talend’
*open integration solutions

Talend Open Studio

for ESB

Mediation Components Reference
Guide

5.1 b

Talend Open Studio

Talend Open Studio : Mediation Components Reference Guide
Adapted for Talend Open Studio for ESB v5.1.x. Supersedes previous Reference Guide rel eases.

Copyleft

This documentation is provided under the terms of the Creative Commons Public License (CCPL).

For more information about what you can and cannot do with this documentation in accordance with the CCPL, please read: http:/
creativecommons.org/licenses/by-nc-sa/2.0/

Notices

Talend, Talend Integration Factory, Talend Service Factory, and Talend ESB are trademarks of Talend, Inc.

Apache CXF, CXF, Apache Karaf, Karaf, Apache Camel, Camel, Apache Maven, Maven, Apache Archiva and Archiva are trademarks of
The Apache Foundation.

SoapUl is atrademark of SmartBear Software.

All other brands, product names, company names, trademarks and service marks are the properties of their respective owners.

http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/

Table of Contents

Preface ..o v
General informationooel s v
PUrPOSE ..o Y
Audience ... \Y
Typographical conventions................ v
History of changes...............ccoiiiviinnnn. Y
Feedback and Supportooeeennen. Vi
Context componentscccceeevneenneennnen. 1
CCONFIG « e 2
cConfig propertiesooevviivevannnnn 2

Scenario: Implementing a dataset
from the Registryooevinnet. 2
cIJM SConnectionFactoryc.ccoovvennn 6
cJM SConnectionFactory properties....... 6
Related scenario:ocoeei 7
Exception componentsccoeevevneeennnn. 9
cErrorHandler ... 10
cErrorHandler properties................. 10

Scenario: Logging the exception
thrown during a client/server talk 11
CInterceptoooiiiii 14
clntercept properties..............o.o.... 14

Scenario: Intercepting several routes
and redirect them in asingle new

FOULE ..ot 14
CONEXCEPLionoovviiiii e 19
cOnException properties................. 19

Scenario: Using cOnException to
ignore exceptions and continue

mMessage rouUtingovvvveviiieeennnn. 19
(ol I Y 24
CTry propertiescovvvvveiinneannns 24

Scenario: Using cTry to build Try/
Catch/Finally blocks for exception

handling ... 24

Messaging componentsccceceeunneee. 29

cBean ... 30

cBean propertiesc.oiiiiiiinnn. 30

Related Scenariooooeee 30

COXF 31

CCXF propertiescovvvvvveinnnn.. 31
Scenario 1: Providing aWeb service

using cCXF from aWSDL file.......... 32
Scenario 2: Providing aWeb service

using cCXF fromaJavaclass........... 34

CRile 38

cFile propertiescoooeeeiinnn.n. 38

Scenario: Reading files from one
directory and writing them to another

.. 38
[o 41
CFtp propertiescovvveiiiiiiann 41
Related scenario:oeeeeee. 41
CHEED oo 42
CHttp propertiesccooeeiinnn. .. 42
Scenario: Retrieving the content of a
remotefile ... 43
CIMS 47
CIMS propertiesooveeiiiiiiiiannnn 47
Scenario 1: Sending and receiving a
message from aJMS queue.............. 47
Scenario 2: Setting up aJJMS local
transaction ..o 51
Scenario 3: Sending and receiving a
scheduled delivery of messages from
aJMS Queue using Camel Quartz....... 58
cMail ..o 64
cMail Properties............coevvvnnnn.. 64

Scenario: Using cMail to send and

receive mails..............oooeiiinn, 64
cMessagingEndpointcooiiiiiiin 68

cMessagingEndpoint properties.......... 68

Scenario 1: Moving files from one

message endpoint to another 69

Scenario 2: sending files to another

message endpointooeeenn. 70
cPipesAndFilterscooviiiiiiiiis 73

cPipesAndFilters properties............... 73

Scenario: Using cPipesAndFiltersto

process the task in sequence............. 73
cTalendJob ... 77

cTalendJob properties.................... 7

Scenario: Using camel message
headers as context parameters to call

AJOD . 77
Miscellaneous components..................... 83
[oo 84
cLog propertiescoeveiiiiiiiiinns 84
Related scenario:ooeeene. 85
CLOOPD e 86
cLoop properties.........ooeviiiiiiannn 86
Related scenario:coeeene. 86
{035 o o 87
CStop propertiesoovvveviiiiieannn 87
Related scenario:oeeene. 87
Processor components............c.cveeneennnes 89
cDelayer ..o 90
cDelayer properties..............oeennn 90
Scenario: Using cDelayer to delay
MEeSSAge FOULINGvvvnvveeeieeeananns 90
cExchangePattern ... 94
cExchangePattern properties.............. 94
Scenario: Enabling the InOut
exchange pattern to get replies........... 94
€cJavaDSLProcessorcovvviiiiieiinnnn. 99
cJavaDSL Processor properties........... 99
Related scenario:oeeene. 99
CProcessorocvvviiiiiiii i 100
cProcessor properties..................t 100
Related scenario: 100
CThrottler ... 101
cThrottler properties.................... 101
Scenario: Throttling the message
FlOW oo 101
Viewing the code and executing the
Route ... 103
Routing componentscccoeevueennnn. 105
CAQOregate ...t 106
CAQOregateoovee i 106
Scenario: Aggregating three
messages into ONec.evevuvnnnnn. 108
cDynamicRouter ... 113
cDynamicRouter properties............. 113
Scenario: Routing files conditionally
to different filepaths................... 113
cldempotentConsumerceee.n. 118
cldempotentConsumer properties....... 118
Scenario: Deduplicating messages
while routing them 119
cLoadBalancercooeiiiiiiiiinnns 123
cLoadBalancer properties............... 123

Scenario: Distributing messages to
receiver endpoints based on round

rObIN ... 124
cMessageFiltercooiiiiiiiiii 128

cMessageFilter properties.............. 128

Scenario: Filtering messages

according to a criterion 128
cMessageRoUtEr ... 132

Talend Open Studio for ESB Mediation Components Reference Guide

Talend Open Studio

cMessageRouter properties............. 132

Scenario: Routing messages

according to a criterion 132
cMulticastoovviiii 137

cMulticast properties................... 137

Scenario: Multicasting a message to
two endpoints and using it to enrich
the contents received by the third

endpointcoeviiiii 137
CRecipientList ... 143
cRecipientList properties............... 143
Scenario: Routing a message to
multiple recipients 143
CSPltter ..o 147
cSplitter properties..............cooonn.. 147
Related scenario: 147
CROULINGSIIP .o 148
cRoutingSlip properties................. 148

Scenario 1: Routing a message
consecutively to a series of endpoints

Scenario 2: Routing each message
conditionally to a series of endpoints.. 152

CWITETaP oo 155
cWireTap properties 155
Scenario: Wiretapping a message in
aRoute.............oo 155

Transformation components................ 161

cContentEnrichercooiiines. 162
cContentEnricher properties............ 162
Scenario: Receiving messages from a
lissof URLS ..o 162
Related scenario 168

cConvertBodyToOoovvvviiiiiieiiiieans 169
cConvertBodyTo properties............ 169

Scenario: Converting the body
of an XML fileinto an

org.w3c.dom.Document.class........... 169
CSetBody ... 173

cSetBody properties.................... 173

Scenario: Replacing the content of

messages with their extracts............ 173
cSetHeadercooiiiiiiii 177

cSetHeader properties.................. 177

Scenario: Splitting a message

and renaming the sub-messages

according to contained information....... 177
Related scenarios 181

iv Talend Open Studio for ESB Mediation Components Reference Guide

Preface

General information

Purpose

This Reference Guide explains in detail the major Camel components of the M ediation perspective
of Talend Open Sudio for ESB.

Information presented in this document applies to Talend Open Sudio for ESB releases beginning
with 5.1.x.

Audience

This guide isfor users and administrators of Talend Open Sudio for ESB.

Thelayout of GUI screens provided in this document may vary slightly from your actual GUI.

Typographical conventions

This guide uses the following typographical conventions:

* textinbold: window and dialog box buttons and fields, keyboard keys, menus, and menu options,
* text in[bold]: window, wizard, and dialog box titles,

e textincouri er: system parameters typed in by the user,

* textinitalics: file, schema, column, row, and variable names referred to in all use cases, and also
names of the fields in the Basic and Advanced setting views referred to in the property table for
each component,

The 7 iconindicates an item that provides additional information about an important point. It is
also used to add comments related to atable or afigure,

The £4 icon indicates a message that gives information about the execution requirements or
recommendation type. It is also used to refer to situations or information the end-user need to be
aware of or pay specia attention to.

History of changes

The following table lists changes made in the Talend Open Sudio for ESB Mediation Components
Reference Guide.

Talend Open Studio for ESB Mediation Components Reference Guide

Feedback and Support

Version Date History of Change

v5.0 b 13/02/2012 Separated the appendix for Camel components from Talend Open
Sudio for ESB User Guide to form a new Talend Open Sudio for
ESB Mediation Components Reference Guide.

v5.1l a 28/05/2012 Updates in Talend Open Sudio for ESB Mediation Components
Reference Guide include:

» Updated the properties tables and scenarios of some components
to match the modifications in the GUI.

e Added new components in the Messaging family: cMail and
cHttp.

e Added a new component in the Context family:
c¢JM SConnectionFactory.

* Added a new component in the Miscellaneous family: cLog.
* Added anew component in the Exception family: cErrorHandler.

» Added a scenario for the cJMS component to explain how to set
up alocal IMS transaction.

v5.1l b 05/07/2012 Updates in Talend Open Studio for ESB Mediation Components
Reference Guide include:

» Updated the cCXF component.

» Added scenariosto the cContentEnricher and cJM S components.

Feedback and Support

Y our feedback isvaluable. Do not hesitate to give your input, make suggestions or requests regarding
this documentation or product and find support from the Talend team, on Talend’ s Forum website at:

http://talendforge.org/forum

Vi Talend Open Studio for ESB Mediation Components Reference Guide

http://talendforge.org/forum

Context components

This chapter details the major components that you can find in the Context family from the Palette of the
M ediation perspective of Talend Open Sudio for ESB.

The Context family groups components that define contexts you want to use in your Routes.

Talend Open Studio for ESB Mediation Components Reference Guide

cConfig

cConfig

gl

£F

cConfig properties

Component Family Context

Function cConfig allows you to set the Camel Context.

Purpose cConfig manipulates the Camel context as needed by the Routes.

Basic settings Code Write a piece of code to manipulate the Camel Context.

Dependencies Select the library or libraries that is required by the

Camel Context or Typeconverter Registry from the list.

Usage cConfig cannot be added directly in a Route.

Limitation n‘a

Scenario: Implementing a dataset from the Registry

In this scenario, an instance of dataset is added in the Registry and implemented by a cM essagingEndpoint

component.

e I — .':H

Read dataset ' ' ' ' ' Manitor

E‘E

" Create_datazet

Dropping and linking the components

1. Fromthe Palette, expand the Context folder, and drop a cConfig component onto the design workspace.

2. Expand the M essaging folder, and drop a cM essagingEndpoint component onto the design workspace.

3. Expand the Processor folder, and drop a cProcessor component onto the design workspace.

4. Right-click the input cM essagingEndpoint component, select Row > Route from the contextual menu and
click the cProcessor component.

5. Label the components to better identify their functionality.

2 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Implementing a dataset from the Registry

Configuring the components

1.

4.

5.

6.

Double-click the cConfig component, which is labelled Create dataset, to display its Basic settings view
in the Component tab. and set its parameters.

- =B
Create_dataset({cConfig_1) == E
Basic settings Code ;;;_;;a ;:;_ _:a:’e:_:'::_ converter.ToStringTypeConverte M
Advanced settings {)):
Dynamic settings =
View org.apache.camel.impl.SimpleRegistry regiscry = new
Documentation org.apache.camel.impl.SimpleRegistry () :
regiscry.put ("foo", new
org.apache.camel .component .dataset.5impleDataSec ()) ;
camelContext.setRegistry (registcry) ; W

Write a piece of code in the Code field to register the dataset instance foo into the registry, as shown below.

org. apache. canel . i npl . Si npl eRegi stry registry = new
org. apache. canel . i npl . Si npl eRegi stry();

registry. put ("foo", new
or g. apache. canel . conponent . dat aset . Si npl eDat aSet ()) ;
canel Cont ext . set Regi stry(registry);

Double-click theinput cM essagingEndpoint component, whichislabelled Read dataset, to display itsBasic
settings view in the Component tab.

=
=8 Read_dataset{cMessagingEndpoint_1) EE E
Basic settings URI datasetifoo
Advanced settings
Drynamic settings
View

Dacumentation

Inthe URI field, enter dataset:foo between the quotation marks.

Double-click the cProcessor component, which islabelled Monitor, to display its Basic settingsview in the
Component tab.

=0

% & Monitor(cProcessor_1) ==

"

Basic settings Code System.out.println("Message content:
Advanced settings exchange.getIn() .toString ()}) s
Dynamic settings

View

Daocumentation

In the Code box, customize the code as follows so that the Run console displays the message contents:

Talend Open Studio for ESB Mediation Components Reference Guide 3

Scenario: Implementing a dataset from the Registry

System out . println("Message content: "+
exchange. getln().toString());

7. PressCtrl+Sto save your route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

pubklic wvoid initRoute () throws Exception {
routeBuilder = new org.apache.camel . builder.RouteBuildex ()
public void configure () throws Exception {

from{uriMap.get ("Read dataset"))
.routeld("Read dataset") .process|
new org.apache.camel.Processor|()
public void process |
org.apache.camel.Exchange exchange)
throws Exception {

L

va3tem.out
println("Message content: "
+ exXchange
getiIn()
toString()):

}).id("cProcessor_1"):

o

getCamelContexts () .get (0) .addBoutes (routeBuilder) ;

As shown in the code, a message route is built f r omthe endpoint identified byRead dat aset and
cProcessor _1 getsthe message content and displays it on the console.

2. Click the Run view to display it and click the Run button to launch the execution of your route. You can
also press F6 to execute it.

RESULT: The message content is printed in the console.

4 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Implementing a dataset from the Registry

Execution

cConfig-ctx) started in 0.359 =econd=
[stati=stics] connecting to socket on port 3876
[=tati=stics] connected

Mes=zage content: Message: <hellorworld!<-hello:
Mesz=zage content: Message: <hello:world!<-hello:
[- data=zet:~~foo] dataset .- foo

INFO Sent: ¢ messages =o far. Last group toolk:
15% milli= which i=: 133 333 mnessages per =econd.
average: 133.333

Mes=zage content: Message: <hello:world!<-hello:
Mes==zage content: Message: <hello:world!<-hello:
[- data=zet:~~foo] dataset .~ foo

INFO Sent: 4 messages =o far. Last group toolk:
0 millis which i=s: 7 messages per =econd.
average: 266 667

Me==zage content: Messzage: <hello:world!<-hello: *

Talend Open Studio for ESB Mediation Components Reference Guide 5

¢JM SConnectionFactory

cJMSConnectionFactory

M5

=l

cJMSConnectionFactory properties

Component Family

Context

Function ¢JM SConnectionFactory specifies the connection factory that can be used by multiple
¢JM S components in a Route.
Purpose cJM SConnectionFactory is used to specify the IMS connection factory for message
handling.
MQ Server Select an MQ server from ActiveM Q, Customized, or
WebSphere M Q.
Use Transaction Select this check box to enable local transaction in the
current Route.
Broker URI Type in the URI of the message broker. For intra-Route
_ message handling, you can simply use the default URI
(for ActiveMQ only) vm://local host?broker .per sistent=fal se.
Use Select this check box to use PooledConnectionFactory.
PooledConnectionFactory
(for ActiveM Q only)
Max Connections Specify the maximum number of connections of the
_ PooledConnectionFactory. This field is available only
(for ActiveMQ only) when the Use PooledConnectionFactory check box is
selected.
Max Active Specify the maximum number of sessions per
_ connection. This field is available only when the Use
(for ActiveM Q only) PooledConnectionFactory check box is selected.
Idle Timeout Specify the maximum waiting time before the connection
_ breaks. This field is available only when the Use
(for ActiveMQ only) PooledConnectionFactory check box is selected.
Expiry Timeout Specify the time before the connection breaks since it is
_ used for thefirst time. Thisfield isavailable only when the
(for ActiveM Q only) Use PooledConnectionFactory check box is selected.
Codes Write a piece of code to specify the JMS connection
factory to be used for message handling.
(for Customized only)
Dependencies Specify the library or libraries required by the JMS
connection factory.
(for Customized only)
Host Name Type in the name or IP address of the host on which the
IBM WebSphere MQ server is running.
(for WebSphere M Q only)
Port Typeinthe port of the IBM WebSphere MQ server, 1414
by default.
(for WebSphere M Q only)
6 Talend Open Studio for ESB Mediation Components Reference Guide

Related scenario:

Transport Type Select a type of message transport between the IBM
WebSphere MQ server and the WebSphere MQ broker
(for WebSphereMQ only) | from Bindings, Bindings then Client, and Client.
Queue Manager Type in the name of the queue manager, or specify the
name of the IBM WebSphere MQ server to find a queue
(for WebSphere MQ only) | manager.

Authentication

On some operating systems, select this check box
and provide the username and password for the IBM

(for WebSphere MQ only) | webSphere MQ server to validate the access permission.
Thisoption is not required on Windows.
Dependencies Specify additional libraries required by the IBM
WebSphere M Q broker, which arenormally provided with
(for WebSphere MQ) the server installer.
Usage c¢JM SConnectionFactory cannot be added directly in a Route.
Limitation n/a

Related scenario:

For arelated scenario, see the section called “ Scenario 1: Sending and receiving a message from a JMS queue”.

Talend Open Studio for ESB Mediation Components Reference Guide

Talend Open Studio for ESB Mediation Components Reference Guide

Exception components

This chapter details the major components that you can find in the Exception family from the Palette of the
M ediation perspective of Talend Open Sudio for ESB.

The Exception family groups components that are dedicated to exception handling of Routes.

Talend Open Studio for ESB Mediation Components Reference Guide

cErrorHandler

cErrorHandler

4]

cErrorHandler properties

Component Family

Exception

Function

cErrorHandler provides multiple strategies to deal with errors processing an

Event Driven Consumer.

Purpose

cErrorHandler offers
processing.

different strategies for error handling during the

Basic settings

Default Handler

This error handler does not support a dead letter queue
and will return exceptions back to the caller.

Set Maximum Redeliveries: select this check box
to set the number of redeliveries in the Maximum
Redeliveries (int) field.

Set Redelivery Delay: select this check box to set
the initial redelivery delay (in milliseconds) in the
Redelivery Delay (long) field.

Set Retry Attempted L og L evel: select this check box
to select the log level inthe Level list for log messages
when retries are attempted.

Asynchronized Delayed Redelivery: select this check
box to allow asynchronous delayed redelivery.

Use Original Message: select this check box to use the
original message for redelivery.

More Configurations by Code: select this check box
to enter codesin the Code box for further configuration.

Dead Letter

This handler supports attempting to redeliver the
message exchange a number of times before sending it
to adead letter endpoint.

Dead Letter Uri: select this check box to define the
endpoint of the dead letter queue.

Other parameters share the same meaning as those of
the default handler.

Logging Handler

This handler logs the exceptions.

Set Logger Name: select this check box to give aname
to the logger in the Namefield.

Set Log Level: select this check box to decide the log
level from the Level list.

Usage

cErrorHandler provides multiple strategies to deal with errors processing an

Event Driven Consumer.

Limitation

10 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Logging the exception thrown during a client/server talk

Scenario: Logging the exception thrown during a
client/server talk

In this scenario, a Jetty server is started before a client browser requests access to it. Then an exception is thrown
at the server side and logged by cErrorHandler.

Dropping and linking the components

1. Drop the following components from the Palette onto the workspace: cMessagingEndpoint,
cErrorHandler and cProcessor, labelled as Jetty Server, Error_Handler and Throw_Exception
respectively.

2. Link cMessagingEndpoint and cProcessor using a Row > Route connection.
Error_Handler

" routel e
Jetby_Server Throw_Exception

Configuring the components

1. Double-click cErrorHandler to open its Basic settings view in the Component tab.

=10
m Error_Handler (cErrorHandler_1) =i [

{Default Handler () Dead Letter (33 Logging Handler
|:| Set Logger Mame
[]3et Logger Level

Basic settings
advanced settings
Dynamic settings
Wigsta

Daocumentation

2. Select Logging Handler to log the exceptions that are thrown.

3. Double-click cM essagingEndpoint to open its Basic settings view in the Component tab.

=&
—»8 Jetty_Server{cMessagingEndpoint_2) =5 [

Basic settings LRI “jetby:htkp: [flocalhost | G839 service"
Advanced settings
Dwnamic setkings
Wiew

Documentation

4. IntheUrifield, enterjetty: http://1 ocal host: 8889/ servi ce to specify the Jetty server.

Talend Open Studio for ESB Mediation Components Reference Guide 11

Scenario: Logging the exception thrown during a client/server talk

5. Click Advanced settings for further setup.

—n Jetty Server{cMessagingEndpoint_2)

Easic settings Dependencies Zamel component
Advanced settings Jetty

Dwnamic sekkings

Wi

Drocumentation

£ *

6. Inthe Dependenciestable, click the[+] button to add aline and select j et t y from the Camel component
list.

7. Double-click cProcessor to open its Basic settings view in the Component tab.
& & Throw_Exception{cProcessor_1)

Code throw new

Basic settings
Advanced settings Exception("server

=2ide error'
Dwnarnic setkings]

Wi

Docurnentation

8. Inthe Codebox, enter t hr ow new Exception("server side error") tothrow an exception.

9. PressCtrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to check the generated code.

public void initRoute ()] throws Exception {
routebBuilder = new ordg.apache.camel.builder.RouteBuilder (]
public void configure () throws Exception {
errorHandler (loggingErrorHandler ())

fromiuriMap.get ("Jetoy Jerver'™))
routeld("Jetty Server'™) . process |
new org.apache.camel.Processor() |
public void process|
org.apache.camel.Exchange exchange)
throws Exception {
throw new Exception|
"zerwver Side error™):

Ml .id({"cProcessor 1");

12 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Logging the exception thrown during a client/server talk

Asshown above, theroute startsf r omtheendpoint Jet t y_Ser ver and throwsthe exception of ser ver
side error viacProcessor 1.

Press F6 to execute the Route.

TéstEerrHandler—ctH} started in 0.531 seconds
[ztatistics] connecting to socket on port 3743
[=ztatistics] connected

The Jetty server has started.

Launch an Internet browser and enter htt p: / /1 ocal host : 8889/ ser vi ce (the Jetty server URI
configured above) in the address bar to access the server.

ﬁ http:fflocalhost: BBE9/service - Windows Internet Expig

@ = ™ |8 http:fflocalhosk: 8559 service
File Edit VYiew Fawaorikes Toals Help '
£7 Windows Live [- Bif

'L? e é htkpsfflocalhost: 6859/ service

java.lang.Exception: server =ide error
at work.testerrorhandler 0 1.TestErm
at org.apache.camel.util.asyncProce:

As shown above, the request failed due to the server error.

Go to the Studio and check the results in the Run tab.

TesztErrorHandler—-ctx) =tarted in 0.531 =seconds
[=tati=ztics] connecting to zocket on port 3743
[stati=tic=] connected
[gtp32200294-21] Logger EEROR
Failed delivervy for (Messageld:
ID-talend—andy—3694-1334888116328-0-2 on Exchangeld:
ID-talend—-andy-3694-1334888116328-0-1). Exhau=sted after
delivery attempt: 1 caught: java.lang. Ezception: server
zide error
java.lang. Exception: =erver =ide error

at
work testerrorhandler_0_1 TestErrorHandlerslCamellImnplsl
£l . process(TeztErrorHandler . java:229)
[file:“E:-TOS_ESB-r81689

—¥5 1 NMHR wArlk=nares Jawvas—laz=e= 1l

As shown above, cErrorHandler haslogged the exception at the level of ERROR.

Talend Open Studio for ESB Mediation Components Reference Guide 13

clntercept

cintercept

cintercept properties

Component Family Exception

Function clntercept intercepts the messages in al the sub-routes on a Route before they are
produced, and routes them in a new single sub-route without modifying the original
ones. When this detour is complete, message routing to the originally intended target
endpoints continues.

Purpose clntercept intercepts each message sub-route and redirects it in another sub-route
without modifying the original one. This can be useful at testing time to simulate error
handling.

Usage clntercept isastart component of a sub-route.

Connections Row / Route Select the Route link to intercept all the messages of all the sub-

routes listened to by the cl nter cept.

Trigger / When | Select the When link to filter the messagesto intercept and click the
Component view.

In the Type list, select the type of language you will use to declare
your condition.

Inthe Condition field, typein the condition that will be used tofilter
the messages.

All the messages that do not match this condition are dropped by
default or can be retrieved with the Otherwise link to a different
channel.

Limitation To keep the origina sub-routes untouched, cintercept only be used in a separate sub-
route.

Scenario: Intercepting several routes and redirect
them in a single new route

In this scenario, messages on two sub-routes are intercepted and routed along a new sub-route, which is then
terminated before the original sub-routes continue.

14 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Intercepting several routes and redirect them in asingle new route

FILE ° ’ ’ ’ ’ FILE ~
=8 routa T
Sender_1 Receiver_1
FILE ° ’ ’ ’ ’ FILE ~
e route? e
Sénder_'E ' ' ' ' Receiver_2
)) L) EILE °))))
T T | route3 'M_ routed '_—*E'_ route5 '_0_ _
Interceptor Monitor Receiver_3 Route_terminator

Dropping and linking the components

This scenario requires five cFile components, one cl nter cept component, one cProcessor component, and one
cStop component.

1

2.

From the M essaging folder of the Palette, drop four cFile components onto the design workspace.

Connect the two pairs of cFile components using Row > Route connections. Messages on these two sub-
routes will be intercepted.

From the Exception folder, drop a cl nter cept component onto the design workspace.
From the Processor folder, drop a cProcessor component onto the design workspace.
From the M essaging folder, drop afifth cFile component onto the design workspace.
From the Miscellaneous folder, drop a cStop component onto the design workspace.

Connect these four components one to the next using Row > Route connections. Along this sub-route,
intercepted messages will be directed to a new endpoint before the entire Route is terminated.

Label the components to better identify their rolesin the Route.

Configuring the components and connections

Inthisscenario, the cl nter cept component intercepts all the messages on al the sub-routes as soon asthe messages
are sent and does not have propertiesto set. The cStop component stopsthe sub-route on which it isdropped before
it completes and does not have properties to set. Therefore, you only need to configure the messaging endpoints
and monitor components.

1.

Double-click the cFile component labeled Sender_1 to display its Basic settingsview inthe Component tab.

Talend Open Studio for ESB Mediation Components Reference Guide 15

Scenario: Intercepting several routes and redirect them in asingle new route

FILE _ =n [

—pn Sender_1 (cFile_1)

Basic settings Path "Dnftalend_files/input_1" * [

= Parameters
Ad d sett
vanc.e 5 .|r1g5 7| Noop

Dynamic settings Flatten

View o | AutoCreate

Documentation BufferSize(kb) " 78"
Encoding CUSTOM - *
FileMarme

2. Inthe Path field, specify the file path to the first source your are going to send messages from, and leave
the other parameters as they are.

3. Double-click the cFile component labeled Receiver_1 to display its Basic settings view in the Component
tab.

FILE] . = L

—»n Receiver_1(cFile_2)

Basic settings Path "Dnftalend_files/esb/out 1" * |:|

- Parameters
Ad d sett
vanc.e g .|r1gs 7| Noop

Dynamic settings Flatten

View 7| AutoCreate

Documentation BufferSize(kb) " 78"
Encoding CUSTOM .| *
FileMarme

4. Inthe Path field, specify the file path to the first destination you are going to send messages to, and leave
the other parameters as they are.

5. Inthe same way, set the cFile components labeled Sender_2 and Receiver_2 across the second sub-route.
6. Double-click the cProcessor component, which is labeled Monitor, to display its Basic settings view in
the Component tab, and customize the code in the Code area to display the file names of the messages

intercepted on the console:

System out. println("Message intercepted: "+
exchange. get I n() . get Header (" Canel Fi | eNanme")) ;

7. Double-click the cFile component labeled Receiver_3to display its Basic settings view in the Component
tab.

16 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Intercepting several routes and redirect them in asingle new route

FILE _ _ =n E
—pn Receiver_3(cFile_5)
Basic settings Path "[nftalend_files/esb/intercept” * E]
Advanced settings ar:Jaljrgpeters
Dynamic settings 7] Flatten
View AutoCreate
Documentation BufferSize(kh) " 25"
Encading CUSTOM bl *
FileMame

8. Inthe Path field, specify the file path to the destination for the intercepted messages, and leave the other
parameters asthey are.

9. PressCtrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

public wvoid initBRoute () throws Exception {
routeBuilder = new org.apache.camel . builder.RouteBuilder () {
public void configure() throws Exception {
intercept ()
.routeld ("Interceptor™)
.process (new org.apache.camel .Processor () {
public vold process|(
org.apache.camel.Exchange exchange)
throws Exception {
System.out
Jprintln("Message intercepted:
+ exchange

"

getIn{)
.getHeader (
"CamelFileMName™)) ;
}).id("cPFrocessor 1").to|
uriMap.get ("Receiver 3")).id("cFile_3")
Stop i)
Lid("eStop_1");
from(uriMap.get ("Sender 1 ")) .routeld("Sender 1 ").tol
uriMap.get ("Receiver 1")).1id("cFile 2");
from(uriMap.get ("Sender 2")) .routeld("Sender 2").to|
uriMap.get ("Receiver 2")).1d("cFile 4");

i

getCamelContexts () .get (0) .addRoutes (routeBuilder) ;

As shown in this piece of code, Interceptor intercepts all messages on route, the intercepted messages are
directed . t o the endpoint Receiver_3, and cStop_1 terminates message routing before the messages are

Talend Open Studio for ESB Mediation Components Reference Guide 17

Scenario: Intercepting several routes and redirect them in asingle new route

routed f r omthe endpoint Sender_1 . t o the endpoint Receiver_1 and f r omthe endpoint Sender 2.t o
the endpoint Receiver_2.

2. Click the Run view and click the Run button to launch the execution of your Route. You can aso press
F6 to execute it.

RESULT: Files are sent from the endpoints, caught by the clntercept component, monitored by the
cProcessor component and sent to a new endpoint, and then the original sub-routes are terminated before
they can continue.

Execution

INFO Apache Camsl 2.8.2 (CamnslContext: o~
clntercept_sl-ctx) started in 0.707 =seconds
[stati=stics] connecting to zocket on port 3672
[=tati=stics] connected

Mes=zage intercepted: filel. zml

Mesz=zage intercepted: Message_ 1 =ml

Meszage intercepted: Hessage 2. =Zml

Hesz=zage intercepted: file? . =zZml

Mesz=zage intercepted: fileld. xZml

Mes=zage intercepted: MHessage 3. =Zml

m

Line limit |1pp Wrap

18 Talend Open Studio for ESB Mediation Components Reference Guide

cOnException

cOnException

cOnException properties

Component Family Exception
Function cOnException catches the defined exceptions to trigger desired actions.
Purpose cOnException is designed to catch the defined exceptions for desired error
handling.
Basic settings Exceptions Click the plus button to add as many lines as needed in
the table to define the exceptions to be caught.
Set a redelivering tries| Select this check box to set the maximum redelivering
count triesin the Maximum redelivering triesfield.
Non blocking|Select this check box to enable the feature of not
asynchronous behavior | blocking asynchronous behavior.
Exception behavior None: select this option to take no action on the origina
route.
Handle the exceptions: select this option to handle
exceptions and break out the original route.
Ignor e the exceptions: select this option to ignore the
exceptions and continue routing in the original route.
Route the original input|Select this check box to route the origina message
body instead of the|instead of the current message that might be changed
current body during the routing.
Usage cOnException is generally used as a standal one component in a sub-route.
Limitation n/a

Scenario: Using cOnException to ignore exceptions
and continue message routing

In this scenario, a cOnException component is used to

ignore an | O exception thrown by a Java bean so that the

message is successfully routed to the destination in spite of the exception.

B3
Dt

Ignore_exception

FILE |

I

I
!

= routel

"

route?

Source

Throw_exception

Monitar

Talend Open Studio for ESB Medi

ation Components Reference Guide 19

Scenario: Using cOnException to ignore exceptions and continue message routing

Dropping and linking the components

Drag and drop these components from the Pal ette onto the workspace: a cOnException component, acFile
component, a cBean component, and cProcessor component.

Link cFileto cBean using a Row > Route connection.
Link cBean to cProcessor using a Row > Route connection.

Label the components to better identify their rolesin the Route.

Configuring the components

1

Double-click the cOnException component, which is |abelled Ignore_exception, to open its Basic settings
view in the Component tab.

' : : 58)(E
54 Ignore_exception(cOnException_1)

Basic settings Exceptions

Exception
Advanced settings java.io JOException
Dynamic settings
View

Documentation

m

%)
[] Set a redelivering tries count

[Mon blocking asynchronous behavior

Exception behavicur
1 Mone

' Handle the exceptions

@ Ignore the exceptions

[] Route the original input body instead of the current body -

Click the plus button to add aline in the Exceptionstable, and define the exception to catch. In this example,
enter j ava. i 0. | OExcept i on to handle 10 exceptions.

Inthe Exception behavior area, select thel gnor ethe exceptions option to ignore exceptions and let message
routing continue. L eave the other parameters as they are.

Double-click the cFile component, which is labelled Source, to open its Basic settings view in the
Component tab.

20

Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using cOnException to ignore exceptions and continue message routing

FILE i ﬁ_

—pn Source(cFile_1)

Basic settings Path "D:ftalend_files/input” * ()

. Pararmeters
Ad d sett
1.ranl::.le g -|ngs 7| Noop

Dynamic settings Flatten

View V| AutoCreate

Documentation BufferSize(kh) "] 28"
Enceding CUSTOM - *
FileMarme

4. InthePath field, enter the path of the message source, and leave the other parameters as they are.

5. Double-click the cBean component, which is labelled Throw_exception, to open its Basic settings view in
the Component tab.

= |\
! Throw_exception(cBean_1) S
Basic settings Bean class beans.throwlOException.class *
Specify the method

Advanced settings
Dynamic settings
Wiew

Documentation

6. IntheBean classfield, enter the name of the bean to throw an IO exception, beans.throwl OException.class
in this scenario.

Note that this bean has already been defined in the Code node of the Repository and it looks like this:

package beans;
i nport j ava.i o.| OExcepti on;

i nport org. apache. canel . Exchange;

public class throw OException {

/**

* @hrows | OException
*/
public static void hell oExanpl e(String nmessage, Exchange exchange)
throws | OException {
t hrow new | OException("An | OExcepti on has been caught");
}
}

For more information about creating and using Java Beans, see Talend Open Studio for ESB User Guide.

Talend Open Studio for ESB Mediation Components Reference Guide 21

Scenario: Using cOnException to ignore exceptions and continue message routing

7. Double-click the cProcessor component, which is labelled Monitor, to open its Basic settings view in the
Component tab.

= DD|

% & Monitor(cProcessor_1) ==

Basic settings Code System.out.println("Message consumed: "+ -
exchange.getIn() .getHeader ("CamelFileHame™)) ;

Advanced settings
Dynamic settings
View

Documentation

8. Inthe Code area, customize the code to display the file name of the consumed message on the Run console:

System out . println("Mssage consuned: "+
exchange. get | n() . get Header (" Canel Fi | eName")) ;

9. PressCtrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to check the generated code.

public void initRoute () throws Exception {
routeBuilder = new org.apache.camel .builder.RouteBuilder() {
pubklic void configure () throws Exception {
onException({java.io.I0Exception.class)

.continued (troe) .routeld ("Ignore exception”);
from({uriMap.get ("Source™)) .routeld("Source”) .bean|
beans.throwlIOException.class) .id("cBean 1")
.process (new org.apache.camel.Processor() {
public void process |
org.apache . camel .Exchange exchange)
throws Exception {
System.out.println ("Message consumed:
+ exchange.getlIn() .getHeader|
"CamelFileHName™)) ;

"

}y.id("cProcessor 1"):

1.
i

getCamelContexts () .get (0) .addRoutes (routeBuilder) ;

As shown above, Ignore_exception handles any |10 exception thrown by
. bean(beans. t hr ow OExcepti on. cl ass) invoked by cBean_1, so that messages f r om the
endpoint Sour ce can be successfully routed onwards (cont i nued(t r ue)) in spite of the exception.

22 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using cOnException to ignore exceptions and continue message routing

2. Press F6 to execute the Route.

The route gets executed successfully and the files from the source are successfully routed to the destination.

Execution
Run = Kill Clea
terolize=s 1l danoop=trus | g
[main] DefaultCanelContext
INFO Total 1 routes. of which 1 i=
started.
[main] DefanltCanslContext

INFQ Apache Camsl 2.8.2 (CamnslContext:
cOnException_sl-ctx) started in 0.577
seconds

[statistics] connecting to socket on port
aeG1

[=tati=tics] connected

Mes=zage consumed: Hello. t=t

Hes=zage consumned: World. t=t

m

Line limit |1q0 Wrap

3. Changethe exception handling option in the cOnException component or deactivate the component and run
the Route again.

The exception thrown by the Java bean prevents the messages from being routed successfully.

Talend Open Studio for ESB Mediation Components Reference Guide 23

cTry

cTry

try

cTry properties

Component Family Exception
Function cTry offers Javas exception handling abilities by building Try/Catch/Finally
blocks.
Purpose cTry isdesigned to build Try/Catch/Finally blocks to handle exceptions.
Usage cTry isused as a middle component in a Route.
Connections Try Select thislink toisolatethe part of your Routethat islikely to throw
an exception or exceptions.
When the Try link is followed by multiple components,
¥ a compile error may occur showing "The net hod
doCat ch() is undefi ned for t he
type Expr essi onNode". In this case, use a
cJavaDSL Processor component to end the Try block with
the code. endDoTr y() asaworkaround.
Catch Select thislink to catch any exception thrown in the Route.
In the Exceptions field, type in an expression to filter the type of
exception to catch.
Thislink can be used only when aTry link is present.
7
Finally Select link to execute final instructions regardless of any exceptions
that may occur in the Route.
Thislink can be used only when aTry link is present.
]
Route Select thislink to route all the messages from the sender to the next
endpoint.
Limitation n/a

Scenario: Using cTry to build Try/Catch/Finally blocks
for exception handling

In this scenario, the content of each file sent from the message sender to the receiver ischecked and if any file does
not meet the content requirement, an exception is thrown and the relevant information is displayed on the console.

24 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using cTry to build Try/Catch/Finally blocks for exception handling

Throw_exc éptiu:un '

FILE °
_'—*':' | ~ routel
Sender

fingd B
Show_exception

FILE °

—p E

Receiver

Dropping and linking components

1. Fromthe Messaging folder of the Palette, drop twockile components onto the design workspace, one asthe
message sender and the other as the message receiver.

2. From the Exception folder, drop a cTry component onto the design workspace to build Try, Catch and
Finally blocks.

3. From the Processor folder, drop two cProcessor components onto the design workspace.
4. Link thecFilecomponent serving as message sender to thecTry component using aRow > Route connection.

5. Link the cTry component to one cProcessor using a Row > Try connection. This cProcessor component
will throw an exception if any file coming via this connection does not contain the required content.

6. Link the cTry component to the other cProcessor component using a Row > Catch connection to catch the
exception. This cProcessor component will display theinformation related to the exception and the file name
that does not contain the required content.

7. Link the cTry component to the receiving cFile component using a Row > Finally connection.

8. Label the components according to their rolesin the Route.

Configuring the components and connections

1. Double-click the cFile component labeled Sender to open its Basic settings view in the Component tab.

Talend Open Studio for ESB Mediation Components Reference Guide 25

Scenario: Using cTry to build Try/Catch/Finally blocks for exception handling

FILE = |_

—»n Sender(cFile_1) EEE
Basic settings Path "D:/talend_files/input” * =)
. Parameters
Ad d sett
vanc.e = .|ngs 7| Noop
Dynamic settings Flatten
View | AutoCreate
Documentation BufferSize(kh) 128"
Encaoding UTF-& -
FileMame

2. Inthe Path field, fill in or browse to the path to the folder that holds the source files.

3. Fromthe Encoding list, select the encoding type of your sourcefiles. Leave the other parameters asthey are.

4. Repeat these step to define the output file path and encoding type in the Basic settings view of the other
cFile component, which is labeled Receiver.

5. Double-click the cProcessor component labeled Throw_exception to open its Basic settings view in the
Component tab, and customize the code in the Code area to throw an exception and display relevant
information if any file coming viathe try connection does not meet the content requirement, as follows:
String body = exchange.getln().getBody(String.class);

System out. println("\nTrying: "+body);
Exception e = new Exception("Only ' Talend Integration Solutions' is
acceptabl e. Please check the file:");
if(!"Talend Integration Sol utions". equal s(body)){
t hr ow e;
}el se{
Systemout.printin("File is good.");
}

6. Click the catch connection and then the Component tab to open its Basic settings view, and fill the
Expression field with an expression to specify the type of exception to catch.

In this scenario, fill in Except i on. cl ass to catch any exception thrown.
= catchl
Basic settings Exceptions Exception.class
Advanced settings

7. Double-click cProcessor component labeled Show_exception to open its Basic settings view in the
Component tab, and customize the codein the Code areato display the exception information and the rel ated
file name, asfollows:
System out . pri ntl n(exchange. get Property(" Canel Excepti onCaught") +
" " + exchange. getln().get Header (" Canel Fi | eNane")) ;

8. Click Ctrl+Sto save your Route.

26 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using cTry to build Try/Catch/Finally blocks for exception handling

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to check the generated code.

public wvoid initRoute () throws Exception {
routeBuilder = new org.apache.camel .builder.RouteBuilder() {
public void configure () throws Exception {

from{uriMap.get ("Sendexr™))
.routeId("Sendexr")

.id("cTry 1)
~doTry ()
.process(new org.apache.camel.Processor() {

public wvoid process|
org.apache.camel.Exchange exchange)
throws Exception {
String body = exchange.getIn().getBody(
String.class);
System.out.println{"\nTrying: " + body):
Exception e = new Exception|
"Cnly 'Talend Integration Sclutions' is acceptakble. Please check the file:"):;
if (!"Talend Integration Solutions"
.equals (body)) {
throw e;
} else {
System.out.println("File is good."):

}).id("cProcessor_1").doCatch(Exception.class)
.process(new org.apache.camel.Processor() {
public void process|
org.apache.camel.Exchange exchange)
throws Exception {
System.out
.println(exchange
.getProperty ("CamelExceptionCaught™)

2w
+ exchange
.getIn()
.getHeader|
"CamelFileName")) ;
}).id("cProcessor_2").doFinally().to|
uriMap.get ("Receiver™)).id("cFile 2");

As shown above, while messages are routed f r omthe sender . t o thereceiver, . doTry(),. doCat ch()
and . doFi nal | y() blocks are built by cTry_1. Thus, when any file does not meet the content
reguirement, an exception is thrown and caught, before each file is finally routed to the receiver.

2. Press F6 to execute the Route.

Execution

Run = Kill Clear
e e e e
[statisztics] connecting to socket on port 3443 =+
[2tati=tic=s] conhected
Trving: Hello world!
java.lang. Exception:
Only 'Talend Integration Solutions' i=
acceptable. Pleasse check the file: Filel txt
Trving: Talend Integration Solutions =
File i= good.

Line limit |100 Wrap

Talend Open Studio for ESB Mediation Components Reference Guide 27

Scenario: Using cTry to build Try/Catch/Finally blocks for exception handling

RESULT: When afilethat does not meet the content requirement is detected, an exception isthrown, and the
exception information is displayed on the console. Regardless of the exception, all the files from the sender
are sent to the receiver.

28 Talend Open Studio for ESB Mediation Components Reference Guide

Messaging components

This chapter details the major components that you can find in the M essaging family from the Palette of the
M ediation perspective of Talend Open Sudio for ESB.

The Messaging family groups components that provide access to messaging endpoints, file systems, repository
of code, and so on.

Talend Open Studio for ESB Mediation Components Reference Guide

cBean

cBean
3

cBean properties

Component Family Transformation

Function cBean invokes a Java beans that is stored in the Code node of the Repository.

Purpose cBean alows you to invoke a beans that is stored in the Code node of the
Repository.

Basic settings Bean class Enter the name of a bean class that is stored in the Code

node of the Repository.
For more information about creating and using Java
Beans, see Talend Open Studio for ESB User Guide.

Foecify the method Select this check box to enter the name of a method to
be included in the bean.

Usage cBean alows you to invoke a beans that is stored in the Code node of the
Repository.

Limitation

Related Scenario

For arelated scenario, see:

» cConvertBodyTo: the section called “Scenario: Converting the body of an XML file into an
org.w3c.dom.Document.class’.

30 Talend Open Studio for ESB Mediation Components Reference Guide

cCXF

cCXF

CAF

cCXF properties

Component Family

Messaging

Function CcCXF providesintegration with Apache CXF for connecting to JAX-WS services.

Purpose cCXF is used to provide or consume a Web service from a WSDL file or a Java
class.

Basic settings CXF Configuration/| The service endpoint URL where the Web service is

Address

provided.

In case cCXF isused to consume aWeb service and the
endpoint lookup shall use the Service Locator (the Use
Service Locator check box is selected), the URL needs
tobe"l ocat or://anyAddress/".

CXF Configuration/
Type

Select which type you want to use to provide Web
service. Either wsdlURL or serviceClass.

wsdIURL : Select this type to provide the Web service
fromaWSDL file.

serviceClass. Select thistypeto providethe Web service
from an SEI (Service Endpoint Interface) Java class.

CXF Configuration/
WSDL File

This field displays when the wsdIURL service type is
selected. Browse to or enter the path to the WSDL file
to be used to provide the Web service.

CXF Configuration/
Service Class

Thisfield displayswhen the serviceClass servicetypeis
selected. Enter the name of the service class to be used
to provide the Web service.

CXF Configuration/
Dataformat

The exchange data style. MESSAGE, PAYLOAD, or
POJO.

MESSAGE isthe raw messagethat isreceived from the
transport layer.

PAYLOAD isthe message payload, the contents of the
soap: body.

POJOs (Plain Old Java Objects) are the Java parameters
to the method being invoked on the target server.

Service Select this check box to specify the service port. This
option is useful especialy when there are multi service
portsin the WSDL or service class.

Service Name The service name this service is implementing. It

maps to the wsdl : servi ce@ane in the format of
ns: SERVI CE_NAME where ns is a namespace prefix
valid at this scope.

Talend Open Studio for ESB Mediation Components Reference Guide 31

Scenario 1: Providing a Web service using cCXF from aWSDL file

Port Name

The endpoint name this service is implementing. It
maps to the wsdl : port @ane, in the format of
ns: PORT_NANME where ns is anamespace prefix valid
at this scope.

ESB Features/Use
Service Locator

Provides service consumers with a mechanism to
discover service endpoints at runtime without specifying
the physical location of the endpoint. Additionally, it
allows service providers to automatically register and
unregister their service endpoints at the Service L ocator.

For service consumers, the URL additionally

¥ needs to be set to "locator://
anyAddr ess/ " inthe CXF Configuration /
Addressfield.

The Custom Properties table appears when the Use

Service Locator check box is selected. Click . ™ . to
add as many properties as needed to the table. Enter the
name and the value of each property in the Property
Name field and the Property Value field respectively
to identify the service. For more information, see Talend
ESB Runtime Configuration Guide for how to install and
configure the Service L ocator.

ESB
Service
Monitor

Features/Use
Activity

Captures events and stores this information to facilitate
in-depth analysis of service activity and track-and-trace
of messages throughout a business transaction. This can
be used to analyze serviceresponsetimes, identify traffic
patterns, perform root cause analysis and more.

Thisfeature is not supported when M ESSAGE

¥ is used as the processing mode. When
MESSAGE isselectedinthe Datafor mat field,
the Use Service Activity Monitor check box is
disabled.

Advanced settings Arguments

Set the optional arguments in the corresponding table.
Click [+] as many times as required to add arguments
to the table. Then click the corresponding Value field
and enter a value. See the site http://camel.apache.org/
cxf.html for available URI options.

Usage

cCXF can be a start, middle or end component in a Route.

Limitation

Multiple cCXF components with the same label in a Route is not supported.

Scenario 1: Providing a Web service using cCXF from

a WSDL file

In this scenario, a Web service is produced by a cCXF component using aWSDL file.

CXF

e P

l—*D

WebService_producer

ro I.|_tEl

cProcessor_1

32

Talend Open Studio for ESB Mediation Components Reference Guide

http://camel.apache.org/cxf.html
http://camel.apache.org/cxf.html

Scenario 1: Providing a Web service using cCXF from aWSDL file

Dropping and linking the components

This use case requires one cCXF component and one cProcessor component.
1. Fromthe Palette, expand the M essaging folder, and drop a cCXF component onto the design workspace.
2. Expand the Processor folder, and drop a cProcessor component onto the design workspace.

3. Right-click the cCXF component, select Row > Route from the contextual menu and click the cProcessor
component.

4. Labe the cCXF component for better identification of its functionality.

Configuring the components

In this scenario, the cProcessor component is used only to enable the cCXF component to function as a service
producer. Therefore, it does not need any configuration.

1. Double-click the cCXF component to display its Basic settings view in the Component tab.

CXF _ =n [
—pn WebService_producer(cCXF_1)

Basic setti CXF Configuration

asic settings
ng Address "http:/192.168.0.212:8000/ service.endpoint” *
Advanced settings
- - Type wsdIURL -
Dynamic settings o
View WSDL File "[nftalend_files/input/airport_soap_routewsd!” *l_l
Documentation Dataformat PAYLOAD ~
Service

ESE Features
Ise Service Locator

Use Service Activity Monitor

2. In the Address field, type in the service endpoint URL for the Web service to be provided,
http://192.168.0.212: 8000/service.endpoint in this example.

From the Typelist, select wsdIURL to enable producing the Web service from aWSDL file.
Inthe Wsdl Filefield, browse to or typein the path to the WSDL file to be used.
From the Dataformat list, select PAY L OAD mode for the wsdlURL data format.

S

Press Ctrl+S to save your route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

protected void initUriMap() {
uriMap = new java.util.HashMap<String, String>():
uriMap.put ("WekService producer”, moexfl A"
+ "nttp://192.168.0.212:8000/service. endpoint™ + "?wsdlURL="
+ "D:/talend files/input/airport scap route.wsdl"
+ "idataFormat=PRYLOAD™) ;

Talend Open Studio for ESB Mediation Components Reference Guide 33

Scenario 2: Providing a Web service using cCXF from a Java class

As shown in the code, the cCXF component labelled WebServi ce producer produces
the Web service from an input file airport_soap_route.wsdl using the endpoint URL
http://192.168. 0.212;: 8000/ servi ce. endpoi nt .

2. Click the Run view to display it and click the Run button to launch the execution of your Route. Y ou can
also press F6 to execute it.

RESULT: The service is successfully started. You can access it from a Web browser using the service
endpoint URL followed by ?wsdl .

2l http://localhost:8000/service.endpoint?wsdl - Microsoft Internet Explorer

File Edit View Favorites Tools Help -f'
- — A . o — ;
Q- @ R G Pseoon Goroos @ - LH[JE0 27 BB B
Address | €] http: /flocalhast:3000/service.endpaint?wsd V|G° unks (@ snagt B
Py

=?xml version="1.0" encoding="UTF-8" 2=
zwsdl:definitions targetNamespace="http:/ fairportsoap.sopera.de"
xmins:http="http:/ /schemas.xmlsoap.org/wsdl/http/" xmins:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmins:s="http:/ fwww.w3.0rg/2001/XMLSchema" xmins:soap="http:/ /schemas.xmlsoap.org/wsdl/soap/"
xmins:soapl2="http:/ /schemas.xmlsoap.org/wsdl/soap12/"
xmins:soapenc="http://schemas.xmlsoap.org/soap/encoding/" xmins:tns="http:/ / airportsoap.sopera.de"
xmins:wsdl="http:/ /schemas.xmlsoap.org/wsdl/">
- awsdl:types=
+ <5:schema elementFormDefault="qualified" targetNamespace="http:/ /airportsoap.sopera.de"
xmins:http="http:/ /schemas.xmlsoap.org/wsdl/http/"
xmins:mime="http:/ /schemas.xmlsoap.org/wsdl/mime/"
xmins:s="http://www.w3.0org/2001/XMLSchema"
xmins:soap="http:/ fschemas.xmlsoap.org/wsdl/soap/"
xmins:soapl2="http:/ /schemas.xmlsoap.org/wsdl/soap12/"
xmins:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmins: tns="http:/ /airportsoap.sopera.de" xmins:wsdl="http:/ fschemas.xmlsoap.org/wsdl/"=
</wsdl:types:=
+ <wsdl:message name="getAirportInformationByISOCountryCodeSoapOut"=
+ <wsdl:message name="getAirportInformationByISOCountryCodeSoapFault">
+ <wsdl:message name="getAirportInformationByISOCountryCodeSoaplIn":=
+ <wsdl:portType name="airportSoap":=
+ <wsdl:binding name="airportSoap" type="tns:airportSoap":>
+ «wsdl:service name="airport"> B
</wsdl:definitions = w

éj Done \ﬁ Local intranet
N

Scenario 2: Providing a Web service using cCXF from
a Java class

In this scenario, a Web service is provided from a Java classfile using a cCXF component.

Creating a Java class

1. Fromtherepository treeview, expand the Code node and right click the Beans node. In the contextual menu,
select Create Bean.
1 Contexts
= Code

=

& -',‘T:j Create Bean
] 3 Create folder
] Expand/Collapss
O EEI Impart items

& ligl Export items
‘r‘ﬂ": AOOreETETEDoroTT
& Recycle bin

B EEE R

34 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 2: Providing a Web service using cCXF from a Java class

2. The New Bean wizard opens. In the Name field, type in a name for the bean, for example, CXFdemobean.
Click Finish to close the wizard.

New Bean |ZI|E| [z|

Hew Bean

Add a Route in the repository @

Mame | C¥Fdemobean |

Purpose | |

Description

Author

Locker

|

| |
Version | ||E

|

|

Status v

Path || Select]

@ Einish H Cancel]

3. Changetheclasstypetoi nt er f ace, change thereturn typeto st r i ng and remove the message body.

package beans;

public interface CXFdenpbean {
public String hell oExanpl e(String nessage) ;
}

4. PressCtrl+Sto save your bean.

Dropping and linking the components

—) J_
= ~ routel '“

WehServi ce_p-rcu:lu cer ' ' ' cF'rbcessdr_l

This use case requires one cCXF component and one cProcessor component.

1. From the Palette, expand the M essaging folder, select the cCXF component and drop it onto the design
workspace.

2. Expand the Processor folder, select the cProcessor component and drop it onto the design workspace.

Talend Open Studio for ESB Mediation Components Reference Guide 35

Scenario 2: Providing a Web service using cCXF from a Java class

3.

4.

Right-click the cCXF component, select Row > Route in the contextual menu and click the cProcessor
component.

Label the components for better identification of their functionality.

Configuring the components

In this scenario, the cProcessor component is used only to enable the cCXF component to function as a service
producer. Therefore, it does not need any configuration.

1

Double-click the cCXF component to display its Basic settings view in the Component tab.

CXF _ =0 E
—pn Web5Service_producer(cCXF_1)
Basic setti CXF Configuration
asic settings

"9 Address Ihittp://192,168.0.212:3001 /service.endpoint” ™

Advanced settings -
: : Type serviceClass -
Dynarnic settings
View Service Class "beans.CXFdemobean” *
Documentation Dataformat POJO i
Service

ESE Features
Use Service Locator

Use Service Activity Monitor

In the Address field, type in the service endpoint URL for the Web service to be provided,
http://192.168.0.212:8001/ser vice.endpoint in this example.

From the Type from, select serviceClass to start the Web service from a Java class.
In the Service Classfield, specify the predefined bean class, CXFdemobean in this example.
From the Datafor mat list, select POJO as the serviceClass service data format.

Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.
protected woid initUriMap() {
uriMap = new java.util.HashMap<S5tring, String>().
uriMap.put ("WebService producer", "cxf: LA
+ "http://192.168.0.212:8001/service.endpoint™
+ "?serviceClass=" 4+ "beans.CXFdemobean" 4+ "&dataFormat=POJO") ;
As shown in the code, the cCXF component labelled WebServi ce_producer produces
the Web service from an predefined bean beans. CXFdenobean using the endpoint URL
http://192.168.0.212: 8001/ servi ce. endpoi nt .
2. Click the Run view to display it and click the Run button to launch the execution of your Route. Y ou can
also press F6 to execute it.
36 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 2: Providing a Web service using cCXF from a Java class

RESULT: The service is successfully started. You can access it from a Web browser using the service
endpoint URL followed by ?wsdl .
X
c

- http:/flocalhost:8001/service.endpoint?wsdl - Microsoft Internet Explorer Z
.

=
File Edit View Favorites Tools Help F

eBack - _/I |ﬂ @ _;j /:\J Search “_it(Favorites ﬁ‘} [_:v :; — _J g}j % ﬂ ﬁ

Address @ http: /localhost: 300 1/service. endpoint?wsd| V| Go | Links [E2 Snagit E £ |
L
<?xml version="1.0" encoding="UTF-8" ?=]
- «zwsdl:definitions name="CXFdemobean" targetlNamespace="http:/ /beans/"
xmins:ns1="http://schemas.xmlsoap.org/soap/http"
xmins:soap="http:/ /schemas.xmilsoap.orgfwsdl/soap/" xmins:tns="http:/ /beans/"
xmins:wsdl="http:/ /schemas.xmlsoap.org/wsdl/"
xmins:xsd="http:/ /fwww.w3.0rg/2001/XMLSchema">
zwsdl:portType name="CXFdemobeanPortType" /=
- =wsdl:binding name="CXFdemobeanSoapBinding" type="tns:CXFdemobeanPortType">
<soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http" /=
</wsdl:binding=>
- =wsdl:service name="CXFdemobean"=
- zwsdl:port binding="tns:CXFdemobeanSoapBinding" name="CXFdemobeanPort">
<soap:address location="http:/ /localhost:8001 /service.endpoint" /=
</wsdl:port=
</wsdl:service=
</wsdl:definitions = :

I@ Cone \:J Local intranet

Talend Open Studio for ESB Mediation Components Reference Guide 37

cFile

cFile
FILE
_*-I:l
cFile properties
Component Family Messaging
Function cFile provides access to file systems.
Purpose cFile alows files to be processed by any other Camel components or messages
from other components to be saved to disk.
Basic settings Path Path to the file or files to be accessed or saved.
Parameters/Noop Select this check box to keep the file or files in the

original folder after being read.

Parameters/Flatten Select this check box to flatten the file name path to
strip any leading paths. This alows you to consume
recursively into sub-directories, but when you, for
example, write thefilesto another directory, they will be
written in asingle directory.

Parameters/AutoCreate| Select this check box to create the directory specified in
the Path field automatically if it does not exist.

Parameters/ Write buffer sized in bytes.

Buffer Sze(kb)

Encoding Specify the encoding of the file, 1 SO-8859-15, UTF-8,
or CUSTOM.

FileName The name of the file to be processed. Use this option if
you want to consume only a single file in the specified
directory.

Advanced settings Advanced Set the optional arguments in the corresponding table.

Click [+] as many times as required to add arguments
to the table. Then click the corresponding Value field
and enter a value. See the site http://camel.apache.org/
file2.html for available URI options.

Usage cFile can be a start, middle or end component in a Route.

Limitation n/a

Scenario: Reading files from one directory and writing
them to another

In this scenario, an input cFile component is configured to visit a local file directory and send the files in the
directory to an output cFile component which writes the filesin another directory.

38 Talend Open Studio for ESB Mediation Components Reference Guide

http://camel.apache.org/file2.html
http://camel.apache.org/file2.html

Scenario: Reading files from one directory and writing them to another

FILE | ' ' ' ' ' ' FILE
Looes 0 ued o TERE
Message source Message_destination

Dropping and linking the components

1.

From the Palette, expand the Messaging folder and select the cFile component. Drop one as the input

component and another as the output component onto the design workspace.

Right-click theinput cFile component, select Row > Route in the contextual menu and click the output cFile

component.

Label the components to better identify their respective functionality.

Configuring the components

1.

2.
3.

Double-click the input cFile component to display its Basic settings view in the Component tab.

FILE : =n [
—»n Message _source(cFile_1)
Basic settings Path "[r/talend_files/input” * E]
Aduanc.ed set.tings ar:laﬂrgpeters
Dynamic settings [Flatten
View AutoCreate
Documentation BufferSize(kh) 128"
Encoding CUSTOM - *
FileMame

In the Path field, browse to or enter the input file path, and leave the other parameters as they are.

Double-click the output cFile component to display its Basic settings view in the Component tab.

FILE = [

—»n Message_destination(cFile_2)

Basic settings Path "D:/talend_files/output” * [I]
Advanced settings ar:laljrgpeters
Cynamic settings 7] Flatten
View AutoCreate
e BufferSize(kb) "128"
Encoding CUSTOM - *
FileMame "

Talend Open Studio for ESB Mediation Components Reference Guide

39

Scenario: Reading files from one directory and writing them to another

4.

5.

In the Path field, browse to or enter the output file path, as shown above. Leave the other parameters as
they are.

Press Ctrl+S to save your route.

Viewing code and executing the Route

1.

Click the Codetab at the bottom of the design workspace to have alook at the generated code.

public void initRoute() throws Exception {
routeBuilder = new org.apache.camel .builder.RouteBuilder() {
public void configure() throws Exception {
from(uriMap.get ("Message source")) .routeld|
"Message source").tol
uriMap.get ("Hessage destination™))
LAd("cFile 2");

ir

getCamelContexta() .get (0) .addRoutes (routeBuilder) ;

As shown in the code, a message route is built f r omone endpoint . t o another.

Click the Run view to display it and click the Run button to launch the execution of your Route. Y ou can
also press F6 to execute it.

RESULT: Theinput files are written to specified output directory.

40

Talend Open Studio for ESB Mediation Components Reference Guide

cFtp

CFtp

cFtp properties

FTP

Component Family

Messaging

Function cFtp provides access to remote file systems over the FTP, FTPS and SFTP
protocols.

Purpose cFtp allows data exchange over remote file systems.

Basic settings Parameters/type Select thefile transfer protocoal, ftp or sftp, ftps.
Parameter s/server Type in the remote server address to be accessed.
Parameters/port Typein the port number to be accessed.

Parameters/username | Type in the user authentication information.

Parameters/password | Typein the user authentication information.

Parameters/directory |Enter the directory you want to access on the remote
server. If not specified, the root directory will be
accessed.

Advanced settings

Advanced Set the optional arguments in the corresponding table.
Click [+] as many times as required to add arguments
to the table. Then click the corresponding Value field
and enter a value. See the site http://camel.apache.org/
ftp.html for available URI options.

Usage

cFtp can be a start, middle or end component in a Route.

Limitation

n/a

Related scenario:

No scenario is available for this component yet.

Talend Open Studio for ESB Mediation Components Reference Guide 41

http://camel.apache.org/ftp.html
http://camel.apache.org/ftp.html

CHttp

CHttp

CHttp properties

Component Family

Messaging

Function

cHttp provides Http-based endpoints for consuming external Http resources, i.e.
asaclient to call external serversusing Http.

Purpose

cHttp is designed to build a client endpoint to call external Http resources using

Hittp.

Basic settings

Uri

The URI of the Http resource to call.

Method

List of the Http request methods.

Get

Retrieve the information identified by the request URI:

Parameters: click the [+] button to add lines as needed
and define the key and value in the table.

Encoder Char set: enter the encoder charset inthefield.

Post

Reguest that the origin server accept the entity enclosed
in the request as a new subordinate of the resource
identified by the request URI:

Plain text: type in the text in the Content box as the
request message.

Form Style: click the [+] button to add lines as needed
and define the key and value in the Parameters table.
Also, enter the encoder charset in the Encoder Char set
field.

Use M essage Body: use the incoming message body as
the Http request.

Put

Request that the enclosed entity be stored under the
supplied request URI.

Delete

Request that the origin server delete the resource
identified by the request URI.

Head

Identical to GET except that the server MUST NOT
return a message body in the response:

Parameters: click the [+] button to add lines as needed
and define the key and value in the table.

Encoder Char set: enter the encoder charset in thefield.

Options

Represent a request for information about the
communication options available on the request/
response chain identified by the request URI.

Trace

Invoke a remote, application-layer loop-back of the
request message.

42 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Retrieving the content of aremotefile

Advanced settings Headers Click the [+] button to add lines as needed and define
the key and value for headers.
Usage cHttp provides Http based endpoints for consuming external Http resources, i.e.

asaclient to call external serversusing Http.

Limitation

Scenario: Retrieving the content of a remote file

In this scenario, cHttp is used to request the body of aweather condition definition file that is available at http://
wsf.cdyne.com/WeatherWS/Weather.asmx.

Dropping and linking the components

1

Drop the following components from the Palette onto the workspace: cMessagingEndpoint,
cSetBody, cHttp and cProcessor, labelled as STARTER, HTTP_REQUEST BODY,
GET_WEATHER_DESCRIPTION and PRINT_RESPONSE respectively.

Link the components using a Row > Route connection.

" p—

http
— 71 i =# d}
o otel —1 rouke’ b= rouke?
STARTER. HTTP_REQUEST BODY GET_WEATHER_DESCRIPTION 'PRINT_RESPOMSE

Configuring the components

1.

2.

3.

Double-click cM essagingEndpoint to open its Basic settings view in the Component tab.

=0
—» 8 STARTER(cMessagingEndpoint_1) o
LRI "tirner igotrepeatCount=1"

Basic settings
Advanced settings
Dwnamic sektings
Wiew

Daocumentakion

Inthe URI field, entert i mer : go?r epeat Count =1 to define atimer for starting message exchanges. In
this example, only one message exchange will be carried out due to the setting of r epeat Count =1.

Double-click cSetBody to open its Basic settings view in the Component tab.
=+ | HTTP_REQUEST_BODY {cSetBody_1) =C

Basic settings Language Constant we
Advanced settings Expressian "zenapeny: Envelope xmins: soapeny=*
Creniamic setkings

Wiy

Documentation

Talend Open Studio for ESB Mediation Components Reference Guide 43

http://wsf.cdyne.com/WeatherWS/Weather.asmx
http://wsf.cdyne.com/WeatherWS/Weather.asmx

Scenario: Retrieving the content of aremotefile

4.

5.

10.

11.

In the Language field, select Constant.
In the Expression field, enter the following as the body of the request message:

<soapenv: Envel ope xm ns: soapenv=\"http://schemas. xm soap. or g/ soap/
envel ope/\" xm ns: weat=\"http://ws. cdyne. com
/ Weat her W5/ \ " ><soapenv: Header/

><soapenv: Body><weat : Cet Weat her Def i ni ti onl nf or mat i on/ ></ soapenv: Body></
soapenv: Envel ope>

Double-click cHttp to open its Basic settings view in the Component tab.

[—— =0
t‘__||h>“p GET_WEATHER_DESCRIPTION{cHttp_1) =10 E
Basic settings i "hitp: ffwsf. cdyne. comWeatherin'SWeather, asma"
Advanced settings Methad POST b

Drwnamic setkings {JPlain Text ('Form Style (3 Use Message Body
Wi

Docurmentation

Inthe Uri field, enter the location of the file to fetch, http://wsf.cdyne.com/Weather WS Weather.asmx in this
example.

Select POST in the M ethod list and then the Use M essage Body box.
Click Advanced settings for further setup.
E‘T GET_WEATHER _DESCRIPTION{cHttp_1})

Basic settings Headers Key Walue

Advanced settings "Content-Type" “textlxml;charset=UTF-3"
- - "SOAPACtion” "http:/iws cdyne.comfWeather'w's/izet\WeatherInformation”

Dvnarnic sektings

Wiew

Drocumentation
£ ?
Click the [+] button to add two linesin the Header s table.

TypeinCont ent - Type andt ext / xm ; char set =UTF- 8 for theK ey and Valuefieldsinthefirst line,
and SOAPActi on aswell ashttp://ws. cdyne. com Weat her W5/ Get Weat her | nf or mati on
in the second line.

Double-click cProcessor to open its Basic settings view in the Component tab.

Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Retrieving the content of aremotefile

==

& & PRINT_RESPONSE{cProcessor_1)

Basic settings Code

#dvanced settipgs 0 T T T T TTTTTT BEBPEREE = o

Dwnarmic settings .
IJystem.out.println{exchange.d

etIn() .getBody(3tring.class)) ;
Documentation System.out.println(f————————-

Wigw

12. In the Code area, enter the following to print the response from the remote website, i.e. the body of the

13.

desired file:

Systemout.printin("-------------------- RESPONSE- - - - ---------------- ")
System out . printl n(exchange. getln().getBody(String.cl ass));
Systemout.printin("-------------------- END-------------------- ")

Press Ctrl+S to save your Route.

Viewing code and executing the Route

1

Click the Codetab at the bottom of the design workspace to check the generated code.

public void initRoute|] throws Exception {
routebuilder = new org.apache.camel.builder.Routebuilder (] o
public void configure() throws Exception {
from{uriMap.get ("ITLRTER™))
routeId ("3 TARTER"
.2etBody ()
.constant |
"osoapenv:Envelope xmlns:soapenv=4"http://schemas. xmlsoap.org/ soap/ envel
Lid("zSetBody 1"
SetHeader ("Came lHttpMethod™, constant ("POST™)
.2etHeader ("Content-Type™,
constant [("text/xml; charset=UTF-8")]
.setHeader |
"EOAPACtion™,
constant ["http://ws.cdyne. cow/ TeatherWs/ Getleather Information™))
Jto(urilMap.get ("GET WEATHER_DESCRIPTICH™))

Lid{"cHoop 1") .process |
new org.apache.camel.Processor() {
public void process|
org.apache.camel.Exchange exchanges)
throws Exception {
S3ystem.out
println(-—-————————— REZPONEE-——————————————————
System.out.println{exchanges
SgetIn) .getBody |
Ftring.class)) ;
Jystem.out
.println("---———---——--—— - —— END———————————————————— "y

}

)l id{"cProcessor 1) ;

As shown above, the message exchange starts from the endpoint STARTER, gets its body
set to <soapenv: Envel ope xm ns: soapenv=\"http://schemas. xnl soap. or g/ soap/
envel ope/\"xm ns: weat =\"http://ws. cdyne. com Weat her W&/

\ " ><soapenv: Header/

Talend Open Studio for ESB Mediation Components Reference Guide 45

Scenario: Retrieving the content of aremotefile

><soapenv: Body><weat : Get Weat her Def i ni ti onl nf or mat i on/ ></ soapenv: Body></
soapenv: Envel ope> at cSet Body_1, and then is sent out to the specified website by cHt t p_ 1.
Finally, the responseis printed out viacPr ocessor _1.

2. Press F6 to execute the Route.

[statistic=] conhecting to socket on port 3992
[=tati=stic=] connected
FESPCONSE
£?Eml wersion="1. 0" encoding="utf-8""Y:<=oap:Envelopes

Emln= soap="http: - ws=chemnasz . Znl=zoap. org-szoap-envelops"

Emln= =m=i="http: - wwwy wi org-2001-XMLSchema—in=stance"

Emlhns ®Z=sd="http:www w3 org 2001l -EMLSchema" ;<=oap:Body:>{Getleat
herInformationRezponses

Emln=="http: vz cdvhe.con-NeatherlWsS " :<GetWeatherInfornat ionkes
ult:<Weatherlescription:<TeatherlID:1<-WeatherID:<Description:>Thu
nder
Storm=<sDescription:<PicturellRL:http . »w= . cdyne com-WeatherWsS<Im
ages-thunder=torm=s. gif < PicturelRL:<-WeatherDescription:<Weather
Description»<WeatherID:2< -NMeatherID:«<Description:Partly

ription:<WeatherID:37 ¢ MeatherlD:<Description:il

CLOUDS < ~Description:<FPicturelRL:http: ~»w= cdyne . con-WeatherTS-In
agesz-partlyvcloudy gif ¢ PicturelRL:: -WeatherDescription: < GetWeat
herInformationFEesult < GetWeatherInformationkRespon=e: < =oap: Body
r{ zoap:Envelope:

END

As shown above, the retrieved file defines up to 37 weather conditions with detailed description.

46 Talend Open Studio for ESB Mediation Components Reference Guide

cIMS

cJMS

JMS
_*- 7]
cJMS properties
Component Family |Messaging
Function c¢JM S alows messages to be sent to, or consumed from, a IMS Queue or Topic.
Purpose ¢JM Sis used to send messages to, or consume messages from, a JIM S Queue or Topic.
URI/Type Select the messaging type, either queue or topic.
URI/Destination Typein aname for the IMS queue or topic.
ConnectionFactory Click the three-dot button and select a JIMS connection

factory to be used for handling messages or enter the
name of the corresponding cJM SConnectionFactory
component directly in the field.

Advanced settings |URI Options Set the optional arguments in the corresponding table.
Click [+] as many times as required to add arguments
to the table. Then click the corresponding value field
and enter a value. See the site http://camel.apache.org/
jms.html for available URI options.

Usage ¢JM S can be a start, middle or end component in a Route.

Limitation n/a

Scenario 1: Sending and receiving a message from a
JMS queue

In this scenario, a cJM S component sends messages from the local file system to a message queue in one sub-
route, and the messages are then consumed by another cJM S component in the other sub-route.

| dms
=

' .ﬁ.-:ti{feMQC'DnnecEiDnFac'tDry '

FILE ~ JMs
= routel F—pm
File_source ' ' ‘Message_producer
e))) S
= roukez "B P
'Message_ccurisumer' ' ' ' monitar

Talend Open Studio for ESB Mediation Components Reference Guide 47

http://camel.apache.org/jms.html
http://camel.apache.org/jms.html

Scenario 1: Sending and receiving a message from a IM S queue

Dropping and linking the components

1. From the Palette, expand the Context folder, and drop a cJM SConnectionFactory component onto the
design workspace to specify the IMS connection factory for handling messages.

2. From the M essaging folder, drop one cFile and two cJM S components onto the design workspace.
3. From the Processor folder, drop a cProcessor component onto the design workspace.

4. Connect thecFile component toacJM Scomponent using aRow > Route connection asthe message producer
sub-route.

5. Connect the other cJM S component to the cProcessor component using a Row > Route connection as the
message consumer sub-route.

6. Label the components properly for better identification of their functionalities.

Configuring the components

1. Double-click the cJM SConnectionFactory component to display its Basic settings view in the Component
tab.

e i - - EJE
% ActiveMOConnectionFacotry {cIJMSConnectionFactory_1)

M Server AckiveMo | |:| Ilse Transackion
Broker URI "“em:| flocalhost?hroker persistent=False" |*

Basic settings
Advanced settings
Dynamic setkings [Juse PocledConnectionFacakry
Wiew

Documentation

2. From the MQ Server ligt, select an MQ server. In this use case, we use the default ActiveMQ server to
handle the messages.

Inthe Broker URI field, typein the URI of the message broker. Here we simply use the default URI "vm://
localhost?broker.persistent=false".

3. Inthe message producer sub-route, double-click the cFile component to display its Basic settings view.

FILE . EDD [:
—pu File_source(cFile_1)
r o fi : *
Basic settings Path D: ftalend_files finput E]
5 Parameters
Advanced settings MNogp
Dynamic settings [IFlatten
Wiew AutoCreate
Docurnentation "128"
Buffersize(kb) 128
Encoding - o) " i
FileMName

48 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 1: Sending and receiving a message from a JM S queue

4. Define the properties of the cFile component.

Inthisuse case, simply specify the path to the folder that holdsthe sourcefileto be sent as el ectronic message,

and leave the other parameters as they are.

5. Double-click the cJM S component labeled Message producer to display its Basic settings view.

JMS
—pn Message_producer (cIMS_1)

IURI

Basic settings Type *

Adwvanced settings

Destination "gueue, hello
Dvnamic sekkings | 4

Wig ConneckionFactory D |.ﬁ.ctiveMQCDnneu:tiu:unFau:tu:ur';.-'

Documentation

6. Fromthe Typelist, select queue to send the messagesto a JIM'S queue.

In the Destination field, type in a name for the IMS queue, " queue. hel | 0" inthisuse case.

Double-click the [...] button next to ConnectionFactory. Select the IMS connection factory that you have
just configured in the dialog box and click OK. Y ou can also enter the name of the cJM SConnectionFactory

component directly in the field.

% Select JMS ConnectionFactory:

ﬁ ActiveMOConnectionFactary

K l [Cancel

7. Switch to the message consumer sub-route, and double click the cJMS component labeled

Message consumer to display its Basic settings view.

JMS
—pn Message_consumer(cIMS_2)

=
==

Basi i LRI
asic settings Type queue
ddvanced settings N
: _ Destination |"queue.hellu" |
Dyvnamic sekkings
Wigw ConnectionFackary | | |.ﬂ.n:l:iveMQCnnnectinnFactnry |*
Docurnentation
8. Configure the message consumer using exactly the same parameters as in the message producer.
9. Double-click the cProcessor component to display its Basic settings view.
Talend Open Studio for ESB Mediation Components Reference Guide 49

Scenario 1: Sending and receiving a message from a IM S queue

& & Monitor(cProcessor_1)

o

"o

Basic settings Code Sy=ztem.out.println("Messages consumed:
c

hange.getlIn() .getHeader ("CamelFilelame")) ;

m

Advanced settings ®

Dynamic settings
View

Documentation

10. Inthe Code area, customize the code as shown below to display the file names of the consumed messages
on the Run console.

System out. printl n("Message consuned: "+
exchange. get | n() . get Header (" Canel Fi | eNane")) ;

11. Press Ctrl+Sto save your Routes.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

public void initRoute() throws Exception {

routebuilder = new org.apache.camel.builder.FouteBuilder (] |
public void configure () throws Exception {
from{uriMap.get ("File source”)).routeld("File source™)

tofuriMap.get ("Message producer™))
LAdiMedJME 17

from{uriMap.get ("Hessage consuwer™)) .routeld|
"Message consuwer™) . process |
new org.apache.camwel.Processor () |

public void process|
org.apache.camel . Exchange exchange)
throws Exception {
System.out.println("Message consumed:
+ exchange.getIn() .getHeader |
"Came lFileName"™));

M .id({"cProcessor_17):

Y
getCamelContexts () .get (0] .addFoutes (routebuilder) ;

typefonverterRegistry = carelContext.getTypeConverterBegistry () ;2

Javax. jms . ConnectionFactory jmsConnectionFactory = null:

JwsConhectionFactory = new org.apache.activemdg. AetiveMOConnectionFactory |
M S localhoat ?hroker . persistent=false™) ;

camelContext .. addComponent [("cJM3ConnectionFactoryl™,
org.apache.camel. component ., jms . JmesComponent

JmsComponent (JmsConnectionFactoryl)

In the partially shown code, a message route is built from the File_source .to the
Message_ producer which then sends the message to a message queue via a broker identified by

50 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 2: Setting up aJMS local transaction

vm / /| ocal host ?br oker . per si st ent =f al se. Themessagef r omtheMessage _consuner is
processed by cPr ocessor _1.

2. Click the Run button in the Run view to launch the execution of your Route. You can aso press F6 to
execute it.

RESULT: The message is received by the consumer, as shown on the Run console.

Execution
(= Kl
[méin] DefaultCanslContext L
INFO Total 2 routes., of which 2?2 1= started.
[main] DefaunltCanslContext

INFOQ Apache Camel 2.9, 2-SHAPSHOT {(CamnselContext:
¥EE—ctE) started in 1. 828 =seconds

[ztati=tic=s] connecting to zocket on port 4043
[stati=tic=] connected

Mes=zage consumed: Hello. tzt

Scenario 2: Setting up a JMS local transaction

In this scenario, alocal transaction with three stepsis performed to send, test and consume a JM S message:
1. Thefirst Routeis used to send a"hello world!" message to feed the queue.hello IM S queue.

2. The second Route is used to test the received IMS message. This message is redelivered six times to the
gueue.hello queue and is then moved to the Dead Letter IMS queue. The Route is programmed to throw an
exception every time an exchange is processed by the Route.

3. Thelast Routeis used to consume the "hello world!" message from the Dead Letter IMS queue.

Sending a message to the queue.hello JMS queue

| dms v
- -
AMQ _Send_ConnecticnFactory DatasetConfig

IMs —
5] I —
SimpleDatasetGen AMOQ _Send PrintsendMsg

Dropping and linking the components

1. From the Palette, drop the five following components onto the design workspace: one
c¢JM SConnectionFactory, one cConfig, one cMessagingendpoint, one cJMS and one cProcessor
component.

2. Connect the cM essagingEndpoint component to the cJM S using a Row > Route connection.

3. Connect the cJM S component to the cProcessor component using a Row > Route connection.

Talend Open Studio for ESB Mediation Components Reference Guide 51

Scenario 2: Setting up aJMS local transaction

Configuring the components

1

Double-click the cJM SConnectionFactory component labelled AMQ_Send_ConnectionFactory to display
its Basic settings view in the Component tab.

tn Job(Route AM | 53 Component 2 [k Run {Job AMQ_ | [Z Problems Contexts(Route =0

==
ﬁ AMQ Send_ConnectionFactory(AMQ _Send_ConnectionFacotry) @H_

MG Server ActiveMQ - [* [[] Use Transaction

Basic settings
Broker URI "tepe/flocalhost:61616" *

Advanced settings
e —-— [] Use PooledConnectionFacotry
View

Documentation

From the MQ Server list, select an MQ server. In this use case, we use the default ActiveMQ server to
handle the messages.

Inthe Broker URI field, typein Active MQ's default URI of the localhost server: "tcp://localhost: 61616".

When using ActiveMQ to handle messages between different Routes, you need to launch the

¥ ActiveMQ server before executing the Routes. For more information on installing and launching
ActiveMQ server, see the section about installing Apache ActiveMQ in the Talend ESB Installation
Guide.

Double-click the cConfig component, which is labelled DatasetConfig, to display its Basic settings view in
the Component tab and set its parameters.

n Job(Route AM | 53 Component 23 (b Run (Job AMQ_ | [2 Problems Contexts(Route = g

_ ==
DatasetConfig(cConfig_1) = L

Code

o e PO S U -

mverter ()) »

(o
L L

oL

[T}
=]

Basic settings - = -

Advanced settings *f
camelContext.addComponent ("dataset™,
new

Dynamic settings
View i

org.apache.camel . component.dataset.Dat
Documentation aSetComponent ()) 7

org.apache.camel . component.dataset.5im
pleDataSet dataset = new
org.apache.camel . component.dataset.5im
pleDataSet (1) ;
dataset.setDefaultBody ("Test Data:
hello world!™);

Aarr arnarhe camal dmnl SdimnmleRemi a2t =

Write apiece of codein the Codefield to register the dataset instance hello into the registry, as shown below.

or g. apache. canel . conponent . dat aset . Si npl eDat aSet dat aset = new
or g. apache. canel . conponent . dat aset . Si npl eDat aSet (1) ;
dat aset . set Def aul t Body(" Test Data: hello world!");
org. apache. canel . i npl . Si npl eRegi stry registry = new
org. apache. canel . i npl . Si npl eRegi stry();
registry. put ("hell 0", dat aset);

52

Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 2: Setting up aJMS local transaction

canel Cont ext . set Regi stry(registry);

6. Double-click the cM essagingEndpoint component, which islabelled SmpleDatasetGen, to display itsBasic
settings view in the Component tab. and set its parameters.

in Job(Route AM | %2 Component &5 B Run (Job AMQ_ | [2 Problems |] Contexts) = O

—+= SimpleDatasetGen(cMessagingEndpoint_1)

Basic settings LRI "dataset:hello”

Advanced settings
Dynamic settings
View

Documentation

7. Inthe URI field, enter dataset: hello between the quotation marks.

8. Double-click the cJM S component labeled AMQ_Send to display its Basic settings view.
tn Job(Route AM | 53 Component 2 [k Run (Job AMQ_ | [2 Problems | [} Contexts(Route =8

IMS

—pn AMQ Send(cJM5_1)

Basic setti URl

asic ings Type queve - |*

Advanced settings -
- - Destination "queue.hello”

Dynamic settings

View CDHHECtiDﬂFECtDr}fD AMQ_Send_ConnectionFacotry *

Documentation

9. Fromthe Typelist, select queue to send the message to a JM S queue.
In the Destination field, typein a name for the IMS queue, "queue.hello” in this use case.

Double-click the[...] button next to ConnectionFactory. Select the IMS connection factory that you have
just configured in the dialog box and click OK .. Y ou can also enter the name of the cJM SConnectionFactory

component directly in thefield.
42 Select IMS ConnectionFactary: I&

Jim AMO_Send_ConnectionFactory

OK] ’ Cancel

P A

10. Double-click the cProcessor component labelled PrintSendMsg to display its Basic settings view in the
Component tab, and customize the code in the Code area to display the sent message intercepted on the

console.

Talend Open Studio for ESB Mediation Components Reference Guide 53

Scenario 2: Setting up aJMS local transaction

System out . println("AMQ Send: "+
exchange. get I n() . get Body(Stri ng. cl ass));

Executing the Route

» Click the Run button in the Run view to launch the execution of your Route. You can aso press F6 to
execute it.

RESULT: One "hello world!" message is sent to the IMS Queue, as shown in the Run console.

Execution

ron | [mon | [Guc

=LdLl'LE=ld LIl U, 300 ===
[stati=tic=s] connecting to =ocket
on port 3546

[=tati=tic=s] connected

AMO Send: Test Data: hello world!
[data=zet: ~~hella] dataset:-~hello
INFO Sent: 1 messagesz =o far. Last
group toolk: 0 millis which i1=: 7
neszages per second. average: 7

Line limit | 1q0 Wrap

Testing the received message

JMS ’ ’ = ’ ' =
| | routel '_L‘J"\"_ route? F_L‘J"\"_
AMQ_Rev PrintReviMsg ThrowEx

| ms
=10
AM CLF&EV_CD nnectionFacto r_-,r-

Dropping and linking the components

1. FromthePalette, drop thefour following components onto the design workspace: one cJM S, two cPr ocessor
components and one cJM SConnectionFactory.

2. Connect the cJM S component to the first cProcessor using a Row > Route connection.

3. Connect the first cProcessor component to the second cProcessor component using a Row > Route
connection.

Configuring the components

1. Double-click the cJM SConnectionFactory component labelled AMQ_Rev_ConnectionFactory to display
its Basic settings view in the Component tab.

54 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 2: Setting up aJMS local transaction

iy Job(Route A | %& Component &3 OB Run (Job AM | [2 Problems|] Contexts(Rout| — O

MS . .
& AMQ_Rev_ConnectionFactory(AMQ _Rev_ConnectionFacotry) E
Basic settings MQ Server ActiveMQ ~ [* [¥] Use Transaction
Broker URI "tepe/flocalhost61616" *

Advanced settings
P ——— [] Use PooledConnectionFacotry
View

Docurnentation

From the MQ Server list, select an MQ server. In this use case, we use the default ActiveMQ server to
handle the messages.

Select the Use transaction check box.
Inthe Broker URI field, typein Active MQ's default URI of the localhost server: "tcp://localhost: 61616".

Double-click the cJM S component labeled AMQ_Rev to display its Basic settings view.
4 Job(Route A | & Component &3 [Run (Job AM | [2/ Problems| 7 Contexts{Rout| = O

JM5 EDD

—pn AMQ Rev(cJMS5_1)

Basic setti URI

asic ings Type queue ~ [*

Advanced settings *
- - Destination "queue.helle”

Dynamic settings

View CunnectiDnFactnr}rD AMQ_Rev_ConnectionFacotry *

Docurnentation

From the Typelist, select queue to send the messagesto a JM'S queue.
In the Destination field, typein a name for the IMS queue, "queue.hello” in this use case.

Double-click the[...] button next to ConnectionFactory. Select the IMS connection factory that you have
just configured in the dialog box and click OK .. Y ou can also enter the name of the cJM SConnectionFactory

component directly in the field.
42 Select IMS ConnectionFactory: I&

2y AMQ_Rev_ConnectionFactory

0K] ’ Cancel

P A

Double-click the first cProcessor component labelled PrintRevMsg to display its Basic settings view in the
Component tab, and customize the code in the Code area to display the received message intercepted on

the console.

System out . printl n("AM) Recei ve: "+

Talend Open Studio for ESB Mediation Components Reference Guide 55

Scenario 2: Setting up aJMS local transaction

exchange. get I n(). get Body(Stri ng. cl ass));

7. Double-click the second cProcessor component labelled ThrowEx to display its Basic settings view in the
Component tab, and customize the code in the Code area to throw the Force fail exception every time an
exchange is processed by the route.

t hr ow new Exception("Force fail")

Executing the Route

e Click the Run button in the Run view to launch the execution of your Route. You can also press F6 to
execute it.

RESULT: The "hello world!" message is tested and a rollback transaction is performed. Once the message
redelivery attempts exceeds six times, the pending message is sent to the Dead Letter IM S Queue.

Consuming the message from the DeadLetter JMS queue

s

cJMSConnectionFactory 1

e . . .
. PP owd T ®
DeadletterQueuelMSs Printisg

Dropping and linking the components

1. From the Palette, drop the three following components onto the design workspace: one
¢JM SConnectionFactory, one cJM S and one cProcessor component.

2. Connect the cJM S component to the cProcessor component using a Row > Route connection.
Configuring the components

1. Double-click the cJM SConnectionFactory component to display its Basic settings view in the Component
tab.

5 Job(Route Con | 52 Component &% B Run (Job Consu | (21 Problems Contexts(Route = 8
M5 . o=
% cJMSConnectionFactory_1 E= ‘—
Basic settings M Server ActiveMQ - * Use Transaction
Broker URI "tepi/flocalhostBlE16" *

Advanced settings
e Use PooledConnectionFacotry
View

Documentation

2. From the MQ Server list, select an MQ server. In this use case, we use the default ActiveMQ server to
handle the messages.

3. IntheBroker URI field, typein Active MQ's default URI of the localhost server: "tcp://localhost:61616".

56 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 2: Setting up aJMS local transaction

4. Double-click the cJM S component |abeled DeadL etter QueueJMSto display its Basic settings view.
5 Job(Route Con | 52 Component &3 [B= Run (Job Consu [3_ Problems | ' Contexts(Route = 0O

JMS EEID
—pn DeadletterQueueJMS(cJMS_1)
Basic setti URl
asic ings Type queue = |*
Advanced settings .
Destination "SctiveMQ.DLO"

Dynamic settings
View CDHHECtiDﬂFECtDr}fD cIM5ConnectionFactory_1 *

Documentation

5. Fromthe Typelist, select queue to send the messages to a IM S queue.

In the Destination field, type in a name for the IMS queue, "ActiveMQ.DLQ" in this use case (the default
Dead Letter Queue in ActiveMQ).

Double-click the[...] button next to ConnectionFactory. Select the IMS connection factory that you have
just configured in the dialog box and click OK .. Y ou can also enter the name of the cJM SConnectionFactory
component directly in thefield.

4 Select IMS ConnectionFactory: I&l

aigy cIMSConnectionFactory 1

QK] ’ Cancel

6. Double-click the cProcessor component labelled PrintMsg to display its Basic settings view in the
Component tab, and customize the code in the Code area to display the received message intercepted on
the console.

System out . println("AM) Receive: "+
exchange. get I n(). get Body(String. cl ass));

Executing the Route

» Click the Run button in the Run view to launch the execution of your Route. You can aso press F6 to
execute it.

RESULT: The "hello world!" message that was in the Dead Letter queue is consumed, as shown in the Run
console.

Talend Open Studio for ESB Mediation Components Reference Guide 57

Scenario 3: Sending and receiving a scheduled delivery of messages from a JMS Queue using Camel Quartz

Execution

on | [mn | [Fuc

Total 1 route=, of which 1 i= ~
=tarted.

[main]
DefaultCanslContext IHFO
Apache Camel 2.9 2-SHAPSHOT
(CamelContext: ConsunerDLO-ctx)
=tarted in 0.618 seconds
[2tati=tic=s] connecting to socket
on port 3832

[stati=tic=s] connected

AMD) Receive: Test Data: hello
world!

m

Line limit | 100 Wrap

Scenario 3: Sending and receiving a scheduled
delivery of messages from a JMS Queue using Camel
Quartz

This scenario will show you how to use the Camel Quartz component to provide a scheduled delivery of messages
from a JM S Queue.

To do this, we will build two Routes, a message producer Route and a consumer Route. We will implement the
Quartz component in the producer Route to send scheduled messages to a IMS Queue. The messages are then
consumed by the consumer Route.

In this use case, we will use Apache ActiveMQ as the message broker. We need to launch the ActiveMQ server
before executing the Route. For more information about installing and launching ActiveMQ server, see the site
http://activemq.apache.org/index.html.

Building the producer Route
Dropping and linking the components
[lms

-
cIMSConnectionFactary 1

. . . . R
B—————=p | jpp I
" roukel — route? routed =il
" guartzConsumer cSetBody 1 logMessage jmsProducer

1. From the Palette, drag and drop a cJMSConnectionFactory, a ¢cJMS, a cSetBody, and two
cM essagingEndpoint components onto the design workspace.

58 Talend Open Studio for ESB Mediation Components Reference Guide

http://activemq.apache.org/index.html

Scenario 3: Sending and receiving a scheduled delivery of messages from a JMS Queue using Camel Quartz

2. Label the componentsfor better identification of their roles and link them with the Row > Route connection
as shown above.

Configuring the components

1. Double-click the cJM SConnectionFactory component to display its Basic settings view in the Component
tab.

Ins . = E
I ‘ cI+¥SConnectionFactory_1

M) Server AckiveMo w * |:| Idse Transackion
Broker URI "tepifflocalhost:a1616" *
Iz PooledConnectionFackory

Basic settings
Advanced setkings
[wnamic settings
Yiew Max Connections |5

Documentation Max Active S00
Idle Timeouk(in ms) | 30000

Expiry Timeoukdin ms) |1

2. Fromthe MQ Server ligt, select ActiveM Q to handle messages.
Inthe Broker URI field, typein the URI of the local Active MQ server, "tcp://localhost:61616".
Select the Use PooledConnectionFatory check box and keep the default settings.

3. Double-click the quartzConsumer component to open its Basic settings view in the Component tab.

=0
—# 8 quartzConsumer(chMessagingEndpoint_1) == D
Basic settings LRI quarkz: fHello\Worldrtrigger . repeatInteryal=2000&trigger . repeatCount=-1
Advanced settings
Drynarnic sektings
i
Docurnentakion
4. In the URI field, enter the code "quartz://Hell owrld?

trigger.repeatlnterval =2000&t ri gger . r epeat Count =- 1" to define a timer for starting
message exchanges. In this use case, we want the message to be delivered endlessly between an interval of
two seconds. For more information about Quartz, see the site http://camel.apache.org/quartz.html.

Click the Advanced settingsview. Click. &t the bottom of the Dependencieslist to add arow and select
quart z from the drop-down list. For more information about the Quartz component, see the site http://
camel.apache.org/quartz.html.

Talend Open Studio for ESB Mediation Components Reference Guide 59

http://camel.apache.org/quartz.html
http://camel.apache.org/quartz.html
http://camel.apache.org/quartz.html

Scenario 3: Sending and receiving a scheduled delivery of messages from a JMS Queue using Camel Quartz

—#8 quartzConsumer{cHessagingEndpoint_1)

Dependencies A
Basic settings R Zamel component
Advanced settings quarkz
[rvnamic settings
Wiew
Dacument ation
|:| Use a cuskor companent b

6. Double-click the cSetBody component to open its Basic settings view in the Component tab.

=0
—] cSetBody_1 =
Basic settings Language Simple w
Advanced settings Expression "Hello world” *

Cwnamic setkings
Wigt

Documentation

7. Select Simple from the Language list box and typein" Hel | o wor | d" inthe Expression field.

8. Double-click the logM essage component to open its Basic settings view in the Component tab.

=0
—¢ 08 logtessage{ciessagingEndpoint_2) £2 [

Basic settings IURI "log:quartzMessage"
Advanced settings
Dynamic settings
Wigsta

Daocumentation

9. IntheURI field, enter " | 0og: quart zMessage" where the message exchanges are logged.

10. Double-click the jmsProducer component to display its Basic settings view in the Component tab.

| B
—pn jmsProducer(cIMS_1)

- - LRI
Basic settings Type queue e *
Advanced settings N
Dyramic settings Destination "guartzTest"
Mg ConneckionFackory E] cIMSConnectionFackary 1 *

Documentation

60 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 3: Sending and receiving a scheduled delivery of messages from a JM S Queue using Camel Quartz

11. Fromthe Type list, select queue to send the messages to a JM S queue.
In the Destination field, type in aname for the IMS queue, " quart zTest " in this use case.
Inthe ConnectionFactory field, enter the name of the IM S connection factory that you have just configured.

12. Press Ctrl+Sto save your Route.

Viewing the code and executing the Route

1. Click the Codetab at the bottom of the design workspace to check the generated code.

public void initFoute () throws Exception
routeBuilder = new ord.apache.camel.builder.BouteBuilder() ¢
public void configure () throws Exception |
fromiuriMap.get ("gquartzConsumer™)) .routeId /|

ouartzConsumer ™) . setBody () . simple |
"Hello world"™).id("c3etBody 17) .tof
urilMap.get ("logMessage™)) . id |
"oMessagingEndpoint 27) .Co |
urilMap.get ("jmsProducer™)) . id("eJMS 17 ;

y:
getCamelContexts () .get (0) .addRoutes (routeBuilder) ;

As shown above, the message flow from quar t zConsuner isgiven apayload by cSet Body_1 and then
senttol ogMessage andj nsPr oducer .

2. Press F6 to execute the Route.

RESULT: Thelogs of the message exchange are printed in the console.
Execution

[ztati=stics] connecting to sockest on port 3802 S

[ztati=tics] connected

[er—ctx_Worker-Z2] guartzlessage IHED

Ezxzchange[ExchangePattern: InOnly. BodyTvpe:String.

Body :Hello world]

[er—ctx_Worker-3] guartzMessage IHFD

Ezxzchangse[ExchangePattern: InOnly. BodyTvpe: String.

Body:Hello world]

[er—ctE_Worker—4] quartzMes=zages IHFOD

Ezxzchange[ExchangePattern: InOnly. BodyTvype: String.

Body :Hello world]

[exr—ctx_Worker-5] guartzMes=zage IHFO

Exchange[EzchangePattern: Intnly, BodyTyvpe:String.

Body :Hello world]

Jabh rartslnsusner andaed & 14056 SRS TIE. fara e code=87
W

[ILirme limit |10 Wrap

Talend Open Studio for ESB Mediation Components Reference Guide 61

Scenario 3: Sending and receiving a scheduled delivery of messages from a JMS Queue using Camel Quartz

Building the consumer Route
Dropping and linking the components

Ins
=L |

cJMSCunhectinnFactnrQ_l

TIMS |
m routel

—a—=

jmsConsumer logMessage

—p O

1. From the Palette, drag and drop a cJMSConnectionFactory, a cJMS, and a cM essagingEndpoint
component onto the design workspace.

2. Label the componentsfor better identification of their roles and link them with the Row > Route connection
as shown above.

Configuring the components

1. Double-click the cJM SConnectionFactory component to display its Basic settings view in the Component

tab.
ﬁ cIMSConnectionFactory_1 5 [
Basic settings MG Server AckiveMd w [* []Use Transaction
Advanced settings Eroker LRI "tepefilocalhosk 61616 *
Dyvnamic settings IUse PooledConnectionFactary
Wig Max Connections |5
Docurnenkakion Max Ackive 500

Idle Timeouk(in ms) | 30000

Expity Timeaut(in ms) (1

2. Configure the cJM SConnectionFatory component the same as in the producer Route.

3. Double-click the jmsConsumer component to display its Basic settings view in the Component tab.

s = [
—p imsConsumer(cIMS_1)

- - LRI
Basic settings Tvpe queue e [*
Advanced settings .
Dynamic settings Destination "guartzTest"
Wigw ConneckionFackary D cIMSConnectionFackory 1 [*

Documentation

4. ConfigurethejmsConsumer component the same as the jmsProducer component in the producer Route to
consume the messages in the defined queue " quar t zTest ".

62 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 3: Sending and receiving a scheduled delivery of messages from a JM S Queue using Camel Quartz

5.

6.

7.

—» 8 |opgMessage(cMessagingEndpoint_2)

Basic settings LRI

Advanced setkings
Dywnamic settings
Wi

Documentation

Press CtrI+S to save your Route.

Viewing the code and executing the Route

1

2.

"log:quartzMessage"

throws Exception 1

public void configure() throws Exception |

fromi{uriMap.get ("jmsConsumer ™)) .routeld (" jmsConswumer ™)

Double-click the logM essage component to open its Basic settings view in the Component tab.

=E
==

Inthe URI field, enter " | 0g: quart zMessage" where the message exchanges are logged.

Click the Codetab at the bottom of the design workspace to check the generated code.

public void initRoute()
routebuilder = new ord.apache.camel.builder.RouteBuilder ()

LofuriMap.get (Tloglessage™)) . id |

"eMessagingEndpoint 17)

Y

getCamelContexts () .get (1) .addRoutes (routebBuilder) ;

Press F6 to execute the Route.

Execution

[stétistics] connected
[mer[quartzTe=st]] gquartzMessage

Exchange[ExchangePattern: InCnly.

Body:Hello world]
[mer[quartz=Te=zt]] gquartzMes=zages

Exchange[ExchangeFPattern: InCnly.

Body:Hello world]
[mer[quartzTe=t]] guartzMes=zage

Exchange[ExchangePattern: InOnly.

Body:Hello world]
[mer[quartzTe=t]] guartzMes=zage

Exchange[EzchangePattern: InOnly.

Body:Hello world]
[mer[quartzTe=t]] guartzMes=zage

Exchange[ExzchangePattern: InOnly.

Body :Hello world]
[mer[quartz=Te=t]] guartzMes=zages

Exchange[ExzchangePattern: InOnly.

T A . TT_ 11 . ____. 1317

[tire limit [100 Wrap

RESULT: The logs of the message exchange are printed in the console.

BodvyTvpe:
BodvyTvpe:
BodvyTvpe:
BodyTvpe:
BodyType:

BodyType:

String.

String.

String.

String.

String.

String.

As shown above, the message flow is routed fromj msConsuner tol ogMessage.

THFO

THFO

THFO

IHFO

IHFO

IHFO

{

Talend Open Studio for ESB Mediation Components Reference Guide

63

cMail

cMail

cMail Properties

Component family Messaging

Function cMail is designed to send or receive mails.

Purpose Sends or receives mailsin aroute.

Basic settings Protocols List of protocols for sending or receiving mails.

Host Host name of the mail server.

Port Port number of the mail server.

UserName and|Login authentication data.

Password

Subject Subject of the mail being sent.

Content Type The mail content type.

From The mail sender.

To The mail receivers.

CcC The CC recipients of the mail. Separate multiple email
addresses with a comma.

BCC TheBCC recipientsof themail. Separate multiple email
addresses with acomma.

Advanced settings Arguments Click the [+] button to add lines as needed in the
Argumentstable. Then, enter the name and value of an
argument.

Usage When used as a start component, cM ail isintended to receive mails. Otherwise,

it isintended to send mails.

Limitation n/a

Scenario: Using cMail to send and receive mails

This scenario includes two routes. The first one sends a mail while the second receives it.

Now we build aroute to send amail.
Mail sending

1. Drop the components from the Palette onto the workspace: cFile, cMail and cProcessor, respectively
labelled asMail_to_send, Send_Mail and Mail_Sent.

2. Link the components using a Row > Route connection.

64 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using cMail to send and receive mails

HIER Dy S
b L routel il = routes e 4
Mail_to_send ' Send_Mail ' Mail_Sent
3. Double-click cFile to open its Basic settings view in the Component tab.
FILE =

—n lail_to_send{cFile_1}

Basic settings
Advanced settings
Dwnamic settings
Wiew

Daocumentation

4,
5.

of other items.

The content of thisfile istest mail body.
6.

27 Send_Mail(cMail_1)

Basic settings Pratacols
Advanced settings Host
Dwnarmic settings serMare
Wig Subject
Daocumentation

Fraom

ZC

7. IntheProtocolslist, select smtps.

Path "e:feseFe” Y [
Parameters

N-:u:up

[]Flatten

.ﬁ.utDCreate

BuffersSizelkb) "1za"

Encoding CLISTOM a1
FileMamme I'test mail, bt

smtps

"srnkp. gmail, com”

conkexk JSERMAME |Passward

Click the[...] button next to the Path field to select the folder that has the file to send.

In the FileName field, enter the name of the file to send, test mail.txt in this use case. Keep the default setup

Double-click cMail to open its Basic settings view in the Component tab.

==

W

Part ™

conkexk, PASSWORD
ContentType | "text/plain®
To |conkext JSERMAME

BCC |

Inthe Host field, type in the host name of the smtp server, smtp.gmail.comin this use case.

In the User Name and Password fields, enter the login authentication credentials, which are in the form of
context variablesin thisexample. For more information about context variable setup, see Talend Open Studio

for ESB User Guide.

Keep the default setting of the ContentTypefield, i.e. text/plain.

In the To field, enter the receiver of the mail, which isalso in the form of context variable in this example.

Double-click cProcessor to open its Basic settings view in the Component tab.

Talend Open Studio for ESB Mediation Components Reference Guide 65

Scenario: Using cMail to send and receive mails

& & Mail_Sent{cProcessor_1) [

Code Svstem.out.println("Mail sent'™):

Basic settings
Advanced settings
Dwnamic setkings
Wiew

Drocumentation
9. Inthe Code box, enter the code below to give a prompt after the mail is sent.

Systemout.println("Mil sent");

10. Savethe route and press F6 to run.

[=tati=tic=s] connecting to =ocket on port 3612
[stati=stics] connected
Mail =ent

As shown above, the mail has been sent out successfully.
Now we build aroute to receive the mail.
Mail receiving

1. Drop the components from the Palette onto the workspace: cMail and cProcessor, respectively labelled as
Receive_Mail and Mail_Body.

2. Link the components using a Row > Route connection.

] P [=
= routel e @
Receive Mail ' ' ' ’ ’ Mail_Biody

3. Double-click cMail to open its Basic settings view in the Component tab.

E
Receive_Mail{cMail_1) E

Basic settings Protocels imaps o
fdvanced settings Hiost "imap.gmail.com" Part |"993"
Dynamic settings UserMarme conkext, JSERMAME |Password |conbext, PASSWORD
Vi Subject . ContentType ["kext/plain®
Dacurnentation o un

Fram To

oo p BoC |

4. IntheProtocolslist, select imaps.
5. IntheHost field, type in the host name of the imap server, imap.gmail.comin this use case.
6. InthePort field, type in the port number, 993 in this use case.

7. Inthe UserName and Password fields, enter the login authentication credentials, which are in the form of
context variablesin thisexample. For more information about context variable setup, see Talend Open Studio
for ESB User Guide.

8. Keep the default setting of the ContentTypefield, i.e. text/plain.

66 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using cMail to send and receive mails

9.

10.

11

Double-click cProcessor to open its Basic settings view in the Component tab.

& & Mail_Body{cProcessor_1)

Basic settings Code Swstem.out.println(exchange.getIn()

Advanced settings .getBody (3tring.class)) ;

[Crnamic setkings
Wi

Documentation

In the Code box, enter the code below to print the mail body.
System out . print| n(exchange. getln().getBody(String.cl ass));
Save the route and press F6 to run.

[=ztatistic=s] Duﬁnecting to socket on port 3915

[ztati=tic=s] connected
test mail body

As shown above, the mail has been received and its content is test mail body.

Talend Open Studio for ESB Mediation Components Reference Guide 67

cMessagingEndpoint

cMessagingEndpoint

cMessagingEndpoint properties

Component Family

Messaging

Function cM essagingEndpoint allows two applications to communicate by either sending
or receiving messages, one endpoint can not do both.

Purpose cM essagingEndpoint sends or receives messages.

Basic settings URI URI of the messages to send or receive. It can be of

different format:

-File: "file:/",

-Database: "jdbc:/",
-Protocoals: "ftp:/", "http:/"
-€etc.

You can add parameters to the URI using the generic
URI syntax, for example:

"file:/directoryNane?
opt i on=val ue&opti on=val ue"

For more information on the different components
that can be used in cMessagingEndpoint, see
Apache Camel’s Website: http://camel.apache.org/
components.html.

Advanced settings

Dependencies

By default, the camel core supports the following
components. bean, browse, class, dataset, direct, file,
language, log, mock, properties, ref, seda, timer, vm.

To use other components, you have to provide the
dependencies corresponding to those components in the
cM essagingEndpoint component. To do so:

Click the plus button to add new lines in the Camel
component list. In the line added, select the component
you want to use in cM essagingeEndpoint.

Use a
component

custom

If you want to use a custom component, select this check
box and click thethree-dot buttonto upload ajar filewith
your own component.

All the transitive dependencies of this custom
7 component should be included in the jar file.

Usage

This component can be used as sending and/or receiving message endpoint
according to its position in the Route.

68 Talend Open Studio for ESB Mediation Components Reference Guide

http://camel.apache.org/components.html
http://camel.apache.org/components.html

Scenario 1: Moving files from one message endpoint to another

‘Limitation | n/a ‘

Scenario 1: Moving files from one message endpoint
to another

This scenatio uses two cM essagingEndpoint components to read and move files from one endpoint to another.

— b |

roukel
Sender Receiver

Dropping and linking the components

1. From the Messaging folder of the Palette, drag and drop two cM essagingEndpoint components onto the
design workspace, one as the message sender and the other as the message receiver, and label them Sender
and Receiver respectively to better identify their roles in the Route.

2. Right-click the component labeled Sender, select Row > Route in the menu and drag to the Receiver to link
them together with aroute link.

Configuring the components and connections

1. Double-click the component labeled Sender to open its Basic settings view in the Component tab.
2. Inthe URI field, typein the URI of the messages you want to route.

Aswe are handling files, type in "file://[" and the path to the folder containing the files.

=0
—8 Sender(cMessagingEndpoint_1) £= [

Basic settings LRI "Files j {00 ftalend_Ffiles/esb)input”
Advanced settings
Dwvnamic settings
Wiew

Dacument ation

3. Double-click the component labeled Receiver to open its Basic settings view in the Component tab.
4. IntheURI field, typeinthe URI of the folder where you want to route your message.

Aswe are handling files, type in "file:///" and the path to the folder to which the files will be sent.

Talend Open Studio for ESB Mediation Components Reference Guide 69

Scenario 2: sending files to another message endpoint

=0
—» 8 Receiver(chMessagingEndpoint_2) =5 [

Basic settings LRI "Files j {0 ftalend _files/esbioutpot”
Advanced settings

Dwvnamic settings

Wiew

Dacument ation

5. Press Ctrl+Sto save your Route.

Viewing code and executing the Route

1. Tohavealook at the generated code, click the Code tab at the bottom of the design workspace.

public void initRoute () throws Exception {
routeBuilder = new org.apache.camel.builder.Foutebuilder () |
public void configure () throws Exception |
from(uriMap.get ("oender™)) .routeld ("Iender™) . to |

uriMap.get ("Receiver™)) .id|
"eMessagingEndpoint 27)

b
getCame lContexts () .get (0] .addFoutes (routebuilder) ;

The code showsthef r omand . t o corresponding to the two endpoints: f r omfor the sendingoneand . t o
for the receiving one.

2. Inthe Run view, click the Run button to launch the execution of your Route.
Y ou can also press F6 to execute it.
RESULT: Thefiles are moved from their original folder to the target one. Furthermore, a new .camel folder

iscreated in the source folder containing the consumed files. Thisis Camel’ s default behavior. Thus, thefiles
will not be processed endlessly but they are backed up in case of problems.

Scenario 2: sending files to another message endpoint

This scenario accesses FTP service and transfers files from one endpoint to another.
e Y|

roukel
Sender Receiver

70 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 2: sending files to another message endpoint

Dropping and linking components

1. From the Messaging folder of the Palette, drag and drop two cM essagingEndpoint components onto the
design workspace, one as the message sender and the other as the message receiver, and label them Sender
and Receiver respectively to better identify their roles in the Route.

2. Right-click the component labeled Sender, select Row > Route in the menu and drag to the Receiver to link
them together with aroute link.

Configuring the components and connections

1. Double-click the component labeled Sender to display its Basic settings view in the Component tab.
2. Inthe URI field, typeinthe URI of the message you want to route.

Here, we are using an FTP component: ft p://i ndus@legas/ reny/ camel with URI specific
parameters authenticating the FTP connection: ?user nane=i ndus&passwor d=i ndus.

EE
—p 8 Sender{cMessagingEndpoint_1) ==
JRI "ftp: ffindus@degas)remy fcamelrusername=indus&password=indus"

Basic settings
Advanced setkings
Dwnamic settings
Wigw

Documentation

3. Forthe FTP component to work in Camel, click the Advanced settingstab of cM essagingEndpoint, click the
[+] button to add a Camel component in the Dependencies table, and select ftp from the Camel component
list to activate the FTP component.

=8 Sender{cMessagingEndpoint_1)

Basic settings Dependencies Zamel component
Advanced settings ftp

Dryvnamic setting=

Wigw

Documentation

4 *

|:| IJse a cuskon component

4. Double-click the component labeled Receiver to open its Basic settings view in the Component tab.
5. Inthe URI field, typeinthe URI of the folder to which you want your message to be routed.

Aswe are handling files, type in "file://[" and the path to the folder to which the files will be sent.

Talend Open Studio for ESB Mediation Components Reference Guide 71

Scenario 2: sending files to another message endpoint

=0
—» 8 Receiver(chMessagingEndpoint_2) =5 [
Basic settings LRI File: Jf /D ftalend_Filesfesbfoukput
Advanced settings
Dwvnamic settings
View

Dacument ation

6. PressCtrl+Sto save your Route.

Viewing code and executing the Route

1. Tohavealook at the generated code, click the Code tab at the bottom of the design workspace.

protected void initUriMap() 1
uriMap = new Jjava.util.HashMap<3tring, String>i():
uriMap.put ("Sender™,
"frp: S indusidegas/ remy/ came 1 Pusername=indus spassword=induz") ;
uriMap.put ("Receiver®, "file:///D:/talend files/esh/output™):

public void initRoute () throws Exception {
routeBuilder = new org.apache.camel.builder.RouteBuilder (i |
public void configure() throws Exception {
from(uriMap.get ("Jender™)) .routeld |("3ender™) . Lo |
uriMap.get ("Receiver™)) .id/|

feMessagingEndpoint 27) ;2

ra
getCamelContexts (] .get (0) . addRoutes (routeBuilder) ;

In this part of code, we can see a route represented by f r omand . t 0, corresponding to the sending and
receiving endpoints.

2. Inthe Run view, click the Run button to launch the execution of your Route.
Y ou can also press F6 to execute it.

RESULT: The message is sent (copied) to the receiving endpoint.

72 Talend Open Studio for ESB Mediation Components Reference Guide

cPipesAndFilters

cPipesAndFilters

*

cPipesAndFilters properties

Component Family |Messaging

Function The cPipesAndFilters component divides message processing into a segquence of
independent endpoint instances, which can then be chained together.

Purpose This component allows you to split message routing into a series of independent
processing stages.

Basic settings URI list Click the plusbutton to add new linesfor URIsthat i dentify endpoints.

Usage cPipesAndFiltersisusually used in the middle of a Route.

Limitation na

Scenario: Using cPipesAndFilters to process the task
in sequence
In this scenario, a cPipesAndFilters component is used so that messages sent from the sender endpoint undergo

stage A and stage B. Upon compl etion of both stages, the messages are routed to afile system, which isthe receiver
endpoint for the messages.

FILEW =~ & FLE~ =
— s e
__'*':'_ routel _ - route2 _—"E‘_ route3 _ _
Sender cPipesAndFilters_1 Receiver Monitor_Receiver
| T S
Stage A Monitor_stage_&
= T . = A
Stage B Monitor_stage B

Dropping and linking the components

1. From the Messaging folder of the Palette, drop two cFile components onto the design workspace, one as
the message sender and the other as the message receiver, and label them Sender and Receiver respectively
to better identify their rolesin the Route.

2. Fromthe M essaging folder, drop one cPipesAndFilter s component onto the design workspace, between the
two cFile components.

Talend Open Studio for ESB Mediation Components Reference Guide 73

Scenario: Using cPipesAndFiltersto process the task in sequence

3. From the Messaging folder, drop two cM essagingEndpoint components onto the design workspace, one
as the endpoint of stage A and the other as the endpoint of stage B, and label them Sage A and Sage B
respectively to better identify their roles in the Route.

4. From the Processor folder, drop three cProcessor components onto the design workspace to monitor
messages received on the receiver, stage A and stage B endpoints respectively, and label them
Monitor_Receiver, Monitor_stage A, and Monitor_stage B respectively to better identify their rolesin the
Route.

5. Right-click the cFile component labeled Sender, select Row > Route from the contextual menu, and click
the cPipesAndFilter s component.

Repeat this step to set up the rest Row > Route connections, as shown above.

Configuring the components

1. Double-click the cFile component labeled Sender to open its Basic settings view in the Component tab.

FILE _ = L
—»n 3ender(cFile_1)
n .|II' - III" n * _
Basic settings Path D:/talend_files/input
- Parameters
Ad d sett
wanced settings 7| Noop

Dynamic settings Flatten
View J| AutoCreate
Documentation BufferSize(kh) "178"

Encoding UTF-& -

FileMarne

2. Inthe Path field, fill in or browse to the path to the folder that holds the source files.
3. Fromthe Encoding list, select the encoding type of your sourcefiles. L eave the other parameters asthey are.

4. Repeat these steps to define the path to the output files and the output encoding type in the Basic settings
view of the cFile component labeled Receiver.

5. Double-click the cPipesAndFilters component to open its Basic settings view in the Component tab.

74 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using cPipesAndFilters to process the task in sequence

=T L
dﬁﬂ cPipesAndFilters_1 =c
Basic settings URL list URI -
Advanced settings "direct:a"

Dynamic settings "direct:b"
View

Documentation

m

A (L [

=) g

Click the plus button to add two linesto the URI list table, and fill thefirst linewith " di r ect : a" and the
second linewith " di r ect : b" to define the URIs of stage A and stage B that the messages will undergo.

Double-click the cM essagingEndpoint component labeled Stage A to configure the component inits Basic
settings view and define the URI of stage A.

=0a
—»= Stage_A(cMessagingEndpoint_1) S= L

Basic settings URI "direct:a"
Advanced settings
Dynamic settings
Wiew

Documentation

Repeat this step to define the URI of stage B in the Basic settings view of the cM essagingEndpoint
component labeled Stage B.

Double-click the cProcessor component labeled Monitor_Receiver to open its Basic settings view, and
customize the code in the Code area to display the file names of the messages received on Receiver, as
follows:

System out . println("Message sent to Receiver: "+
exchange. get I n() . get Header (" Canel Fi | eNanme")) ;

Repeat this step to customize the code in the other two cProcessor components to display the file names of
the messages received on stage A and stage B respectively:

Systemout. println("Mssage sent to stage A: "+
exchange. get I n() . get Header (" Canel Fi | eNane")) ;

System out. println("Mssage sent to stage B: "+
exchange. get | n() . get Header (" Canel Fi | eNanme")) ;

Press Ctrl+S to save your Route.

Talend Open Studio for ESB Mediation Components Reference Guide 75

Scenario: Using cPipesAndFiltersto process the task in sequence

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

public wvoid initRoute () throws Exception {
routeBuilder = new org.apache.camel.builder.RouteBuilder() {
public void configure() throws Exception {
from(uriMap.get ("Sender™)) .routeld("Sender") .pipeline (
"direct:a", "direct:b")
-id("cPFipeshAndFilters 1").to|

uriMap.get ("Receiver")) .id("cFile 2")

- ™

As shown in the code, messages sent f r omSender are redirected to endpoints identified by di r ect :
anddi rect: b by cPi pesAndFi | t ers_1 before being routed to Recei ver.

2. PressF6 to run your Route.

RESULT: The message delivery goes through stage A and then stage B before reaching Receiver.

Execution

Run W Kill

ripeEsallriilLerlrs Si1i—oLx)] SLarleed L1l u., 23032
seconds

[=tati=tic=s] connecting to =ocket on port
3768

[2tati=tic=s] conhected

Me==zage =ent to =tage A: Mes=szage_ 1. =Eml
Mes=zage =ent to stage B: Message 1. =ml
Mes=age =ent to Receiver: Messzage_1. =Eml
Message =ent to stage A: HMesszage_ 2 =ml
Mes=zage =ent to stage B: Message 2. =ml
Me==age =ent to Receiver: Mes=zage_ 7 =Eml

m
=1

m

Line limit {100 Wrap

76 Talend Open Studio for ESB Mediation Components Reference Guide

cTalendJob

cTalendJob

cTalendJob properties

Component Family Messaging
Function cTalendJob allows you to import alibrary.
Purpose cTalendJob calls a Talend Job exported as OSGI Bundle For ESB. For more
information on how to export a Job as OSGI Bundle, see Talend Open Sudio for
ESB User Guide.
Basic settings Library Select the library you want to import from the list, or click on the
[...] button to import the jar library of your Talend Job.
Job Typein the name of the package and the name of your job separated
by a point. For example: route project.txmimap_0_1.tXMLMap
To get this naming, you can open the jar library of your Job,
go to OSGI-INF > blueprint and edit the job.xml file, the
naming is available in a bean node like <bean id="j ob"
class="route_project.txmnmap_0_1.tXM-Map"/ >
Context Type in the name of the context to use to execute your Job
Usage cTalendJob can be a start, middle or end component in a Route.
Limitation n/a

Scenario: Using camel message headers as context
parameters to call a job

In this scenario, a Data Integration Job is built with a context variable defined in the Integration perspective.
Then, aRouteisestablished in the M ediation perspective with the message header defined the same asthe context
variablein the DI Job. Meanwhile, acTalendJob component is deployed to call the DI Job and pass the value of
the Route's message header to the DI Job's context variable.

Building a DI Job and exporting it as an OSGI Bundle for ESB

1. In the Integration perspective, drop the following components from the Palette onto the workspace:
tFixedFlowl nput and tL ogRow.

2. Link the components using a Row > M ain connection.

= N
o rowl (Main] ey
‘tFixedFlowInput_1 ' ' © tLogRow 1

Talend Open Studio for ESB Mediation Components Reference Guide 77

Scenario: Using camel message headers as context parametersto call ajob

3.

4,

10.

Double-click tFixedFlowl nput to open its Basic settings view in the Component tab.

* tFixedFlowInput_1

Basic settings
Advanced settings
Dwnamic setkings
Wiew

Docurmentation

[=

Schema

Built-In w | Edit schema E]

Mumber of rows |1

fode
(%) Use Single Table

Values
Calurnn

File

YWalue
conkext, File

Click the[...] button next to Edit schema to open the schema editor.

% Schema of tFixedFlowInput_1

FFixedFlowInput_1

Zolurmn
File

Key

O

Type
Skring

| ML

DateP... Le... Pr.. D.| C..

| o

] [Cancel

Click the [+] button to add aline.

Enter file as the column name and choose Sring as the data type.

Click OK to close the editor.

Select the Use Single Table option and enter context.file as the value.

Note that the context default with the variable file has been defined.

For more information about the context setup, see Talend Open Sudio for ESB User Guide.

Double-click tL ogRow to open its Basic settings view in the Component tab.

E@I tLogRow_1

Basic settings
Advanced settings
Dwnamic sektings
Wien

Documentakion

schema

Built-In ~ || Edit sche

Mode

{:} Basic
() Table {print values in cells of a table)
) vertical {each row is a kewvalue list)

Select Table (print valuesin cells of a table for abetter display.

Press Ctrl+Sto save the Job.

Export the Job as an OSGI Bundle for ESB.

Unzip the generated jar file.

78

Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using camel message headers as context parametersto call ajob

Building a Route for exchanging messages and calling the DI Job

1. Inthe Mediation perspective, drop the following components from the Palette onto the workspace: cFile,
cSetHeader and cTalendJob, respectively labelled as File_Source, Set_ Header and Call_DI-Job.

2. Link the components using a Row > Route connection.

I } } } E } } } } }
—p O rouke 1 o rouke? il

File_Source "\ Set_Header " Call_plI-1ob

3. Double-click cFile to open its Basic settings view in the Component tab.

FILE =o [
—n File_Source{cFile_1}

H +

Basic settings Path conbest. rook_dir E]
Advanced settings ar:a.;.rgsters
Crynamic sekkings [JFiatten
L=

AutoCreate
Documentation

BufferSizeikb) "1za"

Encaoding CLISTOM [*

FileMame m

4. InthePath field, enter the variable context.root_dir to specify the file path.
Keep other default settings as they are.
For more information about the context setup, see Talend Open Sudio for ESB User Guide.

5. Double-click cSetHeader to open its Basic settings view in the Component tab.

=0
i‘, Set_Header({cSetHeader_1) =l

Basic settings Header Filex

Advanced settings [Juse bean

Drynamic setkings Language Sirnple w

view Expression "${header.camelfilename}” |

Documentation

6. IntheHeader field, enter file, which is the same as the context variable of the DI Job.
Select Smple from the Language list.
In the Expression field, enter ${header.camelfilename} to get the file name.

7. Double-click cTalendJob to open its Basic settings view in the Component tab.

Talend Open Studio for ESB Mediation Components Reference Guide 79

Scenario: Using camel message headers as context parametersto call ajob

=E
EED Call_DI-Job{cTalendlob_1) S

. N P ke

Basic settings Librarsy cTalendlob_ShowContextyar-0.1.jar w E]
Advanced setkings Job “work. ctalendjob_showcontextyar_0_1.cTalendJob_ShowContesxthar
Drynamic sekkings Conkexk "Default"

Wiew

Documentakion

8. Click the[...] button to browse the generated jar file for the DI Job.

9. Go to the unzipped folder of the above JAR file and open the job.xml in the <DI_Job_JAR Path>\OSGI-
INF\blueprint folder, E:\cTalendJob_ShowContextVar-0.1\OSGI-INF\blueprint in this example.

Go to the bean tag and copy the content of the attribute class,
work.ctalendjob_showcontextvar_0_1.cTalendJob_ShowContextVar in this example.

Pasteit in the Job field.

10. Press Ctrl+Sto save the Route.

Viewing the code and executing the Route

1. Click the Codetab at the bottom of the design workspace to check the generated code.

public void initFRoute () throws Exception |
routeBuilder = new org.apache.camel.builder.RouteBuilderi() |
public void configure () throws Exception {
from{urilap.get ("File Source™) |
routeld("File Jource')
.setHeader ("£ile™)
Bimple ("3{header .. camelfilename} ")
Lid("cZecHeader 1)
Lo
Ptalend: ™
+ M"work.ctalendjob showocontextwv:
+ frocontext=" + "Defgult™).id|(
"eTalenddJob 1) ;

Asshown above, Fi | e_Sour ce provides afile for the message exchange, c Set Header sets a message
header and uses the source file name as the header value, and finally that valueispassedtocTal endJob_1
for execution of the DI Job.

2. PressF6 to execute the Route.
3. Putafileinto the folder specified by context.root_dir, test mail.txt in this example.

The result below can be found.

[statistics] connecting to soclket on port 3471
[2tati=tic=s] conhected

i tLogRow_1 i

| test mail.t=t|

80 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using camel message headers as context parametersto call ajob

As shown above, the source file name is displayed via tL ogRow as the Route's message header value has
been passed to the context variable of the DI Job.

Talend Open Studio for ESB Mediation Components Reference Guide 8l

Talend Open Studio for ESB Mediation Components Reference Guide

Miscellaneous components

This chapter details the major components that you can find in Miscellaneous family from the Palette of the
M ediation perspective of Talend Open Sudio for ESB.

The Miscellaneous family groups components that cover the needs such asiterating a Route or stopping a Route.

Talend Open Studio for ESB Mediation Components Reference Guide

cLog

cLog

cLog properties

Component Family

Miscellaneous

Function cLog logs message exchanges to the underlying logging mechanism. Apache Camel
provides the regular logger and the throughput logger. The default logger logs every
exchange. The throughput logger logs exchanges on a group basis. By default regular
logging is used.

Purpose cL og is used to log message exchanges.

Level Select a logging level from DEBUG, ERROR, INFO,
OFF, TRACE, or WARN.
Use default output log|Select this option to use the default output log message
message provided by the underlying logging mechanism.
Options/ None Select this option to take no action on the log message.
(For default output log
message only)
Options / Specifies a group| Select this option to use throughput logging and specify a
size for throughput logging | group size for the throughput logging.
(For default output log|Size: Enter an integer that specifies a group size for
message only) throughput logging.
Options / Group message|Select this option to use throughput logging and group
stats by time interval (in|message statistics.
millis)
Interval: Specify the time interval (in milliseconds) by
(For default output log|which the message statistics will be grouped.
message only)
Delay: Set theinitial delay (in milliseconds) for message
statistics.
Options / Format the log|Select this option to format the log output. Click [+] as
output many times as required to add arguments to the table.
Then click the corresponding valuefield and enter avalue.
(For default output |0g|Seethesite http://camel.apache.org/log.html for available
message only) options.
Soecify output log message | Select this option to specify the output log message.
Message: Use Simple language to construct a dynamic
message which gets logged.

Usage cLog isused as amiddle or end component in a Route.

Limitation n‘a

84 Talend Open Studio for ESB Mediation Components Reference Guide

http://camel.apache.org/log.html

Related scenario:

Related scenario:

For arelated scenario, see the section called “ Scenario: Routing messages according to a criterion”.

Talend Open Studio for ESB Mediation Components Reference Guide 85

cLoop

cLoop

cLoop properties

Component Family

Miscellaneous

Function

cLoop allows you to process a message or messages a number of times and
possibly in different ways.

Purpose

cL oop is used to process a message or messages repetitively.

Basic settings

Loop Type

Select a type of loop to be carried out: Expression,
Header, or Value.

Expression: Use an expression to determine the loop
count.

Header: Use a header to determine the loop count.

Value: Use an argument to set the loop count.

When using Expression: In the Language field,
select the language of the expression you want to
use to determine the loop count between Constant,
EL, Groovy, Header, Javascript, JoSQL, JXPath,
MVEL, None, OGNL, PHP, Property, Python, Ruby,
Simple, SpEL, SQL, XPath, XQuery. Type in the
expression in the Expression field.

When using Header : Enter the name of the header that
you want to use to determine the loop count in header
field.

When using Value: Enter an integer you want to set as
the loop count in the value field.

Usage

cL oop can be amiddle component in a Route.

Limitation

n/a

Related scenario:

No scenario is available for this component yet.

86 Talend Open Studio for ESB Mediation Components Reference Guide

cStop

cStop

X

cStop properties

Component Family Miscellaneous

Function cStop stops the Route to which it is connected.

Purpose cStop stops the Route to which it is connected.

Usage cStop isnot astart component, but it can be amiddle or end component in aRoute.
Limitation n/a

Related scenario:

For arelated scenario, see the section called “ Scenario: Intercepting several routes and redirect them in asingle
new route” of the section called “clntercept”.

Talend Open Studio for ESB Mediation Components Reference Guide 87

Talend Open Studio for ESB Mediation Components Reference Guide

Processor components

Thischapter detailsthe major componentsthat you can find in Processor family from the Palette of the M ediation
perspective of Talend Open Sudio for ESB.

The Processor family groups components that help you to perform all types of processing tasks on message flows
such monitoring the message sent or received, setting the message exchange mode, controlling the delivery time,

and so on.

Talend Open Studio for ESB Mediation Components Reference Guide

cDelayer

cDelayer

m-T)-m

cDelayer properties

Component Family Processor

Function The cDelayer component delays the delivery of messages.

Purpose The cDelayer component allows you to set alatency in message routing.

Basic settings Time to wait (in ms) Fill this field with an integer (in milliseconds) to define
the time to wait before sending the message to the
subsequent endpoint.

Usage This component is usually used in the middle of a Route.

Limitation n/‘a

Scenario: Using cDelayer to delay message routing

In this scenario, a cDelayer component is used to delay the routing of each message to the target endpoint by
20 seconds.

— . S R . L
=B ol TR o T s T s TR
‘Read " Read_monitor Delay_timer Write " writer_monitor

Dropping and linking the components

This use case requires one cDelayer component, two cFile components, and two cProcessor components.

1. From the Messaging folder of the Palette, drop two cFile components onto the design workspace, one to
read files from alocal folder and the other to write the files to another local folder.

2. From the Processor folder of the Palette, drop two cProcessor components onto the design workspace, one
next to the reading component to monitor messages read from the source file folder, and the other next to the
writing component to monitor messages written to the target file folder.

3. FromtheProcessor folder of the Palette, drop onecDelayer component onto the design workspace, between
the message reading monitor component and the message writing component.

4. Connect the components using Row > Route connections.

5. Label the components to better identify their roles in the Route, as shown above.

20 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using cDelayer to delay message routing

Configuring the components

1. Double-click the first cFile component, which is labelled Read, to open its Basic settings view in the
Component tab.

FILE . EDD [:
—pn Read(cFile_1) —
r « N i : *
Basic settings Path D: ftalend_filesfinput
. - Parameters
Advanced settings Moop
Liynamic settings [Flatten
View
Y AutoCreate
Documnentation "128"
Euffersize(kh) L3
Encoding e | *
FileMame

2. Inthe Path field, enter or browse to the path to the source files, and leave the other parameters as they are.

3. Repeat these steps to define the target folder in property settings of the second cFile component, which is
labelled Write.

4. Double-click the first cProcessor component, which is labelled Read monitor, to open its Basics settings
view in the Component tab.

o =08
& o Read_monitor{cProcessor_1) E

Code

Basic settings IDatE date=new Date():

Advanced settings SimpleDateFormat formatter = new

P — SimpleDateFormat ("HH:mm:s3™) ; .

— String = = formatter.format (date) ;

VI Svstem.out.println("\nkessage "+

Documentation exchange.getIn() .gecHeader ("CamelFilellame") +
" read at "+(=3)):

5. Inthe Code area, customize the code to display the time each message is read from the source:

Dat e dat e=new Dat e();

Si npl eDat eFormat formatter = new Si npl eDat eFor mat (" HH: nm ss") ;
String s = formatter.formt (date);

System out . println("\nMessage "+

exchange. get I n() . get Header (" Canel Fi | eNane") +

" read at "+(s));

6. Repeat these steps to configure the second cProcessor component, which is labelled Write_monitor, to
display the time each message is written to the target:

Dat e dat e=new Dat e() ;

Si npl eDat eFormat formatter = new Si npl eDat eFor mat (" HH: nm ss") ;
String s = formatter. format(date);

System out . println("Message "+

exchange. get I n() . get Header (" Canel Fi |l eName")+ " witten at "+(s));

Double-click the cDelayer component, which islabelled Delay_timer, to open its Basic settingsview in the
Component tab.

Talend Open Studio for ESB Mediation Components Reference Guide 91

Scenario: Using cDelayer to delay message routing

=0
=-®-8 Delay_timer(cDelayer_1) =S [

Basic settings Time to wait {inms) | 20000 *

Advanced settings
Dynamic settings

View

8. Inthe Timeto wait (in ms) field, enter the number of milliseconds by which you want to delay message
delivery. Note that the value must be a positive integer.

In this use case, we want each message to be delivered after a 20-second delay.

9. Press Ctrl+Sto save your Route.

Viewing the code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

public void initRoute () throws Exception {
routeBuilder = new org.apache.camel.builder.RouteBuilder ()
public woid configure() throws Exception {
from(uriMap.get ("Read™)) .routeld ("Read") .process |

new org.apache.camel .PFrocessor ()
public void process|
org.apache.camel .Exchange exchange)
throws Exception {
Date date = new Datel():
SimpleDateFormat formatter = new SimpleDateFormat |
"HH:mm:==") ;

Li

tring 5 = formatter.format (date) ;

System.out.println("\nMessage "
+ exchange.getIn() .getHeader |
"CamelFileMName")
+ " read at " + (=3)):
} -id("cFrocessor 1").delay (20000) .14/
"chelayer 1) .to(uriMap.get ("Write™)).1id|
"=File 2").process|

As shown in the code, a 20-second delay is implemented according to . del ay(20000) in the message
routing f r omthe Read endpoint . t o theW i t e endpoint.

2. Press F6 to execute the Route.

RESULT: Each message read from the source folder is routed to the target folder after a 20-second delay.

92 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Using cDelayer to delay message routing

Execution

Hes==age
Hes=zage

Hes=age
Hes==zage

[il

cDelaver _=l-ctx) =started in 0.313 =s=econds s
[ztati=tics] connecting to zocket on port 3941
[stati=tic=] connected

Hz=llo
Hella

World
World

Lt
b=t

Lt
b=t

read at
written

read at
written

12:

at

12

at

06 :
12:

e :
12:

27
06 :47

47
07:07

Talend Open Studio for ESB Mediation Components Reference Guide 93

cExchangePattern

cExchangePattern

cExchangePattern properties

Component Family Processor

Function cExchangePattern can be configured to indicate the message exchange mode.

Purpose cExchangePattern allows you to set the message exchange mode.

Basic settings Exchange Patterns |Select the message exchange mode from InOnly
or InOptionalOut, InOut, Outln, OutOptionalln,
RobustInOnly, RobustOutOnly.

Usage As a middle component in a Route, cExchangePattern alows you to set the

message exchange mode.
Limitation

Scenario: Enabling the InOut exchange pattern to get
replies

Inthisscenario, acExchangePatter n component isused to enabl e the request/reply exchange pattern in the Route,
so that the client can get areply from the server.

CXF : : . : : .
b L routel M P roukes I
WebService_producer Set_exchange_mode Build_reply_message

To send requests to the server side, a soapUl is needed and its configuration will be briefed in the following
contents.

To build the Route, do the following.

Dropping and linking the components

1. From the Processor folder of the Palette, drag and drop a cCXF, a cExchangePattern and a cProcessor
onto the workspace, and label them WebService producer, Set_exchange mode and Build reply _message
respectively to better identify their roles in the Route.

2. Link cCXF to cExchangePattern using a Row > Route connection.

3. Link cExchangePattern to cProcessor using a Row > Route connection.

94 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Enabling the InOut exchange pattern to get replies

Configuring the components

1. Double-click cCXF to open its Basic settings view in the Component tab.

% wenser EE
—pn WebService_producer(cCxF_1)
Basi thi C¥F Configuration

asic settings Address "hkkpef flocalhost: 3000 service, endpoint” *
&dvanced settings

Type wsdILRL "
Dynamic settings
Wi WSDL File "C:fDocuments and Settings/Andy ZHAMG/Desktop/airport_soap_rouke_0. 1, wsdl" *E]
Documentation Dataformat PAYLOAD s
|:| Service

ESE Features
|:| IJse Service Locakaor

|:| Use Service Ackivity Monitor

2. Inthe Addressfield, leave the default setting unchanged.

3. IntheTypelist, select wsdIURL.

4. IntheWSDL Filefield, enter the URL of thewsdl file. Y ou can aso click the three-dot button to browsefor it.
5. Inthe Dataformat list, select PAYLOAD.

6. Double-click cExchangePattern to open its Basic settings view in the Component tab.
=o
| 3+ | Set_exchange_mode(cExchangePattern_1) [

Basic settings Exchange Patkerns | InCwk w
Advanced setkings
Dwnamic settings
Wiemy

Documentation

7. Inthe Exchange Patternslist, select InOut to enable the request/reply message exchange mode.

8. Double-click cProcessor to open its Basic settings view in the Component tab.

Talend Open Studio for ESB Mediation Components Reference Guide 95

Scenario: Enabling the InOut exchange pattern to get replies

% & Build_reply_message(cProcessor_1)

Basic settings Code

fdvanced settings
Dwvnamic sekkings
Wiew

Dacurnentation

9. Inthe Code box, enter the code below.

=0
==

JtringBuilder sb = new 3tringbBuilder(]:
sh.append("<tns:getliirportInformationby
IZOCountryCodeResponse
xmlns:tns=4Y "http:/ airportsoap.sopera.d
el =y
sh.append("<tns:getdirportInformationbBy
IZ0oCountryCodelResult>This iz a
response</tnsigetbirportInformat ionBy IS
oCountryCodeResult>™) ;

sh.append ("</tns:getlirportInformat ionk
vIZOCountryCodeResponse>-) ;
exchange.getOut () .2etBodyi(sh.to3tring()

:

StringBuilder sb = new StringBuil der();
sb. append(" <t ns: get Ai r port | nf or mati onByl SOCount r yCodeResponse
xm ns:tns=\"http://airportsoap. sopera.de\">");
sb. append(" <t ns: get Ai r port | nf or mat i onByl SOCount r yCodeResul t >This is a
response</tns: get Ai rport | nformati onByl SOCount r yCodeResul t >") ;
sb. append("</tns: get Ai rport | nformati onByl SOCount r yCodeResponse>") ;
exchange. get Qut () . set Body(sb. toString());

Asshown above, astring isbuilt here and isused as areply message of theroute. It isin line with the message

definition of the above wsdl file.

10. Press Ctrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to check the generated code.

96 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Enabling the InOut exchange pattern to get replies

public void initRoute|) throws Exception {
routeBuilder = new org.apache.camel.builder.RouteEBuilder ()
public void configure() throws Exception {
ff CEF endpoint for WehZervice producer
org.apache.cawel.Endpoint endpointWeb3ervice producer = endpoint (uriMap
Lget ("WebService producer™));
from (endpointiWebiervice_producer) .routeld|
"WebhZervice producer”) .setExchangePattern(
org.apache.camel.ExchangePattern. Infut) . id |
"cExchangeFattern 1") . process |
new org.apache.camel.Frocessor () |
public void process|
org.apache.camel.Exchange exchange)
throws Exception {
StringBuilder sh = new StringBuilder():
sh.append("<tns:getldirportInformationEyI30CountryCodeResponse " +
"xmlns:tns=\ "http://airportsoap. sopera.del "> 2
sh.append(f<tns:getlirportInformationEyIS0CountryCodeResult>" +
"Thi= iz a response</tns:getlirportInformationByI30CountryCodeResults>") ;
sh.append("</tns:getdirport InformationByIS0oCountryCodeResponses>") ;
exchange.getOut (] . setBody |
sh.to3tring()):

b

) .id({"cProcessor_1");

As shown above, the route has its message exchange pattern set as | nQut using the method
. set ExchangePat t er n(or g. apache. canel . ExchangePat t er n. | nQut) . Inthemeantime, a
string iscreated using St ri ngBui | der sb = new StringBuil der() atcProcessor_1andis
used as the reply message viathe method exchange. get Qut () . set Body(sb.toString()).

2. PressF6 to execute the Route.

The server Route gets started.

Creating and sending a request to the server Route and getting a
reply

1. Inthe soapUl, create a Test project and edit arequest, asillustrated below:

Talend Open Studio for ESB Mediation Components Reference Guide 97

Scenario: Enabling the InOut exchange pattern to get replies

& New soapUIl Project E]

New soapUI Project
Creates a new soapUI Project in this workspace @
Project Name: | Test

Initial WSDL/WADL: Ildy ZHANG\Desktophairport_soap_route_0.1 .wsdl” [Browse...

Create Requests: Create sample requests for all operations?

Create TestSuite: [] Creates a TestSuite for the imported WSDL or WADL

ir Request 1
> = O i B [http:,i.u‘lo-:alhost:Soou,iservi-:e.endpoint
y—

2 |<soapeny. Envelope xmins: soapenv="http: fischemas xmlsoap .orgisoaplenvelope
= | =soapenv:Header/>

% =soapeny:Body>

o

=air:getAirportinformationBylSOCountryCode=
=L Optionali—=
<air:CountryAbbrviation=This is a request</air: Country Abbrviation=
<fair.getAirportinformationBylISOCountryCode=
<fsoapenv.Body>=
<=fsoapenv.Envelope=

Note that the wsdl file must be same as that configured for cCXF, so that the request can be in line with the
definition of the web service.

2. Send the request to the server Route and you can get the reply, asillustrated below:

£t Request 1 &

P = i O 22 @ |htep/flocalhost: 3000/ service . endpoint - |
g =zoapeny.Envelope xmlns:su:uapenv="http:Iischema:; 2 = xmlzoap orgisoapienvelope™s -
#* | ==zoapeny:Header = 5
% =zoapeny.Body= % CodeResponze xminztnz="Http: Fairportsoap sopers
o o

=air:getdirpotinformationByl=0CountryCode= ryCodeResult=Thiz iz a rezponse=Anz: getAirportinfg
= Cpliongi—= CodeResponzes=
=air: Country &bbrvistion=Thiz iz a request=raiy
=rair. getAirpotinformationEyviSOCountry Code=
=lzoapeny. Body=
disnapenv:EnveIDpe::l

98 Talend Open Studio for ESB Mediation Components Reference Guide

cJavaDSL Processor

cJavaDSLProcessor

E}E

cJavaDSLProcessor properties

Component Family

Processor

Function cJavaDSL Processor implements producers and consumers of message
exchanges or implements a Message Trandlator using the Java Domain Specific
Language (DSL).

Purpose cJavaDSL Processor can be usable for quickly whirling up some code using Java
DSL. If the code in the inner class gets a bit more complicated it is of course
advised to refactor it into a separate class.

Basic settings Code ‘Typeinthecodeyou want toimplement using JavaDSL.

Usage cJavaDSL Processor isused as amiddle or end component in a Route.

Limitation n/‘a

Related scenario:

For arelated scenario, see the section called “ Scenario: Wiretapping a message in a Route”.

Talend Open Studio for ESB Mediation Components Reference Guide 99

cProcessor

cProcessor

cProcessor properties

Component Family Processor

Function cProcessor implements consumers of message exchanges or implements a
Message Trandator.

Purpose cProcessor can be usable for quickly whirling up some code. If the code in the
inner class gets a bit more complicated it is of course advised to refactor it into
aseparate class.

Basic settings Code Type in the Java code you want to implement.

Usage cProcessor is used as amiddle or end component in a Route.

Limitation n‘a

Related scenario:

For arelated scenario, see the section called “ Scenario: Intercepting several routes and redirect them in asingle
new route” of the section called “clntercept”.

100 Talend Open Studio for ESB Mediation Components Reference Guide

cThrottler

cThrottler

fl

cThrottler properties

Component Family

Processor

Function cThrottler isdesigned to limit the number of messages flowing to the subsequent
endpoint.

Purpose cThrottler alows you to limit the number of messages flowing to a specific
endpoint in order to prevent it from getting overloaded.

Basic settings Request per period | The number of messagesallowed to passcT hrottler within

the defined time period.

Set time period Select this check box to set the value of the time period (in
milliseconds) and enable throttling.

Use asynchronous| If thischeck box is selected, any messages that are delayed

delaying will be routed asynchronously using a scheduled thread
pool.

Usage Being a middle component, cThrottler allows you to limit the number of
messages flowing to a specific endpoint in order to prevent it from getting
overloaded.

Connections throttler Select this link to route the throttled messages to the next

endpoint.
Route Select thislink to route al the messages from the sender to
the next endpoint.

Limitation n/a

Scenario: Throttling the message flow

In this scenario, a cThrottler component is used to reduce the number of messages flowing out within a time

period.

FILE -
l—*l]
Read_Oukput

roufes

&

.
* roukes + T l rouke? " %

"Prinkt_File_Content " cThraoktler 1 " Prirt_File_Mame

Talend Open Studio for ESB Mediation Components Reference Guide 101

Scenario: Throttling the message flow

To build the Route, do the following.

Dropping and linking the components

1. Drag and drop the components from the Palette onto the workspace: cThrottler, cFile and two cProcessor .
Change the label of the cFile component to Read Output. Change the labels of the two cProcessor
componentsto Print_File Name and Print_File Content.

2. Link Read_Output to cThrottler using a Row > Route connection.

3. LinkcThrottler toPrint_File NameusingaRow > Throttler connection, andto Print_File_Content using
aRow > Route connection.

Configuring the components

1. Double-click Read_Output to open its Basic settings view in the Component tab.

FILE =n [
—pn Read_Output(cFile_2)

=, n +
Basic settings Path E: /datajoutput -—
Advanced settings ap:aurgsters
Crynamic sekkings [JFiatten
i
— AutoCreate
Documentation
BufferSizeikb) "1 z2a"
Encoding CUSTOM o .
FilzMarne

2. Inthe Path field, type in the path to the source message, for example, "E:/data/output”. Keep the default
settings for other fields.

3. Double-click cThrottler to open its Basic settings view in the Component tab.
+ T l cThrottler_1 =

Request per period |f
Set time petiod a0n0

Basic settings
Advanced setkings
Drynarnic setkings [Juse asynchronous delaving
Wigm

Document ation

4. Inthe Request per period field, type in the number of messages allowed to pass the throttler per period,
for example, 1.

In the Set time period field, type in the value of the period, for example, 8000.

5. Double-click Print_File_ Nameto open its Basic settings view in the Component tab.

102 Talend Open Studio for ESB Mediation Components Reference Guide

Viewing the code and executing the Route

& & Print_File_Name{cProcessor_2) =

Basic settings Code System.out.println(®The file that passes

Advanced settings throttler is:

Drynamic setkings "+exchange.getIn() .getleader ("CamelFileName")
1:

Wig

Dacument ation

6. Inthe Code box, enter the code below to get the name of the message that passes the throttler.
Systemout.println("The file that passes throttler is:
"+exchange. get I n() . get Header (" Canel Fi | eNane")) ;

7. Double-click Print_File Content to open its Basic settings view in the Component tab.
& & Print_File_Content{cProcessor_3) =L
Basic settings Code Swstem.out,.println("The content of
Advanced settings +exchange.getln() .getHeader ("Came lFilellame ™)

3 - + " is:
Dwnamic settings .
"texchange.getIn() .getBody (3tring.clas=s)) ;

View
Daocumentation

8.

In the Code box, enter the code below to get the content of the message that passes the throttler.
System out . println("The content of "

+exchange. get I n() . get Header (" Canel Fi | eNane")+ " is: "
+exchange. get I n() . get Body(String. cl ass));

9. PressCtrl+Sto save your Route.

Viewing the code and executing the Route

1. Click the Codetab at the bottom of the design workspace to check the generated code.

Talend Open Studio for ESB Mediation Components Reference Guide 103

Viewing the code and executing the Route

public void initRoute () throws Exception {

routebuilder = new org.apache.camel.builder.RouteBuilder (] |
public void configureil) throws Exception {
from{urillap.get ("Read Output']).routeld("Read Output’)
.throttleil) .timePeriodMillis (8000) .1id(
"eThrottler 17 .process |
new org.apache.camel.FProcessor() |

public woid process|
org.apache.camel.Exchange exchange)
throws Exception |
System.out
.printlni"The £ile that passes throttler is:
+ exchange

.getIni)
.getHeader |
"CarmelFileMame™)) ;
i
il id("cProcessor_2") .end() .process |
new org.apache.camel.Processor(] 1

public void process|
org.apache.camel. Exchange exchange)
throws Exception |
System.out
.printlni"The content of '
+ exchange
.getIni)
.getHeader |
"CamelFilellame™)
+ " iz
+ exchange
.getIng)
.getBody |
3tring.class)) ;

As shown above, the messages from Read_Qut put go through throttling at cThr ot t | er _1, with only
(1) message allowed to leave the throttler within each t i mePeri odM I 1i s(8000) . Meanwhile, the

filename and the content of the throttled message are printed out via the two processors.

2. Press F6 to execute the Route.

As shown below, File A.txt was delivered within the first time period while in the second period, File B.txt

was delivered as well.

1 rows - 7.03s

[~ 0.14 row - - 0.15 rows, 0.15 rows/s =
—_—————————P
> P outed route? v & P routes +Tl route? g
Print_File_Content cThrottler_1 Print_File_Name 'Print_File_Content ' " cThrottler_t ‘ " Print_File_Mame

rotter_RecipientList 0 | %2 Component LB Run (Job New_MyThrotter_RecipientList) -otter_RecipientList 0 | %+ Component | U Run (Job New_MyThrotter_RecipientList)

er_RecipientList ar_RecipientList
Execution Execution
Com]l as (o]
[statistics) connecting to socket on port 3739 [statistics] connecting to socket on port 3338
[statistics] connected [statistics] connected ‘)
The file that passes throttler is: File_A. txt The file that passes throttler is: File A.txt
The content of File_A. txt is: China The content of File A txt is: China
Usa USA

The file that passes throttler is: File_B. txt
The content of File B.txt is: France
Germany

104 Talend Open Studio for ESB Mediation Components Reference Guide

Routing components

This chapter details the major components that you can find in Routing family from the Palette of the M ediation
perspective of Talend Open Sudio for ESB.

The Routing family groups components that moves messages from one endpoint to another based on a set of
conditions.

Talend Open Studio for ESB Mediation Components Reference Guide

CAggregate

cAggregate

cAggregate

I{:!:,I:I

Component Family

Routing

Function CcAggr egate aggregates messages together according to specified conditions.

Purpose cAggregate allows you to combine a number of messages together into a single
message.

Basic settings Language Select the language of the expression you want to use

to filter your messages, from Constant, EL, Groovy,
Header, Javascript, JoSQL, JXPath, MVEL, None,
OGNL, PHP, Property, Python, Ruby, Simple, SpEL,
SQL, XPath, and XQuery.

Correlation expression/
Expression

Typeinthe expression that evaluates the correlation key
to be used for the aggregation.

Strategy

Specify a Java bean to use as the aggregation strategy.

Completion conditions/
Number of messages

Select this check box to specify the number of messages
to aggregate per batch before the aggregation is
complete.

By default, this check box is selected and the
7 number of messagesis set to 3. If you clear this
check box, and at least one of the other four
completion conditions is met, al the messages
retrieved will be aggregated in one batch.

Completion conditions/
Inactivity timeout (in
milliseconds)

Select this check box to specify the time (in
milliseconds) that an aggregated exchange should be
inactive before it is complete. This option can be set as
either afixed value or using an Expression which allows
you to evaluate atimeout dynamically.

You can not use this option together with
¥ Scheduled interval. Only one of them can be
used at atime.

Completion conditions/
Scheduled interval (in
milliseconds)

Select this check box to specify a repeating period (in
milliseconds) by which the aggregator will complete all

current aggregated exchanges.
You cannot use this option together with
¥ Inactivity timeout. Only one of them can be
used at atime.

Completion conditions/
Predicate matched

Select this check box to specify a predicate to indicate
when an aggregated exchange is compl ete.

Completion conditions/
Batch consumer

Select this check box to aggregate all files consumed
from afile endpoint in a given poll.

Advanced settings

Check completion
before aggregating

Select this check box to check for completion when a
new incoming exchange has been received. This option

106 Talend Open Studio for ESB Mediation Components Reference Guide

CAggregate

influencesthe behavior of the Predicate matched option
as the exchange being passed in changes accordingly.
When this option is disabled, the exchange passed
in the predicate is the aggregated exchange which
means any information you may store on the aggregated
exchange from the aggregation strategy is available for
the predicate. When this option is enabled, the exchange
passed in the predicate is the incoming exchange, which
means you can access data from the incoming exchange.

Close correlation group

Select this check box to indicate that if acorrelation key
has already been completed, then any new exchanges
with the samecorrelation key will bedenied. Whenusing
thisoption, enter anumber inthe M aximum bound field
to keep that last number of closed correlation keys.

Ignore invalid
correlation key

Select this check box to ignore the invalid correlation
key which could not be evaluated to a value. By default
Camel will throw an Exception on encountering an
invalid correlation key.

Select this check box to group all aggregated exchanges
into a single combined holder class that holds all the
aggregated exchanges. As aresult only one exchangeis
being sent out from the aggregator. This option can be
used to combine many incoming exchangesinto asingle
output exchange.

Select this check box to plug in your own
implementation of the repository which keeps track of
the current in-flight aggregated exchanges. By defaullt,
Camel uses amemory based implementation.

Group arriving
exchange

Use persistence
Repository

This field appears when the Use per sistence check box
is selected. The repository is AggregationRepository,
HawtDBAggr egationRepository, or
Recover ableAggregationRepository.

AggregationRepository: Thedefault repository used by
Camel which is amemory based implementation. Enter
the name of the repository in the field.

HawtDBAggr egationRepository:
HawtDBAggregationRepository is an
AggregationRepository which persists the aggregated
messages on the fly. This ensures that you will not loose
messages. With this repository selected, the following
options appear:

Use persistent file: Select this check box to store the
aggregated exchangesin afile. Enter the name of thefile
for the persistent storage in the Persistent file field. If
the file does not exists on startup, it will be created.

Recovery/Use recovery: Select this check box to
recover failed aggregated exchanges and have them
resubmitted automatically. In the Recovery interval
field, enter the interval (in milliseconds) to scan for
failed exchangesto recover and resubmit. By default this
interval is5000 milliseconds. Inthe Dead letter channel
field, enter an endpoint URI for a Dead L etter Channel
where exhausted recovered exchanges will be moved.

Talend Open Studio for ESB Mediation Components Reference Guide 107

Scenario: Aggregating three messages into one

Inthe Maximum redeliveriesfield, enter the maximum
number of redelivery attempts for a given recovered
exchange.

Recover ableAggr egationRepository:
RecoverableAggregationRepository is a JDBC based
AggregationRepository which persists the aggregated
messages on the fly. This ensures that you will not loose
messages. Enter the name of the repository in the field.

With this repository selected, the following options
appear:

Recovery/Use recovery: Select this check box to
recover failed aggregated exchanges and have them
resubmitted automatically. In the Recovery interval
field, enter the interval (in milliseconds) to scan for
failed exchangesto recover and resubmit. By default this
interval is5000 milliseconds. Inthe Dead letter channel
field, enter an endpoint URI for a Dead Letter Channel
where exhausted recovered exchanges will be moved.
In the Maximum redeliveriesfield, enter the maximum
number of redelivery attempts for a given recovered

exchange.
Usage cAggregate is used as amiddle or end component in a Route.
Connections Aggregate Select this link to route messages to the next endpoint

according to the selected aggregation strategy.

Route Select thislink to route all the messages from the sender
to the next endpoint.

Limitation n/a

Scenario: Aggregating three messages into one

Inthis scenario, the cAggr egate component combines three messages from thelocal file system into oneand prints
the messagesin the console. A Java bean will be used as the aggregation strategy.

Creating a Java bean as the aggregation strategy

To aggregate the messages, we will use a Java bean that will help us build an aggregation strategy.

1. Fromtherepository treeview, expand the Code node and right click the Beans node. I n the contextual menu,
select Create Bean.

+ Contexts
= Code

E -;'ij Create Bean
[3 Create folder
| Expand/Collapse

[() Import items

Iy [R R B

| (g Export items
&
& Recycle bin

108 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Aggregating three messagesinto one

2. The New Bean wizard opens. In the Name field, type in a name for the bean, for example, AggregateBody.
Click Finish to close the wizard.

#* Mew Bean |Z|E

Hew Bean

Add a Route in the repository @

Mame | AggregateBody |

Purpose | |

Description

Author

Locker

|

| |
Version | ||E

|

|

Status v

Path || Select]

® Einish l [Cancel

3. Typeinthe codes as shown in the figure below. In this use case, we just want to aggregate all messagesinto
asingle message.

package beans;

i nport org. apache. canel . Exchange;
i nport org. apache. canel . processor. aggr egat e. Aggr egat i onSt r at egy;

publ i c cl ass Aggregat eBody i npl enents Aggregati onStrat egy{

publ i ¢ Exchange aggregat e(Exchange ol dEx, Exchange newkx) {

i f (ol dEx==nul) {
return newex;

}
String ol dBody = ol dEx. getln(). get Body(String.cl ass);
String newBody = newEx. getln().getBody(String.class);
newEx. get I n() . set Body(ol dBody+newBody) ;
return newex;

}

}

4. PressCtrl+Sto save your bean.

Talend Open Studio for ESB Mediation Components Reference Guide 109

Scenario: Aggregating three messages into one

Dropping and linking the components

FILE ' '

2 * route3 M

FI|E_SI:ILIFI:E ' M-:unltc:r_l:uefcure " Aggregator Monitor_after

From the Palette, expand the M essaging folder, and drop a cFile component onto the design workspace.
Expand the Routing folder, and drop a cAggr egate component onto the design workspace.
Expand the Processor folder, and drop two cProcessor components onto the design workspace.

Right-click the cFile component, select Row > Routefrom the contextual menu and click thefirst cPr ocessor
component.

Repeat this operation to connect the first cProcessor component to the cAggr egate component.

Right-click the cAggregate component, select Row > Aggregate from the contextual menu and click the
second cProcessor component.

Label all the components to better identify their functionality, as shown above.

Configuring the components

1. Double-click the cFile component, which is labelled File _source, to display its Basic settings view in the
Component tab.
FILE _ Sa [:
—pn File_source(cFile_1)
Basic settings Fath D ftalend_filesfinput/aggregate” * E]
= Parameters
.-?-.d'u'annfed se.ttlngs 7] Naop
Ffl.ynamlc settings |:| Elatten
Y AutoCreate
Documentation
Buffersize(kb) "128"
Encoding CUSTOM | *
Filerame
2. Inthe Path field, browse to or enter the input file path, and |eave the other parameters asthey are.
In this scenario, there are four text files in the specified directory: a.txt, b.txt, c.txt and d.txt, the contents of
which are Thisisa! , Thisish! , Thisisc! , and Thisisd! respectively.
3. Double-click the cAggregate component, which is labelled Aggregator, to display its Basic settings view
in the Component tab.
110 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Aggregating three messagesinto one

] EE
sgm Aggregator(cAggregate_1)

Basic settings Language Simple w

Advanced settings Correlation expression
Dynamic settings Expression "getBody(String. dass)” *
View Strategy beans, AggregateBody *
Documentation Completion conditions

Mumber of messages |2 *

|:| Inactivity timeout
[]scheduled interval
[1rredicate matched

[1Batch consumer

4. IntheLanguagefield, select Constant or Simple as the expression language.

In the Expression field, enter the expression " get Body(St ri ng. cl ass)" to retrieve the body of the
message.
In the Strategy field, enter the name of the Java bean AggregateBody you just created.

Select the Number of messages check box and typein 2 in thefield.

5. Double-click the cProcessor component labelled Monitor_before to display its Basic settings view in the
Component tab.

- =B
& & Monitor_before(cProcessor_1) E

Basic settings Code Sy

y=tem.out.println ("Before
aggregation: "+

Advanced settings
B . exchange.getln() .getBody (String.
Dynamic settings _ o
class));
View

=

6. Inthe Code box, customize the code asfollows so that the Run console displays the message contents before
an aggregation takes place:

System out. println("Before aggregation: "+
exchange. get I n(). get Body(Stri ng. cl ass));

7. Inthesameway, configurethe cProcessor component labelled Monitor_after so that the Run consoledisplays
the message contents after an aggregation takes place:

System out. println("After aggregation: "+
exchange. get I n(). get Body(String. cl ass));

8. PressCtrl+Sto save your route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

Talend Open Studio for ESB Mediation Components Reference Guide 111

Scenario: Aggregating three messages into one

public wvoid initBoute () throws Exception
routeBuilder = new org.apache.camel . builder.RouteBuilder()
poblic void configure() throws Exception
from({uriMap.get ("File =source™))
.:::te:d["?;;; ocurce™)
.process (new org.apache.camel.Processor()
publiec void process|
org.apache.camel.Exchange exchange)
throws Exception
Svstem.out
.println ("Before aggregation: "
+ exchange
getIn()
.getBody |
Scring.class)):

}).id({"cProcessor 1").aggregate |
Vi

gimple ("getBody (String.class)"),
new beans.fggregateBody ())

.complecionTimeout (1000)

.complecionFromBacchConsumer () .id |
"chggregate 1").process |
new org.apache.camel.Processori)
puobliec woid process|
org.apache,camel ,Exchange exchange)
throws Exception
System.out

.println("After aggregatcion: "
+ exchange
getIn()
getBody (

String.class)):

b).id("cProcessor 2");

As shown in the code, a message f r omthe Fi | e_sour ce endpoint is routed viacPr ocessor _1 and
then aggregated according to the condition . aggr egat e.

2. Click the Run view to display it and click the Run button to launch the execution of your route. You can
also press F6 to execute it.

RESULT: The four messages are aggregated in two batches, two messages combined into one each batch.

Execution
[Kl

e O = o s == === e L

[stati=tic=s] connecting to =ocket on port 3714 A
[stati=tic=] connected

Before aggregation: Thi= i= al

Before aggregation: This i= bl

After aggregation: Thi= i= al Thi= i= bl

Before aggregation: Thi= i= ol

Before aggregation: This i=s dl

After aggregation: Thi=s is c! Thi=s i= dl

112 Talend Open Studio for ESB Mediation Components Reference Guide

cDynamicRouter

cDynamicRouter

i

o=

cDynamicRouter properties

Component Family Routing

Function cDynamicRouter alows you to route messages while avoiding the dependency
of the router on al possible destinations.

Purpose cDynamicRouter is used to route a message or messages to different endpoints
on specified conditions.

Basic settings Bean class Enter the name of the bean class to be used for the
dynamic router.

Foecify the method Select this check box to specify the method to be used
which is defined in the bean class.

Ignore Invalid| Select this check box to ignore unresolved endpoint
Endpoints URIs. Clear the check box to throw an exception when
endpoint URIs are not valid.
Usage cDynamicRouter isused as amiddle or end component in a Route.
Limitation n/a

Scenario: Routing files conditionally to different file
paths

In this scenario, three file messages containing people information are routed to different endpoints according to
the city names they contain.

The following is an extract of the example XML filesused in this use case:
Message 1.xml:

<per son>
<first Name>El | en</fir st Name>
<l ast Nane>Ri pl ey</ | ast Nanme>
<ci t y>Washi ngt on</ ci ty>

</ per son>

Message 2.xml:

<per son>
<first Name>Pet er </ first Name>
<l ast Nane>G een</ | ast Nanme>
<ci ty>London</ci ty>

</ per son>

Message 3.xml:

Talend Open Studio for ESB Mediation Components Reference Guide 113

Scenario: Routing files conditionally to different file paths

<per son>
<firstName>Al i ce</first Name>
<l ast Nane>Yang</ | ast Nane>
<city>Beijing</city>

</ per son>

A predefined Java bean, setDynaURI, is called in this use case to return endpoint URIs according to the city name
contained in each message, so that the message containing the city name Washington will be routed to endpoint
Washington and so forth.

For more information about creating and using Java Beans, see Talend Open Studio for ESB User Guide.
package beans;

i mport org. apache. canel . Exchange;
i mport org. apache. canel . Header ;

i mport org.w3c. dom Docunent ;

i mport org.w3c. dom El ement ;

i mport org.w3c. dom Nodeli st ;

public class setDynaURl {
public String set URlI (Docunent docunent,

@eader (Exchange. SLI P_ENDPOI NT) String previous) ({
i f(previous!=null){

return null;
}
NodelLi st cities = docunent. get Docunent El enent () . get El enent sBy TagNane(
n CI tyll) ;

Element city = (Elenent) cities.item0);
String textContent = city. get Text Content();
return "direct: "+t ext Content;
}

}

Dropping and linking the components

— k{f(g
" ae-

=< Y
Message_source Cynamic_router
= owe2 RS
Washington Monitor_Washington
= ows 8
London Monitor_Londan
e T N a
Beijing Monitor_Beijing

114 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Routing files conditionally to different file paths

1. From the Palette, expand the Messaging folder, and drop one cFile and three cM essagingEndpoint
components onto the design workspace.

2. Expand the Routing folder, and drop a cDynamicRouter component onto the design workspace.
3. Expand the Processor folder, and drop three cProcessor components onto the design workspace.
4. Label the components for better identification of their respective functionality.

5. Right-click the cFile component, select Row > Route from the contextual menu and click the
cDynamicRouter component.

6. Repeat this operation to connect the cM essagingEndpoint components to the cProcessor components.

Configuring the components and connections

1. Double-click the input cFile component to display its Basic settings view in the Component tab and set
its properties.

In this use case, simply specify the input file path and leave the other parameters as they are.

FILE =n(=

—pn Message_source(cFile_1) Sl L

Basic settings Path "Dtalend_files/input” * e

. Parameters
Ad d sett
vanc.e 5 .|ngs 7| Noop

Dynamic settings Flatten

View | AutoCreate

Documentation BufferSize(kb) 128"
Encoding CUSTOM - | *
FileMame

2. Double-click the cDynamicRouter component to display its Basic settings view in the Component tab.

3. IntheBean classfield, type in the name of the predefined Java bean. L eave the Specify the method check
box unselected as there is only one method in the Java bean and leave the Ignore Invalid Endpoints check
box unselected if you want the component to throw an exception when endpoint URIs are not valid.

tp Job(Route | %® Component &3 [F= Run (Jeb cD ["'_ Problems Contexts(Ro =0

- : : =

T o-

fs Dynamic_router(cDynamicRouter_1) S| L

Basic settings Bean class beans.setDynallRlclass *
Specify the method

Advanced settings
Fa——— Ignore Invalid Endpeints
View

Documentation

Talend Open Studio for ESB Mediation Components Reference Guide 115

Scenario: Routing files conditionally to different file paths

Double-click the first cM essagingEndpoint component, which is labelled Washington, to display its Basic
settingsview inthe Component tab, and typeinthe URI inthe URI field for the destination of your message.

Here, we want to use this component to retrieve the message routed to the URI direct: Washington, as shown
below.

=0 cMessagingEndpoint_1 Sia E

Basic settings |JRI direct:Washington

Advanced settings
Dynamic settings
View

Documentation

Repeat this step to set the endpoint URIsfor the other two cM essagingEndpoint components: direct: London
and direct: Beijing respectively.

Double-click the first cProcessor component, which is labelled Monitor_Washington, to display its Basic
settings view in the Component tab.

= =
% & Monitor Washington(cProcessor_1) =L
Basic settings Code System.out.println ("Message on endpoint
- Washington: " +
Advanced settings as.'u'ig on i)
exchange.getIn() .getHeader ("CamelFileName")) ;

Dynamic settings

Yiew

Inthe Code box, customizethe codeto display thefile name of the message routed to the endpoint Washington
on the console.

System out . println("Message on endpoi nt Washi ngton: "+
exchange. get | n() . get Header (" Canel Fi | eNanme")) ;

Repeat these stepsto configure the other two cProcessor componentsto display thefile names of the messages
routed to the endpoints London and Beijing respectively.

Press Ctrl+S to save your Route.

Viewing code and executing the Route

Click the Codetab at the bottom of the design workspace to have alook at the generated code.

public volid initRoute () throw= Exception {
routeBuilder = new org.apache.camel .builder.RouteBuilder () {
public void configure ()} throws Exception {
from(uriMap.get ("Message source")) .routeld |
"Message source") .dynamicRouter |
bean (beans.setDynalRI.class)) .id{(
"cDynamicRouter 1"):

Frrm fmnrilMarn ot (MMlaghdmnatan T ot aTA T ITa oG moes o T

Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Routing files conditionally to different file paths

As shown in the code, the incoming message fr om the endpoint Message_source is routed
by .dynani cRouter to endpoints the URIs of which are dynamically set according to

beans. set DynaURI . cl ass.
Click the Run view to display it and click the Run button to launch the execution of your Route.
Y ou can also press F6 to execute it.

RESULT: The source messages are routed to different endpoints based on the city names contained in the

messages.
Execution
Run = Eill Clear
LJII.CLJ.J.J. J LT L O L LS L LT L
INFO Total 4 routes, of which 4 1= =tarted. i
[main] DefaultCanelContext

INFO Apache Camel 2.8.2 (CamelContext:
cDynamicFouter_=l-ctx) =tarted in 0.747 seconds
[stati=tic=] connecting to soclket on port 3429
[2tati=stics] connected

Mes==age on endpoint Washington: Message_ 1 . =zZml
Mes=zage on endpoint London: Message 2 . xzml
Me=z=zage on endpoint Beijing: Message 3 zml

m

Line limit {100 Wrap

Talend Open Studio for ESB Mediation Components Reference Guide 117

cldempotentConsumer

cldempotentConsumer

P=u

cldempotentConsumer properties

Component Family Routing

Function cldempotentConsumer deduplicates messages and thereby prevents the
receiving message endpoint from receiving duplicate messages.

Purpose cldempotentConsumer identifies messages that have already been sent to the
receiver and eliminates them. Messages are still sent by the sender but areignored
by the receiver at the delivery stage.

Basic settings Repository Type Message identifiers need to be stored in arepository. For
new incoming messages, identifiers are checked against
the ones stored in the repository to identify and drop
duplicates. There are two ways to store them:

Memory: messages identifiers are stored temporarily.
The in-memory storage mode can easily run out
#5 of memory and does not work in a clustered
environment.
File: messagesidentifiersare stored in afile. Specify the
path to thisfilein the File storefield.

File store Specify the path and name of the file storing messages
identifiers.

Cache Sze Type in the size of the cache, namely the number of
message identifiersto store.

Use language Select this check box if you want to specify the language
used in the Predicatefield to specify theidentifier of the
messages.

Expression Type in the expression to use to specify the identifier of
the messages.

Eager Select this check box to detect duplicate messages even
when messages are currently in progress; clear it to
detect duplicates only when messages have successfully
been processed.

By default, this check box is selected.

SipDuplicate Select this check box to drop duplicates; clear it toignore
duplicates so that all messages will be continued.
By default, this check box is selected.

Usage cldempotentConsumer is used as a middle component in a Route.

Connections idemp The idemp link retrieves messages deduplicated by the
cldempotentConsumer component.

Route Asanoptiond link, the Routelink retrievesall messages
from the message sender.

118 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Deduplicating messages while routing them

‘Limitation | n/a ‘

Scenario: Deduplicating messages while routing them

In this scenario, duplicated messages are filtered and only the unique one is routed to the destination.

Three XML files that have the same content, as shown below, are used in this use case.

<peopl e>

<person id="8">
<firstName>El | en</first Nane>
<l ast Nane>Ri pl ey</| ast Nanme>
<ci t y>Washi ngt on</ ci ty>

</ per son>

</ peopl e>

Dropping and linking the components

This use case requires one cFile component, one cldempotentComsumer component, and two cProcessor

components.

FILE

. oo . .
| | ~ routel F%-El.. . route? . Ty oo
Source Deduplicator

From the Palette, expand the M essaging folder, select the cFile component, and drop it onto the design
workspace as the message source component.

Expand the Routing folder, select the cldempotentComsumer component and drop it onto the design
workspace as the message deduplicator.

Expand the Processor folder, drop two cProcessor components onto the design workspace, one as the
consumer for deduplicated messages and another for all messages.

Right-click the cFile component, select Row > Route from the contextua menu and click the
cldempotentComsumer component.

Right-click the cldempotentComsumer component, select Row > idemp from the contextual menu and
click the cProcessor component on the top.

Connect the cl dempotentComsumer component to the other cProcessor component using a Row > Route
connection. This optional connection will retrieve all the messages coming from the source.

Label the components to better identify their rolesin the Route.

Talend Open Studio for ESB Mediation Components Reference Guide 119

Scenario: Deduplicating messages while routing them

Configuring the components and connections

1. Double-click the cFile component, which is labelled Source, to display its Basic settings view in the
Component tab.

FILE] [Eh |L
—pn Source(cFile_1)
Basic settings Path "Dnftalend_files/esh/input” * () |
Advan c.ed se#ings jar:janrgsters
Dynamic settings Flatten
View | AutoCreate =
Documentation BufferSize(kb) 728"
Encoding UTF-8 -
FileMarne " 1

2. Inthe Path field, specify the file path to the message source.

From the Encoding list, select the encoding type of your source files, and leave al the other parameters as
they are.

3. Double-click the cldempotentComsumer component, which is labelled Deduplicator, to display its Basic
settings view in the Component tab.

-) =0
#== Deduplicator(cldempotentConsumer_1) =E
Repository
Basic setti .
astc setiings Repository Type |File -
Advanced settings —
: : _ File store "D:/talend_files/esb/camel_temp.tt” *[|
Dynamic settings
. Cache size 200 *
View
Documentation Uselanguage Expression xpath("/people/person”)| "
| Eager

| SkipDuplicate

4. From the Repository Type list, select between Memory and File to specify where the message identifiers
will be stored before the deduplication process. For this scenario, select File.

Inthe File storefield, specify the location of the file storing message identifiers.

In the Expression field, enter an expression to filter the messages. In this scenario, enter the following
expression to filter the messages according to the person node of the XML files: xpat h("/ peopl e/
person"), and leave all the other parameters as they are. Alternatively, you can select the Use language
check box, select XPath from the Language list, and enter " / peopl e/ per son" inthe Predicatefield.

5. Double-click thecProcessor component labelled Uniqueto display itsBasic settingsview inthe Component
tab.

120 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Deduplicating messages while routing them

= =0 |
% & Unique(cProcessor_1) =L
Basic settings Code System.out.println ("Message consumed on e
- Onigque: "+
Advanced settings '11.qae a)
exchange.getIn() .getHeader ("CamelFileMName™)) ;

Dynamic settings
View

Documentation

6. Inthe Code area, customize the code to display the file name of the message that passes the deduplication:

System out . printl n("Message consuned on Uni que: "+
exchange. get I n() . get Header (" Canel Fi | eNane")) ;

7. Repesat these steps to configure the other cProcessor component, which is labelled All, to display the file
names of al the messages coming from the source:

System out. println("Message consuned on All: "+
exchange. get | n() . get Header (" Canel Fi | eNane")) ;

8. Press Ctrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to view the generated code.

public wvoid initRoute() throws Exception {
routeBuilder = new org.apache.camel.builder.RouteBuilder() {
puobklic wvoid configure() throws Exception {
from (uriMap.get ("Source"))
.routeld("Source™)
.idempotentConsumer
xpath (" /people/persaon™),
org.apache.camel.processor.idenpotent . FileIdempotentRepository
.fileTdempotentRepository
new java.io.File(
"D:/talend files/esb/camel temp.txt"},
200)) .eager(truoe)
.skipDuplicate (trne)
.id("cIdempotentConsumer 1").process |
new org.apache.camel.Processor() {

In this partially shown piece of code, messages f r omthe Sour ce are filtered according to the expression
xpat h("/ peopl e/ person") and deduplicated by cl denpot ent Consuner _1.

2. Click the Run view to display it and click the Run button to launch the execution of your Route. Y ou can
also press F6 to execute it.

RESULT: When several files have the same content, only the first one is routed to the receiving endpoint.

Talend Open Studio for ESB Mediation Components Reference Guide 121

Scenario: Deduplicating messages while routing them

Execution

Run (= Kill | Clea
cldenpotentComnzunser_=sl-ct2) =tarted in 0,657 i
seconds

[statisztic=s] connecting to soclket on port 3634
[ztatistics] connected

Hessage consumed on Unigue: filel =ml

Hesszage consumed on All: filel . =ml

Message consumed on All: file? =ml

Hesszage consumed on All: filed. =ml

Line limit {100 Wrap

122 Talend Open Studio for ESB Mediation Components Reference Guide

cLoadBalancer

cLoadBalancer

*L2

cLoadBalancer properties

Component Family

Routing

Function cLoadBalancer alows you to distribute messages across multiple endpoints using

different load balancing strategies.

Purpose cL oadBalancer alows you to distribute messages among several endpoints using a

variety of load balancing strategies.

Basic settings Srategy Select between Random, Round Robin, Sticky, Topic,
Failover, and Custom. Each method is described below.

Random The receiving endpoint is chosen randomly at each exchange.

Round Robin Messages are distributed according to the round robin method which distributestheload

evenly.

Sicky Language Select the language of the expression to use in the Expression
field to distribute the messages.

Expression Typein the expression that will be used to calculate acorrelation
key that will determine the endpoint to choose.

Topic Select this option to send al the messages to all the endpoints.

Failover Basic mode By default, the failover load balancing aways sends the
messages to the first endpoint. If the first endpoint fails, the
messages are sent to subsequent endpoints.

Soecify exceptions | Specify the exceptions to which the failover should react to in
the Exception table.

Usewith Round robin| Select this option to use failover with advanced options.
From the Maximum failover attempt list, select the number of
attempt to be proceed before giving up the transfer:
-Attempt forever: always attempts to transfer the messages and
alwaystry to failover.
-Never failover: gives up immediately the transfer of messages
and never try to failover.
-A number of attempts: attempts n number of time to transfer
messages, specify that number in the Number of attemptsfield.
Inherit error handler: Select true if you want Camel error
handler to be used. If you select false, the load balancer will
immediately failover when an exception is thrown.
Use Round robin: Select true if you want to combine failover
with round robin. Failover load balancing with round robin mode
distributes the load evenly between the services, and it provides
automatic failover.

Custom Load balancer Typein the name of your custom load balancer.

Talend Open Studio for ESB Mediation Components Reference Guide 123

Scenario: Distributing messages to receiver endpoints based on round robin

Usage cL oadBalancer is used as a middle component in a Route.
Connections Load Balance Select thislink to route messages to the next endpoint according
to the selected |oad-balancing strategy.
Route Select this link to route all the messages from the sender to the
next endpoint.
Limitation n/a

Scenario: Distributing messages to receiver endpoints
based on round robin

Inthisscenario, acL oadBalancer component isused to distribute four messages evenly to two receiving endpoints
in accordance with the round robin load balancing method.

Dropping and linking the components

This scenario requires one cFile component as the message sender, one cL oadBalancer component to distribute
the messages to two different receivers in a load balancing manner, two cJavaDSL Processor components to
define the URIs of the receivers, two cM essagingEndpoint components to retrieve the messages routed to the
two receivers, and two cProcessor components to display the effect of round robin load balancing.

FILE ' I = " To Receiver A
s rouel LT .
Sender Load_balancer E

5

' TD_F{ec ei*.r'er_El '

L S
_ . ows &9
Receiver_ A Monitor_A

5] i
e T N
Receiver_B Monitor_B

1. From the Messaging folder of the Palette, drop one cFile component and two cM essagingEndpoint
components onto the workspace, and label them according to their roles in the Route: Sender, Receiver_A,
and Receiver_B respectively.

2. From the Routing folder, drop a cLoadBalancer component onto the design workspace, and label it
Load_balancer.

3. FromtheProcessor folder, drop two cJavaDSL Processor componentsand two cProcessor componentsonto
the design workspace, and label them according to their rolesin the Route: To Receiver A, To_Receiver B,
Monitor_A, and Monitor_B respectively.

4. Link the cFile component to the cL oadBalancer component using a Row > Route connection.

5. Link cLoadBalancer to each of the two cJavaDSL Processor components using a Row > Load Balance
connection.

124 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Distributing messages to receiver endpoints based on round robin

6. Link each of the two cM essagingEndpoint components to the corresponding cProcessor component using
aRow > Route connection.

Configuring the components and connections

1. Double-click the cFile component to open its Basic Settings view in the Component tab.

FILE _ = [
—pn Sender(cFile_1)
n I|lI' - III" n * _.
Basic settings Path D:/talend_files/input |
- Parameters
Ad d =ett
vanc.e = .|ngs 7] Noop

Dynamic settings] Flatten
View AutoCreate
Documentation BufferSize(kh) " 78"

Encading UTF-& -

FileMame "

2. Inthe Path field, specify the file path to message source.
3. FromtheEncoding list, select the encoding type of your messagefiles. Leavethe other parametersasthey are.

4. Double-click the cL oadBalancer component to open its Basic Settings view in the Component tab, and
select the load balancing method you want to use from the Strategy list. In this scenario, we use the default
Round robin method.

= =In
ﬂEl Load_balancer(cLoadBalancer 1) ==

Basic settings Strategy Found rebin -~

Advanced settings
Dynamic settings

View

5. Double-click the cJavaDSL Processor component labeled To_Receiver_A to open its Basic Settings view
in the Component tab, and enter URI of the first receiver between the double quotation marks in the Code
area, di r ect : a inthisexample.

=E

To_Receiver_A{cJavaDSLProcessor_1) =

Basic settings Code .to("direct:a") P

Advanced settings

m

Dynarnic settings

View

Talend Open Studio for ESB Mediation Components Reference Guide 125

Scenario: Distributing messages to receiver endpoints based on round robin

Repeat this step to define the URI of the other receiver, di r ect : b, inthe cJavaDSL Processor component
labeled To_Receiver B.

Double-click the cM essagingEndpoint component labeled Receiver_A to open its Basic Settings view in
the Component tab, and enter URI of the first receiver between the double quotation marksin the URI field,
di r ect : a inthisexample.

—»= Receiver_A(cMessagingEndpoint_4) e L

Basic settings URI "direct:a”

Advanced settings
Dynamic settings
View

Documentation

Repeat this step to definethe URI of the other receiver, di r ect : b, inthe cM essagingEndpoint component
labeled Receiver_B.

Double-click the cProcessor component labeled Monitor_A to open its Basic Settings view in the
Component tab, and customize the code in the Code area to display the file names of the messages routed
to Receiver_A on the console:

System out . println("Mssage on Receiver A "+
exchange. get | n() . get Header (" Canel Fi | eNanme")) ;

Repeat this step to customize the code in the cProcessor component labeled Monitor_B to display the file
names of the messages routed to Receiver_B on the console.

Press CtrI+S to save your Route.

Viewing the code and executing the Route

1. Click the Codetab at the bottom of the design workspace to check the generated code:
public vold initRoute () throws Exception {
routeBuilder = new org.apache.camel.builder.RouteBuilder () {
public vold configure () throws Exception {
from(uriMap.get ("Sender™)) .routeld ("Sender")
dnadBalance () .roundRobin () .1d(
"cLoadBalancer 1")
.to("direct:a").id ("cJavalSLProcessor 1")
«to("direct:b").id ("cJavaDSLProcessor 2");
Asshown above, while messages arerouted f r omthe source endpoint . t o the destination endpoints, routing
load balancing is implemented according to the. r oundRobi n() method by cLoadBal ancer _1.
2. PressF6 to run your Route.
RESULT: Of the four messages from the sender, two are routed to Receiver_A and two are routed to
Receiver B in around robin manner.
126 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Distributing messages to receiver endpoints based on round robin

Execution

T

P T e e

started in 0.723 seconds -
[statistics] connecting to soclket on
port 3905

[ztati=tic=s] connected

Hesszage on Receiver_A: Message 1. =ml
Message on Receiver_ B: Message 2 =Zml
Message on Receiver_ A: Message 3. =Zml
Hes=zage on Receiver_B: Message 4. =ml

(]

Line limit | 1qp Wrap

Talend Open Studio for ESB Mediation Components Reference Guide 127

cMessageFilter

cMessagekFilter

+
Y

cMessageFilter properties

Component Family |Routing

Function cMessageFilter filters the content of messages according to the specified criterion and
routesthefiltered messagesto the specified output channel. All messagesthat do not match
the criteriawill be dropped.

For more information on the Camel Message Filter EIP: http://camel .apache.org/message-

filter.html.

Purpose Use cM essageFilter to eliminate unwanted messages from a channel according to the
defined criterion.

Basic settings Language Select the language of the expression you useto filter your messages from

Constant, EL, Groovy, Header, JavaScript, JoSQL, JXPath, MVEL,
None, OGNL, PHP, Property, Python, Ruby, Simple, SpEL, SQL,
XPath, and XQuery.

Expression | Typein the expression to use to filter the messages.

Usage cM essageFilter isused as a middle component in a Route.
Connections Filter Select thislink to route the filtered messages to the next endpoint.
Route Select this link to route all the messages from the sender to the next
endpoint.
Limitation na

Scenario: Filtering messages according to a criterion

In this use case, we filter XML messages that are sent from the sending endpoint according to adefined criterion:
only the XML filesin which the value of the city node is Paris are sent to afolder named Paris_only.

Of the four XML files used in this scenario, Message 1.xml and Message 4.xml contain the city name of Paris.
Thefollowing is an example:

<per son>
<firstName>Pi erre</first Nanme>
<l ast Nane>Dupont </ | ast Nanme>
<city>Paris</city>

</ per son>

Dropping and linking the components

Thisscenario requiresone cM essageFilter component to filter the messages from the sender, one cFile component
as the message sender, one cFile component to receiver the messages containing Paris, one cFile component to
receiver al the messages from the sender, and two cProcessor components to monitor the messages routed to
the two receivers.

128 Talend Open Studio for ESB Mediation Components Reference Guide

http://camel.apache.org/message-filter.html
http://camel.apache.org/message-filter.html

Scenario: Filtering messages according to acriterion

FILE - ' =

Sender Filter
. Toutes, . . .
FILE =

=8 [gutes PP

Unfiltered f'-.-“lu:unitbr_U nfiltered

=" quted »
' ' Péris_u:uril:,r ' Mu:uhitu:ur_l:"aris '
. Aetted
FILE &
—p-o routel ? \\

1. Fromthe Messaging folder of the Palette, drop three cFile components onto the design workspace, and label
them Sender, Paris_only, and Unfiltered respectively to better identify their roles.

2. From the Routing folder, drop a cM essageFilter component onto the design workspace, and label it Filter.

3. From the Processor folder, drop two cProcessor components onto the design workspace, and label them
Monitor_Paris and Monitor_Unfiltered respectively.

4. Right-click the cFile component labeled Sender, select Row > Route from the contextual menu and click
the cM essageFilter component.

5. Right-click the cM essageFilter component, select Row > Filter from the contextual menu and click the cFile
component labeled Paris_only. This endpoint will retrieve the messages that meet the defined criterion.

6. Right-click the cM essageFilter component, select Row > Route from the contextual menu and click the
cFile component labeled Unfiltered. This endpoint will collect all the messages, including those meeting the
filter criterion. This connection is optional.

7. Right-click the cFile component labeled Paris_only, select Row > Route from the contextual menu and click
the cProcessor component labeled Monitor_Paris. Repeat this step to connect the cFile component labeled
Unfiltered to the cProcessor component labeled Monitor_Unfiltered.

Configuring the components and connections

1. Double-click the cFile component labeled Sender to open its Basic settings view in the Component tab.

FILE _ = L
—pn Sender(cFile_1)
Basic settings Path "D:/talend_files/input” ™
- Parameters
Ad d =ett
vanc.e = .|r1gs 7| Noop
Dynamic settings Flatten
View 7| AutoCreate
Documentation BufferSizelkh) "1 78"
Encading UTF-& -
FileMame "

2. Inthe Path field, specify thefile path to message source.

3. FromtheEncoding list, select the encoding type of your messagefiles. Leavethe other parametersasthey are.

Talend Open Studio for ESB Mediation Components Reference Guide 129

Scenario: Filtering messages according to acriterion

4. Double-click the cM essageFilter component to open its Basic settings view in the Component tab.

$: ==
¥ Filter(cMessageFilter_1)

Basic settings Language APath -

Advanced settings Expression
Dynamic settings

'/person[city="Paris']"

Yiew

Documentation

5. Select the language of the expression you want to use to filter your messages, and enter an expression to
define a criterion according to which you want to filter your messages.

In this scenario, we want to sort out the XML files containing a city node with the value of Paris, so
we select XPath from the Language list, and fill the in the Expression field with this expression: "/
person[city="Paris']".

6. Double-click the cFile component labeled Paris_only to open its Basic settings view in the Component
view, and specify the path for the messages meeting the filter criterion in the Path field.

FILE) . =in L
—pu Paris_only(cFile_2)
Basic settings Path "D:/talend_files/esb/Paris_only" * [
Advanc.ed set.tings jar:laurgpeters
Dynamic settings Flatten
View | AutoCreate
Documentation BufferSize(kb) " 28"
Enceding CLUSTOM - *
FileMame "

Repeat this step to define the path for all the messages from the sender in the cFile component labeled
Unfiltered.

7. Double-click the cProcessor component labeled Monitor_Paris to open its Basic settings view in the
Component view, and customize the code in the Code area to display the file names of the messages that
meet the filter criterion on the console:

System out . printl n("Message sent to folder Paris _only: "+
exchange. get I n() . get Header (" Canel Fi | eNane")) ;

Repeat this step to customize the code in the cProcessor component labeled Monitor_Unfiltered to display
the file names of all the messages from the sender.

8. PressCtrl+Sto save your Route.

Viewing the code and executing the Route

1. Tohavealook at the generated code, click the Code tab at the bottom of the design workspace.

130 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Filtering messages according to acriterion

public void initRoute () throws Exception {
routeBuilder = new org.apache.camel.builder.RouteBuildexr () {
pubklic void configure() throws Exception {
from(uriMap.get ("Sender™))
routeld("Sendexr™)
Filter()
.¥path("/person[city='Paris']")
.id ("cHMessageFilter 1")
.to(uriMap.get ("Paris_only"))
.id("cFile_2")
.process (new org.apache.camel.Processor() {
public wvoid process|
org.apache.camel .Exchange exchange)
throws Exception {
System.out
.println("Message sent to folder Paris only: "
+ exchange

getIni()
. getHeader (
"CamelFileName™)) ;
Y} .1id("cProcessor 1").end() .tof
uriMap.get ("Unfiltered")) .id("cFile_3")

Asshown in this piece of code, messagesf r omthe sender are filtered by cMessageFi | t er _1 according
to . xpath("/person[city="Paris']") and the messages matching the filter are send . t o the
endpoint Par i s_onl y, while all messages are sent . t o the endpoint Unfi | t er ed.

Click the Run view to display it and click the Run button to launch the execution of your Route.
You can also press F6 to executeit.

RESULT: The messages are filtered according to the defined criterion and the messages containing "Paris"
are redirected to the Paris_only folder, all the messages, including those containing "Paris’, are sent to the
Unfiltered folder.

Execution

on | [man | [Guc

4w ABpAIIE dieslr 2 .00 2 gl Ll e L
cHes=zageFilter_=l-ctx) =tarted in 0.707 =seconds=s
[stati=stics] connecting to socket on port 3577
[ztatistic=s] connected

Message =ent to folder Paris _only: Message 1. =ml
Hes=zage =ent to folder Unfiltered: MHessage_1.=zml
Mes==sage =ent to folder Unfiltered: Message 2 =ml
Hesszage sent to folder Unfiltered: MHessage 3 .=Zml
Mes=sage =ent to folder Pari=s only: Message 4 =ml
Message =ent to folder Unfiltered: Message 4. =wml

m
o]

m

Line limit {100 Wrap

Talend Open Studio for ESB Mediation Components Reference Guide 131

cMessageRouter

cMessageRouter

<z

cMessageRouter properties

Component Family Routing

Function cMessageRouter routes messages in different channels according to specified
conditions.

Purpose cMessageRouter creates different channels for each filtered message types so

that messages can later on be treated more accurately in each new channel.

Usage cM essageRouter isused as a middle component in a Route. It can only have one
input channel but multiple output channels. Messages can be outputted through
either aWhen, Otherwise or Route types of connection.

Connections Trigger / When Select the When link and click the Component view.

In the Type list, select the type of language you will use to
declare your condition.

In the Condition field, type in the condition that will be
used to filter the messages.

All the messages that do not match this condition are
retrieved with the Otherwise link to a different channel or
dropped if an Otherwise link does not present.

There can be more than one When link in aRoute.
7

Trigger / Otherwise | This link automatically retrieves the messages that do not
match the When conditions.

There can be only one Otherwise link, which is
¥ optional, in a Route.

Limitation It is recommended not to put any message handling after the When or the
Otherwise link. Always use a Mock/Direct endpoint to replace them and make
anew Route to handle the messages.

Scenario: Routing messages according to a criterion

In this use case, we route XML messages that are sent from the sending endpoint according to a defined criterion:
those XML files in which the value of the city node is Paris are sent to a folder named Paris_only, and other
messages are sent to a folder named Other_cities.

132 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Routing messages according to a criterion

directParis
enl

FILE"T : : ..',‘,/g'

| i roukel o
Sender ' ' Mess'age_rc'uuter :
ather
qﬂ
directOthers
EILE - . . .
. 5 [FO3
" roubes T=—pm robed s i)
" directParisRoute ' Recéiver_lf'aris ' ' Monitor_Paris
EILE - . . .
. 5 [FO3
" roubes T=—pm roukes s i)
“directOthersRoute " Receiver_Others " Monitor_Others

Of the four XML files used in this scenario, Message 1.xml and Message 4.xml contain the city name of Paris.
Thefollowing is an example:

<per son>
<firstName>Pi erre</firstNanme>
<l ast Nane>Dupont </ | ast Nanme>
<city>Paris</city>

</ per son>

Dropping and linking the components

1. From the Messaging folder of the Palette, drop three cFile and four cM essagingEndpoint components
onto the design workspace, and label them Sender, Receiver_Paris, and Receiver_Others, directParis,
directOthers, directParisRoute, and directOther sRoute respectively to better identify their roles.

2. From the Routing folder, drop a cMessageRouter component onto the design workspace, and labdl it
Message router.

3. From the Miscellaneous folder, drop two cL.og components onto the design workspace, and label them
Monitor_Paris and Monitor_Others respectively.

4. Right-click the cFile component labeled Sender, select Row > Route from the contextual menu and click
the cM essageRouter component.

5. Right-click the cM essageRouter component, select Trigger > When from the contextual menu and click
the cM essagingEndpoint component labeled directParis. This endpoint will retrieve the messages that meet
the defined criterion.

6. Right-click the cM essageRouter component, select Trigger > Otherwise from the contextual menu and
click the cM essagingEndpoint component labeled directOthers. This endpoint will collect all the messages
that do not meet the filter criterion.

7. Right-click the cMessagingEndpoint component labeled directParis, select Row > Route from the
contextual menu and click the cFile component labeled Receiver Paris. Repeat this operation to link
the component labeled Receiver Paris to Monitor_Paris, directOthersRoute to Receiver_Others, and
Receiver _Othersto Monitor_Others respectively using the Row > Route connection.

Talend Open Studio for ESB Mediation Components Reference Guide 133

Scenario: Routing messages according to a criterion

Configuring the components and connections

The cMessageRouter component does not have any property as it filters and routes the messages from one
endpoint to others based on the conditions set in its When connection(s).

1. Double-click the cFile component labeled Sender to open its Basic settings view in the Component tab.

FILE E=ER|E
—»= Sender(cFile_1) S L

Basic settings Path "Di/talend files/input” * [
Advanced settings jﬁr:lﬁur‘;'lsters
Dynamic settings Flatien
View J| AutoCreate
Documentation BufferSize(kb) ~ "128"
Encoding UTE-8 i
FileMame i

2. Inthe Path field, specify the file path to message source.
Fromthe Encoding list, select theencoding type of your messagefiles. Leavethe other parametersasthey are.

3. Inthe design workspace, click the When connection you created and click the Component view to define
afilter against which messages will be routed.

= whenl
Basic settings Type [Z
Advanced settings Condition "/person[city="Paris"']" =

m

4. IntheTypelit, select xpath because the format of the messages used is XML.

In the Condition field, typein"/ person[city="Pari s']" to retrieve only those messages in which
the value of the city nodeis Paris.

5. Double-click the cM essagingEndpoint component |abeled directParisto open its Basic settingsview inthe
Component tab.

=0 directParis{cMessagingEndpoint_1])
Basic settings LRI direct:Paris
Advanced settings

Dwnamic sekkings

Wiew

Documentation

6. IntheURI field, enter the endpoint URI, for example, "direct: Paris' to receive the filtered message.

134 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Routing messages according to a criterion

7. Repeat these steps to set the endpoint URI of the cM essagingEndpoint components labeled directOthers as
"direct: Others'. Set the endpoint URIs of the cM essagingEndpoint components labeled directParisRoute
and directOthersRoute as "direct: Paris" and "direct: Others" respectively.

8. Double-click the cFile component labeled Receiver_Paristo open its Basic settingsview in the Component
tab, and specify the path for the messages meeting the filter criterion in the Path field.

FILE) _ =n [
—pn Receiver_Paris{cFile_2)
e, : " +
Basic settings Fath F:fdatafoukputParis_only E]
Advanced setkings ar:;rgpeters
O i LEi
WNAMIC sekkings [Ratten
i
e autoCreate
Dacumentation
Buffersizelkb) "1za"
Encoding CLSTCM o [*
Filerarne

Repeat this step to define the path for al the other messages from the sender in the cFile component labeled
Receiver_Others.

9. Double-click the cL og component labeled Monitor_Paristo open its Basic settings view in the Component

tab.

LOG e
Ly Monitor_Paris(clog_1) =
Basic settings Level INFO

Advanced settings) Use default output log message (%) Specify output log message

Cymamic setkings Message "Message sent to Folder Paris_only: $4header, CamelFilefameoniyL"
Wi

Diacurnenkation

10. Select INFO inthe Levd list. Select the Specify output log message option and enter the following codein
the M essage field to display the filename of the message sent to the specified directory.

Message sent to folder Paris_only: ${header.Canel Fil eNameOnl y}

Repeat this step to customize the message in the cL og component labeled Monitor_Others to display the
filename of the message sent to the specified directory.

11. Press Ctrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

Talend Open Studio for ESB Mediation Components Reference Guide 135

Scenario: Routing messages according to a criterion

public wvoid initRoute () throws Exception {

routebuilder = new org.apache.camel.builder.RouteBuilder () §
public wvoid configure () throws Exception {
fromiuriMap.getc ("3ender™)) .routelId|("Zender™) .choice ()
Lid("cHessageRouter 1") .when() .xpath(

"iperson[oity='Paris']1") .toli
urilap.getc ("directcParis™)) . id|
"eMessagingEndpoint 17) .otherwise() .to|
urilap.get ("direccOthers™)) . idj

"ocMessagingEndpoint 27
from{uriMap.get ("direccParisRouce™))
.routeld|"directParisRoute™)
JtofuriMap.get ("Receiver Paris"))
Lid("eFile 2
.logilorg.apache.camel.LogyinglLevel ., INFO,
"Honitor Paris",
"Message sent to folder Paris only: ${header.CamelFileNameOnly: ™)

Lid(MoLog 17)
fromiuriMap.get ("directcOthersRoute®™))
Jrouteld{"directOthersFoute™)
Lto(uriMap.get ("Receiver Others"))
Lid({"eFile 3M)
logilorg.apache..camel. Logginglevel, INFO,
"Honitor Others",
"Message sent to folder Other cities: §{header.CamelFileNsmeCnly}"

Lid{"eLog 27

Asshown inthe code, the messages are routed according to conditionsinitialized with the. choi ce() piece
of code. Thefilter you defined isinitialized with the . when() piece of code, and the non filtered messages
arerouted through the . ot her wi se() piece of code.

2. Click the Run button in the Run view or press F6 to execute your Route.

RESULT: The files containing “Paris’ are sent to a folder named Paris_only, and the other messages are
sent in afolder called Other_cities.

Job cMessageRouter

. Execution
Basic Run

Debug Run = kil

Advanced Settings

[=tati=tic=] connecting to socket on port 3837 A
[=tatiztic=s] connected

[tsmeszagerouter] Monitor Paris

INFQ MHessage sent to folder Paris only:

Hezzage_ 1 =ml
[tsmezzagerouter] Monitor Others

INFO HMessage =ent to folder Other cities:

Hes=age 2 . =Zml

[trmezzagerouter] Monitor Others

IHFQ Message sent to folder Other cities:

Hes=zage 2 .=ml

[trmessagerouter] Monitor Paris

INFQ Meszsage =zent to folder Paris only:

Hezzage 4 .=Zml A

Target Exec

136 Talend Open Studio for ESB Mediation Components Reference Guide

cMulticast

cMulticast

o

-

cMulticast properties

Component Family Routing
Function cMulticast routes one or more messages to a number of endpoints at one go.
Purpose cMulticast is used to route one or more messages to a number of endpoints at one
go and process them in different ways.
Basic settings URIS Add as many lines as needed in the URIstable to define the
endpoints to route the message(s) to.

Send in parallel Select this check box to multicast the message(s) to the
specified endpoints simultaneously.

Set timeout Select this check box and set atimeout inthe Timeout field,
in milliseconds. If cMulticast fails to send and process all
the messages within the set timeframe, it breaks out and
continues.

Note that this check box appears only when the Send in
parallel check box is selected.

Use Aggregation|Select this check box to refer to a predefined Java bean as

Srategy an aggregation strategy for assembling the messages from
the message source into a single outgoing message.

By default, the last message acts as the outgoing message.
Usage cMulticast can be used as a middle or end component in a Route.
Limitation n/a

Scenario: Multicasting a message to two endpoints
and using it to enrich the contents received by the

third endpoint

In this scenario, a cM ulticast component is used to route a message to two endpoints. Afterwards, that message
is added to the contents received by the third endpoint by using acContentEnricher component.

Talend Open Studio for ESB Mediation Components Reference Guide 137

Scenario: Multicasting a message to two endpoints and using it to enrich the contents received by the third
endpoint

FILE -b*g.
—pn roukel " o roukez ™
cFile_1 soUrCE_prink cMulticast_1
3 .)))) L
" roukes " dsll roukes g
direct_a cConkentEnricher_1 direct_a_prink
" rouked g
direct_b direct_b_prink

" _ru:uuteS_ =$—'b

direct_c ' ' ' ' ' ' ' " direct_c_print

To build the Route, do the following.

Dropping and linking the components

1. Drag and drop the following components from the Palette onto the workspace: one cFile, three
cMessagingEndpoint, four cProcessor, one cMulticast and one cContentEnricher. For better
identification of the components functionalities, change the labels of the three cM essagingEndpoint
componentsto direct_a, direct_b and direct_c, and change the labels of the four cProcessor components
to source _print, direct_a_print, direct_b_print and direct_c_print.

2. Link cFileto source_print using a Row > Route connection.

3. Link source_print to cMulticast using a Row > Route connection.

4. Link direct_ato cContentEnricher using a Row > Route connection.

5. Link cContentEnricher to direct_a print using a Row > Route connection.

6. Linkdirect_btodirect_b_print using a Row > Route connection.

7. Link direct_ctodirect_c print using a Row > Route connection.

Configuring the components

Configuring the data sour ce and the multicast recipients

1. Double-click cFileto open its Basic settings view in the Component tab.

138 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Multicasting a message to two endpoints and using it to enrich the contents received by the third
endpoint

FILE = [

—pu CHile_1 —_
e, : ’ " *
Basic settings Path E: /data/input/multicask [3
Advanced setkings ar‘:.;rg;ters
Crvnamic settings I:l Flatten
Wiew
AukoCreate
Cocumentation
Buffersizelkb) "1zg"
Encoding CUSTOM | *
FileMame

2. Inthe Path field, type in the path to the source message, for example, "E:/data/input/multicast”. Keep the
default settings for other fields.

3. Double-click source_print to open its Basic settings view in the Component tab.
F E
& & source_print{cProcessor_1) &
Basic settings Code String body =
Advanced settings exchange.getIn() .getbBody (3tring. class) ;

IJystem.out.println("Here iz the original body: ™

Dwnamic setkings]
+ exchange.getIn() .getBody(3tring.clas=s)) ;

View

Docurmentation

4. Inthe Code box, enter the code below to get the source message body and print it out.
String body = exchange.getln().getBody(String.class);
Systemout.println("Here is the original body:"

+ exchange. getIn(). get Body(String.cl ass));

5. Double-click cMulticast to open its Basic settings view in the Component tab.

& m =0 [
gﬂ* cMulticast_1 =a
12
Basic settings RIS Lri
advanced settings "direct:a", "direct:b"

Dvnarnic settings
Wi

Documentation

[send in parallel

|:| Use Aggregation Skrategy

6. Inthe URIStable, click the plus button to add a line where you need to type in the URIs of the endpointsto
receive the multicast message, for example, "direct:a","direct:b".

7. Double-click direct_ato open its Basic settings view in the Component tab.

Talend Open Studio for ESB Mediation Components Reference Guide 139

Scenario: Multicasting a message to two endpoints and using it to enrich the contents received by the third
endpoint

=
—» 8 direct_a(cMessagingEndpoint_1) o=

Basic settings LRI "direct:a"
Adwvanced settings

Crynamic sekkings

Wiew

Dacumentation

8. IntheURI field, enter the endpoint URI, for example, "direct:a".

Perform the same operation to direct_b and direct_c and type in the URIs of "direct:b" and "direct:c"
respectively.

Configuring the content enricher and printers

1. Double-click cContentEnricher to open its Basic settings view in the Component tab.

E'-H'D . =g
& cContentEnricher_1 =2

w L Ed
Basic settings Resource LRI direct:c
Advanced settings Merge data

{®)using a producer

Dwnamic sekkings

it 2 () using a consumer
Ve

T g |:| Ilse aggregation strategy

In the Resour ce URI field, typein the URI of the endpoint whose incoming contents will be enriched with
the message received by cContentEnricher, for example, "direct:c".

Inthe M ergedata area, select using a producer to enable cContentEnricher to route the received message
to "direct:c".

3. Double-click direct_a print to open its Basic settings view in the Component tab.

& o direct_a_print(cProcessor_4)

==

Basic settings Code Swstem.out.println("lirect & just

Advanced settings downloaded: "+exchange.getIn() .getBody (3tring. class)) ;
Dwnarnic sekkings
Wi

Docurmentation

In the Code box, enter the code below to print out the message received by direct_a.

Systemout.println("Direct a just
downl oaded: " +exchange. get I n() . get Body(Stri ng. cl ass));

Perform the same operation to direct_b_print and direct_c_print and type in the code below in their code
boxesin turn:

Systemout.println("Direct b just
downl oaded: " +exchange. get I n() . get Body(Stri ng. cl ass));

140 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Multicasting a message to two endpoints and using it to enrich the contents received by the third
endpoint

Systemout.println("Direct c just
downl oaded: " +exchange. get I n(). get Body(Stri ng. cl ass));

5. PressCtrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to check the generated code.

public void initFoute()] throws Exception {
routebuilder = new org.apache.cawel.builder.RouteBuilder (] |
public void configure()] throws Exception {
from(urilap.get ("cFile 17)) .routeld("cFile 1" .process |
new org.apache.cawmel.Processor () 4

public void process|
org.apache.camel.Exchange exchange)
throws Exception {
String body = exchange.getln) .getBody(
Ftring.class) ;
System.out
Lprintln("Here iz the original hody: ™
+ exchange
LgetIn)
.getBody |
Btring.class)):

] -id("eProcessor 17 .multicasti() .tof
"direct:a", "direct:b").id("cHulticast 1"):;

from(urilap.get ("direct _a']].routeld("direct_a™]
.enrich(directc:of™)

Lid("eContentEnricher 17) .process |
new org.apache.camel.Frocessor (] 4
public void process|
org.apache.camel.Exchange exchange)
throws Exception {
Iyste.ont
Jprintln(®hirect a Jjust downloaded:™
+ exchange
.getIn()
.getBody |
String.class));

As shown above, the route gets the original message from cFi | e_1, prints it out viacProcessor _1,
andthen. nmul ticast() itto("direct:a", "direct:b").Afterwards, the message received by

direct _aisusedto.enrich("direct:c").

2. Press F6 to execute the Route.

The original message is multicast to direct_a and direct_b. Also, it is used to enrich the contents received
by direct_c.

Talend Open Studio for ESB Mediation Components Reference Guide 141

Scenario: Multicasting a message to two endpoints and using it to enrich the contents received by the third
endpoint

[=tati=stics] connecting to socket on port 3414
[stati=tic=] connected

Here i= the original body:China

IS4

France

GErmany

Direct o just downloaded:China
54

France

GErmany

Direct a just downloaded:China
54

France

Germnany

Direct b just downloaded:China
s
France

Germnany
Sl mrmerd froast amded 86 JFC5F 1SS0S ferr e oovdes=d T

142 Talend Open Studio for ESB Mediation Components Reference Guide

cRecipientList

cRecipientList

<

cRecipientList properties

Component Family Routing

Function cRecipientList is designed to route messages to a number of dynamically
specified recipients.

Purpose cRecipientList allows you to route messages to a number of dynamically
specified recipients.

Basic settings Language Select the expression language from the drop-down list.
Expression Type in the expression that returns multiple endpoints.

Sop On Exception | Select this check box to stop processing immediately when
an exception occurred.

Ignore Invalid| Select this check box to ignore invalid endpoints.
Endpoints

Parallel Processing | Select this check box to send the message to the recipients
simultaneously.

Usage Asamiddle component, cRecipientList allowsyou to route messagesto anumber
of dynamically specified recipients.

Limitation n/a

Scenario: Routing a message to multiple recipients

In this scenario, a cRecipientList component is used to route a message to alist of recipients.

—)))) i_l))))))
= roukel o roukeZ .

Read Input " cSetHeader 1 " cRecipientList_1
™" routes "B P

Recipient & ' ' ' ' ' ' ' ‘Print_File_Marme_A
™" routed "

Recipient B ' ' ' ' ' ' ' "Print_File_Mame &

To build the Route, do the following.

Talend Open Studio for ESB Mediation Components Reference Guide 143

Scenario: Routing a message to multiple recipients

Dropping and linking the components

Drag and drop the components from the Palette onto the workspace: cFile, cSetHeader, cRecipientList,
two cM essagingEndpoint and two cProcessor. Change the label of the cFile component to Read_| nput.
Change the labels of the two cM essagingEndpoint components to Recipient_A and Recipient_B. Change
the labels of the two cProcessor componentsto Print_File Name A and Print_File Name B.

Link Read_Input to cSetHeader using a Row > Route connection.

Link cSetHeader to cRecipientList using a Row > Route connection.

Link Recipient_A to Print_File Name_A using a Row > Route connection.

Link Recipient_B to Print_File Name_ B using a Row > Route connection.

Configuring the components

1. Double-click cFileto open its Basic settings view in the Component tab.
FILE =n [
—pn Read_Input(cFile_1)
ne, . n =
Basic settings Fath E:fdatafinput E]
- Parameters
.ﬁ.dvann?ed seFtlngs Nop
D.ynamlc settings |:| Flatten
views autoCreate
Documentation
Buffersizelkb) "1ze"
Encoding CUSTOM " *
Filetarne
2. Inthe Path field, type in the path to the source message, for example, "E:/data/input”. Keep other default
settings unchanged.
3. Double-click cSetHeader to open its Basic settings view in the Component tab.
=
iLl cSetHeader 1 =l
Basic settings Header "LiskOFRecipients" *
Advanced settings [Juse bean
Dynamic setkings Language Constant -+
Yigw Expression "direct:a,direct:b" *
Documentation
4. IntheHeader field, enter the header name, for example, "ListOfRecipients’.
In the Language list, select Constant.
In the Expression field, enter the endpoint URIs, for example, "direct:a,direct:b".
5. Double-click cRecipientList to open its Basic settings view in the Component tab.
144 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Routing a message to multiple recipients

=
-C% cRecipientList_1 |

Basic settings Language ERlE bt
Advanced settings Expression "ListOfRecipients” |*
Crnamic setkings |:| Stop ©n Exception

Wiz []1gnore Irevalid Endpoints

Diocurnentation []Parellel Processing

6. IntheLanguagelist, select Header.

In the Expression field, enter the name of the header that contains the recipients list, that is,
"ListOfRecipients".

7. Double-click Recipient_A to open its Basic settings view in the Component tab and define the URI of
recipient A.
— 8 Recipient_A{cMessagingEndpoint_1) S
Basic settings LRI direct: 2"
Advanced setkings
Cwnamic setkings
Wigst
Docurnentation
Perform the same operation to Recipient_B to define the URI of recipient B.
8.

Double-click Print_File Name_A to open its Basic settings view in the Component tab and enter the code
below to print out the message received by Recipient_A.

System out . printl n("Reci pi ent_a j ust
downl oaded: " +exchange. get | n() . get Header (" Canel Fi | eNane")) ;

= =0
& & Print_File_Name_A(cProcessor_1) =L [
Basic settings Code System.out.println("Recipient_a just

Advanced settings doynloaded: "+exchange.getIn() .getHeader ("CamelFilelame™)) ;
Dynamic settings

Wiew

Docurnentation

Perform the same operation to Print_File Name B and type in the code below in its code box:

System out . printl n("Reci pi ent_b just
downl oaded: " +exchange. get | n() . get Header (" Canel Fi | eNane")) ;

9. PressCtrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to check the generated code.

Talend Open Studio for ESB Mediation Components Reference Guide 145

Scenario: Routing a message to multiple recipients

public void initFoute()] throws Exception {
routebuilder = new org.apache.camel.builder.RoutebBuilder () {
public void configure (] throws Exception {
from{urilap.get ("Read Input”)).routeld("Read Input')
.ZetHeader ("LiscOfRecipient=s") . constant |
fdirect:a,direct:b™) . id("c3ecHeader 1)
.Eecipientlist () header ("ListOfRecipient=") .14/
feRecipientlLisc 17)
from{urillap.get ("Recipient A")) .routeld("Recipient 4™
.process (new org.apache.camel.Processor() |

public volid process|
org.apache.camel . Exchange exchange)
throws Exception {
Svstet.out
.println("Recipient a just downloaded:"
+ exchange

sgetIng)
.getHeader |
"Came lFilelNamwe™))
i
V). idi"eProcessor_1");
from{urilap.get ("Recipient E")).routeld("Recipient E")
.process(new org.apache.camel.Processor()] |

public void process|
org.apache.camel . Exchange sxchange)
throws Exception {
Iystetn. out
.princln("Recipient b just downlosded:”
+ exchange
.getIng)
.getHeader |
"CammelFilelawe™)) !

M .id{"cProcessor_4");

As shown above, the route gets the message from Read Input, and
. set Header (" Li st OF Reci pi ent s") recipientsusing . constant ("direct: a, direct:b").
Then, cReci pi ent Li st _1 reads. header (" Li st Of Reci pi ent s") and routes the message to the
recipientsincluded in it.

2. Press F6 to execute the Route.

The message is sent to recipients included in the header.

[ztati=stics] connecting to =ocket on port 3620
[stati=tic=s] connected

Fecipient_a just downloaded:File A txt
Fecipient_b ju=st downloaded:File_ A t=t

146 Talend Open Studio for ESB Mediation Components Reference Guide

cSplitter

cSplitter

cSplitter properties

lli:l?l

Component Family

Routing

Function cSplitter splits amessage into several submessages according to a condition.
Purpose cSplitter separates multiple elements of a message so that they can be handled
and treated differently in individua routes
Basic settings Expression Type in the expression to use to split the messages.
Usage cSplitter is used as a middle component in a Route.
Connections split Select thislink to route the splitted messages to the next
endpoint.
Route Select thislink to route all the messages from the sender
to the next endpoint.
Limitation n‘a

Related scenario:

For a related scenario, see the section called “ Scenario: Splitting a message and renaming the sub-messages
according to contained information” of the section called “cSetHeader”.

Talend Open Studio for ESB Mediation Components Reference Guide 147

cRoutingSlip

cRoutingSlip

cRoutingSlip properties

Component Family Routing
Function cRoutingSlip alows you to route a message or messages consecutively through
a series of processing steps, with the sequence of steps unknown at design time
and variable for each message.
Purpose cRoutingSlip is used to route a message or messages consecutively to a series of
endpoints.
Basic settings Header name Type in name of the message header as defined in the
preceding cSetHeader component, mySip by default.
The header should carry alist of endpoint URIsyou wish
each message to be routed to.
URI delimiter Delimiter used to separate multiple endpoint URIs
carried in the message header, comma (,) by default.
Usage cRoutingSlip is used as a middle or end component of a sub-route. It always
follows a cSetHeader component, which sets a header to each message to carry
alist of endpoint URIs.
Limitation n/a

Scenario 1. Routing a message consecutively to a
series of endpoints

In this scenario, messages from afile system isrouted consecutively to a series of endpoints according to the URIs

carried in the message header.

Dropping and linking the components

This use case requires a cFile component as the message sender, a cSetHeader component to define a
series of endpoints, a cRoutingSlip component to route messages to the endpoints consecutively, three
cM essagingEndpoint componentsto retrieve messages routed to the endpoints, and three cProcessor components
to monitor messages routed to the connected messaging endpoints.

148 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 1: Routing a message consecutively to a series of endpoints

FILE - i_,
) BT = R R S A
Sender Set_endpoints Routing_slip
e 2 .
Endpoint_a Monitor_a
1 2 .
Endpoint_k Monitor_b
e 2
Endpoint_c Monitor_c

From the Palette, expand the M essaging folder, drop one cFile and three cM essagingEndpoint components
onto the design workspace, and label them to better identify their roles in the Route, as shown above.

From the Transfor mation folder, drop a cSetHeader component onto the design workspace, and labdl it to
better identify itsrolein the Route.

From the Routing folder, drop a cRoutingSlip component onto the design workspace, and label it to better
identify itsrole in the Route.

From the Processor folder, drop three cProcessor components onto the design workspace, and label them
to better identify their rolesin the Route.

Right-click the cFile component, select Row > Route from the contextual menu and click the cSetHeader
component.

Right-click the cSetHeader component, select Row > Route from the contextual menu and click the
cRoutingSlip component.

Repeat this operation to connect the cM essagingEndpoint components to the corresponding cProcessor
components.

Configuring the components and connections

Double-click the cFile component, which is labelled Sender, to display its Basic settings view in the
Component tab.

FILE =0
—pu Sender(cFile_1) alo L

Basic settings Path "Di/talend_files/esb/cities” ™ [=]
Advanced settings ﬁr:lﬂnrgpeters
Dynamic settings 7 Flatten
_ AutoCreate
Documentation BufferSize(kh) 2"
Encoding UTF-8 T
FileMarne e

Talend Open Studio for ESB Mediation Components Reference Guide 149

Scenario 1: Routing a message consecutively to a series of endpoints

2. Inthe Path field, fill in or browse to the path to the folder that holds the source files.
From the Encoding list, select the encoding type of your source files. Leave the other parameters asthey are.

3. Double-click the cSetHeader component, which islabelled Set_endpoints, to display its Basic settings view
in the Component tab.

=m|[C
i’j S5et_endpoints(cSetHeader_1) EIEIL
Basic settings Header “mySlip” *
Advanced settings Use bean
Dynamic settings Language Constant -
View Expression "direct:c, direct:a, direct:b” *

Documentation

4. IntheHeader field, typein the name of the header you want to add to each message.

In this use case, we simply use mySip, which is the default value filled in the Header name field of the
cRoutingSlip component.

5. From the Language list box, select the Constant or Simple, and in the Expression field, typein the URIs
you wish the message to be routed consecutively to, separated by a comma, which isthe default value of the
URI delimiter field of the cRoutingSlip component.

In this use case, we want the message to be routed first to endpoint c, then to endpoint a, and finaly to
endpoint b.

6. Double-click the cRoutingSlip component, which islabelled Routing_dlip, to display itsBasic settings view
in the Component tab, and define the message header in the Header name field and the URI delimiter in
the URI deimiter field.

In this use case, we simply use the default settings.

=0o =
s=ea Routing_slip(cRoutingSlip_1) e L

Basic settings Header name "mySlip"

Advanced settings URI delimiter n "
Dynamic settings
View

Documentation

7. Double-click the cM essagingEndpoint component |abelled Endpoint_ato display its Basic settingsview in
the Component tab, and type in the URI in the URI field for the destination of your messages.

Here, we want to use this component to retrieve the message routed to the URI direct:a.

150 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 1: Routing a message consecutively to a series of endpoints

=o |
—+»= Endpoint_a(cMessagingEndpoint_2) = L

Basic settings URI "direct:a"

Advanced settings
Dynamic settings
View

Documentation

Repeat this step to set the endpoint URIsin the other cM essagingEndpoint components: direct:b and direct:c
respectively.

8. Double-click the cProcessor component, which is labelled Monitor_a, to display its Basic settings view in
the Component tab, and customize the code so that the console will display information the way you wish.

Here, we want to use this component to monitor the messages routed to the connected endpoint a and display
the file name, so we customize the code accordingly, as follows:

System out . printl n("Message recei ved on endpoint a: "+
exchange. get I n() . get Header (" Canel Fi | eNane")) ;

Repeat this step to customize the code for the other two cProcessor components, for messages routed to the
connected endpoints b and ¢ respectively.

System out . println("Message recei ved on endpoint b: "+
exchange. get | n() . get Header (" Canel Fi | eNanme")) ;

System out . println("Message received on endpoint c: "+
exchange. get | n() . get Header (" Canel Fi | eName")) ;

9. PressCtrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

puoblic vold initBoute () throws Exception {
routeBuilder = new org.apache.camel.builder.RouteBuilder () f{
puoblic vold configure() throws Exception {
from(uriMap.get ("Sender™)) .routeld ("Sender™) . setHeader (

"myS1lip™)

.constant ("direct:c,direct:a,direct:b") .id|
"cSetHeader 1").routing3lip|
header ("myS1ip™), ",").id(

"cRoutingSlip 1");

Inthis partialy shown code, messages from the sender are given aheader accordingto. set Header , which
carriesalistof URIs("di rect: ¢, direct: a, di rect: b"),andthenroutedinthedip pattern according
by cRoutingSlip_1.

2. Click the Run view to display it and click the Run button to launch the execution of your Route.

Y ou can also press F6 to execute it.

Talend Open Studio for ESB Mediation Components Reference Guide 151

Scenario 2: Routing each message conditionally to a series of endpoints

Execution
Run (= Kill Clea

e e L = e e e e T

[2tati=stics] connecting to socket on port 3767 ¢
[stati=ztics] connected

Mes=zage received on endpoint
Mesz=zage received on endpoint
Hes=szage received on endpoint
Hesz=zage receiwved on endpoint
Mesz=zage receiwved on endpoint
Hes=zage received on endpoint
Mes=zage receiwved on endpoint
Mes=sage receiwved on endpoint
Mes=zage received on endpoint
Mesz=zage received on endpoint
Hes=szage received on endpoint
Hesz=zage receiwved on endpoint

Beijing. zml
Beijing. =zml
Beijing. zml
London . ¥ml
London . xml
London . zml
Pari=s. zZmnl
Pari=s.=zmnl
Pari=. =zmnl
Wazhington. ®xml
Washington . zml
Wazhington. =ml

m

oo oooenoown

Line limit |100 Wrap

RESULT: The source file messages are routed consecutively to the defined endpoints: ¢, then a, and then b.

Scenario 2: Routing each message conditionally to a
series of endpoints

In this scenario, which is based on the previous scenario, each message from afile system isrouted consecutively
to different endpoints according to the city name it contains.

All files used in this use case are named after the city name they contain. The following are the extracts of two
examples:

Beijing.xml:

<per son>
<first Name>Ni col as</first Nane>
<l ast Nane>Yang</ | ast Nane>
<city>Beijing</city>

</ per son>

Paris.xml:

<per son>
<first Name>Pi erre</first Nane>
<l ast Nane>Dupont </ | ast Nane>
<city>Paris</city>

</ per son>

A predefined Java Bean, setEndpoints, iscalled in this use case to return endpoint URIs according to the city name
contained in each message, so that the messages will be routed as follows:

» The message containing the city name Paris will be routed first to endpoint a, then to endpoint b, and finally
to endpoint c.

» The message containing the city name Beijing will be routed first to endpoint c, then to endpoint a, and finally
to endpoint b.

152 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 2: Routing each message conditionally to a series of endpoints

» Any other messages will be routed to endpoint b and then to endpoint c.
For more information about creating and using Java Beans, see Talend Open Studio for ESB User Guide.
package beans;

i mport org.w3c. dom Docunent ;
i mport org.w3c. dom El enent ;
i mport org.w3c. dom NodelLi st ;

public class set Endpoi nts {
public String hell oExanpl e(Docunent docunent) {
NodeLi st cities = docunent. get Docunent El enent (). get El enent sBy TagNane(
"city");
Element city = (Elenent) cities.item0);
String textContent = city. get Text Content();
if ("Paris".equal s(textContent)) {
return "direct:a,direct:b,direct:c";
} else if ("Beijing".equal s(textContent)) {
return "direct:c,direct:a,direct:b";
} el se
return "direct:b,direct:c";
}
}

Dropping and linking the components

In this scenario, we will reuse the Route set up in the previous scenario, without adding or removing any
components or modifying any connections.

Configuring the components and connections

In this scenario, we only need to configure the cSetHeader component to call the predefined Java Bean, and keep
the settings of al the other components are they are in the previous scenario.

1. Double-click the cSetHeader component to display its Basic settings view in the Component tab.

=m|(c
*_H Set_endpoints(cSetHeader 1) S |—
n] +
Basic settings Header mySlip
Advanced settings B Use bean
Bean class beans.setEndpoints.class *

Dynamic settings
View

Documentation

2. Select the Use bean check box, and in the Bean classfield that appears, specify the Java Bean that will return
the endpoint URISs. In this use case, typein

beans. set Endpoi nt s. cl ass.

Talend Open Studio for ESB Mediation Components Reference Guide 153

Scenario 2: Routing each message conditionally to a series of endpoints

3. Press Ctrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

public void initRoute ()
routeBuilder =
public wvolid configure ()

throws Exception {
new org.apache.camel . .builder.RouteBuilder ()

throws Exception {

{

from{uriMap.get ("Sender™)) .routeld ("Sender™) .setHeader |
"myS1lip"™) .method (beans. setEndpoints.class) .id(
"cSetHeader 1").routingSlip (header ("myS1lip"),

", ") .id("cRoutingSlip 1"):

In this partially shown code, messages from the sender are given a header according to . set Header,
which carries a list of URIs returned by the beans. set Endpoi nt s. cl ass, and then routed to the

cRoutingSlip_1.

2. Click the Run view to display it and click the Run button to launch the execution of your Route.

Y ou can also press F6 to execute it.

Execution

—

He==age
Hes=zage
He=z=age
Hes=zage
Hes==age
He==age
Hes=zage
He=z=age
Hes=zage
Hes==age

 mKk

[stati=tic=] connecting to soclket on port 3974
[2tati=stics] connected

received
received
received
recelved
received
received
received
received
recelved
received

Line limit |1q0

on
on
on
an
on
on
on
on
an
on

endpoint
endpoint
endpoint
endpoint
endpoint
endpoint
endpoint
endpoint
endpoint
endpoint

noEogEoe oo en

Beijing. =ml
Beijing. zml
Beijing. =ml
London . zml
London . =ml
Fari=. zml
Fari=. =ml
Fari=. zml
Washington.zml
Washington . ®¥ml

Wrap

RESULT: The sources are routed consecutively to the defined endpoints: the message containing the city
name Beijing isrouted first to endpoint ¢, then to endpoint a, and finally to endpoint b; the message containing
the city name Paris is routed first to endpoint a, then to endpoint b, and finally to endpoint c; the other
messages are routed to endpoint b and then to endpoint c.

154 Talend Open Studio for ESB Mediation Components Reference Guide

cWireTap

cWireTap

cWireTap properties

Component Family Routing

Function cWireTap allows you to route messages to a separate tap endpoint while it is
forwarded to the ultimate destination.

Purpose cWireTap is used to route messages to a separate endpoint while forwarded to
the ultimate destination.

Basic settings URI The endpoint URI to send the wire tapped message.
Populate new exchange | Select this check box to populate a new exchange of the

message.

Populate Type This option appears when the Populate new exchange

check box is selected. The Populate Type is either
EXxpression or Processor.

Expression: Using expression alows you to set the
message body of the new exchange.

Language: Select the language of the expression you
want to use to set the message body between Constant,
Header, None, Property, Simple, XPath.

Expression: Enter the expression to set the message
body.

Processor: Using processor gives you full power to
specify how the exchange is populated as you can set
properties, headers and so on to the message with apiece
of Java codein the Codefield.

Copy the original|Select thischeck box to useacopy of the exchange when
message wire tapping the message. This option appears when the
Populate new exchange check box is selected.

Usage cWireTap can be a middle component in a Route.
Limitation n‘a

Scenario: Wiretapping a message in a Route

In this scenario, a cWireTap component is used to route a message to a separate endpoint while it is routed to
the ultimate destination.

Talend Open Studio for ESB Mediation Components Reference Guide 155

Scenario: Wiretapping a message in a Route

FILE— } } } } } } }
e routel _ v i _ route2 '

Source - Wi-retap;:-ler © Set_destination

e I
Endpoint_a Manitor_a

e
Endpoint_b Manitor_b

Dropping and linking the components

From the Palette, expand the M essaging folder, and drop a cFile and two cM essagingEndpoint components
onto the design workspace.

Expand the Routing folder, and drop a cWireT ap component onto the design workspace.

Expand the Processor folder, and drop a cJavaDSL Processor and two cProcessor components onto the
design workspace.

Right-click the cFile component, select Row > Route from the contextual menu and click the cWireTap
component.

Repeat this operation to connect the components as shown above.

Label the components to better identify their functionality.

Configuring the components

1. Double-click the cFile component labeled Source to display its Basic settings view in the Component tab.
FILE =n|[=
—pn Source(cFile_1) L
Basic settings Path "D/talend_files/input” *)
= Parameters
Ad d sett
"-l'EﬂC.E 5 : Ings NDDFI
Dynamic settings] Flatten
View AutoCreate
Documeniation BufferSize(kb) ~ "128"
Encading CUSTOM - | *
FileMame "
2. InthePath field, browseto or enter the input file path. In this use case, thereisaHello.txt filein the specified
file path, which contains the content Hello World!. Leave the other parameters asthey are.
3. Double-click the cWireTap component to display its Basic settings view in the Component tab.
156 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Wiretapping a message in a Route

=0
—{~ Wiretapper(cWireTap_1) ==
T w -
Basic settings URI direct:a
Advanced settings Populate new exchange
: - Populate Type
Dynamic settings %) Expression L
View @ Processor
Docurmentation
Code System.out.println ("\nMessage wiretapped: "+ -
exchange.getIn() .getHeader ("CamelFileName™)) ;
System.out.println("Mes=sage content: "+

exchange.getIn() .getBody (String.class)+"\n")

Enter "di rect : a" inthe URI field to route the wiretapped message to this endpoint.

Select the Populate new exchange check box, select Processor as the populate type, and then enter the
following code in the Code box to display the file name of the wiretapped message and its content on the
console:

System out. println("\nMessage wiretapped: "+
exchange. get I n() . get Header (" Canel Fi | eNanme")) ;
System out . println("Message content: "+

exchange. get I n(). get Body(String. cl ass)+"\n");

Double-click the cJavaDSL Processor component to display its Basic settings view in the Component tab.

E =10
Set_destination{cJavaDSLProcessor_1) = L
Basic settings Code .to("direct:b") - B

m

Advanced settings
Dynamic settings

=

In the Code field, enter the Javacode . t o(" di rect : b") to define the URI of the endpoint to route the
original message to.

Double-click the cM essagingendpoint component labeled Endpoint_a to display its Basic settingsview in
the Component tab. Enter " di r ect : a" inthe URI field to retrieve the message routed to this endpoint.

=0 L
—»= Endpoint_a(cMessagingEndpoint_1) oc

Basic settings URI "direct:a”
Advanced settings
Dynamic settings

Wiew

Repeat this operation to set the endpoint URI for Endpoint_b.

Double-click the cProcessor component labeled Monitor_a to display its Basic settings view in the
Component tab. Enter the following code in the Code box to display the file name of the message routed
to Endpoint_a.

Talend Open Studio for ESB Mediation Components Reference Guide 157

Scenario: Wiretapping a message in a Route

System out . println("Message on endpoint a: "+
exchange. get I n() . get Header (" Canel Fi | eNanme")) ;

= =

& & Monitor_a(cProcessor_1)

Basic settings Code System.out.println({"Me=s=sage on endpoint a: "4+ =
exchange.getIn() .getHeader ("CamelFileNams"}) s

Advanced settings
Dynamic settings

View

—

Then, configure the other cProcessor component in the same way to display the file name of the message
routed to Endpoint_b.

9. PressCtrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

public void initRoute () throws Exception {
routeBuilder = new org.apache.camel.builder.RouteBuilder() {
pablic vold configure ()} throws Exception {
from{uriMap.get ("Source™)) .routeld ("Source™) .wireTap|(
"direct:a") .newExchange |
new org.apache.camel.Processor() {

public volid process |
org.apache.camel .Exchange exchange)
throws Exception {

' Auto-generated method stub
Bystem.out
.println("\nMessage wiretapped: "

+ exchange
.getIn{)
.getHeader |
"CamelFileNams"}) ;
Syvstem.out .println("Mes=sage content: "
+ exchange.getIn() .getBody|(
String.clas==) + "\n"):

H)
Lid ("cWireTap 1")

.to("direct:kb") .id("cJdaval5LFrocessoxr_ 1");

In this partially shown code, any message f r omthe endpoint Sour ce will be wiretapped by . wi r eTap
androutedto” di r ect : a" . Thefine name and content of each wiretapped message will be displayed on the
console. The original message will berouted . t 0 an endpoint identified by the URI " di r ect : b", which
isdefined in cJavaDSLPr ocessor 1.

2. Click the Run view to display it and click the Run button to launch the execution of your Route. You can
also press F6 to execute it.

158 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Wiretapping a message in a Route

RESULT: The source message is wiretapped and routed to endpoint a as well as being routed to endpoint b.

Execution
. . -
Fun [Kill Clea
Wil lap Sl 7 e e LOl LS L1l [E I R P | T N N R)

[statistics] connecting to socket on port 3467 ¢

[=tati=tics] connected

Hes=zage wiretapped: Hello. txt
Hes=zage content: Hello worldl

Message on endpoint b: Hello. t=t
Hessage on endpoint a: Hello. t=t

Line limit {100 Wrap

Talend Open Studio for ESB Mediation Components Reference Guide 159

Talend Open Studio for ESB Mediation Components Reference Guide

Transformation components

This chapter details the major components that you can find in Transformation family from the Palette of the
M ediation perspective of Talend Open Sudio for ESB.

The Transfor mation family groups component that execute data transformation processes.

Talend Open Studio for ESB Mediation Components Reference Guide

cContentEnricher

cContentEnricher

L
]

cContentEnricher properties

Component Family

Transformation

Function cContentEnricher isdesigned to use aconsumer or producer to obtain additional
data, respectively intended for event messaging and request/reply messaging.

Purpose cContentEnricher alowsyou to use aconsumer or producer to obtain additional
data, respectively intended for event message messaging and request/reply
messaging.

Basic settings Resource URI This refers to the destination to which a message will be

delivered if using a producer is selected; it refers to the
source from which a message will be obtained if using a
consumer is selected.
Using a producer Select this check box to use a producer to provide
additional data, i.e. sending a message to the defined URI.
Using aconsumer | Select thischeck box to use aconsumer to obtain additional
data, i.e. requesting a message from the defined URI.
Use Aggregation| Select this check box to define the aggregation strategy for
Strategy assembling the basic message and the additional data.
Soecify timeout This area appears when Using a consumer is selected. The
timeout options are as follows:
Wait until amessagearrive: the component keepswaiting
for amessage.
Immediately polls the message: the component
immediately polls from the defined URI.
Waiting at most until the timeout triggers. select this
check box to type in a timeout vaue in Millis. The
component waits for the message only within the defined
time period.

Usage cContentEnricher alowsyou to use aconsumer or producer to obtain additional
data, respectively intended for event message messaging and request/reply
messaging.

Limitation n/a

Scenario: Receiving messages from a list of URLSs

In this scenario, we will use the Camel component HTTP4 and the cContentEnricher component to retrieve
messages from alist of URLSs. To do this, we need to build two sub-routes, one to read afile with alist of URLS
and send the messages to the local file system, the other to retrieve the messages on these URLSs.

162 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Receiving messages from alist of URLS

In thisuse case, we will take alist of URLson thelocal Tomcat server asthe example. So we need to start Apache
Tomcat before executing the Route.

A TXT file URLI i st isused to provide the list of URLS, as shown below.

docs/i ntroduction. ht m
docs/ setup. ht m

— . . '#.. 5
= OG0 = = =
=pE (outel B rouked ol Foukes £ routez

URLIist " coplitker 1 cJavaDSLProcessor 1 cContentEnricher 17 setFildMame
roufe?

e T roukes rooteg T —p

fetchURL ' setURT ' setPaTH " http4Endpoint " retrievedFiles

Dropping and linking the components

1. From the Palette, drag and drop a cSplitter, a cJavaDSL Processor, a cContentEnricher, two cFile, two
cM essagingEndpoint, and three cSetHeader components onto the design workspace.

2. Label the components properly for better identification of their roles and link them using the Row > Route
connection as shown above.

Configuring the components

Configuring thefirst sub-route

1. Double-click the URLIist component to display its Basic settings view in the Component tab.

=
FILE i = [
—pu URLlist{cFile_1)
ne=, - . n +
Basic settings Path F:/data/inputcontentEnricher E]
Advanced settings ar:.;rgsters
Dymarnic sekkings D Flatten
i
- AutoCreate

Diacurnenkation

BufferSizeikb) "128"

Encoding CISTOM v *

FileMarne "URLlisk. Ext"

2. Inthe Path field, browse to the file path where the URL list file is saved.

In the FileNamefield, enter the filename URLIist.txt.

Talend Open Studio for ESB Mediation Components Reference Guide 163

Scenario: Receiving messages from alist of URLS

3. Double-click the cSplitter component to display its Basic settings view in the Component tab.
a =m0 [
= cSplitter_1 2
Basic settings Expression body(String, class), bakenize!"irin") *
Advanced setkings
[rvnamic settings
Wiew

Dacument ation

4. In the Expression field, enter the code body(Stri ng. cl ass).tokeni ze("\r\n") to split the
message in each row into sub-messages.

Note that this piece of code is for Windows only. For uUnix,
2 change it to body(String.class).tokenize("\n"), and for Mac,
body(String. cl ass).tokenize("\r").

5. Double-click the cJavaDSL Processor component to display its Basic settings view in the Component tab.

=0
o clavaDSLProcessor_1 [

4 -
ode Ldlogifsplitterdutput:

Advanced settings §{bodyl ")

Crynamic settings

Basic settings

Vigwy

Docurmentakion

6. Inthe Code area, enter thecode . | og("splitterQut put: ${body}") to get the splitted message
body.

7. Double-click the cContentEnricher component display its Basic settings view in the Component tab.

— =@ [
& cContentEnricher 1 £2

w , n +
Basic settings Resource LRI direct:fetchiJRL

Merge daka

Advanced settings
g {*)using a producer

Dwnamic setkings O sing & consumer
Wi

e g |:| |Ise aggregation skraktegy

8. Select using a producer to use aproducer to provide additional data and send the message to adefined URI.
In the Resource URI field, enter " di r ect : f et chURL" where the message will be delivered.

9. Double-click the setFileName component to display its Basic settings view in the Component tab.

164 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Receiving messages from alist of URLS

i‘, setFileName({cSetHeader_3)

Basic settings Header
advanced settings [use bean
Crymamic settings Language
Hig Expression

Documentation

e

arg,apache.camel, Exchange, FILE_MAME

Simple "

"$Iheader . CamelHtkpPath " *

10. Inthe Header field, enter or g. apache. canel . Exchange. FI LE_NAME to define the file name for

each incoming message.

Select Simplein the Language list.

In the Expression field, enter " ${ header . Canel Ht t pPat h} " to get the URI's path of the incoming

message.

11. Double-click theretrievedFiles component to display its Basic settings view in the Component tab.

FILE
—pn retrievedFiles(cFile_2)

Basic settings Path
Advanced setkings ar:].zrgsters
Cwnamic setkings D Flatten
Wigst
AutoCreate
Dracurnentation Buffersize(kh)
uffersize
Encoding
FilzMarne

EE
Jea

"F:fdatajoutput/contentEnricher"

"128"
CUSTOM ™ *

12. Inthe Path field, browse to the destination file path where you want the messages to be saved.

Configuring the second sub-route

1. Double-click thefetchURL component to display its Basic settings view in the Component tab.

=8 fetchURL({cMessagingEndpoint_1)

Basic settings LRI

Advanced setkings
Dwnarnic sektings
Wi

Documentakion

=0n
==

"direct:FetchURL"

2. Inthe URI field, enter "direct:fetchURL" that is defined in the cContentEnricher component.

3. Double-click the setURI component to display its Basic settings view in the Component tab.

Talend Open Studio for ESB Mediation Components Reference Guide 165

Scenario: Receiving messages from alist of URLS

=
i‘, setURI{cSetHeader_2) ol [
+
Basic settings Header org.apache. camel Exchange HTTP_IIRI
advanced settings [use bean
Dvnamic sekkings Language Sirnple w
Mg Expression "http:fflocalhost: 2050" *

Documentation

4. Inthe Header field, enter or g. apache. canel . Exchange. HTTP_URI to define the HTTP URI of
each message.
Select Simpleinthe Languagellist.
Inthe Expression field, enter "ht t p: / /| ocal host : 8080" of thelocal Tomcat server.
5. Double-click the setPATH component to display its Basic settings view in the Component tab.
=0a [
i"j setPATH{cSetHeader_1) ==
Basic settings Header org.apache.camel,Exchange HTTP_PATH |*
Advanced settings [use bean
Drnamic setkings Language Simple b
Wi Expression "${body}" *
Documentation
6. Inthe Header field, enter or g. apache. canel . Exchange. HTTP_PATH to define the HTTP path of
each message.
Select Simplein the Language list.
In the Expression field, enter " ${ body} " that is splitted from the original message.
7. Double-click the http4Endpoint component to display its Basic settings view in the Component tab.
EE
—3 8 http4Endpoint (cMessagingEndpoint_2) o
Basic settings LRI "httpt i localhosk; 5030
Advanced setkings
Cwnamic setkings
Wiew
Documentation
8. IntheURI field, enter "http4:localhost:8080" to consuming HT TP resources on the local Tomcat server.
9. . - .
Click the Advanced settingsview. Click . * . at the bottom of the Dependencies|ist to add arow and select
ht t p4 from the drop-down list. For more information about HTTP4, see the site http://camel.apache.org/
http4.html.
166 Talend Open Studio for ESB Mediation Components Reference Guide

http://camel.apache.org/http4.html
http://camel.apache.org/http4.html

Scenario: Receiving messages from alist of URLS

—#8 http4Endpoint{cMessagingEndpoint_2)

. . Dependencies A
Basic seftings Camel component
Advanced settings http4
[rvnamic settings
Wiew
Crocumentation

2

Press Ctrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

public void initRoute () throws Exception {
routeBuilder = new org.apache.camel . builder.RouteBuilder(] |
public void configure() throws Exception {
fromi{uriMap.get ("URLlizst™)) .routeld ("URLlist™) .split|
body(3tring.class) .tokenize (", ")) .1d/(

"edplitter 1M)

Ldog(faplicterCutput: f{bodyl™) . id|
"eJaval3lProcessor 17)
.enrich("direct:fetchURL")

id("ecContentEnricher 1) .setHeader |
org.apache.camel . Exchange . FILE NAME)

Simple("i{header . Came lHotpPath: ™) . id |
"oietHeader 37 .tof

uriMap.get ("retrievedFilezs™)) .1id/|
"eFile 2M);
fromiuriMap.get ("fetchURL"™)) .routeId | "fetchURL")

.setHeader jory.apache.camel.Exchange . HTTF TRI)

Zimple("http:// localhost i S080™) . id(
"oletHeader 27 .setHeader |
org.apache.camel . Exchange . HTTP_PATH)

.simplei"${hudg}"].idi"cSEtHeader_l"].tDi
uriMap.get ("httpdEndpoint™)) . id |
"eMezsagingEndpoint 27

b
getCamelContexts () .get (0) . addRoutes (routeBuilder) ;

As shown above, a message route is built from the URLI i st to the retri evedFil es via the
.split,.log, .enrich, and. set Header. The other message route is built from f et chURL to
ht t p4Endpoi nt viatwo . set Header .

2. Press F6 to execute the Route.

Talend Open Studio for ESB Mediation Components Reference Guide 167

Related scenario

RESULT: The splitted message is printed on the Run console.

Execution
[Kll

L= LIl] UeEladl L dlilEl e s v
Foute: fetchURL started and consuming from:
Endpoint[direct: ~~fetchlRL]

[main] DefaultCanslContext IHNFO Total
2 ronte=s, of which 2 1= started.
[main] DefaultCanslContext IHFO

Apache Camsl 2.9.2 (CamelContext: ContentEnricher—ct=)
started in 1.343 =seconds=s

[=tati=ztic=s] connecting to =ocket on port 3607
[stati=stic=s] connected

[contentEnricher] URLli=t IHFO
splitterCutput: docs<introduction. html
[contentEnricher] URLlist IHED
gplitterCutput: docs<sszetup. html
w
The messages from the list of URL s are saved in defined directory of the local file system.
Address |\ Fildata\outputhcontentEnricherdocs 2 ﬂ G
Mame Size Type
File and Folder Tasks & |& | inkroduction, bkl 11 KB Firefox HTML Document
|& | setup, bkl 13 KB Firefox HTML Docurment

_} Make a new Folder

g@ Publish this Falder ko the
Wieh

ket Share this Folder

Related scenario

For arelated scenario, see:

* cMulticast: the section called “ Scenario: Multicasting a message to two endpoints and using it to enrich the
contents received by the third endpoint”.

168 Talend Open Studio for ESB Mediation Components Reference Guide

cConvertBodyTo

cConvertBodyTo

<

cConvertBodyTo properties

Component Family Transformation

Function cConvertBodyT o converts the message body to the given class type.

Purpose cConvertBodyTo is used to convert the message body to a given class type.

Basic settings Target Class Name Enter the name of the classtype that you want to convert
the message body to.

Usage cConvertBodyTo is used as a middle component in a Route.

Limitation

Scenario: Converting the body of an XML file into an
org.w3c.dom.Document.class

In this scenario, a cConvertBodyTo component is used to convert the body of an XML file into an
org.w3c.dom.Document.class. Then a cBean component imports the org.w3c.dom.Document class, checks its
contents and prints out the root element name and the content of each category element.

The XML fileisasfollows:

<bookst or e>
<bookshel f >
<cat egor y>Cooki ng</ cat egor y>
<quantity>100</quantity>
</ bookshel f >
<bookshel f >
<cat egor y>Languages</ cat egor y>
<quanti t y>200</ quantity>
</ bookshel f >
<bookshel f >
<cat egor y>Art s</ cat egor y>
<quanti t y>300</ quantity>
</ bookshel f >
<bookshel f >
<cat egor y>Sci ence</ cat egor y>
<quantit y>400</ quantity>
</ bookshel f >
</ bookst or e>

Talend Open Studio for ESB Mediation Components Reference Guide 169

Scenario: Converting the body of an XML file into an org.w3c.dom.Document.class

Dropping and linking the components

FILE -
—p O routel * "é route2 *

' Realﬂ_meséage Clﬁnvert_'messa'ge_l:u:n':ly ' ' F‘ririt_l:l:unfent

1. Dragand drop the following components from the Palette onto the workspace: cFile, cConvertBodyTo and
cBean.

2. Link cFileto cConvertBodyTo using a Row > Route connection.
3. Link cConvertBodyT o to cBean using a Row > Route connection.

4. Label the components to better identify their functionality.

Configuring the components

1. Double-click the cFile component, which is labelled Read_message, to open its Basic settings view in the
Component tab.

FILE : = [
—pn Read_message(cFile_1)
—_ - f v +
Basic settings Path D:/talend_files/input/books E]
Advanced settings arl.'laﬂrgpeters
Dynamic settings D Elatten
'|I|" W
= AutoCreate
Documentation
Buffersize(kb) "12g8"
Encoding CLSTOM |l *
FileMame "books, xml'|

2. Inthe Path field, enter or browse to the path to the source XML file.

3. Ifthesourcefilefolder contains morethan onefile, enter the name of the XML file of interestinthe FileName
field, and leave the other parameters as they are.

4. Double-click the cConvertBodyTo component, which is labelled Convert_message body, to openits Basic
settings view in the Component tab.

=0
..é Convert_message_body{cConvertBodyTo_1) £2 [
Basic settings Target Class Mame | org.w3c.dom.Document. class
Advanced settings
Dynamic settings
View

Documentation

170 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Converting the body of an XML fileinto an org.w3c.dom.Document.class

5. IntheTarget Class Namefield, enter your target class name, org.w3c.dom.Document.classin this scenario.

6. Double-click the cBean component, which is labelled Print_content, to open its Basic settings view in the
Component tab.

=0 [:
D Print_content(cBean_1) £2

Bean class beans.F‘l'intCu:ulT-.-'El'tTu:uEtean.class

[] specify the method

Basic settings
Advanced settings
Dynamic settings
Wiew

Documentation

7. Inthe Bean class field, enter the name of the bean to be invoked, beans.PrintConvertToBean.class in this
scenario.

Note that this bean has already been defined in the Code node of the Repository and it looks like this:

package beans;

i mport org.w3c. dom Docunent ;

i mport org.w3c. dom El enent ;

i mport org.w3c. dom NodeLi st ;
public class PrintConvert ToBean {

/**

* print input nessage
* @ar am nessage

*/
public static void hel |l oExanpl e(Docunent nessage) {

if (nmessage == null) {
Systemout.println("There's no nessage here!");
return;

}

El enent root El enent = nessage. get Docunent El enent () ;

if (rootElenment == null) {
Systemout.println("There's no root elenent here!");
return;

}

System out. println("The root el enment nane is:"
+ r oot El enent . get NodeNane()) ;
Systemout. println("The book categories are:");
NodelLi st types = root El enent. get El enent sByTagNane(" cat egory");
for(int i = 0;i<types.getlLength();i++){
El enent child = (El enent) types.iten(i);
System out. println(child.getFirstChild().getNodeVal ue());

}
}
}

For more information about creating and using Java Beans, see Talend Open Sudio for ESB User Guide.

8. Press Ctrl+Sto save your Route.

Talend Open Studio for ESB Mediation Components Reference Guide 171

Scenario: Converting the body of an XML file into an org.w3c.dom.Document.class

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to check the generated code.

poblic void initRoute () throws Exception
routeBuilder = new org.apache.camel.builder.RouteBuilder ()
public wvoid configure () throws Exception
from(urilap.get ("Read message"))
routeld ("Read message") .convertSodyTo |

org.w3ic.dom.Docunent.class) .id|
"cConvertBodyTo 1") .bean|
beans.showkMezzageBody.class) .id |
"cBean 1"):

getCamelContexts () .get (0) .addBRoutes (routeBuilder) ;

As shown above, the message from the endpoint Read nessage has its
body converted to org.w3c.dom Docunent.class by cConvertBodyTo 1. Then,
org. w3c. dom Docunent . cl ass is processed by
. bean(beans. Pri nt Convert ToBean. cl ass) invoked by cBean_1.

2. Press F6 to execute the Route.

RESULT: The root element name and the contents of the category elements are displayed.

w i

[= P e I L N M Y oI o] R Y o T R Y - BT 0 IR Y A I A r
3759

[=ztati=tic=] connected

The root =lement i=: bookstore

The book categories are:

Cooking

Languages

Arts

Scisence

Execution

172 Talend Open Studio for ESB Mediation Components Reference Guide

cSetBody

cSetBody

cSetBody properties

Component Family Transformation
Function cSetBody replaces the payload of each message sent to it.
Purpose cSetBody is used to replace the content of each message sent to it according to
expression value.
Basic settings Language Select the language of the expression you use to set
the content for matched messages, from Constant,
EL, Groovy, Header, JavaScript, JoSQL, JXPath,
MVEL, None, OGNL, PHP, Property, Python, Ruby,
Simple, SpEL, SQL, XPath, and XQuery.
Expression Type in the expression to set the message content.
Usage cSetBody is used as a middle component in a Route.
Limitation n‘a

Scenario: Replacing the content of messages with
their extracts

In this scenario, file messages are routed from one endpoint to another, with the content of each message replaced
with the information extracted from it.

The following is an example of the XML files used in this use case:

<peopl e>
<per son>
<first Name>Pi erre</firstNane>
<l ast Nane>Duboi s</ | ast Nane>
<city>Paris</city>
</ per son>
</ peopl e>

Dropping and linking the components

This use case uses two cFile components, one as the message sender and the other as the receiver, a cSetBody
component to replace the content of the messages on route, and acProcessor component to display the new content
of the messages routed to the receiving endpoaint.

FILE : : FILE : S

T e o §
" routel " route2 T PR route3 _
Sender Content_replacer Receiver Monitor

Talend Open Studio for ESB Mediation Components Reference Guide 173

Scenario: Replacing the content of messages with their extracts

1. Fromthe Palette, expand the M essaging folder, and drop two cFile components onto the design workspace.

2. Fromthe Transfor mation folder, drop a cSetBody component onto the design workspace, between the two
cFile components.

3. From the Processor folder, drop a cProcessor component onto the design workspace, following the second
cFile component.

4. Right-click thefirst cFile select Row > Route from the contextual menu and click the cSetBody component.

5. Repeat this operation to connect the cSetBody component to the second cFile component, and the second
cFile component to the cProcessor component.

6. Label the componentsto better identify their roles in the Route, as shown above.

Configuring the components and connections

1. Double-click the cFile component labeled Sender to display its Basic settings view in the Component tab.

FILE =
—» = Sender(cFile_1) SS L

Basic settings Path "Di/talend_files/esh/input” ¥ []
Advanced settings jﬁr:jﬁljrgpeters
Dynamic settings Elatten
View J| AutoCreate
Documentation BufferSize(kb) "128"
Encoding UTF-8 =
FileMame P

2. InthePath field, fill in or browse to the path to the folder that holds the source files.
3. Fromthe Encoding list, select the encoding type of your sourcefiles. Leave the other parameters asthey are.

4. Repeat these steps to define output file path and encoding type in the Basic settings view of the other cFile
component, which is labeled Receiver.

5. Double-click the cSetBody component to display its Basic settings view in the Component tab.

EE
=+ | Content_replacer(cSetBody_1)

Basic settings Language #Path -

Advanced settings Expression "/people/person” "

Dynarnic settings
View

Documentation

6. From the Language list box, select the language of the expression you are going to use.

Herewe are handling XML files, so select XPath from the list box.

174 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Replacing the content of messages with their extracts

7. Inthe Expression field, typein the expression that will return the new message content you want.

In this use case, we want person to be the root element of each file when routed to the receiving endpoint,
sotypein"/ peopl e/ per son" inthe Expression field.

8. Double-click the cProcessor component to display its Basic settings view in the Component tab, and
customize the code so that the console will display information the way you wish.

Inthisuse case, wewant to display thefile name and content of each message routed to the receiving endpoint,
S0 we customize the code as follows:

Systemout.println("File received: " +
exchange. get I n() . get Header (" Canel Fi | eNane") +
"“\nContent:\n " +

exchange. get I n(). get Body(Stri ng. cl ass));

9. PressCtrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

public void initRoute () throws Exception {
routebBuilder = new org.apache.camel .builder.RouteBuilder() {
public void configure() throws Exception f{
from(uriMap.get ("Sender™)) .routeld ("Sender™) .setBody ()
.xpath("/people/person”) .id("cSetBody 1") .to|
uriMap.get ("Receiver")) .id("cFile 2")

In this partially shown code, a message route is built f r omone endpoint . t o another, and while in routing,
the content of each message is replaced according to the condition . xpat h("/ peopl e/ per son") by
"cSet Body_1".

2. Click the Run view to display it and click the Run button to launch the execution of your Route. Y ou can
also press F6 to execute it.

Execution

ron | [man | [Guc

[=tati=tics| connecting to =ocket on
port 3953

[stati=tic=s] connected

File received: filel . =ml

Content :

¢per=zon i1d="8":
<firstHame:Ellen<-firztHame:
¢lastHame:Riplev<{-laztHam=:
¢oity:Washington<-city>

L SpErsEon >
File received: fileZ.=ml
Content :

{per=on id="9":
<firstHame:Pierre<-firstName>
¢lastHame:Iuboi=< laztHame:
{city:Paris<scitv:

< SpErSon -

m

Line limit {100 Wrap

Talend Open Studio for ESB Mediation Components Reference Guide 175

Scenario: Replacing the content of messages with their extracts

RESULT: The XML files are sent to the receiver, where person has become the root element of each file.

176 Talend Open Studio for ESB Mediation Components Reference Guide

cSetHeader

cSetHeader

cSetHeader properties

Component Family Transformation

Function cSetHeader sets aheader on each message sent to it.

Purpose cSetHeader isused to set aheader or customize the default header, if any, on each
message sent to it for subsequent message processing.

Basic settings Header Typein aname for the message header.

Use bean Select this check box if you want to call a predefined
Java Bean to return the header value.

When this check box is selected, a Bean class field
appears for you specify the Bean classto call.

Bean class Type in the Bean class that will return a
value for the message header, in the form of
beans.BEAN_NAME.class.

Language Select the language of the expression you use, from
Constant, EL, Groovy, Header, JavaScript, JoSQL,
JXPath, MVEL, None, OGNL, PHP, Property,
Python, Ruby, Simple, SpEL, SQL, XPath, and
XQuery.

This list box is hidden when the Use bean check box is
selected.

Expression Type in the expression to set the value of the message
header.

This field is hidden when the Use bean check box is
selected.

Usage cSetHeader is used as a middle component in a Route.

Limitation n/‘a

Scenario: Splitting a message and renaming the sub-
messages according to contained information

In this scenario, a file message containing people information is split into sub-messages. Each sub-messages is
renamed according the city name it contains, and then routed to another endpoint.

The following is the example XML file used in this use case:

<peopl e>
<per son>

<firstName>Pi erre</firstName>

Talend Open Studio for ESB Mediation Components Reference Guide 177

Scenario: Splitting a message and renaming the sub-messages according to contained information

<| ast Nane>Duboi s</ | ast Nanme>
<city>Paris</city>

</ per son>

<per son>
<first Name>Ni col as</first Nane>
<l ast Nane>Yang</ | ast Nane>
<city>Beijing</city>

</ per son>

<per son>
<first Name>El | en</first Nane>
<l ast Nane>Ri pl ey</| ast Nanme>
<ci t y>Washi ngt on</ci ty>

</ per son>

</ peopl e>

A predefined Java Bean, setFileNames, is called by the cSetHeader component used in this use case to define a
file name for each message according to the city name it contains. For more information about creating and using
Java Beans, see Talend Open Sudio for ESB User Guide.

package beans;

i mport org.w3c. dom Docunent ;
i mport org.w3c. dom El enent ;
i mport org.w3c. dom NodelLi st ;

public class setFileNanmes {
public String getCityNane(Docunent docunent) ({
NodelLi st cities = docunent. get Docunent El enent (). get El enent sBy TagNane(
"city");
Element city = (Elenent) cities.item(0);
String textContent = city. get Text Content();

return textContent+".xm";

}
}

Dropping and linking the components

This use case uses two cFile components, one as the message sender and the other as the receiver, a cSplitter
component to split the source message into sub-messages, acSetHeader component to rename each sub-message,
and a cProcessor component to display the file name of each message routed to the receiver.

FILE o\ ' ' ' Uﬁl ' ' FILE
e routel g oute? L route3 Pl
Sender ' Eplitte'r ' ' Renamer ' ' Receiver

o

Monitor

1. Fromthe Palette, expand the M essaging folder, and drop two cFile components onto the design workspace.

178 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario: Splitting a message and renaming the sub-messages according to contained information

2. From the Routing folder, drop a cSplitter component onto the design workspace, between the two cFile
components.

3. From the Transformation folder, drop a cSetHeader component onto the design workspace, between the
cSplitter component and the receiving cFile component.

4. Right-click thefirst cFile component, select Row > Route from the contextual menu and click the cSplitter
component.

5. Right-click thecSplitter component, select Row > Split from the contextual menu and click the cSetHeader
component.

6. Right-click the cSetHeader component, select Row > Route from the contextual menu and click the second
cFile component.

7. Right-click the second cFile component, select Row > Route from the contextual menu and click the
cProcessor component.

8. Label the componentsto better identify their roles in the Route, as shown above.

Configuring the components and connections

1. Double-click the cFile component labeled Sender to display its Basic settings view in the Component tab.

FILE =n|(c
—» = Sender(cFile_1) S L

Basic settings Path "Diftalend_files/esb/input” ¥ []
Advanced settings japzﬁljrgpeters
Dynamic settings Flatten
View J| AutoCreate
Documentation BufferSize(kb) ~ "128”
Encoding UTE-8 i
FileMarne "peoplexml”

2. InthePath field, fill in or browse to the path to the folder that holds the source files.
From the Encoding list, select the encoding type of your sourcefiles.

Inthe FileNamefield, typein the file name of the source message. Y ou can skip this step if the source folder
contains only onefile.

3. Repeat steps 1 and 2 above to define the output file path and encoding type in the Basic settings view of the
other cFile component, which is labeled Receiver. Leave the FileName field blank.

Talend Open Studio for ESB Mediation Components Reference Guide 179

Scenario: Splitting a message and renaming the sub-messages according to contained information

FILE =
—pn Receiver(cFile_2) — L
Basic settings Path "D:/talend_files/esb/output” ™ -

Ad?anc.ed se1fti ngs ar:]anrgpeters

Dynamic settings [Flatten

View AutoCreate

Documentation BufferSize(kb) "] 38"
Encoding UTF-8 -
FileMame "

Double-click the cSplitter component to display its Basic settings view in the Component tab, and fill the
Expression field with an expression according to which you want to split the source message.

In this use, as we want to split the message into sub-messages at each person node of the XML file, typein
xpat h("/ peopl e/ person”).

a =0 L
s 8 Splitter(cSplitter_1) cc
Basic settings Expressicn xpath("/pecple/person”)
Advanced settings
Dynamic settings
View

Documentation

Double-click the cSetHeader component, which is labeled Message renamer to display its Basic settings
view in the Component tab.

EfE

il", Message_renamer(cSetHeader_1)

Basic settings Header "CamelFileMame" *
Uze bean

Advanced settings
Dynamic settings Bean class beans.setFileMames.class
Wiew

Documentation

Inthe Header field, type in the name of the header you want to give to the messages.

Here, as we want to define the file name for each incoming message, fill in " Canel Fi | eNane" as the
header name.

Select the Use bean check box, and in the Bean class field that appears, type in the name of the predefined
Java Bean. Inthisuse case, typein beans. set Fi | eNanes. cl ass.

Double-click the cProcessor component to display its Basic settings view in the Component tab, and
customize the code so that the console will display information the way you wish.

Talend Open Studio for ESB Mediation Components Reference Guide

Related scenarios

In this use case, we want to display the file name each message routed to the receiving endpoint, so we
customi ze the code as follows:

Systemout.printin("File received: "+
exchange. get | n() . get Header (" Canel Fi | eNanme")) ;

9. PressCtrl+Sto save your Route.

Viewing code and executing the Route

1. Click the Codetab at the bottom of the design workspace to have alook at the generated code.

public void initRoute () throws Exception f{
routebBuilder = new org.apache.camel .builder.RouteBuilder() {
public void configure() throws Exception {
from({uriMap.get ("Sender™)) .routeld ("Sender™) .split
xpath("/people/person”)).id ("cSplittexr 1")
.setHeader ("CamelFileName") .method |
beans.zetFileNames.class) .id |
"cSetHeader 1").tof
uriMap.get ("Receiver")).id ("cFile 2")

As shown in the code, a message route is built f r omone endpoint . t 0 another, and while in routing, the
source message is split according to the condition xpat h("/ peopl e/ person") by cSplitter 1,
and each sub-message is given a header named Canel Fi | eNane, the value of which is returned by

. met hod(beans. set Fi | eNane. cl ass).

2. Click the Run view to display it and click the Run button to launch the execution of your Route. Y ou can
also press F6 to execute it.

Execution
Run = Kill Clea
(CamelContexzt: cSetHeader_sl-ct=) or

started in 0.668 =econds
[=tati=tics] connecting to =ocket on

port 3430

[ztati=tics] connected

File received: Pari=s.=zml

File received: Beijing.=zml
File received: Washington. zml

Line limit 100 Wrap

RESULT: The sourcefile messageis split into sub-messages and each sub-message is renamed after the city
name it contains and routed to the receiving endpoint.

Related scenarios

For more scenarios, see:

the section called “ Scenario: Using camel message headers as context parameters to call ajob”

Talend Open Studio for ESB Mediation Components Reference Guide 181

Related scenarios

the section called “ Scenario 1: Routing a message consecutively to a series of endpoints’

the section called “ Scenario 2: Routing each message conditionally to a series of endpoints”

182 Talend Open Studio for ESB Mediation Components Reference Guide

	Talend Open Studio
	Table of Contents
	Preface
	General information
	Purpose
	Audience
	Typographical conventions

	History of changes
	Feedback and Support

	Context components
	cConfig
	cConfig properties
	Scenario: Implementing a dataset from the Registry
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cJMSConnectionFactory
	cJMSConnectionFactory properties
	Related scenario:

	Exception components
	cErrorHandler
	cErrorHandler properties
	Scenario: Logging the exception thrown during a client/server talk
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cIntercept
	cIntercept properties
	Scenario: Intercepting several routes and redirect them in a single new route
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	cOnException
	cOnException properties
	Scenario: Using cOnException to ignore exceptions and continue message routing
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cTry
	cTry properties
	Scenario: Using cTry to build Try/Catch/Finally blocks for exception handling
	Dropping and linking components
	Configuring the components and connections
	Viewing code and executing the Route

	Messaging components
	cBean
	cBean properties
	Related Scenario

	cCXF
	cCXF properties
	Scenario 1: Providing a Web service using cCXF from a WSDL file
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	Scenario 2: Providing a Web service using cCXF from a Java class
	Creating a Java class
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cFile
	cFile properties
	Scenario: Reading files from one directory and writing them to another
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cFtp
	cFtp properties
	Related scenario:

	cHttp
	cHttp properties
	Scenario: Retrieving the content of a remote file
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cJMS
	cJMS properties
	Scenario 1: Sending and receiving a message from a JMS queue
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	Scenario 2: Setting up a JMS local transaction
	Sending a message to the queue.hello JMS queue
	Testing the received message
	Consuming the message from the DeadLetter JMS queue

	Scenario 3: Sending and receiving a scheduled delivery of messages from a JMS Queue using Camel Quartz
	Building the producer Route
	Building the consumer Route

	cMail
	cMail Properties
	Scenario: Using cMail to send and receive mails

	cMessagingEndpoint
	cMessagingEndpoint properties
	Scenario 1: Moving files from one message endpoint to another
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	Scenario 2: sending files to another message endpoint
	Dropping and linking components
	Configuring the components and connections
	Viewing code and executing the Route

	cPipesAndFilters
	cPipesAndFilters properties
	Scenario: Using cPipesAndFilters to process the task in sequence
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cTalendJob
	cTalendJob properties
	Scenario: Using camel message headers as context parameters to call a job
	Building a DI Job and exporting it as an OSGI Bundle for ESB
	Building a Route for exchanging messages and calling the DI Job
	Viewing the code and executing the Route

	Miscellaneous components
	cLog
	cLog properties
	Related scenario:

	cLoop
	cLoop properties
	Related scenario:

	cStop
	cStop properties
	Related scenario:

	Processor components
	cDelayer
	cDelayer properties
	Scenario: Using cDelayer to delay message routing
	Dropping and linking the components
	Configuring the components
	Viewing the code and executing the Route

	cExchangePattern
	cExchangePattern properties
	Scenario: Enabling the InOut exchange pattern to get replies
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route
	Creating and sending a request to the server Route and getting a reply

	cJavaDSLProcessor
	cJavaDSLProcessor properties
	Related scenario:

	cProcessor
	cProcessor properties
	Related scenario:

	cThrottler
	cThrottler properties
	Scenario: Throttling the message flow
	Dropping and linking the components
	Configuring the components

	Viewing the code and executing the Route

	Routing components
	cAggregate
	cAggregate
	Scenario: Aggregating three messages into one
	Creating a Java bean as the aggregation strategy
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cDynamicRouter
	cDynamicRouter properties
	Scenario: Routing files conditionally to different file paths
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	cIdempotentConsumer
	cIdempotentConsumer properties
	Scenario: Deduplicating messages while routing them
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	cLoadBalancer
	cLoadBalancer properties
	Scenario: Distributing messages to receiver endpoints based on round robin
	Dropping and linking the components
	Configuring the components and connections
	Viewing the code and executing the Route

	cMessageFilter
	cMessageFilter properties
	Scenario: Filtering messages according to a criterion
	Dropping and linking the components
	Configuring the components and connections
	Viewing the code and executing the Route

	cMessageRouter
	cMessageRouter properties
	Scenario: Routing messages according to a criterion
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	cMulticast
	cMulticast properties
	Scenario: Multicasting a message to two endpoints and using it to enrich the contents received by the third endpoint
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cRecipientList
	cRecipientList properties
	Scenario: Routing a message to multiple recipients
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cSplitter
	cSplitter properties
	Related scenario:

	cRoutingSlip
	cRoutingSlip properties
	Scenario 1: Routing a message consecutively to a series of endpoints
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	Scenario 2: Routing each message conditionally to a series of endpoints
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	cWireTap
	cWireTap properties
	Scenario: Wiretapping a message in a Route
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	Transformation components
	cContentEnricher
	cContentEnricher properties
	Scenario: Receiving messages from a list of URLs
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	Related scenario

	cConvertBodyTo
	cConvertBodyTo properties
	Scenario: Converting the body of an XML file into an org.w3c.dom.Document.class
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	cSetBody
	cSetBody properties
	Scenario: Replacing the content of messages with their extracts
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	cSetHeader
	cSetHeader properties
	Scenario: Splitting a message and renaming the sub-messages according to contained information
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	Related scenarios

