the ability to create
aclient proxy, dynamically, at runtime. See the CXF DynamicClientFactory class.

CXF uses the JAXB reference implementation. To learn more about annotating your classes or how to generate
beans from a schema, please read the JAXB user's guide .

2.4.2.2. JAXB versus JAX-WS (or other front-ends)

There are some pitfallsin the interaction between the front end and the data binding. If you need detailed control
over the XML that travels on the wire, you may want to avoid the 'wrapped' alternative, and stick with 'bare'.
When you use the wrapped parameter style or the RPC hinding, the front ends construct more or less elaborate
XML representations for your operations. You have less control over those constructs than you do over JAXB's
mappings. In particular, devel opers with detailed requirements to control the XML Schema 'elementFormDefault’
or the use or non-use of XML namespace prefixes often become frustrated because the JAXB annotationsfor these
options don't effect mappings that are purely the work of the front-end. The safest course is to use Document/
Literal/Bare.

2.4.2.3. Configuring JAXB

CXF alows you to configure JAXB in two ways.

JAXB Properties

JAXB allows the application to specify two sets of properties that modify its behavior: context properties and
marshaller properties. CXF allows applications to add to these properties. Take care. In some cases, CXF sets
these properties for its own use.

You can add items to both of these property sets via the JAXBDataBinding class. The 'contextProperties' and
'marshallerProperties’ properties (in the Spring sense) of JAXBDataBinding each store a Map<String, Object>.
Whatever you put in the map, CXF will pass aong to JAXB. Seethe JAXB documentation for details.

<j axws: server id="bookServer"
servi ceC ass="or g. apache. cxf. nyt ype. AnonynousConpl exTypel npl "
address="http://| ocal host: 8080/ act"
bus="cxf">
<j axws: i nvoker >
<bean cl ass="org. apache. cxf. servi ce. i nvoker. Beanl nvoker" >
<constructor-arg>
<bean cl ass="org. apache. cxf. nyt ype. AnonynousConpl exTypel npl "/ >
</ constructor-arg>
</ bean>
</jaxws: i nvoker >
<j axws: dat aBi ndi ng>
<bean cl ass="org. apache. cxf.j axb. JAXBDat aBi ndi ng" >
<property nane="context Properties">
<map>
<entry>
<key><val ue>com sun. xni . bi nd. def aul t NanespaceRenmap</ val ue></ key>
<val ue>uri:ul tima:thul e</val ue>
</entry>
</ map>
</ property>

Talend Enterprise Service Factory User Guide 67

https://jaxb.dev.java.net/guide/

JAXB

</ bean>
</ j axws: dat aBi ndi ng>
</jaxws:server>

Activating JAXB Validation of SOAP requests and responses

For the client side

<jaxws:client name="{http://apache.org/ hello_world_soap_http}SoapPort"
cr eat edFr omAPI ="t rue" >
<j axws: properti es>
<entry key="schemna-validation-enabl ed" val ue="true" />
</jaxws: properties>
</jaxws:client>

Y ou may aso do this programmatically:

((Bi ndi ngProvi der) port). get Request Cont ext (). put (
"schema-val i dati on-enabl ed", "true");

For the server side

<j axws: endpoi nt name="{http://apache.org/ hell o_worl d_soap_htt p} SoapPort
wsdl Locati on="wsdl /hel |l o_worl d. wsdl" createdFromAPlI ="true">
<j axws: properti es>
<entry key="schema-validation-enabl ed" value="true" />
</jaxws: properties>
</ j axws: endpoi nt >

Y ou can a'so use the org.apache.cxf.annotations.SchemaV alidation annotation.

Namespace Prefix Management

The JAXB referenceimplementation allowsthe application to provide an object that in turn maps namespace URI's
to prefixes. You can create such an object and supply it via the marshaller properties. However, CXF provides
an easier process. The namespaceMap property of the JAXBDataBinding accepts a Map<String, String>. Think
of it as amap from namespace URI to namespace prefix. If you load up this map, CXF will set up the necessary
marshaller property for you.

<j axws: server id="bookServer"
servi ceC ass="or g. apache. cxf. nyt ype. AnonynousConpl exTypel npl "
address="http://| ocal host: 8080/ act"
bus="cxf">
<j axws: i nvoker >
<bean cl ass="org. apache. cxf. servi ce. i nvoker. Beanl nvoker" >
<constructor-arg>
<bean cl ass="org. apache. cxf. nyt ype. AnonynousConpl exTypel npl "/ >
</ constructor-arg>
</ bean>
</j axws: i nvoker >
<j axws: dat aBi ndi ng>
<bean cl ass="org. apache. cxf.j axb. JAXBDat aBi ndi ng" >
<property nanme="nanmespaceMap" >
<map>
<entry>
<key>

68 Talend Enterprise Service Factory User Guide

MTOM Attachments with JAXB

<val ue>
http://cxf. apache. or g/ anonynous_conpl ex_t ype/
</ val ue>
</ key>
<val ue>BeepBeep</ val ue>
</entry>
</ map>
</ property>
</ bean>
</ j axws: dat aBi ndi ng>
</jaxws:server>

2.4.3. MTOM Attachments with JAXB

MTOM is a standard which alows your services to transfer binary data efficiently and conveniently. Many
frameworks have support for MTOM - Axis2, JAX-WS RI, JBoss WS, XFire, Microsoft's WCF, and more.

If the binary is part of the XML document, it needs to be base64 encoded - taking CPU time and increasing the
payload size. When MTOM isenabled on aservice, it takes binary datawhich might normally be part of the XML
document, and creates an attachment for it.

Enabling MTOM is a rather simple process. First, you must annotate your schema type or POJO to let JAXB
know that a particular field could be a candidate for MTOM optimization. Second, you just tell CXF that you
wish to enable MTOM.

This page tells you how to activate MTOM for JAXB. MTOM is aso supported in Aegis.

2.4.3.1. 1) Annotating the Message

1la) Modifying your schema for MTOM

L ets say we have a Picture schematype like this:

<schema t ar get Nanespace="http://pi ctures. cont
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schena" >
<el enent name="Pi cture">
<conpl exType>
<sequence>
<el enent name="Title" type="xsd:string"/>
<el enent name="1nmageDat a" type="xsd: base64Bi nary"/ >
</ sequence>
</ conpl exType>
</ el ement >
</ schema>

In this case the ImageData element is something we would like to have transferred as an attachment. To do this
we just need to add an xmime:expectedContent Types annotation:

<schemm t ar get Nanespace="http:// pi ctures. cont
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schenma"
xm ns: xm ne="http://ww. w3. or g/ 2005/ 05/ xm m ne" >
<el ement nane="Pi cture">
<conpl exType>

Talend Enterprise Service Factory User Guide 69

http://www.w3.org/TR/soap12-mtom/

MTOM Attachments with JAXB

<sequence>
<el enent name="Title" type="xsd:string"/>
<el enent name="1nmageDat a" type="xsd: base64Bi nary"
xm me: expect edCont ent Types="appl i cati on/ octet-streani/>
</ sequence>
</ conpl exType>
</ el ement >
</ schema>

This tells JAXB (which WSDL 2Java uses to generate POJOs for your service) that this field could be of any
content type. Instead of creating a byte[] array for the base64Binary element, it will create a DataHandler instead
which can be used to stream the data.

1b) Annotation your JAXB beans to enable MTOM

If you're doing code first, you need to add an annotation to your POJO to tell JAXB that the field is a candidate
for MTOM optimization. Lets say we have a Picture class with has Title and ImageDatafields, then it might look
like this:

@Xm Type
public class Picture {
private String title;

@m M meType("application/octet-streant)
privat e Dat aHandl er i nmageDat a;

public String getTitle() { returntitle; }
public void setTitle(String title) { this.title =title; }

publ i c DataHandl er getlnageData() { return inageData; }
public void setlmageDat a(Dat aHandl er i mageDat a)
{ this.imgeData = i mageData; }
}

Note the use of 'application/octet-stream’. According to the standard, you should be able to use any MIME type
you like, in order to specify the actual content of the attachment. However, due to adefect in the JAX-B reference
implementation, this won't work.

2.4.3.2. 2) Enable MTOM on your service

If you've used JAX-WS to publish your endpoint you can enable MTOM like so:

i mport javax.xm .ws. Endpoi nt;
i mport javax.xm .ws. soap. SOAPBI ndi ng;

Endpoi nt ep = Endpoi nt. publish("http://Iocal host/nyService",
new MyService());

SOAPBI ndi ng bi ndi ng = (SQAPBI ndi ng) ep. getBi ndi ng();

bi ndi ng. set MTOVEnabl ed(true);

Or, if you used XML to publish your endpoint:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: jaxws="http://cxf.apache. org/jaxws"
xsi : schemaLocat i on="

70 Talend Enterprise Service Factory User Guide

MTOM Attachments with JAXB

htt p: // www. spri ngf ranewor k. or g/ scherma/ beans

htt p: // www. spri ngf ranewor k. or g/ scherma/ beans/ spri ng- beans- 2. 0. xsd
http://cxf.apache. org/j axws

http://cxf.apache. org/ schena/ j axws. xsd" >

<j axws: endpoi nt
i d="hel | oVor |l d"
i mpl enent or =" deno. spri ng. Hel | oWor | dl npl ™
address="http://1 ocal host/ Hel | oVor| d">
<j axws: properti es>
<entry key="ntom enabl ed" val ue="true"/>
</jaxws: properties>
</ j axws: endpoi nt >

</ beans>

If you're using the simple frontend you can set the mtom-enabled property on your ServerFactoryBean or
ClientProxyFactoryBean:

Map<Stri ng, Obj ect> props = new HashMap<String, Object>();
/1 Boolean. TRUE or "true" will work as the property val ue here
props. put ("nt om enabl ed", Bool ean. TRUE);

dient ProxyFact oryBean pf = new O i ent ProxyFactoryBean();
pf. set Propertyi es(props);

YourCient client = (YourCient) pf.create();

Server Fact oryBean sf = new Server Fact oryBean();
sf.set Propertyies(props);

sf.create();
Similarly, you can use the XML configuration:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

xm ns: si npl e="http://cxf.apache. org/si npl e"

Xsi : schemaLocat i on="
htt p: // ww. spri ngfranmewor k. or g/ schema/ beans
htt p: // ww. spri ngfranmewor k. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
http://cxf. apache. org/ si npl e
htt p://cxf. apache. or g/ schema/ si npl e. xsd" >

<si npl e: server
i d="hel | oVor | d"
servi ceC ass="deno. spri ng. Hel | oWor | dl npl "
address="http://1 ocal host/Hel | oWor| d" >
<si npl e: properties>
<entry key="ntonm enabl ed" val ue="true"/>
</ sinpl e: properties>
</ sinpl e: server>

<sinmple:client
i d="hel | oWorl ddient"
servi ceC ass="deno. spri ng. Hel | oWor | dl npl "
address="http://1 ocal host/Hel | oWorl| d" >
<si npl e: properties>
<entry key="ntonm enabl ed" val ue="true"/>

Talend Enterprise Service Factory User Guide 71

SDO

</ sinpl e: properties>
</sinple:client>

</ beans>

2.4.3.3. Using DataHandlers

Once you've got the above done, its time to start writing your logic. DataHandlers are easy to use and create. To
consume a DataHandler:

Picture picture = ...;
Dat aHandl er handl er = picture. getlmageData();
InputStreamis = handl er. get | nput Streamn();

There are many waysto create DataHandlers. Y ou can use a FileDataSource, ByteArrayDataSource, or write your
own DataSource:

Dat aSour ce source = new Byt eArrayDat aSource(new byte[] {...},
"content/type");
Dat aSource source = new Fil eDat aSource(new File("ny/file"));

Picture picture = new Picture();
pi cture. setl mageDat a(new Dat aHandl er (source));

2.4.4. SDO

Apache CXF 2.3 added support for the Tuscany implementation of Service Data Objects as aternative data
binding.

2.4.4.1. Setup

By default, CXF does not ship with the Tuscany SDO jars. Y ou will need to acquire them elsewhere and add them
to the classpath for the SDO databinding to work. The list of required jars are:

backport-util-concurrent-3.0.jar
codegen-2.2.3.jar
codegen-ecore-2.2.3.jar
conmon-2.2.3.jar
ecore-2.2.3.jar
ecore-change-2.2.3.jar
ecore-xm-2.2.3.jar
tuscany-sdo-api-r2.1-1.1.1.jar
tuscany-sdo-inmpl-1.1.1.jar
tuscany-sdo-lib-1.1.1.jar
tuscany-sdo-tools-1.1.1.jar
xsd-2.2.3.jar

2.4.4.2. Code Generation

If all the SDO required jars are available (by default, CXF does not ship them, see above), wsld2java tool can
be run with the -db sdo flag to have the code generator emit SDO objects instead of the default JAXB objects.

72 Talend Enterprise Service Factory User Guide

http://tuscany.apache.org/sdo-java.html
http://en.wikipedia.org/wiki/Service_Data_Objects

XMLBeans

The generated SEI interface will have @DataBinding(org.apache.cxf.sdo.SDODataBinding.class) annotation on
it which is enough to configure the runtime to know to use SDO.

2.4.5. XMLBeans

Apache XMLBeans is another technology for mapping XML Schema to java objects. CXF added support for
XMLBeansin 2.1. There are atwo parts to the support for XMLBeans:

2.45.1. Code Generation

The wsdl2java tool now allows a "-db xmlbeans' flag to be added that will generate XMLBeans types for all
the schema beans instead of the default JAXB beans. With 2.1 and 2.2, the types are generated, but you till
need to configure the XML Beans databinding to be used at runtime. With 2.3, the generated code contains an
@Databinding annotation marking it as XML Beans and the configuration is unnecessary.

2.4.5.2. Runtime

Y ou need to configure the runtimeto tell it to use XML Beans for the databinding instead of JAXB.

Spring config

For the server side, your spring configuration would contain something like:

<j axws: server serviceC ass="deno. hw. server. Hel | oWor| d"
address="/hell o_worl d">
<j axws: dat aBi ndi ng>
<bean cl ass="org. apache. cxf. xm beans. Xm BeansDat aBi ndi ng" />
</ j axws: dat aBi ndi ng>
</jaxws:server>

or

<j axws: endpoi nt
i d="hel | oWor| d"
i mpl ement or =" deno. spri ng. Hel | oWor | dI npl "
address="http://1 ocal host/ Hel |l oWor| d">
<j axws: dat aBi ndi ng>
<bean cl ass="org. apache. cxf. xm beans. Xm BeansDat aBi ndi ng" />
</ j axws: dat aBi ndi ng>
</ j axws: endpoi nt >

Theclient sideisvery similar:

<jaxws:client id="helloCient"
servi ceC ass="deno. spri ng. Hel | oWor| d"
address="http://| ocal host: 9002/ Hel | oWor | d" >
<j axws: dat aBi ndi ng>
<bean cl ass="org. apache. cxf. xmnm beans. Xm BeansDat aBi ndi ng" />
</ j axws: dat aBi ndi ng>
<j axws: client>

Talend Enterprise Service Factory User Guide 73

http://xmlbeans.apache.org/

CXF Transports

FactoryBeans

If using programmatic factory beans instead of spring configuration, the databinding can be set on the
ClientProxyFactoryBean (and subclasses) and the ServerFactoryBean (and subclasses) via:

factory. get Servi ceFactory() . set Dat aBi ndi ng(
new or g. apache. cxf. xm beans. Xnml BeansDat aBi ndi ng()) ;

2.5. CXF Transports

2.5.1. HTTP Transport

HTTPtransport support viaservlet-based environmentsis described bel ow (embedded Jetty and OSGi deployment
isalso availablein CXF).

2.5.1.1. Client HTTP Transport (including SSL support)

Configuring SSL Support

To configure your client to use SSL, you'll need to add an <http:conduit> definition to your XML configuration
file. If you are already using Spring, this can be added to your existing beans definitions.

A wsdl_first_https sample can be found in the CXF distribution with more detail. Also see this blog entry for
another example.

Here is a sample of what your conduit definition might look like:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

xm ns: sec="http://cxf.apache. org/configuration/security"

xm ns: http="http://cxf.apache. org/transports/ http/configuration”

xm ns: jaxws="http://java. sun. com xm / ns/j axws"

Xsi : schemaLocat i on="
http://cxf.apache. org/ configuration/security
htt p: //cxf. apache. or g/ schenas/ confi gurati on/ security. xsd
http://cxf.apache. org/transports/ http/configuration
htt p://cxf. apache. or g/ schenas/ confi gurati on/ htt p-conf. xsd
htt p: // ww. spri ngf ranmewor k. or g/ schema/ beans
htt p: // ww. spri ngf ramewor k. or g/ schena/ beans/ spri ng- beans- 2. 0. xsd" >

<ht t p: condui t
name="{http://apache.org/ hell o_worl d}Hel |l oWrl d. http-conduit">

<http:tlsdientParaneters>
<sec: keyManagers keyPasswor d="passwor d" >
<sec: keyStore type="JKS" passwor d="password"
file="ny/filel/dir/Mrpit.jks"/>
</ sec: keyManager s>
<sec: trust Manager s>

74 Talend Enterprise Service Factory User Guide

http://svn.apache.org/viewvc/cxf/trunk/distribution/src/main/release/samples/wsdl_first_https/
http://techpolesen.blogspot.com/2007/08/using-ssl-with-xfirecxf-battling.html

HTTP Transport

<sec: keyStore type="JKS" passwor d="password"
file="ny/filel/dir/Truststore.jks"/>
</ sec: trust Manager s>
<sec: ci pherSuitesFilter>
<l-- these filters ensure that a ciphersuite with
export-suitable or null encryption is used,
but excl ude anonymous Diffie-Hellman key change as
this is vulnerable to man-in-the-mddle attacks -->
<sec:include>. * EXPORT . *</sec:include>
<sec:include>. * EXPORT1024 . *</sec:include>
<sec:include>* WTH DES .*</sec:include>
<sec:include>* WTH AES . *</sec:include>
<sec:include>* WTH NULL .*</sec:include>
<sec: excl ude>.* DH anon_. *</sec: excl ude>
</ sec: ci pherSuitesFilter>
</http:tlsCientParaneters>
<htt p: aut hori zati on>
<sec: User Nane>Bet t y</ sec: User Nane>
<sec: Passwor d>passwor d</ sec: Passwor d>
</ http:authorization>
<http:client AutoRedirect="true" Connection="Keep-Alive"/>

</ http: conduit>

</ beans>

The first thing to notice is the "name" attribute on <http:conduit>. This alows CXF to associate this HTTP
Conduit configuration with a particular WSDL Port. The name includes the service's namespace, the WSDL port
name (as found in the wsdl:service section of the WSDL), and ".http-conduit”. It follows this template: "{ WSDL
Namespace} portName.http-conduit”. Note: it's the PORT name, not the service name. Thus, it's likely something
like"MyServicePort", not "MyService". If you are having troubl e getting thetemplate to work, another (temporary)
option for the name value is simply "*.http-conduit”.

Another option for the name attribute is a reg-ex expression for the ORIGINAL URL of the endpoint. The
configuration is matched at conduit creation so the address used in the WSDL or used for the JAX-WS
Service.create(...) call can be used for the name. For example, you can do:

<http: conduit nanme="http://|ocal host:8080/.*">

</ http: conduit>

to configure a conduit for all interactions on localhost:8080. If you have multiple clientsinteracting with different
services on the same server, thisis probably the easiest way to configureit.

Advanced Configuration

HTTP client endpoints can specify a number of HTTP connection attributes including whether the endpoint
automati cally accepts redirect responses, whether the endpoint can use chunking, whether the endpoint will request
akeep-alive, and how the endpoint interacts with proxies.

A client endpoint can be configured using three mechanisms:
» Configuration
 WSDL

» Javacode

Talend Enterprise Service Factory User Guide 75

HTTP Transport

Using Configuration

Namespace

The elements used to configure an HTTP client are defined in the namespace http://cxf.apache.org/transports/http/
configuration” . It iscommonly referred to using the prefix ht t p- conf . In order to usethe HTTP configuration
elements you will need to add the lines shown bel ow to the beans element of your endpaint's configuration file. In
addition, you will need to add the configuration elements' namespace to the xsi : schenmalLocat i on attribute.

Example 2.19. HTTP Consumer Configuration Namespace

<beans ...
xm ns: http-conf=
"http://cxf.apache.org/transports/http/configuration

xsi : schemaLocati on=". ..
http://cxf.apache. org/transports/ http/configuration
htt p://cxf. apache. or g/ schenas/ confi gurati on/ htt p-conf. xsd
>

The conduit element

You configure an HTTP client using the htt p- conf: conduit element and its children. The htt p-
conf: condui t element takesasingle attribute, nane , that specifiesthe WSDL port element that corresponds
to the endpoint. The value for the nane attribute takes the form portQName . htt p-conduit . For
example, the code below shows the ht t p- conf: condui t element that would be used to add configuration
for an endpoint that was specified by the WSDL fragment <port bi ndi ng="wi dget SOAPBi ndi ng"
nanme="w dget SOAPPort > if the endpoint's target namespace was http://widgets.widgetvendor.net".
Alternatively, the name attribute can be aregular expression to match aURL. Thisallows configuration of conduits
that are not used for purposes of WSDL based endpoints such as JAX-RS and for WSDL retrieval.

Example 2.20. http-conf:conduit Element

<ht t p- conf: conduit nane=
"{http://w dgets/w dget vendor. net } wi dget SOAPPort. http-conduit">

</ http-conf: conduit>

<htt p- conf: conduit nanme="*.http-conduit">

<l-- you can also using a wild card specify the http-conduit
that you want to configure -->

</ http-conf: conduit>

<ht t p- conf: conduit nanme="http://| ocal host: 8080/.">

<l-- you can al so use the reg-ex URL to match for

the http-conduit that you want to configure -->

</ http-conf: conduit>

The ht t p- conf : condui t element has a number of child elements that specify configuration information.
They are described below. See also Sun's JSSE Guide for more information on configuring SSL.

76 Talend Enterprise Service Factory User Guide

http://java.sun.com/javase/6/docs/technotes/guides/security/jsse/JSSERefGuide.html

HTTP Transport

Element

Description

htt p-conf:client

Specifies the HTTP connection properties such as
timeouts, keep-alive requests, content types, etc.

htt p-conf: authori zati on

Specifies the the parameters for configuring the
basic authentication method that the endpoint uses

preemptively.
htt p- conf: proxyAut hori zati on Specifies the parameters for configuring basic
authentication against outgoing HTTP proxy servers.
http-conf:tlsCientParaneters Specifies the parameters used to configure SSL/TLS.
ht t p- conf: basi cAut hSuppl i er Specifies the bean reference or class name of the object

that supplies the the basic authentication information
used by the endpoint both preemptively or in response
toa401 HTTP challenge.

htt p-conf:trustDeci der

Specifies the bean reference or class name of the object
that checks the HTTP(S) URLConnection object in
order to establish trust for a connection with an HTTPS
service provider before any information is transmitted.

The client element

The http-conf:client element is used to configure the non-security properties of a client's HTTP
connection. Its attributes, described below, specify the connection's properties.

Attribute

Description

Connecti onTi meout

Specifies the amount of time, in milliseconds, that the client will attempt
to establish a connection before it times out. The default is 30000 (30
seconds). O specifies that the client will continue to attempt to open a
connection indefinitely.

Recei veTi neout

Specifies the amount of time, in milliseconds, that the client will wait for a
response beforeit times out. The default is 60000. O specifiesthat the client
will wait indefinitely.

Aut oRedi r ect

Specifiesif the client will automatically follow a server issued redirection.
The default isfalse.

MaxRetransm ts

Specifies the maximum number of times a client will retransmit a request
to satisfy a redirect. The default is -1 which specifies that unlimited
retransmissions are allowed.

Al | owChunki ng

Specifieswhether the client will send requests using chunking. The default
is true which specifies that the client will use chunking when sending
requests. Chunking cannot be used used if either of the following are true:

* http-conf: basi cAut hSupplier is configured to provide
credentials preemptively.

* AutoRedirect is set to true In both cases the value of
Al'l owChunki ng is ignored and chunking is disallowed. See note
about chunking below.

Chunki ngThr eshol d

Specifies the threshold at which CXF will switch from non-chunking to
chunking. By default, messages less than 4K are buffered and sent non-
chunked. Once this threshold is reached, the message is chunked.

Accept

Specifies what media types the client is prepared to handle. The value is
used asthe value of theHTTP Accept property. Thevalue of the attribute

Talend Enterprise Service Factory User Guide 77

HTTP Transport

Attribute

Description

is specified using as multipurpose internet mail extensions (MIME) types.
See note about chunking below.

Accept Language

Specifieswhat language (for example, American English) the client prefers
for the purposes of receiving aresponse. The value is used as the value of
the HTTP AcceptLanguage property. Language tags are regulated by the
International Organization for Standards (1SO) and are typically formed
by combining a language code, determined by the 1SO-639 standard, and
country code, determined by the | SO-3166 standard, separated by ahyphen.
For example, en-US represents American English.

Accept Encodi ng

Specifies what content encodings the client is prepared to handle. Content
encoding labels are regulated by the Internet Assigned Numbers Authority
(IANA). Thevalueisused as the value of the HTTP Accept Encodi ng

property.

Cont ent Type

Specifies the media type of the data being sent in the body of a message.
Media types are specified using multipurpose internet mail extensions
(MIME) types. Thevalueisused asthevaue of theHTTP Cont ent Type
property. Thedefaultist ext / xm . Tip: For web services, this should be
settot ext / xml . If theclientissending HTML form datato aCGl script,
this should be set to application/x-www-form-urlencoded. If the HTTP
POST request is bound to a fixed payload format (as opposed to SOAP),
the content type istypically set to application/octet-stream.

Host

Specifies the Internet host and port number of the resource on which the
request isbeing invoked. Thevalueisused asthe value of the HTTP Host
property. Tip: This attribute is typically not required. It is only required
by certain DNS scenarios or application designs. For example, it indicates
what host the client prefersfor clusters (that is, for virtual servers mapping
to the same Internet protocol (1P) address).

Connecti on

Specifies whether a particular connection isto be kept open or closed after
each request/response dialog. There are two valid values:

» Keep- Ali ve (default) specifies that the client wants to keep its
connection open after theinitial request/response sequence. If the server
honorsit, the connection is kept open until the consumer closesiit.

» cl ose specifies that the connection to the server is closed after each
request/response sequence.

CacheCont r ol Specifies directives about the behavior that must be adhered to by caches
involved in the chain comprising a request from aclient to a server.
Cooki e Specifies a static cookie to be sent with all requests.

Br owser Type

Specifiesinformation about the browser from which the request originates.
In the HTTP specification from the World Wide Web consortium (W3C)
this is also known as the user-agent . Some servers optimize based upon
the client that is sending the request.

Ref erer

Specifies the URL of the resource that directed the consumer to make
requests on aparticular service. The valueisused asthe value of theHTTP
Referer property. Note: This HTTP property is used when a request is
the result of a browser user clicking on a hyperlink rather than typing a
URL. Thiscan allow the server to optimize processing based upon previous
task flow, and to generate lists of back-links to resources for the purposes
of logging, optimized caching, tracing of obsolete or mistyped links, and
so on. However, it is typically not used in web services applications.
Important: If the AutoRedirect attribute is set to true and the request is
redirected, any value specified in the Refererattribute is overridden. The

78

Talend Enterprise Service Factory User Guide

HTTP Transport

Attribute Description

value of the HTTP Referer property will be set to the URL of the service
who redirected the consumer's original request.

Decoupl edEndpoi nt Specifiesthe URL of adecoupled endpoint for the receipt of responses over
a separate server->client connection. Warning: Y ou must configure both
the client and server to use WS-Addressing for the decoupled endpoint to

work.
Pr oxySer ver Specifiesthe URL of the proxy server through which requests are routed.
Pr oxySer ver Por t Specifies the port number of the proxy server through which requests are
routed.
Pr oxySer ver Type Specifies the type of proxy server used to route requests. Valid values are;

o HTTP(default)

* SOCKS

Example using the Client Element

The example below shows a the configuration for an HTTP client that wants to keep its connection to the server
open between requests, will only retransmit requests once per invocation, and cannot use chunking streams.

Example 2.21. HTTP Consumer Endpoint Configuration

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

xm ns: htt p-conf=
"http://cxf.apache.org/transports/http/configuration”

xsi : schenmaLocat i on="
http://cxf.apache. org/transports/ http/configuration
http://cxf. apache. or g/ schenas/ confi gurati on/ htt p-conf. xsd
http://ww. springfranework. org/ scherma/ beans
http://ww. springfranework. org/ scherma/ beans/ spri ng- beans. xsd" >

<ht t p- conf: conduit nane=
"{http://apache.org/ hell o _world soap_http}SoapPort. http-conduit">
<ht t p-conf: client Connection="Keep-Alive"
MaxRet ransmi t s="1"
Al | owChunki ng="f al se" />
</ http-conf: conduit>
</ beans>

Again, see the Configuration page for information on how to get CXF to detect your configuration file.

The tlsClientParameters element

The TLSClientParameters are listed here and here .

Attribute Description

certConstraints Certificate Constraints specification.

ci pher Suites CipherSuites that will be supported. VM defaults if not specified.

ci pherSuitesFilter filters of the supported CipherSuites that will be supported and used if
available.

Talend Enterprise Service Factory User Guide 79

http://cwiki.apache.org/CXF20DOC/configuration.html
https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/configuration/jsse/TLSParameterBase.java
https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/configuration/jsse/TLSClientParameters.java

HTTP Transport

Attribute

Description

di sabl eCNcheck

Indicates whether that the hostname given in the HTTPS URL will be checked
against the service's Common Name (CN) given in its certificate during SOAP
client requests, and failing if there is a mismatch. If set to true (not
recommended for production use), such checks will be bypassed. That
will allow you, for example, to use a URL such as | ocal host during
development. Default isfalse.

j sseProvi der

JSSE provider name. VM default if not specified.

keyManager s

Key Managersto hold X509 certificates. VM defaults used if not specified.

secur eRandom
Paraneters

SecureRandom specification. VM default if not specified.

secur eSocket Pr ot ocol

Protocol Name. Most common example are "SSL", "TLS" (default) or
"TLSv1".

trust Managers

TrustManagers to validate peer X509 certificates. VM default used if not
specified.

useHt t psURL-
Connecti on-

Def aul t Ssl Socket -
Factory

specifies if HttpsURL-Connection.getDefault-SSL SocketFactory() should
be used to create https connections. If true, jsseProvider,
secur eSocket - Prot ocol, trustManagers, keyManagers,
secur eRandom ci pherSuites, and cipherSuitesFilter
configuration parameters are ignored. Default isfalse.

useH t psURL-
Connecti on-

Def aul t Host nane-
Verifier

This attribute specifies if HttpsURL -Connection.getDefault-
HostnameV erifier() should be used to create https connections. If t r ue, the
di sabl eCNCheck configuration parameter isignored. Default isfalse.

Note: di sabl eCNcheck is aparameterized boolean, you can use afixed variablet r ue | f al se aswell asa
Spring externalized property variable (e.g. ${ di sabl e- ht t ps- host nane- veri fi cati on})oraSpring
expression (e.g. #{ syst enProperti es[' dev-node'] }).

Sample:

Example 2.22. HTTP conduit configuration disabling HTTP URL hostname verification

(usage of localhost, etc)

<ht t p- conf : condui t

nanme="{http://exanpl e.conm }Hel | oServi cePort. http-conduit">

<l-- deactivate HTTPS url
di sabl eCNcheck=t rue shoul d NOT be used in production -->

<I'-- WARNI NG !

host name verification (local host, etc) -->

<http-conf:tlsdientParaneters di sabl eCNcheck="true" />

</ http-conf:conduit>

Using WSDL

Namespace

The WSDL extension elements used to configure an HTTP client are defined in the namespace http://
cxf.apache.org/transports/http/configuration . It is commonly referred to using the prefix ht t p- conf . In order

80

Talend Enterprise Service Factory User Guide

http://java.sun.com/javase/6/docs/api/javax/net/ssl/HttpsURLConnection.html#getDefaultSSLSocketFactory()
http://java.sun.com/javase/6/docs/api/javax/net/ssl/HttpsURLConnection.html#getDefaultHostnameVerifier()
http://java.sun.com/javase/6/docs/api/javax/net/ssl/HttpsURLConnection.html#getDefaultHostnameVerifier()
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/beans.html#beans-factory-placeholderconfigurer
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-beandef
http://static.springsource.org/spring/docs/3.0.x/spring-framework-reference/html/expressions.html#expressions-beandef

HTTP Transport

to usethe HT TP configuration elements you will need to add the line shown below tothedef i ni t i ons element
of your endpoint's WSDL document.

Example 2.23. HTTP Consumer WSDL Element's Namespace

<definitions ...
xm ns: http-conf="http://cxf.apache.org/transports/http/configuration

The client element

Theht t p-conf: cli ent elementisused to specify the connection properties of an HTTP client in aWSDL
document. Theht t p- conf : cl i ent elementisachild of the WSDL port element. It has the same attributes
asthecl i ent eement used in the configuration file.

Example

The example below shows a WSDL fragment that configures an HTTP clientto specify that it will not interact
with caches.

Example 2.24. WSDL to Configurean HTTP Consumer Endpoint

<service ...>
<port ...>
<soap: address ... />
<http-conf:client CacheControl ="no-cache" />
</ port>

</ servi ce>
Using java code

How to configure the HTTPConduit for the SOAP Client?

First you need get the HTTPConduit from the Proxy object or Client, then you can set the HTTPClientPolicy ,
AuthorizationPolicy, ProxyAuthorizationPolicy, TL SClientParameters , and/or HttpBasicAuthSupplier .

i mport org. apache. cxf.endpoint.dient;
i mport org. apache. cxf.frontend. d i ent Proxy;
i mport org.apache. cxf.transport. http. HTTPCondui t;
i mport org.apache. cxf.transports. http. configuration. HTTPC i ent Pol i cy;

URL wsdl = getd ass().getResource("wsdl/greeting.wsdl");
SOAPServi ce service = new SOAPServi ce(wsdl, serviceNane);
Greeter greeter = service.getPort(portName, G eeter.class);

/1 Ckay, are you sick of configuration files ?

/1 This will show you how to configure the http conduit dynam cally
Client client = dientProxy.getCient(greeter);

HTTPConduit http = (HTTPConduit) client.getConduit();

HTTPCl i entPolicy httpCientPolicy = new HTTPC i ent Policy();

Talend Enterprise Service Factory User Guide 8l

http://tinyurl.com/285zll
https://svn.apache.org/repos/asf/cxf/trunk/rt/transports/http/src/main/resources/schemas/configuration/http-conf.xsd
https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/configuration/jsse/TLSParameterBase.java
https://svn.apache.org/repos/asf/cxf/trunk/rt/transports/http/src/main/java/org/apache/cxf/transport/http/HttpBasicAuthSupplier.java

HTTP Transport

htt pdientPolicy. set Connecti onTi meout (36000) ;
htt pdientPolicy. set All onChunki ng(fal se);
htt pd i ent Policy. set Recei veTi meout (32000) ;

http.setdient(httpdientPolicy);

greeter.sayHi ("Hell o");

How to override the service address ?

If you areusing JAXWS API to create the proxy obejct, hereisan example which is complete JAX-WS compliant
code

URL wsdl URL = MyServi ce. cl ass. get C assLoader
. get Resource ("nyService.wsdl");
MNane servi ceNane = new QNane("urn: nyService", "MService");
MyServi ce service = new MyServi ce(wsdl URL, serviceNane);
ServicePort client = service. getServicePort();
Bi ndi ngProvi der provider = (BindingProvider)client;
/1 You can set the address per request here
provi der. get Request Cont ext () . put (
Bi ndi ngProvi der . ENDPO NT_ADDRESS PROPERTY,
"http://my/ new url/tol/thel/service");

If you are using CXF ProxyFactoryBean to create the proxy object , you can do like this

JaxWsPr oxyFact or yBean proxyFactory = new JaxWsPr oxyFact or yBean() ;
poxyFactory. set Servi ceC ass(Servi cePort.cl ass);
/1 you could set the service address with this nethod
proxyFactory. set Address("theUrl youwant");
ServicePort client = (ServicePort) proxyFactory.create();

Here is another way which takes advantage of JAXWS's Service.addPort() API

URL wsdl URL = MyServi ce. cl ass. get C assLoader . get Resour ce(

"service2.wsdl");

Nane servi ceNane = new QName("urn:service2", "M/Service");

Nane portNane = new QName("urn: service2", "ServicePort");

MyServi ce service = new MyServi ce(wsdl URL, serviceNane);

/1 You can add whatever address as you want

servi ce. addPort (port Nane, "http://schenas. xm soap. org/ soap/",
"http://thel/ new url/nyService");

/1 Passing the SEl class that is generated by wsdl 2j ava

ServicePort proxy = service.getPort(portNane, SEl.class);

Client Cache Control Directives

The following table lists the cache control directives supported by an HTTP client.

Directive Behavior

no-cache Caches cannot use a particular response to satisfy subseguent requests without
first revalidating that response with the server. If specific response header fields
are specified with this value, the restriction applies only to those header fields

82 Talend Enterprise Service Factory User Guide

HTTP Transport

Directive Behavior

within the response. If no response header fields are specified, the restriction
applies to the entire response.

no-store Caches must not store any part of a response or any part of the request that
invoked it.
max-age The consumer can accept aresponse whose age is no greater than the specified

time in seconds.

max-stale The consumer can accept a response that has exceeded its expiration time. If
avalue is assigned to max-stale, it represents the number of seconds beyond
the expiration time of a response up to which the consumer can still accept
that response. If no valueis assigned, it means the consumer can accept astale
response of any age.

min-fresh The consumer wants a response that will be still be fresh for at least the
specified number of seconds indicated.

no-transform Caches must not modify media type or location of the content in a response
between a provider and a consumer.

only-if-cached Caches should return only responses that are currently stored in the cache, and
not responses that need to be reloaded or revalidated.

cache-extension Specifies additional extensionsto the other cache directives. Extensions might

beinformational or behavioral. An extended directiveisspecified in the context
of a standard directive, so that applications not understanding the extended
directive can at | east adhere to the behavior mandated by the standard directive.

A Note About Chunking

There are two ways of putting abody into an HTTP stream:

» The "standard" way used by most browsers is to specify a Content-Length header in the HTTP headers. This
allowsthereceiver to know how much datais coming and when to stop reading. The problem with thisapproach
is that the length needs to be pre-determined. The data cannot be streamed as generated as the length needs to
be calculated upfront. Thus, if chunking is turned off, we need to buffer the data in a byte buffer (or temp file
if too large) so that the Content-Length can be cal cul ated.

e Chunked - with this mode, the data is sent to the receiver in chunks. Each chunk is preceded by a hexidecimal
chunk size. When a chunk size is 0, the receiver knows all the data has been received. This mode allows better
streaming as we just need to buffer a small amount, up to 8K by default, and when the buffer fills, write out
the chunk.

In general, Chunked will perform better as the streaming can take place directly. HOWEVER, there are some
problems with chunking:

» Many proxy servers don't understand it, especially older proxy servers. Many proxy servers want the Content-
Length up front so they can alocate a buffer to store the request before passing it onto the real server.

» Some of the older WebServices stacks also have problemswith Chunking. Specifically, older versionsof .NET.

If you are getting strange errors (generally not SOAP faults, but other HTTP type errors) when trying to interact
with aservice, try turning off chunking to seeif that helps.

Authentication

Basic Authentication sample:

Talend Enterprise Service Factory User Guide 83

HTTP Transport

<conduit name="{http://exanple.conl}Hell oWrl dServi cePort. http-conduit
xm ns: sec="http://cxf.apache. org/configuration/security”
xm ns="http://cxf.apache. org/transports/ http/configuration">
<aut hori zati on>
<sec: User Name>nyuser </ sec: User Nane>
<sec: Passwor d>nypasswd</ sec: Passwor d>
<sec: Aut hori zati onType>Basi c</ sec: Aut hori zati onType>
</ aut hori zati on>
</ condui t >

For Digest Authentication, use the same as above but with AuthorizationType value of Di gest . (Note the
AuthorizationType element can be omitted if you're using Basic authentication, as above.)

Authorization can aso be supplied dynamically, by implementing the
org. apache. cxf.transport. http. aut h. H t pAut hSuppl i er interface or another interface which
extends it. The main method this interface providesis:

public String getAuthorization(AuthorizationPolicy authPolicy,
URL current URL, Message nessage, String full Header);

With this method you'll need to supply the HttpAuthPolicy, the service URL, the CXF message
and the full Authorization header (what the server sent in its last response). With the latter
value multi-phase authentications can be implemented. For a simple implementation check the the
org. apache. cxf.transport. http. aut h. Def aul t Basi cAut hSuppl i er class. On the conduit
above, declare your implementation classin an Aut hSuppl i er element for CXF to useit.

Spnego Authentication (Kerberos)

Starting with CXF 2.4.0 CXF supports Spnego authentication using the standard A uthPolicy mechanism. Spnego
isactivated by setting the AuthPolicy.authorizationTypeto 'Negotiate'. If userNameisleft blank then singlesignon
isused withthe TGT from e.g. Windows Login. If userName is set then anew LoginContext is established and the
ticket is created out of this. By default the SpnegoAuthSupplier usesthe OID for Spnego. Some serversrequirethe
OID for Kerberos. This can be activated by setting the contextual property auth.spnego.useK erberosOid to 'true'.

Kerberos Config: Make sure that krb5.conf/krb5.ini is configured correctly for the Kerberos realm you want to
authenticate against and supply it to your application by setting the java.security.krb5.conf system property

Login Config: Create a file login.conf and supply it to CXF using the System property
javasecurity.auth.login.config. The file should contain:

CXFd ient {
com sun. security. aut h. nodul e. Kr b5Logi nMbdul e /1
requi red client=TRUE useTi cket Cache=t r ue;

b

Sample config: Make sure the Authorization element contains the same name as the Section in the login.conf
(here: CXFClient).

<l-- HITP conduit configuration for spnego with single sign on -->

<conduit name="{http://exanple.coni}Hell oWrl dServi cePort. http-conduit"
xm ns="http://cxf.apache. org/transports/ http/configuration">

<aut hori zati on>

<Aut hori zat i onType>Negot i at e</ Aut hori zati onType>

84 Talend Enterprise Service Factory User Guide

HTTP Transport

<Aut hori zati on>CXFCl i ent </ Aut hori zati on>
</ aut hori zati on>
</ condui t >

Y ou can use UserName and Password in the above xml config if you want to log in explicitly. If you want to use
the cached Ticket Granting Ticket then do not supply them. On Windows you will also have to make sure you
allow the TGT to be used in Java. See: http://www.javaactivedirectory.com/?page id=93 for more information.

<l-- Switching to Kerberos O D instead of Spnego -->

<j axws:client>

<j axws: properties>

<entry key="aut h. spnego. useKer berosG d" val ue="true"/>
</jaxws: properties>

</jaxws:client>

NTLM Authentication

On Java 6, NTLM authentication is built into the Java runtime and you don't need to do anything special.

Next, you need to configure jcifs to use the correct domains, wins servers, etc... Notice that the bit which setsthe
username/password to use for NTLM is commented out. If credentials are missing jcifs will use the underlying
NT credentials.

/1Set the jcifs properties
jcifs.Config.setProperty("jcifs.snb.client.domain", "ben.con');
jcifs.Config.setProperty("jcifs.netbios.w ns", "XXX.XXX.XXX.XXX");
jcifs.Config.setProperty("jcifs.snb.client.soTi neout",
"300000"); //5 mnutes
jcifs.Config.setProperty("jcifs.netbios.cachePolicy",

"1200"); //20 mnutes
/ljcifs.Config.setProperty("jcifs.snb.client.usernane", "myNTLogin");
/ljcifs.Config.setProperty("jcifs.snb.client.password", "secret");

/1 Register the jcifs URL handler to enabl e NTLM
jcifs. Config.registerSmbURLHandl er () ;

Finally, you need to setup the CXF client to turn off chunking. Thereasonisthat the NTLM authentication requires
a 3 part handshake which breaks the streaming.

[/ Turn of f chunking so that NTLM can occur

Cient client = dientProxy.getCient(port);

HTTPConduit http = (HTTPConduit) client.getConduit();
HTTPC i ent Policy httpCientPolicy = new HTTPC i ent Policy();
htt pd i ent Policy. set Connecti onTi meout (36000) ;

htt pdientPolicy. set All onChunki ng(fal se);
http.setdient(httpdientPolicy);

2.5.1.2. Server HTTP Transport

HTTP server endpoints can specify a number of HTTP connection attributes including if it will honor keep alive
requests, how it interacts with caches, and how tolerant it is of errorsin communicating with a consumer.

Talend Enterprise Service Factory User Guide 85

HTTP Transport

A server endpoint can be configured using two mechanisms:
» Configuration

 WSDL

Using Configuration

Namespace

The elements used to configure an HTTP provider endpoint are defined in the namespace http://cxf.apache.org/
transports/http/configuration. It is commonly referred to using the prefix htt p- conf . In order to use the
HTTP configuration elements you will need to add the lines shown below to the beans element of your
endpoint's configuration file. In addition, you will need to add the configuration elements' namespace to the
xsi : schemalLocat i on attribute.

Example 2.25. Adding the Configuration Namespace

<beans ...
xm ns: http-conf="http://cxf.apache.org/transports/http/configuration

Xxsi : schermalLocati on=". ..
http://cxf.apache. org/transports/http/configuration
http://cxf.apache. org/ schemas/ confi guration/http-conf.xsd
LS

The destination element

Y ou configure an HTTP server endpoint using the ht t p- conf : dest i nati on element and its children. The
htt p- conf: dest i nati on element takes asingle attribute, namne , the specifiesthe WSDL port element that
correspondsto the endpoint. Thevauefor the nane attributetakestheform portQName. ht t p- desti nati on
. The example below showstheht t p- conf : dest i nat i on element that would be used to add configuration
for an endpoint that was specified by the WSDL fragment <port bi ndi ng="wi dget SOAPBi ndi ng"
nanme="w dget SOAPPor t > if the endpoint's target namespace was http://widgets.widgetvendor.net .

Example 2.26. http-conf:destination Element

<htt p-conf: destination nanme=
"{http://w dgets/w dget vendor. net } w dget SOAPPort. http-destination">
</ http-conf:destination>

The http-conf: destinati on element has a number of child elements that specify configuration
information. They are described below.

Element Description

htt p-conf: server Specifies the HTTP connection properties.

86 Talend Enterprise Service Factory User Guide

HTTP Transport

Element

Description

htt p- conf: cont ext Mat chSt r at egy

Specifies the parameters that configure the context
match strategy for processing HT TP requests.

htt p-conf: fi xedPar anet er O der

Specifies whether the parameter order of an HTTP
request handled by this destination is fixed.

The server element

The htt p-conf: server } element is used to configure the properties of a server's HTTP connection. Its
attributes, described below, specify the connection's properties.

Attribute

Description

Recei veTi meout

Sets the length of time, in milliseconds, the server tries to receive a request
before the connection times out. The default is 30000. The specify that the
server will not timeout use 0.

Suppressd i ent -
SendErrors

Specifies whether exceptions are to be thrown when an error is encountered
on receiving a request. The default is f al se ; exceptions are thrown on
encountering errors.

Suppressd i ent -
Recei veErrors

Specifieswhether exceptions are to be thrown when an error is encountered on
sending a response to aclient. The default isf al se ; exceptions are thrown
on encountering errors.

Honor KeepAl i ve

Specifies whether the server honors requests for a connection to remain open
after a response has been sent. The default ist r ue ; keep-alive requests are
honored.

Redi r ect URL

Specifies the URL to which the client request should be redirected if the
URL specified in the client request is no longer appropriate for the requested
resource. In this case, if astatus codeis not automatically set in thefirst line of
the server response, the status code is set to 302 and the status description is set
to Object Moved. Thevalueis used asthe value of the HTTP Redi r ect URL

property.

CacheCont r ol

Specifies directives about the behavior that must be adhered to by caches
involved in the chain comprising a response from a server to aclient.

Cont ent Locat i on

Sets the URL where the resource being sent in aresponse is located.

Cont ent Type

Specifies the media type of the information being sent in a response. Media
types are specified using multipurpose internet mail extensions (MIME) types.
The valueisused as the value of the HTTP Cont ent Type location.

Cont ent Encodi ng

Specifies any additional content encodings that have been applied to the
information being sent by the service provider. Content encoding labels are
regulated by the Internet Assigned Numbers Authority (IANA). Possible
content encoding valuesinclude zip, gzip, compress, deflate, and identity. This
value isused as the value of the HTTP Cont ent Encodi ng property.

Server Type

Specifies what type of server is sending the response. Values take the form
program-name/version. For example, Apache/1.2.5.

Example

The example below shows a the configuration for an HTTP service provider endpoint that honors keep alive
requests and suppresses all communication errors.

Talend Enterprise Service Factory User Guide 87

HTTP Transport

Example 2.27. HTTP Service Provider Endpoint Configuration

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

xm ns: http-conf=
"http://cxf.apache.org/transports/http/configuration”

xsi : schemaLocat i on="
http://cxf.apache. org/transports/ http/configuration
http: //cxf. apache. or g/ schenas/ confi gurati on/ htt p-conf. xsd
htt p: // ww. spri ngfranmewor k. or g/ scherma/ beans
htt p: // ww. spri ngfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd" >

<ht t p- conf: desti nati on nane=
"{http://apache.org/ hell o_soap_http}SoapPort. http-destination">
<ht t p- conf: server Suppressdient SendErrors="true"
Suppressd i ent Recei veErrors="true"
Honor KeepAl i ve="true" />
</ http-conf:destination>
</ beans>

Using WSDL

Namespace

The WSDL extension elements used to configure an HTTP server endpoint are defined in the namespace http://
cxf.apache.org/transports/http/configuration . It iscommonly refered to using the prefix ht t p- conf . Inorder to
use the HTTP configuration elements you will need to add the line shown below to the def i ni ti ons element
of your endpoint's WSDL document.

Example2.28. HTTP Provider WSDL Element's Namespace

<definitions ...
xm ns: http-conf="http://cxf.apache.org/transports/http/configuration

The server element

Thehtt p- conf: server element is used to specify the connection properties of an HTTP server in aWSDL
document. The ht t p- conf : server element is a child of the WSDL port element. It has the same attributes
astheser ver eement used in the configuration file.

Example

The example below shows a WSDL fragment that configures an HTTP server endpoint to specify that it will not
interact with caches.

Example 2.29. WSDL to Configurean HTTP Service Provider Endpoint

<service ...>
<port ...>
<soap: address ... />
<ht t p- conf: server CacheControl ="no-cache" />
</ port>

</ servi ce>

88 Talend Enterprise Service Factory User Guide

HTTP Transport

Server Cache Control Directives

The table below lists the cache control directives supported by an HTTP server.

Directive

Behavior

no- cache

Caches cannot use a particular response to satisfy subseguent requests without
first revalidating that response with the server. If specific response header fields
are specified with this value, the restriction applies only to those header fields
within the response. If no response header fields are specified, the restriction
applies to the entire response.

public

Any cache can store the response.

private

Public (shared) caches cannot store the response because the response is
intended for asingle user. If specific response header fields are specified with
thisvalue, therestriction appliesonly to those header fieldswithin the response.
If no response header fields are specified, the restriction applies to the entire
response.

no-store

Caches must not store any part of response or any part of the request that
invoked it.

no-transform

Caches must not modify the mediatype or location of the content in aresponse
between a server and a client.

nust -reval i dat e

Cachesmust revail date expired entriesthat relate to aresponse before that entry
can be used in a subsequent response.

proxy-revalidate

Means the same as must-revalidate, except that it can only be enforced on
shared cachesand isignored by private unshared caches. If using thisdirective,
the public cache directive must also be used.

max- age Clients can accept aresponse whose ageis no greater that the specified number
of seconds.
S- max- age Means the same as max-age, except that it can only be enforced on shared

caches and isignored by private unshared caches. The age specified by s-max-
age overrides the age specified by max-age. If using this directive, the proxy-
revalidate directive must also be used.

cache- ext ensi on

Specifies additional extensionsto the other cache directives. Extensions might
beinformational or behavioral. An extended directiveisspecified in the context
of a standard directive, so that applications not understanding the extended
directive can at | east adhere to the behavior mandated by the standard directive.

2.5.1.3. Servlet Transport

To create services that use this transport you can either use the CXF APIs (for example, see JAX-WS) or create
an XML file which registers services for you.

Publishing an endpoint from XML

CXF uses Spring to provide XML configuration of services. This meansthat first we'll want to load Spring viaa
Servlet listener and tell it where our XML configurationfileis:

Next, you'll need to add CXFServlet to your web.xml:

<?xm version="1.0" encodi ng="1S0O 8859-1"7?>

Talend Enterprise Service Factory User Guide

89

HTTP Transport

<! DOCTYPE web- app
PUBLIC "-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN
"http://java.sun. com dt d/ web-app_2_3.dtd">

<web- app>

<cont ext - par an»
<par am nane>cont ext Conf i gLocat i on</ par am nane>
<par am val ue>
cl asspat h: conf acne/ ws/ ser vi ces. xm

</ par am val ue>

</ cont ext - par an®

<listener>
<l i stener-cl ass>
or g. spri ngframewor k. web. cont ext . Cont ext Loader Li st ener
</listener-class>
</listener>

<servl et >
<servl et - name>CXFSer vl et </ servl et - nane>
<di spl ay- name>CXF Ser vl et </ di spl ay- nane>
<servl et-cl ass>
org. apache. cxf.transport. servl et. CXFSer vl et
</ servl et-cl ass>
<l oad- on- st art up>1</ 1| oad- on- st artup>
</servlet>

<servl et - mappi ng>
<servl et - name>CXFSer vl et </ servl et - nane>
<url -pattern>/services/*</url-pattern>
</ servl et - mappi ng>
</ web- app>

Alternatively, you can point to the configuration file using a CXFServlet init parameter :

<?xm version="1.0" encodi ng="1S0O 8859-1"7?7>

<! DOCTYPE web- app
PUBLIC "-//Sun M crosystens, Inc.//DTD Wb Application 2.3//EN
"http://java.sun. com dt d/ web-app_2_3.dtd">

<web- app>

<servl et>
<servl et - name>CXFSer vl et </ servl et - nane>
<di spl ay- name>CXF Ser vl et </ di spl ay- nanme>
<servl et-cl ass>
org. apache. cxf.transport. servl et. CXFSer vl et
</servlet-class>
<init-paranp
<par am nane>confi g-1 ocat i on</ par am nanme>
<par am val ue>/ V\EB- | NF/ beans. xm </ par am val ue>
</init-paranp
<l oad- on- st art up>1</1| oad- on- st artup>
</servlet>

<servl et - mappi ng>
<servl et - name>CXFSer vl et </ servl et - nane>
<url -pattern>/services/*</url-pattern>
</ servl et - mappi ng>

20 Talend Enterprise Service Factory User Guide

HTTP Transport

</ web- app>
The next step isto actually write the configuration file:

<beans xm ns="http://ww. spri ngframework. or g/ schena/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schena-i nst ance"
xm ns: jaxws="http://cxf.apache. org/jaxws"
xm ns:jaxrs="http://cxf.apache.org/jaxrs"
xsi : schermaLocat i on="
http://ww. springframework. or g/ schena/ beans
http://ww. spri ngfranework. org/ schema/ beans/ spri ng- beans- 2. 0. xsd
http://cxf.apache. org/jaxws
http://cxf.apache. or g/ schenas/j axws. xsd
http://cxf.apache. org/jaxrs
http://cxf.apache. or g/ schemas/j axrs. xsd" >

<i nport resource="classpath: META- | NF/ cxf/cxf.xm "/ >
<i nport resource="cl asspath: META- | NF/ cxf/ cxf - ext ensi on- soap. xm "/ >
<i nport resource=
"cl asspat h: META- | NF/ cxf/ cxf - ext ensi on-j axrs- bi ndi ng. xm "/ >
<i nport resource="classpath: META- | NF/ cxf/cxf-servlet.xm"/>

<j axws: endpoi nt id="greeter"
i mpl ement or =" or g. apache. hel | o_soap_http. Geeterlnpl"
address="/ G eeter1"/>

<j axrs:server id="greeterRest"
servi ceC ass="org. apache. hel | 0_soap_http. Greeterl npl"
address="/ G eeterRest"/>

</ beans>
Here we're creating a JAX-WS endpoint based on our implementation class, Greeterlmpl.

NOTE: Were publishing endpoints "http://localhost/mycontext/services/Greeterl" and "http://localhost/
mycontext/services/GreeterRest”, but we set jaxws.endpoint/@address and jaxrs.server/@address to relative
values such as"/Greeterl" "/GreeterRest".

Redirecting requests and serving the static content

Starting from CXF 2.2.5 it is possible to configure CXFServlet to redirect current requests to other servlets or
serve the static resources.

"redirects-list" init parameter can be used to provide a space separated list of URI patterns; if agiven request URI
matches one of the patterns then CXFServlet will try to find a RequestDispatcher using the pathinfo of the current
HTTP request and will redirect the request to it.

"redirect-servlet-path" can be used to affect a RequestDispatcher lookup, if specified then it will concatenated
with the pathinfo of the current request.

"redirect-servlet-name” init parameter can be used to enable anamed RequestDispatcher look-up, after one of the
URI patternsin the "redirects-list" has matched the current request URI.

"static-resources-list" init parameter can be used to provide a space separated list of static resource such as html,
css, or pdf fileswhich CXFServlet will serve directly.

Talend Enterprise Service Factory User Guide 91

HTTP Transport

One can have requests redirected to other servlets or JSP pages.
CXFServlets serving both JAXWS and JAXRS based endpoints can avail of this feature.
For example, please see thisweb.xml .

The "http://localhost:9080/the/bookstorel/books/html/123" request URI will initially be matched by the
CXFServlet given that it has a more specific URI pattern than the RedirectCXFServlet. After a current URI has
reached ajaxrs:server endpoint, the response will be redirected by the JAXRS RequestDispatcherProvider to a"/
book.html" address, see "dispatchProviderl" bean here.

Next, the request URI "/book.html" will be handled by RedirectCXFServlet. Note that a uri pattern can be a
regular expression. This servlet redirects the request further to a RequestDispatcher capable of handling a"/static/
book.html".

Finally, DefaultCXFServlet serves arequested book.html.

Publishing an endpoint with the API

Once your Servlet is registered in your web.xml, you should set the default bus with CXFServlet's bus to make
sure that CXF uses it as it's HTTP Transport. Simply publish with the related path "Greeter" and your service
should appear at the address you specify:

i mport javax.xm .ws. Endpoi nt;

i mport org. apache. cxf. Bus;

i mport org.apache. cxf. BusFactory;

i mport org.apache. cxf.transport. servl et. CXFServl et;

/1l cxf is the instance of the CXFServlet, you could al so get
/1 this instance by extending the CXFServl et

Bus bus = cxf.getBus();

BusFact ory. set Def aul t Bus(bus) ;

Endpoi nt. publish("/ G eeter", new Geeterlnpl());

The one thing you must ensure is that your CXFServlet is set up to listen on that path. Otherwise the CXFServlet
will never receive the requests.

NOTE:

Endpoint.publish(...) is a JAX-WS API for publishing JAX-WS endpoints. Thus, it would reguire the JAX-WS
module and API's to be present. If you are not using JAX-WS or want more control over the published endpoint
properties, you should replace that call with the proper calls to the appropriate ServerFactory.

Since CXFServlet know nothing about the web container listen port and the application context path, you need
to specify the relate path instead of full http address.

Using the servlet transport without Spring

Some user who doesn't want to touch any Spring stuff could a so publish the endpoint with CXF servlet transport.
First you should extends the CXFNonSpringServlet and then override the method loadBus which below codes:

i mport javax.xm .ws. Endpoi nt;

@verride

92 Talend Enterprise Service Factory User Guide

http://svn.apache.org/repos/asf/cxf/trunk/systests/jaxrs/src/test/resources/jaxrs_dispatch/WEB-INF/web.xml
http://cxf.apache.org/docs/jax-rs.html#JAX-RS-WithRequestDispatcherProvider
http://svn.apache.org/repos/asf/cxf/trunk/systests/jaxrs/src/test/resources/jaxrs_dispatch/WEB-INF/beans.xml

HTTP Transport

public void | oadBus(Servl et Config servletConfig)
t hrows Servl et Exception {
super . | oadBus(servl et Config);

/1 You could add the endpoi nt publish codes here
Bus bus = cxf.getBus();

BusFact ory. set Def aul t Bus(bus) ;

Endpoi nt. publish("/ G eeter", new Geeterlnpl());

/1 You can als use the sinple frontend APl to do this
Server Fact oryBean factroy = new Server Fact oryBean();
factory. set Bus(bus);

factory. set Servi ceC ass(G eeterlnpl.class);

factory. set Address("/ Geeter");

factory.create();

}

If you are using the Jetty as the embedded servlet engine, you could publish endpoaint like this:

i mport javax.xm .ws. Endpoi nt;

/1 Setup the system properties to use
/1 the CXFBusFactory not the SpringBusFactory
String busFactory =
Syst em get Propert y(BusFact ory. BUS_FACTORY_PROPERTY_NAME) ;
System set Property(BusFact ory. BUS_FACTORY_PROPERTY_NAME,
"org. apache. cxf . bus. CXFBusFact ory") ;
try {
/1 Start up the jetty enbedded server
htt pServer = new Server (9000);
Cont ext Handl er Col | ecti on contexts
= new Cont ext Handl er Col | ection();
htt pServer. set Handl er (cont ext s) ;

Context root = new Context(contexts, "/", Context.SESSIONS);

CXFNonSpri ngServl et cxf = new CXFNonSpri ngServlet();
Servl et Hol der servlet = new Servl et Hol der (cxf);
servl et. set Name("soap");

servl et. set For cedPat h(" soap");

root.addServl et (servlet, "/soap/*");

httpServer.start();

Bus bus = cxf.getBus();
set Bus(bus);
BusFact ory. set Def aul t Bus(bus) ;
Geeterlmpl impl = new Geeterlnmpl ();
Endpoi nt. publish("/ G eeter", inmpl);
} catch (Exception e) {
t hrow new Runti meException(e);
} finally {
/1 clean up the system properties
if (busFactory !'= null) {
System set Property(BusFact ory. BUS_FACTORY_PROPERTY_NAME,
busFact ory);
} else {

Talend Enterprise Service Factory User Guide 93

JMS Transport

System cl ear Propert y(BusFact ory. BUS_FACTORY_PROPERTY_NAME) ;

Accessing the MessageContext and/or HTTP Request and Response

Sometimesyou'll want to access more specific message detail sin your serviceimplementation. One example might
be accessing the actual request or response object itself. This can be done using the WebServiceContext object.

First, declare a private field for the WebServiceContext in your service implementation, and annotate it as a
resource:

@resour ce
private WebServi ceCont ext context;

Then, within your implementing methods, you can access the MessageContext, HttpServletRequest, and
HttpServletResponse as follows:

i mport javax.servlet.http. HtpServl et Request;

i mport javax.servlet.http.HtpServl et Response;

i mport javax.xm .ws. handl er. MessageCont ext ;

i mport org.apache. cxf.transport. http. Abstract HTTPDest i nati on;

MessageCont ext ctx = context.get MessageCont ext () ;

Ht t pSer vl et Request request = (HttpServl et Request)
ct x. get (Abstract HTTPDest i nati on. HTTP_REQUEST) ;

Ht t pSer vl et Response response = (Ht pServl et Response)
ct x. get (Abstract HTTPDest i nati on. HTTP_RESPONSE) ;

Of course, it is always a good idea to program defensively if using transport-specific entities like the
HttpServietRequest and HttpServletResponse. If the transport were changed (for instance to the JM S transport),
then these values would likely be null.

2.5.2. IMS Transport

CXF provides a transport plug-in that enables endpoints to use Java Message Service (IMS) queues and topics.
CXF's IM S transport plug-in uses the Java Naming and Directory Interface (JNDI) to locate and obtain references
to the IMS provider that brokers for the IMS destinations. Once CXF has established a connection to a IMS
provider, CXF supports the passing of messages packaged as either a IMS Cbj ect Message or a JIMS
Text Message .

2.5.2.1. Easier configuration using the new JMSConfigFeature

Starting with CXF 2.0.9 and 2.1.3 there is a new easier and more flexible configuration style available. See
Section 2.5.2.8, “Using the M SConfigFeature”

2.5.2.2. IMS Transport wiht SOAP over Java Message Service 1.0-
Supported

Starting with the CXF 2.3 , we make some improvement on the JMS Transport to support SOAP over IMS
specification . See Section 2.5.2.7, “SOAP over IMS 1.0 support” for more information.

94 Talend Enterprise Service Factory User Guide

http://java.sun.com/javase/6/docs/api/javax/xml/ws/WebServiceContext.html
http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/

JMS Transport

2.5.2.3. JIMS Namespaces

WSDL Namespace

The WSDL extensionsfor defining aJM S endpoint are defined in the namespace http://cxf.apache.org/transports/
jms . In order to use the IMS extensions you will need to add the namespace definition shown below to the
definitions element of your contract.

Example 2.30. JM S Extension Namespace

xm ns:jme="http://cxf.apache.org/transports/jns"

Configuration Namespaces

In order to use the IM S configuration properties you will need to add the line shown below to thebeans element
of your configuration.

Example 2.31. JM S Configuration Namespaces

xm ns:jme="http://cxf.apache.org/transports/jns"

2.5.2.4. Basic Endpoint Configuration

JMS endpoints need to know certain basic information about how to establish a connection to the proper
destination. Thisinformation can be provided in one of two places: WSDL or XML configuration. The following
configuration elements which are described can be used in both the client side Conduits and the server side
Destinations.

Using WSDL

The JMS destination information is provided using the j ns: address element and its child, the
j ms: JMSNam ngProperti es element. The j ns: addr ess element's attributes specify the information
needed to identify the IM S broker and the destination. Thej ns: JMSNam ngPr operti es element specifies
the Java properties used to connect to the INDI service.

The address element

The basic configuration for a IMS endpoint is done by using aj nms: addr ess element as the child of your
service's port element. The j ms: addr ess element uses the attributes described below to configure the
connection to the JM S broker.

Attribute Description

destinationStyle Specifiesif the IMSdestinationisaJMSqueueor aJMS
topic.

j ndi Connecti onFact or yNane Specifies the INDI name bound to the JMS connection
factory to use when connecting to the IM S destination.

j ndi Desti nati onNane Specifies the INDI name bound to the IM S destination
to which requests are sent.

Talend Enterprise Service Factory User Guide 95

JMS Transport

Attribute Description

j ndi Repl yDesti nati onNane Specifiesthe INDI name bound to the IM S destinations
where replies are sent. This attribute allows you to use
auser defined destination for replies.

connecti onUser Nane Specifiesthe username to use when connectingtoaJMS
broker.

connecti onPassword Specifiesthe password to use when connectingtoaJM S
broker.

The JMSNamingProperties element

To increase interoperability with IMS and JNDI providers, the j ns: addr ess element has a child element,
j ms: JMSNami ngPr operti es,that allowsyouto specify the values used to popul ate the properties used when
connecting to the INDI provider. The j ns: JMSNani ngPr oper ti es element has two attributes: nane and
val ue . The nane attribute specifies the name of the property to set. The val ue attribute specifies the value
for the specified property. The j ns: JMSNam ngPr operti es element can also be used for specification of
provider specific properties. The following is alist of common JNDI properties that can be set:

e java. nham ng.factory.initial

e java. nam ng. provi der. url

e java. nam ng. factory. obj ect

* java. naning.factory. state

* java. naning.factory. url. pkgs

* java. nani ng. dns. url

e java. nam ng. authoritative

* java. nani ng. bat chsi ze

e java. naning.referral

* java. naning. security. protocol

e java. nam ng. security. authentication
e java. nam ng. security. princi pal

* java. nam ng. security.credentials
* java. nam ng. | anguage

* java. nam ng. appl et

For more details on what information to use in these attributes, check your JNDI provider's documentation and
consult the Java API reference material.

Using a named reply destination

By default, CXF endpoints using JMS create a temporary queue for sending replies back and forth. You can
change this behavior by setting the j ndi Repl yDest i nati onNane attribute in the endpoint's contract.
A client endpoint will listen for replies on the specified destination and it will specify the value of the
attribute in the Repl yTo field of al outgoing requests. A service endpoint will use the value of the
j ndi Repl yDest i nat i onNarme attribute asthelocation for placing repliesif thereis no destination specified
in the request's Repl yTo field.

96 Talend Enterprise Service Factory User Guide

JMS Transport

Asof CXF 2.1.3 and 2.0.9 a static reply queue can not be shared by several instances of the service client. Please
use adynamic reply queue or different queue names per instance instead. (See discussion on the mailing list)

The following example shows an example of a IMS WSDL port specification.

Example 2.32. IMS WSDL Port Specification

<servi ce nane="JMsService">
<port bindi ng="t ns: G eet er _SOAPBi ndi ng" nanme="SoapPort" >
<j ms: addr ess j ndi Connect i onFact or yNane="Connect i onFact ory"
j ndi Desti nati onName="dynam cQueues/test.cxf.jnmstransport">
<j ms: JMSNam ngProperty nane="java.nam ng.factory.initial”
val ue="or g. apache. acti veny. j ndi . Acti veMJ ni ti al Cont ext Factory"/>
<j ms: JMSNam ngPr operty nane="java. nani ng. provider.url"
val ue="tcp:/ /| ocal host: 61616" />
</j nms: addr ess>
</ port >
</ service>

Using Configuration

In addition to using the WSDL file to specify the connection information for aJM S endpoint, you can a so supply
it in the endpoint's XML configuration. The information in the configuration file will override the information in
the endpoint's WSDL file.

Configuration elements

Y ou configure a JM S endpoint using one of the following configuration elements:

» jms:conduit : Thej ms: condui t element contains the configuration for a consumer endpoint. It has one
attribute, nane , whose value takes the form

{WBDLNanespace} WSDLPor t Narme. j ns- condui t

» jms.destination : Thej ms: dest i nat i on element containsthe configuration for a provider endpoint. It has
one attribute, name , whose value takes the form

{WBDLNanespace} WsDLPor t Narne. j ns- desti nati on

The address element

JMS connection information is specified by adding aj ns: addr ess child to the base configuration element.
The j ms: addr ess element used in the configuration file is identical to the one used in the WSDL file. Its
attributes are listed in the address element's attribute table[95] . Like the jms.address element in the WSDL
file, thejms.address configuration element also hasaj ms: JMSNam ngPr oper ti es child element that isused
to specify additional information used to connect to a INDI provider.

Talend Enterprise Service Factory User Guide 97

http://www.nabble.com/CXF-2.1.3-JMS-Conduit-to20447067.html

JMS Transport

Example 2.33. Addressing Information in a Configuration File

<beans xm ns="http://ww. spri ngframework. org/ schema/ beans™
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns:ct="http://cxf.apache. org/configuration/types"
xm ns:jme="http://cxf.apache.org/transports/jns"
Xsi : schenmaLocat i on="
htt p: // www. spri ngfranewor k. or g/ scherma/ beans
htt p: // www. spri ngf ramewor k. or g/ scherma/ beans/ spri ng- beans. xsd
http://cxf. apache. or g/ j axws
http://cxf. apache. or g/ schemas/j axws. xsd
http://cxf.apache. org/transports/jns
http://cxf. apache. or g/ schemas/ confi gurati on/jns. xsd">
<j ms: condui t
nane="{http://cxf.apache.org/jnms_endpt}Hel | oJMSPort.jnms-conduit">
<j ms: addr ess destinati onStyl e="queue"
j ndi Connect i onFact or yNane="rmyConnect i onFact ory"
j ndi Desti nati onName="nyDest i nati on"
j ndi Repl yDest i nat i onNanme="nyRepl yDesti nati on”
connecti onUser Name="t est User "
connect i onPasswor d="t est Passwor d" >
<j ms: JMSNam ngProperty nane="java.nam ng.factory.initial”
val ue="or g. apache. cxf.transport.jnms. Myl ni ti al Cont ext Factory"/>
<j ms: JMSNam ngPr operty nane="java. nani ng. provider.url"
val ue="tcp://| ocal host: 61616"/ >
</j nms: addr ess>
</jms:conduit>
</ beans>

Consumer Endpoint Configuration

JMS consumer endpoints specify the type of messages they use. IMS consumer endpoint can use either a JMS
nj ect Message oraJMS Text Message . When using an Obj ect Message the consumer endpoint uses a
byt e[] asthe method for storing data into and retrieving data from the JM S message body. When messages are
sent, the message data, including any formating information, is packaged into abyt e[] and placed into the IMS
message body beforeit is placed on the wire. When messages are received, the consumer endpoint will attempt to
unmarshall the data stored in the IMS body asiif it were packedinabyt e[] .

When using aText Message , the consumer endpoint uses a string as the method for storing and retrieving data
from the IMS message body. When messages are sent, the message information, including any format-specific
information, is converted into a string and placed into the IM S message body. When messages are received the
consumer endpoint will attempt to unmashall the data stored in the IMS message body as if it were packed into
astring.

When native IM S applications interact with CXF consumers, the IMS application is responsible for interpreting
the message and the formatting information. For example, if the CXF contract specifies that the binding used for
aJMS endpoint is SOAP, and the messages are packaged as Text Message , thereceiving JM S application will
get atext message containing all of the SOAP envel ope information.

Consumer endpoint can be configured by both XML configuration and viaWSDL.

98 Talend Enterprise Service Factory User Guide

JMS Transport

Using Configuration

Specifying the message type

Y ou can specify the message type supported by the consumer endpoint usingaj ns: runt i mePol i cy element
that has asingle attribute:

* nessageType - Specifies how the message data will be packaged as a IMS message. t ext specifies that
the data will be packaged as a Text Message . bi nary specifies that the data will be packaged as an
bj ect Message .

The following example shows a configuration entry for configuring aJM'S consumer endpoint.

Example 2.34. Configuration for a JM S Consumer Endpoint

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

xm ns: ct="http://cxf.apache. org/ configuration/types"

xm ns:jnme="http://cxf.apache.org/transports/jns"

Xsi : schemaLocat i on="
http: //ww. spri ngfranework. org/ schema/ beans
htt p: //ww. spri ngfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd"
http://cxf.apache. org/jaxws
http://cxf.apache. or g/ schenas/ | axws. xsd
http://cxf.apache. org/transports/jns
http://cxf.apache. org/ schenas/ confi gurati on/jns. xsd">

<j ns: condui t
nanme="{http://cxf.apache.org/jms_endpt}Hell 0JMSPort. | ns-conduit">
<j ns: address ... >

</j ns: addr ess>
<jnms:runti mePol i cy messageType="binary"/>

</jnms:conduit>

</ beans>

Theidonthej ns: condui t isintheform of { WBDLNanmespace} WSDLPor t Nare. j ns- condui t . This
provides CXF with the information so that it can associate the configuration with your service's endpoint.

Using WSDL

The type of messages accepted by a IMS consumer endpoint is configured using the optional j ns: cl i ent
element. Thej ns: cl i ent elementisachild of the WSDL port element and has one attribute:

» nessageType - Specifies how the message data will be packaged as a IMS message. t ext specifies that
the data will be packaged as a Text Message . bi nary specifies that the data will be packaged as an
ObjectMessage.

2.5.2.5. Service Endpoint Configuration

JMS service endpoints have a number of behaviors that are configurable in the contract. These include;

Talend Enterprise Service Factory User Guide 99

JMS Transport

» how messages are correlated

the use of durable subscriptions
« if the service useslocal JMS transactions

« the message selectors used by the endpoint

Service endpoints can be configure in one of two ways:

 Configuration

« WSDL

Using Configuration

Specifying configuration data

Usingthej ns: dest i nat i on elementsyou can configure your service's endpoint. Y ou can specify the service
endpoint's behaviors using thej ns: r unt i mePol i cy element that has a the following attributes:

Attribute

Description

useMessagel DAsCorrel ationl D

Specifies whether the IM S broker will use the message
ID to correlate messages. The default isf al se .

dur abl eSubscri ber Nane

Specifies the name used to register a durable
subscription.

nmessageSel ect or

Specifies the string value of a message selector to use.
For more information on the syntax used to specify
message selectors, see the IMS 1.1 specification.

transacti onal

Specifies whether the local IMS broker will create
transactions around message processing. The default is
fal se.

The following example shows a CXF configuration entry for configuring a IM S service endpoint.

100

Talend Enterprise Service Factory User Guide

JMS Transport

Example 2.35. Configuration for a JM S Service Endpoint

<beans xm ns="http://ww. spri ngframework. or g/ schena/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schena-i nst ance"
xm ns:ct="http://cxf.apache. org/ configuration/types"
xm ns:jme="http://cxf.apache.org/transports/jns"
xsi : schemalLocat i on="

htt p: /7 www.
htt p: /7 www.

http://cxf.
http://cxf.
http://cxf.
http://cxf.

<j ms: destination
nanme="{http://cxf.
<jns:address ... >

</jms: address>

<jms:runtinePolicy

</jms: destination>

</ beans>

Using WSDL

spri ngfranmewor k. or g/ schena/ beans

spri ngfranmewor k. or g/ scherma/ beans/ spri ng- beans. xsd"
apache. or g/ j axws

apache. or g/ schemas/j axws. xsd

apache. org/transports/jmns

apache. or g/ schemas/ confi guration/jns. xsd">

apache. org/jns_endpt}Hel | oJMSPort . j ns-destination">

nmessageSel ect or =" cxf_nessage_sel ector™
useMessagel DAsCorrel ati onl D="true"
transactional ="true"

dur abl eSubscri ber Name="cxf subscri ber" />

Service endpoint behaviors are configured using the optional j ns: ser ver element. Thej ns: ser ver element
isachild of the WSDL port element and has the following attributes:

Attribute Description

useMessagel DAsCorrel ati onl D Specifies whether IMS will use the message ID to
correlate messages. The default isf al se .

dur abl eSubscri ber Nane Specifies the name used to register a durable

subscription.

messageSel ect or

Specifies the string value of a message selector to use.
For more information on the syntax used to specify
message selectors, see the IMS 1.1 specification.

transacti onal

Specifies whether the local IMS broker will create
transactions around message processing. The default is
f al se . Currently, thisisnot supported by the runtime.

2.5.2.6. JMS Runtime Configuration

In addition to configuring the externally visible aspects of your JIM S endpoint, you can aso configure aspects of
itsinternal runtime behavior. There are three types of runtime configuration:

 Session pool configuration (common to both services and consumers)

Talend Enterprise Service Factory User Guide 101

JMS Transport

» Consumer specific configuration

» Service specific configuration

Session Pool Configuration

Y ou configure an endpoint's IMS session pool using the j ns: sessi onPool Conf i g element. This property
allows you to set a high and low water mark for the number of IMS sessions an endpoint will keep pooled. The
endpoint is guaranteed to maintain a pool of sessions equal to the low water mark and to never pool more sessions
than specified by the high water mark. Thej nms: sessi onPool element's attributes, listed below, specify the
high and low water marks for the endpoint's IMS session pool.

Attribute Description

| owMat er Mar k Specifies the minimum number of IM S sessions pooled by the endpoint. The
default is 20.

hi ghWat er Mar k Specifies the maximum number of JMS sessions pooled by the endpoint. The
default is 500.

The following example shows an example of configuring the session pool for a CXF JM S service endpoint.

Example 2.36. JIM S Session Pool Configuration

<j ns: destination
name="{http://cxf.apache.org/jms_endpit}Hell oJMSPort.jns-destination">

<j ns: sessi onPool | owat er Mar k="10" hi ghWat er Mar k="5000" />
</jms: destination>

Thej ns: sessi onPool element can also be used withinaj ns: condui t .

Consumer Specific Runtime Configuration

The IM S consumer configuration allows you to specify two runtime behaviors:
« the number of milliseconds the consumer will wait for aresponse.
« the number of milliseconds arequest will exist before the IMS broker can remove it.

You usethej ms: cl i ent Confi g element to set IMS consumer runtime behavior. This element's attributes,
listed in the following table, specify the configuration values for consumer runtime behavior.

Attribute Description

cl i ent Recei veTi meout Specifiesthe amount of time, in milliseconds, that the endpoint will
wait for aresponse before it times out and issues an exception. The
default value is 2000.

nmessageTi meTolLi ve Specifies the amount of time, in milliseconds, that a request can
remain unrecieved before the IM S broker can deleteit. The default
valueis 0 which specifies that the message can never be deleted.

The following example shows a configuration fragment that sets the consumer endpoint's request lifetime to 500
milliseconds and its timeout value to 500 milliseconds.

102 Talend Enterprise Service Factory User Guide

JMS Transport

Example 2.37. IMS Consumer Endpoint Runtime Configuration

<j ms: condui t
nanme="{http://cxf.apache.org/jms_endpt}Hel |l oJMSPort.jnms-conduit">

<jms:clientConfig clientReceiveTi neout="500"
nmessageTi neToLi ve="500" />
</jms:conduit>

Service Specific Runtime Configuration

The IMS service configuration allows you to specify to runtime behaviors:
* the amount of time a response message can remain unreceived before the IM S broker can deleteiit.
* theclient identifier used when creating and accessing durable subscriptions.

Thej ns: ser ver Conf i g elementisused to specify the service runtime configuration. Thiselement's attributes,
listed below, specify the configuration values that control the service's runtime behavior.

Attribute Description

nmessageTi meToli ve Specifies the amount of time, in milliseconds, that a
response can remain unread before the JIMS broker is
allowed to deleteit. The default is O which specifiesthat
the message can live forever.

dur abl eSubscriptiondientld Specifiesthe client identifier the endpoint usesto create
and access durable subscriptions.

The following example shows a configuration fragment that sets the service endpoint's response lifetime to 500
milliseconds and its durable subscription client identifier toj ns-test-i d .

Example 2.38. IM S Service Endpoint Runtime Configuration

<j ns: destination
id="{http://cxf.apache.org/jns_endpt}Hell oJMSPort.jns-destination">
<j ns:address ... >

</j ns: addr ess>
<j ns: server Confi g nessageTi neToLi ve="500"
dur abl eSubscriptionClientld="jns-test-id" />
</jms: destination>

2.5.2.7. SOAP over JMS 1.0 support

SOAP over IMS offers an alternative messaging mechanism to SOAP over HTTP. SOAP over JMS offers more
reliable and scal able messaging support than SOAP over HTTP.

SOAP over IMS specification is aimed at a set of standards for the transport of SOAP messages over JIMS. The
main purpose is to ensure interoperability between the implementations of different Web services vendors. CXF
supports and is compliant with this specification.

"New Feature!"

The SOAP over IM S specification feature described here is a new feature for CXF 2.3.

Talend Enterprise Service Factory User Guide 103

http://www.w3.org/TR/soapjms/
http://www.w3.org/TR/soapjms/

JMS Transport

What's new compared to the old CXF JMS Transport

SOAP over IM Stransport supports most configurations of JM S Transport and provides some extensionsto support
the SOAP over IMS specification. SOAP over IMS Transport uses the IMS URI (jms.address, for example) to
describe JM S addressing information and provides new WSDL extensions for IM S configuration.

SOAP over JMS Namespace

WSDL Namespace

The WSDL extensions for defining a JMS endpoint use a special namespace. In order to use the IMS WSDL
extensions you will need to add the namespace definition shown below to the definitions element of your contract.

JMS Extension Namespace

xm ns: soapj ns="htt p: // www. W3. or g/ 2008/ 07/ soap/ bi ndi ngs/ JVS/ "

JMS URI

JM S endpoints need to know the address information for establishing connectionsto the proper destination. SOAP
over IMS implements the URI Scheme for Java Message Service 1.0 .

ThisURI scheme startswith "jms:jndi:" plusaJNDI namefor aDestination. Sinceinteraction with some resources
may require JINDI contextual information or IMS header fields and properties to be specified as well, the "jndi"
variant of the "jms"' URI scheme includes support for supplying this additional JINDI information as query
parameters.

CXF supports three variants, " jndi ", " queue ", and " topic ". For example:

j ms:j ndi : SoneJndi NaneFor Desti nati on?j ndi I ni tial Cont ext Fact ory=
com exanpl e. j ndi . Jndi Fact ory&priority=3
j ms: queue: Exanpl eQueueNane?ti meTolLi ve=1000

Properties are as follows:

Property DefaultValue Description

deliveryMode PERSISTENT NON_PERSISTENT messages will kept
only in memory PERSISTENT messages
will be saved to disk

jndiConnectionFactoryName Specifies the INDI name bound to the IMS
connection factory to use when connecting
to the IMS destination.

jndilnitial ContextFactory Specifies the fully qualified Java class
name of the "InitialContextFactory"
implementation classto use.

jndiURL Specifies the INDI provider URL

replyToName Specifies the INDI name bound to the IMS
destinations where replies are sent.

priority 4 Priority for the messages. See your JMS
provider documentation for details

104 Talend Enterprise Service Factory User Guide

http://cwiki.apache.org/CXF20DOC/jms-transport.html
http://tools.ietf.org/id/draft-merrick-jms-uri-09.txt
http://tools.ietf.org/id/draft-merrick-jms-uri-06.txt

JMS Transport

Property DefaultValue Description

timeToLive 0 Time (in ms) after which the message will be
discarded by the jms provider

Additional INDI Parameters Additional parameters for a INDI provider.
A custom parameter name must start with
the prefix "jndi-".

For more details about these attributes, please check out the IMS URI specification .

WSDL Extension

Various IMS properties may be set in three places in the WSDL — the binding, the service, and the port. Values
specified at the service will propagate to all ports. Values specified at the binding will propagate to al ports using
that binding. For example, if the jndilnitialContextFactory isindicated for a service, it will be used for all of
the port elements it contains.

Field DefaultValue Description

deliveryMode PERSISTENT NON_PERSISTENT messages will only be
kept in memory PERSISTENT messages
will be saved to disk

jndiConnectionFactoryName Specifies the INDI name bound to the IMS
connection factory to use when connecting
to the IMS destination.

jndilnitial ContextFactory Specifies the fully qualified Java class
name of the "InitialContextFactory"
implementation classto use.

jndiURL Specifies the INDI provider URL

replyToName Specifies the INDI name bound to the IMS
destinations where replies are sent.

priority 4 Priority for the messages. See your IMS
provider doc for details

timeToLive 0 Time (in ms) after which the message will be
discarded by the jms provider

jndiContextParameter Additional parametersfor a JNDI provider.

Hereisan example:

<wsdl 11: bi ndi ng nanme="exanpl eBi ndi ng" >
<soapj ms: j ndi Cont ext Par anet er name="nane" val ue="val ue" />
<soapj ms: j ndi Connect i onFact or yName>Connect i onFact ory
</ soapj ns: j ndi Connect i onFact or yNane>
<soapj ms: j ndi | ni ti al Cont ext Fact ory>
org. apache. acti veny. j ndi . Acti veMJ ni ti al Cont ext Factory
</ soapj ns:j ndi I nitial Cont ext Fact ory>
<soapj ms: j ndi URL>t cp:/ /| ocal host: 61616
</ soapj ns: j ndi URL>
<soapj s: del i ver yMbde>PERSI STENT</ soapj ns: del i ver yMode>
<soapj ms: priority>5</soapjns:priority>
<soapj ms: ti meToLi ve>200</ soapj ns: ti neTolLi ve>
</ wsdl 11: bi ndi ng>

<wsdl 11: servi ce nanme="exanpl eService">
<soapj ms: j ndi | ni ti al Cont ext Fact ory>

Talend Enterprise Service Factory User Guide 105

http://tools.ietf.org/id/draft-merrick-jms-uri-06.txt

JMS Transport

com exanpl e. jndi. I nitial ContextFactory
</ soapj ms: j ndi I nitial ContextFact ory>
<soapj ms: ti meTol i ve>100</ soapj ns: ti neTolLi ve>

<wsdl 11: port nanme="qui ckPort" bi ndi ng="t ns: exanpl eBi ndi ng" >

<soapj ms: ti meToLi ve>10</ soapj ns: ti meToLi ve>
</ wsdl 11: port >
<wsdl 11: port nanme="sl owPort" bi ndi ng="tns: exanpl eBi ndi ng" >

</ wsdl 11: port >
</ wsdl 11: servi ce>

If aproperty is specified at multiple levels, the setting at the most granular level takes precedence (port first, then
service, then binding). In the above example, notice the timeToLive property — for the quickPort port, the value
will be 10ms (specified at the port level). For the slowPort port, the value will be 100ms (specified at the service
level). In this example, the setting in the binding will always be overridden.

WSDL Usage

For this example:

<wsdl : definitions name="JMSG eet er Servi ce"
<wsdl : bi ndi ng name="JMSG eet er Por t Bi ndi ng"
type="tns: IMSG eet er Port Type" >
<soap: bi ndi ng styl e="docunent"
transport="http://ww. w3. org/ 2010/ soapj s/ " />
<soapj ms: j ndi Cont ext Par armet er nane="nane"
val ue="val ue" />
<soapj ms: j ndi Connect i onFact or yNanme>Connecti onFactory
</ soapj ns: j ndi Connect i onFact or yNane>
<soapj ms: j ndi | ni ti al Cont ext Fact ory>
org. apache. acti veny. j ndi . Acti veMJ ni ti al Cont ext Factory
</ soapj ns:j ndi I nitial Cont ext Fact ory>
<soapj ms: j ndi URL>t cp:/ /| ocal host: 61616
</ soapj ns: j ndi URL>
<soapj s: del i ver yMbde>PERSI STENT</ soapj ns: del i ver yMode>
<soapj ms: priority>5</soapjns:priority>
<soapj ms: ti meToLi ve>1000</ soapj ns:ti meTolLi ve>
<wsdl| : operati on nanme="gr eet Mg" >
<soap: operation soapAction="test" style="docunment" />
<wsdl : i nput name="gr eet MeRequest " >
<soap: body use="literal" />
</ wsdl : i nput >
<wsdl : out put nanme="gr eet MeResponse" >
<soap: body use="literal" />
</ wsdl : out put >
</ wsdl : operati on>
</ wsdl : bi ndi ng>
<wsdl : servi ce name="JMSGr eet er Servi ce" >
<soapj ms: j ndi Connect i onFact or yNanme>Connecti onFactory
</ soapj ns: j ndi Connect i onFact or yNane>
<soapj ms: j ndi | ni ti al Cont ext Fact ory>
org. apache. acti veny. j ndi . Acti veMJ ni ti al Cont ext Factory
</ soapj ns: j ndi I ni tial Cont ext Fact ory>
<wsdl : port bindi ng="tns: JMSG eet er Port Bi ndi ng" nane="G eeterPort">
<soap: address | ocati on=

106 Talend Enterprise Service Factory User Guide

JMS Transport

"jms:jndi:dynam cQueues/test.cxf.jnmstransport. queue"/ >
</ wsdl : port >
</wsdl : service>
</wsdl : definitions>

» Thetransport URI (http://www.w3.0rg/2010/soapjmg/) is defined in the <soap:binding>.
» Thejms: URI is defined in the <soap:address>

» The extension properties are in the <soap:binding>

Publishing a service with the JAVA API

Developers who don't wish to modify the WSDL file can aso publish the endpoint information using Java code.
For CXF's SOAP over IMS implementation you can write the following:

/1 You just need to set the address with JVM5 URI
String address = "jns:jndi:dynam cQueues/test.cxf.jnstransport.queue3"”
+ "?jndilnitial ContextFactory"
+ "=org. apache. acti venyg. j ndi.Acti veM) ni ti al Cont ext Fact ory"
+ " & ndi Connecti onFact or yNanme=Connect i onFact or y& ndi URL"
+ "=tcp://local host: 61500";
Hell o inplenmentor = new Hell ol npl ();
JaxWsSer ver Fact oryBean svrFactory = new JaxWsServer Fact or yBean();
svrFactory. set Servi ceC ass(Hel | 0. cl ass);
svr Factory. set Addr ess(addr ess) ;
/1 And specify the transport ID with SOAP over JMS specification
svrFactory. set Transport | d(
JMBSpecConst ant s. SOAP_JMS_SPECI FI Cl ATI ON_TRANSPORTI D) ;
svr Factory. set Servi ceBean(i npl ement or);
svrFactory.create();

NOTE: Before you start the server, you need to make sure the IMS broker is stared, you can find some useful
code of starting the IM S broker here.

Error formatting macro: snippet: javalang.lllegal ArgumentException: Invalid url: must begin with a configured
prefix.

Consume the service with the API

Sample code to consume a SOAP-over-JMS serviceis as follows:

public void invoke() throws Exception {
/1 You just need to set the address with JVM5 URI
String address =
"jns:jndi:dynam cQueues/test.cxf.jnstransport. queue3d”
+ "?jndilnitial ContextFactory"
+ "=org. apache. activenq.jndi.ActiveMJ ni tial Cont ext Factory"
+ " & ndi Connecti onFact or yNanme=Connect i onFact or y& ndi URL="
+ "tcp://local host: 61500";
JaxWsPr oxyFact oryBean factory = new JaxWsPr oxyFact oryBean() ;
/1 And specify the transport ID with SOAP over JMS specification
factory. set Transport | d(
JMBSpecConst ant s. SOAP_JMS_SPECI FI Cl ATI ON_TRANSPORTI D) ;
factory. set Servi ceC ass(Hel | 0. cl ass);
factory. set Addr ess(addr ess);
Hello client = (Hello)factory.create();

Talend Enterprise Service Factory User Guide 107

JMS Transport

String reply = client.sayH (" H");
Systemout.println(reply);
}

Evenif you want to usethe'queue’ or ‘topic' variants and avoid dealing with INDI directly, you still haveto specify
the two factory parametersin the address:

svr Factory. set Addr ess(
"j ms: queue: test.cxf.jnmstransport.queue?ti neToLi ve=1000"
+ " & ndi Connecti onFact or yNane=Connect i onFact ory"
+ " & ndil nitial Cont ext Factory"
+ "=org.apache. activenqg.jndi.Acti veMJ) ni ti al Cont extFactory");

Differences between the SOAP over JMS and the CXF old JMS transport
implementation

There are some differences between the SOAP over JMS and the previous CXF over JMS transport
implementation.

1. The IMS Messages sent by SOAP over IM S transport implementation are in accordance with the SOAP over
JM S specification, alowing CXF to interoperate with other SOAP over IMS implementations.

2. Additional techniques are provided for configuring SOAP over IMS.

3. The new implementation provides more sophisticated error handling for the SOAP over IM S messages.

2.5.2.8. Using the JMSConfigFeature

In older CXF version the IMStransport is configured by defining aJM SConduit or IM SDestination. Starting with
CXF 2.0.9 and 2.1.3 the JM S transport includes an easier configuration option that is more conformant to the
spring dependency injection. Additionally the new configuration has much more options. For example it is not
necessary anymore to use JNDI to resolve the connection factory. Instead it can be defined in the spring config.

The following exampl e configs use the p-namespace from spring 2.5 but the old spring bean style is also possible.
Inside a features element the IM SConfigFeature can be defined.

<j axws: client id="CustonerService"
xm ns: custoner="http://custonerservice. exanpl e. con "
servi ceNane="cust oner: Cust omer Ser vi ceSer vi ce"
endpoi nt Name="cust orer : Cust oner Ser vi ceEndpoi nt" address="jms://"
servi ceC ass="com exanpl e. cust onmer servi ce. Cust ormer Servi ce" >
<j axws: f eat ures>
<bean xm ns="http://wwv. spri ngfranework. org/ schena/ beans"
cl ass="org. apache. cxf.transport.jns. JIMSConfi gFeat ure"
p:j meConfig-ref="jnsConfig"/>
</jaxws: features>
</jaxws:client>

In the above example it references a bean "jmsConfig" where the whole configuration for the IMS transport can
be done.

A jaxws Endpoint can be defined in the same way:

<j axws: endpoi nt
xm ns: custoner="http://custonerservice. exanple.com "
i d=" Cust oner Servi ce"
address="jns://"

108 Talend Enterprise Service Factory User Guide

http://static.springframework.org/spring/docs/2.5.x/reference/beans.html

JMS Transport

servi ceNane="cust oner : Cust onmer Ser vi ceSer vi ce"
endpoi nt Name="cust omer : Cust oner Ser vi ceEndpoi nt "
i mpl enent or =" com exanpl e. cust oner servi ce. i mpl . Cust oner Ser vi cel npl ">
<j axws: f eat ures>
<bean cl ass="org. apache. cxf.transport.jns. JMs5Confi gFeat ure"
p: j meConfig-ref="jnsConfig" />
</jaxws:features>
</ j axws: endpoi nt >

The IM SConfiguration bean needs at least areference to a connection factory and atarget destination.

<bean id="jmsConfig" class="org.apache. cxf.transport.jns. IJMConfiguration"
p: connecti onFact ory-ref="jnsConnecti onFact ory"
p: target Destinati on="test.cxf.jnstransport. queue"

/>

If your ConnectionFactory does not cache connections you should wrap it in a spring SingleConnectionFactory.
This is necessary because the JMS Transport creates a new connection for each message and the

SingleConnectionFactory is needed to cache this connection.

<bean id="j msConnecti onFactory"
cl ass="org. spri ngf ranewor k. j n. connecti on. Si ngl eConnect i onFact ory" >
<property nane="t ar get Connecti onFact ory" >
<bean cl ass="org. apache. acti venyg. Acti veMXonnecti onFactory">
<property nane="broker URL" val ue="tcp://|ocal host: 61616"/>

</ bean>
</ property>
</ bean>

JM SConfiguration options:

Name

Description

connectionFactory

Mandatory field. Referenceto abean that definesajms ConnectionFactory.
Remember to wrap the connectionFactory like described above when not
using a pooling ConnectionFactory

wrapl nSingleConnectionFactory

Will wrap the connectionFactory with a Spring SingleConnectionFactory,
which can improve the performance of the jms transport. Default is true.

reconnectOnException

If wrapping the connectionFactory with a Spring SingleConnectionFactory
and reconnectOnException is true, will create anew connection if thereis
an exception thrown, otherwise will not try to reconnect if the there is an
exception thrown. (Default isfalse.)

targetDestination

JNDI name or provider specific name of a destination. Example for
ActiveMQ: test.cxf.jmstransport.queue

replyDestination

destinationResolver

Reference to a Spring DestinationResolver. This allows to define how
destination names are resolved to jms Destinations. By default a
DynamicDestinationResol ver isused. It resolves destinations using thejms
providers features. If you reference a JndiDestinationResolver you can
resolve the destination names using JNDI.

transactionM anager

Optional referenceto aspring transaction manager. Thisallowsto take part
in JTA Transactions with your webservice.

taskExecutor Reference to a spring TaskExecutor. This is used in listeners to
decide how to handle incoming messages. Default is a spring
SimpleAsyncTaskExecutor.

useJmsll true means IMS 1.1 features are used false means only IMS 1.0.2 features

are used. Default isfalse.

Talend Enterprise Service Factory User Guide 109

WS-* Support

Name Description
messagel dEnabled Default istrue.
messageTimestampEnabled Default istrue.

cachelevel Specify the level of caching that the JMS listener container is allowed
to apply. (Default is -1) Please check out the java doc of the
org.springframework. jms.listener. DefaultM essagel istenerContainer for
more information

pubSubNoL ocal If true do not receive your own messages when using topics. Default is

false.

receiveTimeout

How many milliseconds to wait for response messages. 0 (default) means
wait indefinitely.

explicitQosEnabled

If true, means that QoS parameters are set for each message. (Default is
false.)

deliveryMode NON_PERSISTENT = 1 messages will only be kept in memory (default)
PERSISTENT = 2 messages will be persisted to disk

priority Priority for the messages. Default is 4. See your JMS provider doc for
details.

timeToLive After thistime the message will be discarded by the jms provider. Default
isO.

sessionTransacted If true, means JM S transactions are used. Default isfalse.

concurrentConsumers Minimum number of concurrent consumersfor listener (default is 1).

maxConcurrentConsumers Maximum number of concurrent consumers for listener (default 1).

maxConcurrentTasks Maximum number of threads that handle the received requests. Default 10.

messageSel ector jms selector to filter incoming messages (allows to share a queue)

subscriptionDurable

Default isfalse.

durableSubscriptionName

messageType

text (default) binary byte

pubSubDomain

false (default) means use queues true means use topics

jmsProviderTibcoEms

True meansthat thejms provider is Tibco EMS. Default isfalse. Currently
thisactivatesthat the principal in the SecurityContext is popul ated from the
header IMS _TIBCO_SENDER. (available from cxf version 2.2.6)

useM essagel DA sCorrelationl D

Specifies whether the IMS broker will use the message ID to correlate
messages. By default (false) a CXF client will set a generated correlation
id instead

2.6. WS-* Support

2.6.1. WS-Addressing

2.6.1.1. WS-Addressing via XML Configuration / Java API

CXF provides support for the 2004-08 and 1.0 versions of WS-Addressing.

110

Talend Enterprise Service Factory User Guide

WS-Policy

To enable WS-Addressing you may enable the WSAddressingFeature on your service. If you wish to use XML
to configure this, you may use the following syntax:

<j axws: endpoi nt id="{your. service. nanespace} Your Port Nane" >
<j axws: f eat ures>
<wsa: addr essi ng xm ns: wsa="http://cxf.apache. org/ ws/ addr essi ng"/ >
</jaxws: features>
</ j axws: endpoi nt >

Y ou can a'so use the same exact syntax with a <jaxws:client>

<jaxws: client id="{your.service.nanespace} Your Port Nane">
<j axws: f eat ures>
<wsa: addressi ng xm ns:wsa="http://cxf.apache. org/ ws/ addr essi ng"/ >
</jaxws:features>
</jaxws:client>

From an API point of view thislooks very similar:

i mport org. apache. cxf.jaxws. Endpoi nt | npl ;
i mport org. apache. cxf.ws. addr essi ng. WeAddr essi ngFeat ur e;

MyServi cel npl inplenmentor = new MyServicel npl ()

Endpoi nt I nmpl ep = (Endpointlnpl) Endpoint.create(inplenentor);
ep. get Feat ures() . add(new WBAddr essi ngFeat ure());

ep. publish("http://sone/ address");

You can aso use it with the ClientProxyFactoryBeans and ServerFactoryBeans (and their JAX-WS versions,
namely JaxWsProxyFactoryBean and JaxWsServerFactoryBean):

i mport org. apache. cxf.frontend. si npl e. i ent ProxyFact or yBean;
i mport org. apache. cxf.ws. addr essi ng. WeAddr essi ngFeat ur e;

C i ent ProxyFact oryBean factory = new C i ent ProxyFact oryBean();
factory. set Servi ced ass(MServi ce. cl ass);
factory. set Address("http://acne. come/ sonme-service");

factory. get Feat ures(). add(new WBAddr essi ngFeat ure());
MyService client = (MyService) factory.create();

2.6.1.2. Enabling WS-Addressing with WS-Policy

If you're using Section 2.6.2, “WS-Policy” , CXF can automatically set up WS-Addressing for you if you use the
<Addressing> policy expression.

2.6.2. WS-Policy

2.6.2.1. Developing Assertions

There are two steps involved in developing your domain specific assertions, these are:

1. Implementing the Assertion and AssertionBuilder interfaces, and registering the AssertionBuilder with the
AssertionBuilderRegistry

Talend Enterprise Service Factory User Guide 111

WS-Policy

2. Providing runtime support for the Assertion, either in form of an interceptor or inside aconduit or adestination,
and registering that support if necessary.

Th steps are outlined in some more detail below:

Implementing the Assertion Interface

Y ou can chose to implement the Assertion interface from scratch, or decide to use one of the existing Assertion
implementations in the cxf-api module, extending them as required:

PrimitiveAssertion

This class represents an assertion without any attributes or child elements (in particular without a nested
Policy element). The AnonymousResponses or NonAnonymousResponses assertions in the addressing metadata
namespace http://www.w3.0rg/2007/01/addressing/metadata are examples of this type of assertion. The
implementation of the equal and normalize methods in the class are trivial, and there should be no need to extend
this class.

NestedPrimitiveAssertion

This class represents an assertion without any attributes, but with one mandatory nested Policy child element.
The Addressing assertions in the addressing metadata namespace is an example of this type of assertion. The
implementation of the equal and normalize methods are generic, and there should be no need to extend this class.

JaxbAssertion

This class represents an assertion described by an xml schematype that has been mapped to a Java class. The RM
assertion as well as the assertions used in the HTTP module are extensions of this class. Although the equal and
normalize methods are not abstract, you probably want to overwrite these methods.

Implementing and Registering the AssertionBuilder Interface

Implementing the build method of the AssertionBuilder interfaceis straightforward (in the case of JaxbAssertions
you can extend the JaxbAssertionBuilder class, which provides an appropriate JAXB context and some other
useful methods).

Theimplementation of buildCompatible may need some more considerationif your assertion representsan element
with attributes and/or child elements.

Registration of your AssertionBuilder with the AssertionBuilderRegistry is easy enough: simply add a bean for
your AssertionBuilder to the cxf-* file of your module, or to the application's custom cfg file.

Implementing a Policy-Aware Interceptor

Thisisthe easiest way of providing runtime support for an Assertion. Steps 1. and 2. listed in Interaction with the
Framework can usually be coded as follows:

112 Talend Enterprise Service Factory User Guide

WS-Policy

package myconpany.com i nterceptors;
i mport org.apache. cxf.ws. policy. Assertionl nfoMap

cl ass MyPol i cyAwar el nt ercept or {

static final OQNanme assertionType = new QName("http://nyconmpany. con™

"MType"});
public void handl eMessage(Message nessage) {

/1 get AssertionlnfoMp
or g. apache. cxf.ws. policy. Assertionl nfoMap aim =

nmessage. get (or g. apache. cxf . ws. pol i cy. Asserti onl nf oMap. cl ass);

Col I ecti on<Assertionlnfo ais> = aimget(assertionType);

/] extract Assertion information
for (Assertioninfo ai : ais) {
org. apache. neethi . Assertion a = ai.getAssertion();
MyAssertionType ma = (MyAssertionType) a;
/1 digest

}

/1 process nessage ..
/'l express support

for (Assertioninfo ai : ais) {
ai .setAsserted(...);

} }
}

Sometimes, it may be more convenient to spead the above functionality accross several interceptors, possibly
according to chain (in, in fault, out, outfault). In any case, you need to also provide a PolicylnterceptorProvider,
and declare a corresponding bean. Either implement one from scratch or use the PolicylnterceptorProviderimpl in
the api package and customise it as follows (assuming that one and the same interceptor is used for all paths):

<bean name="MPol i cyAwar el nt er cept or™
cl ass="nyconpany. com i nt erceptors. MyPol i cyAwar el nt erceptor”/>
<bean cl ass="org. apache. cxf.ws. policy. Policyl nterceptorProviderlnpl">
<constructor-arg>
<I-- the list of assertion types supported
by this PolicylnterceptorProvider -->
<list>
<bean cl ass="j avax. xm . nanespace. QNane" >
<constructor-arg val ue="http://nyconpany. com"/>
<constructor-arg val ue="MType"/ >
</ bean>
</list>
</ constructor-arg>
<property nane="inlnterceptors">

<list>
<ref bean="M/PolicyAwarel nterceptor”/>
</list>

</ property>
<property nane="inFaul tlnterceptors”">

<list>
<ref bean="M/PolicyAwarel nterceptor”/>
</list>

</ property>
<property name="outlnterceptors">
<list>

Talend Enterprise Service Factory User Guide

113

WS-Policy

<ref bean="M/PolicyAwarel nterceptor”/>
</list>
</ property>
<property nane="out Faul t| nt erceptors">
<list>
<ref bean="M/PolicyAwarel nterceptor”/>
</list>
</ property>
</ bean>

All beans of type PolicylnterceptorProvider are automatically registered with the framework's
PolicylnterceptorProviderRegistry.

Implementing a Policy-Aware Conduit/Destination

Initialisation

Conduits/Destinations have access to the Endpointlnfo object in their their constructors,. Assuming they also have
access to the bus, they can at any timein their lifecycle obtain the effective policy for the endpoint as follows:

cl ass MyPol i cyAwar eConduit {
static final QNane assertionType = new QNane("http://nyconpany. conm",
"M/ Type"});

void init() {
Pol i cyEngi ne engi ne = bus. get Ext enati on(Pol i cyEngi ne. cl ass);

if (null !'= engine &% engine.isEnabled()) {
Ef f ecti veEndpoi nt Pol i cy ep = engi ne. get Endpoi nt Pol i cy(endpoi nt,
this);

Col | ecti on<Assertion> as = ep. get ChosenAlternative();
for (Assertion a : as) {
if (assertType. equal s(a.get Name()) {
/1 do sonething with it
}

}

and similarly for a Destination.

Policy-Aware Message Sending

Given access to the Message object, a conduit can, in its send method, proceed the same way as an interceptor
in handleMessage. It can defer the updating of the assertion status in the Assertionlnfo objects until called upon
by the PoalicyV erificationOutlnterceptor, i.e. implement the status update in the assertMessage method. If the
status update takes place inside of the send method itself, assertMessage, at least for outbound messages, can be
implemented as a no-op.

114 Talend Enterprise Service Factory User Guide

WS-Policy

Implementing the Assertor Interface

With canAssert, the conduit/destination simply informs the framework if it understands a given type of assertions.
In assertMessage on the other hand, the conduit/destination expresses support (or the lack thereof) for specific
assertion instances. See V erification for adescription of how thisAPI isused by the verifying policy interceptorsin
the POST_STREAM or PRE_INV OKE phases. HTTPConduit isan exmaple of apolicy aware Conduit. It supports
assertions of type HTTPClientPolicy, which are represented in the runtime as JaxbAssertion<HTTPClientPolicy>
objects. HTTPConduit also has a data member of type HTTPClientPolicy. It implements assertMessage as
follows: for outbound messages, it asserts all JaxbAssertion<HTTPClientPolicy> that are compatible with this
data member. For inboun d messages, all HTTPClientPolicy assertions are asserted regardlesstheir attributes. The
rationale for thisisthat the sematics of the HTTPClientPolicy assertion effectively does not mandate any specific
action on theinbound message. Similary, onitsinbound path, the HT TPDestination asserts all HT TPServerPolicy
assertions that are egqual to the HTTPServerPolicy assertion configured for the destination, and all assertions of
that type on the outbound path.

cl ass MyPol i cyAwar eConduit inplenents Assertor {
static final QNane MYTYPE = new QNane("http:// myconpany.cont}",
"M/ Type"});

public bool ean canAssert (QNane nane) ({
return MIYPE. equal s(nane);
}

public void assert Message(Mesage nessage)
Assertionl nfoMap = nessage. get (Asserti oni nf oMap. cl ass);

2.6.2.2. How It Works

Retrieval of Policies

Policies are associated with policy subjects. In the web services context, there are four different subjects:
* Service

» Endpoint

» Operation

* Message

Using WSDL 1.1, the policy-subject association usually takestheform of xml element attachment : A wsp:Policy
element (the wsp prefix denotes the http://www.w3.0rg/2006/07/ws-policy hamespace) is attached to a WSDL
element such as wsdl:port. Alternatively, a wsp:PolicyReference elements is attached to a wsdl element. In that
case, the actual wsp:Policy element can reside outside of the wsdl. Note that subjects do not correspond to wsdl
elements directly. Rather, they map to a set of wsdl elements (see below). For example wsdl:port, wsdl:portType
and wsdl:binding elements together describe the endpoint as a subject.

Another form of associating policies with policy subjects is external attachment : wsp:PolicyAttachment
elements, which can reside in arbitrary locations, explicitly specify the subject(s) they apply to in their AppliesTo
child element.

In CXF, elements attached to a wsdl element are available as extensors in the service model representation
of that wsdl element. wsp:Policy or wsp:PolicyReference elements can be obtained as extensors of type

Talend Enterprise Service Factory User Guide 115

WS-Policy

UnknownExtensibilityElement in which the element name matchesthat of the wsp:Policy or wsp: PolicyReference
element. Note that these attached elements are not parsed when the service model is built. With xml element
attachment inWSDL 1.1, given aM essage object, wsp: Policy elements attached to the endpoint or message subject
can therefore be obtained by navigating the service model starting with the Operationinfo and/or Endpointinfo
object stored in the message (or in the exchange).

The location of documents containing PolicyAttachment documents on the other hand needs to be made known
to the framework. This can easily be achieved through configuration, see Specifying the Location of External
Attachments.

PolicyAttachments are flexible w.r.t. the type of domain expressions. Domain expressions are used to identify
entities such as endpoints, operations or messages with which a policy can be associated:

<wsp: Pol i cyAtt achnent >
<wsp: Appl i esTo>
<x: Domai nExpr essi on/ > +
</ wsp: Appl i esTo>
(<wsp: Policy>...</wsp:Policy> |
<wsp: Pol i cyRef erence>. .. </ wsp: Pol i cyRef er ence>)
</ wsp: Pol i cyAttachment >

Currently, CXF supports only domain expressions of type wsa:EndpointReferenceType: They alow to
associate the policies or policy references in an attachment with an endpoint (by means of matching the
endpoint's address with that in the EndpointReferenceType element). It is not possible however to associate
a Policy with an operation or a message this way. Support for other types of domain expressions can be
plugged in by implementing the DomainExpressionBuilder interface and adding a corresponding bean to your
configuration file (all DomainExpressionBuilder instances loaded that way will automatically register with the
DomainExpressionBuilder and thus be considered in the process of parsing PolicyAttachment elements).

Once that the framework knows where to look for wsp:Policy elements, it can parses these elements and
creates runtime presentations for them. This is where AssertionBuilders come into play: All child elements of a
wsp:Policy element that are not in the wsp namespace are considered to be assertions. The framework will useits
AssertionBuilderRegistry to find an AssertionBuilder registered for the element type in question and, if it finds
one, proceed to build an Assertion object from that element (or else throw a PolicyException).

Computation of Effective Policies

Asmentioned above, policiesareassociated with policy subjects. WithWSDL 1.1, theeffective policy for asubject
istheaggregation, or themer ge, of the policiesattached to thewsdl el mentsrepresenting that subject: Theeffective
policy for a service subject is the merge of al policies applying to the wsdl:service element. The effective policy
for an endpoint subject is the merge of all policies applying to the wsdl:port, wsdl:portType and wsdl:binding
elements. The effective policy for an operation subject is the merge of all policies applying to the wsdl:portType/
wsdl:operation and wsdl : binding/wsdl:operation elements. The effective policy for a(input | output | fault) message
subject is the merge of all policies applying to the wsdl:message, (wsdl:portType/wsdl:operation/wsdl:input
| wsdl:portType/wsdl:operation/wsdl:output | wsdl:portType/wsdl:operation/wsdl:fault) and (wsdl:binding/
wsdl:operation/wsdl:input | wsdl:binding/wsdl:operation/wsdl:output | wsdl:binding/wsdl:operation/wsdl:fault).

Additional aggregation takes place to determine the effective policy of an endpoint: The effective policy for a
service is the effective policy for the service subject. The effective policy for an endpoint is the merge of the
effective policiesfor the service subject and the endpoint subject. The effective policy for an operationisthe merge
of the effective policiesfor the service subject, the endpoint subject and the operation subject. The effective policy
for a (input | output | fault) message is the merge of the effective policies for the service subject, the endpoint
subject, the operation subject and the message subject.

M ultiple sour ces can be used to apply policiesto the same subject. In the case of an endpoint subject for example,
its associated wsdl:port element can have multiple wsp:Policy child elements. Also, a separate document can
contain wsp:PolicyAttachment elements in which the AppliesTo children identify the endpoint in question as the

116 Talend Enterprise Service Factory User Guide

http://localhost:8080/confluence/pages/viewpage.action?pageId=2523142_WSPConfiguration-SpecifyingtheLocationofExternalAttachments
http://localhost:8080/confluence/pages/viewpage.action?pageId=2523142_WSPConfiguration-SpecifyingtheLocationofExternalAttachments

WS-Policy

target subject. Both the Palicies attached to the port element as well as those in the matching PolicyAttachment
elements will then contribute to the effective policy of the endpoint subject.

Itisalso important to keep in mind that the aggregation process described above makesit possible for an effective
policy to have multiple assertion elements of the same type in one alternative (although this would not be
considered the normal case). Different assertions of the same type within the same alternative do not overwrite
each other. In fact, if used inappropriately, they may contradict each other. But it is also possible that they
complement each other. Either way, the framework does not remove such duplicates and instead leaves it to the
interceptors (or other Assertors) involved in the assertion process to decide if they can meaningfully deal with
multiple assertions of the same type.

It is obvious that the above aggregation process can be quite resource intense. Effective policies for messages
and endpoints are therefore cached by the framework for future reference. The entity that manages the cache of
effective policiesisthe PolicyEngine.

When computing the effective policy for an endpoint or amessage, the framework also chooses one of the effective
policy's alternatives. Currently, it choses the first aternative in which all assertions may be supported, either
by interceptors (i.e. there is a PolicylnterceptorProvider for the assertion type) or by the conduit/destination (if
thisimplements the Assertor interface and through its canAssert method confirmsthat it can support the assertion
type). However, even if such an aternative can be found, the chosen aternative is not necessarily supported: An
interceptor may in principle be able to support a specific type of assertions, but it may not actually be able to
support an individual instance of that assertion type.

The choice of alternative, along with the set of interceptors (obtained from the PolicylnterceptorProviders in
the PolicylnterceptorProviderRegistry), is cached along with the actual effective message or endpoint policy in
the form of an EffectivePolicy or EffectiveEndpointPolicy object. In the case of an effective endpoint policy,
interceptors are chosen in such away that the assertions in the chosen alternative of the effective endpoint policy
can be supported, but also any assertion in any alternative of any of the operation and message specific policies.
Thisisnecessary in situations where the underlying message is not known, for example on the server inbound path:
Once an alternative has been chosen for the effective policy of the server's endpoint we know which assertions must
definitely be supported, regardless the underlying message/operation. Additional interceptors that are necessary
to support the assertions that only appear in specific operation or input message policies are added pre-emptively.
Note that this generally requires interceptors to be coded defensively - good practice anyway but especially so for
interceptors returned by PolicylnterceptorProviders!

On-the-fly Provision of Interceptors

The policy framework, when activated (by loading the PolicyEngine and setting its "enabled" attribute to true),
installs a couple of interceptors at bus level which execute early onin their respective interceptor chains:

Role Chain Phase I nter ceptor Effective Subject
Policies Known
Client Out SETUP ClientPolicy- Service, Endpoint,
Outlnterceptor Operation, (Input)
Message
Client In RECEIVE ClientPolicy- Service, Endpoint
Inlnterceptor
Client InFault RECEIVE ClientPolicy-InFault- | Service, Endpoint
I nterceptor
Server In RECEIVE ServerPolicy- Service, Endpoint
Inlnterceptor
Server OutFault SETUP ServerPolicy- Service, Endpoint,
OutFault-Interceptor |Operation, (Fault)
Message

Talend Enterprise Service Factory User Guide 117

WS-Policy

Role Chain Phase I nter ceptor Effective Subject
Palicies Known
Server Out SETUP ServerPolicy- Service, Endpoint,
Outlnterceptor Operation, (Out)
Message

Themain purpose of these policy interceptorsisto add further interceptorsthat are required to support the effective
policy of the underlying message - even if that policy is not yet known at the time the policy interceptor executes
(because the operation is not yet known at that time). If the effective message policy is known, the assertions of
its selected aternative are inserted into the message in the form of an AssertioninfoMap. This is a map, keyed
by assertion type name, of collections of Assertioninfo objects, the latter being stateful (asserted/not asserted)
representations of Assertion objects. When the effective message policy is not known, not only the assertions for
the selected alternativein the effective endpoint policy areincluded inthe AssertionlnfoMap, but also all assertions
in all alternatives of al of the operation and message specific policies. Not al of these will be asserted at the end
of the chain, but that isfineif it turns out the unasserted assertions apply to operation sayHi when in fact the chain
has been processing the message for a greetM e request!

Policy Aware Interceptors

Policy-aware interceptors extract the collection of Assertioninfo objects for the assertion types they understand
from the AssertioninfoMap in the message. They can then use the wrapped Assertion objects to fine tune their
behaviour, possibly exhibiting message specific behaviour. They can also express whether or not they could
support these assertions. Given an assertion type that has attributes, and assuming there are two instances of
assertions of thistype, it is possible that the interceptor can assert one, but not the other. In any case, inability to
support all assertions understood by the interceptor does not necessarily indicate a failure. As mentioned above
in relation to pre-emptive interceptor installation, it is possible that the ones that cannot be supported do not
in fact apply to the underlying message at al. Typically the interceptor would strive at supporting as many of
these assertions as possible however, and to do so it may avail of the AssertionBuilder's capability to compute a
compatible assertion. For example, by scheduling an acknowledgement to be sent in 3 seconds, an RM interceptor
would support both of the following RMAssertions:

<wsr np: RMAssertion
xm ns: wsrnp="http://schemas. xm soap. or g/ ws/ 2005/ 02/ r i pol i cy" >
<wsr np: Acknow edgenentInterval MIIliseconds="30000"/>

</ wsr np: RMAsserti on>

<wsr np: RMAssertion
xm ns: wsrnp="http://schemas. xm soap. or g/ ws/ 2005/ 02/ r i pol i cy" >
<wsr np: Acknow edgenentInterval MIIliseconds="50000"/>

</ wsr np: RMAsserti on>

Verification

Another set of interceptorsinstalled by the policy framework isresponsiblefor verifying that one of the alternatives
in the effective policy of the underlying message isindeed supported. These interceptors are:

Chain Phase I nter ceptor

Out, OutFault POST_STREAM PolicyV erificationOutI nterceptor

In PRE_INVOKE PolicyV erificationlnlnterceptor
InFault PRE_INVOKE PolicyV erificationl nFaultl nterceptor

Their behaviour is symmetric on client and server side. On the outbound chain the effective message policy was
known by the time the policy interceptor executing in the SETUP phase had inserted the AssertionlnfoMap into

118 Talend Enterprise Service Factory User Guide

WS-Policy

the message. Asthe map was built exclusively from the Assertion objects that are part of the chosen alternative of
the effective message policy, all of them must be supported. In other words, all of the Assertioninfo objects need
to bein the asserted state. If one of them is not, the interceptor throws a Fault (wrapping a PolicyException).

On the inbound paths a little bit more work is necessary: If the message is afault, we know by now what type of
fault it isand what operation it appliesto. If the message is not afault message, knowing the underlying operation
we can, from the location of the interceptor (client or server side), infer the message subject (input or output
message). Either way, all information is now available to obtain the effective message policy. To check if any of
is alternatives is supported, the policy verification interceptors then simply check if for each of its assertions the
associated Assertioninfo object in the map is in the asserted state. If no aternative is supported, the interceptor
throws a Fault (wrapping a PolicyException).

One thing worth noting is that - both on outbound and inbound chains - there may be assertions that only the
conduit or destination can support. Although conduit or destination could access Assertion objects and tailor their
behaviour when sending or receiving the current message, it is not knoan at this point whether this "tailoring"
actually succeeded for the underlying message, i .e. whether the assertionsin questions could actually be supported.
For this reason, the policy verification interceptors check if the conduit or destination implements the Assertor
interface. It it does, they pass it the Message object so they confirn their support (or the lack thereof) for these
assertions. The above described traveral of the AssertionInfo map only takes place after the conduit or destination
had a chance to m ake their contribution.

2.6.2.3. WS-Policy Framework Overview

The WS-Policy framework provides infrastructure and APIs that allow CXF users and developers to use WS-
Policy.

It is compliant with the November 2006 draft publications of the Web Services Policy 1.5 - Framework and Web
Services Policy 1.5 - Attachment specifications.

The framework consists of a core runtime and APIsthat allow developersto plug in support for their own domain
assertions:

Core

The coreisresponsiblefor:

« retrieval of policies from different sources (wsdl documents, external documents)

» computation of effective policiesfor service, endpoint, operation and message objects

« on-the-fly provision of interceptors based on the effective policies for a particular message
« verification that one of the effective policy's alternatives is indeed supported.

Policy operations such as merge and normalisation (but not intersection) are based on Apache Neethi .

APlIs

AssertionBuilder

The AssertionBuilder API isaconcept from Neethi, dightly modified to avoid the dependency on the Axis object
model, and extended to include support for domain specific behaviour of intersection and comparison.

Talend Enterprise Service Factory User Guide 119

http://www.w3.org/TR/2006/WD-ws-policy-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/
http://www.w3.org/TR/2006/WD-ws-policy-attach-20061117/
http://ws.apache.org/commons/neethi/index.html

WS-Policy

public interface AssertionBuil der {
/1 build an Assertion object froma given DOM el enent
Assertion buil d(El enent el ement);
/1 return the schema type names of assertions understood by this builder
Col | ecti on<QNanme> get SupportedTypes();
/1 return an Assertion object that is
/1 conpatible with the specified assertions
Assertion buil dConpati bl e(Assertion a, Assertion b);

}

AssertionBuilder implementations are loaded dynamically and are automatically registered with the
AssertionBuilderRegistry, which is available as a Bus extension. Currently, CXF supports AssertionBuilder and
Assertion implementations for the following assertion types:

{http://schemas. xn soap. or g/ ws/ 2005/ 02/ r ml pol i cy} RMAsserti on
{http://ww.w3.org/ 2007/ 01/ addr essi ng/ net adat a} Addr essi ng
{http://ww.w3. org/ 2007/ 01/ addr essi ng/ net adat a} AnonynousResponses
{http://ww.w3. org/ 2007/ 01/ addr essi ng/ met adat a} NonAnonynousResponses
{http://cxf.apache.org/transports/http/configuration}client
{http://cxf.apache.org/transports/http/configuration}server

along with the Section 2.6.6, “WS-SecurityPolicy” defined assertions.

They are all based on generic Assertion implementations (PrimitiveAssertion, NestedPrimitiveAssertion,
JaxbAssertion) that developers can parameterize or extend when developing their own assertions, see
Section 2.6.2.1, “Developing Assertions’ .

PolicyInterceptorProvider

This API is used to automatically engage interceptors required to support domain specific assertions at runtime,
thus simplifying interceptor configuration alot.

public interface PolicylnterceptorProvider extends InterceptorProvider {
/1l return the schema types of the asssertions that can be supported
Col | ecti on<@QNane> get AssertionTypes()

}
Currently, CXF supports PolicylnterceptorProvider implementations for the following assertion types:

{http://schemas. xn soap. or g/ ws/ 2005/ 02/ rml pol i cy} RMAsserti on
{http://ww.w3. org/ 2007/ 01/ addr essi ng/ met adat a} Addr essi ng
{http://ww.w3. org/ 2007/ 01/ addr essi ng/ net adat a} AnonynousResponses
{http://ww.w3. org/ 2007/ 01/ addr essi ng/ met adat a} NonAnonynousResponses

along with the Section 2.6.6, “WS-SecurityPolicy” defined assertions.

In addition, the framework offers an API to refine domain expression(s) (xml elements describing policy
subjects within a policy scope) in policy attachments. There is currently only one implementation for
EndpointReferenceType domain expressions (matching over the address). Another implementation, using X Path
expressions, isin work.

Interaction with the Framework

Components interact with the policy framework mainly in order to:

1. retrieve the assertions pertaining to the underlying message (at least the ones known to the component) so the
component can operate on the message accordingly

120 Talend Enterprise Service Factory User Guide

WS-ReliableMessaging

2. confirm that the assertions pertaining to the underlying message are indeed supported.

Like most other CXF features, the policy framework isitself largely interceptor based. Thus, most interaction with
the framework is indirect through the Message object: Policy interceptors make Assertioninfo objects (stateful
representations of assertions) available to subsequently executing, policy-aware interceptors by inserting them
into the Message object. Extracting the AssertionInfo objects from the Message allows interceptors to perform
steps 1. and 2. above:

i mport org.apache. neet hi. Asserti on;
public class Assertionlnfo {

publ i c bool ean isAsserted() {...}
public void set Asserted(bool ean asserted) {...}
public Assertion getAssertion() {...}

}
The WS-Addressing and WS-RM interceptors are examples for this style of intercation.

Somtimes, Conduits and destinations also want to assert their capabilities. But they cannot normally wait for
Assertion information being made availableto them viathe M essage object: Conduits may exhibit message specific
behaviour (for example, apply message specific receive timeouts), but decisions made during the initialisation
phase may limit their capability to do so. And Destinations cannot normally exhibit message or operation specific
behaviour at all. But both may still be able to support assertions in the effective endpoint's policy.

Their interaction with the policy framework therefore typically involves the PolicyEngine through which they
obtain the effective policy for the underlying endpoint (for step 1.):

public interface PolicyEngi ne {

Endpoi nt Pol i cy get d i ent Endpoi nt Pol i cy(Endpointinfo ei,
Conduit conduit);

Endpoi nt Pol i cy get Server Endpoi nt Pol i cy(EndpointInfo ei,
Destinati on destination);

}

public interface EndpointPolicy {

Policy getPolicy();
Col I ecti on<Assertion> get ChosenAl ternative();

}
To perform step 2. they implement the Assertor interface (namely its assertM essage method):

public class Assertor {

publ i c bool ean canAssert (QNane nane);
public void assert Message(Message nessage);

}

An example for policy aware conduits and destinations in CXF are the HTTP conduit and destination. They do
support assertions of element type HTTPClientPolicy and HT TPServerPolicy respectively.

2.6.3. WS-ReliableMessaging

CXF supports the February 2005 version of the Web Services Reliable Messaging Protocol (WS-
ReliableMessaging) specification. Like most other features in CXF, it is interceptor based. The WS-Reliable
M essaging implementation consists of 4 interceptorsin total:

Talend Enterprise Service Factory User Guide 121

http://schemas.xmlsoap.org/ws/2005/02/rm/

WS-SecureConversation

I nter ceptor Task

org.apache.cxf.ws.rm.RM Outl nterceptor Responsible for sending CreateSequence requests and
waiting for their CreateSegquenceResponse responses,
and and aggregating the sequence properties (id and
message number) for an application message.

org.apache.cxf.ws.rm.RMIninterceptor Intercepting and processing RM protocol messages
(these will not the application level), as well
as SequenceAcknowledgments piggybacked on
application messages.

org.apache.cxf.ws.rm.soap.RM Soapl nterceptor Encoding and decoding the RM headers

org.apache.cxf.ws.rm.soap.Retransmissionl nterceptor | Responsiblefor creating copies of application messages
for future resends.

2.6.3.1. Interceptor Based QOS

The presence of the RM interceptors on the respective interceptor chains alone will take care that RM protocol
messages are exchanged when necessary. For example, upon intercepting the first application message on the
outbound interceptor chain, the RMOutlnterceptor will send a CreateSequence request and only proceed with
processing the original application message after it has the CreateSequenceResponse response. Furthermore,
the RM interceptors are responsible for adding the Sequence headers to the application messages and, on the
destination side, extracting them from the message.

This means that no changes to application code are required to make the message exchange reliable!

You can still control sequence demarcation and other aspects of the reliable exchange through configuration
however. For example, while CXF by default attempts to maximize the lifetime of a sequence, thus reducing the
overhead incurred by the RM protocol messages, you can enforce the use of a separate sequence per application
message by configuring the RM source's sequence termination policy (setting the maximum sequence length to
1). See the Reliable Messaging Configuration Guide for more details on configuring this and other aspects of the
reliable exchange.

2.6.4. WS-SecureConversation

WS-SecureConversation support in CXF builds upon the Section 2.6.6, “WS-SecurityPolicy” implementation to
handle the SecureConverstationToken policy assertions that could be found in the WS-SecurityPolicy fragment.

Note: Because the WS-SecureConversation support builds on the WS-SecurityPolicy support, this is currently
only availableto "wsdl first" projects.

One of the "problems’ of WS-Security is that the use of strong encryption keys for all communication extracts
a hefty performance penalty on the communication. WS-SecureConversation helps to aleviate that somewhat by
allowing the client and service to use the strong encryption at the start to negotiatate a set of new security keysthat
will be used for furthur communication. This can be ahuge benefit if the client needs to send many requeststo the
service. However, if the client only needs to send a single request and then is discarded, WS-SecureConversation
isactually slower as the key negotiation requires and extra request/response to the server.

With WS-SecureConversation, there are two Security policies that comeinto affect:

1. The"outer" policy that describes the security requirements for interacting with the actual endpoint. This will
contain a SecureConversationToken in it someplace.

2. The "bootstrap” policy that is contained in the SecureConverstationToken. This policy is the policy in affect
when the client is negotiating the SecureConversation keys.

122 Talend Enterprise Service Factory User Guide

http://localhost:8080/confluence/pages/viewpage.action?pageId=2523303

WS-Security

Configuring the WS-SecurityPolicy properties for WS-SecureConversation works exactly like the configuration
for straight WS-SecurityPolicy. The only difference isthat there needs to be away to specify which propertiesare
intended for the bootstrap policy in the SecureConversationToken and which are intended for the actual service
policy. To accomplish this, properties intended for the SecureConversationToken bootstrap policy are appended
with ".sct". For example:

<jaxws:client name="{http://I1nteropBaseAddress/interop}
XDC- SEES | Pi ngServi ce" createdFromAPlI ="true">
<j axws: properti es>
<l-- properties for the external policy -->
<entry key="ws-security.usernane" val ue="abcd"/>

<l-- properties for SecureConversati onToken bootstrap policy -->
<entry key="ws-security.usernane.sct" val ue="efgh"/>
<entry key="ws-security.call back-handl er.sct"
val ue="interop. client. KeystorePasswordCal | back"/ >
<entry key="ws-security.encryption.properties.sct"
val ue="et c/ bob. properties"/>
</jaxws: properties>
</jaxws:client>

Viathe Java API, use code similar to the following:

org. apache. cxf.endpoint.dient client;
client.get Request Context (). put("ws-security.username.sct", usernane);
client.get Request Context (). put("ws-security.password.sct", password);

Viathe Java API, use code similar to the following:

org. apache. cxf.endpoint.dient client;
client.get Request Context (). put("ws-security.username.sct", usernane);
client.get Request Context (). put("ws-security.password.sct", password);

Note: In most common cases of WS-SecureConversation, you won't need any configuration for the service policy.
All of the "hard" stuff is used for the bootstrap policy and the service provides new keys for use by the service
policy. This keeps the communication with the service itself as simple and efficient as possible.

2.6.5. WS-Security

2.6.5.1. WS-Security

WS-Security provides means to secure your services above and beyond transport level protocols such asHTTPS.
Through a number of standards such as XML-Encryption, and headers defined in the WS-Security standard, it
alowsyou to:

* Pass authentication tokens between services
* Encrypt messages or parts of messages

¢ Sign messages

e Timestamp messages

Currently, CXF implements WS-Security by integrating WSSA4J . To use the integration, you'll need to configure
these interceptors and add them to your service and/or client.

Talend Enterprise Service Factory User Guide 123

http://ws.apache.org/wss4j

WS-Security

2.6.5.2. Overview of encryption and signing

WS-Security makes heavy use of public/private key cryptography. To really understand how to configure WS-
Security, it is helpful - if not necessary - to understand these basics. The Wikipedia has an excellent entry on this,
but welll try to summarize the relevant basics here (This content is a modified version of the wikipedia content..)

With public key cryptography, auser hasapair of public and private keys. These are generated using alarge prime

number and a key function.

Alice
S2EDB79E Key generation
70F71D92 function
Big random

number

0=

Alice's Alice's
public key private key

The keys are related mathematically, but cannot be derived from one another. With these keys we can encrypt
messages. For example, if Bob wants to send a message to Alice, he can encrypt a message using her public key.
Alice can then decrypt this message using her private key. Only Alice can decrypt this message as sheis the only

one with the private key.

Bob

Hello ‘,@_—Hl

—= ENncrypt

Alice! b]
| Alice's

public key

6EB6957

0BEO3CE

Alice

R ¢
AElE -4— Decrypt

AIice!l Alice's
private key

124

Talend Enterprise Service Factory User Guide

http://en.wikipedia.org/wiki/Public-key_cryptography

WS-Security

Messages can also be signed. This allows you to ensure the authenticity of the message. If Alice wantsto send a
message to Bob, and Bob wants to be sure that it isfrom Alice, Alice can sign the message using her private key.
Bob can then verify that the message is from Alice by using her public key.

Alice
I will Sign th
pay $5DI‘.+ (Encrypt
Alice's
+ private key
DFCD345
BBEA7S

Bob

| will ‘_{ ‘H‘e:iﬁr /h

pay $500 (Decrypt) Alice's
public key

2.6.5.3. Configuring the WSS4J Interceptors

To enable WS-Security within CXF for aserver or aclient, you'll need to set up the WSSA4J interceptors. Y ou can
either do this viathe API for standalone web services or via Spring XML configuration for servlet-hosted ones.
This section will provide an overview of how to do this, and the following sections will go into more detail about
configuring the interceptors for specific security actions.

It isimportant to note that:

1. If you are using CXF 2.0.x, you must add the SAAJ(In/Out)Interceptors if you're using WS-Security (Thisis
done automatically for you from CXF 2.1 onwards). These enable creation of a DOM tree for each request/
response. The support libraries for WS-Security require DOM trees.

2. The web service provider may not need both in and out WS-Security interceptors. For instance, if you are
just requiring signatures on incoming messages, the web service provider will just need an incoming WSS4J
interceptor and only the SOAP client will need an outgoing one.

Adding the interceptors via the API

On the Server side, you'll want to add the interceptors to your CXF Endpoint. If you're publishing your service
using the JAX-WS APIs, you can get your CXF endpoint like this:

i mport org. apache. cxf. endpoi nt. Endpoi nt;
i mport org. apache. cxf.jaxws. Endpoi nt | npl ;

Endpoi nt I mpl j axWsEndpoi nt =
(Endpoi ntlI npl) Endpoi nt. publish("http://host/service", nyServicelnpl);
Endpoi nt cxf Endpoi nt = j axWsEndpoi nt. get Server (). get Endpoi nt () ;

Talend Enterprise Service Factory User Guide 125

WS-Security

If you've used the (JaxWs)ServerFactoryBean, you can simply accessit viathe Server object:
i mport org. apache. cxf. endpoi nt. Endpoi nt;

i mport org. apache. cxf. endpoi nt. Server;

i mport org. apache. cxf.frontend. Server Fact or yBean;

Server Fact oryBean factory = ...;

Server server = factory.create();
Endpoi nt cxf Endpoi nt = server. get Endpoint();

On the client side, you can obtain areference to the CXF endpoint using the ClientProxy helper:

GreeterService gs = new GeeterService();
Greeter greeter = gs.getGeeterPort();

org. apache. cxf.endpoint.Cient client =
org. apache. cxf.frontend. ClientProxy.getCient(greeter);
or g. apache. cxf. endpoi nt. Endpoi nt cxf Endpoi nt = client. get Endpoi nt();

Now you're ready to add the interceptors:

i mport org.apache. cxf.ws. security.wss4j.WsS4Jl nl nt erceptor;
i mport org.apache. cxf.ws. security.wss4j.WsS4JQut | nt er cept or;

Map<Stri ng, Gbj ect > i nProps= new HashMap<Stri ng, Obj ect >();
/1 how to configure the properties is outlined bel ow,

WES4JI nl nt ercept or wssln = new W5S4JI nl nt ercept or (i nProps);
cxf Endpoi nt. getlnlnterceptors().add(wssln);

Map<St ri ng, Obj ect > out Props = new HashMap<Stri ng, Obj ect >();
/1 how to configure the properties is outlined bel ow,

WES4JQut I nterceptor wssQut = new W5S4JQut | nt er cept or (out Props) ;
cxf Endpoi nt. get Qut I nterceptors().add(wssCut);

2.6.5.4. Spring XML Configuration

If you're using Spring to build endpoints (e.g., web services running on a servlet container such as Tomcat), you
can easily accomplish the above using your bean definitions instead.

<i nport resource="cl asspat h: META- | NF/ cxf/cxf.xm" />
<i nport resource="cl asspat h*: META- | NF/ cxf/cxf-extension-*.xm" />

<j axws: endpoi nt id="nyService"
i mpl enent or ="com acne. MyServi cel npl "
address="http://| ocal host: 9001/ MySer vi ce" >

<bean i d="nmyPasswor dCal | back"
cl ass="com nmyconpany. webser vi ce. Server Passwor dCal | back"/ >

<j axws:inlnterceptors>
<bean cl ass="org. apache. cxf.ws. security.wss4j.WS4JI nl nterceptor">
<constructor-arg>

126 Talend Enterprise Service Factory User Guide

WS-Security

<map>
<entry key="action" val ue="User naneToken"/ >
<entry key="passwordType" val ue="PasswordDi gest"/>
<entry key="signaturePropFile" value="..."/>
<entry key="passwordCal | backRef ">

<ref bean="nyPasswordCal | back"/>

</entry>

</ map>

</ constructor-arg>
</ bean>

</jaxws:inlnterceptors>
</ j axws: endpoi nt >

The entry keys and values given in the constructor-arg element above (action, signaturePropFile, etc.)
map to the text strings in WSS4AJs WSHandlerConstants and WSConstants classes for the corresponding
WSHandlerConstants. X XXX X and WSConstants. X XXX constants you see in the section below. So by viewing
WSHandlerConstants, for example, you can see that the WSHandlerConstants. USERNAME_TOKEN valuegiven
below would need to be "UsernameToken™ instead when doing Spring configuration.

If you want to avoid looking up the text keys for the WSHandlerConstants. X X XXX and WSConstants. XXX X
constants, you can a so use the Spring util namespace to reference static constantsin your Spring context as shown
below.

<beans
xmns:util="http://ww.springframework. org/ schema/util"”
xsi : schemaLocati on="

http://ww. springframework. org/ schema/ uti |
http://ww. springframework. org/ schema/util/spring-util.xsd">

<bean cl ass="org. apache. cxf.ws. security.wss4j.WS4Jl nl nterceptor">
<constructor-arg>
<nap>
<entry val ue="User naneToken" >
<key>
<util:constant static-field=
"org. apache. ws. security. handl er. WsHandl er Const ant s. ACTI ON'/ >
</ key>
</entry>
</ map>
</ constructor-arg>
</ bean>

Additional Configuration Options

While the CXF WSS4J interceptors support the standard configuration properties available in
WSHandlerConstants. X XXX X and WSConstants. X XXX, CXF a so provides access to some additional low level
configuration capabilities in WSS4J and some other security related interceptors.

Talend Enterprise Service Factory User Guide 127

http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/handler/WSHandlerConstants.html
http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/WSConstants.html

WS-Security

Validating Signature and/or Encryption of Message Contents

Asof CXF 2.2.8, the CryptoCoverageChecker interceptor allowsoneto validate signature and encryption coverage
of message contents without migrating to a WS-SecurityPolicy based configuration. The interceptor can support
enforcement of signature and encryption coverage at both the element and content level (be aware that the
combination of signature and content do not represent avalid combination of coverage type and coverage scope).
To configure this interceptor using the API, follow the example below.

i mport org.apache. cxf.ws. security.wss4j.Crypt oCover ageChecker;
i mport org.apache. cxf.ws. security.wss4j.Crypt oCover ageChecker.
XPat hExpr essi on;
i mport org.apache. cxf.ws. security.wss4j.CryptoCoverageUtil . CoverageScope;
i mport org.apache. cxf.ws. security.wss4j.CryptoCoverageUtil . CoverageType;

Map<String, String> prefixes = new HashMap<String, String>();
prefixes.put("ser", "http://ww.sdj.pl");
prefixes. put("soap", "http://schemas.xm soap. or g/ soap/ envel ope/");

Li st <XPat hExpr essi on> xpaths = Arrays. asLi st (
new XPat hExpressi on("//ser: Header", CoverageType. Sl GNED,
Cover ageScope. ELEVMENT) ,
new XPat hExpr essi on("//soap: Body", CoverageType. ENCRYPTED,
Cover ageScope. CONTENT)) ;

Crypt oCover ageChecker checker = new Crypt oCoverageChecker (prefi xes,
xpat hs) ;

Theinterceptor can aso be configured in Spring using the conventional bean definition format.

After configuring the interceptor as above, simply add the interceptor to your client or server interceptor chain as
shown previsouly with the WSSAJ interceptors. Ensure that you include the WSSAJInInterceptor in the chain or
all requests will be denied if you enforce any coverage X Paths.

Custom Processors

Asof CXF 2.0.10 and 2.1.4, you can specify custom WSS4J Processor configurations on the WSS4JIninterceptor.
To activate this configuration option, one provides a non-WSS4J defined property, wss4j.processor.map, to the
WSSAJInInterceptor as shown in the following Spring example. The same configuratoin can be acheieved through
the API aswell. The key valueis an XML qualified name of the WS-S header element to process with the given
processor implementation. Theentry val ues can be a String representing aclass name of the processor toinstantiate,
an Object implementing Processor, or null to disable processing of the given WS-S header element.

<bean cl ass="org. apache. cxf.ws. security.wss4j.WS4JI nl nterceptor">
<constructor-arg>
<map>

<l-- This reconfigures the processor inplenentation that W5S4]
uses to process a Wo-S Signature elenent. -->
<entry key="wss4j.processor. nap">
<map key-type="javax.xm .nanespace. QNane" >
<entry val ue="ny. cl ass">
<key>
<bean cl ass="j avax. xnl . nanespace. QNane" >
<constructor-arg
val ue="http://ww. w3. or g/ 2000/ 09/ xm dsi g#"/ >
<constructor-arg val ue="Si gnature"/>
</ bean>

128 Talend Enterprise Service Factory User Guide

WS-Security

</ key>
</entry>
</ map>
</entry>
</ map>
</ constructor-arg>
</ bean>

Custom Actions

As of CXF 2.2.6, you can specify custom WSSAJ Action configurations on the WSS4JOutlnterceptor. To
activate this configuration option, one provides a non-WSS4J defined property, wssdj.action.map, to the
WSSA4JOutlInterceptor as shown in the following Spring example. The same configuratoin can be acheieved
through the API as well. The key value is an integer representing the WSSAJ action identifier. The entry values
can be a String representing a class name of the action to instantiate or an Object implementing Action. This
configuration option allows you to override built-in action implementations or add your own.

<bean cl ass="org. apache. cxf.ws. security.wss4j.WsS4JQut | nt ercept or">
<constructor-arg>
<map>

<I-- Redefines the action for SAM.TokenSi gned to use
a custominplenentation. -->
<entry key="wss4j.action.nap">
<map key-type="java.lang.|nteger" val ue-type="java.l ang. Obj ect">
<entry key="0x10" val ue-ref="nmySam TokenSi gnedActi on"/>
</ map>
</entry>
</ map>
</ constructor-arg>
</ bean>

2.6.5.5. Configuring WS-Security Actions

Username Token Authentication

WS-Security supports many ways of specifying tokens. One of theseisthe UsernameToken header. It isastandard
way to communicate a username and password or password digest to another endpoint. Be sure to review the
OASIS UsernameT oken Profile Specification for important security considerations when using UsernameT okens.
If anonceispresent in aUsernameToken then it should be cached by the message recipient to guard against replay
attacks. This behaviour is enabled by default starting with CXF 2.6.0. This functionality is also available from
Apache CXF 2.4.7 and 2.5.3 onwards, but is not enabled by default at all for backwards-compatibility reasons.
The following properties control nonce caching:

e Ws-security. enabl e. nonce. cache - The default value (for CXF 2.6.0) is "true" for message
recipients, and "false" for message initiators. Set it to true to cache for both cases. The default value for CXF
2.4.x and 2.5.x isfalse.

* Ws-security.nonce. cache.instance - This holds a reference to a ReplayCache instance used to
cache UsernameToken nonces. The default instance that is used is the EHCacheReplayCache, which uses
Ehcache to cache the nonce values.

Talend Enterprise Service Factory User Guide 129

http://tinyurl.com/65n78j

WS-Security

e ws-security.cache.config.fil e-Setthisproperty to point toaconfiguration filefor the underlying
caching implementation. By default the cxf-ehcache.xml file in the CXF rt-ws-security moduleis used.

For the server side, you'll want to set up the following properties on your WSS4JIninterceptor (see above [126]
for code sample):

i nProps. put (WsHandl er Const ant s. ACTI ON, WSHandl er Const ant s. USERNAVE_TOKEN) ;
/1 Password type : plain text
i nProps. put (WsHandl er Const ant s. PASSWORD_TYPE, W5Const ants. PW TEXT) ;
/1 for hashed password use:
/] properties. put (WsHandl er Const ant s. PASSWORD_TYPE, W5Const ant s. PW DI GEST) ;
/1 Callback used to retrieve password for given user.
i nProps. put (WsHandl er Const ant s. PW CALLBACK_CLASS,
Ser ver Passwor dHandl er. cl ass. get Nane()) ;

The password callback classallowsyouto retrieve the password for agiven user so that WS-Security can determine
if they're authorized. Here is a small example:

i mport java.io. | OException;

i mport javax.security. auth. call back. Cal | back;

i mport javax.security.auth. call back. Cal | backHandl er;

i mport javax.security.auth.callback. UnsupportedCal | backExcepti on;
i mport org.apache. ws. security. WsPasswor dCal | back;

public class ServerPasswordCal | back i npl enents Cal |l backHandl er {

public void handl e(Cal | back[] call backs) throws | OException,
Unsupport edCal | backException {

WSPasswor dCal | back pc = (WsPasswor dCal | back) cal | backs[0] ;

if (pc.getldentifier().equals("joe")) {
/1 set the password on the call back.
/1 This will be conpared to the
/1 password which was sent fromthe client.
pc. set Passwor d(" password");

}

Note that for up to and including CXF 2.3.x, the password validation of the special case of a
plain-text password (or any other yet unknown password type) is delegated to the callback class, see
org.apache.ws.security.processor.UsernameT okenProcessor#handleUsernameToken() method javadoc of the
WSSAJ project. In that case, the ServerPasswordCallback should be something like the following one:

public class ServerPasswordCal | back i npl enents Cal |l backHandl er {

public void handl e(Cal | back[] call backs) throws | OException,
Unsupport edCal | backException {

WSPasswor dCal | back pc = (WSPasswor dCal | back) cal | backs[0] ;
if (pc.getldentifier().equals("joe") {

if (!pc.getPassword().equal s("password")) {
t hrow new | OException("w ong password");
}

130 Talend Enterprise Service Factory User Guide

http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/processor/UsernameTokenProcessor.html#handleUsernameToken(org.w3c.dom.Element,%20javax.security.auth.callback.CallbackHandler)
http://ws.apache.org/wss4j/

WS-Security

}

For CXF 2.4 onwards, the callback handler suppliesthe password for all cases, and thevalidationisdoneinternally
(but can be configured). See here for more information. On the Client side you'll want to configure the WSSA4J
outgoing properties:

out Props. put (WsHandl er Const ant s. ACTI ON, WsHandl er Const ant s. USERNAME_TOKEN) ;
/1 Specify our usernane
out Props. put (\WBHandl er Const ants. USER, "j oe");
/1 Password type : plain text
out Props. put (\WBHandl er Const ant s. PASSWORD TYPE, WsConst ant s. PW TEXT) ;
/1 for hashed password use:
/I properties. put (WsHandl er Const ant s. PASSWORD TYPE, WsConst ants. PW DI GEST) ;
/1 Callback used to retrieve password for given user.
out Pr ops. put (WBHandl er Const ant s. PW CALLBACK CLASS,
i ent Passwor dHandl er. cl ass. get Nane()) ;

Once again we're using a password callback, except this time instead of specifying our password on the server
side, we're specifying the password we want sent with the message. Thisis so we don't have to store our password
in our configuration file.

i mport java.io. | OException;

i mport javax.security. auth. call back. Cal | back;

i mport javax.security. auth. call back. Cal | backHandl er;

i mport javax.security.auth.callback. UnsupportedCal | backExcepti on;
i mport org.apache. ws. security. WsPasswor dCal | back;

public class CientPasswordCal | back inplenents Call backHandl er {

public void handl e(Cal | back[] call backs) throws | OException,
Unsupport edCal | backException {

W5Passwor dCal | back pc = (WSsPasswor dCal | back) cal | backs[0] ;

/1 set the password for our nessage.
pc. set Passwor d(" password");

}

In the case of multiple users with different passwords, use the WSPasswordCallback 's getldentifier() method to
obtain the username of the current SOAP request.

Here is an example of WS-Security implemented using annotations for interceptors (uses UsernameToken).

Using X.509 Certificates

The X.509 Certificate Token Profile (pdf) provides another option for implementing WS-Security. For the
Signature and Encryption actions, you'll need to create a public & private key for the entities involved. Y ou can
generate a self-signed key pair for your development environment viathe following steps. Keep in mind these will
not be signed by an external authority like Verisign, so are inappropriate for production use.

1. Creating private key with given alias and password like "myAlias'/"myAliasPassword" in keystore (protected
by password for security reasons)

keyt ool -genkey -alias nyAlias -keypass nyAliasPassword -keystore \
privatestore.jks -storepass keyStorePassword -dnane "cn=nyAlias"
-keyal g RSA

Talend Enterprise Service Factory User Guide 131

http://coheigea.blogspot.com/2011/02/usernametoken-processing-changes-in.html
http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/WSPasswordCallback.html
http://depressedprogrammer.wordpress.com/2007/07/31/cxf-ws-security-using-jsr-181-interceptor-annotations-xfire-migration/
http://www.oasis-open.org/committees/download.php/16785/wss-v1.1-spec-os-x509TokenProfile.pdf

WS-Security

Thealiasis simply away to identify the key pair. In this instance we are using the RSA algorithm.
2. Self-sign our certificate (in production environment this will be done by a company like Verisign).

keytool -selfcert -alias nyAlias -keystore privatestore.jks -storepass
keySt or ePassword - keypass nyAl i asPassword

3. Export the public key from our private keystore to file named key.rsa

keyt ool -export -alias nyAlias -file key.rsa -keystore privatestore.jks
- st orepass keySt or ePassword

4. Import the public key to new keystore:

keytool -inport -alias nyAlias -file key.rsa -keystore publicstore.jks
- st orepass keySt or ePassword

So now we have two keystores containing our keys - a public one (publicstorejks) and a private one
(privatestore.jks). Both of them have keystore password set to keyStorePass (this not recommended for production
but ok for development) and alias set to myAlias. The file key.rsa can removed from filesystem, since it used only
temporarily. Storing keysin keystores is strongly advised because a keystore is protected by a password.

A more detailed description of key generation can be found here: http://java.sun.com/javase/6/docs/technotes/
tool /solaris/keytool .html

How to create a production certificate can be found here: http://support.globalsign.net/en/objectsign/java.cfm

Signing

Signing amessageis used to validate to the recipient that the message could only have come from a certain sender,
and that the message was not atered in transit. It involves the sender encrypting a digest (hash) of the message
with its private key, and the recipient unencrypting the hash with the sender's public key, and reca culating the
digest of the message to make sure the message was not atered in transit (i.e., that the digest values cal culated by
both the sender and recipient are the same). For this process to occur you must ensure that the Client's public key
has been imported into the server's keystore using keytool.

On the client side, our outgoing WS-Security properties will 100k like so (see above [126] for code sample):

out Props. put (WsHandlI er Const ants. ACTI ON, "Signature");
out Props. put (WsHandl er Const ants. USER, "nyAlias");
out Props. put (WSHandl er Const ant s. PW CALLBACK_CLASS,
C i ent Cal | backHandl er. cl ass. get Nane());
out Props. put (WsHandl er Const ants. SI G PROP_FI LE, "client_sign.properties");

The USER that is specified isthe key aliasfor the client. The password callback classis responsible for providing
that key's password.

i Tip
For X.509 support you will normally have multiple actions, e.g. Encryption with Signature. For these
cases, just space-separate the actionsin the ACTION property as follows:

out Props. put (WsHandl er Const ant s. ACTI QN,
WSHandl er Const ants. TI MESTAMP + " " +
WSHandl er Const ants. S| GNATURE + " " +
WSHandl er Const ant s. ENCRYPT) ;

Alternatively, you may space-separate the string literals you see above in the Spring configuration (e.g.,
"Signature Encrypt™)

Our client_sign.properties file contains several settings to configure WSSAJ:

132 Talend Enterprise Service Factory User Guide

WS-SecurityPolicy

or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.

.security.crypto.provider=\
.security.conmponents.crypto.Merlin
.security.crypto. merlin. keystore.type=jks
.security.crypto. merlin. keystore. passwor d=keySt or ePasswor d
.security.crypto.merlin. keystore. alias=nyAlias
.security.crypto.merlin.file=client_keystore.jks

55555 05

Onthe server side, we need to configure our incoming WSSAJ interceptor to verify the signature using the Client's
public key.

i nProps. put (WsHandl er Const ant s. ACTI ON, "Si gnature");
i nProps. put (WsHandl er Const ants. SI G PROP_FI LE, "server.properties");

Our server_sign.propertiesfile contains several settings to configure WSSA4J:

or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.

.security.crypto.provider=\
.security.conponents.crypto.Merlin
.security.crypto.nerlin.keystore.type=jks
.security.crypto.nerlin. keystore. password=anmex123
.security.crypto.nerlin.file=server_keystore.jks

5555 5

Encryption

Encryption involves the sender encrypting the message with the recipient's public key to ensure that only the
recipient can read the message (only the recipient has its own private key, necessary for decrypting the message.)
This requires the sender to have the recipient's public key in its keystore.

The process for encrypting is very similar to and indeed usually combined with the signature process above. Our
WS-Security test sample provides an example of encrypting requests and responses.

2.6.6. WS-SecurityPolicy

CXF 2.2 introduced support for using WS-SecurityPolicy to configure WSSAJinstead of the custom configuration
documented on the Section 2.6.5, “WS-Security” page. However, al of the "background" material on the
Section 2.6.5, “WS-Security” page still applies and is important to know. WS-SecurityPolicy just provides an
easier and more standards based way to configure and control the security requirements. With the security
requirements documented in the WSDL as Section 2.6.2, “WS-Policy” fragments, other tools such as .NET can
easily know how to configure themselves to inter-operate with CXF services.

2.6.6.1. Enabling WS-SecurityPolicy

In CXF 2.2, if the cxf-rt-ws-policy and cxf-rt-ws-security modules are available on the classpath, the WS-
SecurityPolicy stuff is automatically enabled. Since the entire security runtime is policy driven, the only
requirement is that the policy engine and security policies be available.

If you are using the full "bundl€" jar, al the security and policy stuff is already included.

2.6.6.2. Policy description

With WS-SecurityPolicy, the binding and/or operation in the wsdl references a Section 2.6.2, “WS-Policy”
fragment that describes the basic security requirements for interacting with that service. The WS-SecurityPolicy
specification allows for specifying things like asymmetric/symmetric keys, using transports (https) for encryption,

Talend Enterprise Service Factory User Guide 133

http://svn.apache.org/viewvc/cxf/trunk/systests/src/test/java/org/apache/cxf/systest/ws/security/
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/ws-securitypolicy.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/ws-securitypolicy.html
http://docs.oasis-open.org/ws-sx/ws-securitypolicy/v1.3/ws-securitypolicy.html

WS-SecurityPolicy

which parts’headers to encrypt or sign, whether to sign then encrypt or encrypt then sign, whether to include
timestamps, whether to use derived keys, etc... Basically, it describeswhat actions are necessary to securely interact
with the service described in the WSDL.

However, the WS-SecurityPolicy fragment does not include"everything" that isrequired for aruntimeto be ableto
ableto create the messages. It does not describe things such as locations of key stores, user names and passwords,
etc... Those need to be configured in at runtime to augment the WS-SecurityPolicy fragment.

2.6.6.3. Configuring the extra properties

With CXF 2.2, there are several extrapropertiesthat may need to be set to provide the additional bits of information
to the runtime:

Ws-security.username The username used for UsernameToken policy assertions

ws-security.password The password used for UsernameToken policy assertions. If not specified,
the callback handler will be called.

ws-security.callback-handler The WSSA4J security CalbackHandler that will be used to retrieve

passwords for keystores and UsernameT okens.

ws-security.signature.properties The properties file/object that contains the WSSAJ properties for
configuring the signature keystore and crypto objects

ws-security.encryption.properties | The properties file/object that contains the WSSAJ properties for
configuring the encryption keystore and crypto objects

Wws-security.signature.username The username or alias for the key in the signature keystore that will be
used. If not specified, it uses the the default alias set in the propertiesfile.
If that's also not set, and the keystore only contains a single key, that key
will be used.

ws-security.encryption.username | The username or alias for the key in the encryption keystore that will be
used. If not specified, it usesthe the default alias set in the propertiesfile. If
that's also not set, and the keystore only contains asingle key, that key will
be used. For the web service provider, the useRegSigCert keyword can be
used to accept (encrypt to) any client whose public key isin the service's
truststore (defined in ws-security.encryption.properties.)

ws-security.signature.crypto Instead of specifying the signature properties, this can point to the full
WSSA4J Crypto object. Thiscan alow easier "programmatic" configuration
of the Crypto information."

Wws-security.encryption.crypto Instead of specifying the encryption properties, this can point to the full
WSSAJ Crypto object. Thiscan alow easier "programmatic” configuration
of the Crypto information.”

Note: for Symmetric bindings that specify a protection token, the ws-security-encryption properties are used.

Configuring via Spring

The properties are easily configured as client or endpoint properties--use the former for the SOAP client, the latter
for the web service provider.

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: jaxws="http://cxf.apache. org/jaxws"
xsi : schemaLocati on="htt p://ww. spri ngfranmewor k. or g/ schema/ beans
htt p: // ww. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans- 2. 0. xsd
http://cxf. apache. or g/ j axws

134 Talend Enterprise Service Factory User Guide

http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/components/crypto/Crypto.html
http://ws.apache.org/wss4j/apidocs/org/apache/ws/security/components/crypto/Crypto.html

WS-SecurityPolicy

http://cxf.apache. or g/ schemas/j axws. xsd" >

<jaxws:client name="{http://cxf.apache. org} MyPort Nane"
cr eat edFr omAPI ="t rue" >
<j axws: properti es>
<entry key="ws-security.call back-handl er”
val ue="interop. client. KeystorePasswordCal | back"/ >
<entry key="ws-security.signature.properties”
val ue="etc/client.properties"/>
<entry key="ws-security.encryption.properties”
val ue="etc/ service. properties"/>
<entry key="ws-security.encryption.usernane”
val ue="servi cekeyal i as"/ >
</jaxws: properties>
</jaxws:client>

</ beans>

For the jaxws:client's name attribute above, use the namespace of the WSDL along with the name attribute of the
desired wsdl:port element under the WSDL's service section. (See here and here for an example.)

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schena-i nst ance"
xm ns: jaxws="http://cxf.apache. org/jaxws"
xsi : schemaLocati on="htt p://wwmv. spri ngfranewor k. or g/ scherma/ beans
http://ww. springfranmework. or g/ schena/ beans/ spri ng- beans-2. 0. xsd
http://cxf.apache. org/jaxws
http://cxf.apache. or g/ schemas/j axws. xsd" >

<j axws: endpoi nt
i d="MyService"
address="https://| ocal host: 9001/ MyServi ce"
servi ceNane="i nt er op: MyServi ce"
endpoi nt Name="i nt er op: MySer vi ceEndpoi nt"
i mpl enent or="com f oo. MyServi ce">

<j axws: properties>
<entry key="ws-security.call back-handl er"
val ue="interop. client. UTPasswor dCal | back"/ >
<entry key="ws-security.signature.properties"”
val ue="et c/ keystore. properties"/>
<entry key="ws-security.encryption.properties"
val ue="etc/truststore. properties"/>
<entry key="ws-security.encryption.usernane"
val ue="useReqSi gCert"/ >
</jaxws: properties>

</ j axws: endpoi nt >
</ beans>

Configuring via API's

Configuring the properties for the client just involves setting the propertiesin the client's RequestContext:

Map<String, Object> ctx = ((Bindi ngProvider)port).get Request Cont ext () ;
ctx. put ("ws-security.encryption.properties", properties);
port.echoString("hello");

Talend Enterprise Service Factory User Guide 135

http://tinyurl.com/yatskw4
http://tinyurl.com/y9e7rjf

WS-Trust

2.6.7. WS-Trust

WS-Trust support in CXF builds upon the Section 2.6.6, “WS-SecurityPolicy” implementation to handle the
IssuedToken policy assertions that could be found in the WS-SecurityPolicy fragment.

Note: Because the WS-IssuedToken support builds on the WS-SecurityPolicy support, this is currently only
availableto "wsdl first" projects.

WS-Trust extends the WS-Security specification to allow issuing, renewing, and validation of security tokens. A
lot of what WS-Trust does centers around the use of a"Security Token Service", or STS. The STS s contacted
to obtain security tokens that are used to create messages to talk to the services. The primary use of the STSisto
acquire SAML tokens used to talk to the service. Why isthisinteresting?

When using "straight” WS-Security, the client and server need to have keys exchanged in advance. If the client
and server are both in the same security domain, that isn't usually a problem, but for larger, complex applications
spanning multiple domains, that can be a burden. Also, if multiple services require the same security credentials,
updating all the services when those credentials change can by a major operation.

WS-Trust solves this by using security tokens that are obtained from a trusted Security Token Service. A client
authenticates itself with the STS based on policies and requirements defined by the STS. The STS then provides
a security token (example: a SAML token) that the client then uses to talk to the target service. The service can
validate that token to make sure it really came from the trusted STS.

When the WS-SecurityPolicy runtime in CXF encounters an IssuedToken assertion in the policy, the runtime
requries an instance of org.apache.cxf.ws.security.trust. STSClient to talk to the STS to obtain the required token.
Since the STSClient is a WS-SecurityPolicy client, it will need configuration itemsto be able to createit's secure
SOAP messagesto talk to the STS.

2.6.7.1. General Configuration

There are several waysto configure the STSClient:

Direct configuration of an STSbean in the properties: In this scenario, a STSClient object is created directly
as a property of the client object. The wsdlLocation, service/endpoint names, etc., are all configured in line for
that client.

<jaxws: client nanme="{http://cxf.apache.org/}MService"
creat edFr omAPI ="t rue" >
<j axws: properti es>
<entry key="ws-security.sts.client">
<l-- direct STSClient config and creation -->
<bean cl ass="org. apache. cxf.ws.security.trust.STSCient">
<constructor-arg ref="cxf"/>
<property nane="wsdl Locati on" val ue="target/wsdl/trust.wsdl "/>
<property nane="servi ceNane" val ue=
"{http://cxf.apache. org/securitytokenservice}
SecurityTokenService"/>
<property nane="endpoi nt Nane" val ue=
"{http://cxf.apache. org/securitytokenservice}
SecurityTokenEndpoi nt"/ >
<property nane="properties">
<map>
<entry key="ws-security.usernane" val ue="alice"/>
<entry key="ws-security.call back-handl er"
val ue="cl i ent. MyCal | backHandl er"/ >
<entry key="ws-security.signature. properties"”
val ue="cl i ent Keyst ore. properties"/>

136 Talend Enterprise Service Factory User Guide

WS-Trust

<entry key="ws-security.encryption.properties”
val ue="cl i ent Keyst ore. properties"/>
<entry key="ws-security.encryption.usernane”
val ue="nyst skey"/ >
</ map>
</ property>
</ bean>
</entry>
</jaxws: properties>
</jaxws:client>

The above exampl e shows a configuration where the STS uses the UsernameT oken profile to validate the client. It
is assumed the keystore identified within clientK eystore.properties contains both the private key of the client and
the public key (identified above as mystskey) of the STS; if not, create separate property files for the signature
properties and the encryption properties, pointing to the keystore and truststore respectively.

Remember the jaxws.client createdFromAPI attribute needs to be set to true (as shown above) if you created the
client programmatically viathe CXF API's--i.e., Endpoint.publish() or Service.getPort().

This also works for "code first" cases as you can do:

STSClient sts = new STSCient(...);

sts.set XXXX(....)

((Bi ndi ngProvi der) port) . get Request Cont ext ().
put ("ws-security.sts.client", sts);

Sample clientK eystore.properties format:

or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.
or g. apache.

.security.crypto.provider=\
.security.conponents.crypto. Merlin

.security.crypto.nerlin. keystore.type=j ks
.security.crypto.nerlin. keystore. passwor d=Keyst or ePasswor dHer e
.security.crypto.nerlin. keystore. alias=CientKeyAlias
.security.crypto.nerlin.file=NaneO Keystore.jks

555505 0

Indirect configuration based on endpoint name: If the runtime does not find a STSClient bean configured
directly on the client, it checks the configuration for a STSClient bean with the name of the endpoint appended
with ".sts-client”. For example, if the endpoint name for your client is "{ http://cxf.apache.org/} TestEndpoint",
then it can be configured as:

<bean nanme="{http://cxf.apache. org/}Test Endpoint.sts-client"
cl ass="org. apache. cxf.ws. security.trust.STSCient" abstract="true">
<property nane="wsdl Locati on" val ue="WSDL/wsdl /trust.wsdl"/>
<property nane="servi ceNane" val ue=
"{http://cxf.apache. org/securitytokenservice}
SecurityTokenService"/>
<property nane="endpoi nt Nane" val ue=
"{http://cxf.apache. org/securitytokenservice}
SecurityTokenEndpoi nt"/ >
<property nane="properties">
<map>
<entry key="ws-security.signature. properties"”
val ue="etc/alice. properties"/>
<entry key="ws-security.encryption.properties"
val ue="et c/ bob. properties"/>
<entry key="ws-security.encryption.usernane"
val ue="st skeynane"/ >
</ map>
</ property>

Talend Enterprise Service Factory User Guide 137

WS-Trust

</ bean>

This properties configured in this example demonstrate STS validation of the client using the X.509 token profile.
The abstract="true" setting for the bean defers creation of the STSClient object until it is actually needed. When
that occurs, the CXF runtime will instantiate a new STSClient using the values configured for this bean.

Default configuration: If an STSClient is not found from the above methods, it then tries to find one configured
like the indirect, but with the name "default.sts-client”. This can be used to configure sts-clients for multiple
services.

2.6.7.2. WS-Trust 1.4 Support

CXF provides limited support of WS-Trust 1.4. The currently supported features are listed below.

ActAs (2.2.10)

The ActAs capability allowsan initiator to request a security token that allowsit to act asif it were somebody el se.
This capability becomes important in composite services where intermediate services make additional requests
on-behalf of thetrueinitiator. In this scenario, therelying party (thefinal destination of an indirect service request)
may require information about the true origin of the request. The ActAs capability allows an intermediary to
request a token that can convey thisinformation.

The following code fragment demonstrates how to use an interceptor to dynamically set the content of the ActAs
element inthe STSRST. Thevalue may be astring containing well-formed XML or aDOM Element. The contents
will be added to the RST verbatim. Note that this interceptor is applied to the secured client, the initiator, and not
to the STSClient's interceptor chain.

public class Act AsQutlnterceptor extends
Abst r act Phasel nt er cept or <Message> {

Act AsQut I nterceptor () {
/1 This can be in any stage before the W5-SP interceptors
/1 setup the STS client and issued token interceptor.
super (Phase. SETUP) ;

}

@verride
public void handl eMessage(Message nessage) throws Fault {

nessage. put (SecurityConstants. STS TOKEN ACT_AS, ...);

}
Alternatively, the ActAs content may be set directly on the STS as shown below.

<bean nanme="{http://cxf.apache.org/}Test Endpoint.sts-client"
cl ass="org. apache. cxf.ws. security.trust.STSCient" abstract="true">
<property nane="wsdl Locati on" val ue="WSDL/wsdl /trust.wsdl"/>
<property nane="servi ceNane" val ue=
"{http://cxf.apache. org/securitytokenservice}SecurityTokenService"/>
<property nane="endpoi nt Nane" val ue=
"{http://cxf.apache. org/securitytokenservice}SecurityTokenEndpoint"/>

<property nane="actAs" value="..."/>
<property nane="properties">
<map>

138 Talend Enterprise Service Factory User Guide

CXF Customizations

<entry key="ws-security.sts.token.properties”
val ue="et c/ bob. properties"/>

<entry key="ws-security.call back-handl er”
val ue="interop. client. KeystorePasswordCal | back"/ >

<entry key="ws-security.signature. properties”
val ue="etc/alice. properties"/>

<entry key="ws-security.encryption.properties”
val ue="et c/ bob. properties"/>

</ map>
</ property>
</ bean>

2.7. CXF Customizations

2.7.1. Annotations

CXF provides several custom annotations that can be used to configure and customize the CXF runtime.

2.7.1.1. org.apache.cxf.feature.Features

The @Features annotation is used to add Features, something that is able to customize a Server, Client, or Bus,
typically by adding capabilities. See the CXF Features List for those provided "out of the box" by CXF. Y ou can
also create your own features. In many cases, however, those features have Annotations themsel ves which can be
used and provide greater control over configuration.

2.7.1.2. org.apache.cxf.interceptor.Ininterceptors,
org.apache.cxf.interceptor.Outinterceptors,
org.apache.cxf.interceptor.OutFaultinterceptors,
org.apache.cxf.interceptor.InFaultinterceptors

Add interceptors to the various chains used to process messages.

2.7.1.3. org.apache.cxf.annotations.WSDLDocumentation
org.apache.cxf.annotations.WSDLDocumentationCollection
(since 2.3)

For "javafirst" scenarioswherethe WSDL isderived from the Javainterfaces/code, these annotations allow adding
wsd:documentation elements to various locations in the generated wsdl.

For example:

@\ebSer vi ce
@\DLDocurrent ati onCol | ecti on(

{

Talend Enterprise Service Factory User Guide 139

https://cwiki.apache.org/CXF20DOC/featureslist.html

Annotations

@\SDLDocunent ati on(" My port Type docunentation"),
@\DLDocunent ati on(value = "My top | evel documentation”,
pl acenent = WSDLDocunent ati on. Pl acenment. TOP),
@\SDLDocunent ati on(val ue = "My bi ndi ng doc",
pl acenent = WSDLDocunent ati on. Pl acenent . Bl NDI NG
}
)
public interface MyService {

@\EDLDocunent ati on(" The docs for echoString")
String echoString(String s);

2.7.1.4. org.apache.cxf.annotations.SchemaValidation (since 2.3)

Turns on SchemaV alidation for messages. By default, for performance reasons, CXF does not validate message
against the schema. By turning on validation, problems with messages not matching the schema are easier to
determine.

2.7.1.5. org.apache.cxf.annotations.DataBinding (since 2.2.4)

Sets the DataBinding class that is associated with the service. By default, CXF assumes you are using the JAXB
data binding. However, CXF supports different databindings such as XML Beans, Aegis, SDO, and possibly more.
This annotation can be used in place of configuration to select the databinding class.

@at aBi ndi ng(or g. apache. cxf. sdo. SDODat aBi ndi ng. cl ass)
public interface MyService {
publ i c comonj. sdo. Dat aCbj ect echoStruct (
commonj . sdo. Dat aCbj ect struct

)

2.7.1.6. org.apache.cxf.annotations.Logging (since 2.3)

Turnsonlogging for the endpoint. Can be used to control the size limits of what getslogged aswell asthelocation.
It supports the following attributes:

limit Sets the size limit after which the message is truncated in the logs. Default is
64K
inLocation Sets the location to log incoming messages. Can be <stderr>, <stdout>,

<logger>, or afile: URL. Default is <logger>

outL ocation Sets the location to log outgoing messages. Can be <stderr>, <stdout>,
<logger>, or afile: URL. Default is <logger>

@oggi ng(limt=16000, inLocation="<stdout>")
public interface MyService {

String echoString(String s);

140 Talend Enterprise Service Factory User Guide

Annotations

2.7.1.7. org.apache.cxf.annotations.GZIP (since 2.3)

Enables GZIP compression of on-the-wire data. Supported attributes:

‘threshold ‘the threshold under which messages are not gzipped

GZIP isanegotiated enhancement. An initial request from a client will not be gzipped, but an Accept header will
be added and if the server supports it, the response will be gzipped and any subsequent requests will be.

2.7.1.8. org.apache.cxf.annotations.Fastinfoset (since 2.3)

Enables Fastinfoset of on-the-wire data. Supported attributes:

‘force ‘forc& the use of fastinfoset instead of negotiating. Default isfalse

FastInfoset is a negotiated enhancement. An initial request from a client will not be in fastinfoset, but an Accept
header will be added and if the server supportsit, the response will be in fastinfoset and any subsequent requests
will be.

2.7.1.9. org.apache.cxf.annotations.EndpointProperty
org.apache.cxf.annotations.EndpointProperties (since 2.3)

Adds a property to an endpoint. Many things such as WS-Security related things and such can be configured via
endpoint properties. Traditionally, these would be set viathe <jaxws: properties> el ement on the <jaxws.endpoint>
element in the spring config, but these annotations allow these properties to be configured into the code.

@\ebSer vi ce
@ndpoi nt Properti es(

{
@ndpoi nt Property(key = "ny. property", value="sonme val ue"),
@ndpoi nt Property(key = "my. ot her. property",
val ue="sone ot her val ue"),

)

public interface MyService {
String echoString(String s);
}

2.7.1.10. org.apache.cxf.annotations.Policy
org.apache.cxf.annotations.Policies (since 2.3)

Used to attach WS-Policy fragments to a service or operation. The Policy supports the attributes:

uri REQUIRED the location of the file containing the Policy definition
includelN\WSDL Whether to include the policy in the generated WSDL when generating awsdl .
Default it true

Talend Enterprise Service Factory User Guide 141

Dynamic Clients

placement Specify where to place the policy

faultClass if placement isa FAULT, this specifies which fault the policy would apply to

When using a custom Spring configuration, you'll need to import META-INF/cxf/cxf-extension-
a i
policy.xml

@olicies({
@olicy(uri = "annotationpols/TestlnterfacePolicy.xm"),
@olicy(uri = "annotationpols/Testlnpl Policy.xm",

pl acenent = Policy. Pl acenent. SERVI CE_PORT) ,
@olicy(uri = "annotationpol s/ TestPort TypePolicy.xm",
pl acenent = Policy. Pl acenent. PORT_TYPE)

}
)
@\ebSer vi ce
public static interface TestInterface {
@olicies({
@olicy(uri = "annotationpol s/ Test Operati onPolicy.xm"),
@olicy(uri = "annotationpol s/ Test Operationl nputPolicy.xm",
pl acenent = Policy. Pl acenent. Bl NDI NG_OPERATI ON _| NPUT) ,
@olicy(uri = "annotationpol s/ Test Operati onCut put Policy.xm",
pl acenent = Policy. Pl acenent. Bl NDI NG_OPERATI ON_QUTPUT) ,
@olicy(uri = "annotationpol s/ Test Operati onPTPol i cy. xm ",
pl acenent = Policy. Pl acenent. PORT_TYPE_OPERATI ON),
@olicy(uri = "annotationpol s/ Test Oper ati onPTI nput Pol i cy. xm ",
pl acenent = Policy. Pl acenent. PORT_TYPE_OPERATI ON_I NPUT) ,
@olicy(uri = "annotationpol s/ Test Oper ati onPTQut put Pol i cy. xm ",
pl acenent = Policy. Pl acement. PORT_TYPE_OPERATI ON_QOUTPUT)
}
)
int echolnt(int i);
}

2.7.1.11. org.apache.cxf.annotations.UseAsyncMethod (since
2.6.0)

Used on the JAX-WS service implementation object to mark a method as preferring the ‘async' version of the
method instead of the synchronous version. With JAX-WS, services default to the synchronous methods that
require the returning value to be returned from the method. By marking a method with the @UseAsyncM ethod
annotation, if the transport supportsit, CXF will call the async version that takes an AsynHandler object and the
service can call that handler when the response is ready. If the transport does not support the CXF continuations,
the synchronous method will be called as hormal.

2.7.2. Dynamic Clients

The usual way to construct a web service client is to include the Java interface for the service (the SEI) and any
classes that are used for inputs and output in the client application. Thisis not always desirable or practical.

CXF supports several alternativesto allow an application to communicate with a service without the SEI and data
classes. JAX-WS specified the Dispatch API, aswell asthe Provider interface for reading and writing XML. This
page, however, describes the dynamic client facility of CXF. With dynamic clients, CXF generates SEI and bean
classes at runtime, and allows you to invoke operations via APIs that take Objects, or by using reflection to call
into full proxies.

142 Talend Enterprise Service Factory User Guide

CXF Command-Line Tools

Note that, in general, CXF only supports WSI-BP services. If you attempt to create a dynamic client for aWSDL
that uses features outside of WSI-BP, CXF may throw an exception.

2.7.2.1. DynamicClientFactory and JaxWsDynamicClientFactory

CXF provides two factory classes for dynamic classes. If your service is defined in terms of JAX-WS concepts,
you should use the JaxWsDynamicClientFactory. If you do not want or need JAX-WS semantics, use the
DynamicClientFactory. The remainder of this page uses the JaxWs version.

Let's pretend for a moment that you have a WSDL which defines a single operation "echo" which takes an input
of astring and outputs a String. Y ou could use the JaxWsDynamicClientFactory for it like this:

JaxWsDynani cCl i ent Factory dcf = JaxWsDynani cC i ent Fact ory. new nst ance() ;
Client client = dcf.createdient("echo.wsdl ");

onject[] res = client.invoke("echo", "test echo");
Systemout. println("Echo response: " + res[0]);

Many WSDLs will have more complex types though. In this case the JaxWsDynamicClientFactory takes care of
generating Java classes for these types. For example, we may have a People service which keeps track of people
in an organization. In the sample below we create a Person object that was generated for us dynamically and send
it to the server using the addPerson operation:

JaxWsDynani cCl i ent Factory dcf = JaxWsDynami cC i ent Fact ory. new nst ance() ;
Client client = dcf.createdient("people.wsdl", classLoader);

bj ect person = Thread. current Thread() . get Cont ext Cl assLoader ().
| oadCl ass("com acmne. Person") . newl nstance();

Met hod m = person. get C ass() . get Met hod("set Nanme", String.cl ass);
m i nvoke(person, "Joe Schnoe");

client.invoke("addPerson", person);
Y ou may be asking yourself the following question: "Where did the class name ‘com.acme.Person' come from?'

One way to get the class names is to run wsdl2java and examine the results. The dynamic client factory uses the
same code generator as that tool. Another way is to walk the CXF service model. This has the advantage that it
delivers Class<?> abjectsdirectly, so you don't need to obtain the correct class |oader reference and run loadCl ass.

The wsdl_first_dynamic_client sample uses this approach. Read the file ‘ComplexClient.java to see the process,
which uses some of the java.bean classes to simplify the code slightly.

Note

The JaxWsDynamicClientFactory setsthe Thread context ClassL oader to anew ClassL oader that contains
the classes for the generated types. If you need the original ClassLoader, make sure you save it prior to
calling createClient.

2.8. CXF Command-Line Tools

The most up-to-date instructions for building SOAP web-services are maintained in the CXF User's Guide.
In particular, see the wsdl2java utility for contract-first development and java2ws tool for the start-from-Java
approach. For Maven-based projects, CXF offers pluginsfor both WSDL-first (cxf-codegen-plugin) and Java-first
(cxf-java2ws-plugin) devel opment.

Talend Enterprise Service Factory User Guide 143

http://cxf.apache.org/docs/wsdl-to-java.html
http://cxf.apache.org/docs/java-to-ws.html
http://cxf.apache.org/docs/maven-cxf-codegen-plugin-wsdl-to-java.html
http://cxf.apache.org/docs/maven-java2ws-plugin.html

WSDL to Java

2.8.1. WSDL to Java

wsdl2java creates JAX-WS and JAXB (or other databinding framework) objects from a service WSDL.. It hasthe

following parameters:

Parameter

Option

-h

Displays the online help for this utility and exits.

-fe frontend-name

Specifies the frontend. Default is JAXWS. Currently supports only JAXWS
frontend and a"'jaxws21" frontend to generate JAX-WS 2.1 compliant code.

-db databinding-name

Specifies the databinding. Default is jaxb. Currently supports jaxb, xmlbeans,
sdo (sdo-static and sdo-dynamic), and jibx.

-wv wsdl-version

Specifies the wsdl version .Default is WSDL1.1. Currently supports only
WSDL1.1 version.

-p [wsdl-namespace=
PackageName

Specifies zero, or more, package names to use for the generated code.
Optionally specifies the WSDL namespace to package name mapping.

-Sn service-name

The WSDL service name to use for the generated code.

-b binding-name

Specifies JAXWS or JAXB hinding files or XMLBeans context files. Use
multiple -b flags to specify multiple entries.

-catalog catalog-file-name

Specify catalog file to map the imported wsdl/schema

-d output-directory

Specifies the directory into which the generated code files are written.

-compile

Compiles generated Javafiles.

-Classdir compile-class-dir

Specifies the directory into which the compiled class files are written.

-client Generates starting point code for a client mainline.

-server Generates starting point code for a server mainline.

-impl Generates starting point code for an implementation object.

-l Generates all starting point code: types, service proxy, service interface, server
mainline, client mainline, implementation object, and an Ant build.xml file.

-ant Specify to generate an Ant build.xml script.

-autoNameResol ution

Automatically resolve naming conflicts without requiring the use of binding
customizations.

-defaultValues=
[DefaultValueProvider impl]

Specifies that default values are generated for the impl and client. You
can also provide a custom default value provider. The default provider is
RandomV alueProvider

-nexclude
[=java-packagename |

schema-namespace| Ignore the specified WSDL schema namespace when generating code. This

option may be specified multiple times. Also, optionally specifies the Java
package name used by types described in the excluded namespace(s).

-exsh (true/false) Enables or disables processing of implicit SOAP headers (i.e. SOAP headers
defined in the wsdl:binding but not wsdl:portType section.) Default is false.

-dns (true/false) Enables or disables the loading of the default namespace package
name mapping. Default is true and [http://www.w3.0rg/2005/08/
addressing=org.apache.cxf.ws.addressing] namespace package mapping will
be enabled.

-dex (true/false) Enables or disables the loading of the default excludes namespace mapping.
Default istrue.

-validate Enables validating the WSDL before generating the code.

-keep Specifies that the code generator will not overwrite any preexisting files. You
will be responsible for resolving any resulting compilation issues.

144 Talend Enterprise Service Factory User Guide

Javato WS

Parameter

Option

-wsdl L ocation wsdlL ocation

Specifies the value of the @WebServiceClient annotation's wsdlL ocation
property.

-Xjc<Xxjc args>

Specifies a comma separated list of [argumentgihttps://jaxb.dev.java.net/
nonav/2.2/docs/xjc.html] that are passed directly to the XJC processor when
using the JAXB databinding. A list of available XJC plugins can be obtained
using -xjc -X.

-noAddressBinding

For compatibility with CXF 2.0, thisflag directsthe code generator to generate
the older CXF proprietary WS-Addressing types instead of the JAX-WS 2.1
compliant WS-Addressing types.

-V Displays the version number for the tool.

-verbose Displays comments during the code generation process.

-quiet Suppresses comments during the code generation process.

-exceptionSuper superclass for any fault beans generated from wsdl:fault elements (defaults to

javalang.Exception)

-reserveClass classname

Used with -autoNameResolution, defines a class names for wsdl-to-java not
to use when generating classes. Use this option multiple times for multiple
classes.

-allowElementReferences

If true, disregards the rule given in section 2.3.1.2(v) of the JAX-WS
2.2 specification disallowing element references when using wrapper-style

mapping.

-asyncMethods=foo,bar,... List of subsequently generated Java class methods to alow for client-side
asynchronouscalls, similar to enableAsyncMapping inaJAX-WShinding file.
-bareM ethods=foo,bar,... List of subsequently generated Java class methods to have wrapper style (see

below), similar to enableWrapperStylein JAX-WS binding file.

-mimeM ethods=foo,bar,...

List of subsequently generated Java class methods to enable mime:content
mapping, similar to enableMIMEContent in JAX-WS binding file.

serialVersonUID>

-faultSeriaVersionUID <fault-

How to generate suid of fault exceptions. Use NONE, TIMESTAMP, FQCN,
or aspecific number. Default is NONE.

-mark-generated

Adds the @Generated annotation to classes generated.

_wsdlurl _

The path and name of the WSDL file to use in generating the code.

Examples of wsdl2javain use:

e wsdl 2j ava Hel | oWor | d. wsdl

e wsdl 2j ava -p com nmyconpany. greeting G eeting. wsdl

e wsdl 2j ava -client HelloWwrld. wsdl

2.8.2. Java to WS

2.8.2.1. Name

j ava2ws - uses aWeb service endpoint’s implementation (SEI) class and associated types classes to generate a
WSDL file, wrapper bean ,server side code to start the web service and client side code.

Talend Enterprise Service Factory User Guide 145

Javato WS

2.8.2.2. Synopsis

j ava2ws -dat abi ndi ng <jaxb or aegi s> -frontend <jaxws or sinple>

-wsdl

-wr apperbean -client -server -ant -o <output-file>

-d <resource-directory> -classdir <conpile-classes-directory>
-cp <cl ass-path> -soapl2 -t <target-nanespace>

-beans <ppat hnane of the bean definition file>*

-address <port-address> -servi cenane <servi ce-nane>

- portnane <port-name> -createxsdi nports -h -v -verbose

-qui et {cl assnane}

2.8.2.3. Description

java2ws uses a Web service endpoint's implementation (SEI) class and associated types classes to generate a
WSDL file, wrapper bean ,server side code to start the web service and client side code.

2.8.2.4. Options

The options used to manage the code generation process are reviewed in the following table.

Option I nter pretation

-?,-h,-help Displays the online help for this utility and exits.

-0 Specifies the name of the generated WSDL file.

-databinding Specify the databinding (aegisor jaxb). Default isjaxb for jaxwsfrontend, and
aegis for smple frontend.

-frontend Specify the frontend to use. jaxws and the simple frontend are supported.

-wsdl Specify to generate the WSDL file.

-wrapperbean Specify to generate the wrapper and fault bean

-client Specify to generate client side code

-server Specify to generate server side code

-ant Specify to generate an Ant build.xml script

-cp Specify the SEI and types class search path of directories and zip/jar files.

-s0apl12 Specifies that the generated WSDL isto include a SOAP 1.2 binding.

-t Specifies the target namespace to use in the generated WSDL file.

-servicename Specifies the value of the generated service element's name attribute.

-v Displays the version number for the toal.

-verbose Displays comments during the code generation process.

-quiet Suppresses comments during the code generation process.

-S The directory in which the generated source files(wrapper bean fault
bean ,client side or server side code) are placed.

-Classdir Thedirectory inwhich the generated sourcesare compiled into. If not specified,
the files are not compiled.

-portname Specify the port name to use in the generated wsdl.

-address Specify the port address.

146 Talend Enterprise Service Factory User Guide

JAX-WS Development With Eclipse

Option I nter pretation

-beans Specify the pathname of afile defining additional Spring beans to customize
databinding configuration.

-createxsdimports Output schemas to separate files and use imports to load them instead of
inlining them into the wsdl.

-d The directory in which the resource files are placed, wsdl file will be placed
into this directory by default

classname Specifies the name of the SEI class.

You must include the ¢l assname argument. All other arguments are optional and may be listed in any order.
This tool will search and load the service endpoint class and types classes. Make certain these classes are on the
CLASSPATH or in alocation identified through the - cp flag. If none of "-wsdl , - wrapperbean, -client, -server"
flags are specified, java2ws will generate nothing.

2.8.2.5. Examples

java2ws -wsdl -d ./resource org.apache. hello. G eeter

java2ws -cp ./tnp org.apache. hello. Geeter -wsdl

java2ws -0 hello.wsdl -wsdl org.apache. hello. G eeter

java2ws -client -server -s ./src org.apache. hello. G eeter

j ava2ws -w apperbean -classdir ./classes org. apache. hell 0. G eeter

2.9. JAX-WS Development With Eclipse

Development using the Eclipse IDE is another option. The Java Enterprise Edition version of Eclipse alows for
rapid development, testing, and debugging, making it a compelling environment for web service development.
Stepsto follow for building web services with Eclipse:

1. Download and attach Tomcat to Eclipse.

Tomcat needs to be linked into the IDE so Eclipse can start and stop the servlet container as well as deploy
web servicestoit. (Seethe Eclipse/Tomcat FAQ to learn more.) Download and extract the Tomcat binary into
its own directory if you haven't already. Next, from the Eclipse Preferences window (Menu item Windows-
>Preferences), select the Server -> Runtime Environments section and add your Tomcat installation to the
IDE:

Talend Enterprise Service Factory User Guide 147

http://www.eclipse.org/downloads/moreinfo/jee.php
http://wiki.eclipse.org/WTP_Tomcat_FAQ
http://tomcat.apache.org/download-60.cgi

JAX-WS Development With Eclipse

B @ New Server Runtime Environment

Tomcat Server
@ The specified Tomcat installation directory does not exist.
Name:

[Apache Tomcat v6.0]

Tomcat installation directory:

|_ Jmedia/NewDriveExt3/myapps/tomcat-6.0.29| | “

apache-tomcat-6.0.26 M
|RE:
. =1 :

@ —

Attaching Tomcat To Eclipse

Ensure that the JRE being used is an actual Java Development Kit (JDK), which Tomcat needs in order to
compile JSPs and potentially other sourcefiles.

2. Download and attach CXF to Eclipse.
Similar to Tomcat, download the latest release version of Apache CXF and expand into a directory on your
computer. Next, from Eclipse Preferences, open up the Web Services -> CXF 2.x Preferences section and
enter the CXF directory as shown below.
[-_ ve filter text g] CXF 2.x Preferences &y =
- Web Services N _)
Axis Emitter Version Location Type u .
Axis2 Preferences W= 2.3.0 /media/NewDriveExt3/myapps/apache-cxf-2.3.0 Apache CXF H—
CXF 2.x Preferences) : [
Popup Dialog Selection Remove
Project Topology
Resource Management
Scenario Defaults
Server and Runtime
Test Facility Defaults
Wizard Validation
WSDL Files ' .
@ o Gancel | ok |
Attaching CXF to Eclipse
148 Talend Enterprise Service Factory User Guide

http://cxf.apache.org/download.html

JAX-WS Development With Eclipse

Also, inthe Web Services -> Server and Runtime category, make sure the Server and Web Service Runtimes
are set to your version of Tomcat and CXF respectively.

Create a dynamic web project.

We will next create a Eclipse dynamic web project to contain the web service provider and client. From the
Eclipse File menu, Select New -> Dynamic Web Project (or New -> Other, and from the subsequent popup
dialog Web -> Dynamic Web Project). Give the project any desired name ("WebServiceSample" is used
below), make sure the proper Tomcat server is selected, and then press the Finish button asillustrated:

® @ New Dynamic Web Project

Dynamic Web Project

=
Create a standalone Dynamic Web project or add it to a new or existing Enterprise Application. |_

Project name: | WebServiceSample |

Project location
& Use default location

Target runtime

Dynamic web module version
2
Configuration

A good starting point for working with Apache Tomcat v6.0 runtime. Additional facets can later be
installed to add new functionality to the project.

EAR membership

@ = =~ W - -

Creating an Eclipse Dynamic Web Project

Createtheweb service provider.

Well start from a WSDL-first approach.

a

First we'll create the WSDL. From the Eclipse Project Explorer, right-click WebServiceSample, select
New -> File, and enter Doublelt.wsdl as the file name. Next, copy-and-paste the Doublelt.wsdl from
the CXF repository into this new file.

Right-click WebServiceSample again and select New -> Other, and Web Services-> Web Service from
the New dialog. Choose the Top Down (i.e., WSDL-first) web service approach and the Doublelt.wsdl
fileyou just created as the Service definition. Make sure the server and web service runtime (i.e., CXF)
are correct. On the server thumbwheel, select the highest setting (" Test Service") as shown below.

Talend Enterprise Service Factory User Guide 149

http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/test/resources/DoubleIt.wsdl?view=co&content-type=text%2Fplain

JAX-WS Development With Eclipse

D @ Web Service

Web Services
Select a service implementation or definition and move the sliders to set the
level of service and client generation.

web service type: (S
Service definition: lfWebSewiceSamplef[mublelt.wsdl ‘ | u

Test i j i
L est service anﬁgur‘atl{}n:

& @[3 Server runtime: Tomcat v6.0 Server

dal o Web service runtime: Apache CXF 2.x

3 Service project: WebServiceSample

client type: |

o glert Configuration: No client generation.

8T
= ?

S—

Publish the Web service

Monitor the Web service

@ | <Bak Next> | Cancel || Finish |

New Web Service

Click finish. Eclipse will deploy the web service on Tomcat and provide a Web Services Explorer test
window where you can enter numbers and see the doubled result, as shown below. However, the web

service presently will just return a hardcoded number, we'll need to modify the web service provider to
return the desired result, which we'll do next.

150 Talend Enterprise Service Factory User Guide

JAX-WS Development With Eclipse

¥ Web Services Explorer 2

Web Services Explorer

111 DoubleltPortTypelmpl.java

=0

GO BRI *|

% Navigator G

Actions @l

55 WSDL Main
(22 http://localhost:8080/Web
(%2 DoubleltService
[1-[@] DoubleltBinding

[ADoublelt]

Enter the parameters for the WSDL operation "Doublelt" and click Go to invoke. n

Endpoints
’7 http://localhost:8080/WebServiceSam ple/services/DoubleltPort J

- Body

= Doublelt

numberToDouble int
25

_Go | meset|

i Status e

Source

- Body

- DoubleltResponse

doubledNumber (int): 50

Web Services Explorer test window

c. From the Project Explorer, under WebServiceSample, open up Java Resour ces:

sr ¢ and open

the DoubleltPortTypelmpl.java file. Change the business logic of the doublelt method to return twice

theinput parameter (i.e,"int _return =

nunber ToDoubl e * 2; ") and savethefile. Once

saved, Eclipse automatically recompiles the class and redeploysit to the Tomcat server. Y ou can return
to the Web Services Explorer test window, enter a number and now see the properly doubled result.

Createtheweb serviceclient.

Well now use Eclipse to create a Java-based web service client. Right-click WebServiceSample from the
Project Explorer and select New -> Other, and from the New dialog Web Services -> Web Service Client.
From thewindow that appearsenter the WSDL file and rai sethe thumbwhedl all theway up to "test", asshown
below. Then select "Next" and enter another package name for the client (say "org.example.doubleit.client")
S0 it does not conflict with the web service provider package. Click Finish.

Talend Enterprise Service Factory User Guide

151

JAX-WS Devel opment With Eclipse

B @ web service Client

Web Services p—

Select a service definition and move the slider to set the level of client (§
generation.

Service definition: |MEhSE‘:WiCESamp|E‘f’DDUb|EILWSd| Browse...
Client type: [Java Proxy v |

CEGE LD Configuration:
iy 3 Server runtime: Tomcat v6.0 Server
o] o Web service runtime: Apache CXF 2.x
= Client project: WebServiceSample
@

Monitor the Web service

@ < Back | Next= Cancel [Finish |

New web service client window

Two modifications to the autogenerated client code will need to be made. First, in the
org.example.doubleit.client.Doubl eltServicefile, the wsdl L ocation and url fields highlighted below will need
to be updated to the actual endpoint URL Eclipse is using for the web service provider. You can find the
value by looking at the wsdlLocation field in the DoubleltService class of the web service provider (it's also
viewable in the Web Services Explorer test view).

@\ébServi ceC i ent (name = "Doubl elt Servi ce",
wsdl Location = "http://1ocal host: 8080/ WebSer vi ceSanpl e/ "
+ servi ces/ Doubl el t Port ?wsdl ",
t ar get Nanespace = "http://ww. exanpl e. org/ Doubl el t")
public class Doubl eltService extends Service {

public final static URL WSDL_LOCATI ON,
public final static QName SERVICE =
new QNane("http://ww. exanpl e. org/ Doubl el t ",
"Doubl el t Servi ce");
public final static QNane DoubleltPort =
new QNane("http://ww. exanpl e. org/ Doubl el t ",
"Doubl eltPort");

static {
URL url = null;

try {

152 Talend Enterprise Service Factory User Guide

JAX-WS Development With Eclipse

url = new URL(
"http://1ocal host: 8080/ WebSer vi ceSanpl e/ " +
"servi ces/ Doubl el t Port ?wsdl ") ;
} catch (Ml formredURLException e) {

Systemerr.println(
"Can not initialize the default wsdl"

+ fromhttp://1ocal host: 8080/ doubleit/" +
"servi ces/ doubl ei t ?wsdl ") ;
/1 e.printStackTrace();

}
WSDL_LOCATI ON = url ;

Second, in the DoubleltPortType DoubleltPort Client class modify the vaue of the
_doublelt_numberToDouble constant to a number you wish to double (say "55") and then save your change.
Thenright-click thefilein the Eclipse editor and select Run As-> Java Application. Y ou should see the result
of the web service call (110) in the Eclipse Console window:

INFO: Cresating Service { http://www.example.org/Doublelt} Doubl el tService

from WSDL.: http://local host:8080/WebServiceSample/services/Doubl el tPortAwsdl
Invoking doublelt...

doublelt.result=110

Talend Enterprise Service Factory User Guide 153

Talend Enterprise Service Factory User Guide

Chapter 3. JAX-RS Development

3.1. JAX-RS Overview

CXF implements JAX-RS 1.1 APl and passes the JAX-RS 1.1 TCK. This section provides the overview of the
JAX-RS specification and API. You are encouraged to read JAX-RS spec (html version) to find out information
not covered by this documentation. The specification introduces such terms as root resources, resource methods,
sub-resources and sub-resource locators, message body readers and writers, contexts.

Please check the CXF JAX-RS documentation for an up-to-date guide on the new features and improvements.

3.1.1. Root Resources and Sub Resources

The Java class annotated with the @Path annotation represents aroot resource class. The JAX-RS application may
have more than one root resource class. Each root resource has one or more resource methods handling requests
directly or delegating to subresources. Delegating resource methods are called subresource locators. Subresources
are like root resource classes in that they can handle the request or delegate further with the exception being that
their class-level @Path annotation isignored during the method resolution. Effectively, the root resource classis
atop level handler supporting a specific URI space of the RESTful web application. The default lifecycle of the
root resource is per-request, that is, a new instance is created during every request. There is a number of options
available to turn aroot resource into the singleton.

Here is a sample JAX-RS root resource class.

package denv. | axrs. server;

i mport javax.
i mport javax.
i mport javax.
i mport javax.

.rs. CET;
. rs. Pat h;
. rs. Pat hPar am
. r's. Produces;

55 5 5

Talend Enterprise Service Factory User Guide

http://jcp.org/en/jsr/detail?id=311
http://jsr311.java.net/nonav/releases/1.1/spec/spec.html
http://cxf.apache.org/docs/jax-rs.html

Root Resources and Sub Resources

.rs.core. Cont ext;
.rs.core. Response;
.rs.core. Uilnfo;
.rs.core. UiBuilder;

i mport j avax.
i mport j avax.
i mport j avax.
i mport j avax.

55 5

@at h("/ cust onerservice/")
@r oduces("application/ xm™")
public class CustonerService {

@cont ext
private Urilnfo urilnfo;

@ET
public Custoners getCustoners() {
return findAl Il Custoners();

}

@ET

@ath("{id}")

@r oduces({"application/json", "application/json"})

public Custoner getCustomner(@at hParam("id") long id) {
return findCustoner(id);

}

@ur

@ath("{id}")

@onsumes("application/ xm ™)

publ i c Response updat eCust omer (@at hParam("id") Long id, Order order) {
/1 update custoner
return Response. ok().build();

}

@QosT
publ i c Response addCustomer (Cust oner customer) {
/1 Create a new Custoner resource and return a Location UR
/1 pointing to it
/1l Get the URIBuilder initialized with the base URI. For exanpl e,
/1 if the servlet is listening on http://]ocal host: 8080/ webapp
/1 then the builder will be set to this base UR
Uri Bui |l der builder = urilnfo.getBaseUriBuilder();

/1 Append the path value which this root resource class uses and

/1 the id of the new customner

/1 The newCustomerURI will represent a link to the new custoner

/'l resource.

URI newCustomer URI = buil der. pat h(Cust oner Ser vi ce. cl ass) . pat h(
customer.getld()).build();

return Response. status(201). 1 ocati on(newCustomerURIl). build();

@ELETE

@ath("{id}")

public void del et eCust oner (@at hParan{"id") String id) {
/1 delete the custoner

}

156 Talend Enterprise Service Factory User Guide

Path, HTTP Method and MediaType annotations

@&ath("{id}/orders/{orderid}/")

public O der getOder(@athParan("id") |ong custonerld,
@at hParam("orderld") long orderld) {
return findCustomer(customerld).getOrder(orderlid);

}

private Custoners findAll Custoners() ({
/1 find all the custoners

}

private Custoner findCustoner(long id) {
/1 find the customer with the given id

}
}

Customer resource class can handle requests with URI containing "/customerservice" path segments. For example,
requests with the "http://local host/8080/webapp/customerservice" URI and the GET HTTP verb will be handled
by the getCustomers() method while requests with the "http://local host/8080/webapp/customerservice/123" will
be handled by one of the methods containing the @Path("{id}") annotation, depending on the HTTP verb such
as GET, PUT or DELETE being used.

The getOrder() method is a subresource locator because it has no HTTP verb annotation, only the @Path
annotation. The root resource may act as a sub-resource if one of its subresource locators delegates to it. For
example, requests with the "http://localhost/8080/webapp/customerservice/123/orders/356/state” URI and the
GET HTTP verb will be handled by the Order subresource instance. After the subresource locator getOrder() has
returned, the runtime will use the remaining unmatched "/state” path segment to find the matching Order method.

3.1.2. Path, HTTP Method and MediaType annotations

The @Path annotation isapplied to root resource classes or methods. The @Path valueisarelative URI with one or
more path segments. The value may beliteral, for example, "customers/1/orders' or parameterized and contain one
or more URITemplate variables: "customers/{id}/orders/{ orderid}". In the latter example the "id" and "orderid"
are template variables. The actual values will be available to resource methods with the help of @PathParam
annotations. Template variables may also contain explicit regular expressions, for example: "/{id:.*}/" where"id"
is the name of the variable and the expression after the semicolon is a custom regular expression.

When @Path is not available on the resource method then it is assumed to be equal to "/".

When selecting the root resource class, the runtime will try to match the relative request path available to it after
the HTTP servlet matched the absolute request URI with the @Path value of the root resource. If the current root
resource is not matched then the next root resource, if available, will be tried. After the successful match, the
resource method will be selected given the remaining relative path and the HT TP method

Every resource method which is not a subresource locator must have an annotation indicating whichHTTP verbis
supported by this method. JAX-RS provides @GET, @DELETE, @POST, @PUT, @HEAD and @OPTIONS.
Annotations for supporting other HTTP verbs can be created. The current resource method may only be selected
if the value of its HTTP Method annotation is equal to the request HTTP verb.

The @Consumes annotation is used to specify the acceptable format of the request message. If itisnot availableon
theresource method thenitisinherited fromaclass, andif it'snot available on the classthenit'sindirectly inherited
from a corresponding JAX-RS MessageBodyReader, if any. The default valueis ™ /*' but it is recommended that
aconcrete mediatypeis specified.

When attempting to select a given resource method, the runtime will try to match the value of the Content-
Type HTTP header with the @Consumes value. If the match is successful then it will try to find the JAX-RS
M essageBodyReader which can read the request message and convert it into the method parameter representing a

Talend Enterprise Service Factory User Guide 157

Request Message, Parameters and Contexts

request body. When looking for the reader, the runtime will also try to match the @Consumes value of the current
reader with the request media type.

The @Produces annotation is used to specify the format of the response. If it is not available on the resource
method then it is inherited from a class, and if it's not available on the class then it's indirectly inherited from a
corresponding JAX-RS MessageBodyWriter, if any. Theinitial default valueis™ /*' which will set to "application/
octet-stream” before writing the actula response, thus it is recommended that a concrete media type is specified.
For example, getCustomers() method inherits @Produces annotation from its class, while getCustomer() method
overridesit with its own value.

When attempting to select a given resource method, the runtime will try to match the value of the Accept HTTP
header with the @Produces value. The Accept and @Produces values may list multiple media types - the most
preferred mediatype is chosen during the intersection. Additionally, when the resource method returns an object,
the runtime will try to find the suitable JAX-RS MessageBodyWriter. When looking for the writer, the runtime
will also try to match the @Produces value of the current writer with the media type obtained during the earlier
intersection.

3.1.3. Request Message, Parameters and Contexts

Usually, the resource method has one or more parameters representing a request message body, HTTP headers
and different parts of the request URI. The resource method may only have one parameter representing a message
body (and nonein case of empty requests) but may have many parameters representing the headers or URI parts.
@PathParam, @M atrixParam and @QueryParam capture various URI-related values while @HeaderParam and
@Cookie capture various HT TP header values. @FormParam or JAX-RS MultivaluedMap can be used to capture
name and value pairs of the form sequences.

The method parameter which has no JAX-RS annotations such as @PathParam does represent a request message.
JAX-RS MessageBodyReader providers are responsible for reading the input stream and converting the data into
this parameter object. JAXB-annotated, JAXP Source, InputStream and some other types are supported out of
the box.

Method parameters representing URI parts or HTTP headers are the ones which have annotations such as
@PathParam. These parameters are not handled by MessageBodyReader providers. The JAX-RS specification
hasthe conversion rules which instruct the runtime to check the constructors or factory methods accepting Strings.

JAX-RS aso introduces Contexts. Contexts represent the state of the request. Urilnfo, HttpHeaders,
SecurityContext, Request, HttpServeltRequest, etc are contextswhich can beinjected into thefields of the JAX-RS
root resource instance or passed in as method parameters annotated with the @Context annotation. Contexts such
as Urilnfo, HttpHeaders and Request make it easy to introspect and use the information contained in the current
request URI and headers while SecurityContext can be used to check if the current user is in the provided role.
Injecting contextsin thefieldsis usually recommended asit may help simplify the method signatures, for example,
given that the query values can be found from the Urilnfo context adding explicit @QueryParam parameters to
method signatures may not be needed. The runtime will ensure that the contexts injected into the fields of the
singleton root resource are thread-safe. For example, here is how a resource method may look like before the
introduction of contexts:

@ath("/")

public class BookResource {

/**

* Find the books with the id greater or equal to the passed id

* and the authors first name equal to the passed nane

*/

@ET

publ i c Response findBook(@ueryParan("id") Long id,
@ueryParan{"nane") String nanme) {

158 Talend Enterprise Service Factory User Guide

Responses from Resource M ethods

/1 find the books

}

In the above example, a method contains 2 query parameters. The alternative approach is to introduce a Urilnfo
context:

@ath("/")

public class BookResource {
@cont ext
private Urilnfo context;
/**

* Find the books as requested by the user query

*/

@ET

publ i c Response findBook() {
Mul tival uedMap<String, String> map = context.get QueryParaneters();
/] iterate over the map, check all the query paraneters,
/1 find the books

3.1.4. Responses from Resource Methods

The resource method may return a custom Java class, JAX-RS Response or void. JAX-RS MessageBodyWriter
providers are responsible for writing the custom Java class instance to the output stream. The runtime will set
the HTTP 200 status.

Returning JAX-RS Response is useful when no response message is available, the HTTP status code needs to
be customized or some response HTTP headers set. Returning "void" will result in the HTTP 204 (No Content)
status beiing returned to the client.

3.1.5. Exception Handling

JAX-RS resource methods and indeed the runtime may throw all kind of exceptions. JAX-RS
WebA pplicationException can be used to report an error from the application code or the custom JAX-RS
providers. WebA pplicationException can have the HTTP status, headers and error message included.

When the application code or provider throws the runtime or checked exception, what happens by default is that
the uncaught exception is propagated up to the HTTP container level so that the existing exception-handling code
in Servlet filters, if any, can deal with the exception. A JAX-RS ExceptionMapper implementation can be used
instead to capture the exception and convert it into an appropriate HTTP response. For example, the following
mapper catches a Spring Security exception and convertsit into the HTTP 403 status:

package denv. | axrs. server;

i mport javax.ws.rs.core. Response;
i mport javax.ws.rs.ext.Excepti onMapper;

i mport org.springframework. security.access. AccessDeni edExcepti on;

Talend Enterprise Service Factory User Guide 159

Custom JAX-RS Providers

public class SecurityExcepti onMapper
i mpl enents Excepti onMapper <AccessDeni edExcepti on> {

publ i c Response toResponse(AccessDeni edExcepti on exception) ({
return Response. st atus(Response. St atus. FORBI DDEN) . bui | d() ;

}

3.1.6. Custom JAX-RS Providers

The custom ExceptionMapper demonstrated in the previous section is a custom JAX-RS provider. Custom
M essageBodyReader, M essageBodyWriter and ExceptionMapper providers are most often used.

Custom MessageBodyReader and/or M essageBodyWriter is needed when the JAX-RS runtime needs to read the
request messages which has the format not understood or mapped to/from Java classes in a way not supported
by by its default readers and writers. Writing a custom reader and writer is not a complex process. For example,
a custom MessageBodyReader should be able to answer if it supports reading a message with given MediaType
into an object instance of some specific type; if the response is yes then the runtime will ask the provider to read
the message from the given input stream.

3.2. Client API

JAX-RS 1.1 does not have astandard Client API. JAX-RS 2.0 will introduce astandard API. CXF JAX-RS offers
an HTTP-centric and Proxy-based API.CXF will continue supporting and enhancing its private API for those
developers who may want to continue using it even after CXF JAX-RS implements JAX-RS 2.0.

3.2.1. HTTP Centric API

This API lets developers write the HTTP centric code. This fluent APl makesit easy to modify the request URI,
check the response status and headers. For example:

public class RESTO ient {

public void consumeRESTful Service(String baseAddress) {
WebClient client = WebC i ent. creat e(baseAddress);
client.type("application/xm").accept("application/xm");
client.path("/bookl");
/1 get javax.ws.rs.core.Response directly and check the status,
/1 headers and read the Response.getEntity() input stream
Response response = client.get();
/1 back to the base address
client. back(true);
client.path("/book2");

/1 get a typed response
Book response = client. get(Book. cl ass);

160 Talend Enterprise Service Factory User Guide

http://cxf.apache.org/docs/jax-rs-client-api.html

Proxy API

3.2.2. Proxy API

Proxy based API lets reuse the existing JAX-RS annotated interfaces or implementation classes as proxies. The
proxy call will lead to aproper URI and HT TP headers passed to the server, exactly the way the JAX-RS annotated
service expects. Proxies can also check the actual HTTP Response, modify request URI and headers, as well as
be converted to WebClients. For example, given the following sample interface and the client code:

@Pat h("books")
public interface BookStore {

}

@EET

@ath("{id}")

@r oduces("application/xm")

Book get Book(@at hParam("id") long id);

@,osT
@consunes("application/ xm")
Response addBook(Book newBook) ;

@ath("all™")
BookStore getStore();

@EET
Books getAll ();

public class RESTO ient {

public void consumeRESTful Service(String baseAddress) {

BookSt ore proxy =
JAXRSC i ent Fact ory. cr eat e(baseAddr ess, BookStore. cl ass);

/1 get a single book
Book book = proxy. get Book(1);

/1 further introspect the response headers

Cient theCient = WbCdient.getdient(proxy);

j avax.ws.rs. core. Response response = thed ient. get Response();
checkResponseHeader s(response. get Met adat a()) ;

/1 add new book
Response addNewBookResponse = proxy. addBook(new Book(
"User Cuide"));
if (201 == addNewBookResponse. getStatus()) {
URI bookResourcelLocation =
URI . cr eat e(addNewBookResponse. get Met adat a() . get Fi r st (
"Location"));
Book t heBookProxy = JAXRSC i ent Factory. creat g(
bookResour ceLocati on, Book. cl ass);
t heBookPr oxy. get Nare() ;
} else {
report Unexpect edSt at us(addNewBookResponse) ;
}

Talend Enterprise Service Factory User Guide

161

Reading and Writing HTTP Messages

/1 get all books
BookSt ore proxy2 = proxy.getStore();
Books books = proxy2.getAll ();

}

the proxy.getBook(1) call will lead to a'GET http://localhost:8080/store/books/1' HTTP request being sent to the
server, with Accept header set to application/xml.

Note the proxy.getStore() and proxy2.getAll() calls. The BookStore.getStore() resource method is a subresource
locator as it has only a @Path annotation. This locator returns the BookStore root instance itself. Thus
proxy.getStore() only returns a proxy and the subsequent proxy2.getAll() call will lead to the 'GET http://
localhost:8080/store/books/all' HTTP request being sent.

3.2.3. Reading and Writing HTTP Messages

JAX-RS MessageBodyReader and MessageBodyWriter providers are used to deal with output and input
parameters representing HT TP request and response messages, the same way it is done on the server side. Both
WebClient and proxy clients can register custom readers and writers if needed, when dealing with custom formats
or when the default providers shipped with CXF JAX-RS need to be configured.

For example, aWebClient or proxy call may return ajavax.ws.rs.Response instance which usualy impliesthat the
client wishes to deal with the HTTP response directly: the status and headers are checked and then the response
InputStream returned by default from Response.getEntity() is manually read; in fact, in case of proxies, Response
is something a proxy needs to deal with whenever a current proxy method is typed to return Response. Often
the Response.getEntity() InputStream can be read by the registered JAX-RS MessageBodyReader providers. This
exampl e shows how registereing a custom CXF JAX-RS ResponseReader can help:

@Pat h("books")
public interface BookStore {

@EET

@ath("{id}")

@r oduces("application/xm")

Response get Book(@at hParan{"id") long id);
}

public class RESTO ient {

public void consumeRESTful Service(String baseAddress) {
org. apache. cxf.jaxrs.client. ResponseReader responseReader =
new or g. apache. cxf.jaxrs. client. ResponseReader (Book. cl ass);

BookStore client = JAXRSC i ent Factory. creat e(
baseAddr ess,
BookSt ore. cl ass,
java.util.Collections.singletonList(responseReader));

/1 get a single book

Response response = client. get Book(1);
checkSt at usAndHeader s(response) ;

Book book = (Book)response.getEntity();

162 Talend Enterprise Service Factory User Guide

Exception Handling

}

ResponseReader a custom JAX-RS MessageBodyReader provider but it delegates further to other registered
providers which can handle reading the InputStream with a given Content-Type into a Book instance.

3.2.4. Exception Handling

WebClient or proxy based code dealing with explicit javax.ws.rs.core.Response responses is expected to handle
the error HTTP responses itself. Usually, the code will check the response status and if the status indicates the
error then some action istaken, for example, an exception can be thrown.

If the custom class such as Book is expected to be returned then
org.apache.cxf.jaxrs.client.ServerWebA pplicationException will be thrown in case of the HTTP response status
being equal or greater than 400.

When working with proxies and in particular with methods which may throw custom checked exceptions, one or
more org.apache.cxf.jaxrs.client. ResponseExceptionM apper providers can beregistered during the proxy creation.
These mappers can convert javax.ws.rs.core.Responses into custom exceptions as required by a given method
signature.

Irrespectively of whether the Response or concrete custom class is expected in response to a given call,
org.apache.cxf.jaxrs.client.ClientWebA pplicationException will be thrown if the invocation has failed on the
client side, for example, no connection has been established, no MessageBodyWriter has been found to write the
request message or no MessageBodyReader has been found to read the response message, all on the client side.

3.3. Working With Attachments

CXF JAX-RS provides a comprehensive support for reading and writing multipart messages. Regular multiparts
and XOP attachments are supported.

3.3.1. Reading Attachments

Individual parts can be mapped to StreamSource, InputStream, DataSource or custom Java types for which
message body readers are available.

For example:

@osT

@at h("/ books/ j axbj son")

@roduces("text/xm")

publ i c Response addBookJaxbJson(
@ul tipart(value = "rootPart", type = "text/xm") Book2 bl,
@l tipart(val ue = "book2", type = "application/json") Book b2)

throws Exception {

}

Note that in this exampleit is expected that the root part named 'rootPart’ is atext-xml Book representation, while
apart named 'book?2' is a Book JSON sequence.

All attachment parts can be accessed asalist of CXF JAX-RS Attachment objects with every Attachment instance
providing all the information about a specific part. Similarly, the whole request body can be represented asa CXF
JAX-RS MultipartBody:

Talend Enterprise Service Factory User Guide 163

Writing Attachments

@QosT

public void addAttachnments(MiltipartBody body) throws Exception {
Li st<Attachment> all = body. get Al |l At achnment s();

Attachnment att = body. get Root Attachnent () ;

}

When handling complex multipart/form-data submissions (such as those containing files) MultipartBody (and
Attachment) need to be used directly.

When working with either List of Attachments or MultipartBody, one may want to process the individual parts
with the help of some custom procedures. It is also possible to do the following:

@OosT
public void addAttachnments(MiltipartBody body) throws Exception {
Book book = body. get Att achnent Cbj ect ("bookPart", Book. cl ass);

}

@OosT
public void addAttachnent s(Li st<Attachment> attachnents)
throws Exception {
for (Attachnent attachnent : attachnents) {
Book book = attachnent. get Obj ect (Book. cl ass);

}
}

When reading large attachments, the "attachment-directory” and "attachment-memory-threshold" contextual
properties can be used to control what folder the attachments exceeding a given threshold (in bytes) can be
temporarily saved to.

3.3.2. Writing Attachments

It is possible to write attachments to the output stream, both on the client and server sides.
On the server side it is sufficient to update the @Produces value for a given method:

public class Resource {
private List<Book> books;
@roduces("mnul tipart/ m xed; type=text/xm")
public List<Book> get BooksAsMultipart() {
return booksLi st;
}

@roduces("mnul tipart/ m xed; type=text/xm")
publ i c Book get BookAsMultipart() {

return booksLi st;
}

}

Note that a 'type' parameter of the 'multipart/mixed’ media type indicates that all parts in the multiparts response
should have a Content-Type header set to 'text/xml' for both getBooksAsMultipart() and getBookAsMultipart()
method responses. The getBooksAsMultipart() response will have 3 parts, the first part will have its Content-ID
header set to "root.message@cxf.apache.org”, the next parts will have '1' and '2' ids. The getBookAsMultipart()
response will have asingle part only with its Content-ID header set to "root.message@cxf.apache.org”.

When returning mixed multiparts containing objects of different types, you can either return aMap with the media
type string value to Object pairs or MultipartBody:

164 Talend Enterprise Service Factory User Guide

Writing Attachments

public class Resource {

private List<Book> books;

@r oduces("mul tipart/ m xed")

public Map<String, Object> getBooks() {
Map<String, Cbject> map = new Li nkedHashMap<String, Object>();
map. put ("text/xm ", new JaxbBook());
map. put ("application/json", new JSONBook());
map. put ("appl i cation/octet-streant, imagel nputStream;
return map;

}

@r oduces("mul tipart/ m xed")
public MiltipartBody getBooks2() {
Li st<Attachment> atts = new Li nkedLi st <Attachment>();

atts.add(new Attachment("root", "application/json",
new JSONBook()));
atts.add(new Attachment ("i mage", "application/octet-streant,

get | magel nput Stream()));
return new Mul ti partBody(atts, true);

}

Similarly to the method returning alist in a previous code fragment, getBooks() will have the response serialized
as multiparts, where the first part will have its Content-ID header set to "root.message@cxf.apache.org", the next
parts will haveidslike'l’, '2', etc.

In getBooks2() one can control the content ids of individual parts.
Y ou can a'so control the contentld and the media type of the root attachment by using a Multipart annotation:

public class Resource {
@roduces("mul tipart/formdata")
@ultipart(value = "root", type = "application/octet-streant)
public File testGetlmgeFronforn() {
return getC ass().get Resource("image. png").getFile();
}

}

One can also have lists or maps of DataHandler, DataSource, Attachment, byte arrays or InputStreams handled
as multiparts.

On the client side multiparts can be written the same way. For example:

WebCient client = WebCient.create("http://books");
client.type("nultipart/mxed").accept("nultipart/mxed");
Li st<Attachnent> atts = new Li nkedLi st <Attachment >();
atts.add(new Attachnent ("root", "application/json", new JSONBook()));
atts.add(new Attachnent ("i nage", "application/octet-streant,

get | magel nput Strean()));
Li st<Attachnent> atts = client.post AndCet Col | ection(atts,

At tachment . cl ass);

When using proxies, a Multipart annotation attached to a method parameter can aso be used to set the root
contentld and media type. Proxies do not support at the moment multiple method parameters annotated with
Multipart (as opposed to the server side) but only a single multipart parameter:

public class Resource {
@roduces("mul ti part/ m xed")

Talend Enterprise Service Factory User Guide 165

Uploading files

@onsumes("mul tipart/formdata")
@ultipart(value = "root", type = "application/octet-streant)
public File postGetFile(@ultipart(value = "root2",

type = "application/octet-stream') File file) {}

}

A method-level Multipart annotation will affect the writing on the server side and the reading on the client side. A
parameter-level Multipart annotation will affect writing on the client (proxy) side and reading on the server side.
Y ou don't have to use Multipart annotations.

3.3.3. Uploading files

At the moment the only way to upload afileisto use a MultipartBody, Attachment or File:

WebClient client = WebClient.create("http://books");
client.type("nmultipart/formdata");
Cont ent Di sposition cd = new Cont ent Di sposition(

"attachnent; fil enanme=i mage. j pg");
Attachnment att = new Attachment("root", inmagel nputStream cd);
client.post(new Mil tipartBody(att));

/1 or just post the attachment if it's a single part request only
client.post(att);

/1 or just use a file
client.post(getC ass().get Resource("inmage. png").getFile());

Using File provides a simpler way as the runtime can figure out how to create a ContentDisposition from a File.

3.3.4. Forms and multiparts

The Forms in HTML documents recommendation suggests that multipart/form-data requests should mainly be
used to upload files.

One way to deal with multipart/form-data submissions is to deal directly with a CXF JAXRS Attachment class
and get a Content-Disposition header and/or the underlying input stream. It is also possible to have individual
multipart/form-data parts read by registered JAX-RS MessageBodyReaders, something that is aready possibleto
do for types like multipart/mixed or multipart/related. For example, this payload:

--bgJky99m BWA- Zuqgj C53nG6Ezbm xB

Content-Di sposition: formdata; nanme="bookJson"
Cont ent - Type: application/json; charset=US-ASCl |
Cont ent - Transf er - Encodi ng: 8bi t

Content-1D: <jsonPart>

{"Book": {"name":"CXF in Action - 1", "id":123}}

--bgJky99m BWA- Zugj C53nG6Ezbm xB
Content-Disposition: formdata; nanme="bookXM."
Cont ent - Type: application/xm

Cont ent - Transf er - Encodi ng: 8bi t

166 Talend Enterprise Service Factory User Guide

http://www.w3.org/TR/html401/interact/forms.html
http://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.2

Forms and multiparts

Content-1D: <jaxbPart>
<Book><nane>CXF i n Acti on</ nane></ Book>
- -bgJky99m BWA- Zugj C53mG6Ezbm xB- -

can be handled by the following method:

@osT

@at h("/ books/j sonj axbf orm")

@onsunes("mul tipart/formdata")

publ i c Response addBookJaxbJsonFornm(@ultipart("jsonPart") Book bl,
@l tipart("bookXM.") Book b2) {}

Note that once a request has more than two parts then one needs to start using @M utipart, the values can refer
to either Contentld header or to ContentDisposition/name. At the moment using @M ultipart is preferred to using
@FormParam unless a plain name/value submission is dealt with. The reason is that @M ultipart can also specify
an expected mediatype of the individual part and thus act similarly to a @Consume annotation.

When dealing with multiple parts one can avoid using @M ultipart and just use List<Atachment>, List<Book>, efc.

Finally, multipart/form-datarequestswith multiplefiles (file uploads) can be supported. For example, this payload:

- - bgJky99m BWA- Zuqj C53nG6Ezbnl xB
Content-Disposition: formdata; nanme="owner"
Content - Type: text/plain

Larry

- - bgJky99m BWA- Zuqj C53nG6Ezbnl xB

Content-Di sposition: formdata; nane="files"

Content-Type: nultipart/ mxed; boundary= Part_ 4 701508. 1145579811786

-- Part_4 701508. 1145579811786
Content-Disposition: formdata; nanme="book1l"
Cont ent - Type: application/json; charset=US-ASCl |
Cont ent - Tr ansf er - Encodi ng: 8bi t

{"Book":{"name":"CXF in Action - 1","id":123}}
-- Part_4 701508. 1145579811786
Content-Disposition: formdata; nanme="book2"
Cont ent - Type: application/json; charset=US-ASCl |
Cont ent - Tr ansf er - Encodi ng: 8bi t

{"Book":{"name":"CXF in Action - 2","id":124}}
-- _Part_4 701508. 1145579811786- -
- - bgJky99m BWA- Zuqj C53nt6Ezbm XB- -

can be handled by the following method:

@QosT

@at h("/ books/ fil esfornt)

@r oduces("text/xm")

@onsumes("mul tipart/formdata")

publ i c Response addBookFil esForn{@ultipart("owner") String nane,
@ultipart("files") List<Book> books) {}

If you need to know the names of the individual file parts embedded in a"files' outer part (such as "book1" and
"book2"), then please use List<Attachment> instead. It is currently not possible to use a Multipart annotation to

Talend Enterprise Service Factory User Guide 167

XOP support

refer to such inner parts but you can easily get the names from the individual Attachment instances representing
these inner parts.

Note that it is only the last request which has been structured according to the recommendation on how to upload
multiple files but it is more complex than the other simpler requests linked to in this section.

Please note that using JAX-RS FormParams is recommended for dealing with plain applicati on/www-url-encoded
submissions consisting of name/value pairs only.

3.3.5. XOP support

CXF JAXRS clients and endpoints can support XML-binary Optimized Packaging (XOP). What it means at the
practical level isthat a JAXB bean containing binary datais serialized using a multipart packaging, with the root
part containing non-binary data only but also linking to co-located parts containing the actual binary payloads.
Next it is deserialized into a JAXB bean on the server side.

If youwould liketo experiment with X OPthen you need to set an ""'mtom-enabled" property on CXF jaxrsendpoints
and clients.

3.4. Configuration

CXF JAX-RS endpoints and clients can be configured declaratively (using Spring or web.xml only) and
programmatically.

3.4.1. Configuration of Endpoints

Providing a custom javax.ws.rs.core.A pplication implementation is the only portable way to register root resource
and provider classes and indicate what lifecycle model the individual resources follow. For example:

package server;

i mport java.util.HashSet;
import java.util. Set;
i mport javax.ws.rs.core.Application;

public class BookApplication extends Application {

@verride

public Set<C ass<?>> getd asses() {
Set <C ass<?>> cl asses = new HashSet <Cl ass<?>>();
cl asses. add(BookSt ore. cl ass) ;
return cl asses;

}

@verride

public Set<Onhject> getSingletons() {
Set <Obj ect > cl asses = new HashSet <hj ect >();
cl asses. add(new SearchService());
cl asses. add(new BookExcepti onMapper());

168 Talend Enterprise Service Factory User Guide

http://www.w3.org/TR/xop10/

Configuration of Endpoints

return cl asses;

}

The BookApplication indicates to the runtime that BookStore root resource has the per-request lifecycle. The
SearchService root resource and BookExceptionMapper provider are singletons. In CXF one can register JAX-
RS Applications in web.xml using a CXFNonSpringJaxrsServlet:

<servl et >
<servl et - name>CXFSer vl et </ servl et - nane>
<di spl ay- nanme>CXF Ser vl et </ di spl ay- nane>
<servl et-cl ass>
org. apache. cxf.jaxrs. servl et. CXFNonSpr i ngJaxr sSer vl et
</ servl et-cl ass>
<init-paranp
<par ant nane>j avax. ws. rs. Appl i cati on</ param nane>
<par am val ue>
server. BookApplication
</ param val ue>
</init-paranp
</servlet>

Spring users can configure the JAX-RS endpoints using one or more jaxrs.server declarations:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns:jaxrs="http://cxf.apache.org/jaxrs"
xsi : schemaLocat i on="
htt p: // ww. spri ngfranmewor k. or g/ schema/ beans
htt p: // ww. spri ngf ranmewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://cxf.apache. org/jaxrs
htt p: //cxf. apache. or g/ schemas/j axrs. xsd" >

<i nport resource="cl asspat h: META- | NF/ cxf/cxf.xm "/ >
<i nport resource=

"cl asspat h: META- | NF/ cxf/ cxf - ext ensi on-j axrs-bi ndi ng. xm "/ >
<i nport resource="cl asspat h: META-| NF/ cxf/cxf-servlet.xm"/>

<bean cl ass="org. apache. cxf.systest.jaxrs. BookStore" id="servi ceBean"/>
<bean cl ass="org. apache. cxf.systest.jaxrs. provi der. JAXBEl errent Pr ovi der"
i d="j axbPr ovi der" >
<l-- custom ze the default JAXBElI enent Provi der
by setting sone of its properties -->
</ bean>

<j axrs:server id="bookservice" address="/bookstore">
<j axrs: servi ceBeans>
<ref bean="serviceBean" />
</j axrs:servi ceBeans>
<j axrs: provi der s>
<ref bean="jaxbProvider"/>
</jaxrs: providers>

<j axrs: features>
<l-- Register CXF features such as Fastlnfoset or Logging -->
</jaxrs:features>

Talend Enterprise Service Factory User Guide 169

Configuration of Clients

<jaxrs:inlnterceptors>
<l-- Register CXF in interceptors, exanple, reuse common in
i nterceptors between JAX-W5 and JAX-RS endpoints -->
</jaxrs:inlnterceptors>
<j axrs:outlnterceptors>
<I-- Register CXF out interceptors, exanmple, reuse comobn out
i nterceptors between JAX-W5 and JAX-RS endpoints -->
</jaxrs:outlnterceptors>
</jaxrs:server>
</ beans>

A single JAX-RS endpoint is registered with ajaxrs:server declaration. This declaration may reference multiple
root resource beans with jaxrs:serviceBeans and multiple providers using jaxrs.providers. Note a jaxrs.server/
@address attribute. It allows for registering multiple jaxrs.server endpoints with all of them referencing the same
service beans but using differently configured JAX-RS providers.

The jaxrs:server endpoints can register CXF features, in and out CXF interceptors.

3.4.2. Configuration of Clients

CXF JAX-RS clients can be configured programmatically or from Spring.

Configuring the clients from Spring often implies that the client instances are injected into JAX-RS or JAX-
WS endpoints so that the incoming request can be further delegated to the RESTful service. Both proxies and
WebClient instances can be configured from Spring:

<jaxrs:client id="restdient"
address="http://1 ocal host: 9000/ test/services/rest"
servi ceC ass="server. BookSt or eJaxr sJaxws" >
<j axr s: header s>
<entry key="Accept" value="text/xm"/>
</jaxrs: headers>
</jaxrs:client>

<bean id="webd ient" class="org.apache.cxf.jaxrs.client.Wbdient"
factory-nmet hod="create">
<constructor-arg type="java.lang. String"
val ue="http://1ocal host: 9000/ books/" />
</ bean>

3.5. Tutorials

3.5.1. Creating a Basic JAX-RS endpoint

When starting with the JAX-RS development, trying to visualize or model the way the RESTful resourceswill be
accessed can be helpful. One simple approach is to draw atable against each resource and list the HTTP verbs,

170 Talend Enterprise Service Factory User Guide

Creating a Basic JAX-RS endpoint

formats and URIs this resource will support. The other approach isto try to imagine what part of the application
URI space will need to be supported by a dedicated handler.

These handlers will be mapped to JAX-RS root resource classes. For example, assuming "/books' and "/book"
URI segments need to be supported, then one can imagine the developer starting to work on the following two
root resource classes, alongside with a couple of simple beans:

/**

* The Book JAXB bean.
**/
@M Root El emrent (nane = "book", nanespace = "http://books")
public class Book {
private String nane;
private String author;
private Date publicationDate;
private List<String> reviews;
/] setters and getters are omitted

}

/**

* The Col |l ection of Book instances.
**/
@M Root El emrent (nane = "books", nanmespace = "http://books")
public class Books {
/1 Xm JavaTypeAdapter is avail able
private Map<Long, Book> books =
Col | ecti ons. synchroni zedMap(new HashMap<Long, Book>());

public void addBook(Long id, Book b) {
books. put (id, b);
}

publ i c Book getBook(Long id) {
return books. get(id);

}

public void del eteBook(Long id) {
books. renove(id);

}

public void addBookRevi ewm(Long id, String review ({
get Book(i d). addRevi ew(revi ew) ;
}
}

/**

* BookStore root resource class is responsible for handling
* URIs ending with '/books', '/books/{id}', etc. This resource
* will let users get the list of all books and add new books
**/
@vat h("/ books™")
public class BooksStore {

private static Atom cLong I D = new Atom cLong();

privat e Books books;

/1 Thread-safe Urilnfo instance providing the

Talend Enterprise Service Factory User Guide 171

Creating a Basic JAX-RS endpoint

/] extended i nformati on about the current UR

@cont ext
private Urilnfo urilnfo;

/**

* | njects the Books storage
**/
public void set Books(Books books) ({
t hi s. books = books;

}

/**

* Returns the list of all the books
**/
@ET
@r oduces("application/ xm™")
publ i c Books get Al | Books() {
retun books;

}

/**

* Adds a new Book to the internal storage and returns
* an HTTP Locati on header pointing to a new Book resource
**/
@QosT
@onsumes("application/ xm ™)
publ i c Response addBook(Book book) {
/1 New Book ID
Long id = ID.increnment AndGet () ;
books. add(i d, book);

/1l Get the base URI of the application and wap it into a builder
/1 UriBuilder makes it easy to conmpose new URIs.
Uri Bui |l der builder = urilnfo.getBaseUriBuilder();

/1 Build a new book resource UR

/1 with say a '/book/1" segnment added to the base UR
bui | der. pat h("/book/" + id);

URI newBookResourceURlI = buil der. build();

/1 Return 201 and the Location header
retun Response.created().location(uri).build();

}

/**
* BookStore root resource class is responsible for handling
* URIs ending with '/book', '/book/{id}', etc. This resource
* will let users get, update and del ete individual books.
**/
@at h("/ book")
public cl ass BookHandl er {
privat e Books books;

/**

* | njects the Books storage
**/
public void set Books(Books books) ({
t hi s. books = books;

172 Talend Enterprise Service Factory User Guide

Creating a Basic JAX-RS endpoint

}

@ET

@r oduces("application/ xm™")
@ath("{id}")

publ i c Book get Book(@at hParam("id") Long id) {
return books. get Book(i d);

}

@ur

@onsunes("text/ plain")
@ath("{id}")

public void set BookRevi ewm(@at hParan("id") Long id, String review {
books. addBookRevi ew(r evi ew) ;
}

@ELETE

@ath("{id}")

public void del et eBook(@at hParam("id") Long id) {
books. del et eBook(i d);

}

The devel oper has prototyped two root resource classes, BooksStore and BookHandler. Next the configuration for
the new JAX-RS endpoint has been added (see below for the example), the store.war has been built and deployed
to aservlet container listening on localhost:8080. Given that the name of the war, 'store’ in this case, contributes
to the URI path, the base URI of the Store application is 'http://localhost:8080/store’.

The BookStore will handle HTTP GET requests with the URIs such as 'http://local host:8080/store/books and
return the list of Books in the XML format. It will also accept POST requests with new Books being submitted
in the XML format to "http://local host:8080/store/books.

The BookStore.getAllBooks() method implementation is simple, while BookStore.addBook(Book) is a bit more
involved, but it ssimply follows a basic pattern to do with adding new resources. Particularly, POST usually adds
new resources and the typical responseisto return a201 statuswith the L ocation header pointing to anew resource
URI. For example, if thenew Book idis"1" then given that the base URI is 'http://local host:8080/store/", the unique
resource URI of the new Book resource will be 'http://localhost:8080/store/book/1".

The client code or browser script which was used to add the new Book can choose to follow the 'http://
localhost:8080/store/book/1' using GET. In this case another root resource, BookHandler will handle GET, aswell
as PUT and DELETE requests, all targeted at the individual Book resources.

Note that instead of introducing a dedicated BookHandler root resource supporting the URIs such as '/book/1', the
developer couild have opted for supporting 'books/1' URIs instead, and thus all the BookHandler methods could
have been implemented as part of the BooksStore class. For example:

@Pat h("/ books")
public class BooksStore {

@EET
@r oduces("application/xm")
publ i c Books get Al | Books() {...}

@,osT
@consunes("application/ xm")

Talend Enterprise Service Factory User Guide 173

Creating a Basic JAX-RS endpoint

publ i c Response addBook(Book book) {...}

@ET

@r oduces("application/ xm™")

@ath("{id}")

publ i c Book get Book(@athParam("id") Long id) {...}

@ur

@onsumes("text/plain")

@ath("{id}")

public void set BookRevi ewm(@at hParan("id") Long id, String review
{...}

@ELETE
@ath("{id}")
public void del et eBook(@at hParam("id") Long id) {...}

Many options are available and JAX-RS makes it easy for developers to structure their Java web services
applications as needed

And hereis how the JAX-RS endpoint can be configured:

<beans xm ns="http://ww. spri ngframework. or g/ schema/ beans™
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns:jaxrs="http://cxf.apache.org/jaxrs"
Xsi : schenmaLocat i on="
htt p: // www. spri ngfranewor k. or g/ scherma/ beans
htt p: // www. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://cxf.apache. org/jaxrs
http://cxf.apache. org/ schemas/j axrs. xsd" >

<i nport resource="cl asspat h: META- | NF/ cxf/cxf.xm " />
<i nport resource=

"cl asspat h: META- | NF/ cxf/ cxf - ext ensi on-j axrs- bi ndi ng. xm "/ >
<i nport resource="cl asspat h: META-| NF/ cxf/cxf-servliet.xm" />

<bean cl ass="org. books. BooksSt ore" i d="storeBean"/>
<bean cl ass="org. books. BookHandl er" i d="bookBean"/ >

<j axrs:server id="bookservice" address="/">
<j axrs:servi ceBeans>
<ref bean="storeBean" />
<ref bean="bookBean" />
</jaxrs:servi ceBeans>
</jaxrs:server>
</ beans>

Please also see ajaxrs_intro demo in the TSF Examples distribution.

174 Talend Enterprise Service Factory User Guide

Chapter 4. JAX-RS and OAuth2

4.1. Introduction to OAuth2

CXF 2.6.0 provides an initial implementation of OAuth 2.0. See also the CXF Website for information about
OAuth 1.0. Authorization Code, Implicit and Client Credentials grants are currently supported with other grant
handlers to be added later. Custom grant handlers can a so be registered.

OAuth2 isanew protocol which offersacomplex yet elegant solution toward hel ping end users (resource owners)
authorize third-party providersto accesstheir resources. The OAuth2 flow is closely related to the original OAuth
1.0 3-leg flow is called Authorization Code and involves 3 parties: the end user, the third party service (client) and
the resource server which is protected by OAuth2 filters. Typically aclient offers a service feature that an end user
requests and which requires the former to access one or more protected resources on behalf of this user which are
located at the resource server. For example, the client may need to access the end user's photos in order to print
them and post to the user or read and possibly update a user's calendar in order to make a booking.

In order to makeit happen, the third-party service application/client needsto register itself with the OAuth2 server.
This happens out-of-band and after the registration the client gets back a client key and secret pair. Typically the
client is expected to provide the name and description of the application, the application logo URI, one or more
redirect URIs, and other information that may help the OAuth2 authorization server to identify this client to the
end user at the authorization time. From then on, the authorization code flow works like this:

1. End User requests the third-party service using a browser.

2. The client redirects the end user to OAuth2 Authorization Service, adding its client id, the state, redirect
URI and the optional scope to the target URI. The state parameter represents the current end user's request,
redirect URI - where the authorization code is expected to be returned to, and the scope is the list of opaque
permissions that the client needs in order to access the protected resources.

3. Authorization Service will retrieve the information about the client using its client id, build an HTML form
and return it to the end user. The form will ask the user if a given third-party application can be allowed to
access some resources on behalf of this user.

Talend Enterprise Service Factory User Guide

http://tools.ietf.org/html/draft-ietf-oauth-v2
http://cxf.apache.org/docs/jax-rs-oauth.html

Developing OAuth2 Servers

4. If the user approves it then Authorization Service will generate an authorization code and redirect the user
back to the redirect uri provided by the client, also adding a state parameter to the redirect URI.

5. Theclient requests an access token from OAuth2 Access Token Service by providing an authorization code
grant.

6. After getting an access token token, the service finally proceeds with accessing the current user's resources
and completes the user's request.

Asyou can seetheflow can be complex yet it isvery effective. A number of issues may need to betaken care along
the way such as managing expired tokens, making sure that the OAuth2 security layer isfunctioning properly and
is not interfering with the end user itself trying to access its own resources, etc. Please check the specification
and the Wikipedia article as well as other resources available on the WEB for more information you may need
to know about OAuth2.

CXF JAX-RS gives the best effort to making this process as simple as possible and requiring only a minimum
effort on behalf of OAuth2 server developers. It also offers the utility code for greatly simplifying the way the
third-party application can interact with the OAuth2 service endpoints.

Maven dependency needed for CXF's implementation of OAuth2:

<dependency>
<groupl d>or g. apache. cxf </ gr oupl d>
<artifactld>cxf-rt-rs-security-oauth2</artifactld>
<versi on>2. 6. 0</ ver si on>

</ dependency>

4.2. Developing OAuth2 Servers

The OAuth2 server isthe core piece of the complete OAuth2-based solution. Typically it contains 2 services for:

1. Authorizing request tokens by asking the end users to let clients access some of their resources and returning
the grants back to the client (Authorization Service)

2. Exchanging the token grants for access tokens (Access Token Service)

CXF offers severa JAX-RS service implementations that can be used to create the OAuth2 servers fast:
AuthorizationCodeGrantService and ImplicitGrantService for managing the redirection-based flows, as well as
AccessTokenService for exchanging the grants for new tokens. Note that some grants that do not require the
redirection-based support, such as SAML 2 one, etc, may only require an Access Token Service be operational.

All of these services rely on the custom OAuthDataProvider which persists the access tokens and
converts the opague scope values to the information that can be presented to the users. Additionally,
AuthorizationCodeDataProvider is an OAuthDataProvider which can keep temporary information about the
authorization code grants which needs to be removed after the tokens are requested in exchange.

Writing your own OAuthDataProvider implementation iswhat is needed to get the OAuth2 server up and running.
In many casesall you need to do isto persist or remove the Authorization Code Grant data, use one of the available
utility classes to create a new access token and also persist it or remove the expired one, and finally convert the
optional opaque scope values (if any are supported) to a more view-able information.

4.2.1. Authorization Service

The main responsibility of OAuth2 Authorization Service is to present an end user with a form asking the user
to allow or deny the client accessing some of the user resources. CXF offers AuthorizationCodeGrantService and

176 Talend Enterprise Service Factory User Guide

http://tools.ietf.org/html/draft-ietf-oauth-v2
http://en.wikipedia.org/wiki/OAuth#OAuth_2.0
http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/services/AuthorizationCodeGrantService.java
http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/services/ImplicitGrantService.java
http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/services/AccessTokenService.java
http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/provider/OAuthDataProvider.java
http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/grants/code/AuthorizationCodeDataProvider.java
http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/services/AuthorizationCodeGrantService.java

Authorization Service

ImplicitGrantService for accepting the redirection requests, challenging the end userswith the authorization forms,
handling the end user decisions and returning the results back to the clients.

One of the differences between the AuthorizationCode and Implicit flows is that in the latter case the grant isthe
actual access token which is returned as the URI fragment value. The way the end user is asked to authorize the
client request is similar between the two flows. In this section we will assume that the Authorization Code flow
isbeing exercised.

A third-party client redirects the current user to AuthorizationCodeGrantService, for example, here is how a
redirection may happen:

Response- Code: 303

Headers: {Location=[http://]ocal host: 8080/ services/social /authorize?
client id=123456789&scope=updat eCal endar - 7& esponse_t ype=code
& edirect _uri=http¥A/ /Il ocal host “’8A8080/ servi ces/ reservations/reserve
/ conpl et e&st at e=1], Dat e=[Thu, 12 Apr 2012 12:26:21 GVIT],
Cont ent - Lengt h=[0] }

The client application asks the current user (the browser) to go to a new address provided by the L ocation header
and the follow-up request to AuthorizationCodeGrantService will 1ook like this:

Address: http://Ilocal host: 8080/ servi ces/soci al /authorize?client_id=
123456789&scope=updat eCal endar - 7& esponse_t ype=code&r edi rect _uri =
htt p%B8A/ /| ocal host ¥BA8080/ servi ces/ reservati ons/ reserve/ conpl et e&st at e=1
Ht t p- Met hod: GET
Headers: {
Accept=[text/htm , application/xhtm +xm , application/xm ;g=0.9, */*;g=0. 8],
Aut hori zati on=[Basi ¢ YnFycnl Ac29j aWFsLm\vbToxM M] ,
Cooki e=[JSESSI ONI D=suj 2wyl 54c4q],
Referer=[http://| ocal host: 8080/ servi ces/forms/reservation.jsp]

Note that the end user needs to authenticate. The Request URI includes the client_id, custom scope value,
response _type set to 'code, the current request state and the redirect uri. Note the scope is optional - the
Authorization Service will usually allocate a default scope; however even if the client does include an additional
custom scope the end user may still not approve it. The redirect uri is also optional, assuming one or more ones
redirect URIs have been provided at the client registration time.

AuthorizationCodeGrantService will report awarning is no secure HTTPS transport is used:

12- Apr-2012 13:26: 21
org. apache. cxf.rs. security. oaut h2. servi ces. Abst ract QAut hSer vi ce
checkTransport Security

WARNI NG Unsecure HTTP, Transport Layer Security is recomended

It can also be configured to reject the requests over un-secure HTTP transport.

AuthorizationCodeGrantService will retrieve the information about the client application to populate an instance
of OAuthAuthorizationData bean and return it. OAuthAuthorizationData contains application name and URI
properties, optional list of Permissions and other properties which can be either presented to the user or kept in
the hidden form fields in order to uniquely identify the actual authorization request when the end user returns
the decision.

One important OAuthA uthorizationData property is "authenticityToken". It is used for validating that the current
session has not been hijacked - AuthorizationCodeGrantService generates a random key, stores it in a Servlet

Talend Enterprise Service Factory User Guide 177

http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/services/ImplicitGrantService.java
http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/common/Client.java
http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/common/OAuthAuthorizationData.java
http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/common/Permission.java

Authorization Service

HTTPSession instance and expects the returned authenticityToken value to match it - this is a recommended
approach and it also implies that the authenticityToken value is hidden from a user, for example, it's kept
in a 'hidden' form field. The other properties which are meant to be hidden are clientld, state, redirectUri,
proposedScope. The helper "replyTo" property isan absolute URI identifying the AuthorizationCodeGrantService
handler processing the user decision and can be used by view handlers when building the forms or by other
OA uthAuthorizationData handlers.

So the populated OAuthAuthorizationDataisfinally returned. Note that it's a JAXB XM LRootElement-annotated
bean and can be processed by registered JAXB or JSON providers given that AuthorizationCodeGrantService
supports producing "application/xml" and "application/json" (See the OAuth Without Browser section below for
more). But in this case we have the end user working with abrowser so an HTML form iswhat isreally expected
back.

AuthorizationCodeGrantService supports producing "text/html" and simply relies on a registered
RequestDispatcherProvider to set the OAuthAuthorizationData bean as an HttpServletRequest attribute and
redirect the response to a view handler (can be JSP or some other servlet) to actually build the form and return it
to the user. Alternatively, registering X SLTJaxbProvider would also be a good option for creating HTML views.

Assuming RequestDispatcherProvider is used, the following example log shows the initial response from
AuthorizationCodeGrantService:

12- Apr-2012 13: 26: 21 org. apache. cxf.jaxrs. provider.
Request Di spat cher Provi der | ogRedirection

I NFO. Setting an instance of "org.apache.cxf.rs.security. oauth2. comon.
QAut hAut hori zati onDat a" as HttpServl et Request attribute "data" and
redirecting the response to "/forns/oauthAuthorize.jsp".

Note that a "/formg/oauthAuthorize.jsp" view handler will create an HTML view - thisis a custom JSP handler
and whatever HTML view isrequired can be created there, using the OAuthAuthorizationData bean for building
theview. Most likely you will want to present aform asking the user to allow or deny the client accessing some of
this user's resources. If OAuthAuthorizationData has a list of Permissions set then adding the information about
the permissionsis needed.

Next the user makes a decision and selects a button allowing or denying the client accessing the resources. The
form data are submitted to AuthorizationCodeGrantService:

Address: http://1ocal host: 8080/ servi ces/soci al / aut hori ze/ deci si on
Encodi ng: |1 SO 8859-1

Ht t p- Met hod: POST

Cont ent - Type: application/ x-wwform url encoded

Headers: ({

Aut hori zati on=[Basi ¢ YnFycnl Ac29j aWFsLm\vbToxM M] ,

Cont ent - Type=[appl i cati on/ x- ww+ f or m ur | encoded] ,

12- Apr-2012 15:36:29 org.apache.cxf.jaxrs.utils.Fornmltils
| ogRequest Par anet er sl f Needed

I NFO updat eCal endar - 7_st at us=al | ow& eadCal endar _st at us=al | ow

&scope=updat eCal endar - 7+r eadCal endar

&redirect _uri=http¥BAYRF¥2F| ocal host ¥8BA8080%2Fser vi ces%R2F
reservati ons%Freserve%2Fconpl et e

&session_aut henticity_token=4f 0005d9- 565f - 4309- 8f f b- c13c72139¢ebe
&oaut hDeci si on=al | ow

&st at e=1&cl i ent _i d=123456789

AuthorizationCodeGrantService will use asession_authenticity token to validate that the sessionisvalid and will
process the user decision next.

178 Talend Enterprise Service Factory User Guide

http://cxf.apache.org/docs/jax-rs-redirection.html#JAX-RSRedirection-WithRequestDispatcherProvider
http://cxf.apache.org/docs/jax-rs-advanced-xml.html#JAX-RSAdvancedXML-XSLTsupport

AccessTokenService

If the decision is "adlow" then it will check the status of the individual scope values. It relies on the
"scopename_status' convention, if the form has offered the user a chance to selectively enable individual
scopes then name/value pairs such as "updateCalendar-7_status=allow" are submitted. If none of such pairsis
coming back then it means the user has approved all the default and additional (if any) scopes. Next it will
ask OAuthDataProvider to generate an authorization code grant and return it alongside with the state if any by
redirecting the current user back to the redirect URI:

Response- Code: 303
Headers: ({
Locati on=[http://1 ocal host: 8080/ services/reservations/reserve/conpl ete
?st at e=1&c0de=5¢993144b910bccd5977131f 7d2629ab],
Dat e=[Thu, 12 Apr 2012 14:36:29 GMI],
Cont ent - Lengt h=[0] }

Which leads to a browser redirecting the user:

Address: http://|ocal host: 8080/ services/reservations/reserve/ conpl ete?

st at e=1&co0de=5c993144b910bccd5977131f 7d2629ab

Ht t p- Met hod: GET

Headers: {

Accept=[text/htm , application/xhtm +xnl , application/xn;qg=0.9,*/*;qg=0. 8],
Aut hori zati on=[Basi ¢ YnFycnl AcnivzdG-1cnFudC5] b206NTY30A==] ,

Cooki e=[JSESSI ONl D=1c289vhaOcxf e] ,

}

If auser decision was set to "deny" then the error will be returned to the client. Assuming the decision was"allow",
the client has now received back the authorization code grant and is ready to exchange it for a new access token.

4.2.2. AccessTokenService

The role of AccessTokenService isto exchange atoken grant for a new access token which will be used by the
client to access the end user's resources. Here is an example request |og:

Address: http://1ocal host: 8080/ servi ces/ oaut h/ t oken
Ht t p- Met hod: POST

Headers: ({

Accept =[appl i cation/json],

Aut hori zat i on=[Basi ¢ MI' zNDU2Nzg5G k4Nz YINDMy MQ==] ,
Cont ent - Type=[appl i cati on/ x- ww« f or m ur | encoded]

}
Payl oad:

grant _t ype=aut hori zati on_code&code=5c¢993144b910bccd5977131f 7d2629ab
&redirect _uri =htt p¥BAYRFY%F| ocal host ¥8A8080%2Fser vi ces¥2Fr eservati ons
9%2Fr eserve¥2Fconpl et e

This request contains a client_id and client_secret (Authorization header), the grant_type, the grant value (code)
plus the redirect URI the authorization grant was returned to which is needed for the additional validation. Note
that the alternative client authentication methods are also possible, in this case the token service will expect a
mapping between the client credentials and the client_id representing the client registration available.

After validating the request, the service will find a matching AccessTokenGrantHandler and request to create
a ServerAccessToken which is a server-side representation of the access token. The grant handlers, such as

Talend Enterprise Service Factory User Guide 179

http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/provider/AccessTokenGrantHandler.java
http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/common/ServerAccessToken.java

Writing OAuthDataProvider

AuthorizationCodeGrantHandler may delegate the creation of the actual access token to data providers, which
may use the available utility classes such as BearerAccessToken shipped with CXF or depend on other 3rd party
libraries to create the tokens.

The data providers are also do not strictly required to persist the data such as access tokens, instead the token key
may an encrypted bag capturing all the relevant information.

Now that the token has been created, it is mapped by the service to a client representation and is returned back
as a JSON payload:

Response- Code: 200
Cont ent - Type: application/json
Headers: {

Cache- Control =[no-store],

Pr agma=[no- cache],

Dat e=[Thu, 12 Apr 2012 14:36:29 GMI]
}

Payl oad:

{"access_t oken":"5b5c8e677413277c4bb8b740d522b378", "token_type":"bearer"}

The client will use this access token to access the current user's resources in order to complete the original user's
request, for example, the request to access a user's calendar may look like this:

Address: http://1ocal host: 8080/ servi ces/thirdPartyAccess/ cal endar
Ht t p- Met hod: GET
Headers:
{
Aut hori zat i on=[Bearer 5b5c8e677413277c4bb8b740d522h378],
Accept =[appl i cation/ xm]
}

Note that the access token key is passed as the Bearer scheme value. Other token types such as MAC ones, €tc,
can be represented differently.

4.2.3. Writing OAuthDataProvider

Using CXF OAuth service implementations will help alot with setting up an OAuth server. Asyou can see from
the above sections, these services rely on a custom OAuthDataProvider implementation.

The main task of OAuthDataProvider is to persist and generate access tokens. Additionally, as noted above,
AuthorizationCodeDataProvider needs to persist and remove the code grant registrations. The way it's done is
really application-specific. Consider starting with a basic memory based implementation and then move on to
keeping the datain some DB.

Note that OAuthDataProvider supports retrieving Client instances but it has no methods for creating or removing
Clients. Thereason for it isthat the process of registering third-party clientsisvery specific to aparticular OAuth2
application, so CXF does not offer a registration support service and hence OAuthDataProvider has no Client
create/update methods. Y ou will likely need to do something like this:

public class CustonfAut hProvi der inplements QAut hDat aProvi der {
public dient registerCient(String applicationNane,
String applicationURlI, ...) {}
public void renoveCient(String cliendld) {}

180 Talend Enterprise Service Factory User Guide

http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/grants/code/AuthorizationCodeGrantHandler.java
http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/tokens/bearer/BearerAccessToken.java
http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/common/ClientAccessToken.java
http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/provider/OAuthDataProvider.java
http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/common/Client.java

OAuth Server JAX-RS endpoints

!/l etc
/1 QAut hDat aProvi der net hods

}

CustomOA uthProvider will also removeall tokensassociated with agiven Client in removeClient(String cliendl d).

Finally OAuthDataProvider may need to convert opague scope values such as "readCalendar” into a list of
OAuthPermissions. AuthorizationCodeGrantService and OAuth2 security filters will depend on it (assuming
scopes are used in the first place). In the former case AuthorizationCodeGrantService will use this list to
populate OAuthAuthorizationData - the reason this bean only sees Permissions is that some of the properties
OA uthPermission keeps are of no interest to OAuthAuthorizationData handlers.

4.2.4. OAuth Server JAX-RS endpoints

With CXF offering OAuth service implementations and a custom OAuthDataProvider provider in place, it istime
to deploy the OAuUth2 server. Most likely, you'd want to deploy AccessTokenService as an independent JAX-RS
endpoint, for example:

<l-- inmplenments QAut hDataProvider -->
<bean i d="oaut hProvi der" cl ass="oaut h. manager . QAut hManager "/ >

<bean i d="accessTokenService"
cl ass="org. apache. cxf.rs.security. oaut h2. servi ces. AccessTokenServi ce">
<property nanme="dat aProvi der" ref="o0authProvider"/>

</ bean>

<j axrs:server id="oauthServer" address="/oauth">
<j axrs: servi ceBeans>
<ref bean="accessTokenService"/>
</j axrs:servi ceBeans>
</jaxrs:server>

AccessTokenService listens on arelative "/token" path. Given that jaxrs:server/@adressis "/oauth" and assuming
a context name is "/services', the absolute address of AccessTokenService would be something like "http://
local host:8080/services/oauth/token™.

AuthorizationCodeGrantService is better to put where the main application endpoint is. It can be put alongside
AccessTokenService - but the problem is that the end user is expected to authenticate itself with the resource
server after it has been redirected by a third-party client to AuthorizationCodeGrantService. That would make
it more complex for the OAuth server endpoint to manage both OAuth (third-party client) and the regular user
authentication - that can be done, see more on it below in the Design considerations section, but the simpler option
is to simply get AuthorizationCodeGrantService under the control of the security filter enforcing the end user
authentication:

<bean i d="aut hori zati onServi ce"
cl ass="org. apache. cxf.rs. security.oauth2.services. [/
Aut hori zat i onCodeGr ant Ser vi ce" >
<property nane="dat aProvider" ref="oauthProvider"/>
</ bean>

<bean id="nyApp" class="org. nyapp. MyApp" >
<property nane="dat aProvi der" ref="oauthProvider"/>
</ bean>

<j axrs:server id="oauthServer" address="/nyapp">

Talend Enterprise Service Factory User Guide 181

http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/common/OAuthPermission.java
http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/common/OAuthAuthorizationData.java
http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/common/Permission.java

Protecting resources with OAuth2 filters

<j axrs:servi ceBeans>
<ref bean="nyApp"/>
<ref bean="aut horizati onService"/>
</jaxrs:servi ceBeans>
</jaxrs:server>

AuthorizationCodeGrantService listens on arelative "/authorize" path so in this case its absolute address will be
something like "http://local host:8080/services/myapp/authorize”. This address and that of AccessTokenService
will be used by third-party clients.

4.3. Protecting resources with OAuth?2 filters

OAuthRequestFilter request handler can be used to protect the resource server when processing the requests
from the third-party clients. Add it as ajaxrs:provider to the endpoint which deals with the clients requesting the
resources. When checking arequest like this:

Address: http://local host: 8080/ services/thirdPartyAccess/ cal endar
Ht t p- Met hod: GET
Headers:
{
Aut hori zat i on=[Bearer 5b5c8e677413277c4bb8b740d522b378],
Accept =[appl i cation/xm]
}

the filter will do the following:

1. Retrieve a ServerAccessToken by delegating to a matching registered AccessTokenValidator.
AccessTokenValidator isexpected to check the validity of theincoming token parameters and possibly delegate
to OAuthDataProvider to find the token representation - this is what the filter will default to if no matching
AccessTokenValidator is found and the Authorization scheme is 'Bearer'.

2. Check the token has not expired

3. AccessToken may have alist of OAuthPermissions. For every permission it will:
 Ifithasauri property set then the current request URI will be checked against it
* If it hasan httpVerb property set then the current HTTP verb will be checked against it

4. Finaly, it will create a CXF SecurityContext using thislist of OAuthPermissions, the UserSubject representing
the client or the end user who authorized the grant used to obtain this token.

This SecurityContext will not necessarily be important for some of OAuth2 applications. Most of the security
checks will be done by OAuth2 filters and security filters protecting the main application path the end users
themselves use. Only if you would like to share the same JAX-RS resource code and access URIs between end
users and clients then it can become handy. More on it below.

4.4. How to get the user login name

When one writes a custom server application which needs to participate in OAuth2 flows, the major question
which needsto be addressed is how one can access auser login name that was used during the end-user authorizing
the third-party client. This username will help to uniquely identify the resources that the 3rd party client is now
attempting to access. The following code shows one way of how this can be done:

182 Talend Enterprise Service Factory User Guide

http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/filters/OAuthRequestFilter.java
http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/provider/AccessTokenValidator.java
http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security2/oauth/data/OAuthPermission.java
http://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/security/SecurityContext.java
http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/data/OAuthPermission.java
http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/common/UserSubject.java

Client-side support

@at h("/ user Resource")
public class ThirdPartyAccessService {

@cont ext
private MessageContext nt;

@ET
public User Resource getUser Resource() {
QAut hCont ext oauth = nt. get Cont ent (QAut hCont ext . cl ass) ;
if (oauth == null || oauth.getSubject() == null ||
oaut h. get Subj ect ().getLogin() == null) {
t hr ow new WebAppl i cati onExcepti on(403);
}
String userNanme = oauth. get Subj ect (). getLogin();
return findUser Resour ce(user Nane)

}

private UserResource findUserResource(String userNanme) ({
/1 find and return UserResource
}

}

The above shows a fragment of the JAX-RS service managing the access to user resources from authorized 3rd-
party clients (see the Design Considerations section for more information).

Theinjected MessageContext provides an access to OAuthContext which has been set by OAuth2 filters described
in the previous section. OAuthContext will act as a container of the information which can be useful to the custom
application code which do not need to deal with the OAuth2 internals.

4.5. Client-side support

When developing a third party application which needs to participate in OAuth2 flows one has to write the code
that will redirect users to OAuth2 AuthorizationCodeGrantService, interact with AccessTokenService in order to
exchange code grants for access tokens as well as correctly build Authorization OAuth2 headers when accessing
the end users resources. JAX-RS makesit straightforward to support the redirection, while OAuthClientUtils class
makes it possible to encapsulate most of the complexity away from the client application code.

For example, the following custom code can be used by the third-party application:

public class QAut hd i ent Manager {

private WebC ient accessTokenService;
private String authorizationServiceURl;
private Consumer CONSUMEr;

/1 inject properties, register the client application...

public URI getAuthorizati onServi ceURl (Reservati onRequest request,
URI redirectUri,
/* state */String reservati onRequest Key) {
String scope = QAut hConst ant s. UPDATE _CALENDAR SCOPE +
request. get Hour () ;
return QAuthC ientUtils. get Authorizati onURI (authori zati onServiceURl,
consuner . get Key(),

Talend Enterprise Service Factory User Guide 183

http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/common/OAuthContext.java
http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/client/OAuthClientUtils.java

OAuth2 without Explicit Authorization

redirectUri.toString(),
reservati onRequest Key,
scope) ;

}

public dient AccessToken get AccessToken(Aut hori zati onCodeG ant
codeG ant) {
try {
return QAuthC ientUtils. get AccessToken(accessTokenServi ce,
consumner, codeG ant);
} catch (QAut hServi ceException ex) ({
return null;

}
}

public String createAuthorizati onHeader (C i ent AccessToken token) {
return QAuthCd ientUtils. createAuthorizati onHeader (consuner,
t oken) ;

}

Thereason such asimplewrapper can beintroduced isto minimize the exposure to OAuth2 of the main application
codeto the bare minimum, thisiswhy in thisexample OA uthServiceExceptions are caught, presumably logged and
null values are returned which will indicate to the main code that the request failed. Obviously, OAuthClientUtils
can be used directly aswell.

4.6. OAuth2 without Explicit Authorization

Client Credentialsisone of OAuth2 grantsthat does not requirethe explicit authorization and is currently supported
by CXF.

4.7. OAuth2 without a Browser

When an end user is accessing the 3rd party application and is authorizing it later on, it's usually expected that the
user isrelying on abrowser. However, supporting other types of end usersis easy enough. Writing the client code
that processes the redirection requests from the 3rd party application and AuthorizationRequestService is simple
with JAX-RS and additionally CXF can be configured to do auto-redirects on the client side.

Also note that AuthorizationReguestService can return XML or JISON OAuthAuthorizationData representations.
That makes it easy for aclient code to get OAuthA uthorizationData and offer a pop-up window or get the input
from the command-line. Authorizing the third-party application might even be automated in this case - which can
lead to a complete 3-leg OAuth flow implemented without a human user being involved.

4.8. Controlling the Access to Resource
Server

One of the most important issues one needs to resolve is how to partition a URI space of the resource server
application. We have two different parties trying to access it, the end users which access the resource server to

184 Talend Enterprise Service Factory User Guide

http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth/src/main/java/org/apache/cxf/rs/security/oauth/data/OAuthAuthorizationData.java

Sharing the same access path between end users and clients

get to the resources which they own and 3rd party clients which have been authorized by the end users to access
some of their resources. In the former case the way the authentication is managed is completely up to the resource
server application: basic authentication, two-way TLS, Openld (more on it below), you nameiit.

In the latter case an OAuth filter must enforce that the 3rd party client has been registered using the provided client
key and that it has a valid access token which represents the end user's approval. It's kind of the authentication
and the authorization check at the sametime.

Letting both parties access the resource server viathe same URI(s) complicates the life for the security filters but
all the parties are only aware of the single resource server URI which al of them will use.

Providing different access points to end users and clients may significantly simplify the authentication process -
the possible downside is that multiple access points need to be mantained by the resource server. Both options
are discussed next.

4.8.1. Sharing the same access path between end
users and clients

The first problem which needs to be addressed is how to distinguish end users from third-party clients and get
both parties authenticated as required. Perhaps the simplest option is to extend a CXF OAuth2 filter (JAX-RS or
servlet one), check Authorization header, if it is OAuth2 then delegate to the superclass, aternatively - proceed
with authenticating the end users:

public class SecurityFilter
ext ends org. apache. cxf.rs.security.oauth2.filters. QAuthRequestFilter {

@Cont ext
private HtpHeaders headers;

publ i c Response handl eRequest (Cl assResourcelnfo cri, Message nessage) {
String header = headers. get Request Headers(). get First("Authorization");
if (header.startsWth("Bearer ")) {
return super. handl eRequest (cri, nessage);
} else {
/1 authenticate the end user
}

}

The next issueis how to enforce that the end users can only access the resources they've been authorized to access.
For example, consider the following JAX-RS resource class:

@rat h("cal endar")
public class Cal endar Resource {

@ET

@ath("{id}")

publ i c Cal endar get PublicCal endar (@at hParam("id") long id) {
/1 return the calendar for a user identified by 'id'

}

@ET
@ath("{id}/private")
public Cal endar getPrivateCal endar (@at hParan{"id") long id) {

Talend Enterprise Service Factory User Guide 185

Providing different access points to end users and clients

/1 return the calendar for a user identified by "id'

}

@ur

@ath("{id}")

public void updat eCal endar (@at hParan{"id") long id, Calendar c) {
/1 update the calendar for a user identified by "id'

}
}

Let's assume that the 3rd party client has been allowed to read the public user Calendars at "/calendar/\{id}" only,
how to make sure that the client won't try to:

1. update the calendar available at the same path
2. read the private Calendars available at "/calendar/\{ id} /private"

As noted above, OAuthPermission has an optional URIs property. Thus one way to solve the problem with
the private calendar is to add, say, a uri "/calendar/\{id}" or "/calendar/1" (etc) property to OAuthPermission
(representing ascope like "readCalendar") and the OAuth filter will make sure no subresources beyond "/calendar/
\{id}" can be accessed. Note, adding a "*" at the end of a given URI property, for example, "/a*" will let the
client access"/a", "/alb", etc.

Solving the problem with preventing the update can be easily solved by adding an httpVerb property to a given
OAuthPermission.

One more option is to rely on the role-based access control and have @RolesAllowed allocated such that only
usersinroleslike "client" or "enduser" can invoke the getCalendar() method and let only those in the "enduser”
role access getPrivateCalendar() and updateCalendar(). OAuthPermission can help here too as described in the
section on using OAuth fiters.

4.8.2. Providing different access points to end users
and clients

Rather than letting both the end users and 3rd party clients use the same URI such as "http://myapp.com/service/
calendars/\{id}", one may want to introduce two URIs, one for end users and one for third-party clients, for
example, "http://myapp.com/service/calendars/\{ id}" - for endusers, "http://myapp.com/partners/calendars/\{id} "
- for the 3rd party clients and deploy 2 jaxrs endpoints, where one is protected by the security filter checking the
end users, and the one - by OAuuth filters.

Additionally the endpoint managing the 3rd party clients will deploy a resource which will offer aresticted URI
space support. For example, if the application will only allow 3rd party clientsto read calendars then thisresource
will only have a method supporting @GET and "/calendar\{id}".

186 Talend Enterprise Service Factory User Guide

http://svn.apache.org/repos/asf/cxf/trunk/rt/rs/security/oauth-parent/oauth2/src/main/java/org/apache/cxf/rs/security/oauth2/common/OAuthPermission.java

Chapter 5. Combining JAX-WS and JAX-RS

Starting with the JAX-RS development is not necessarily al or nothing decision. Some users may want to
start developing new web services using JAX-RS while some will prefer continue building on their SOAP WS
experience. Sometimes migrating the advanced SOAP servicesisnot an option at all. CXF providesthe production-
quality environment for SOAP and RESTful web services be developed and combined if needed.

Thereal world Java-based web services projectswill often combine all sort of web services, some of them written
using JAX-WS and some JAX-RS. One obvious option for combining JAX-WS and JAX-RS servicesin CXF is
to register multiple JAX-WS and JAX-RS service endpoints all referencing the same service bean. The SOAPWS
and REST approaches are different but nothing prevents JAX-WS and JAX-RS service beans delegating to some
shared implementation, for example, the one reading or writing data to the database.

Often enough, the SOAP developers who would like to experiment with JAX-RS or make their SOAP services
more HTTP-centric, wish to reuse the same code serving both SOAP and plain HTTP requests. CXF lets do the
combinataion using either the Java-First or WSDL -first approach.

5.1. Using Java-First Approach

Combining JAX-RS and JAX-WS using the Java-First approach is about annotating the interface or concrete class
with both JAX-WS and JAX-RS annotations:

package server;

i mport javax.jws.WbMet hod;
i mport javax.jws.WhbParam

i mport javax.jws.WbServi ce;
i mport javax.ws.rs. Consunes;
i mport javax.ws.rs. CGET;

i mport javax.ws.rs. POST;

Talend Enterprise Service Factory User Guide

Using Document-First Approach

i mport javax.ws.rs. Path;
i mport javax.ws.rs. Pat hParam
i mport javax.ws.rs. Produces;

@\ebSer vi ce

@at h("/ bookst ore")
@onsumes("application/ xm ™)

@r oduces("application/ xm™")

public interface BookStoreJaxrsJaxws {

@\ebMet hod

@ET

@ath("/{id}")

@onsumes("application/ xm ")

Book get Book(@at hParan("id") @ebParam name = "id") Long id);

@\ebMet hod

@QosT

@at h("/ books")

Book addBook(@¢bParan(name = "book") Book book);

In this example, the BookStoreJaxrsJaxws implementation class will need to be declared as a standalone bean
and referenced from JAX-WS and JAX-RS endpoints. Both JAX-WS and JAX-RS proxies will be able to reuse
thisinterface for consuming SOAP and RESTful web services. Please see thejaxrs jaxws java first demointhe
Talend ESB Examples distribution for a concrete example.

5.2. Using Document-First Approach

Many SOAP developers prefer adocument-first (or WSDL-first) approach toward developing WS services. After
aWSDL document has been created, the code generator produces the boilerplate server and possibly the client
code, with the generated interface such as BookStoreJaxrsJaxws in the previous section containing the JAX-WS
annotations only.

Attempting to reuse the same interface by adding JAX-RS annotationsis not realistic given that the interface will
be re-generated the next time the code generator runs. CXF JAX-RS provides an advanced no-annotations feature
which can be used to apply the external JAX-RS like model to agiveninterface or classand turnit into a RESTful
resource without modifying it directly. Please check the jaxrs jaxws document_first demo in the Talend ESB
examples distribution and see how this feature is used.

188 Talend Enterprise Service Factory User Guide

Chapter 6. Talend ESB Service
Recommended Project Structure

Developers are encouraged, whenever feasible, to have the following project structure for developing JAX-WS
and JAX-RS applications:

Folder Description

client Provides the client for interacting with the deployed service. Usualy activated by
navigating to this folder and entering mvn exec: j ava (see the README file for the
particular project for any project-specific information.)

common Consists of common resource classes, JAXB objects, and any other objects usable by both
the client and service modules.

service Provides the service implementation code. Used both by the war project for serviet
deployment and as an OSGi bundle for the Talend OSGi container.

war Provides a deployable WAR that can be used with servlet containers such as Jetty or

Tomcat. Consists mainly of the web.xml and Spring beans.xml file indicating resources
and providers that need loading. The Talend OSGi container does not need this module.

Talend Enterprise Service Factory User Guide

Talend Enterprise Service Factory User Guide

Chapter 7. Talend ESB Service Examples

The samplesfolder of the Talend ESB download contain examplesthat are provided by the Apache CXF project, as
well as Talend ESB-specific examples showing multiple usages of JAX-RS, IMS, Security and CXF interceptors.
Each Talend ESB sample has its own README file providing a full description of the sample along with
deployment information using embedded Jetty or Talend OSGi container.

The examples provided by the Apache CXF project and bundled with the Talend ESB are listed and summarized
on the CXF website; the below listing provides a summary of additional CXF examples provided in the Talend
ESB distribution.

Example Description

jaxws-cxf-sts Demonstrates having a SOAP client use CXF's stsclient to make acall to a
Tomcat-hosted CXF Security Token Service (STS) and subsequently using
the SAML token received to make aweb service call to a CXF web service
provider. Both standalone and OSGi-based clients are shown, as well as
standal one, Tomcat-based, and OSGi-based web service provider options
given.

jaxws-cxf-sts-advanced More advanced version of the above showing OSGi deployment of the
STS, token providers, token validation, and WSP authorization based on
attributes within the SAML token.

jaxws-ws-secpol Demonstrates using WS-SecurityPolicy and configuration to secure
communication between CXF client and servers using various security
requirements and including tokens like UsernameToken and SAML

assertions.

jaXWs-jms-spec Demonstrates using JAX-WS clients and servers to talk SOAP over IMS,
but using the SOAP/IM S Specification for configuration.

interceptors Demonstrates how a message changes and is manipulated as it passes
through the various CXF interceptors.

jaxrs-intro Shows basic features of the the JAX-RS 1.1 specification and APl such as

root resources, subresources and HTTP verbs (GET/PUT/POST).

Talend Enterprise Service Factory User Guide

http://cxf.apache.org/docs/sample-projects.html

Example

Description

jaxrs-advanced

Building on the jaxrs-intro sample, this demo additionally demonstrates
multiple root resource classes, recursive subresources, resource methods
consuming and producing data in different formats (XML and JSON),
using JAX-RS Responseto return status, headers and optional entity, using
Urilnfo and UriBuilder for working with URI and ExceptionMappers for
handling application exceptions.

jaxrs-attachments

Demonstrates how JAX-RS consumers and providers can read and write
multipart attachments.

jaxrs-jaxws-authorization

Shows how a Role-Base-Access-Control policy can be applied to JAX-
WS and JAX-RS services with the help of the container-managed
authentication and CXF security filters enforcing the authorization rules.

jaxrs-jaxws-description-first

Shows how SOAP services created as part of the document (WSDL) first
approach process can get RESTified by having a CXF JAX-RS user model
resource added which describes how an interface generated by the wsdl-to-
javatool can be treated as the JAX-RS root resource.

jaxrs-jaxws-java-first

Shows how a single service instance can be exposed as both JAX-RS
and JAX-WS services at the same time and how CXF JAX-RS and JAX-
WS proxies can reuse the same code for invoking on the corresponding
endpoints.

jaxrs-jms-http Demonstrateshow aJAX-RSHTTP server can be enhanced toreceive IMS
messages.

jaxrs-oauth Provides an example of a REST application protected using OAuth
Ssecurity.

jaxrs-attachments Demonstrates how JAX-RS providers and consumers read and write XOP

and regular multipart/mixed attachments

jaxrs-transformations

Demonstrates how CXF can help with maintaining backward and forward
compatibility between JAX-RS and JAX-WS consumers and endpoints by
using the Transformation Feature of CXF.

192

Talend Enterprise Service Factory User Guide

Chapter 8. Configuring JMX Integration

To enable IMX integration, register an InstrumentationManager extension with the CXF bus. Using Spring XML
on Tomcat, the following minimal XML snippet will enable IM X integration.

<i nmport resource="cl asspat h: META- | NF/ cxf/cxf.xm "/ >

<bean id="org. apache. cxf. nanagenent . | nst runment ati onManager"
cl ass="org. apache. cxf. managenent . j nx. | nst r unent at i onManager | npl " >
<property nane="enabl ed" val ue="true" />
<property nane="bus" ref="cxf" />
<property nane="usePl at f or mMvBeanServer" val ue="true" />
</ bean>

The default InstrumentationManager accepts the following configuration options:

Name Value Default
enabled If the IMX integration should be enabled or not false
bus The CXF businstance to register the IMX extension with |None
server An optional reference to an MBeanServer instance to register | None

MBeans with. If not supplied, an MBeanServer is resolved
using the "usePlatformMBeanServer" and/or "serverName"
options.

usePlatformMBeanServer |If true and no reference to an MBeanServer is supplied, the false
JMX extension registers MBeans with the platform MBean
server.

serverName If supplied, usePlatformMBeanServer is false, and no|None
reference to an MBeanServer is supplied, the IMX extension
registers MBeans with the MBean server carrying this name.

createM B ServerConnector- If true, a connector is created on the MBeanServer. true
Factory

Talend Enterprise Service Factory User Guide

Example Configuration

Name Value Default

threaded Determines if the creation of the MBean connector is|false
performed in thisthread or in a separate thread. Only relevant
if createM BServerConnectorFactory istrue.

daemon Determines if the MBean connector creation thread is|fase
marked as a daemon thread or not. Only relevant if
createM BServerConnectorFactory is true.

IMXServiceURL The URL of the connector to create on the MBeanServer. | service;jmx:rmi:///
Only relevant if createM BServerConnectorFactory istrue. |jndi/rmi://
localhost:9913/
jmxrmi

The MBean instrumentation provided by the above configuration will provide generic information about the
WSDL supported by the web service as well as web service administration commands. To see performance
metrics of the SOAP call processing, further configuration (see htt p: // cxf. apache. or g/ docs/j nx-
managenent . ht nl) isrequired — these are disabled by default to avoid unnecessary runtime overhead.

If you're using Maven, make sure you have the following dependency added to the pom.xml for the web service
provider:

<dependency>
<gr oupl d>or g. apache. cxf </ gr oupl d>
<artifactld>cxf-rt-managenent</artifactld>
<ver si on>${ cxf . versi on} </ versi on>

</ dependency>

8.1. Example Configuration

Enable IMX integration by adding the following XML to your CXF Spring context:

<bean i d="org. apache. cxf. nanagenent. | nstrument ati onManager"
cl ass="org. apache. cxf. managenent . j nx. | nstrunent at i onManager | npl " >
<property nane="bus" ref="cxf" />
<property nane="enabl ed" val ue="true" />
<property nane="JMXServi ceURL "
val ue="service:jmx:rm:///jndi/rm://local host:9914/jnxrm" [>

</ bean>

An equivalent configuration of the above instrumentation manager can be directly made within the bus
configuration using the corresponding property names having the "bus.jmx" prefix, asin:

<cxf:bus bus="cxf">
<cxf:properties>
<entry key="bus.jnx.enabl ed" val ue="true"/>
<entry key="bus.jnmx.JMXServi ceURL"
val ue="service:jmx:rm:///jndi/rm://local host:9914/jnxrm" [>
</ cxf:properties>
</ cxf: bus>

Changesin CXF 2.5.x

If a MBeanServer is available in the Spring context or as an OSGi server (when running in OSGi),
the InstrumentationManger will be automatically enabled and will use that MBeanServer and the CXF
MBeans will be registered. Therefore, the instrumentation manager configuration shown above is not
needed in such cases.

194 Talend Enterprise Service Factory User Guide

How to get web service performance metrics

To test the configuration start up your service and connect to it by using JConsole from the JDK.

J[unsule: Mew Connection il

New Connection s
" Local Process:
Name | P |

i+ Remole Process:

Iseruice jmczemi: || indifrmi: flocalhosk: 9914 jmxrmi

Usage: =hostname:=: <port= OR service:jmx: =protocaol=: <sap=

Username: I Password: I

Connect | Cancel

Then you can browse to your endpoint:

B 7ava Monitoring & Management Console 10| x|

Connection Window Help

I service:jrocrmi:/,//indi/rmi:/ /localhost:991 4/ jroami ;l illl
QVErVIEW | [MEmary | Threads | Classes | VM Summary;| MBeans | E
{h IMImplemantation ~Operation invocation
[=-47 org.apache.cxf =

) Bus ol stop | ()

[}/ Bus.Service, Endpoint

50 oxf6257983 java.lang. String getstate | 0)

=123 "{http:/ fimpl.service. testHHelloService” :
=108 "{http:fimpl.service.test[HelloPart” void start |]

[+ Attributes _ _
perations java.lang.String getTransportld |(]
java.lang. String getAddress |”

‘... Matifications[0]

8.2. How to get web service performance
metrics

These metrics include Request/Response time, number of calls, and so on.

Talend Enterprise Service Factory User Guide

195

How to get web service performance metrics

The CXF management module also provides a feature (the Performance.Counter.Server MBean) which provides
aggregate statistics for services running in the CXF Bus. It is not enabled by default to avoid unnecessary runtime
overhead during web service call processing.

Hereisthe configuration snippet that you should add to your Spring context fileto be ableto view thisinformation:

<!-- Wring the counter repository -->
<bean i d="Count er Reposi tory"
cl ass="or g. apache. cxf. managenent . count er s. Count er Reposi tory" >
<property nane="bus" ref="cxf" />
</ bean>

The CounterRepository collects the following metrics. invocations, checked application faults, unchecked
application faults, runtime faults, logical runtime faults, total handling time, max handling time, and min handling
time. Note a SOAP call will need to occur against the web service before you will see the MBean within your
JMX monitoring software.

196 Talend Enterprise Service Factory User Guide

	Talend Service Factory
	Table of Contents
	Chapter 1. Introduction to Service Creation with Talend ESB
	Chapter 2. JAX-WS Development
	2.1. JAX-WS Overview
	2.1.1. Spring Integration
	2.1.2. Transports
	2.1.3. Support for Various Databindings between XML and Java
	2.1.4. Bindings
	2.1.5. Message Interception and Modification
	2.1.6. JAX-WS Handlers
	2.1.7. Interceptors
	2.1.8. Transmitting Binary Data
	2.1.9. WS-* Support
	2.1.10. Invokers

	2.2. JAX-WS Service Development Options
	2.2.1. JAX-WS Annotated Services from Java
	2.2.2. JAX-WS Annotated Services from WSDL
	2.2.3. Developing a Service using JAX-WS
	2.2.3.1. WSDL First Development
	Generating the Starting Point Code
	Running wsdl2java
	Generated code

	Implementing the Service
	Generating the implementation code
	Generated code
	Implement the operation's logic
	Example

	2.2.3.2. Java First Development
	Creating the SEI
	Writing the interface
	Implementing the interface

	Annotating the Code
	Required Annotations
	The @WebService annotation
	Annotating the SEI
	Annotating the service implementation

	Optional Annotations
	Defining the Binding Properties with Annotations
	The @SOAPBinding annotation
	Defining Operation Properties with Annotations
	The @WebMethod annotation
	The @RequestWrapper annotation
	The @ResponseWrapper annotation
	The @WebFault annotation
	The @Oneway annotation
	Example
	Defining Parameter Properties with Annotations
	The @WebParam annotation
	The @WebResult annotation
	Example

	Generating WSDL
	Generated WSDL from an SEI

	2.2.4. JAX-WS Configuration
	2.2.4.1. Configuring an Endpoint
	2.2.4.2. Configuring a Spring Client (Option 1)
	2.2.4.3. Configuring a Spring Client (Option 2)
	2.2.4.4. Configuring an Endpoint/Client Proxy Using CXF APIs
	2.2.4.5. Configure the JAXWS Server/Client Using Spring

	2.2.5. JAX-WS Providers
	2.2.5.1. Messaging Modes
	Overview
	Message mode
	Payload mode

	2.2.5.2. Data Types
	Overview
	Using Source objects
	Using SOAPMessage objects
	Using DataSource objects
	Implementing a Provider Object
	Overview
	Working with messages

	Implementing the invoke() method
	Examples

	2.2.6. WebserviceContext

	2.3. JAX-WS Client Development Options
	2.3.1. WSDL2Java generated Client
	2.3.2. JAX-WS Proxy
	2.3.3. JAX-WS Dispatch APIs
	2.3.4. Usage Modes
	2.3.4.1. Overview
	2.3.4.2. Message mode
	2.3.4.3. Payload mode

	2.3.5. Data Types
	2.3.5.1. Overview
	2.3.5.2. Using Source objects
	2.3.5.3. Using SOAPMessage objects
	2.3.5.4. Using DataSource objects
	2.3.5.5. Using JAXB objects

	2.3.6. Working with Dispatch Objects
	2.3.6.1. Procedure
	2.3.6.2. Creating a Dispatch object
	2.3.6.3. Constructing request messages
	2.3.6.4. Synchronous invocation
	Asynchronous invocation
	Oneway invocation

	2.3.7. Developing a Consumer
	2.3.7.1. Generating the Stub Code
	Basic HelloWorld WSDL contract
	Generating the stub code

	2.3.7.2. Implementing a CXF Client
	Generated service class
	Service endpoint interface
	Client main function

	2.3.7.3. Setting Connection Properties with Contexts
	Setting a request context
	Reading a response context
	Supported contexts

	2.3.7.4. Asynchronous Invocation Model
	Contract for asynchronous example
	Generating the asynchronous stub code
	Implementing an asynchronous client with the polling approach
	Implementing an asynchronous client with the callback approach

	2.4. Data Binding Options
	2.4.1. Aegis
	2.4.1.1. What is Aegis?
	2.4.1.2. Getting Started: Basic Use of Aegis
	2.4.1.3. Aegis Operations - The Simple Case
	Schema Validation

	2.4.1.4. Using Java Classes That Aren't Visible to the Service Interface
	2.4.1.5. Global Type Creation Options
	2.4.1.6. Detailed Control of Bean Type Mapping
	XML Mapping Files
	Bean Mapping
	Names and Namespaces
	Ignoring properties
	MinOccurs and Nillable
	Alternative Type Binding
	Collections
	Multiple mappings for Different Services

	Services and Parameters

	Annotations

	2.4.1.7. Creating Your Own Type Mappings
	2.4.1.8. Customizing Type Creation
	2.4.1.9. Aegis Default Mappings
	Soap 1.1 SOAP mappings
	Soap 1.1 XSD mappings
	Services that Don't Use Soap 1.1

	2.4.2. JAXB
	2.4.2.1. Introduction
	2.4.2.2. JAXB versus JAX-WS (or other front-ends)
	2.4.2.3. Configuring JAXB
	JAXB Properties
	Activating JAXB Validation of SOAP requests and responses
	Namespace Prefix Management

	2.4.3. MTOM Attachments with JAXB
	2.4.3.1. 1) Annotating the Message
	1a) Modifying your schema for MTOM
	1b) Annotation your JAXB beans to enable MTOM

	2.4.3.2. 2) Enable MTOM on your service
	2.4.3.3. Using DataHandlers

	2.4.4. SDO
	2.4.4.1. Setup
	2.4.4.2. Code Generation

	2.4.5. XMLBeans
	2.4.5.1. Code Generation
	2.4.5.2. Runtime
	Spring config
	FactoryBeans

	2.5. CXF Transports
	2.5.1. HTTP Transport
	2.5.1.1. Client HTTP Transport (including SSL support)
	Configuring SSL Support
	Advanced Configuration
	Using Configuration
	Namespace
	The conduit element
	The client element
	Example using the Client Element

	The tlsClientParameters element

	Using WSDL
	Namespace
	The client element
	Example

	Using java code
	How to configure the HTTPConduit for the SOAP Client?
	How to override the service address ?

	Client Cache Control Directives

	A Note About Chunking
	Authentication
	Spnego Authentication (Kerberos)
	NTLM Authentication

	2.5.1.2. Server HTTP Transport
	Using Configuration
	Namespace
	The destination element
	The server element
	Example

	Using WSDL
	Namespace
	The server element
	Example

	Server Cache Control Directives

	2.5.1.3. Servlet Transport
	Publishing an endpoint from XML
	Redirecting requests and serving the static content
	Publishing an endpoint with the API
	Using the servlet transport without Spring
	Accessing the MessageContext and/or HTTP Request and Response

	2.5.2. JMS Transport
	2.5.2.1. Easier configuration using the new JMSConfigFeature
	2.5.2.2. JMS Transport wiht SOAP over Java Message Service 1.0-Supported
	2.5.2.3. JMS Namespaces
	WSDL Namespace
	Configuration Namespaces

	2.5.2.4. Basic Endpoint Configuration
	Using WSDL
	The address element
	The JMSNamingProperties element
	Using a named reply destination

	Using Configuration
	Configuration elements
	The address element
	

	Consumer Endpoint Configuration
	Using Configuration
	Specifying the message type

	Using WSDL

	2.5.2.5. Service Endpoint Configuration
	Using Configuration
	Specifying configuration data

	Using WSDL

	2.5.2.6. JMS Runtime Configuration
	Session Pool Configuration
	Consumer Specific Runtime Configuration
	Service Specific Runtime Configuration

	2.5.2.7. SOAP over JMS 1.0 support
	What's new compared to the old CXF JMS Transport
	SOAP over JMS Namespace
	WSDL Namespace
	JMS Extension Namespace

	JMS URI
	WSDL Extension
	WSDL Usage
	Publishing a service with the JAVA API
	Consume the service with the API
	Differences between the SOAP over JMS and the CXF old JMS transport implementation

	2.5.2.8. Using the JMSConfigFeature

	2.6. WS-* Support
	2.6.1. WS-Addressing
	2.6.1.1. WS-Addressing via XML Configuration / Java API
	2.6.1.2. Enabling WS-Addressing with WS-Policy

	2.6.2. WS-Policy
	2.6.2.1. Developing Assertions
	Implementing the Assertion Interface
	PrimitiveAssertion
	NestedPrimitiveAssertion
	JaxbAssertion

	Implementing and Registering the AssertionBuilder Interface
	Implementing a Policy-Aware Interceptor
	Implementing a Policy-Aware Conduit/Destination
	Initialisation
	Policy-Aware Message Sending
	Implementing the Assertor Interface

	2.6.2.2. How It Works
	Retrieval of Policies
	Computation of Effective Policies
	On-the-fly Provision of Interceptors
	Policy Aware Interceptors
	Verification

	2.6.2.3. WS-Policy Framework Overview
	Core
	APIs
	AssertionBuilder
	PolicyInterceptorProvider

	Interaction with the Framework

	2.6.3. WS-ReliableMessaging
	2.6.3.1. Interceptor Based QOS

	2.6.4. WS-SecureConversation
	2.6.5. WS-Security
	2.6.5.1. WS-Security
	2.6.5.2. Overview of encryption and signing
	2.6.5.3. Configuring the WSS4J Interceptors
	Adding the interceptors via the API

	2.6.5.4. Spring XML Configuration
	Additional Configuration Options
	Validating Signature and/or Encryption of Message Contents
	Custom Processors
	Custom Actions

	2.6.5.5. Configuring WS-Security Actions
	Username Token Authentication
	Using X.509 Certificates
	Signing
	Encryption

	2.6.6. WS-SecurityPolicy
	2.6.6.1. Enabling WS-SecurityPolicy
	2.6.6.2. Policy description
	2.6.6.3. Configuring the extra properties
	Configuring via Spring
	Configuring via API's

	2.6.7. WS-Trust
	2.6.7.1. General Configuration
	2.6.7.2. WS-Trust 1.4 Support
	ActAs (2.2.10)

	2.7. CXF Customizations
	2.7.1. Annotations
	2.7.1.1. org.apache.cxf.feature.Features
	2.7.1.2. org.apache.cxf.interceptor.InInterceptors, org.apache.cxf.interceptor.OutInterceptors, org.apache.cxf.interceptor.OutFaultInterceptors, org.apache.cxf.interceptor.InFaultInterceptors
	2.7.1.3. org.apache.cxf.annotations.WSDLDocumentation org.apache.cxf.annotations.WSDLDocumentationCollection (since 2.3)
	2.7.1.4. org.apache.cxf.annotations.SchemaValidation (since 2.3)
	2.7.1.5. org.apache.cxf.annotations.DataBinding (since 2.2.4)
	2.7.1.6. org.apache.cxf.annotations.Logging (since 2.3)
	2.7.1.7. org.apache.cxf.annotations.GZIP (since 2.3)
	2.7.1.8. org.apache.cxf.annotations.FastInfoset (since 2.3)
	2.7.1.9. org.apache.cxf.annotations.EndpointProperty org.apache.cxf.annotations.EndpointProperties (since 2.3)
	2.7.1.10. org.apache.cxf.annotations.Policy org.apache.cxf.annotations.Policies (since 2.3)
	2.7.1.11. org.apache.cxf.annotations.UseAsyncMethod (since 2.6.0)

	2.7.2. Dynamic Clients
	2.7.2.1. DynamicClientFactory and JaxWsDynamicClientFactory

	2.8. CXF Command-Line Tools
	2.8.1. WSDL to Java
	2.8.2. Java to WS
	2.8.2.1. Name
	2.8.2.2. Synopsis
	2.8.2.3. Description
	2.8.2.4. Options
	2.8.2.5. Examples

	2.9. JAX-WS Development With Eclipse

	Chapter 3. JAX-RS Development
	3.1. JAX-RS Overview
	3.1.1. Root Resources and Sub Resources
	3.1.2. Path, HTTP Method and MediaType annotations
	3.1.3. Request Message, Parameters and Contexts
	3.1.4. Responses from Resource Methods
	3.1.5. Exception Handling
	3.1.6. Custom JAX-RS Providers

	3.2. Client API
	3.2.1. HTTP Centric API
	3.2.2. Proxy API
	3.2.3. Reading and Writing HTTP Messages
	3.2.4. Exception Handling

	3.3. Working With Attachments
	3.3.1. Reading Attachments
	3.3.2. Writing Attachments
	3.3.3. Uploading files
	3.3.4. Forms and multiparts
	3.3.5. XOP support

	3.4. Configuration
	3.4.1. Configuration of Endpoints
	3.4.2. Configuration of Clients

	3.5. Tutorials
	3.5.1. Creating a Basic JAX-RS endpoint

	Chapter 4. JAX-RS and OAuth2
	4.1. Introduction to OAuth2
	4.2. Developing OAuth2 Servers
	4.2.1. Authorization Service
	4.2.2. AccessTokenService
	4.2.3. Writing OAuthDataProvider
	4.2.4. OAuth Server JAX-RS endpoints

	4.3. Protecting resources with OAuth2 filters
	4.4. How to get the user login name
	4.5. Client-side support
	4.6. OAuth2 without Explicit Authorization
	4.7. OAuth2 without a Browser
	4.8. Controlling the Access to Resource Server
	4.8.1. Sharing the same access path between end users and clients
	4.8.2. Providing different access points to end users and clients

	Chapter 5. Combining JAX-WS and JAX-RS
	5.1. Using Java-First Approach
	5.2. Using Document-First Approach

	Chapter 6. Talend ESB Service Recommended Project Structure
	Chapter 7. Talend ESB Service Examples
	Chapter 8. Configuring JMX Integration
	8.1. Example Configuration
	8.2. How to get web service performance metrics

