
Talend Open Studio
Components Reference Guide

5.1_b

Talend Open Studio

Talend Open Studio : Components Reference Guide
Adapted for Talend Open Studio v5.1.x. Supersedes previous Reference Guide releases.

Copyleft

This documentation is provided under the terms of the Creative Commons Public License (CCPL).

For more information about what you can and cannot do with this documentation in accordance with the CCPL, please read: http://
creativecommons.org/licenses/by-nc-sa/2.0/

Notices

All brands, product names, company names, trademarks and service marks are the properties of their respective owners.

http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/

Talend Open Studio Components Reference Guide

Table of Contents
Preface .. xix

General information . xix
Purpose . xix
Audience . xix
Typographical conventions xix

History of changes . xix
Feedback and Support . xx

Big Data components 1
tHiveClose . 2

tHiveClose properties . 2
Related scenario . 2

tHiveConnection . 3
tHiveConnection properties 3
Related scenario . 4

tHiveRow . 5
tHiveRow properties . 5
Related scenarios . 7

Business components 9
tAlfrescoOutput . 10

tAlfrescoOutput Properties 10
Scenario: Creating documents on an
Alfresco server . 15

tBonitaDeploy . 20
tBonitaDeploy Properties 20
Related Scenario . 21

tBonitaInstantiateProcess . 22
tBonitaInstantiateProcess Properties 22
Scenario: Executing a Bonita process
via a Talend Job . 23

tCentricCRMInput . 29
tCentricCRMInput Properties 29
Related Scenario . 29

tCentricCRMOutput . 30
tCentricCRMOutput Properties 30
Related Scenario . 30

tHL7Input . 31
tHL7Input Properties . 31
Scenario: Retrieving information
about patients and events from an
HL7 file . 32

tHL7Output . 35
tHL7Output Properties 35
Related scenario . 35

tMarketoInput . 36
tMarketoInput Properties 36
Related Scenario . 38

tMarketoListOperation . 39
tMarketoListOperation Properties 39
Scenario: Adding a lead record to a
list in the Marketo DB 40

tMarketoOutput . 44
tMarketoOutput Properties 44
Scenario: Data transmission between
Marketo DB and an external system 45

tMicrosoftCrmInput . 51
tMicrosoftCrmInput Properties 51
Scenario: Writing data in a
Microsoft CRM database and putting
conditions on columns to extract
specified rows . 52

tMicrosoftCrmOutput . 59
tMicrosoftCrmOutput Properties 59
Related Scenario . 60

tMSAXInput . 61
tMSAXInput properties 61
Related scenarios . 62

tMSAXOutput . 63
tMSAXOutput properties 63

Scenario 1: Inserting data in a
defined table in a MicrosoftAX
server . 65
Scenario 2: Deleting data from a
defined table in a MicrosoftAX
server . 67

tOpenbravoERPInput . 70
tOpenbravoERPInput properties 70
Related Scenario . 71

tOpenbravoERPOutput . 72
tOpenbravoERPOutput properties 72
Related scenario . 72

tSageX3Input . 73
tSageX3Input Properties 73
Scenario: Using query key to extract
data from a given Sage X3 system 74

tSageX3Output . 78
tSageX3Output Properties 78
Scenario: Using a Sage X3 Web
service to insert data into a given
Sage X3 system . 79

tSalesforceBulkExec . 83
tSalesforceBulkExec Properties 83
Related Scenario: . 84

tSalesforceConnection . 85
tSalesforceConnection properties 85
Related scenario . 85

tSalesforceGetDeleted . 86
tSalesforceGetDeleted properties 86
Scenario: Recovering deleted data
from the Salesforce server 87

tSalesforceGetServerTimestamp 90
tSalesforceGetServerTimestamp
properties . 90
Related scenarios . 91

tSalesforceGetUpdated . 92
tSalesforceGetUpdated properties 92
Related scenarios . 93

tSalesforceInput . 94
tSalesforceInput Properties 94
Scenario: Using queries to extract
data from a Salesforce database 96

tSalesforceOutput . 100
tSalesforceOutput Properties 100
Scenario 1: Deleting data from the
Account object . 102
Scenario 2: Gathering erroneous data
while inserting data to a module at
Salesforce.com . 104

tSalesforceOutputBulk . 107
tSalesforceOutputBulk Properties 107
Scenario: Inserting transformed bulk
data into your Salesforce.com 107

tSalesforceOutputBulkExec 112
tSalesforceOutputBulkExec
Properties . 112
Scenario: Inserting bulk data into
your Salesforce.com . 113

tSAPBWInput . 117
tSAPBWInput Properties 117
Scenario: Reading data from SAP
BW database . 118

tSAPCommit . 122
tSAPCommit Properties 122
Related scenario . 122

tSAPConnection . 123
tSAPConnection properties 123
Related scenarios . 123

tSAPInput . 124
tSAPInput Properties 124
Scenario 1: Retrieving metadata from
the SAP system . 126

Talend Open Studio

iv Talend Open Studio Components Reference Guide

Scenario 2: Reading data in
the different schemas of the
RFC_READ_TABLE function 133

tSAPOutput . 139
tSAPOutput Properties 139
Related scenario . 140

tSAPRollback . 141
tSAPRollback properties 141
Related scenarios . 141

tSugarCRMInput . 142
tSugarCRMInput Properties 142
Scenario: Extracting account data
from SugarCRM . 142

tSugarCRMOutput . 145
tSugarCRMOutput Properties 145
Related Scenario . 145

tVtigerCRMInput . 146
tVtigerCRMInput Properties 146
Related Scenario . 147

tVtigerCRMOutput . 148
tVtigerCRMOutput Properties 148
Related Scenario . 149

Business Intelligence components 151
tBarChart . 152

tBarChart properties . 152
Scenario: Creating a bar chart from
the input data . 153

tDB2SCD . 159
tDB2SCD properties . 159
Related scenarios . 160

tDB2SCDELT . 161
tDB2SCDELT Properties 161
Related Scenario . 163

tGreenplumSCD . 164
tGreenplumSCD Properties 164
Related scenario . 165

tInformixSCD . 166
tInformixSCD properties 166
Related scenario . 167

tIngresSCD . 168
tIngresSCD Properties 168
Related scenario . 169

tJasperOutput . 170
tJasperOutput Properties 170
Scenario: Generating a report against
a .jrxml template . 171

tJasperOutputExec . 174
tJasperOutputExec Properties 174
Related Scenario . 175

tLineChart . 176
tLineChart properties 176
Scenario: Creating a line chart to
ease trend analysis . 177

tMondrianInput . 183
tMondrianInput Properties 183
Scenario: Cross-join tables 184

tMSSqlSCD . 187
tMSSqlSCD Properties 187
Related scenario . 188

tMysqlSCD . 189
tMysqlSCD Properties 189
Scenario: Tracking changes using
Slowly Changing Dimensions (type 0
through type 3) . 192

tMysqlSCDELT . 200
tMysqlSCDELT Properties 200
Related Scenario . 202

tOracleSCD . 203
tOracleSCD Properties 203
Related scenario . 204

tOracleSCDELT . 205
tOracleSCDELT Properties 205

Related Scenario . 207
tPaloCheckElements . 208

tPaloCheckElements Properties 208
Related scenario . 210

tPaloConnection . 211
tPaloConnection Properties 211
Related scenario . 211

tPaloCube . 212
tPaloCube Properties 212
Scenario: Creating a cube in an
existing database . 214

tPaloCubeList . 216
tPaloCubeList Properties 216
Discovering the read-only output
schema of tPaloCubeList 217
Scenario: Retrieving detailed cube
information from a given database 218

tPaloDatabase . 220
tPaloDatabase Properties 220
Scenario: Creating a database 221

tPaloDatabaseList . 223
tPaloDatabaseList Properties 223
Discovering the read-only output
schema of tPaloDatabaseList 224
Scenario: Retrieving detailed
database information from a given
Palo server . 225

tPaloDimension . 227
tPaloDimension Properties 227
Scenario: Creating a dimension with
elements . 231

tPaloDimensionList . 236
tPaloDimensionList Properties 236
Discovering the read-only output
schema of tPaloDimensionList 238
Scenario: Retrieving detailed
dimension information from a given
database . 238

tPaloInputMulti . 240
tPaloInputMulti Properties 240
Scenario: Retrieving dimension
elements from a given cube 242

tPaloOutput . 246
tPaloOutput Properties 246
Related scenario . 247

tPaloOutputMulti . 248
tPaloOutputMulti Properties 248
Scenario 1: Writing data into a given
cube . 250
Scenario 2: Rejecting inflow data
when the elements to be written do
not exist in a given cube 253

tPaloRule . 257
tPaloRule Properties . 257
Scenario: Creating a rule in a given
cube . 258

tPaloRuleList . 261
tPaloRuleList Properties 261
Discovering the read-only output
schema of tPaloRuleList 262
Scenario: Retrieving detailed rule
information from a given cube 263

tParAccelSCD . 265
tParAccelSCD Properties 265
Related scenario . 266

tPostgresPlusSCD . 267
tPostgresPlusSCD Properties 267
Related scenario . 268

tPostgresPlusSCDELT . 269
tPostgresPlusSCDELT Properties 269
Related Scenario . 271

tPostgresqlSCD . 272

Talend Open Studio

Talend Open Studio Components Reference Guide v

tPostgresqlSCD Properties 272
Related scenario . 273

tPostgresqlSCDELT . 274
tPostgresqlSCDELT Properties 274
Related Scenario . 276

tSPSSInput . 277
tSPSSInput properties 277
Scenario: Displaying the content of
an SPSS .sav file . 277

tSPSSOutput . 280
tSPSSOutput properties 280
Scenario: Writing data in an .sav file . . . 280

tSPSSProperties . 283
tSPSSProperties properties 283
Related scenarios . 283

tSPSSStructure . 284
tSPSSStructure properties 284
Related scenarios . 284

tSybaseSCD . 285
tSybaseSCD properties 285
Related scenarios . 286

tSybaseSCDELT . 287
tSybaseSCDELT Properties 287
Related Scenario . 289

Cloud components 291
tAmazonMysqlClose . 292

tAmazonMysqlClose properties 292
Related scenario . 292

tAmazonMysqlCommit . 293
tAmazonMysqlCommit Properties 293
Related scenario . 293

tAmazonMysqlConnection . 294
tAmazonMysqlConnection
Properties . 294
Scenario: Inserting data in mother/
daughter tables . 295

tAmazonMysqlInput . 299
tAmazonMysqlInput properties 299
Scenario1: Writing columns from a
MySQL database to an output file 300

tAmazonMysqlOutput . 304
tAmazonMysqlOutput properties 304
Scenario 1: Adding a new column
and altering data in a DB table 308
Scenario 2: Updating data in a
database table . 312
Scenario 3: Retrieve data in error
with a Reject link . 315

tAmazonMysqlRollback . 320
tAmazonMysqlRollback properties 320
Scenario: Rollback from inserting
data in mother/daughter tables 320

tAmazonMysqlRow . 322
tAmazonMysqlRow properties 322
Scenario 1: Removing and
regenerating a MySQL table index 324
Scenario 2: Using PreparedStatement
objects to query data 325

tAmazonOracleClose . 330
tAmazonOracleClose properties 330
Related scenario . 330

tAmazonOracleCommit . 331
tAmazonOracleCommit Properties 331
Related scenario . 331

tAmazonOracleConnection 332
tAmazonOracleConnection
Properties . 332
Related scenario . 333

tAmazonOracleInput . 334
tAmazonOracleInput properties 334
Related scenarios . 335

tAmazonOracleOutput . 336

tAmazonOracleOutput properties 336
Related scenarios . 339

tAmazonOracleRollback . 340
tAmazonOracleRollback properties 340
Related scenario . 340

tAmazonOracleRow . 341
tAmazonOracleRow properties 341
Related scenarios . 343

tMarketoInput . 344
tMarketoListOperation . 345
tMarketoOutput . 346
tSalesforceBulkExec . 347
tSalesforceConnection . 348
tSalesforceGetDeleted . 349
tSalesforceGetServerTimestamp 350
tSalesforceGetUpdated . 351
tSalesforceInput . 352
tSalesforceOutput . 353
tSalesforceOutputBulk . 354
tSalesforceOutputBulkExec 355
tSugarCRMInput . 356
tSugarCRMOutput . 357

Custom Code components 359
tGroovy . 360

tGroovy properties . 360
Related Scenarios . 360

tGroovyFile . 361
tGroovyFile properties 361
Scenario: Calling a file which
contains Groovy code 361

tJava . 363
tJava properties . 363
Scenario: Printing out a variable
content . 363

tJavaFlex . 367
tJavaFlex properties . 367
Scenario 1: Generating data flow 368
Scenario 2: Processing rows of data
with tJavaFlex . 370

tJavaRow . 374
tJavaRow properties . 374
Scenario: Transforming data line by
line using tJavaRow . 374

tLibraryLoad . 378
tLibraryLoad properties 378
Scenario: Checking the format of an
e-mail addressl . 378

tSetGlobalVar . 381
tSetGlobalVar properties 381
Scenario: Printing out the content of
a global variable . 381

Data Quality components 383
tAddCRCRow . 384

tAddCRCRow properties 384
Scenario: Adding a surrogate key to
a file . 384

tChangeFileEncoding . 387
tExtractRegexFields . 388
tFuzzyMatch . 389

tFuzzyMatch properties 389
Scenario 1: Levenshtein distance of 0
in first names . 390
Scenario 2: Levenshtein distance of 1
or 2 in first names . 392
Scenario 3: Metaphonic distance in
first name . 393

tIntervalMatch . 394
tIntervalMatch properties 394
Scenario: Identifying Ip country 394

tReplaceList . 397
tReplaceList Properties 397

Talend Open Studio

vi Talend Open Studio Components Reference Guide

Scenario: Replacement from a
reference file . 398

tSchemaComplianceCheck 401
tSchemaComplianceCheck
Properties . 401
Scenario: Validating data against
schema . 402

tUniqRow . 406
tUniqRow Properties 406
Scenario 1: Deduplicating entries 407

tUniservBTGeneric . 410
tUniservBTGeneric properties 410
Scenario: Execution of a Job in the 412

tUniservRTConvertName . 416
tUniservRTConvertName properties . . . 416
Scenario: Analysis of a name line
and assignment of the salutation 417

tUniservRTMailBulk . 421
tUniservRTMailBulk properties 421
Scenario: Creating an index pool 421

tUniservRTMailOutput . 425
tUniservRTMailOutput properties 425
Related scenarios . 426

tUniservRTMailSearch . 427
tUniservRTMailSearch properties 427
Scenario: Adding contacts to the
mailRetrieval index pool 428

tUniservRTPost . 432
tUniservRTPost properties 432
Scenario 1: Checking and correcting
the postal code, city and street 433
Scenario 2: Checking and correcting
the postal code, city and street, as
well as rejecting the unfeasible 437

Databases - traditional components 439
tAccessBulkExec . 440

tAccessBulkExec properties 440
Related scenarios . 441

tAccessCommit . 442
tAccessCommit Properties 442
Related scenario . 442

tAccessConnection . 443
tAccessConnection Properties 443
Scenario: Inserting data in parent/
child tables . 443

tAccessInput . 447
tAccessInput properties 447
Related scenarios . 448

tAccessOutput . 449
tAccessOutput properties 449
Related scenarios . 452

tAccessOutputBulk . 453
tAccessOutputBulk properties 453
Related scenarios . 454

tAccessOutputBulkExec . 455
tAccessOutputBulkExec properties 455
Related scenarios . 457

tAccessRollback . 458
tAccessRollback properties 458
Related scenarios . 458

tAccessRow . 459
tAccessRow properties 459
Related scenarios . 461

tAS400Close . 462
tAS400Close properties 462
Related scenario . 462

tAS400Commit . 463
tAS400Commit Properties 463
Related scenario . 463

tAS400Connection . 464
tAS400Connection Properties 464
Related scenario . 465

tAS400Input . 466
tAS400Input properties 466
Related scenarios . 467

tAS400LastInsertId . 468
tAS400LastInsertId properties 468
Related scenario . 468

tAS400Output . 469
tAS400Output properties 469
Related scenarios . 472

tAS400Rollback . 473
tAS400Rollback properties 473
Related scenarios . 473

tAS400Row . 474
tAS400Row properties 474
Related scenarios . 476

tDB2BulkExec . 477
tDB2BulkExec properties 477
Related scenarios . 479

tDB2Close . 480
tDB2Close properties 480
Related scenario . 480

tDB2Commit . 481
tDB2Commit Properties 481
Related scenario . 481

tDB2Connection . 482
tDB2Connection properties 482
Related scenarios . 483

tDB2Input . 484
tDB2Input properties 484
Related scenarios . 485

tDB2Output . 486
tDB2Output properties 486
Related scenarios . 489

tDB2Rollback . 490
tDB2Rollback properties 490
Related scenarios . 490

tDB2Row . 491
tDB2Row properties . 491
Related scenarios . 493

tDB2SCD . 494
tDB2SCDELT . 495
tDB2SP . 496

tDB2SP properties . 496
Related scenarios . 497

tInformixBulkExec . 498
tInformixBulkExec Properties 498
Related scenario . 500

tInformixClose . 501
tInformixClose properties 501
Related scenario . 501

tInformixCommit . 502
tInformixCommit properties 502
Related Scenario . 502

tInformixConnection . 503
tInformixConnection properties 503
Related scenario . 504

tInformixInput . 505
tInformixInput properties 505
Related scenarios . 506

tInformixOutput . 507
tInformixOutput properties 507
Related scenarios . 509

tInformixOutputBulk . 510
tInformixOutputBulk properties 510
Related scenario . 511

tInformixOutputBulkExec . 512
tInformixOutputBulkExec properties . . . 512
Related scenario . 514

tInformixRollback . 515
tInformixRollback properties 515
Related Scenario . 515

tInformixRow . 516

Talend Open Studio

Talend Open Studio Components Reference Guide vii

tInformixRow properties 516
Related scenarios . 518

tInformixSCD . 519
tInformixSP . 520

tInformixSP properties 520
Related scenario . 521

tMSSqlBulkExec . 523
tMSSqlBulkExec properties 523
Related scenarios . 525

tMSSqlColumnList . 526
tMSSqlColumnList Properties 526
Related scenario . 526

tMSSqlClose . 527
tMSSqlClose properties 527
Related scenario . 527

tMSSqlCommit . 528
tMSSqlCommit properties 528
Related scenarios . 528

tMSSqlConnection . 529
tMSSqlConnection properties 529
Related scenarios . 529

tMSSqlInput . 531
tMSSqlInput properties 531
Related scenarios . 532

tMSSqlLastInsertId . 533
tMSSqlLastInsertId properties 533
Related scenario . 533

tMSSqlOutput . 534
tMSSqlOutput properties 534
Related scenarios . 537

tMSSqlOutputBulk . 539
tMSSqlOutputBulk properties 539
Related scenarios . 540

tMSSqlOutputBulkExec . 541
tMSSqlOutputBulkExec properties 541
Related scenarios . 543

tMSSqlRollback . 544
tMSSqlRollback properties 544
Related scenario . 544

tMSSqlRow . 545
tMSSqlRow properties 545
Related scenarios . 547

tMSSqlSCD . 548
tMSSqlSP . 549

tMSSqlSP Properties 549
Related scenario . 550

tMSSqlTableList . 552
tMSSqlTableList Properties 552
Related scenario . 552

tMysqlBulkExec . 553
tMysqlBulkExec properties 553
Related scenarios . 555

tMysqlClose . 556
tMysqlClose properties 556
Related scenario . 556

tMysqlColumnList . 557
tMysqlColumnList Properties 557
Scenario: Iterating on a DB table and
listing its column names 557

tMysqlCommit . 560
tMysqlCommit Properties 560
Related scenario . 560

tMysqlConnection . 561
tMysqlConnection Properties 561
Scenario: Inserting data in mother/
daughter tables . 561

tMysqlInput . 565
tMysqlInput properties 565
Scenario 1: Writing columns from a
MySQL database to an output file 566

Scenario 2: Using context parameters
when reading a table from a MySQL
database . 569

tMysqlLastInsertId . 573
tMysqlLastInsertId properties 573
Scenario: Get the ID for the last
inserted record . 573

tMysqlOutput . 578
tMysqlOutput properties 578
Scenario 1: Adding a new column
and altering data in a DB table 582
Scenario 2: Updating data in a
database table . 586
Scenario 3: Retrieve data in error
with a Reject link . 588

tMysqlOutputBulk . 594
tMysqlOutputBulk properties 594
Scenario: Inserting transformed data
in MySQL database . 595

tMysqlOutputBulkExec . 599
tMysqlOutputBulkExec properties 599
Scenario: Inserting data in MySQL
database . 600

tMysqlRollback . 603
tMysqlRollback properties 603
Scenario: Rollback from inserting
data in mother/daughter tables 603

tMysqlRow . 605
tMysqlRow properties 605
Scenario 1: Removing and
regenerating a MySQL table index 607
Scenario 2: Using PreparedStatement
objects to query data 608

tMysqlSCD . 613
tMysqlSCDELT . 614
tMysqlSP . 615

tMysqlSP Properties . 615
Scenario: Finding a State Label using
a stored procedure . 616

tMysqlTableList . 619
tMysqlTableList Properties 619
Scenario: Iterating on DB tables and
deleting their content using a user-
defined SQL template 619
Related scenario . 623

tOracleBulkExec . 624
tOracleBulkExec properties 624
Scenario: Truncating and inserting
file data into Oracle DB 627

tOracleClose . 630
tOracleClose properties 630
Related scenario . 630

tOracleCommit . 631
tOracleCommit Properties 631
Related scenario . 631

tOracleConnection . 632
tOracleConnection Properties 632
Related scenario . 633

tOracleInput . 634
tOracleInput properties 634
Scenario 1: Using context parameters
when reading a table from an Oracle
database . 636
Related scenarios . 638

tOracleOutput . 639
tOracleOutput properties 639
Related scenarios . 642

tOracleOutputBulk . 643
tOracleOutputBulk properties 643
Related scenarios . 644

tOracleOutputBulkExec . 645
tOracleOutputBulkExec properties 645

Talend Open Studio

viii Talend Open Studio Components Reference Guide

Related scenarios . 647
tOracleRollback . 649

tOracleRollback properties 649
Related scenario . 649

tOracleRow . 650
tOracleRow properties 650
Related scenarios . 652

tOracleSCD . 653
tOracleSCDELT . 654
tOracleSP . 655

tOracleSP Properties . 655
Scenario: Checking number format
using a stored procedure 657

tOracleTableList . 661
tOracleTableList properties 661
Related scenarios . 661

tPostgresqlBulkExec . 662
tPostgresqlBulkExec properties 662
Related scenarios . 664

tPostgresqlCommit . 665
tPostgresqlCommit Properties 665
Related scenario . 665

tPostgresqlClose . 666
tPostgresqlClose properties 666
Related scenario . 666

tPostgresqlConnection . 667
tPostgresqlConnection Properties 667
Related scenario . 667

tPostgresqlInput . 668
tPostgresqlInput properties 668
Related scenarios . 669

tPostgresqlOutput . 670
tPostgresqlOutput properties 670
Related scenarios . 673

tPostgresqlOutputBulk . 674
tPostgresqlOutputBulk properties 674
Related scenarios . 675

tPostgresqlOutputBulkExec 676
tPostgresqlOutputBulkExec
properties . 676
Related scenarios . 677

tPostgresqlRollback . 679
tPostgresqlRollback properties 679
Related scenario . 679

tPostgresqlRow . 680
tPostgresqlRow properties 680
Related scenarios . 682

tPostgresqlSCD . 683
tPostgresqlSCDELT . 684
tSybaseBulkExec . 685

tSybaseBulkExec Properties 685
Related scenarios . 687

tSybaseClose . 688
tSybaseClose properties 688
Related scenario . 688

tSybaseCommit . 689
tSybaseCommit Properties 689
Related scenario . 689

tSybaseConnection . 690
tSybaseConnection Properties 690
Related scenarios . 690

tSybaseInput . 691
tSybaseInput Properties 691
Related scenarios . 692

tSybaseIQBulkExec . 693
tSybaseIQBulkExec Properties 693
Related scenarios . 695

tSybaseIQOutputBulkExec 696
tSybaseIQOutputBulkExec
properties . 696
Related scenarios . 698

tSybaseOutput . 699

tSybaseOutput Properties 699
Related scenarios . 702

tSybaseOutputBulk . 703
tSybaseOutputBulk properties 703
Related scenarios . 704

tSybaseOutputBulkExec . 705
tSybaseOutputBulkExec properties 705
Related scenarios . 707

tSybaseRollback . 708
tSybaseRollback properties 708
Related scenarios . 708

tSybaseRow . 709
tSybaseRow Properties 709
Related scenarios . 711

tSybaseSCD . 712
tSybaseSCDELT . 713
tSybaseSP . 714

tSybaseSP properties 714
Related scenarios . 715

Databases - appliance/datawarehouse
components 717

tGreenplumBulkExec . 718
tGreenplumBulkExec Properties 718
Related scenarios . 720

tGreenplumClose . 721
tGreenplumClose properties 721
Related scenario . 721

tGreenplumCommit . 722
tGreenplumCommit Properties 722
Related scenario . 722

tGreenplumConnection . 723
tGreenplumConnection properties 723
Related scenarios . 724

tGreenplumGPLoad . 725
tGreenplumGPLoad properties 725
Related scenario . 728

tGreenplumInput . 729
tGreenplumInput properties 729
Related scenarios . 730

tGreenplumOutput . 731
tGreenplumOutput Properties 731
Related scenarios . 733

tGreenplumOutputBulk . 734
tGreenplumOutputBulk properties 734
Related scenarios . 735

tGreenplumOutputBulkExec 736
tGreenplumOutputBulkExec
properties . 736
Related scenarios . 737

tGreenplumRollback . 738
tGreenplumRollback properties 738
Related scenarios . 738

tGreenplumRow . 739
tGreenplumRow Properties 739
Related scenarios . 741

tGreenplumSCD . 742
tIngresClose . 743

tIngresClose properties 743
Related scenario . 743

tIngresCommit . 744
tIngresCommit Properties 744
Related scenario . 744

tIngresConnection . 745
tIngresConnection Properties 745
Related scenarios . 745

tIngresInput . 746
tIngresInput properties 746
Related scenarios . 747

tIngresOutput . 748
tIngresOutput properties 748
Related scenarios . 750

tIngresRollback . 751

Talend Open Studio

Talend Open Studio Components Reference Guide ix

tIngresRollback properties 751
Related scenarios . 751

tIngresRow . 752
tIngresRow properties 752
Related scenarios . 753

tIngresSCD . 754
tNetezzaBulkExec . 755

tNetezzaBulkExec properties 755
Related scenarios . 756

tNetezzaClose . 757
tNetezzaClose properties 757
Related scenario . 757

tNetezzaCommit . 758
tNetezzaCommit Properties 758
Related scenario . 758

tNetezzaConnection . 759
tNetezzaConnection Properties 759
Related scenarios . 759

tNetezzaInput . 760
tNetezzaInput properties 760
Related scenarios . 761

tNetezzaNzLoad . 762
tNetezzaNzLoad properties 762
Related scenario . 767

tNetezzaOutput . 768
tNetezzaOutput properties 768
Related scenarios . 771

tNetezzaRollback . 772
tNetezzaRollback properties 772
Related scenarios . 772

tNetezzaRow . 773
tNetezzaRow properties 773
Related scenarios . 775

tParAccelBulkExec . 776
tParAccelBulkExec Properties 776
Related scenarios . 778

tParAccelClose . 779
tParAccelClose properties 779
Related scenario . 779

tParAccelCommit . 780
tParAccelCommit Properties 780
Related scenario . 780

tParAccelConnection . 781
tParAccelConnection Properties 781
Related scenario . 781

tParAccelInput . 783
tParAccelInput properties 783
Related scenarios . 784

tParAccelOutput . 785
tParAccelOutput Properties 785
Related scenarios . 787

tParAccelOutputBulk . 788
tParAccelOutputBulk properties 788
Related scenarios . 789

tParAccelOutputBulkExec . 790
tParAccelOutputBulkExec Properties
. 790
Related scenarios . 791

tParAccelRollback . 792
tParAccelRollback properties 792
Related scenario . 792

tParAccelRow . 793
tParAccelRow Properties 793
Related scenarios . 795

tParAccelSCD . 796
tTeradataClose . 797

tTeradataClose properties 797
Related scenario . 797

tTeradataCommit . 798
tTeradataCommit Properties 798
Related scenario . 798

tTeradataConnection . 799

tTeradataConnection Properties 799
Related scenario . 800

tTeradataFastExport . 801
tTeradataFastExport Properties 801
Related scenario . 802

tTeradataFastLoad . 803
tTeradataFastLoad Properties 803
Related scenario . 804

tTeradataFastLoadUtility . 805
tTeradataFastLoadUtility Properties 805
Related scenario . 806

tTeradataInput . 807
tTeradataInput Properties 807
Related scenarios . 808

tTeradataMultiLoad . 809
tTeradataMultiLoad Properties 809
Related scenario . 810

tTeradataOutput . 811
tTeradataOutput Properties 811
Related scenarios . 814

tTeradataRollback . 815
tTeradataRollback Properties 815
Related scenario . 815

tTeradataRow . 816
tTeradataRow Properties 816
Related scenarios . 818

tTeradataTPTUtility . 819
tTeradataTPTUtility Properties 819
Related scenario . 821

tTeradataTPump . 822
tTeradataTPump Properties 822
Scenario: Inserting data into a
Teradata database table 823

tVectorWiseCommit . 827
tVectorWiseCommit Properties 827
Related scenario . 827

tVectorWiseConnection . 828
tVectorWiseConnection Properties 828
Related scenario . 828

tVectorWiseInput . 829
tVectorWiseInput Properties 829
Related scenario . 830

tVectorWiseOutput . 831
tVectorWiseOutput Properties 831
Related scenario . 834

tVectorWiseRollback . 835
tVectorWiseRollback Properties 835
Related scenario . 835

tVectorWiseRow . 836
tVectorWiseRow Properties 836
Related scenario . 838

tVerticaBulkExec . 839
tVerticaBulkExec Properties 839
Related scenarios . 840

tVerticaClose . 842
tVerticaClose properties 842
Related scenario . 842

tVerticaCommit . 843
tVerticaCommit Properties 843
Related scenario . 843

tVerticaConnection . 844
tVerticaConnection Properties 844
Related scenario . 844

tVerticaInput . 846
tVerticaInput Properties 846
Related scenarios . 847

tVerticaOutput . 848
tVerticaOutput Properties 848
Related scenarios . 851

tVerticaOutputBulk . 852
tVerticaOutputBulk Properties 852
Related scenarios . 853

Talend Open Studio

x Talend Open Studio Components Reference Guide

tVerticaOutputBulkExec . 854
tVerticaOutputBulkExec Properties 854
Related scenarios . 855

tVerticaRollback . 856
tVerticaRollback Properties 856
Related scenario . 856

tVerticaRow . 857
tVerticaRow Properties 857
Related scenario . 859

Databases - other components 861
tCreateTable . 862

tCreateTable Properties 862
Scenario: Creating new table in a
Mysql Database . 864

tDBInput . 867
tDBInput properties . 867
Scenario 1: Displaying selected data
from DB table . 868
Scenario 2: Using StoreSQLQuery
variable . 869

tDBOutput . 871
tDBOutput properties 871
Scenario: Writing a row to a table
in the MySql database via an ODBC
connection . 873

tDBSQLRow . 875
tDBSQLRow properties 875
Scenario: Resetting a DB auto-
increment . 876

tEXAInput . 878
tEXAInput properties 878
Related scenarios . 879

tEXAOutput . 880
tEXAOutput properties 880
Related scenario . 882

tEXARow . 883
tEXARow properties 883
Related scenarios . 884

tEXistConnection . 885
tEXistConnection properties 885
Related scenarios . 885

tEXistDelete . 886
tEXistDelete properties 886
Related scenario . 887

tEXistGet . 888
tEXistGet properties . 888
Scenario: Retrieve resources from a
remote eXist DB server 889

tEXistList . 892
tEXistList properties . 892
Related scenario . 893

tEXistPut . 894
tEXistPut properties . 894
Related scenario . 895

tEXistXQuery . 896
tEXistXQuery properties 896
Related scenario . 897

tEXistXUpdate . 898
tEXistXUpdate properties 898
Related scenario . 899

tFirebirdClose . 900
tFirebirdClose properties 900
Related scenario . 900

tFirebirdCommit . 901
tFirebirdCommit Properties 901
Related scenario . 901

tFirebirdConnection . 902
tFirebirdConnection properties 902
Related scenarios . 902

tFirebirdInput . 903
tFirebirdInput properties 903
Related scenarios . 904

tFirebirdOutput . 905
tFirebirdOutput properties 905
Related scenarios . 907

tFirebirdRollback . 908
tFirebirdRollback properties 908
Related scenario . 908

tFirebirdRow . 909
tFirebirdRow properties 909
Related scenarios . 911

tHiveClose . 912
tHiveConnection . 913
tHiveRow . 914
tHSQLDbInput . 915

tHSQLDbInput properties 915
Related scenarios . 917

tHSQLDbOutput . 918
tHSQLDbOutput properties 918
Related scenarios . 921

tHSQLDbRow . 922
tHSQLDbRow properties 922
Related scenarios . 924

tInterbaseClose . 925
tInterbaseClose properties 925
Related scenario . 925

tInterbaseCommit . 926
tInterbaseCommit Properties 926
Related scenario . 926

tInterbaseConnection . 927
tInterbaseConnection properties 927
Related scenarios . 927

tInterbaseInput . 928
tInterbaseInput properties 928
Related scenarios . 929

tInterbaseOutput . 930
tInterbaseOutput properties 930
Related scenarios . 932

tInterbaseRollback . 933
tInterbaseRollback properties 933
Related scenarios . 933

tInterbaseRow . 934
tInterbaseRow properties 934
Related scenarios . 936

tJavaDBInput . 937
tJavaDBInput properties 937
Related scenarios . 938

tJavaDBOutput . 939
tJavaDBOutput properties 939
Related scenarios . 941

tJavaDBRow . 942
tJavaDBRow properties 942
Related scenarios . 943

tJDBCColumnList . 944
tJDBCColumnList Properties 944
Related scenario . 944

tJDBCClose . 945
tJDBCClose properties 945
Related scenario . 945

tJDBCCommit . 946
tJDBCCommit Properties 946
Related scenario . 946

tJDBCConnection . 947
tJDBCConnection Properties 947
Related scenario . 948

tJDBCInput . 949
tJDBCInput properties 949
Related scenarios . 950

tJDBCOutput . 951
tJDBCOutput properties 951
Related scenarios . 953

tJDBCRollback . 954
tJDBCRollback properties 954
Related scenario . 954

Talend Open Studio

Talend Open Studio Components Reference Guide xi

tJDBCRow . 955
tJDBCRow properties 955
Related scenarios . 957

tJDBCSP . 958
tJDBCSP Properties . 958
Related scenario . 959

tJDBCTableList . 960
tJDBCTableList Properties 960
Related scenario . 960

tLDAPAttributesInput . 961
tLDAPAttributesInput Properties 961
Related scenario . 963

tLDAPConnection . 964
tLDAPConnection Properties 964
Related scenarios . 965

tLDAPInput . 966
tLDAPInput Properties 966
Scenario: Displaying LDAP
directory’s filtered content 967

tLDAPOutput . 970
tLDAPOutput Properties 970
Scenario: Editing data in a LDAP
directory . 972

tLDAPRenameEntry . 974
tLDAPRenameEntry properties 974
Related scenarios . 975

tMaxDBInput . 976
tMaxDBInput properties 976
Related scenario . 977

tMaxDBOutput . 978
tMaxDBOutput properties 978
Related scenario . 980

tMaxDBRow . 981
tMaxDBRow properties 981
Related scenario . 982

tParseRecordSet . 983
tParseRecordSet properties 983
Related Scenario . 983

tPostgresPlusBulkExec . 984
tPostgresPlusBulkExec properties 984
Related scenarios . 985

tPostgresPlusClose . 986
tPostgresPlusClose properties 986
Related scenario . 986

tPostgresPlusCommit . 987
tPostgresPlusCommit Properties 987
Related scenario . 987

tPostgresPlusConnection . 988
tPostgresPlusConnection Properties 988
Related scenario . 988

tPostgresPlusInput . 990
tPostgresPlusInput properties 990
Related scenarios . 991

tPostgresPlusOutput . 992
tPostgresPlusOutput properties 992
Related scenarios . 995

tPostgresPlusOutputBulk . 996
tPostgresPlusOutputBulk properties 996
Related scenarios . 997

tPostgresPlusOutputBulkExec 998
tPostgresPlusOutputBulkExec
properties . 998
Related scenarios . 999

tPostgresPlusRollback . 1000
tPostgresPlusRollback properties 1000
Related scenarios . 1000

tPostgresPlusRow . 1001
tPostgresPlusRow properties 1001
Related scenarios . 1003

tPostgresPlusSCD . 1004
tPostgresPlusSCDELT . 1005
tSasInput . 1006

tSasInput properties 1006
Related scenarios . 1007

tSasOutput . 1008
tSasOutput properties 1008
Related scenarios . 1010

tSQLiteClose . 1011
tSQLiteClose properties 1011
Related scenario . 1011

tSQLiteCommit . 1012
tSQLiteCommit Properties 1012
Related scenario . 1012

tSQLiteConnection . 1013
SQLiteConnection properties 1013
Related scenarios . 1013

tSQLiteInput . 1014
tSQLiteInput Properties 1014
Scenario: Filtering SQlite data 1015

tSQLiteOutput . 1018
tSQLiteOutput Properties 1018
Related Scenario . 1020

tSQLiteRollback . 1021
tSQLiteRollback properties 1021
Related scenarios . 1021

tSQLiteRow . 1022
tSQLiteRow Properties 1022
Scenario: Updating SQLite rows 1023

DotNET components 1027
tDotNETInstantiate . 1028

tDotNETInstantiate properties 1028
Related scenario . 1029

tDotNETRow . 1030
tDotNETRow properties 1030
Scenario: Utilizing .NET in Talend . . . 1032

ELT components 1037
tCombinedSQLAggregate 1038

tCombinedSQLAggregate properties . . 1038
Scenario: Filtering and aggregating
table columns directly on the DBMS . . 1039

tCombinedSQLFilter . 1044
tCombinedSQLFilter Properties 1044
Related Scenario . 1045

tCombinedSQLInput . 1046
tCombinedSQLInput properties 1046
Related scenario . 1047

tCombinedSQLOutput . 1048
tCombinedSQLOutput properties 1048
Related scenario . 1049

tELTJDBCInput . 1050
tELTJDBCInput properties 1050
Related scenarios . 1050

tELTJDBCMap . 1052
tELTJDBCMap properties 1052
Related scenario: . 1053

tELTJDBCOutput . 1054
tELTJDBCOutput properties 1054
Related scenarios . 1055

tELTMSSqlInput . 1056
tELTMSSqlInput properties 1056
Related scenarios . 1056

tELTMSSqlMap . 1058
tELTMSSqlMap properties 1058
Related scenario: . 1059

tELTMSSqlOutput . 1060
tELTMSSqlOutput properties 1060
Related scenarios . 1061

tELTMysqlInput . 1062
tELTMysqlInput properties 1062
Related scenarios . 1062

tELTMysqlMap . 1063
tELTMysqlMap properties 1063
Scenario 1: Aggregating table
columns and filtering 1065

Talend Open Studio

xii Talend Open Studio Components Reference Guide

Scenario 2: ELT using an Alias table . . 1069
tELTMysqlOutput . 1073

tELTMysqlOutput properties 1073
Related scenarios . 1074

tELTOracleInput . 1075
tELTOracleInput properties 1075
Related scenarios . 1075

tELTOracleMap . 1076
tELTOracleMap properties 1076
Scenario: Updating Oracle DB
entries . 1078

tELTOracleOutput . 1081
tELTOracleOutput properties 1081
Scenario: Using the Oracle MERGE
function to update and add data
simultaneously . 1082

tELTPostgresqlInput . 1087
tELTPostgresqlInput properties 1087
Related scenarios . 1087

tELTPostgresqlMap . 1089
tELTPostgresqlMap properties 1089
Related scenario: . 1090

tELTPostgresqlOutput . 1091
tELTPostgresqlOutput properties 1091
Related scenarios . 1092

tELTSybaseInput . 1093
tELTSybaseInput properties 1093
Related scenarios . 1093

tELTSybaseMap . 1095
tELTSybaseMap properties 1095
Related scenarios . 1096

tELTSybaseOutput . 1097
tELTSybaseOutput properties 1097
Related scenarios . 1098

tELTTeradataInput . 1099
tELTTeradataInput properties 1099
Related scenarios . 1099

tELTTeradataMap . 1101
tELTTeradataMap properties 1101
Related scenarios . 1103

tELTTeradataOutput . 1104
tELTTeradataOutput properties 1104
Related scenarios . 1105

tSQLTemplateAggregate . 1106
tSQLTemplateAggregate properties . . . 1106
Scenario: Filtering and aggregating
table columns directly on the DBMS . . 1107

tSQLTemplateCommit . 1111
tSQLTemplateCommit properties 1111
Related scenario . 1112

tSQLTemplateFilterColumns 1113
tSQLTemplateFilterColumns
Properties . 1113
Related Scenario . 1114

tSQLTemplateFilterRows 1115
tSQLTemplateFilterRows Properties . . 1115
Related Scenario . 1116

tSQLTemplateMerge . 1117
tSQLTemplateMerge properties 1117
Scenario: Merging data directly on
the DBMS . 1119

tSQLTemplateRollback . 1125
tSQLTemplateRollback properties 1125
Related scenarios . 1126

ESB components 1127
tESBConsumer . 1128

tESBConsumer properties 1128
Scenario: Returning valid email 1130

tESBProviderFault . 1136
tESBProviderFault properties 1136
Scenario: Returning Fault message 1136

tESBProviderRequest . 1146

tESBProviderRequest properties 1146
Scenario: Service sending a message
without expecting a response 1147

tESBProviderResponse . 1156
tESBProviderResponse properties 1156
Scenario: Returning Hello world
response . 1156

tRESTRequest . 1166
tRESTRequest properties 1166
Scenario 1: REST service accepting
a HTTP request and sending a
response . 1167
Scenario 2: Using URI Query
parameters to explore the data of a
database . 1171

tRESTResponse . 1180
tRESTResponse properties 1180
Related scenario . 1181

File components 1183
tAdvancedFileOutputXML 1184
tApacheLogInput . 1185

tApacheLogInput properties 1185
Scenario: Reading an Apache access-
log file . 1186

tCreateTemporaryFile . 1187
tCreateTemporaryFile properties 1187
Scenario: Creating a temporary file
and writing data in it 1188

tChangeFileEncoding . 1192
tChangeFileEncoding Properties 1192
Scenario: Transforming the character
encoding of a file. 1192

tFileArchive . 1194
tFileArchive properties 1194
Scenario: Zip files using a
tFileArchive . 1195

tFileCompare . 1197
tFileCompare properties 1197
Scenario: Comparing unzipped files . . . 1198

tFileCopy . 1200
tFileCopy Properties 1200
Scenario: Restoring files from bin 1201

tFileDelete . 1203
tFileDelete Properties 1203
Scenario: Deleting files 1204

tFileExist . 1205
tFileExist Properties 1205
Scenario: Checking for the presence
of a file and creating it if it does not
exist . 1206

tFileInputARFF . 1210
tFileInputARFF properties 1210
Scenario: Display the content of a
ARFF file . 1211

tFileInputDelimited . 1214
tFileInputDelimited properties 1214
Scenario: Delimited file content
display . 1216
Scenario 2: Reading data from a
remote file in streaming mode 1217

tFileInputEBCDIC . 1221
tFileInputEBCDIC properties 1221
Scenario: Extracting data from an
EBCDIC file and populating a
database . 1222

tFileInputExcel . 1227
tFileInputExcel properties 1227
Related scenarios . 1229

tFileInputFullRow . 1230
tFileInputFull Row properties 1230
Scenario: Reading full rows in a
delimited file . 1231

Talend Open Studio

Talend Open Studio Components Reference Guide xiii

tFileInputJSON . 1233
tFileInputJSON properties 1233
Scenario: Extracting data from the
fields of a JSON format file 1234

tFileInputLDIF . 1236
tFileInputLDIF Properties 1236
Related scenario . 1237

tFileInputMail . 1238
tFileInputMail properties 1238
Scenario: Extracting key fields from
an email . 1239

tFileInputMSDelimited . 1241
tFileInputMSDelimited properties 1241
Scenario: Reading a multi structure
delimited file . 1242

tFileInputMSPositional . 1249
tFileInputMSPositional properties 1249
Scenario: Reading data from a
positional file . 1250

tFileInputMSXML . 1254
tFileInputMSXML Properties 1254
Scenario: Reading a multi structure
XML file . 1255

tFileInputPositional . 1258
tFileInputPositional properties 1258
Scenario 1: From Positional to XML
file . 1260
Scenario 2: Handling a positional file
based on a dynamic schema 1263

tFileInputProperties . 1269
tFileInputProperties properties 1269
Scenario: Reading and matching
the keys and the values
of different .properties files and
outputting the results in a glossary 1269

tFileInputRegex . 1273
tFileInputRegex properties 1273
Scenario: Regex to Positional file 1274

tFileInputXML . 1277
tFileList . 1278

tFileList properties . 1278
Scenario: Iterating on a file directory . . 1280

tFileOutputARFF . 1283
tFileOutputARFF properties 1283
Related scenarios . 1284

tFileOutputDelimited . 1285
tFileOutputDelimited properties 1285
Scenario 1: Writing data in a
delimited file . 1287
Scenario 2: Utilizing Output Stream
to save filtered data to a local file 1291

tFileOutputEBCDIC . 1294
tFileOutputEBCDIC properties 1294
Scenario: Creating an EBCDIC file
using two delimited files 1295

tFileOutputExcel . 1298
tFileOutputExcel Properties 1298
Related scenario . 1300

tFileOutputJSON . 1301
tFileOutputJSON properties 1301
Scenario: Writing a JSON structured
file . 1301

tFileOutputLDIF . 1305
tFileOutputLDIF Properties 1305
Scenario: Writing DB data into an
LDIF-type file . 1306

tFileOutputMSDelimited . 1309
tFileOutputMSDelimited properties . . . 1309
Related scenarios . 1310

tFileOutputMSPositional . 1311
tFileOutputMSPositional properties . . . 1311
Related scenario . 1312

tFileOutputMSXML . 1313
tFileOutputMSXML Properties 1313
Related scenario . 1318

tFileOutputPositional . 1319
tFileOutputPositional Properties 1319
Related scenario . 1321

tFileOutputProperties . 1322
tFileOutputProperties properties 1322
Related scenarios . 1322

tFileOutputXML . 1323
tFileProperties . 1324

tFileProperties Properties 1324
Scenario: Displaying the properties
of a processed file . 1325

tFileRowCount . 1326
tFileRowCount properties 1326
Related scenario . 1327

tFileTouch . 1328
tFileTouch properties 1328
Related scenario . 1328

tFileUnarchive . 1329
tFileUnarchive Properties 1329
Related scenario . 1330

tGPGDecrypt . 1331
tGPGDecrypt Properties 1331
Scenario: Decrypt a GnuPG-
encrypted file and display its content . . 1331

tNamedPipeClose . 1334
tNamedPipeClose properties 1334
Related scenario . 1334

tNamedPipeOpen . 1335
tNamedPipeOpen properties 1335
Related scenario . 1335

tNamedPipeOutput . 1336
tNamedPipeOutput properties 1336
Scenario: Writing and loading data
through a named-pipe 1337

tPivotToColumnsDelimited 1342
tPivotToColumnsDelimited
Properties . 1342
Scenario: Using a pivot column to
aggregate data . 1342

Internet components 1345
tFileFetch . 1346

tFileFetch properties 1346
Scenario 1: Fetching data through
HTTP . 1347
Scenario 2: Reusing stored cookie to
fetch files through HTTP 1349
Related scenario . 1351

tFileInputJSON . 1352
tFTPConnection . 1353

tFTPConnection properties 1353
Related scenarios . 1353

tFTPDelete . 1355
tFTPDelete properties 1355
Related scenario . 1355

tFTPFileExist . 1356
tFTPFileExist properties 1356
Related scenario . 1357

tFTPFileList . 1358
tFTPFileList properties 1358
Scenario: Iterating on a remote
directory . 1359

tFTPFileProperties . 1363
tFTPFileProperties Properties 1363
Related scenario . 1364

tFTPGet . 1365
tFTPGet properties . 1365
Related scenario . 1366

tFTPPut . 1367
tFTPPut properties . 1367

Talend Open Studio

xiv Talend Open Studio Components Reference Guide

Scenario: Putting files on a remote
FTP server . 1368

tFTPRename . 1371
tFTPRename Properties 1371
Related scenario . 1372

tFTPTruncate . 1373
tFTPTruncate properties 1373
Related scenario . 1374

tHttpRequest . 1375
tHttpRequest properties 1375
Scenario: Sending a HTTP request to
the server and saving the response
information to a local file 1376

tJMSInput . 1378
tJMSInput properties 1378
Related scenarios . 1379

tJMSOutput . 1380
tJMSOutput properties 1380
Related scenarios . 1381

tMicrosoftMQInput . 1382
tMicrosoftMQInput Properties 1382
Scenario: Writing and fetching
queuing messages from Microsoft
message queue . 1383

tMicrosoftMQOutput . 1387
tMicrosoftMQOutput Properties 1387
Related scenario . 1388

tMomCommit . 1389
tMomCommit Properties 1389
Related scenario . 1389

tMomInput . 1390
tMomInput Properties 1390
Scenario 1: Asynchronous
communication via a MOM server 1394
Scenario 2: Transmitting XML files
via a MOM server . 1396

tMomMessageIdList . 1401
tMomMessageIdList Properties 1401
Related scenario . 1401

tMomOutput . 1402
tMomOutput Properties 1402
Related scenario . 1405

tMomRollback . 1406
tMolRollback properties 1406
Related scenario . 1406

tPOP . 1407
tPOP properties . 1407
Scenario: Retrieving a selection of
email messages from an email server . . 1408

tREST . 1411
tREST properties . 1411
Scenario: Creating and retrieving
data by invoking REST Web service . . 1412

tRSSInput . 1415
tRSSInput Properties 1415
Scenario: Fetching frequently
updated blog entries. 1415

tRSSOutput . 1417
tRSSOutput Properties 1417
Scenario 1: Creating an RSS flow
and storing files on an FTP server 1418
Scenario 2: Creating an RSS flow
that contains metadata 1422
Scenario 3: Creating an ATOM feed
XML file . 1424

tSCPClose . 1428
tSCPClose Properties 1428
Related scenario . 1428

tSCPConnection . 1429
tSCPConnection properties 1429
Related scenarios . 1429

tSCPDelete . 1430

tSCPDelete properties 1430
Related scenario . 1430

tSCPFileExists . 1431
tSCPFileExists properties 1431
Related scenario . 1431

tSCPFileList . 1432
tSCPFileList properties 1432
Related scenario . 1432

tSCPGet . 1433
tSCPGet properties . 1433
Scenario: Getting files from a remote
SCP server . 1433

tSCPPut . 1435
tSCPPut properties . 1435
Related scenario . 1435

tSCPRename . 1436
tSCPRename properties 1436
Related scenario . 1436

tSCPTruncate . 1437
tSCPRename properties 1437
Related scenario . 1437

tSendMail . 1438
tSendMail Properties 1438
Scenario: Email on error 1439

tSetKerberosConfiguration 1441
tSetKerberosConfiguration
properties . 1441
Related scenarios . 1441

tSetKeystore . 1442
tSetKeystore properties 1442
Scenario: Extracting customer
information from a private WSDL
file . 1443

tSocketInput . 1447
tSocketInput properties 1447
Scenario: Passing on data to the
listening port . 1448

tSocketOutput . 1451
tSocketOutput properties 1451
Related Scenario . 1452

tSOAP . 1453
tSOAP properties . 1453
Scenario 1: Extracting the weather
information using a Web service 1455
Scenario 2: Using a SOAP message
from an XML file to get
weather information and saving the
information to an XML file 1457

tWebServiceInput . 1461
tWebServiceInput Properties 1461
Scenario 1: Extracting images
through a Web service 1462
Scenario 2: Reading the data
published on a Web service using the
tWebServiceInput advanced features . . 1464

tXMLRPCInput . 1469
tXMLRPCInput Properties 1469
Scenario: Guessing the State name
from an XMLRPC . 1469

Logs & Errors components 1473
tAssert . 1474

tAssert Properties . 1474
Scenario: Setting up the assertive
condition for a Job execution 1474

tAssertCatcher . 1480
tAssertCatcher Properties 1480
Related scenarios . 1481

tChronometerStart . 1482
tChronometerStart Properties 1482
Related scenario . 1482

tChronometerStop . 1483
tChronometerStop Properties 1483

Talend Open Studio

Talend Open Studio Components Reference Guide xv

Scenario: Measuring the processing
time of a subjob and part of a subjob . . 1483

tDie . 1487
tDie properties . 1487
Related scenarios . 1487

tFlowMeter . 1488
tFlowMeter Properties 1488
Related scenario . 1488

tFlowMeterCatcher . 1489
tFlowMeterCatcher Properties 1489
Scenario: Catching flow metrics
from a Job . 1490

tLogCatcher . 1493
tLogCatcher properties 1493
Scenario 1: warning & log on entries . . 1493
Scenario 2: Log & kill a Job 1495

tLogRow . 1497
tLogRow properties 1497
Scenario: Delimited file content
display . 1498

tStatCatcher . 1499
tStatCatcher Properties 1499
Scenario: Displaying job stats log 1499

tWarn . 1502
tWarn Properties . 1502
Related scenarios . 1502

Misc group components 1503
tAddLocationFromIP . 1504

tAddLocationFromIP Properties 1504
Scenario: Identifying a real-world
geographic location of an IP 1504

tBufferInput . 1507
tBufferInput properties 1507
Scenario: Retrieving bufferized data . . 1507

tBufferOutput . 1510
tBufferOutput properties 1510
Scenario 1: Buffering data (Java) 1510
Scenario 2: Buffering output data on
the webapp server . 1512
Scenario 3: Calling a Job with
context variables from a browser 1515
Scenario 4: Calling a Job exported as
Webservice in another Job 1517

tContextDump . 1519
tContextDump properties 1519
Related Scenario . 1519

tContextLoad . 1520
tContextLoad properties 1520
Scenario: Dynamic context use in
MySQL DB insert . 1521

tFixedFlowInput . 1524
tFixedFlowInput properties 1524
Related scenarios . 1524

tMemorizeRows . 1526
tMemorizeRows properties 1526
Scenario: Counting the occurrences
of different ages . 1527

tMsgBox . 1532
tMsgBox properties 1532
Scenario: ‘Hello world!’ type test 1532

tRowGenerator . 1534
tRowGenerator properties 1534
Scenario: Generating random java
data . 1535

Orchestration components 1539
tFileList . 1540
tFlowToIterate . 1541

tFlowToIterate Properties 1541
Scenario: Transforming data flow to
a list . 1541

tForeach . 1545
tForeach Properties . 1545

Scenario: Iterating on a list and
retrieving the values 1545

tInfiniteLoop . 1547
tInfiniteLoop Properties 1547
Related scenario . 1547

tIterateToFlow . 1548
tIterateToFlow Properties 1548
Scenario: Transforming a list of files
as data flow . 1549

tLoop . 1551
tLoop Properties . 1551
Scenario: Job execution in a loop 1552

tPostjob . 1554
tPostjob Properties . 1554
Related scenario . 1554

tPrejob . 1555
tPrejob Properties . 1555
Related scenario . 1555

tReplicate . 1556
tReplicate Properties 1556
Related scenario . 1556

tRunJob . 1557
tSleep . 1558

tSleep Properties . 1558
Related scenarios . 1558

tUnite . 1559
tUnite Properties . 1559
Scenario: Iterate on files and merge
the content . 1560

tWaitForFile . 1563
tWaitForFile properties 1563
Scenario: Waiting for a file to be
removed . 1565

tWaitForSocket . 1567
tWaitForSocket properties 1567
Related scenario . 1568

tWaitForSqlData . 1569
tWaitForSqlData properties 1569
Scenario: Waiting for insertion of
rows in a table . 1570

Processing components 1573
tAggregateRow . 1574

tAggregateRow properties 1574
Scenario 1: Aggregating values and
sorting data . 1575

tAggregateSortedRow . 1578
tAggregateSortedRow properties 1578
Related scenario . 1579

tConvertType . 1580
tConvertType properties 1580
Scenario: Converting java types 1580

tDenormalize . 1585
tDenormalize Properties 1585
Scenario 1: Denormalizing on one
column . 1585
Scenario 2: Denormalizing on
multiple columns . 1587

tDenormalizeSortedRow . 1589
tDenormalizeSortedRow properties . . . 1589
Scenario: Regrouping sorted rows 1589

tExternalSortRow . 1593
tExternalSortRow properties 1593
Related scenario . 1594

tExtractDelimitedFields . 1595
tExtractDelimitedFields properties 1595
Scenario: Extracting fields from a
comma-delimited file 1596

tExtractEBCDICFields . 1599
tExtractEBCDICFields properties 1599
Related scenario . 1600

tExtractPositionalFields . 1601
tExtractPositionalFields properties 1601

Talend Open Studio

xvi Talend Open Studio Components Reference Guide

Related scenario . 1602
tExtractRegexFields . 1603

tExtractRegexFields properties 1603
Scenario: Extracting name, domain
and TLD from e-mail addresses 1604

tExtractXMLField . 1607
tFilterColumns . 1608

tFilterColumns Properties 1608
Related Scenario . 1608

tFilterRow . 1609
tFilterRow Properties 1609
Scenario: Filtering and searching a
list of names . 1610

tJoin . 1613
tJoin properties . 1613
Scenario 1: Doing an exact match on
two columns and outputting the main
and rejected data . 1614

tMap . 1619
tMap properties . 1619
Scenario 1: Mapping data using a
filter and a simple explicit join 1619
Scenario 2: Mapping data using inner
join rejections . 1623
Scenario 3: Cascading join mapping . . 1627
Scenario 4: Advanced mapping using
filters, explicit joins and rejections 1627
Scenario 5: Advanced mapping with
filters and different rejections 1631
Scenario 6: Advanced mapping with
lookup reload at each row 1635
Scenario 7: Mapping with join output
tables . 1641

tNormalize . 1645
tNormalize Properties 1645
Scenario: Normalizing data 1645

tReplace . 1648
tReplace Properties . 1648
Scenario: multiple replacements and
column filtering . 1649

tSampleRow . 1652
tSampleRow properties 1652
Scenario: Filtering rows and groups
of rows . 1652

tSortRow . 1655
tSortRow properties 1655
Scenario 1: Sorting entries 1656

tSplitRow . 1658
tSplitRow properties 1658
Scenario 1: Splitting one row into
two rows . 1658

tWriteJSONField . 1662
tWriteJSONField properties 1662
Related Scenario . 1662

tXMLMap . 1663
tXMLMap properties 1663
Scenario 1: Mapping and
transforming XML data 1663
Scenario 2: Launching a lookup
in a second XML flow to join
complementary data 1668
Scenario 3: Mapping data using a
filter . 1673
Scenario 4: Catching the data
rejected by lookup and filter 1675
Scenario 5: Mapping data using a
group element . 1678
Scenario 6: classing the output data
with aggregate element 1683
Scenario 7: Restructuring products
data using multiple loop elements 1686

System components 1695

tRunJob . 1696
tRunJob Properties . 1696
Scenario: Executing a child Job 1698

tSetEnv . 1702
tSetEnv Properties . 1702
Scenario: Modifying a variable
during a Job execution 1702

tSSH . 1705
tSSH Properties . 1705
Scenario: Remote system
information display via SSH 1707

tSystem . 1709
tSystem Properties . 1709
Scenario: Echo ‘Hello World!’ 1711

Talend MDM components 1713
tMDMBulkLoad . 1714

tMDMBulkLoad properties 1714
Scenario: Loading records into a
business entity . 1717

tMDMClose . 1722
tMDMClose properties 1722
Related scenario . 1722

tMDMConnection . 1723
tMDMConnection properties 1723
Related scenario . 1723

tMDMDelete . 1724
tMDMDelete properties 1724
Scenario: Deleting master data from
an MDM Hub . 1725

tMDMInput . 1731
tMDMInput properties 1731
Scenario: Reading master data in an
MDM hub . 1732

tMDMOutput . 1735
tMDMOutput properties 1735
Scenario: Writing master data in an
MDM hub . 1738

tMDMReceive . 1743
tMDMReceive properties 1743
Related scenario . 1744

tMDMRouteRecord . 1745
tMDMRouteRecord properties 1745
Scenario: Routing a record to Event
Manager . 1746

tMDMSP . 1754
tMDMSP Properties 1754
Scenario: Executing a stored
procedure in the MDM Hub 1755

tMDMTriggerInput . 1760
tMDMTriggerInput properties 1760
Scenario: Exchanging the event
information about an MDM record 1761

tMDMTriggerOutput . 1773
tMDMTriggerOutput properties 1773
Related scenario . 1774

tMDMViewSearch . 1775
tMDMViewSearch properties 1775
Scenario: Retrieving records from an
MDM hub via an existing view 1777

Technical components 1781
tHashInput . 1782

tHashInput Properties 1782
Scenario 1: Reading data from the
cache memory for high-speed data
access . 1782
Scenario 2: Clearing the memory
before loading data to it in case an
iterator exists in the same subjob 1786

tHashOutput . 1791
tHashOutput Properties 1791
Related scenarios . 1792

Talend Open Studio

Talend Open Studio Components Reference Guide xvii

XML components 1793
tAdvancedFileOutputXML 1794

tAdvancedFileOutputXML
properties . 1794
Scenario: Creating an XML file
using a loop . 1800

tDTDValidator . 1805
tDTDValidator Properties 1805
Scenario: Validating XML files 1805

tEDIFACTtoXML . 1808
tEDIFACTtoXML Properties 1808
Scenario: From EDIFACT to XML . . . 1808

tExtractXMLField . 1811
tExtractXMLField properties 1811
Scenario 1: Extracting XML data
from a field in a database table 1812
Scenario 2: Extracting correct and
erroneous data from an XML field in
a delimited file . 1814

tFileInputXML . 1818
tFileInputXML Properties 1818
Scenario 1: Reading and extracting
data from an XML structure 1820
Scenario 2: Extracting erroneous
XML data via a reject flow 1821

tFileOutputXML . 1825
tFileOutputXML properties 1825
Related scenarios . 1827

tWriteXMLField . 1828
tWriteXMLField properties 1828
Scenario: Extracting the structure of
an XML file and inserting it into the
fields of a database table 1829

tXMLMap . 1833
tXSDValidator . 1834

tXSDValidator Properties 1834
Scenario: Validating data flows
against an XSD file 1834

tXSLT . 1838
tXSLT Properties . 1838
Scenario: Transforming XML to
html using an XSL stylesheet 1838

Talend Open Studio Components Reference Guide

Talend Open Studio Components Reference Guide

Preface

General information

Purpose
This Reference Guide provides use cases and details about how to set parameters for the major
components found in the Palette of Talend Open Studio.

Information presented in this document applies to Talend Open Studio releases version 5.1.x.

Audience
This guide is for users and administrators of Talend Open Studio.

The layout of GUI screens provided in this document may vary slightly from your actual GUI.

Typographical conventions
This guide uses the following typographical conventions:

• text in bold: window and dialog box buttons and fields, keyboard keys, menus, and menu options,

• text in [bold]: window, wizard, and dialog box titles,

• text in courier: system parameters typed in by the user,

• text in italics: file, schema, column, row, and variable names referred to in all use cases, and also
names of the fields in the Basic and Advanced setting views referred to in the property table for
each component,

•
The icon indicates an item that provides additional information about an important point. It is
also used to add comments related to a table or a figure,

•
The icon indicates a message that gives information about the execution requirements or
recommendation type. It is also used to refer to situations or information the end-user need to be
aware of or pay special attention to.

History of changes
The following table lists changes made in the Talend Open Studio Reference Guide.

Version Date History of Change

v5.0_a 12/12/2011 Updates in Talend Open Studio Reference Guide include:

• Post-migration restructuring.

Feedback and Support

xx Talend Open Studio Components Reference Guide

Version Date History of Change

• Updated documentation to reflect new product names. For further
information , see the Talend website.

• Added Cloud, Technical and DotNET chapters.

• New components in the Business Intelligence, Data Quality, ESB,
Technical, Processing, Cloud, DotNET chapters include:

tHashInput, tHashOutput, tJasperOutput, tSplitRow,
tRESTRequest components...

• Modifications in the settings and scenarios of many components
to match the modifications in the GUI.

v5.0_b 13/02/2012 Updates in Talend Open Studio Reference Guide include:

• Updated the formatting of parts of the Components Reference
Guide.

• Added a legal notice to the Components Reference Guide.

• Added a new component in the Business chapter: tSAPBWInput.

• Updated the properties tables and scenarios of certain components
to match the modifications in the GUI.

v5.1_a 28/05/2012 Updates in Talend Open Studio Reference Guide include:

• Updated the Properties tables and scenarios of certain
components to match the modifications in the GUI.

• New components in the Internet family:
tSetKerberosConfiguration.

• New components in the Data Quality
family: tUniservBTGeneric, tUniservRTConvertName,
tUniservRTMailBulk, tUniservRTMailOutput,
tUniservRTMailSearch and tUniservRTPost.

v5.1_b 05/07/2012 Updates in Talend Open Studio Reference Guide include:

• Split the Databases chapter into three chapters: Databases -
traditional compoments, Databases - appliance components, and
Databases - other components.

• Added a scenario for tFileInputMSPositional.

•

•

Feedback and Support
Your feedback is valuable. Do not hesitate to give your input, make suggestions or requests regarding
this documentation or product and find support from the Talend team, on Talend’s Forum website at:

http://talendforge.org/forum

http://talendforge.org/forum

Talend Open Studio Components Reference Guide

Big Data components
This chapter details the main components that you can find in Big Data family of the Palette.

This document will provide you with an overview of our big data components for Hadoop Distributed File System
(HDFS), HBase, Hive, Pig and Sqoop. To reference the remainder of the studio, please refer to Talend Open Studio
User Guide.

Also, if you have any questions, concerns or general comments please take part in our product forums which can
be found at: http://www.talendforge.org/forum/index.php

Thank you for using Talend Open Studio.

http://www.talendforge.org/forum/index.php

tHiveClose

2 Talend Open Studio Components Reference Guide

tHiveClose

tHiveClose properties

Component Family Big Data / Hive

Function tHiveClose closes an active connection to a database.

Purpose This component closes connection to a Hive databases.

Basic settings Component list If there is more than one connection used in the Job, select
tHiveConnection from the list.

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at a component
level.

Usage This component is generally used as an input component. It requires an output
component.

Limitation n/a

Related scenario

This component is for use with tHiveConnection. It is generally used along with tHiveConnection as the latter
allows you to open a connection for the transaction which is underway.

For a scenario in which tHiveClose might be used, see the section called “tMysqlConnection”.

tHiveConnection

Talend Open Studio Components Reference Guide 3

tHiveConnection

tHiveConnection properties

Database Family Big Data / Hive

Function tHiveConnection opens a connection to a database in order that a transaction may
be made.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Hive version Select a Hive version from the list:

Hortonworks Data Platform 1.0: You need to precise
the access to the Hortonworks Data Platform 1.0 which
supports Apache Hadoop projects including HDFS,
MapR, Hive, HBase, Pig and Zookeeper.

Apache 0.20.203: You need to precise the access to the
Apache 0.20.203 to be used.

Apache 1.0.0: You need to precise the access to the
Apache Hadoop 1.0.0 to be used in this mode.

Connection mode Select a connection mode from the list:

Standalone: This connection mode is available when the
Hive version is Apache 0.20.203 or Apache 1.0.0.

Embedded: This connection mode is available when
the Hive version is Apache 1.0.0 or Hortonworks Data
Platform 1.0.

Host Database server IP address.

Port DB server listening port.

Database Fill this field with the name of the database.

This field is not available when you select
Embedded from the Connection mode list.

Username and
Password

DB user authentication data.

Encoding Select the encoding type from the list or select Custom
and define it manually. This field is compulsory for DB
data handling.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows

Related scenario

4 Talend Open Studio Components Reference Guide

you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at a component
level.

Usage This component is generally used with other Informix components, particularly
tHiveClose.

Limitation n/a

Related scenario

For a scenario in which tHiveConnection, might be used, see the section called “Scenario: Inserting data in
mother/daughter tables”.

tHiveRow

Talend Open Studio Components Reference Guide 5

tHiveRow

tHiveRow properties

Component family Big Data / Hive

Function tHiveRow is the dedicated component for this database. It executes the HiveQL
query stated in the specified database. The row suffix means the component
implements a flow in the Job design although it does not provide output.

Purpose Depending on the nature of the query and the database, tHiveRow acts on the actual
DB structure or on the data (although without handling data). The SQLBuilder tool
helps you write your HiveQL statements easily.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository : Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tHiveConnection component from the Component List
to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Hive version Select a Hive version from the list:

Hortonworks Data Platform 1.0: You need to precise
the access to the Hortonworks Data Platform 1.0 which
supports Apache Hadoop projects including HDFS,
MapR, Hive, HBase, Pig and Zookeeper.

tHiveRow properties

6 Talend Open Studio Components Reference Guide

Apache 0.20.203: You need to precise the access to the
Apache 0.20.203 to be used.

Apache 1.0.0: You need to precise the access to the
Apache Hadoop 1.0.0 to be used in this mode.

Connection mode Select a connection mode from the list:

Standalone: This connection mode is available when the
Hive version is Apache 0.20.203 or Apache 1.0.0.

Embedded: This connection mode is available when
the Hive version is Apache 1.0.0 or Hortonworks Data
Platform 1.0.

Host Database server IP address.

Port Listening port number of DB server.

Database Fill this field with the name of the database.

This field is not available when you select
Embedded from the Connection mode list.

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table Name Name of the table to be processed.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Guess Query Click the Guess Query button to generate the query which
corresponds to your table schema in the Query field.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Related scenarios

Talend Open Studio Components Reference Guide 7

Usage This component offers the benefit of flexible DB queries and covers all possible
Hive QL queries.

Related scenarios

For related topics, see:

• the section called “Scenario: Resetting a DB auto-increment”

• the section called “Scenario 1: Removing and regenerating a MySQL table index”.

Talend Open Studio Components Reference Guide

Talend Open Studio Components Reference Guide

Business components
This chapter details the major components that you can find in Business group of the Palette of Talend Open
Studio.

The Business component family groups connectors that covers specific Business needs, such as reading and writing
CRM, or ERP types of database and reading from or writing to an SAP system.

tAlfrescoOutput

10 Talend Open Studio Components Reference Guide

tAlfrescoOutput

tAlfrescoOutput Properties

Component family Business

Function Creates dematerialized documents in an Alfresco server where they are indexed
under meaningful models.

Purpose Allows to create and manage documents in an Alfresco server.

Basic settings URL Type in the URL to connect to the Alfresco Web
application.

Login and Password Type in the user authentication data to the Alfresco
server.

Base Type in the base path where to put the document, or

Select the Map... check box and then in the Column
list, select the target location column.

Note: When you type in the base name, make sure to
use the double backslash (\\) escape character.

Document Mode Select in the list the mode you want to use for the
created document.

Create only: creates a document if it does not exist.

Note that an error message will display if you try to
create a document that already exists

Create or update: creates a document if it does not
exist or updates the document if it exists.

Container Mode Select in the list the mode you want to use for the
destination folder in Alfresco.

Update only: updates a destination folder if the folder
exists.

Note that an error message will display if you try to
update a document that does not exist

Create or update: creates a destination folder if it does
not exist or updates the destination folder if it exists.

Define Document Type Click the three-dot button to display the
tAlfrescoOutput editor. This editor enables you to:

- select the file where you defined the metadata
according to which you want to save the document in
Alfresco

-define the type f the document

tAlfrescoOutput Properties

Talend Open Studio Components Reference Guide 11

-select any of the aspects in the available aspects list
of the model file and click the plus button to add it in
the list to the left.

Property Mapping Displays the parameters you set in the
tAlfrescoOutput editor and according to which the
document will be created in the Alfresco server.

Note that in the Property Mapping area, you can
modify any of the input schemas.

Schema and Edit
schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
remote in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes Built-in.

Result Log File Name Browse to the file where you want to save any logs
related to the Job execution.

Advanced settings Configure Target
Location Container

Allows to configure the (by default) type of containers
(folders)

Select this check box to display new fields where you
can modify the container type to use your own created
types based on the father/child model.

Configure Permissions When selected, allows to manually configure access
rights to containers and documents.

Select the Inherit Permissions check box to
synchronize access rights between containers and
documents.

Click the Plus button to add new lines to the
Permissions list, then you can assign roles to user or
group columns.

Encoding Select the encoding type from the list or select Custom
and define it manually. This field is compulsory.

Association Target
Mapping

Allows to create new documents in Alfresco with
associated links towards other documents already
existing in Alfresco, to facilitate the navigation process
for example.

To create associations:

1. Open the tAlfresco editor.

2. Click the Add button and select a model where
you have already defined aspects that contain
associations.

3. Click the drop-down arrow at the top of the editor
and select the corresponding document type.

4. Click OK to close the editor and display the
created association in the Association Target
Mapping list.

tAlfrescoOutput Properties

12 Talend Open Studio Components Reference Guide

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Usually used as an output component. An input component is required.

Limitation/Prerequisites To be able to use the tAlfrescoOutput component, few relevant resources need to
be installed: check the Installation Procedure sub section for more information.

Installation procedure

To be able to use tAlfrescoOutput in Talend Open Studio, you need first to install the Alfresco server with few
relevant resources.

The below sub sections detail the prerequisite and the installation procedure.

Prerequisites

Start with the following operations:

1. Download the file alfresco-community-tomcat-2.1.0.zip

2. Unzip the file in an installation folder, for example:

C:\Program Files\Java\jdk1.6.0_27

3. Install JDK 1.6.0+

4. Update the environment variable

JAVA_HOME (JAVA_HOME= C:\alfresco)

5. From the installation folder (C:\alfresco), launch the alfresco server using the script alf_start.bat

Make sure that the Alfresco server is launched correctly before start using the tAlfrescoOutput
component.

Installing the Talend Alfresco module

Note that the talendalfresco_20081014.zip is provided with the tAlfrescoOutput component in Talend
Open Studio.

To install the talendalfresco module:

1. From talendalfresco_20081014.zip and in the talendalfresco_20081014\alfresco
folder, look for the following jars: stax-api-1.0.1.jar, wstx-lgpl-3.2.7.jar,
talendalfresco-client_1.0.jar, and talendalfresco-alfresco_1.0.jar and move
them to C:\alfresco\tomcat\webapps\alfresco\WEB-INF\lib

tAlfrescoOutput Properties

Talend Open Studio Components Reference Guide 13

2. Add the authentification filter of the commands to the web.xml file located in the path

C:\alfresco\tomcat\webapps\alfresco\WEB-INF
son WEB-INF/

following the model of the example provided in talendalfresco_20081014/alfresco folder of
the zipped file talendalfresco_20081014.zip

The following figures show the portion of lines (in blue) to add in the file web.xml alfresco.

Useful information for advanced use

Installing new types for Alfresco:

From the package_jeu_test.zip and in the package_jeu_test/fichiers_conf_alfresco2.1
folder, look for the following files: xml H76ModelCustom.xml (description of the model), web-client-
config-custom.xml (web interface of the model), and custom-model-context.xml (registration
of the new model) and paste them in the following folder: C:/alfresco/tomcat/shared/classes/
alfresco/extension

Dates:

• The dates must be of the Talend date type java.util.Date.

• Columns without either mapping or default values, for example of the type Date, are written as empty strings.

• Solution: delete all columns without mapping or default values. Note that any modification of the type Alfresco
will put them back.

Content:

• Do not mix up between the file path which content you want to create in Alfresco and its target location in
Alfresco.

• Provide a URL! It can target various protocols, among which are file, HTTP and so on.

tAlfrescoOutput Properties

14 Talend Open Studio Components Reference Guide

• For URLs referring to files on the file system, precede them by "file:" for Windows used locally, and by "file://"
for Windows on a network (which accepts as well "file: \ \") or for Linux.

• Do not double the backslash in the target base path (automatic escape), unless you type in the path in the basic
settings of the tAlfrescoOutput component, or doing concatenation in the tMap editor for example.

Multiple properties or associations:

• It is possible to create only one association by document if it is mapped to a string value, or one or more
associations by document if it is mapped to a list value (object).

• You can empty an association by mapping it to an empty list, which you can create, for example, by using new
java.util.ArrayList()in the tMap component.

However, it is impossible to delete an association.

Building List(object)with tAggregate:

• define the table of the relation n-n in a file, containing a name line for example (included in the input rows),
and a category line (that can be defined with its mapping in a third file).

• group by: input name, output name.

• operation: output categoryList, function list(object), input category. ATTENTION list (object)
and non simple list.

- References (documents and folders):

• References are created by mapping one or more existing reference nodes (xpath or namepath) using String
type or List(object).

• An error in the association or the property of the reference type does not prevent the creation of the node that
holds the reference.

• Properties of the reference type are created in the Basic Settings view.

• Associations are created in the Advanced Settings view.

Dematerialization, tAlfrescoOutput, and Enterprise Content
Management

Dematerialization is the process that convert documents held in physical form into electronic form, and thus helps
to move away from the use of physical documentation to the use of electronic Enterprise Content Management
(ECM) systems. The range of documents that can be managed with an Enterprise Content Management system
include just about everything from basic documents to stock certificates, for example.

Enterprises dematerialize their content via a manual document handling, done by man, or an automatic document
handling, machine-based.

Considering the varied nature of the content to be dematerialized, enterprises have to use varied technologies
to do it. Scanning paper documents, creating interfaces to capture electronic documents from other applications,
converting document images into machine-readable/editable text documents, and so on are examples of the
technologies available.

Furthermore, scanned documents and digital faxes are not readable texts. To convert them into machine-readable
characters, different character recognition technologies are used. Handwritten Character Recognition (HCR) and
Optical Mark Recognition (OMR) are two examples of such technologies.

Scenario: Creating documents on an Alfresco server

Talend Open Studio Components Reference Guide 15

Equally important as the content that is captured in various formats from numerous sources in the dematerialization
process is the supporting metadata that allows efficient identification of the content via specific queries.

Now how can this document content along with the related metadata be aggregated and indexed in an Enterprise
Content Management system so that it can be retrieved and managed in meaningful ways? Talend provides the
answer through the tAlfrescoOutput component.

The tAlfrescoOutput component allows you to stock and manage your electronic documents and the related
metadata on the Alfresco server, the leading open source enterprise content management system.

The following figure illustrates Talend’s role between the dematerialization process and the Enterprise Content
Management system (Alfresco).

Scenario: Creating documents on an Alfresco server

This Java scenario describes a two-component Job which aims at creating two document files with the related
metadata in an Alfresco server, the java-based Enterprise Control Management system.

Setting up your Job

1. Drop the tFileInputDelimited and tAlfrescoOutput components from the Palette onto the design
workspace.

2. Connect the two components together using a Main > Row connection.

Scenario: Creating documents on an Alfresco server

16 Talend Open Studio Components Reference Guide

Setting up the schema

1. In the design workspace, double-click tFileInputDelimited to display its basic settings.

2. Set the File Name path and all related properties. Note that if you have already stored your input schemas
locally in the Repository, you can simply drop the relevant file item from the Metadata folder onto the design
workspace and the delimited file settings will automatically display in the relevant fields in the component
Basic settings view.

For more information about metadata, see Setting up a File Delimited schema in Talend Open Studio
User Guide.

In this scenario, the delimited file provides the metadata and path of two documents we want to create in the
Alfresco server. The input schema for the documents consists of four columns: file_name, destination_folder
name, source_path, and author.

And therefore the input schema of the delimited file will be as the following:

Setting up the connection to the Alfresco server

1. In the design workspace, double-click tAlfrescoOutput to display its basic settings.

Scenario: Creating documents on an Alfresco server

Talend Open Studio Components Reference Guide 17

2. In the Alfresco Server area, enter the Alfresco server URL and user authentication information in the
corresponding fields.

3. In the TargetLocation area, either type in the base name where to put the document in the server,
or Select the Map... check box and then in the Column list, select the target location column,
destination_folder_name in this scenario.

When you type in the base name, make sure to use the double backslash (\\) escape character.

4. In the Document Mode list, select the mode you want to use for the created documents.

5. In the Container Mode list, select the mode you want to use for the destination folder in Alfresco.

Defining the document

1. Click the Define Document Type three-dot button to open the tAlfrescoOutput editor.

Scenario: Creating documents on an Alfresco server

18 Talend Open Studio Components Reference Guide

2. Click the Add button to browse and select the xml file that holds the metadata according to which you want
to save the documents in Alfresco.

All available aspects in the selected model file display in the Available Aspects list.

You can browse for this model folder locally or on the network. After defining the aspects to use for
the document to be created in Alfresco, this model folder is not needed any more.

3. If needed, select in the Available Aspects list the aspect(s) to be included in the metadata to write in the
Alfresco server. In this scenario we want the author name to be part of the metadata registered in Alfresco.

4. Click the drop-down arrow at the top of the editor to select from the list the type to give to the created
document in Alfresco, Content in this scenario.

All the defined aspects used to select the metadata to write in the Alfresco server display in the Property
Mapping list in the Basic Settings view of tAlfrescoOutput, three aspects in this scenario, two basic for the
Content type (content and name) and an additional one (author).

Executing your Job

1. Click Sync columns to auto propagate all the columns of the delimited file.

If needed, click Edit schema to view the output data structure of tAlfrescoOutput.

Scenario: Creating documents on an Alfresco server

Talend Open Studio Components Reference Guide 19

2. Click the three-dot button next to the Result Log File Name field and browse to the file where you want to
save any logs after Job execution.

3. Save your Job, and press F6 to execute it.

The two documents are created in Alfresco using the metadata provided in the input schemas.

tBonitaDeploy

20 Talend Open Studio Components Reference Guide

tBonitaDeploy

tBonitaDeploy Properties

Component family Business/Bonita

Function This component configures any Bonita Runtime engine and deploys a specific
Bonita process (a .bar file exported from the Bonita solution) to this engine.

Purpose This component deploys a specific Bonita process to a Bonita Runtime.

Basic settings Bonita version Select a version number for the Bonita Runtime engine.

Bonita Runtime
Environment File

Browse to, or enter the path to the Bonita Runtime
environment file.

This field is displayed only when you select
Bonita version 5.3.1 from the Bonita version
list.

Bonita Runtime Home Browse to, or enter the path to the Bonita Runtime
environment directory.

This field is displayed only when you select
Bonita version 5.6.1 from the Bonita version
list.

Bonita Runtime Jaas
File

Browse to, or enter the path to the Bonita Runtime jaas
file.

Bona Runtime logging
file

Browse to, or enter the path to the Bonita Runtime
logging file.

Login Module Type in the name of login module for logging in Bonita
Runtime engine which is defined in the Bonita Runtime
jaas file.

Business Archive Browse to, or enter the path to the Bonita process .bar
file you want to use.

User name Type in your user name used to log in Bonita studio.

Password Type in your password used to log in Bonita studio.

Die on error This check box is cleared by default, meaning to skip
the row on error and to complete the process for error-
free rows.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Usually used as a stand-alone component.

Connections Outgoing links (from one component to another):

Trigger: Run if; On Component Ok; On Component
Error, On Subjob Ok, On Subjob Error.

Incoming links (from one component to another):

Related Scenario

Talend Open Studio Components Reference Guide 21

Trigger: Run if, On Component Ok, On Component
Error, On Subjob Ok, On Subjob Error

For further information regarding connections, see
Connection types in the Talend Open Studio User
Guide.

Global Variables Process Definition UUID: Indicates the identifier
number of the process being deployed. This is available
as a Flow variable.

Returns a string.

For further information about variables, see How to use
a variable in a Job in the Talend Open Studio User
Guide.

Limitation The Bonita Runtime environment file, the Bonita Runtime jaas file and the Bonita
Runtime logging file must be all stored on the excution server of the Job using
this component.

Related Scenario

For related topic, see the section called “Scenario: Executing a Bonita process via a Talend Job”.

tBonitaInstantiateProcess

22 Talend Open Studio Components Reference Guide

tBonitaInstantiateProcess

tBonitaInstantiateProcess Properties

Component family Business/Bonita

Function This component instantiates a process already deployed in a Bonita Runtime
engine.

Purpose This component starts an instance for a specific process deployed in a Bonita
Runtime engine.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in or
remote in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes built-in.

In this component the schema is related to the Module
selected.

Bonita version Select a version number for the Bonita Runtime engine.

Bonita Runtime
Environment File

Browse to, or enter the path to the Bonita Runtime
environment file.

This field is displayed only when you select
Bonita version 5.3.1 from the Bonita version
list.

Bonita Runtime Home Browse to, or enter the path to the Bonita Runtime
environment directory.

This field is displayed only when you select
Bonita version 5.6.1 from the Bonita version
list.

Bonita Runtime Jaas
File

Browse to, or enter the path to the Bonita Runtime jaas
file.

Bonita Runtime logging
file

Browse to, or enter the path to the Bonita Runtime
logging file.

Use Process ID This check box is cleared by default to activate the
process name and the process version fields in order
for you to enter the underlying information of a specific
process you want to instantiate. This information is
used to automatically generate the ID of this process.

Once checked, the Process definition ID field is
activated in which you can enter the required Definition
ID of this process

Scenario: Executing a Bonita process via a Talend Job

Talend Open Studio Components Reference Guide 23

The process definition ID is created when the
process is deployed into the Bonita Runtime
engine.

User name Type in your user name used to instantiate this process.

Password Type in your password used to instantiate this process

Die on error This check box is cleared by default, meaning to skip
the row on error and to complete the process for error-
free rows.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Usually used as a stand-alone component or as an output component.

Connections Outgoing links (from one component to another):

Trigger: Run if; On Component Ok; On Component
Error, On Subjob Ok, On Subjob Error.

Incoming links (from one component to another):

Row: Main (providing the input parameters to this
process)

Trigger: Run if, On Component Ok, On Component
Error, On Subjob Ok, On Subjob Error

For further information regarding connections, see
Connection types in the Talend Open Studio User
Guide.

Global Variables Process Instance UUID: Indicates the identifier
number of the process instance being created. This is
available as a Flow variable.

Returns a string.

For further information about variables, see How to use
a variable in a Job in the Talend Open Studio User
Guide.

Limitation n/a

Scenario: Executing a Bonita process via a Talend Job

This scenario describes a Job that deploys a Bonita process into the Bonita Runtime and executes this process,
in which a personnel request is treated.

Scenario: Executing a Bonita process via a Talend Job

24 Talend Open Studio Components Reference Guide

The Job in this scenario uses three components.

- tBonitaDeploy: this component deploys a Bonita process into the Bonita Runtime.

- tFixedFlowInput: this component generates the schema used as execution parameters of this deployed process.

- tBonitaInstantiateProcess: this component executes this deployed process.

When generating schema using tFixedFlowInput, the column names of the schema must be identical
with those of the Bonita parameters used to execute the same process by this Bonita.

Before beginning to replicate this schema, prepare your Bonita.bar file that is the process exported from the Bonita
system and will be deployed into the Bonita Runtime engine. In this scenario, this file is TEST--4.0.bar. This
process can be checked via the Bonita interface.

Setting up the Job

1. Drop tBonitaDeploy, tFixedFlowInput and tBonitaInstantiateProcess onto the design workspace.

2. Right-click tBonitaDeploy and connect tBonitaDeploy to tFixedFlowInput using a Trigger> On Subjob
Ok connection.

3. Right-click tFixedFlowInput and connect this component to tBonitaInstantiateProcess using a Row >
Main connection.

Scenario: Executing a Bonita process via a Talend Job

Talend Open Studio Components Reference Guide 25

Configuring the Basic settings of tBonitaDeploy

To replicate this scenario, proceed as follows:

1. Double-click tBonitaDeploy to open its Basic settings view.

2. Select Bonita version 5.3.1 from the Bonita version list. The version you select should be in sync with the
version number of the Bonita Runtime engine you are using.

3. In the Bonita Runtime Configuration area, browse to the Bonita Runtime variable files. In the Bonita
Runtime Environment file field, browse to the bonita-environnement.xml file; in the Bonita Runtime Jaas
File field, browse to the jaas-standard.cfg file; in the Bonita Runtime Logging File field, browse to the
logging.properties file.

For users based on Bonita version 5.2.3, only the Bonita Runtime Jaas File field and the Bonita
Runtime Logging File field need to be filled.

For users based on Bonita version 5.6.1, in the Bonita Runtime Home field, browse to the Bonita
Runtime environment directory.

4. In the Business Archive field, browse to the Bonita .bar file that is the process exported from your Bonita
system and will be deployed into the Bonita Runtime engine.

Scenario: Executing a Bonita process via a Talend Job

26 Talend Open Studio Components Reference Guide

5. In the Username and the Password fields, type in your authentication information to connect to your Bonita.

Configuring the Basic settings of tFixedFlowInput

1. Double-click tFixedFlowInput to open its Basic settings view.

2. Click the three-dot button next to Edit schema to open the schema editor.

3. In the schema editor, click the plus button to add one row.

4. In the schema editor, click the new row and type in the new name: Name and click OK.

5. In the Mode area of the Basic settings view, select the Use inline table option and click the plus button to
add one row in the table.

6. In the inline table, click the added row and type in the person's name from your personnel between the
quotation marks: ychen, whose request will be treated by this deployed process.

Scenario: Executing a Bonita process via a Talend Job

Talend Open Studio Components Reference Guide 27

Configuring the Basic settings of tBonitaInstantiateProcess

1. Double-click tBonitaInstantiateProcess to open its Basic settings view.

2. Select Bonita version 5.3.1 from the Bonita version list. The version you select should be in sync with the
version number of the Bonita Runtime engine you are using.

3. In the Bonita Runtime Configuration area, browse to the Bonita Runtime variable files. In the Bonita
Runtime Environment file field, browse to the bonita-environnement.xml file; in the Bonita Runtime Jaas
File field, browse to the jaas-standard.cfg file; in the Bonita Runtime Logging File field, browse to the
logging.properties file.

For users based on Bonita version 5.2.3, only the Bonita Runtime Jaas File field and the Bonita
Runtime Logging File field need to be filled.

For users based on Bonita version 5.6.1, in the Bonita Runtime Home field, browse to the Bonita
Runtime environment directory.

Scenario: Executing a Bonita process via a Talend Job

28 Talend Open Studio Components Reference Guide

4. Select the Use Process ID check box to activate the Process Definition Id field.

5. In the Process Definition Id field, click between the quotation marks and press Ctrl+space to open the auto-
completion drop-down list containing the available global variables for this Job.

6. Double-click the variable you need use to add it between the quotation marks. In this scenario, double-click
tBonitaDeploy_1_ProcessDefinitionUUID, which retrieves the process definition ID of the process being
deployed by tBonitaDeploy.

If the process of interest was deployed and thus tBonitaDeploy is not used, clear the Use Process ID
check box to activate the Process name and the Process version fields and fill in the corresponding
information to the two fields. tBonitaInstantiateProcess concatenates the process name and the
process version you type in to construct the process definition ID.

7. In the Username and Password fields, enter the username and password to connect to your Bonita.

Job Execution

Press F6 to run the Job.

This process is deployed into the Bonita Runtime and an instance is created for the personnel requests.

tCentricCRMInput

Talend Open Studio Components Reference Guide 29

tCentricCRMInput

tCentricCRMInput Properties

Component family Business/CentricCRM

Function Connects to a module of a Centric CRM database via the relevant Web service.

Purpose Allows to extract data from a Centric CRM DB based on a query.

Basic settings CentricCRM URL Type in the Web service URL to connect to the
CentricCRM DB.

Module Select the relevant module in the list

Server Type in the IP address of the DB server.

UserID and Password Type in the Web service user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in or
remote in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes built-in.

In this component the schema is related to the Module
selected.

Query condition Type in the query to select the data to be extracted.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Usually used as a Start component. An output component is required.

Limitation n/a

Related Scenario

No scenario is available for this component yet.

tCentricCRMOutput

30 Talend Open Studio Components Reference Guide

tCentricCRMOutput

tCentricCRMOutput Properties

Component family Business/CentricCRM

Function Writes data in a module of a CentricCRM database via the relevant Web service.

Purpose Allows to write data into a CentricCRM DB.

Basic settings CentricCRM URL Type in the Web service URL to connect to the
CentricCRM DB.

Module Select the relevant module in the list

Server IP address of the DB server

UserID and Password Type in the Web service user authentication data.

Action Insert, Update or Delete the data in the CentricCRM
module.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in or
remote in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Used as an output component. An Input component is required.

Limitation n/a

Related Scenario

No scenario is available for this component yet.

tHL7Input

Talend Open Studio Components Reference Guide 31

tHL7Input

tHL7Input Properties

Component family Business > Healthcare /
Unstructured > HL7

Function tHL7Input reads an HL7 structured file and extracts data row by row.

Purpose Opens an HL7 structured file and reads it row by row to split them up into fields
then sends the fields as defined in the Schema to the next component, via a Row
link.

Basic settings Property type Either Built-in or Repository:

Built-in: No property data stored centrally.

Repository: Select the Repository file where the
properties are stored. The fields that follow are
completed automatically using fetched data.

Click this icon to open a connection wizard and store
the Excel file connection parameters you set in the
component Basic settings view.

For more information about setting up and storing file
connection parameters, see Talend Open Studio User
Guide.

Multi Schemas Editor The [Multi Schema Editor] helps you build and
configure the data flow in a multi-structured delimited
file to associate one schema per output.

Segment Lists Connection: The columns are automatically retrieved
from the input file. The column name is the segment
name.

Column Mapping: The mapping in this array is
retrieved from the mapping you have done in the editor.

Not Validate HL7
Message

Select this check box if you do not want to validate HL7
messages.

Advanced settings Advanced separator
(for numbers)

Select this check box to modify the separators to be
used for the numbers. Either:

Thousands separator

or

Decimal separator

Encoding Select the encoding type from the list or select Custom
and define it manually. This field is compulsory.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Usually used as a Start component. An output component is required.

Scenario: Retrieving information about patients and events from an HL7 file

32 Talend Open Studio Components Reference Guide

Limitation n/a

Scenario: Retrieving information about patients and
events from an HL7 file

This scenario describes a four-component Job which retrieves information about patients and events from an HL7
file.

Configuring the editor of tHL7Input

1. From the Palette, drop an tHL7Input and three tLogRow components onto the design workspace.

2. Double-click tHL7Input in order to open its editor.

Scenario: Retrieving information about patients and events from an HL7 file

Talend Open Studio Components Reference Guide 33

3. In the File path field, click [Browse...] and browse the directory to select your HL7 file.

4. In the File Setting area, type in your segment Start character and your segment End character.

5. Under Segment(As Schema), in the Schema view area,select MSH.

6. Drop the MSH-3(1)[HD] and MSH-7(1)[TS] segments from the Message View onto the Schema View.

7. Under Segment(As Schema), in the Schema view area,select EVN.

8. Drop the EVN-1(1)-1-1[ID] and EVN-2(1)-1-1[ST] segments from the Message View onto the Schema View.

Scenario: Retrieving information about patients and events from an HL7 file

34 Talend Open Studio Components Reference Guide

9. Under Segment(As Schema), in the Schema view area,select PID.

10. Drag and drop the following segments from the Message View onto the Schema
View: PID-1(1)-1-1[SI], PID-5(1)-1-1[ST], PID-5(1)-2-1[ST], PID-5(1)-3-1[ST], PID-5(1)-4-1[ST],
PID-5(1)-5-1[ST], PID-5(1)-7-1[ID] and click Ok to close the editor.

If available, click the Auto map! button, located at the bottom left of the interface, to carry out the
mapping operation automatically.

Job Execution

1. Link tHL7Input to the three tLogRow components, using MSH, EVN and PID links respectively.

2. Save your Job and press F6 to execute it.

The console displays the three tLogRow tables, which return different types of information. The first one give
the message header label and its date. The second table shows the information about the patient. The third one
displays the event ID and its date.

tHL7Output

Talend Open Studio Components Reference Guide 35

tHL7Output

tHL7Output Properties

Component family Business > Healthcare /
Unstructured > HL7

Function Writes an HL7 structured file and inserts the data row by row.

Purpose This component writes an HL7 structured file according to the HL7 standards.

Basic settings Property type Either Built-In or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where the
properties are stored. The fields that follow are
completed automatically using fetched data

Schema(s) Schema: Enter the node on which the data from the
parent row is to be stored. Parent row: The data flow
source.

File Name/Output
Stream

Browse to where you want to store the file generated.

Configure HL7 Tree Opens the interface in which you can set up the HL7
mapping.

HL7 version Select your HL7 version from the list.

Advanced settings Create directory only if
not exists

This check box is selected by default. This creates a
folder for the output file if there isn't one already.

Encoding Select the encoding type from the list or select Custom
and define it manually. This field is compulsory.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Used as an output component. An Input component is required.

Limitation n/a

Related scenario

For a related use case, see the section called “Scenario: Retrieving information about patients and events from
an HL7 file”.

tMarketoInput

36 Talend Open Studio Components Reference Guide

tMarketoInput

tMarketoInput Properties

Component family Business/Cloud

Function The tMarketoInput component retrieves data from a Marketo Web server.

Purpose The tMarketoInput component allows you to retrieve data from a Marketo DB
on a Web server.

Basic settings Endpoint address The URL of the Marketo Web server for the SOAP API
calls to.

Secret key Encrypted authentication code assigned by Marketo.

Contact Marketo Support via
support@marketo.com to get this information.

Client Access ID A user ID for the access to Marketo web service.

Contact Marketo Support via
support@marketo.com to get this information.

Operation Options in this list allow you to retrieve lead data from
Marketo to external systems.

getLead: This operation retrieves basic information of
leads and lead activities in Marketo DB.

getMultipleLeads: This operation retrieves lead records
in batch.

getLeadActivities: This operation retrieves the history of
activity records for a single lead identified by the provided
key.

getLeadChanges: This operation checks the changes on
Lead data in Marketo DB.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes Built-in..

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Built-in: No property data is stored centrally.

Repository: Select the Repository file where Properties
are stored.

support@marketo.com
support@marketo.com

tMarketoInput Properties

Talend Open Studio Components Reference Guide 37

Columns Mapping You can set the mapping conditions by making changes
in Edit Schema. By default, column names in Column
fields are the same as what they are in the schema.

Because some column names in Marketo
database may contain blank space, which is not
allowed in the component schema, you need
to specify the corresponding column fields in
the Columns in Marketo field. If the defined
column names in schema are the same as column
names in Marketo database, it is not necessary to
set the columns mapping.

LeadKey type The data types of LeadKey supported by Marketo DB.

LeadKey value The value of LeadKey.

Set Include Types Select this check box to include the types of LeadActivity
content to be retrieved. Click the plus button under the
Include Types area to select in the list types to add.

This field is displayed only when you select
getLeadActivity or getLeadChanges from the
Operation list.

Set Exclude Types Select this check box to exclude the types of LeadActivity
content to be retrieved. Click the plus button under the
Exclude Types area to select in the list types to add.

This field is displayed only when you select
getLeadActivity or getLeadChanges from the
Operation list.

Last Updated At Type in the time of last update to retrieve only the data
since the last specified time. The time format is YYYY-
MM-DD HH:MM:SS.

This field is displayed only when you select
getMultipleLeads from the Operation list.

Batch Size The maximum batch size in retrieving lead data in batch.

This field is displayed only when you select
getLeadActivity or getLeadChanges from the
Operation list.

Timeout (milliseconds) Type in the query timeout (in milliseconds) on the
Marketo Web service.

The Job will stop when Timeout exception error
occurs.

Die on error This check box is selected by default. Clear the check
box to skip the row on error and complete the process for
error-free rows. If needed, you can retrieve the rows on
error via a Row > Reject connection.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component level.

Related Scenario

38 Talend Open Studio Components Reference Guide

Usage This component is used as an input component, it requires an output component.

Limitation n/a

Related Scenario

For a related use case, see the section called “Scenario: Data transmission between Marketo DB and an external
system”.

tMarketoListOperation

Talend Open Studio Components Reference Guide 39

tMarketoListOperation

tMarketoListOperation Properties

Component family Business/Cloud

Function The tMarketoListOperation component adds/removes one or more leads to/
from a list in the Marketo DB; It also verifies if one or more leads exist in a list
in Marketo DB.

Purpose The tMarketoListOperation component allows you to add/remove one or more
leads to/from a list in the Marketo DB on a Web server. Also, you can verify the
existence of one or more leads in a list in the Marketo DB.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes Built-in..

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Built-in: No property data is stored centrally.

Repository: Select the Repository file where Properties
are stored.

Endpoint address The URL of the Marketo Web server for the SOAP API
calls to.

Secret key Encrypted authentication code assigned by Marketo.

Contact Marketo Support via
support@marketo.com for further
information.

Client Access ID A user ID for the access to Marketo web service.

Contact Marketo Support via
support@marketo.com for further
information.

Operation Options in this list allow you carry out the adding/
deletion one or more leads to/from a list in the Marketo
DB; Also you can verify the existence of single or
multiple leads in a list in the Marketo DB.

addTo: This operation adds one or more leads to a list
in the Marketo DB.

isMemberOf: This operation checks the Marketo DB
to judge whether the specific leads exist in the list.

support@marketo.com
support@marketo.com

Scenario: Adding a lead record to a list in the Marketo DB

40 Talend Open Studio Components Reference Guide

removeFrom: This operation removes one or more
leads from a list in the Marketo DB.

Add or remove multiple
leads

Select this check box to add multiple leads to or remove
multiple leads from a list in the Marketo DB.

This check box appears only when you select
addTo or removeFrom from the Operation
list.

Timeout (milliseconds) Type in the query timeout (in milliseconds) on the
Marketo Web service.

The Job will stop when Timeout exception
error occurs.

Die on error This check box is selected by default. Clear the check
box to skip the row on error and complete the process
for error-free rows. If needed, you can retrieve the rows
on error via a Row > Reject connection.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is used as an intermediate component, it requires an input
component and an output component.

Limitation n/a

Scenario: Adding a lead record to a list in the Marketo
DB

The following scenario describes a three-component Job that adds a lead record into a list in the Marketo database.

Setting up the Job

1. Drop tMarketoListOperation, tFixedFlowInput and tLogRow onto the design workspace.

2. Connect tFixedFlowInput to tMarketoListOperation using a Row > Main connection.

3. Connect tMarketoListOperation to tLogRow using a Row > Main connection.

Configuring the input component

1. Double-click tFixedFlowInput to define the component properties in its Basic settings view.

Scenario: Adding a lead record to a list in the Marketo DB

Talend Open Studio Components Reference Guide 41

2. Click the three-dot button next to Edit schema to set the schema manually.

3. Click the plus button to add four columns: ListKeyType, ListKeyValue, LeadKeyType and LeadKeyValue.
Keep the settings as default. Then click OK to save the settings.

4. In the Mode area, select Use Inline Table.

5. Click the plus button to add a new line and fill the line with respective values. In this example, these values
are: MKTOLISTNAME for ListKeyType, bchenTestList for ListKeyValue, IDNUM for LeadKeyType and
308408 for LeadKeyValue.

Configuring tMarketoListOperation

1. Double-click tMarketoListOperation to define the component properties in its Basic settings view.

Scenario: Adding a lead record to a list in the Marketo DB

42 Talend Open Studio Components Reference Guide

2. Click the Sync columns button to retrieve the schema defined in tFixedFlowInput.

3. Type in 1 in the Number of rows field.

4. Fill the Endpoint address field with the URL of the Marketo Web server. In this example, it is https://na-
c.marketo.com/soap/mktows/1_5.

Note that the URL used in this scenario is for demonstration purpose only.

5. Fill the Secret key field with encrypted authentication code assigned by Marketo. In this example, it is
464407637703554044DD11AA2211998.

6. Fill the Client Access ID field with the user ID. In this example, it is mktodemo41_785133934D1A219.

7. From the Operation list, select addTo.

8. Type in the limit of query timeout in the Timeout field. In this example, use the default number: 60000.

Job Execution

1. Double-click tLogRow to define the component properties in its Basic settings view.

2. Click the Sync columns button to retrieve the schema defined in tMarketoListOperation.

3. In the Mode area, select Table.

4. Save your Job and press F6 to execute it.

Scenario: Adding a lead record to a list in the Marketo DB

Talend Open Studio Components Reference Guide 43

The result of adding a lead record to a list in Marketo DB is displayed on the Run console.

tMarketoOutput

44 Talend Open Studio Components Reference Guide

tMarketoOutput

tMarketoOutput Properties

Component family Business/Cloud

Function The tMarketoOutput component outputs data to a Marketo Web server.

Purpose The tMarketoOutput component allows you to write data into a Marketo DB
on a Web server.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes Built-in..

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Built-in: No property data is stored centrally.

Repository: Select the Repository file where Properties
are stored.

Endpoint address The URL of the Marketo Web server for the SOAP API
calls to.

Secret key Encrypted authentication code assigned by Marketo.

Contact Marketo Support via
support@marketo.com to get this information.

Client Access ID A user ID for the access to Marketo web service.

Contact Marketo Support via
support@marketo.com to get this information.

Operation Options in this list allow you to synchronize lead data
between Marketo and another external system.

syncLead: This operation requests an insert or update
operation for a lead record.

syncMultipleLeads: This operation requests an insert
or update operation for lead records in batch.

Columns Mapping You can set the mapping conditions by making changes
in Edit Schema. By default, column names in Column
fields are the same as what they are in the schema.

Because some column names in Marketo
database may contain blank space, which is not

support@marketo.com
support@marketo.com

Scenario: Data transmission between Marketo DB and an external system

Talend Open Studio Components Reference Guide 45

allowed in the component schema, you need
to specify the corresponding column fields in
the Columns in Marketo field. If the defined
column names in schema are the same as
column names in Marketo database, it is not
necessary to set the columns mapping.

De-duplicate lead
record on email address

Select this check box to de-duplicate and update lead
records using email address.

Deselect this check box to create another lead which
contains the same email address.

This check box will be displayed only
when you select syncMultipleLeads from the
Operation list.

Batch Size The maximum batch size in synchronizing lead data in
batch.

This field will be displayed only when
you select syncMultipleLeads from the
Operation list.

Timeout (milliseconds) Type in the query timeout (in milliseconds) on the
Marketo Web service.

The Job will stop when Timeout exception
error occurs.

Die on error This check box is selected by default. Clear the check
box to skip the row on error and complete the process
for error-free rows. If needed, you can retrieve the rows
on error via a Row > Reject connection.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is used as an output component, it requires an input component.

Limitation n/a

Scenario: Data transmission between Marketo DB and
an external system

The following scenario describes a five-component Job that inserts Lead records into Marketo database and
retrieves these records from Marketo database to a local file. Upon completing the data accessing, the Job displays
the number of relevant API calls on the Run console.

Scenario: Data transmission between Marketo DB and an external system

46 Talend Open Studio Components Reference Guide

Setting up the Job

1. Drop tMarketoOutput, tMarketoInput, tFileInputDelimited, tFileOutputDelimited and tJava from the
Palette onto the design workspace.

2. Connect tFileInputDelimited to tMarketoOutput using a Row > Main connection.

3. Connect tMarketoInput to tFileOutputDelimited using a Row > Main connection.

4. Connect tFileInputDelimited to tMarketoInput using a Trigger > OnSubjectOk connection.

5. Connect tMarketoInput to tJava using a Trigger > OnSubjectOk connection.

Configuring tFileInputDelimited

1. Double-click tFileInputDelimited to define the component properties in its Basic settings view.

Scenario: Data transmission between Marketo DB and an external system

Talend Open Studio Components Reference Guide 47

2. Click the three-dot button next to the File name/Stream field to select the source file for data insertion. In
this example, it is D:/SendData.csv.

3. Click the three-dot button next to Edit schema to set the schema manually.

4. Click the plus button to add four columns: Id, Email, ForeignSysPersonId and ForeignSysType. Set the Type
of Id to Integer and keep the rest as default. Then click OK to save the settings.

5. Type in 1 in the Header field and keep the other settings as default.

Configuring tMarketoOutput

1. Double-click tMarketoOutput to define the component properties in its Basic settings view.

Scenario: Data transmission between Marketo DB and an external system

48 Talend Open Studio Components Reference Guide

2. Click the Sync columns button to retrieve the schema defined in tFileInputDelimited and fill the Endpoint
address field with the URL of the Marketo Web server. In this example, it is https://na-c.marketo.com/soap/
demo/demo1.

Note that the URL used in this scenario is for demonstration purpose only.

3. Fill the Secret key field with encrypted authentication code assigned by Marketo. In this example, it is
1234567894DEMOONLY987654321.

4. Fill the Client Access ID field with the user ID. In this example, it is
mktodemo1_1234567894DEMOONLY987654321.

5. Select syncMultipleLeads from the Operation list and type in the limit of query timeout in the Timeout
field. In this example, use the default number: 600000.

Configuring tMarketoInput

1. Double-click tMarketoInput to define the component properties in its Basic settings view.

2. From the Operation list, select getLead.

3. In Columns Mapping area, type in test@talend.com in Columns in Marketo column to set the Email
column.

Note that all the data used in this scenario is for demonstration purpose only.

4. From the LeadKey type list, select EMAIL and fill the LeadKey value field with test@talend.com.

5. Keep the rest of the settings as the corresponding settings in tMarketoOutput.

Configuring tFileOutputDelimited

1. Double-click tFileOutputDelimited to define the component properties in its Basic settings view.

Scenario: Data transmission between Marketo DB and an external system

Talend Open Studio Components Reference Guide 49

2. Click the three-dot button next to the File name field to synchronize data to a local file. In this example, it
is D:/ReceiveData.csv.

3. Click the Sync columns button and keep the rest of the settings as default.

Using Java scripts to count API calls

1. Double-click tJava to add code in its Basic settings view.

2. In the Code field, type in following code to count the number of API calls throughout the data operations:

System.out.println(("The Number of API calls for inserting
data to Marketo DB is:"));
System.out.println((Integer)globalMap.get("tMarketoOutput_1_NB_CALL"));
System.out.println(("The Number of API calls for data synchronization
from Marketo DB is:"));
System.out.println((Integer)globalMap.get("tMarketoInput_1_NB_CALL"));

Job execution

1. Save your Job.

2. Press F6 to execute it.

Scenario: Data transmission between Marketo DB and an external system

50 Talend Open Studio Components Reference Guide

The inserted lead records in the Marketo DB are synchronized to D:/ReceiveData.csv.

The number of API calls throughout each data operation is displayed on the Run console.

tMicrosoftCrmInput

Talend Open Studio Components Reference Guide 51

tMicrosoftCrmInput

tMicrosoftCrmInput Properties

Component family Business / Microsoft
CRM

Function Connects to an entity of Microsoft CRM database via the relevant webservice.

Purpose Allows to extract data from a Microsoft CRM DB based on conditions set on
specific columns.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties
are stored. The fields that come after are pre-filled in
using the fetched data.

Microsoft Webservice
URL

Type in the webservice URL to connect to the
Microsoft CRM DB.

Organizename Enter the name of the user or organization, set by an
administrator, that needs to access the Microsoft CRM
database.

Username and
Password

Type in the Webservice user authentication data.

Domain Type in the domain name of the server on which
Microsoft CRM is hosted.

Host Type in the IP address of Microsoft CRM database
server.

Port Listening port number of Microsoft CRM database
server.

Time out (seconds) Number of seconds for the port to listen before closing.

Entity Select the relevant entity in the list.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Click Edit Schema to make changes to the schema.

If you make changes, the schema automatically
becomes built-in.

In this component the schema is related to the
selected entity.

Logical operators used
to combine conditions

In the case you want to combine the conditions you set
on columns, select the combine mode you want to use.

Conditions Click the plus button to add as many conditions as
needed.

Scenario: Writing data in a Microsoft CRM database and putting conditions on columns to extract specified
rows

52 Talend Open Studio Components Reference Guide

The conditions are performed one after the other for
each row.

Input column: Click in the cell and select the column
of the input schema the condition is to be set on.

Operator: Click in the cell and select the operator to
bind the input column with the value.

Value: Type in the column value, between quotes if
need be.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Usually used as a Start component. An output component is required.

Limitation n/a

Scenario: Writing data in a Microsoft CRM database
and putting conditions on columns to extract specified
rows

This scenario describes a four-component Job which aims at writing the data included in a delimited input file in
a custom entity in a MicrosoftCRM database. It then extracts specified rows to an output file using the conditions
set on certain input columns.

If you want to write in a CustomEntity in Microsoft CRM database, make sure to name the columns in
accordance with the naming rule set by Microsoft, that is "name_columnname" all in lower case.

Setting up the Job

1. Drop the following components from the Palette to the design workspace: tFileInputdelimited,
tFileOutputDelimited, tMicrosoftCrmInput, and tMicrosoftCrmOutput.

2. Connect tFileInputDelimited to tMicrosoftCrmOutput using a Row Main connection.

Scenario: Writing data in a Microsoft CRM database and putting conditions on columns to extract specified
rows

Talend Open Studio Components Reference Guide 53

3. Connect tMicrosoftCrmIntput to tFileOutputDelimited using a Row Main connection.

4. Connect tFileInputDelimited to tMicrosoftCrmInput using OnSubjobOk connection.

Configuring tFileInputDelimited

1. Double-click tFileInputDelimited to display its Basic settings view and define its properties

2. Set the Property Type to Repository if you have stored the input file properties centrally in the Metadata
node in the Repository tree view. Otherwise, select Built-In and fill the fields that follow manually. In this
example, property is set to Built-In.

3. Click the three-dot button next to the File Name/Input Stream field and browse to the delimited file that
holds the input data. The input file in this example contains the following columns: new_id, new_status,
new_firstname, new_email, new_city, new_initial and new_zipcode.

4. In the Basic settings view, define the Row Separator allowing to identify the end of a row. Then define the
Field Separator used to delimit fields in a row.

5. If needed, define the header, footer and limit number of processed rows in the corresponding fields. In this
example, the header, footer and limits are not set.

6. Click Edit schema to open a dialog box where you can define the input schema you want to write in Microsoft
CRM database.

Scenario: Writing data in a Microsoft CRM database and putting conditions on columns to extract specified
rows

54 Talend Open Studio Components Reference Guide

7. Click OK to close the dialog box.

Configuring tMicrosoftCrmOutput

1. Double-click tMicrosoftCrmOutput to display the component Basic settings view and define its properties.

2. Enter the Microsoft Web Service URL as well as the user name and password in the corresponding fields.

3. In the OrganizeName field, enter the name that is given the right to access the Microsoft CRM database.

4. In the Domain field, enter the domain name of the server on which Microsoft CRM is hosted, and then enter
the host IP address and the listening port number in the corresponding fields.

Scenario: Writing data in a Microsoft CRM database and putting conditions on columns to extract specified
rows

Talend Open Studio Components Reference Guide 55

5. In the Action list, select the operation you want to carry on. In this example, we want to insert data in a
custom entity in Microsoft Crm.

6. In the Time out field, set the amount of time (in seconds) after which the Job will time out.

7. In the Entity list, select one among those offered. In this example, CustomEntity is selected.

If CustomEntity is selected, a Custom Entity Name field displays where you need to enter a name
for the custom entity.

The Schema is then automatically set according to the entity selected. If needed, click Edit schema to display
a dialog box where you can modify this schema and remove the columns that you do not need in the output.

8. Click Sync columns to retrieve the schema from the preceding component.

Configuring tMicrosoftCrmInput

1. Double-click tMicrosoftCrmInput to display the component Basic settings view and define its properties.

Scenario: Writing data in a Microsoft CRM database and putting conditions on columns to extract specified
rows

56 Talend Open Studio Components Reference Guide

2. Set the Property Type to Repository if you have stored the input file properties centrally in the Metadata
node in the Repository tree view. Otherwise, select Built-In and fill the fields that follow manually. In this
example, property is set to Built-In.

3. Enter the Microsoft Web Service URL as well as the user name and password in the corresponding fields and
enter the name that is given the right to access the Microsoft CRM database in the OrganizeName field.

4. In the Domain field, enter the domain name of the server on which Microsoft CRM is hosted, and then enter
the host IP address and the listening port number in the corresponding fields.

5. In the Time out field, set the amount of time (in seconds) after which the Job will time out.

6. In the Entity list, select the one among those offered you want to connect to. In this example, CustomEntity
is selected.

7. The Schema is then automatically set according to the entity selected. But you can modify it according
to your needs. In this example, you should set the schema manually since you want to access a custom
entity. Copy the seven-column schema from tMicrosoftCrmOutput and paste it in the schema dialog box
in tMicrosoftCrmInput.

Scenario: Writing data in a Microsoft CRM database and putting conditions on columns to extract specified
rows

Talend Open Studio Components Reference Guide 57

8. Click OK to close the dialog box. You will be prompted to propagate changes. Click Yes in the popup
message.

9. In the Basic settings view, select And or Or as the logical operator you want to use to combine the conditions
you set on the input columns. In this example, we want to set two conditions on two different input columns
and we use And as the logical operator.

10. In the Condition area, click the plus button to add as many lines as needed and then click in each line in
the Input column list and select the column you want to set condition on. In this example, we want to set
conditions on two columns, new-city and new_id. We want to extract all customer rows whose city is equal
to “New York” and whose id is greater than 2.

11. Click in each line in the Operator list and select the operator to bind the input column with its value, in this
example Equal is selected for new_city and Greater Than for new_id.

12. Click in each line in the Value list and set the column value, New York for new_city and 2 for new_id in
this example. You can use a fixed or a context value in this field.

Configuring tFileOutputDelimited

1. Double-click tFileOutputdelimited to display the component Basic settings view and define its properties.

Scenario: Writing data in a Microsoft CRM database and putting conditions on columns to extract specified
rows

58 Talend Open Studio Components Reference Guide

2. Set Property Type to Built-In and then click the three-dot button next to the File Name field and browse
to the output file.

3. Set row and field separators in the corresponding fields.

4. Select the Append check box if you want to add the new rows at the end of the records.

5. Select the Include Header check box if the output file includes a header.

6. Click Sync columns to retrieve the schema from the preceding component.

Job execution

Save the Job and press F6 to execute it.

Only customers who live in New York city and those whose “id” is greater than 2 are listed in the output file
you stored locally.

tMicrosoftCrmOutput

Talend Open Studio Components Reference Guide 59

tMicrosoftCrmOutput

tMicrosoftCrmOutput Properties

Component family Business / Microsoft
CRM

Function Writes in an entity of a Microsoft CRM database via the relevant webservice.

Purpose Allows to write data into a Microsoft CRM DB.

Basic settings Authentication Type Two types are available, i.e. On_Premise and Online.

Microsoft Webservice
URL

Type in the webservice URL to connect to the
Microsoft CRM DB.

Organizename Enter the name of the organization that needs to access
the Microsoft CRM database

Username and
Password

Type in the Webservice user authentication data.

Domain Type in the domain name of the server that installs
Microsoft CRM server.

Host Type in the IP address of Microsoft CRM database
server.

Port Listening port number of Microsoft CRM database
server.

Action Select in the list the action you want to do on the CRM
data. Available actions are: insert, update, and delete.

Time out (seconds) Number of seconds for the port to listen before closing.

Entity Select the relevant entity in the list.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes Built-in..

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Lookup Type Mapping Add lines as needed to establish mappings between the
source and target tables. Select a lookup object from the
Input column drop down list and enter the keyword of
the source tables in the Type field.

Advanced settings Reuse Http Client Select this check box to retain the current connection or
deselect it to release the connection.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Related Scenario

60 Talend Open Studio Components Reference Guide

Usage Used as an output component. An Input component is required.

Limitation n/a

Related Scenario

For a related use case, see the section called “Scenario: Writing data in a Microsoft CRM database and putting
conditions on columns to extract specified rows”.

tMSAXInput

Talend Open Studio Components Reference Guide 61

tMSAXInput

tMSAXInput properties

Component family Business/ Microsoft AX

Function tMSAXInput connects to a MicrosoftAX server.

Purpose This component allows to extract data from a MicrosoftAX server based on a
query.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties
are stored. The fields that come after are pre-filled in
using the fetched data.

Business Connector
Type

Select the type of the business connector to be used. The
type may be:

• DCOM

• .NET

.Net type only. .NET Business
Connector Assembly
Path

Browse to, or enter the path to the assembly file of
your .NET business connector.

Host Type in the IP address of the MicrosoftAX server.

When you are using the .NET business
connector, the relevant Job must be executed
on the server where your dynamics AX server
is hosted. If your Studio edition allows you to
use a Jobserver to execute this Job, you have
to deploy this Jobserver on the host server of
your dynamics AX server.

.Net type only. Port Enter the number of the Port of the .NET connector to
be used.

.Net type only. AOS Server Instance Enter the name of the computer that runs the instance of
Application Object Server (AOS) you need to connect
to.

Domain Type in the domain name on which the MicrosoftAX
server is hosted.

User and Password Type in user authentication data.

.Net type only. Company Enter the name of the company.

.Net type only. Language Enter the display language you need to use.

.Net type only. Configuration File Specify the location of the file which provides the
configuration settings to be used.

Related scenarios

62 Talend Open Studio Components Reference Guide

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in or
remote in the Repository.

Click Edit Schema to make changes to the schema.

If you make changes, the schema automatically
becomes built-in.

Table Name Name of the table to read.

Query Enter your SQL query paying particular attention to
properly sequence the fields in order to match the
schema definition.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is usually used as a start component. An output component is
required.

Limitation n/a

Related scenarios

No scenario is available for this component yet.

tMSAXOutput

Talend Open Studio Components Reference Guide 63

tMSAXOutput

tMSAXOutput properties

Component family Business/ Microsoft AX

Function tMSAXOutput connects to a MicrosoftAX server.

Purpose This component allows to write data in a MicrosoftAX server.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties
are stored. The fields that come after are pre-filled in
using the fetched data.

Business Connector
Type

Select the type of the business connector to be used. The
type may be:

• DCOM

• .NET

.Net type only. .NET Business
Connector Assembly
Path

Browse to, or enter the path to the assembly file of
your .NET business connector.

Host Type in the IP address of the MicrosoftAX server.

When you are using the .NET business
connector, the relevant Job must be executed
on the server where your dynamics AX server
is hosted. If your Studio edition allows you to
use a Jobserver to execute this Job, you have
to deploy this Jobserver on the host server of
your dynamics AX server.

.Net type only. Port Enter the number of the Port of the .NET connector to
be used.

.Net type only. AOS Server Instance Enter the name of the computer that runs the instance of
Application Object Server (AOS) you need to connect
to.

Domain Type in the domain name on which the MicrosoftAX
server is hosted.

User and Password Type in user authentication data.

.Net type only. Company Enter the name of the company.

.Net type only. Language Enter the display language you need to use.

.Net type only. Configuration File Specify the location of the file which provides the
configuration settings to be used.

Table Name Name of the table you want to connect to and write/
modify data in.

tMSAXOutput properties

64 Talend Open Studio Components Reference Guide

Action on data You can do any of the following operations on the data
in a MicrosoftAX server:

Insert: insert data.

Update: update data.

Insert or update: add data or update existing one.

Update or insert: update existing data or create it if it
does not exist.

Delete: delete data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in or
remote in the Repository.

Click Edit Schema to make changes to the schema.

if you make changes, the schema automatically
becomes built-in.

Die on error This check box is selected by default. Clear the check
box to skip the row on error and complete the process
for error-free rows. If needed, you can retrieve the rows
on error via a Row > Rejects link.

Additional Columns This option allows you to use Local expressions to
perform actions on columns. For example, you can alter
values in columns of the defined table.

When you update or delete data in a column, this
option provides you with other possibilities on WHERE
statements through using different operators from the
Operator column.

Name: name of the schema column to be altered or
inserted as a new column.

Operator: select in the list the operator you want to use
with the WHERE statement.

This column is not available when you use In-
sert as action on data.

Data type: type of data.

Local expression: Type in the Local statement to be
executed in order to alter or insert the relevant column
data, for example row1.[row name]. Or, press Ctrl +
Space and select any of the context variables available
in the list.

Position: select in the list Before, After or Replace
following the action you want to perform on the
reference column.

Reference column: type in a column of reference that
the component can use to place/replace the new/ altered
column.

Scenario 1: Inserting data in a defined table in a MicrosoftAX server

Talend Open Studio Components Reference Guide 65

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is used as an output component. An Input component is required.

Limitation n/a

Scenario 1: Inserting data in a defined table in a
MicrosoftAX server

Before being able to use this component, make sure that you install and launch the MicrosoftAX server
correctly.

This Java scenario describes a two-component Job that uses tMSAXOutput to insert four columns in a defined
table in a MicrosoftAX server after it alters values in one of the inserted columns.

Setting up the Job

1. Drop tFixedFlowInput and tMSAXOutput from the Palette to the design workspace.

2. Connect the two components together using a Row > Main connection.

Configuring tFixedFlowInput

1. Double-click tFixedFlowInput to display its Basic settings view and define the component properties.

Scenario 1: Inserting data in a defined table in a MicrosoftAX server

66 Talend Open Studio Components Reference Guide

2. Set Schema type to Built-in and click the three-dot button next to Edit schema to display a dialog box where
you can define the input schema.

3. Click the plus button and add the input schema columns, three in this example: name, city and street.

4. Click OK to close the dialog box and accept propagating the changes when prompted by the system.

The three schema columns display automatically in the Values list.

5. Click in the Value column and enter a value for each of the input columns.

Configuring tMSAXOutput

1. Double-click tMSAXOutput to open its Basic settings view and define the component properties.

2. Set Property type to Built-in.

3. In the Host field, type in the IP address of the MicrosoftAX server and type in the domain name on which
the MicrosoftAX server is hosted in the Domain field.

4. Enter your username and password for the server in the corresponding fields and enter the name of the table
you want to write data in the Table Name field, ADDRESS in this example.

5. In the Action on data list, select the action you want to carry on, Insert in this example.

6. Click Sync columns to retrieve the schema from the preceding component.

In this example, we want to retrieve the three input columns: name, city and street and write the data included
in the three input columns in the MicrosoftAX server without any changes.

If needed, click the three-dot button next to Edit Schema to verify the retrieved schema.

7. In the Additional columns list, click the plus button to add one line where you can define parameters for the
new column to add to the row you want to write in the ADDRESS table.

8. Set a name, a data type, a position and a reference column in the corresponding columns for the line you added.

Scenario 2: Deleting data from a defined table in a MicrosoftAX server

Talend Open Studio Components Reference Guide 67

In this example, we want to add a new column we call “address” after the street column.

9. Click in the Local expression column and press Ctrl + space on your keyboard to open the context variable
list and select: StringHandling.UPCASE(row2.city)+"-"+row2.street. This expression will
write the city name initially capped followed by the street name to form the address of Bryant park. Thus the
address column in this example will contain the string: New York-Midtown Manhattan.

Job execution

• Save your Job and press F6 to execute it.

tMSAXOutput inserts in the ADDRESS table in the MicrosoftAX server a row that holds the three input
columns, name, city and street in addition to the new address column that combines the city name and the
street name.

Scenario 2: Deleting data from a defined table in a
MicrosoftAX server

Before being able to use this component, make sure that you install and launch the MicrosoftAX server
correctly.

This Java scenario describes a two-component Job that uses tMSAXOutput to delete from a defined table in a
MicrosoftAX server all rows that do not match the data included in a key column.

In this example, the input schema we use is an address column that holds the following data: New York-Midtown
Manhattan. We want to delete from the MicrosoftAX server all addresses that are not identical with this one.

Setting up the Job

1. Drop tFixedFlowInput and tMSAXOutput from the Palette to the design workspace.

2. Connect the two components together using a Row > Main connection.

Configuring tFixedFlowInput

1. Double-click tFixedFlowInput to display its Basic settings view and define the component properties.

Scenario 2: Deleting data from a defined table in a MicrosoftAX server

68 Talend Open Studio Components Reference Guide

2. Set Schema type to Built-in and click the three-dot button next to Edit schema to display a dialog box where
you can define the input schema.

3. Click the plus button and add the input schema columns, address in this example.

4. Click OK to close the dialog box. The schema column displays automatically in the Values list.

5. Click in the Value column and enter a value for the input column.

Setting up the connection to the MicrosoftAX server

1. Double-click tMSAXOutput to open its Basic settings view and define the component properties.

2. Set Property type to Built-in.

3. In the Host field, type in the IP address of the MicrosoftAX server.

4. In the Domain field, type in the domain name on which the MicrosoftAX server is hosted.

5. Enter your username and password for the server in the corresponding fields.

Scenario 2: Deleting data from a defined table in a MicrosoftAX server

Talend Open Studio Components Reference Guide 69

6. In the Table Name field, enter the name of the table you want to delete data from, ADDRESS in this example.

Defining the action on data

1. In the Action on data list, select the action you want to carry on, Delete in this example.

2. Click Sync columns to retrieve the schema from the preceding component. In this example, we want to
retrieve the input column: address.

3. Click the three-dot button next to Edit Schema to open a dialog box where you can verify the retrieved
schema.

4. In the output schema, select the Key check box next to the column name you want to define as a key column,
and then click OK to validate your changes and close the dialog box.

When you select Delete as an action on data, you must always define the Reference column as a
key column in order for tMSAXOutput to delete rows based on this key column.

5. In the Additional columns list, click the plus button to add one line and define the parameters the component
will use as basis for the delete operation.

6. Set a name, an operator, a data type, a local expression, a position and a reference column in the corresponding
columns for the line you added.

In this example, we want to delete from the ADDRESS table in the MicrosoftAX server all rows in which
the address column is not equal to the address in the key address column and that reads as the following:
New York-Midtown Manhattan.

When you select Delete as an action on data, you must always set Position to Replace. Otherwise,
all settings in the Additional columns will not be taken into account when executing your Job.

Job execution

• Save your Job and press F6 to execute it.

tMSAXOutput deletes from the ADDRESS table in the MicrosoftAX server all rows where the address string
is not equal to the address in the key column.

tOpenbravoERPInput

70 Talend Open Studio Components Reference Guide

tOpenbravoERPInput

tOpenbravoERPInput properties

Component Family Business

Function tOpenbravoERPInput connects to an OpenbravoERP database entity via the
appropriate Web service.

Purpose This component allows you to extract data from OpenBravoERP database
according to the conditions defined in specific columns.

Basic settings Openbravo REST
WebService URL

Enter the URL of the Web service that allows you to
connect to the OpenbravoERP database.

Username et Password User authentication information.

Entity Select the appropriate entity from the drop-down list.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Click Edit Schema to make changes to the schema.

If you make any changes, the schema will
automatically become built-in.

For this component, the schema corresponds to
a selected entity.

WHERE Clause Enter your WHERE clause.

Order by Select this check bow to define how to order the results
(the elements in the drop-down list depend on the entity
selected)

Sort: Choose whether to organise the results in either
Ascending or Descending order.

First result Enter the row number you want to retrieve first.

Max result Enter the maximum number of results you want to
retrieve.

Advanced settings Advanced separator
(for numbers)

Select this check box to modify the separators to be
used for the numbers. Either:

Thousands separator

or

Decimal separator

tStatCatcher Statistics Select this check box to collect the log data at a
component level.

Utilisation This component is generally used as an input component. An output component
is required.

Related Scenario

Talend Open Studio Components Reference Guide 71

Limitation n/a

Related Scenario

For a scenario in which tOpenbravoERPInput might be used, see the section called “Scenario: Writing data in
a Microsoft CRM database and putting conditions on columns to extract specified rows”

tOpenbravoERPOutput

72 Talend Open Studio Components Reference Guide

tOpenbravoERPOutput

tOpenbravoERPOutput properties

Component Family Business

Function tOpenbravoERPOutput writes an object in an OpenbravoERP database via the
appropriate Web service.

Purpose This component writes data in an OpenbravoERP database.

Basic settings Openbravo REST
Webservice URL

Enter the URL of the Web service that allows you to
connect to the OpenbravoERP database.

Username et Password User authentication information.

Action on data From the list, select the one of the following actions:

Update/Create

or

Remove

Use existing data file Select this check box if desired and then select the file
by browsing your directory.

Entity Select the appropriate entity from the drop-down list.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Click Edit Schema to make changes to the schema.

Note that if you modify the schema, it automatically
built-in.

Click on Sync columns to retrieve the schema from the
previous component.

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at a
component level.

Usage This component is used as an output component. It requires an input component.

Limitation n/a

Related scenario

For a scenario in which tOpenbravoERPOutput may be used, see the section called “Scenario: Writing data in
a Microsoft CRM database and putting conditions on columns to extract specified rows”.

tSageX3Input

Talend Open Studio Components Reference Guide 73

tSageX3Input

tSageX3Input Properties

Component family Business/Sage X3

Function This component leverages the Web service provided by a given Sage X3 Web
server to extract data from the Sage X3 system (the X3 server).

Purpose This component extracts data from a given Sage X3 system.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where properties
are stored. The fields that come after are pre-filled in
using the fetched data.

Edit Schema A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Click Edit Schema to make changes to the schema.

If you make any changes, the schema will
automatically become built-in.

Endpoint address Type in the address of the Web service provided by the
given Sage X3 Web server.

Username and
Password

Type in the Web service user authentication data that
you have defined for configuring the Sage X3 Web
server.

Language Type in the name of the X3 language code used to start
a connection group.

Pool alias Type in the name of the connection pool that distributes
the received requests to available connections. This
name was given from the Sage X3 configuration
console.

Request config Type in the configuration string if you want to retrieve
the debug or trace information. For example, the string
could be:

RequestConfigDebug=“adxwss
.trace.on=on”; If you need use several strings,
separate them with a &, for example,

RequestConfigDebug=“adxwss.trace
.on=on&adxwss.trace.size=16384”;

A third party tool is needed to retrieve this kind
of information.

Scenario: Using query key to extract data from a given Sage X3 system

74 Talend Open Studio Components Reference Guide

Publication name Type in the publication name of the published object,
list or sub-program you want your Studio to access.

Mapping Complete this table to map the variable elements of the
object, the sub-program or the list set in the given Sage
X3 Web server. The columns to be completed include:

Column: the columns defined in the schema editor
for this component.Group ID: the identifier of each
variable element group. For example, a variable
element group could represent one of attributes of an
object.Field name: the field name of each variable
element.

Query condition Select this check box to set up the query condition(s).
The columns to be completed include:

Key: the names of the variable elements used as the key
for data extraction.

Value: the value of the given key field used to extract
the corresponding data.

Limit Type in a number to indicate the maximum row count
of the data to be extracted.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Usually used as a Start component. An output component is required.

Limitation n/a

Scenario: Using query key to extract data from a given
Sage X3 system

This scenario describes a two-component Job used to extract one row of data from a given Sage X3 system. The
object method is to be called, that means the variable elements of this object thus are attributes. The data used in
this scenario can be found in the example provided by Sage X3.

Setting up the Job

1. Drop the tSageX3Input component and the tLogRow components onto the workspace from Palette.

2. Connect the tSageX3Input component to the tLogRow component using a Row > Main link.

Scenario: Using query key to extract data from a given Sage X3 system

Talend Open Studio Components Reference Guide 75

Configuring the schema of tSageX3Input

1. Double-click tSageX3Input to set its properties in the Basic Settings view.

2. In the Schema field, select Built-In and click the three-dot button next to Edit schema to open the schema
editor.

Scenario: Using query key to extract data from a given Sage X3 system

76 Talend Open Studio Components Reference Guide

3. In this editor, click the plus button 12 times beneath the schema table to add 12 rows into this table.

4. Type in the names you want to use for each row. In this example, these rows are named after the publication
names of the object attributes set in the Sage X3 Web server. These columns are used to map the corresponding
attribute fields in the Sage X3 system.

5. In the Type column, click the IMG row to display its drop-down list.

6. From the drop-down list, select List as this attribute appears twice or even more and do the same to switch
the types of the TIT2NBLIG row, the ITMLNK row and the ZITMLNK row to List as well for the same reason.

7. Click OK to validate this change and accept the propagation prompted by a pop-up dialog box.

Configuring the connection to the Sage X3 Web server

1. In the Endpoint address field, type in the URL address of the Web service provided by the Sage X3 Web
server. In this example, it is http://10.42.20.168:28880/adxwsvc/services/CAdxWebServiceXmlCC

2. In the User field, type in the user name of the given Sage X3. In this example, it is ERP.

3. In the Language field, type in the name of the X3 language code used to start a connection group. In this
example, it is FRA.

4. In the Pool alias field, type in the name of connection pool to be used. In this example, this connection pool
is called TALEND.

5. In the Publication name field, type in the publication name of the object to be called. In this scenario, the
publication name is ITMDET.

Setting up the mapping and configuring the query condition

1. In the Group ID column and the Field name column of the Mapping table, type in values corresponding
to the attribute group IDs and the attribute publication names defined in the Sage X3 Web server. In this
example, the values are presented in the figure below.

Scenario: Using query key to extract data from a given Sage X3 system

Talend Open Studio Components Reference Guide 77

In the Mapping table, the Column column has been filled automatically with the columns you
created in the schema editor.

2. Select the Query condition check box to activate the Conditions table.

3. Under the Conditions table, click the plus button to add one row into the table.

4. In the Key column, type in the publication name associated with the object attribute you need to extract data
from.

5. In the Value column, type in the value of the attribute you have selected as the key of the data extraction. In
this scenario, it is CONTS00059, one of the product references.

Job execution

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

The results are displayed on the Run console:

tSageX3Output

78 Talend Open Studio Components Reference Guide

tSageX3Output

tSageX3Output Properties

Component family Business/Sage X3

Function This component connects to the Web service provided by a given Sage X3 Web
server and therefrom insert, update or delete data in the Sage X3 system (the X3
server).

Purpose This component writes data into a given Sage X3 system.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where properties
are stored. The fields that come after are pre-filled in
using the fetched data.

Edit Schema A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the schema.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

If you make any changes, the schema will
automatically become built-in.

Endpoint address Type in the address of the Web service provided by the
given Sage X3 Web server.

Username and
Password

Type in the Web service user authentication data that you
have defined for configuring the Sage X3 Web server.

Language Type in the name of the X3 language code used to start
a connection group.

Pool alias Type in the name of the connection pool that distributes
the received requests to available connections. This name
was given from the Sage X3 configuration console.

Request config Type in the configuration string if you want to retrieve
the debug or trace information.

For example, the string could be:
"RequestConfigDebug=“adxwss.trace.on=on";

If you need use several strings, separate them with a &,
for example,

RequestConfigDebug="adxwss.trace.on

=on&adxwss.trace.size=16384";

Scenario: Using a Sage X3 Web service to insert data into a given Sage X3 system

Talend Open Studio Components Reference Guide 79

A third party tool is needed to retrieve this kind
of information.

Publication name Type in the publication name of the published object, list
or sub-program you want your Studio to access.

Action You can do any of the following operations on the data
in a Sage X3 system:

Insert: insert data

Update: update data

Delete: delete data

Mapping Complete this table to map the variable elements of the
object, the list or the sub-program your Studio access.
Only the elements you need to conduct the data action of
your interest on are selected and typed in for the purpose
of mapping. The columns to be completed include:

Column: the columns defined in the schema editor for
this component.

Key: the variable element used as key for data insertion,
update or deletion. Select the corresponding check box if
a variable element is the key. Group ID: the identifier
of each variable element group. For example, a variable
element group could represent one of attributes of an
object.Field name: the field name of each selected
variable element.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component level.

Usage Usually used as an output component. An input component is required.

Limitation n/a

Scenario: Using a Sage X3 Web service to insert data
into a given Sage X3 system

This scenario describes a two-component Job used to generate one row of data and insert the data into a given
Sage X3 system. You can find the data used in this scenario in the example provided by Sage X3. The Sage X3
Web service is used to access an object.

Setting up the Job

1. Drop the tFixedFlowInput and the tSageX3Output components onto the workspace from Palette.

Scenario: Using a Sage X3 Web service to insert data into a given Sage X3 system

80 Talend Open Studio Components Reference Guide

2. Connect the tFixedFlowInput component to the tSageX3Output component using a Row > Main
connection.

Configuring the schema for the input data

1. Double-click the tFixedFlowInput component to set its Basic Settings in the Component view

2. Click the three-dot button next to Edit schema to open the schema editor.

3. In the schema editor and then under the schema table, click the plus button four times to add four rows.

4. Click OK to validate this changes and then accept the propagation prompted by the pop-up dialog box. The
four rows appear automatically in the Values table of the Component view.

5. In the Values table within the Mode area, type in the values for each of the four rows in the Value column.
In this scenario, the values downward are:

CONTS00059, Screen 24\" standard 16/10, Screen 24\" standard 28/10, 2

Scenario: Using a Sage X3 Web service to insert data into a given Sage X3 system

Talend Open Studio Components Reference Guide 81

.

These values in the Value column must be put between quotation marks.

Setting up the connection to the Sage X3 Web server

1. Double-click tSageX3Output to set its properties from the Basic Settings view.

2. In the Endpoint address field, type in the URL address of the Web service provided by the Sage X3 Web
server. In this example, it is http://10.42.20.168:28880/adxwsvc/services/CAdxWebServiceXmlCC

3. In the User field, type in the user name of the given Sage X3. In this example, it is ERP.

4. In the Language field, type in the name of the X3 language code used to start a connection group. In this
example, it is FRA.

5. In the Pool alias field, type in the name of connection pool to be used. In this example, this connection pool
is called TALEND.

6. In the Publication name field, type in the publication name of the object to be called. In this scenario, the
publication name is ITMDET.

7. In the Action field, select insert from the drop-down list.

Setting up the mapping

1. In the Field name column of the Mapping table, type in the field names of the attributes the selected data
action is exercised on.

Scenario: Using a Sage X3 Web service to insert data into a given Sage X3 system

82 Talend Open Studio Components Reference Guide

2. In the Group ID column of the Mapping table, type in values corresponding to group IDs of the selected
attributes. These IDs are defined in the Sage X3 Web server

In the Mapping table, the Column column has been filled automatically with the columns retrieved
from the schema of the preceding component.

Job execution

Press CTRL+S to save your Job and press F6 to execute it.

To verify the data that you inserted in this scenario, you can use the tSageX3Input component to read the
concerned data from the Sage X3 server.

For further information about how to use the tSageX3Input component to read data, see the section called
“Scenario: Using query key to extract data from a given Sage X3 system”.

tSalesforceBulkExec

Talend Open Studio Components Reference Guide 83

tSalesforceBulkExec

tSalesforceBulkExec Properties

tSalesforceOutputBulk and tSalesforceBulkExec components are used together to output the needed file
and then execute intended actions on the file for your Salesforce.com. These two steps compose the
tSalesforceOutputBulkExec component, detailed in a separate section. The interest in having two separate
elements lies in the fact that it allows transformations to be carried out before the data loading.

Component family Business/Cloud

Function tSalesforceBulkExec executes the intended actions on the prepared bulk data.

Purpose As a dedicated component, tSalesforceBulkExec gains performance while
carrying out the intended data operations into your Salesforce.com.

Basic settings Use an existing
connection

Select this check box to use an established connection
from tSalesforceConnection. Once you select it, the
Component list field appears allowing you to choose
the tSalesforceConnection component to be used.

For more information on tSalesforceConnection, see
the section called “tSalesforceConnection”.

When a Job contains the parent Job and the
child Job, Component list presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, you can use Dynamic
settings to share the intended connection. In
this case, make sure that the connection name
is unique and distinctive. For more information
about Dynamic settings, see your studio user
guide.

Salesforce Webservice
URL

Type in the webservice URL to connect to the
Salesforce DB.

Username and
Password

Type in the Webservice user authentication data.

Salesforce Version Type in the version of the Salesforce you are using.

Bulk file path Directory where are stored the bulk data you need to
process.

Action You can do any of the following operations on the data
of the Salesforce object:

Insert: insert data.

Update: update data.

Upsert: update and insert data.

Module Select the relevant module in the list.

Related Scenario:

84 Talend Open Studio Components Reference Guide

if you select the Use Custom module option,
you display the Custom Module Name field
where you can enter the name of the module
you want to connect to.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes Built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Advanced settings Rows to commit Specify the number of lines per data batch to be
processed.

Bytes to commit Specify the number of bytes per data batch to be
processed.

Use Socks Proxy Select this check box if you want to use a proxy
server. Once selected, you need provide the connection
parameters that are host, port, username and password.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Used as an output component. An Input component is required.

Limitation The bulk data to be processed should be .csv format.

Related Scenario:

For a related scenario, see the section called “Scenario: Inserting transformed bulk data into your Salesforce.com”.

tSalesforceConnection

Talend Open Studio Components Reference Guide 85

tSalesforceConnection

tSalesforceConnection properties

Component family Business/Cloud

Function tSalesforceConnection opens a connection to a Salesforce system in order to
carry out a transaction.

Putpose The component enables connection to a Salesforce.

Basic settings Salesforce Webservice
URL

Enter the Webservice URL required to connect to the
Salesforce database.

Username et Password Enter your Web service authentication details.

Timeout (milliseconds) Type in the intended number of query timeout in
Salesforce.com.

For salesforce bulk
component

Select this check box if you use bulk data processing
components from the salesforce family. Once selected;
the Salesforce Version field appears and therein you
need to enter the Salesforce version you are using.

For more information on these bulk data
processing components, see the section called
“tSalesforceOutputBulk”, the section called
“tSalesforceBulkExec” and the section called
“tSalesforceOutputBulkExec”.

Use Soap Compression Select this check box if you want to activate SOAP
compression.

The compression of SOAP messages results in
increased performance levels.

Use Socks Proxy Select this check box if you want to use a proxy. Once
selected, you need type in the connection parameters in
the fields which appear. These parameters are the host,
the port, the username and the password of the Proxy
you need to use.

Advanced settings Client ID Set the ID of the real user to differentiate between those
who use the same account and password to access the
salesforce website.

tStatCatcher Statistics Select this check box to collect the log data at a
component level.

Usage This component is normally used with Salesforce components..

Limitation n/a

Related scenario

For further information regarding the usage of tSalesforceConnection, see the section called “tMysqlConnection”.

tSalesforceGetDeleted

86 Talend Open Studio Components Reference Guide

tSalesforceGetDeleted

tSalesforceGetDeleted properties

Component family Business/Cloud

Function tSalesforceGetDeleted recovers deleted data from a Salesforce object over a
given period of time.

Purpose This component can collect the deleted data from a Salesforce object during a
specific period of time.

Basic settings Use an existing
connection

Select this check box to use an established connection
from tSalesforceConnection. Once you select it, the
Component list field appear allowing you to choose
the tSalesforceConnection component to be used.

For more information on tSalesforceConnection, see
the section called “tSalesforceConnection”.

When a Job contains the parent Job and the
child Job, Component list presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, you can use Dynamic
settings to share the intended connection. In
this case, make sure that the connection name
is unique and distinctive. For more information
about Dynamic settings, see your studio user
guide.

Salesforce Webservice
URL

Type in the webservice URL to connect to the
Salesforce DB.

Username and
Password

Type in the Webservice user authentication data.

Timeout (milliseconds) Type in the intended number of query timeout in
Salesforce.com.

Module Select the relevant module in the list.

If you select the Custom module option,
you display the Custom Module Name field
where you can enter the name of the module
you want to connect to.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes Built-in.

Scenario: Recovering deleted data from the Salesforce server

Talend Open Studio Components Reference Guide 87

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Start Date Type in between double quotes the date at which you
want to start the search. Use the following date format:
“yyy-MM-dd HH:mm:ss”.

You can do the search only on the past 30 days.

End Date Type in between double quotes the date at which
you want to end the search. Use the following date
format:“yyy-MM-dd HH:mm:ss”.

Advanced settings Use Soap Compression Select this check box to activate the SOAP
compression.

The compression of SOAP messages
optimizes system performance.

Client ID Set the ID of the real user to differentiate between those
who use the same account and password to access the
Salesforce website.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage You can use this component as an output component. tSalesforceGetDeleted
requires an input component.

Limitation n/a

Scenario: Recovering deleted data from the Salesforce
server

This scenario describes a two-component Job that collects the deleted data over the past 5 days from the Salesforce
server.

Setting up the Job

1. Drop tSalesforceGetDeleted and tLogRow from the Palette onto the design workspace.

2. Connect the two components together using a Row > Main connection.

Setting up the connection to the Salesforce server

1. Double-click tSalesforceGetDeleted to display its Basic settings view and define the component properties.

Scenario: Recovering deleted data from the Salesforce server

88 Talend Open Studio Components Reference Guide

2. In the Salesforce WebService URL filed, use the by-default URL of the Salesforce Web service or enter
the URL you want to access.

3. In the Username and Password fields, enter your login and password for the Web service.

4. From the Module list, select the object you want to access, Account in this example.

Setting the search condition

1. From the Schema list, select Repository and then click the three-dot button to open a dialog box where you
can select the repository schema you want to use for this component. If you have not defined your schema
locally in the metadata, select Built-in from the Schema list and then click the three-dot button next to the
Edit schema field to open the dialog box where you can set the schema manually.

2. In the Start Date and End Date fields, enter respectively the start and end dates for collecting the deleted
data using the following date format: “yyyy-MM-dd HH:mm:ss”. You can collect deleted data over the past
30 days. In this example, we want to recover deleted data over the past 5 days.

Job execution

1. Double-click tLogRow to display its Basic settings view and define the component properties.

2. Click Sync columns to retrieve the schema from the preceding component.

3. In the Mode area, select Vertical to display the results in a tabular form on the console.

4. Press Ctrl+S to save your Job and press F6 to execute it.

Scenario: Recovering deleted data from the Salesforce server

Talend Open Studio Components Reference Guide 89

Deleted data collected by the tSalesforceGetDeleted component is displayed in a tabular form on the console.

tSalesforceGetServerTimestamp

90 Talend Open Studio Components Reference Guide

tSalesforceGetServerTimestamp

tSalesforceGetServerTimestamp properties

Component family Business/Cloud

Function tSalesforceGetServerTimestamp retrieves the current date of the Salesforce
server.

Purpose This component retrieves the current date of the Salesforce server presented in
a timestamp format.

Basic settings Use an existing
connection

Select this check box to use an established connection
from tSalesforceConnection. Once you select it, the
Component list field appear allowing you to choose
the tSalesforceConnection component to be used.

For more information on tSalesforceConnection, see
the section called “tSalesforceConnection”.

When a Job contains the parent Job and the
child Job, Component list presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, you can use Dynamic
settings to share the intended connection. In
this case, make sure that the connection name
is unique and distinctive. For more information
about Dynamic settings, see your studio user
guide.

Salesforce Webservice
URL

Type in the webservice URL to connect to the
Salesforce DB.

Username and
Password

Type in the Webservice user authentication data.

Timeout (milliseconds) Type in the intended number of query timeout in
Salesforce.com.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes Built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Advanced settings Use Socks Proxy Select this check box if you want to use a proxy
server Once selected, you need enter the connection
parameters that are the host, the port, the username and
the passerword of the Proxy you need to use.

Related scenarios

Talend Open Studio Components Reference Guide 91

Use Soap Compression Select this check box to activate the SOAP
compression.

The compression of the SOAP messages
optimizes system performance.

Client ID Set the ID of the real user to differentiate between those
who use the same account and password to access the
salesforce website.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage You can use this component as an output component.
tSalesforceGetServerTimestamp requires an input component.

Limitation n/a

Related scenarios

No scenario is available for this component yet.

tSalesforceGetUpdated

92 Talend Open Studio Components Reference Guide

tSalesforceGetUpdated

tSalesforceGetUpdated properties

Component family Business/Cloud

Function tSalesforceGetUpdated recovers updated data from a Salesforce object over a
given period of time.

Purpose This component can collect all updated data from a given Salesforce object
during a specific period of time.

Basic settings Use an existing
connection

Select this check box to use an established connection
from tSalesforceConnection. Once you select it, the
Component list field appear allowing you to choose
the tSalesforceConnection component to be used.

For more information on tSalesforceConnection, see
the section called “tSalesforceConnection”.

When a Job contains the parent Job and the
child Job, Component list presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, you can use Dynamic
settings to share the intended connection. In
this case, make sure that the connection name
is unique and distinctive. For more information
about Dynamic settings, see your studio user
guide.

Salesforce Webservice
URL

Type in the Web service URL to connect to the
Salesforce DB.

Username and
Password

Type in the Web service user authentication data.

Timeout (milliseconds) Type in the intended number of query timeout in
Salesforce.com.

Module Select the relevant module in the list.

if you select the Custom module option,
you display the Custom Module Name field
where you can enter the name of the module
you want to connect to.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes Built-in.

Related scenarios

Talend Open Studio Components Reference Guide 93

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Start Date Type in between double quotes the date at which you
want to start the search. Use the following date format:
“yyy-MM-dd HH:mm:ss”.

You can do the search only on the past 30 days.

End Date Type in between double quotes the date at which
you want to end the search. Use the following date
format:“yyy-MM-dd HH:mm:ss”.

Advanced settings Use Soap Compression Select this check box to activate the SOAP
compression.

The compression of SOAP messages
optimizes system performance.

Client ID Set the ID of the real user to differentiate between those
who use the same account and password to access the
Salesforce website.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage You can use this component as an output component. tSalesforceGetUpdate
requires an input component.

Limitation n/a

Related scenarios

No scenario is available for this component yet.

tSalesforceInput

94 Talend Open Studio Components Reference Guide

tSalesforceInput

tSalesforceInput Properties

Component family Business/Cloud

Function tSalesforceInput connects to an object of a Salesforce database via the relevant
Web service.

Purpose Allows to extract data from a Salesforce DB based on a query.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where properties
are stored. The fields that come after are pre-filled in
using the fetched data.

Click this icon to open a connection wizard and store
the Excel file connection parameters you set in the
component Basic settings view.

For more information about setting up and storing file
connection parameters, see Talend Open Studio User
Guide.

Use an existing
connection

Select this check box to use an established connection
from tSalesforceConnection. Once you select it, the
Component list field appear allowing you to choose
the tSalesforceConnection component to be used.

For more information on tSalesforceConnection, see
the section called “tSalesforceConnection”.

When a Job contains the parent Job and the
child Job, Component list presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, you can use Dynamic
settings to share the intended connection. In
this case, make sure that the connection name
is unique and distinctive. For more information
about Dynamic settings, see your studio user
guide.

Salesforce Webservice
URL

Type in the Web service URL to connect to the
Salesforce DB.

Username and
Password

Type in the Web service user authentication data.

Timeout (milliseconds) Type in the intended number of query timeout in
Salesforce.com.

Module Select the relevant module in the list.

tSalesforceInput Properties

Talend Open Studio Components Reference Guide 95

If you select the Custom Module option,
you display the Custom Module Name field
where you can enter the name of the module
you want to connect to.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes Built-in.

In this component the schema is related to the Module
selected.

To retrieve a column from a linked module
it is necessary to define the column in
a particular manner in the Edit schema
view, otherwise the relationship query
will not work. The correct syntax is:
NameofCurrentModule_Nameof-

LinkedModule_NameofColumnof-

Interest

Query condition Type in the query to select the data to be extracted.
Example: account_name= ‘Talend’

Maunal input of SOQL
query

Select this check box to display the Query field where
you can manually enter the desired query.

Query all records
(include deleted
records)

Select this check box to query all the records, including
the deletions.

Advanced settings Batch Size Number of registrations in each processed batch.

Use Socks Proxy Select this check box if you want to use a proxy
server. Once selected, you need enter the connection
parameters that are the host, the port, the username and
the password of the Proxy you need to use.

Normalize delimited
(for child relationship)

Characters, strings or regular expressions used to
normalize the data that is collected by queries set on
different hierarchical Salesforce objects.

Column name delimiter
(for child relationship)

Characters, strings or regular expressions used to
separate the name of the parent object from the name
of the child object when you use a query on the
hierarchical relations among the different Salesforce
objects.

Use Soap Compression Select this check box to activate the SOAP
compression.

The compression of SOAP messages
optimizes system performance, in particular
for the batch operations.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Scenario: Using queries to extract data from a Salesforce database

96 Talend Open Studio Components Reference Guide

Client ID Set the ID of the real user to differentiate between those
who use the same account and password to access the
Salesforce website.

Usage Usually used as a Start component. An output component is required.

Limitation n/a

Scenario: Using queries to extract data from a
Salesforce database

This scenario describes a four-component Job used to extract specific sets of data from parent and child objects
in a Salesforce database.

Setting up the Job

1. Drop two tSalesforceInput components and two tLogRow components onto the workspace.

2. Connect each tSalesforceInput component to a tLogRow component using a Row > Main connection for
each pair.

3. Connect tSalesforceInput_1 to tSalesforceInput_2 using an OnSubjobOk connection.

Setting up the connection to the Salesforce server for the parent
object

1. Double-click tSalesforceInput_1 to set its Basic Settings in the Component tab.

Scenario: Using queries to extract data from a Salesforce database

Talend Open Studio Components Reference Guide 97

2. Enter the Salesforce WebService URL of the database you want to connect to in the corresponding field.

3. Enter your authentication information in the corresponding Username and Password fields.

4. Enter the desired query Timeout (milliseconds) limit.

Setting the query and the schema for the parent object

1. Select the Module (salesforce object) you want to query.

2. Select the Manual input of SOQL Query check box and enter your query scripts in the enabled Query field.

The query scripts you enter should follow the SOQL syntax.

3. Select Built-In as the Schema and click [...] next to Edit schema to open the schema editor.

In this example, the IsWon and FiscalYear columns in the query are located in the Opportunity module
specified. The Name column is in a linked module called Account. To return a column from a linked module
the correct syntax is to enter the name of the linked module, followed by the period character, then the name
of the column of interest. Hence, the query required in this example is:

“SELECT IsWon, FiscalYear, Account.Name FROM Opportunity”.

Scenario: Using queries to extract data from a Salesforce database

98 Talend Open Studio Components Reference Guide

4. Click the plus button to add a new column for the fields taken from the Name column in the Account module.

5. Name this column Opportunity_Account_Name and click OK to save the changes.

To retrieve a column from a linked module, it is necessary to define the
column in a particular manner in the Edit schema view. The correct syntax
is: NameofCurrentModule_NameofLinkedModule_NameofColumnofInterest.
Hence, in this example, the column must be named: Opportunity_Account_Name. If this syntax is
not respected then the data from the linked table will not be returned.

Setting up the connection to the Salesforce server for the child
object

1. Double-click tSalesforceInput_2 to set its Basic settings in the Component tab.

2. Enter the Salesforce WebService URL of the database you want to connect to in the corresponding field.

The query scripts you enter must follow the SOQL syntax.

3. Enter your authentication information in the corresponding Username and Password fields.

4. Enter the desired query Timeout (milliseconds) limit.

Setting the query and the schema for the child object

1. Select the Module (salesforce object) you want to query.

2. Select the Manual input of SOQL Query check box and enter your query scripts in the enabled Query field.

In this example we want to extract the Id and CaseNumber fields from the Case module as well as the Name
fields from the Account module. The query is therefore: .

“SELECT Id, CaseNumber, Account.Name FROM Case”

3. Select Built-In as the Schema and click [...] next to Edit schema to open the schema editor.

Scenario: Using queries to extract data from a Salesforce database

Talend Open Studio Components Reference Guide 99

4. Click the plus button to add a new column for the fields taken from the Name column in the Account module.

5. Name this column Case_Account_Name and click OK to save the changes.

Job execution

1. Click each tLogRow component and set their component properties in the Basic settings view as desired.

In this example, there is no need to modify the tLogRow settings.

2. Press Ctrl+S to save your Job and press F6 to execute it.

The results are displayed in the Run tab:

tSalesforceOutput

100 Talend Open Studio Components Reference Guide

tSalesforceOutput

tSalesforceOutput Properties

Component family Business/Cloud

Function tSalesforceoutput writes in an object of a Salesforce database via the relevant
Web service.

Purpose Allows to write data into a Salesforce DB.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data is stored centrally.

Repository: Select the Repository file where Properties
are stored. The fields that follow are pre-filled in using
fetched data.

Use an existing
connection

Select this check box to use an established connection
from tSalesforceConnection. Once you select it, the
Component list field appear allowing you to choose
the tSalesforceConnection component to be used.

For more information on tSalesforceConnection, see
the section called “tSalesforceConnection”.

When a Job contains the parent Job and the
child Job, Component list presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, you can use Dynamic
settings to share the intended connection. In
this case, make sure that the connection name
is unique and distinctive. For more information
about Dynamic settings, see your studio user
guide.

Salesforce Webservice
URL

Type in the Web service URL to connect to the
Salesforce DB.

Username and
Password

Type in the Web service user authentication data.

Timeout (milliseconds) Type in the intended number of query timeout in
Salesforce.com.

Action You can do any of the following operations on the data
of the Salesforce object:

Insert: insert data.

Update: update data.

Delete: delete data.

Upsert: update and insert data.

tSalesforceOutput Properties

Talend Open Studio Components Reference Guide 101

Module Select the relevant module in the list.

if you select the Use Custom module option,
you display the Custom Module Name field
where you can enter the name of the module
you want to connect to.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes Built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Advanced settings Extended Output This check box is selected by default. It allows to
transfer output data in batches. You can specify the
number of lines per batch in the Rows to commit field.

Die on error This check box is selected by default. Clear the check
box to skip the row on error and complete the process
for error-free rows. If needed, you can retrieve the rows
on error via a Row > Reject link.

The Reject link is available only when you
have deselected the Extended Output and Die
on error check boxes.

Error logging file If you want to create a file that holds all error logs, click
the three-dot button next to this field and browse to the
specified file to set its access path and its name.

Use Socks Proxy Select this check box if you want to use a proxy
server. Once selected, you need enter the connection
parameters that are the host, the port, the username and
the passerword of the Proxy you need to use.

Ignore NULL fields
values

Select this check box to ignore NULL values in Update
or Upsert mode.

Use Soap Compression Select this check box to activate the SOAP
compression.

The compression of SOAP messages
optimizes system performance.

Retrieve inserted ID Select this check box to allow Salesforce.com to return
the salesforce ID produced for a new row that is to be
inserted. The ID column is added to the processed data
schema in Salesforce.com.

This option is available only when you have
chosen insert action yet not in batch mode, i.e.
not in the Extended Output option.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Scenario 1: Deleting data from the Account object

102 Talend Open Studio Components Reference Guide

Client ID Set the ID of the real user to differentiate between those
who use the same account and password to access the
salesforce website.

Usage Used as an output component. An Input component is required.

Limitation n/a

Scenario 1: Deleting data from the Account object

This scenario describes a two-component Job that removes an entry from the Account object.

Dragging and dropping as well as connecting the components

1. Drop tSalesforceInput and tSalesforceOutput from the Palette onto the design workspace.

2. Connect the two components together using a Row > Main link.

Configuring the components

Querying the content to be deleted

1. Double-click tSalesforceInput to display its Basic settings view and define the component properties.

2. From the Property Type list, select Repository if you have already stored the connection to the salesforce
server in the Metadata node of the Repository tree view. The property fields that follow are automatically
filled in. If you have not defined the server connection locally in the Repository, fill in the details manually
after selecting Built-in from the Property Type list.

For more information about how to create the salesforce metadata, see Talend Open Studio User Guide.

Scenario 1: Deleting data from the Account object

Talend Open Studio Components Reference Guide 103

3. In the Salesforce WebService URL field, use the default URL of the Salesforce Web service or enter the
URL you want to access or select the Use an existing connection check box to use an established connection.

4. In the Username and Password fields, enter your login and password for the Web service.

5. Type in your intended query timeout in the Timeout (milliseconds) field. In this example, use the default
number.

6. From the Module list, select the object you want to access, Account in this example.

7. From the Schema list, select Repository and then click the three-dot button to open a dialog box where you
can select the repository schema you want to use for this component. If you have not defined your schema
locally in the metadata, select Built-in from the Schema list and then click the three-dot button next to the
Edit schema field to open the dialog box where you can set the schema manually.

8. In the Query Condition field, enter the query you want to apply. In this example, we want to retrieve the
clients whose names are sForce. To do this, we use the query: “name=’sForce’”.

9. For a more advanced query, select the Manual input of SOQL query and enter the query manually.

Deleting the queried contents

1. Double-click tSalesforceOutput to display its Basic settings view and define the component properties.

2. In the Salesforce WebService URL field, use the default URL of the Salesforce Web service or enter the
URL you want to access.

3. In the Username and Password fields, enter your login and password for the Web service.

4. Type in your intended query timeout in the Timeout (milliseconds) field. In this example, use the default
number.

5. From the Action list, select the operation you want to carry out. In this example we select Delete to delete
the sForce account selected in the previous component.

6. From the Module list, select the object you want to access, Account in this example.

7. Click Sync columns to retrieve the schema of the preceding component.

8. Press Ctrl+S to save your Job.

Executing the Job

• Press F6 to execute the Job.

Scenario 2: Gathering erroneous data while inserting data to a module at Salesforce.com

104 Talend Open Studio Components Reference Guide

Check the content of the Account object and verify that the sForce account(s) is/are deleted from the server.

Scenario 2: Gathering erroneous data while inserting
data to a module at Salesforce.com

In this scenario, data in a local file is inserted to the AdditionalNumber module. Meanwhile, erroneous data in
that file is collected via a Row > Reject link.

Dragging and dropping components and linking them together

1. Drag and drop the following components from the Palette onto the workspace: tFileInputDelimited,
tSalesforceOutput and two tLogRow components.

2. Rename tFileInputDelimited as DataToInsert, tSalesforceOutput as InsertToSalesforce, and the two
tLogRow components as DataInserted as well as DataRejected respectively.

3. Link DataToInsert to InsertToSalesforce using a Row > Main connection.

4. Link InsertToSalesforce to DataInserted using a Row > Main connection.

5. Link InsertToSalesforce to DataRejected using a Row > Reject connection.

Deselect the Extended Output and Die on error check boxes in the Advanced settings view of the
tSalesforceOutput component so that the Reject link is available .

Configuring the components

Configuring the data source

1. Double-click DataToInsert to open its Basic settings view in the Component tab.

Scenario 2: Gathering erroneous data while inserting data to a module at Salesforce.com

Talend Open Studio Components Reference Guide 105

2. In the Property Type drop-down list, select Built-In.

You can select Repository from the Property Type drop-down list to fill in the relevant fields
automatically if the relevant metadata has been stored in the Repository. For more information about
Metadata, see the Talend Open Studio User Guide.

3. In the File name/Stream field, type in the path of the source file, for example, E:/salesforceout.csv.

4. In the Header field, type in 1 to retrieve the column names. Keep the default settings for other fields.

Configuring the module for data insertion

1. Double-click InsertToSalesforce to open its Basic settings view in the Component tab.

2. In the Username field, enter your username, for example, cantoine@talend.com.

3. In the Password field, enter your password, for example, talendehmrEvHz2xZ8f2KlmTCymS0XU.

4. In the Action drop-down list, select insert.

5. In the Module drop-down list, select AdditionalNumber.

When linking the components earlier, the Extended Output and Die on error check boxes have
been deselected in the Advanced settings view so that the Reject link can appear.

6. Keep the default settings for other fields.

Configuring the console display

1. Double-click DataInserted to open its Basic settings view in the Component tab.

Scenario 2: Gathering erroneous data while inserting data to a module at Salesforce.com

106 Talend Open Studio Components Reference Guide

2. In the Mode area, select Table (print values in cells of a table) for a better view.

3. Perform the same operation for DataRejected.

4. Press Ctrl+S to save your Job.

Executing the Job

• Press F6 to run the Job and you can find the erroneous data (if any) is displayed in the Run view.

As shown above, there are two Call Center ID fields that have incorrect data.

tSalesforceOutputBulk

Talend Open Studio Components Reference Guide 107

tSalesforceOutputBulk

tSalesforceOutputBulk Properties

tSalesforceOutputBulk and tSalesforceBulkExec components are used together to output the needed file
and then execute intended actions on the file for your Salesforce.com. These two steps compose the
tSalesforceOutputBulkExec component, detailed in a separate section. The interest in having two separate
elements lies in the fact that it allows transformations to be carried out before the data loading.

Component family Business/Cloud

Function tSalesforceOutputBulk generates files in suitable format for bulk processing.

Purpose Prepares the file to be processed by tSalesforceBulkExec for executions in
Salesforce.com.

Basic settings File Name Type in the directory where you store the generated file.

Append Select the check box to write new data at the end of the
existing data. Or the existing data will be overwritten.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes Built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Ignore NULL fields
values

Select this check box to ignore NULL values in Update
or Upsert mode.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is intended for the use along with tSalesforceBulkExec
component. Used together they gain performance while feeding or modifying
information in Salesforce.com.

Limitation n/a

Scenario: Inserting transformed bulk data into your
Salesforce.com

This scenario describes a six-component Job that transforms .csv data suitable for bulk processing, load them in
Salesforce.com and then displays the Job execution results in the console.

Scenario: Inserting transformed bulk data into your Salesforce.com

108 Talend Open Studio Components Reference Guide

This Job is composed of two steps: preparing data by transformation and processing the transformed data.

Before starting this scenario, you need to prepare the input file which offers the data to be processed by the Job.
In this use case, this file is sforcebulk.txt, containing some customer information.

Then to create and execute this Job, operate as follows:

Setting up the Job

1. Drop tFileInputDelimited, tMap, tSalesforceOutputBulk, tSalesforceBulkExec and tLogRow from the
Palette onto the workspace of your studio.

2. Use a Row > Main connection to connect tFileInputDelimited to tMap, and Row > out1 from tMap to
tSalesforceOutputBulk.

3. Use a Row > Main connection and a Row > Reject connection to connect tSalesforceBulkExec respectively
to the two tLogRow components.

4. Use a Trigger > OnSubjobOk connection to connect tFileInputDelimited and tSalesforceBulkExec.

Configuring the input component

1. Double-click tFileInputDelimited to display its Basic settings view and define the component properties.

Scenario: Inserting transformed bulk data into your Salesforce.com

Talend Open Studio Components Reference Guide 109

2. From the Property Type list, select Repository if you have already stored the connection to the salesforce
server in the Metadata node of the Repository tree view. The property fields that follow are automatically
filled in. If you have not defined the server connection locally in the Repository, fill in the details manually
after selecting Built-in from the Property Type list.

For more information about how to create the delimited file metadata, see Talend Open Studio User Guide.

3. Next to the File name/Stream field, click the [...] button to browse to the input file you prepared for the
scenario, for example, sforcebulk.txt.

4. From the Schema list, select Repository and then click the three-dot button to open a dialog box where you
can select the repository schema you want to use for this component. If you have not defined your schema
locally in the metadata, select Built-in from the Schema list and then click the three-dot button next to the
Edit schema field to open the dialog box to set the schema manually. In this scenario, the schema is made
of four columns: Name, ParentId, Phone and Fax.

5. According to your input file to be used by the Job, set the other fields like Row Separator, Field Separator...

Setting up the mapping

1. Double-click the tMap component to open its editor and set the transformation.

2. Drop all columns from the input table to the output table.

3. Add .toUpperCase() behind the Name column.

Scenario: Inserting transformed bulk data into your Salesforce.com

110 Talend Open Studio Components Reference Guide

4. Click OK to validate the transformation.

Defining the output path

1. Double-click tSalesforceOutputBulk to display its Basic settings view and define the component properties.

2. In the File Name field, type in or browse to the directory where you want to store the generated .csv data
for bulk processing.

3. Click Sync columns to import the schema from its preceding component.

Setting up the connection to the Salesforce server

1. Double-click tSalesforceBulkExect to display its Basic settings view and define the component properties.

2. Use the by-default URL of the Salesforce Web service or enter the URL you want to access.

3. In the Username and Password fields, enter your username and password for the Web service.

4. In the Bulk file path field, browse to the directory where is stored the generated .csv file by
tSalesforceOutputBulk.

5. From the Action list, select the action you want to carry out on the prepared bulk data. In this use case, insert.

6. From the Module list, select the object you want to access, Account in this example.

7. From the Schema list, select Repository and then click the three-dot button to open a dialog box where you
can select the repository schema you want to use for this component. If you have not defined your schema
locally in the metadata, select Built-in from the Schema list and then click the three-dot button next to the
Edit schema field to open the dialog box to set the schema manually. In this example, edit it conforming
to the schema defined previously.

Scenario: Inserting transformed bulk data into your Salesforce.com

Talend Open Studio Components Reference Guide 111

Configuring the output component

1. Double-click tLogRow_1 to display its Basic settings view and define the component properties.

2. Click Sync columns to retrieve the schema from the preceding component.

3. Select Table mode to display the execution result.

4. Do the same with tLogRow_2.

Job execution

1. Press CTRL+S to save your Job.

2. Press F6 to execute it.

You can check the execution result on the Run console.

In the tLogRow_1 table, you can read the data inserted into your Salesforce.com.

In the tLogRow_2 table, you can read the rejected data due to the incompatibility with the Account objects
you have accessed.

All the customer names are written in upper case.

tSalesforceOutputBulkExec

112 Talend Open Studio Components Reference Guide

tSalesforceOutputBulkExec

tSalesforceOutputBulkExec Properties

tSalesforceOutputBulk and tSalesforceBulkExec components are used together to output the needed file
and then execute intended actions on the file for your Salesforce.com. These two steps compose the
tSalesforceOutputBulkExec component, detailed in a separate section. The interest in having two separate
elements lies in the fact that it allows transformations to be carried out before the data loading.

Component family Business/Cloud

Function tSalesforceOutputBulkExec executes the intended actions on the .csv bulk data
for Salesforce.com.

Purpose As a dedicated component, tSalesforceOutputBulkExec gains performance
while carrying out the intended data operations into your Salesforce.com.

Basic settings Use an existing
connection

Select this check box to use an established connection
from tSalesforceConnection. Once you select it, the
Component list field appear allowing you to choose
the tSalesforceConnection component to be used.

For more information on tSalesforceConnection, see
the section called “tSalesforceConnection”.

When a Job contains the parent Job and the
child Job, Component list presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, you can use Dynamic
settings to share the intended connection. In
this case, make sure that the connection name
is unique and distinctive. For more information
about Dynamic settings, see your studio user
guide.

Salesforce Webservice
URL

Type in the Web service URL to connect to the
Salesforce DB.

Username and
Password

Type in the Web service user authentication data.

Salesforce Version Type in the version of the Salesforce you are using.

Bulk file path Directory where are stored the bulk data you need to
process.

Action You can do any of the following operations on the data
of the Salesforce object:

Insert: insert data.

Update: update data.

Upsert: update and insert data.

Scenario: Inserting bulk data into your Salesforce.com

Talend Open Studio Components Reference Guide 113

Module Select the relevant module in the list.

If you select the Use Custom module option,
you display the Custom Module Name field
where you can enter the name of the module
you want to connect to.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes Built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Advanced settings Rows to commit Specify the number of lines per data batch to be
processed.

Bytes to commit Specify the number of bytes per data batch to be
processed.

Use Socks Proxy Select this check box if you want to use a proxy server.
In this case, you should fill in the proxy parameters
in the Proxy host, Proxy port, Proxy username and
Proxy password fields which appear beneath.

Ignore NULL fields
values

Select this check box to ignore NULL values in Update
or Upsert mode.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is mainly used when no particular transformation is required on
the data to be loaded into Salesforce.com.

Limitation The bulk data to be processed in Salesforce.com should be .csv format.

Scenario: Inserting bulk data into your Salesforce.com

This scenario describes a four-component Job that submits bulk data into Salesforce.com, executs your intended
actions on the data, and ends up with displaying the Job execution results for your reference.

Scenario: Inserting bulk data into your Salesforce.com

114 Talend Open Studio Components Reference Guide

Before starting this scenario, you need to prepare the input file which offers the data to be processed by the Job.
In this use case, this file is sforcebulk.txt, containing some customer information.

Then to create and execute this Job, operate as follows:

Setting up the Job

1. Drop tFileInputDelimited, tSalesforceOutputBulkExec, and tLogRow from the Palette onto the
workspace of your studio.

2. Use Row > Main connection to connect tFileInputDelimited to tSalesforceOutputBulkExec.

3. Use Row > Main and Row > Reject to connect tSalesforceOutputBulkExec respectively to the two
tLogRow components.

Setting the input data

1. Double-click tFileInputDelimited to display its Basic settings view and define the component properties.

2. From the Property Type list, select Repository if you have already stored the connection to the salesforce
server in the Metadata node of the Repository tree view. The property fields that follow are automatically
filled in. If you have not defined the server connection locally in the Repository, fill in the details manually
after selecting Built-in from the Property Type list.

For more information about how to create the delimited file metadata, see Talend Open Studio User Guide.

3. Next to the File name/Stream field, click the [...] button to browse to the input file you prepared for the
scenario, for example, sforcebulk.txt.

4. From the Schema list, select Repository and then click the three-dot button to open a dialog box where you
can select the repository schema you want to use for this component. If you have not defined your schema
locally in the metadata, select Built-in from the Schema list and then click the three-dot button next to the
Edit schema field to open the dialog box where you can set the schema manually. In this scenario, the schema
is made of four columns: Name, ParentId, Phone and Fax.

Scenario: Inserting bulk data into your Salesforce.com

Talend Open Studio Components Reference Guide 115

5. According to your input file to be used by the Job, set the other fields like Row Separator, Field Separator...

Setting up the connection to the Salesforce server

1. Double-click tSalesforceOutputBulkExec to display its Basic settings view and define the component
properties.

2. In Salesforce WebService URL field, use the by-default URL of the Salesforce Web service or enter the
URL you want to access.

3. In the Username and Password fields, enter your username and password for the Web service.

4. In the Bulk file path field, browse to the directory where you store the bulk .csv data to be processed.

The bulk file here to be processed must be in .csv format.

5. From the Action list, select the action you want to carry out on the prepared bulk data. In this use case, insert.

6. From the Module list, select the object you want to access, Account in this example.

7. From the Schema list, select Repository and then click the three-dot button to open a dialog box where you
can select the repository schema you want to use for this component. If you have not defined your schema
locally in the metadata, select Built-in from the Schema list and then click the three-dot button next to the
Edit schema field to open the dialog box where you can set the schema manually. In this example, edit it
conforming to the schema defined previously.

Job execution

1. Double-click tLogRow_1 to display its Basic settings view and define the component properties.

Scenario: Inserting bulk data into your Salesforce.com

116 Talend Open Studio Components Reference Guide

2. Click Sync columns to retrieve the schema from the preceding component.

3. Select Table mode to display the execution result.

4. Do the same with tLogRow_2.

5. Press CTRL+S to save your Job and press F6 to execute it.

On the console of the Run view, you can check the execution result.

In the tLogRow_1 table, you can read the data inserted into your Salesforce.com.

In the tLogRow_2 table, you can read the rejected data due to the incompatibility with the Account objects
you have accessed.

If you want to transform the input data before submitting them, you need to use tSalesforceOutputBulk and
tSalesforceBulkExec in cooperation to achieve this purpose. For further information on the use of the two
components, see the section called “Scenario: Inserting transformed bulk data into your Salesforce.com”.

tSAPBWInput

Talend Open Studio Components Reference Guide 117

tSAPBWInput

tSAPBWInput Properties

Component family Business

Function tSAPBWInput reads data from an SAP BW database using a JDBC API
connection and extracts fields based on an SQL query.

Purpose This component executes an SQL query with a strictly defined order which must
correspond to your schema definition. Then it passes on the field list to the next
component via a Row > Main connection.

Basic settings Property type Either Built-in or Repository:

Built-in: No property data stored centrally.

Repository: Select the repository file where Properties
are stored. The fields that come after are pre-filled in
using the fetched data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes Built-in.

JDBC URL Enter the JDBC URL of the database you want
to connect to. For example, enter: jdbc:jdbc4olap://
server_address/database_name to connect to an SAP
BW database.

Username Enter the username for DB access authentication.

Password Enter the password for DB access authentication.

Table Name Type in the name of the DB table.

Query Type Either Built-in or Repository:

Built-in: No property data stored centrally.

Repository: Select the repository file where Properties
are stored. The fields that come after are pre-filled in
using the fetched data.

Guess Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the
schema definition.

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

Clear Trim all the String/Char columns to
enable Trim columns in this field.

Scenario: Reading data from SAP BW database

118 Talend Open Studio Components Reference Guide

tStatCatcher Statistics Select this check box to collect log data at the
component level.

Usage This component supports SQL queries for SAP BW database using a JDBC
connection.

Limitation n/a

Scenario: Reading data from SAP BW database

This scenario describes a two-component Job that reads data from an SAP BW database. The data is fetched and
displayed on the console.

Prior to setting up the Job, make sure the following prerequisites are met:

1. Copy the following .jar files which compose the jdbc4olap driver to your class path:

-activation.jar

-commons-codec.jar

-jdbc4olap.jar

-saaj-api.jar

-saaj-impl.jar

2. Make sure that you have the latest version of jdbc4olap driver. You can download the latest version of jdbc4olap
driver from jdbc4olap download section. For further information about the usage of jdbc4olap driver, see
jdbc4olap User Guide.

The procedure of this scenario requires 4 main steps detailed hereafter:

1. Set up the Job.

2. Set up the jdbc connection to the SAP BW server.

3. Set up a query.

4. Display the fetched data on the console.

Set up the Job

1. Drop a tSAPBWInput component and a tLogRow component from the Palette onto the workspace.

http://sourceforge.net/projects/jdbc4olap/
http://cdnetworks-kr-2.dl.sourceforge.net/project/jdbc4olap/Documentation/jdbc4olapUserGuide.pdf

Scenario: Reading data from SAP BW database

Talend Open Studio Components Reference Guide 119

2. Connect the tSAPBWInput component and the tLogRow component using a Row > Main connection.

Set up the jdbc connection to the SAP BW server

1. Double-click the tSAPBWInput component to open its Basic settings view and define the component
properties.

2. Fill the JDBC URL field with the URL of your jdbc4olap server.

Note that the URL displayed above is for demonstration only.

3. Fill the Username and Password fields with your username and password for the DB access authentication.

4. Click the three-dot button next to Edit schema to define the schema to be used.

Scenario: Reading data from SAP BW database

120 Talend Open Studio Components Reference Guide

5. Click the plus button to add new columns to the schema and set the data type for each column and click OK
to save the schema settings.

Set up a query

1. From the Basic settings view of tSAPBWInput, fill the Table Name field with the table name. In this
scenario, table name "Measures" is for demonstration only.

2. Fill the Query area with the query script. In this example, we use:

"SELECT
T1.\"[0D_CO_CODE].[LEVEL01]\" AS company,
T0.\"[Measures].[D68EEPGGHUMSZ92PIJARDZ0KA]\" AS amount
FROM
\"0D_DECU\".\"0D_DECU/PRE_QRY4\".\"[Measures]\" T0,
\"0D_DECU\".\"0D_DECU/PRE_QRY4\".\"[0D_CO_CODE]\" T1 "

Due to the limitations of the supported SQL queries, the query scripts you use must be based on the
grammar defined in the jdbc4olap driver. For further information about this grammar, see jdbc4olap
User Guide.

Display the fetched data on the console

1. Double-click the tLogRow component to open its Basic settings view and define the component properties.

2. Click Sync columns to retrieve the schema defined in the preceding component.

3. Select Table in the Mode area.

http://cdnetworks-kr-2.dl.sourceforge.net/project/jdbc4olap/Documentation/jdbc4olapUserGuide.pdf
http://cdnetworks-kr-2.dl.sourceforge.net/project/jdbc4olap/Documentation/jdbc4olapUserGuide.pdf

Scenario: Reading data from SAP BW database

Talend Open Studio Components Reference Guide 121

4. Press Ctrl+S to save your Job and press F6 to execute it.

The data in the table "Measure" is fetched and displayed on the console.

tSAPCommit

122 Talend Open Studio Components Reference Guide

tSAPCommit

tSAPCommit Properties

This component is closely related to tSAPConnection and tSAPRollback. It usually does not make much sense
to use these components separately in a transaction.

Component family Business/SAP

Function Validates the data processed through the Job into the connected server.

Purpose Using a unique connection, this component commits a global transaction in one
go instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings SAPConnection
Component list

Select the tSAPConnection component in the list if more
than one connection are planned for the current Job.

Release Connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row >Main connection to
link tSAPCommit to your Job, your data will
be commited row by row. In this case, do not
select the Release connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with SAP components, especially with
tSAPConnection and tSAPRollback components.

Limitation n/a

Related scenario

This component is closely related to tSAPConnection and tSAPRollback. It usually does not make much sense
to use one of these without using a tSAPConnection component to open a connection for the current transaction.

For tSAPCommit related scenario, see the section called “Scenario: Inserting data in mother/daughter tables”.

tSAPConnection

Talend Open Studio Components Reference Guide 123

tSAPConnection

tSAPConnection properties

Component family Business

Function tSAPConnection opens a connection to the SAP system for the current
transaction.

Purpose tSAPConnection allows to commit a whole Job data in one go to the SAP system
as one transaction.

Basic settings Property type Either Built-in or Repository:

Built-in: No property data is stored centrally.

Repository: Select the Repository file where Properties
are stored. The fields that follow are pre-filled in using
fetched data.

Connection
configuration

Client type: enter your usual SAP connection.

Userid : enter user login.

Password: enter password.

Language: specify the language.

Host name: enter the IP address of the SAP system.

System number: enter the system number.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the
component level.

Usage This component is to be used along with other SAP components.

Limitation n/a

Related scenarios

For a related scenarios, see the section called “Scenario 1: Retrieving metadata from the SAP system” and the
section called “Scenario 2: Reading data in the different schemas of the RFC_READ_TABLE function”.

tSAPInput

124 Talend Open Studio Components Reference Guide

tSAPInput

tSAPInput Properties

Component family Business

Function tSAPInput connects to the SAP system using the system IP address.

Purpose tSAPInput allows to extract data from an SAP system at any level through
calling RFC or BAPI functions.

Basic settings Property type Either Built-in or Repository:

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties
are stored. The fields that come after are pre-filled in
using the fetched data.

Click this icon to open a connection wizard and store
the Excel file connection parameters you set in the
component Basic settings view.

For more information about setting up and storing file
connection parameters, see Talend Open Studio User
Guide.

Use an existing
connection

Select this check box and click the relevant connection
component on the Component list to reuse the
connection details you already defined.

When a Job contains the parent Job and the
child Job, Component list presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, you can use Dynamic
settings to share the intended connection. In
this case, make sure that the connection name
is unique and distinctive. For more information
about Dynamic settings, see your studio user
guide.

Connection
configuration

Client type: Enter your SAP usual connection code

Userid: Enter the user connection Id.

Password: Enter the password.

Language: Specify a language.

Host name Enter the SAP system IP address.

System number Enter the system number.

FunName Enter the name of the function you want to use to
retrieve data.

Initialize input Set input parameters.

tSAPInput Properties

Talend Open Studio Components Reference Guide 125

Parameter Value: Enter between inverted commas the
value that corresponds to the parameter you set in the
Parameter Name column.

Type: Select the type of the input entity to retrieve.

Table Name (Structure Name): Enter between
inverted commas the table name.

Parameter Name: Enter between in,verted commas
the name of the field that corresponds to the table set in
the Table Name column.

When you need different parameter values
using the same parameter name, you should
enter these values in one row and delimit them
with comma.

Outputs Configure the parameters of the output schema to select
the data to be extracted:

Schema: Enter the output schema name.

Type (for iterate): Select the type of the output entity
you want to have.

Table Name (Structure Name): Enter between
inverted commas the table name.

Mapping: Enter between inverted commas the name of
the field you want to retrieve data from.

You can set as many outgoing Main links used
to output data as schemas you added to this
Outputs table. This way, data can be grouped
into different files.

Connections Outgoing links (from one component to another):

Row: Main, Iterate.

Trigger: Run if; On Component Ok; On Component
Error, On Subjob Ok, On Subjob Error.

Incoming links (from one component to another):

Row: Iterate

Trigger: Run if, On Component Ok, On Component
Error, On Subjob Ok, On Subjob Error

For further information regarding connections, see
Talend Open Studio User Guide.

Advanced settings Release Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Scenario 1: Retrieving metadata from the SAP system

126 Talend Open Studio Components Reference Guide

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Usually used as a Start component. An output component is required.

Limitation n/a

Scenario 1: Retrieving metadata from the SAP system

Talend SAP components (tSAPInput and tSAPOutput) as well as the SAP wizard are based on a library validated
and provided by SAP (JCO) that allows the user to call functions and retrieve data from the SAP system at Table,
RFC or BAPI, levels.

This scenario uses the SAP wizard that leads a user through dialog steps to create SAP connection and
call RFC and BAPI functions. This SAP wizard is available only for Talend Enterprise users. If you
are a user of Talend Open Studio or Talend Integration Express, you need to drop the tSAPInput
component from the Palette and set its basic settings manually.

This scenario uses the SAP wizard to first create a connection to the SAP system, and then call a BAPI function
to retrieve the details of a company from the SAP system. It finally displays in Talend Open Studio the company
details stored in the SAP system.

The following figure shows the company detail parameters stored in the SAP system and that we want to read in
Talend Open Studio using the tSAPInput component.

Scenario 1: Retrieving metadata from the SAP system

Talend Open Studio Components Reference Guide 127

Setting and configuring the SAP connection using wizard

Setting up the connection to the SAP system

1. Create a connection to the SAP system using the SAP connection wizard, in this scenario the SAP connection
is called sap and is saved in the Metadata node.

2. Call the BAPI function BAPI_COMPANY_GETDETAIL using the SAP wizard to access the BAPI HTML
document stored in the SAP system and see the company details.

3. In the Name filter field, type in BAPI* and click the Search button to display all available BAPI functions.

4. Select BAPI_COMPANY_GETDETAIL to display the schema that describes the company details.

The three-tab view to the right of the wizard displays the metadata of the BAPI_COMPANY_GETDETAIL function
and allows you to set the necessary parameters.

Scenario 1: Retrieving metadata from the SAP system

128 Talend Open Studio Components Reference Guide

The Document view displays the SAP html document about the BAPI_COMPANY_GETDETAIL function.

The Parameter view provides information about the input and output parameters required by the
BAPI_COMPANY_GETDETAIL function to return values.

Setting the input and output parameters using the wizard

1. In the Parameter view, click the Input tab to list the input parameter(s). In this scenario, there is only one
input parameter required by BAPI_COMPANY_GETDETAIL and it is called COMPANYID.

2. In the Parameter view, click the Output tab to list the output parameters returned by
BAPI_COMPANY_GETDETAIL. In this scenario, there are two output parameters: COMPANY_DETAIL and
RETURN.

Scenario 1: Retrieving metadata from the SAP system

Talend Open Studio Components Reference Guide 129

Each of these two “structure” parameters consists of numerous “single” parameters.

The Test it view allows you to add or delete input parameters according to the called function. In this scenario,
we want to retrieve the metadata of the COMPANY_DETAIL “structure” parameter that consists of 14 “single”
parameters.

Scenario 1: Retrieving metadata from the SAP system

130 Talend Open Studio Components Reference Guide

3. In the Value column of the COMPANYID line in the first table, enter “000001” to send back company data
corresponding to the value 000001.

4. In the Output type list at the bottom of the wizard, select output.table.

5. Click Launch at the bottom of the view to display the value of each “single” parameter returned by the
BAPI_COMPANY_GETDETAIL function.

6. Click Finish to close the wizard and create the connection.

The sap connection and the new schema BAI_COMPANY_GETDETAIL display under the SAP Connections
node in the Repository tree view.

Retrieving different schemas of the SAP functions

To retrieve the different schemas of the BAPI_COMPANY_GETDETAIL function, do the following:

1. Right-click BAPI_COMPANY_GETDETAIL in the Repository tree view and select Retrieve schema in
the contextual menu.

2. In the open dialog box, select the schemas you want to retrieve, COMPANY_DETAIL and RETURN in
this scenario.

3. Click Next to display the two selected schemas and then Finish to close the dialog box.

The two schemas display under the BAPI_COMPANY_GETDETAIL function in the Repository tree view.

Scenario 1: Retrieving metadata from the SAP system

Talend Open Studio Components Reference Guide 131

Retrieving the company metadata

To retrieve the company metadata that corresponds to the 000001 value and display it in Talend Open Studio,
do the following:

Setting up the Job

1. In the Repository tree view, drop the SAP connection you already created to the design workspace to open
a dialog box where you can select tSAPConnection from the component list and finally click OK to close
the dialog box. The tSAPConnection component holding the SAP connection, sap in this example, displays
on the design workspace.

2. Double-click tSAPConnection to display the Basic settings view and define the component properties.

If you store connection details in the Metadata node in the Repository tree view, the Repository
mode is selected in the Property Type list and the fields that follow are pre-filled. If not, you need
to select Built-in as “property type” and fill in the connection details manually.

3. In the Repository tree-view, expand Metadata and sap in succession and drop RFC_READ_TABLE to
the design workspace to open a component list.

4. Select tSAPInput from the component list and click OK.

5. Drop tFilterColumns and tLogRow from the Palette to the design workspace.

6. Connect tSAPConnection and tSAPInput using a Trigger > OnSubJobOk link

7. To connect tSAPInput and tLogRow, right-click tSAPInput and select Row >
row_COMPANY_DETAIL_1 and then click tLogRow.

Scenario 1: Retrieving metadata from the SAP system

132 Talend Open Studio Components Reference Guide

8. In the design workspace, double-click tSAPInput to display its Basic settings view and define the component
properties.

The basic setting parameters for the tSAPInput component display automatically since the schema is stored
in the Metadata node and the component is initialized by the SAP wizard.

9. Select the Use an existing connection check box and then in the Component List, select the relevant
tSAPConnection component, sap in this scenario.

In the Initialize input area, we can see the input parameter needed by the BAPI_COMPANY_GETDETAIL
function.

In the Outputs area, we can see all different schemas of the BAPI_COMPANY_GETDETAIL function, in
particular, COMPANY_DETAIL that we want to output.

Job execution

1. In the design workspace, double-click tLogRow to display the Basic settings view and define the component
properties. For more information about this component, see the section called “tLogRow”.

2. Press CTRL+S to save your Job and press F6 to execute it.

Scenario 2: Reading data in the different schemas of the RFC_READ_TABLE function

Talend Open Studio Components Reference Guide 133

The tSAPInput component retrieved from the SAP system the metadata of the COMPANY_DETAIL “structure”
parameter and tLogRow displayed the information on the console.

Scenario 2: Reading data in the different schemas of
the RFC_READ_TABLE function

Talend SAP components (tSAPInput and tSAPOutput) as well as the SAP wizard are based on a library validated
and provided by SAP (JCO) that allows the user to call functions and retrieve data from the SAP system at Table,
RFC or BAPI, levels.

This scenario uses the SAP wizard that leads a user through dialog steps to create a SAP connection and
call RFC and BAPI functions. This SAP wizard is available only for Talend Enterprise users. If you
are a user of Talend Open Studio or Talend Integration Express, you need to drop the tSAPInput
component from the Palette and set its basic settings manually.

This scenario uses the SAP wizard to first create a connection to the SAP system, and then call an RFC function to
directly read from the SAP system a table called SFLIGHT. It finally displays in Talend Open Studio the structure
of the SFLIGHT table stored in the SAP system.

Setting and configuring the SAP connection using wizard

Setting up the connection to the SAP system

1. Create a connection to the SAP system using the SAP connection wizard, in this scenario the SAP connection
is called sap.

2. Call the RFC_READ_TABLE RFC function using the SAP wizard to access the table in the SAP system and
see its structure.

3. In the Name filter field, type in RFC* and click the Search button to display all available RFC functions.

Scenario 2: Reading data in the different schemas of the RFC_READ_TABLE function

134 Talend Open Studio Components Reference Guide

4. Select RFC_READ_TABLE to display the schema that describe the table structure.

The three-tab view to the right of the wizard displays the metadata of the RFC_READ_TABLE function and allows
you to set the necessary parameters.

The Document view displays the SAP html document about the RFC_READ_TABLE function.

The Parameter view provides information about the parameters required by the RFC_READ_TABLE function
to return parameter values.

Setting the input and output parameters using the wizard

1. In the Parameter view, click the Table tab to show a description of the structure of the different tables of
the RFC_READ_TABLE function.

Scenario 2: Reading data in the different schemas of the RFC_READ_TABLE function

Talend Open Studio Components Reference Guide 135

The Test it view allows you to add or delete input parameters according to the called function. In this example,
we want to retrieve the structure of the SFLIGHT table and not any data.

2. In the Value column of the DELIMITER line, enter “;” as field separator.

3. In the Value column of the QUERY_TABLE line, enter SFLIGHT as the table to query.

4. In the Output type list at the bottom of the view, select output.table.

5. In the Constructure|Table list, select DATA.

6. Click Launch at the bottom of the view to display the parameter values returned by the RFC_READ_TABLE
function. In this example, the delimiter is “;” and the table to read is SFLIGHT.

Scenario 2: Reading data in the different schemas of the RFC_READ_TABLE function

136 Talend Open Studio Components Reference Guide

7. Click Finish to close the wizard and create the connection.

Retrieving the different schemas of the RFC_READ_TABLE function

The sap connection and the RFC_READ_TABLE function display under the SAPConnections node in the
Repository tree view.

To retrieve the different schemas of the RFC_READ_TABLE function, do the following:

1. In the Repository tree view, right-click RFC_READ_TABLE and select Retrieve schema in the contextual
menu. A dialog box displays.

2. Select in the list the schemas you want to retrieve, DATA, FIELDS and OPTIONS in this example.

3. Click Next to open a new view on the dialog box and display these different schemas.

4. Click Finish to validate your operation and close the dialog box.

The three schemas display under the RFC_READ_TABLE function in the Repository tree view.

Retrieving the data column names of the SFLIGHT table

In this example, we want to retrieve the data and column names of the SFLIGHT table and display them in Talend
Open Studio. To do that, proceed as the following:

Setting up the Job

1. In the Repository tree view, drop the RFC_READ_TABLE function of the sap connection to the design
workspace to open a dialog box where you can select tSAPInput from the component list and then click OK
to close the dialog box. The tSAPInput component displays on the design workspace.

2. Drop two tLogRow components from the Palette to the design workspace.

3. Right-click tSAPInput and select Row > row_DATA_1 and click the first tLogRow component.

4. Right-click tSAPInput and select Row > row_FIELDS_1 and click the second tLogRow components.

Scenario 2: Reading data in the different schemas of the RFC_READ_TABLE function

Talend Open Studio Components Reference Guide 137

In this example, we want to retrieve the FIELDS and DATA schemas and put them in two different output
flows.

5. In the design workspace, double-click tSAPInput to open the Basic settings view and display the component
properties.

The basic setting parameters for the tSAPInput component display automatically since the schema is stored in
the Metadata node and the component is initialized by the SAP wizard.

In the Initialize input area, we can see the input parameters necessary for the RFC_READ_TABLE function, the
field delimiter “;” and the table name “SFLIGHT”.

In the Outputs area, we can see the different schemas of the SFLIGHT table.

Scenario 2: Reading data in the different schemas of the RFC_READ_TABLE function

138 Talend Open Studio Components Reference Guide

Job execution

1. In the design workspace, double click each of the two tLogRow components to display the Basic settings
view and define the component properties. For more information on the properties of tLogRow, see the
section called “tLogRow”.

2. Press CTRL+S to save your Job and press F6 to execute it.

The tSAPInput component retrieves from the SAP system the column names of the SFLIGHT table as well as the
corresponding data. The tLogRow components display the information in a tabular form in the Console.

tSAPOutput

Talend Open Studio Components Reference Guide 139

tSAPOutput

tSAPOutput Properties

Component family Business

Function Writes to an SAP system.

Purpose Allows to write data into an SAP system.

Basic settings Property type Either Built-in or Repository:

Built-in: No property data stored centrally.

Repository: Select the repository file where Properties
are stored. The fields that come after are pre-filled in
using the fetched data.

Click this icon to open a connection wizard and store
the Excel file connection parameters you set in the
component Basic settings view.

For more information about setting up and storing file
connection parameters, see Talend Open Studio User
Guide.

Use an existing
connection

Select this check box and click the relevant connection
component on the Component list to reuse the
connection details you already defined.

When a Job contains the parent Job and the
child Job, Component list presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, you can use Dynamic
settings to share the intended connection. In
this case, make sure that the connection name
is unique and distinctive. For more information
about Dynamic settings, see your studio user
guide.

Connection
configuration

Client type: Enter your SAP usual connection code

Userid: Enter the user connection Id.

Password: Enter the password.

Language: Specify a language.

Host name Enter the SAP system IP address.

System number Enter the system number.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Related scenario

140 Talend Open Studio Components Reference Guide

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes Built-in.

FunName Enter the name of the function you want to use to write
data.

Mapping Set the parameters to select the data to write to the SAP
system.

Advanced settings Release Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Usually used as an output component. An input component is required.

Limitation n/a

Related scenario

For a related scenarios, see the section called “Scenario 1: Retrieving metadata from the SAP system” and the
section called “Scenario 2: Reading data in the different schemas of the RFC_READ_TABLE function”.

tSAPRollback

Talend Open Studio Components Reference Guide 141

tSAPRollback

tSAPRollback properties

This component is closely related to tSAPCommit and tSAPConnection. It usually does not make much sense
to use these components separately in a transaction.

Component family Business/SAP

Function tSAPRollback cancels the transaction commit in the connected SAP.

Purpose tSAPRollback avoids to commit only a fragment of a transaction.

Basic settings SAPConnection
Component list

Select the tSAPConnection component in the list if more
than one connection are planned for the current Job.

Release Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is intended to be used along with SAP components, especially with
tSAPConnection and tSAPCommit.

Limitation n/a

Related scenarios

For tSAPRollback related scenario, see the section called “Scenario: Rollback from inserting data in mother/
daughter tables”.

tSugarCRMInput

142 Talend Open Studio Components Reference Guide

tSugarCRMInput

tSugarCRMInput Properties

Component family Business/Cloud

Function Connects to a Sugar CRM database module via the relevant webservice.

Purpose Allows you to extract data from a SugarCRM DB based on a query.

Basic settings SugarCRM Webservice
URL

Type in the webservice URL to connect to the
SugarCRM DB.

Username and
Password

Type in the Webservice user authentication data.

Module Select the relevant module from the list

To use customized tables, select Use custom
module from the list. The Custom module
package name and Custom module name
fields which appear are automatically filled in
with the relevant names.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in
or stored remotely in the Repositorymake changes to
the schema. Note that if you make changes, the schema
automatically becomes Built-in.

In this component the schema is related to the Module
selected.

Query condition Type in the query to select the data to be extracted.
Example: account_name= ‘Talend’

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the
component level.

Usage Usually used as a Start component. An output component is required.

Limitation n/a

Scenario: Extracting account data from SugarCRM

This scenario describes a two-component Job which extracts account information from a SugarCRM database and
writes it to an Excel output file.

Scenario: Extracting account data from SugarCRM

Talend Open Studio Components Reference Guide 143

Setting up the Job

1. Drop a tSugarCRMInput and a tFileOutputExcel component from the Palette onto the workspace.

2. Connect the input component to the output component using a Row > Main connection.

Configuring the input component

1. Double-click tSugarCRMInput to define the component properties in its Basic settings view.

2. Fill the SugarCRM WebService URL field with the connection inforamtion, and the Username and
Password fields with the authentication you have.

3. Select the Module from the list of modules offered. In this example, Accounts is selected.

The Schema is then automatically set according to the module selected. But you can change it and remove
the columns that you do not require in the output.

4. In the Query Condition field, type in the query you want to extract from the CRM. In this example:
“billing_address_city=’Sunnyvale’”.

Job execution

1. Double-click tFileOutputExcel to define the component properties in its Basic settings view.

2. Set the destination file name as well as the Sheet name and select the Include header check box.

3. Press CTRL+S to save your Job and press F6 to execute it.

Scenario: Extracting account data from SugarCRM

144 Talend Open Studio Components Reference Guide

The filtered data is output in the defined spreadsheet of the specified Excel file.

tSugarCRMOutput

Talend Open Studio Components Reference Guide 145

tSugarCRMOutput

tSugarCRMOutput Properties

Component family Business/Cloud

Function Writes in a Sugar CRM database module via the relevant webservice.

Purpose Allows you to write data into a SugarCRM DB.

Basic settings SugarCRM WebService
URL

Type in the webservice URL to connect to the
SugarCRM DB.

Username and
Password

Type in the Webservice user authentication data.

Module Select the relevant module from the list

To use customized tables, select Use custom
module from the list. The Custom module
package name and Custom module name
fields which appear are automatically filled in
with the relevant names.

Action Insert or Update the data in the SugarCRM module.

Schema and Edit
schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes Built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the
component level.

Usage Used as an output component. An Input component is required.

Limitation n/a

Related Scenario

No scenario is available for this component yet.

tVtigerCRMInput

146 Talend Open Studio Components Reference Guide

tVtigerCRMInput

tVtigerCRMInput Properties

Component family Business/VtigerCRM

Function Connects to a module of a VtigerCRM database.

Purpose Allows to extract data from a VtigerCRM DB.

Basic settings

Vtiger Version Select the version of the Vtiger Web Services you want to use (either Vtiger 5.0
or Vtiger 5.1)

Vtiger 5.0 Server Address Type in the IP address of the VtigerCRM server

Port Type in the Port number to access the server

Vtiger Path Type in the path to access the VtigerCRM server

Username and
Password

Type in the user authentication data.

Version Type in the version of VtigerCRM you are using.

Module Select the relevant module in the list

Method Select the relevant method in the list. The method
specifies the action you can carry out on the
VtigerCRM module selected.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes Built-in.

In this component the schema is related to the Module
selected.

Vtiger 5.1 Endpoint Type in the URL address of the invoked Web server.

Username Type in the user name to log in to the vTigerCRM..

Access key Type in the access key for the user name.

Query condition Type in the query to select the data to be extracted.

Manual input of SQL
query

Manually type in your query in the corresponding field.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Usually used as a Start component. An output component is required.

Limitation n/a

Related Scenario

Talend Open Studio Components Reference Guide 147

Related Scenario

No scenario is available for this component yet.

tVtigerCRMOutput

148 Talend Open Studio Components Reference Guide

tVtigerCRMOutput

tVtigerCRMOutput Properties

Component family Business/VtigerCRM

Function Writes data into a module of a VtigerCRM database.

Purpose Allows to write data from a VtigerCRM DB.

Basic settings

Vtiger Version Select the version of the Vtiger Web Services you want to use (either Vtiger 5.0
or Vtiger 5.1)

Vtiger 5.0 Server Address Type in the IP address of the VtigerCRM server.

Port Type in the Port number to access the server.

Vtiger Path Type in the path to access the server.

Username and
Password

Type in the user authentication data.

Version Type in the version of VtigerCRM you are using.

Module Select the relevant module in the list

Method Select the relevant method in the list. The method
specifies the action you can carry out on the
VtigerCRM module selected.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes Built-in.

In this component the schema is related to the Module
selected.

Vtiger 5.1 Endpoint Type in the URL address of the invoked Web server.

Username Type in the user name to log in to the VtigerCRM..

Access key Type in the access key for the user name.

Action Insert or Update the data in the SugarCRM module.

Module Select the relevant module in the list

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes Built-in.

Related Scenario

Talend Open Studio Components Reference Guide 149

In this component the schema is related to the Module
selected.

Die on error This check box is clear by default to skip the row on
error and complete the process for error-free rows.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Used as an output component. An Input component is required.

Limitation n/a

Related Scenario

No scenario is available for this component yet.

Talend Open Studio Components Reference Guide

Talend Open Studio Components Reference Guide

Business Intelligence components
This chapter details the main components which belong to the Business Intelligence family in the Talend Open
Studio Palette.

The BI family groups connectors that cover needs such as reading or writing multidimensional or OLAP databases,
outputting Jasper reports, tracking DB changes in slow changing dimension tables and so on.

tBarChart

152 Talend Open Studio Components Reference Guide

tBarChart

tBarChart properties

Component family Business Intelligence/
Charts

Function tBarChart reads data from an input flow and transforms the data into a bar chart
in a PNG image file.

Purpose tBarChart generates a bar chart from the input data to ease technical analysis.

Basic settings Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either built-in or remotely
stored in the Repository.

The schema of tBarChart contains three read-
only columns named series (string), category
(string), and value (integer) respectively, in a
fixed order. The data in any extra columns will be
only passed to the next component, if any, without
being presented in the bar chart.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Sync columns Click to synchronize the output file schema with the input
file schema. The Sync function only displays once the
Row connection is linked with the output component.

Generated image path Name and path of the output image file.

Chart title Enter the title of the bar chart to be generated.

Include legend Select this check box if you want the bar chart to include
a legend, indicating all series in different colors.

3Dimensions Select this check box to create an image with 3D effect. By
default, this check box is selected and the bars representing
the series of each category will be stacked one over
another. If this check box is cleared, a 2D image will be
created, with the bars displayed one besides another along
the category axis.

Image width and Image
height

Enter the width and height of the image file, in pixels.

Category axis name and
Value axis name

Enter the category axis name and value axis name.

Foreground alpha Enter an integer in the range of 0 to 100 to define the
transparency of the image. The smaller the number you
enter, the more transparent the image will be.

Scenario: Creating a bar chart from the input data

Talend Open Studio Components Reference Guide 153

Plot orientation Select the plot orientation of the bar chart: VERTICAL
or HORIZONTAL.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component is mainly used as Output component. It requires an Input component
and Row main link as input.

Scenario: Creating a bar chart from the input data

This scenario describes a simple Job that reads data from a CSV file and transforms the data into a bar chart. The
input file is shown below:

Because the input file has a different structure than the one required by the tBarChart component, this use case
uses the tMap component to map the data to a three-column CSV file before using the tBarChart component
to generate a bar chart file.

You will usually use the tMap component to adjust the input schema in accordance with the schema
structure of the tBarChart component. For more information about how to use the tMap component, see
Talend Open Studio User Guide and the section called “tMap”.

Scenario: Creating a bar chart from the input data

154 Talend Open Studio Components Reference Guide

Setting the input data

1. Drop the following components from the Palette to the design workspace: two tFileInputDelimited
components, a tMap, three tFileOutputDelimited components, and a tBarChart. Relabel the components
to best describe their functionality.

2. Double-click the first tFileInputDelimited component to display its Basic settings view.

3. Fill in the File name field by browsing to the input file.

4. In the Header field, specify the number of header rows. In this use case, you have only one header row.

5. Leave the other parameters as they are.

6. Click Edit schema to describe the data structure of the input file. In this use case, the input schema is made
of four columns: City, Population, Area, and Density. Upon defining the column names and data types, click
OK to close the schema dialog box.

Setting the mapping

1. Connect the tFileInputDelimited to the tMap using a Row > Main connection.

2. Double-click the tMap to open the Map Editor.

Scenario: Creating a bar chart from the input data

Talend Open Studio Components Reference Guide 155

3. Click the green plus button on top of the output panel to add three output tables: Population, Area, and
Density. These output table names will appear as the labels of the connections linking the tMap to the output
components on the design workspace.

4. Use the Schema editor to add three columns to each output table: series (string), category (string), and value
(integer).

5. In the relevant Expression field of the output tables, enter the series names, as shown above. These series
names will appear in the legend of the bar chart.

6. Drop the City column of the input table onto the category column of each output table.

7. Drop the Population column of the input table onto the value column of the Population table.

8. Drop the Area column of the input table onto the value column of the Area table.

9. Drop the Density column of the input table onto the value column of the Density table.

10. Click OK to save the mappings and close the Map Editor.

Setting the output data

1. Right click the tMap component and select Row > Population to connect it to the first tFileOutputDelimited
component.

2. Connect the tMap to the other tFileOutputDelimited components in the same way but by selecting Area
and Density respectively.

3. Double-click the first tFileOutputDelimited component to display its Basic settings view.

Scenario: Creating a bar chart from the input data

156 Talend Open Studio Components Reference Guide

4. In the File Name field, define a CSV file to send the mapped data flows to. In this use case, we name the output
file to be created LargeCities_mapped.csv. This file will be used as the input to the tBarChart component.
If an existing file name is specified, make sure that the Append check box is cleared.

5. Leave the other parameters as they are.

6. For the other two tFileOutputDelimited components, use the same file path as defined for the first
tFileOutputDelimited component, and select the Append check box.

Make sure that the Append check box is selected so that all the mapped data flows will go to the
same file without overwriting the existing data.

Setting the input data for tBarChart

1. Connect the first tFileInputDelimited component to the second tFileInputDelimited component using a
Trigger > OnSubjobOK connection.

2. Connect the second tFileInputDelimited component to the tBarChart using a Row > Main connection.

3. Double-click the second tFileInputDelimited component to display its Basic settings view.

4. Fill in the File name field with the file path and name defined in the Basic settings view of
each of the tFileOutputDelimited components. In this use case, the input file to the tBarChart is
LargeCities_mapped.csv.

5. Leave the other parameters as they are.

As the input schema needs to have a structure required by the tBarChart component, we will copy the
structure from the schema of the tBarChart component.

Scenario: Creating a bar chart from the input data

Talend Open Studio Components Reference Guide 157

Configuring the tBarChart component

1. Double-click the tBarChart component to display its Basic settings view.

2. In the Generated image path field, define the file path of the image file to be generated.

3. In the Chart title field, define a title for the bar chart.

4. Define the category and series axis names.

5. Define the size and transparency degree of the image if needed. In this use case, we simply use the default
settings.

6. Click Edit schema to open the schema dialog box.

7. Copy all the columns from the output schema to the input schema by clicking the left-pointing double arrow
button. Then, click OK to close the schema dialog box.

Job execution

1. Save your Job.

2. Press F6 to launch it.

Scenario: Creating a bar chart from the input data

158 Talend Open Studio Components Reference Guide

A bar chart is generated as defined.

tDB2SCD

Talend Open Studio Components Reference Guide 159

tDB2SCD

tDB2SCD properties

Component family Databases/DB2

Function tDB2SCD reflects and tracks changes in a dedicated DB2 SCD table.

Purpose tDB2SCD addresses Slowly Changing Dimension needs, reading regularly a source
of data and logging the changes into a dedicated SCD table

Basic settings Use an existing
connection

Select this check box and click the relevant DB connection
component on the Component list to reuse the connection
details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio
User Guide.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties
are stored. The following fields are pre-filled in using
fetched data.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Table Schema Name of the DB schema.

Username and
Password

DB user authentication data.

Related scenarios

160 Talend Open Studio Components Reference Guide

Table Name of the table to be written. Note that only one table
can be written at a time.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

SCD Editor The SCD editor helps to build and configure the data flow
for slowly changing dimension outputs.

For more information, see the section called “SCD
management methodologies”.

Use memory saving
Mode

Select this check box to maximize system performance.

Die on error This check box is cleared by default, meaning to skip the
row on error and to complete the process for error-free
rows.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Debug mode Select this check box to display each step during
processing entries in a database.

Usage This component is used as Output component. It requires an Input component and
Row main link as input.

Limitation n/a

Related scenarios

For related topics, see the section called “tMysqlSCD”.

tDB2SCDELT

Talend Open Studio Components Reference Guide 161

tDB2SCDELT

tDB2SCDELT Properties

Component family Databases/DB2

Function tDB2SCDELT reflects and tracks changes in a dedicated DB2 SCD table.

Purpose tDB2SCDELT addresses Slowly Changing Dimension needs through SQL queries
(server-side processing mode), and logs the changes into a dedicated DB2 SCD
table.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally. Enter
properties manually.

Repository: Select the repository file where Properties are
stored. The fields that come after are pre-filled in using the
fetched data.

Use an existing
connection

Select this check box and click the relevant
tDB2Connection component on the Component List to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio
User Guide.

Host The IP address of the database server.

Port Listening port number of database server.

Database Name of the database

tDB2SCDELT Properties

162 Talend Open Studio Components Reference Guide

Username and
Password

User authentication data for a dedicated database.

Source table Name of the input DB2 SCD table.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table Select to perform one of the following operations on the
table defined:

None: No action carried out on the table.

Drop and create table: The table is removed and created
again

Create table: A new table gets created.

Create table if not exists: A table gets created if it does
not exist.

Clear table: The table content is deleted. You have the
possibility to rollback the operation.

Truncate table: The table content is deleted. You don not
have the possibility to rollback the operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Surrogate Key Select the surrogate key column from the list.

Creation Select the method to be used for the surrogate key
generation.

For more information regarding the creation methods, see
the section called “SCD keys”.

Source Keys Select one or more columns to be used as keys, to ensure
the unicity of incoming data.

Use SCD Type 1 fields Use type 1 if tracking changes is not necessary. SCD
Type 1 should be used for typos corrections for example.
Select the columns of the schema that will be checked for
changes.

Use SCD Type 2 fields Use type 2 if changes need to be tracked down. SCD Type
2 should be used to trace updates for example. Select the
columns of the schema that will be checked for changes.

Start date: Adds a column to your SCD schema to hold
the start date value. You can select one of the input schema
columns as Start Date in the SCD table.

End Date: Adds a column to your SCD schema to hold the
end date value for the record. When the record is currently

Related Scenario

Talend Open Studio Components Reference Guide 163

active, the End Date column shows a null value, or you can
select Fixed Year value and fill it in with a fictive year to
avoid having a null value in the End Date field.

Log Active Status: Adds a column to your SCD schema
to hold the true or false status value. This column helps
to easily spot the active record.

Log versions: Adds a column to your SCD schema to hold
the version number of the record.

Advanced settings Debug mode Select this check box to display each step during
processing entries in a database.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component is used as an output component. It requires an input component and
Row main link as input.

Limitation n/a

Related Scenario

For related topics, see the section called “tDB2SCD” and the section called “tMysqlSCD”.

tGreenplumSCD

164 Talend Open Studio Components Reference Guide

tGreenplumSCD

tGreenplumSCD Properties

Component family Databases/Greenplum

Function tGreenplumSCD reflects and tracks changes in a dedicated Greenplum SCD table.

Purpose tGreenplumSCD addresses Slowly Changing Dimension needs, reading regularly
a source of data and logging the changes into a dedicated SCD table

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties
are stored. The following fields are pre-filled in using
fetched data.

Use an existing
connection

Select this check box and click the relevant DB connection
component on the Component list to reuse the connection
details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Connection type Select the relevant driver on the list.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the DB schema.

Related scenario

Talend Open Studio Components Reference Guide 165

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

SCD Editor The SCD editor helps to build and configure the data flow
for slowly changing dimension outputs.

For more information, see the section called “SCD
management methodologies”.

Use memory saving
Mode

Select this check box to maximize system performance.

Die on error This check box is cleared by default, meaning to skip the
row on error and to complete the process for error-free
rows.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component
level.

Debug mode Select this check box to display each step during
processing entries in a database.

Usage This component is used as Output component. It requires an Input component and
Row main link as input.

Related scenario

For related scenarios, see the section called “tMysqlSCD”.

tInformixSCD

166 Talend Open Studio Components Reference Guide

tInformixSCD

tInformixSCD properties

Component family Databases/Business
Intelligence/Informix

Function tInformixSCD tracks and shows changes which have been made to Informix SCD
dedicated tables.

Purpose tInformixSCD addresses Slowly Changing Dimension transformation needs, by
regularly reading a data source and listing the modifications in an SCD dedicated
table.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties
are stored. The following fields are pre-filled in using
fetched data

Use an existing
connection

Select this check box and click the relevant DB connection
component on the Component list to reuse the connection
details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address.

Port DB server listening port.

Database Name of the database.

Related scenario

Talend Open Studio Components Reference Guide 167

Schema Name of the schema.

Username et Password User authentication information.

Instance Name of the Informix instance to be used. This
information can generally be found in the SQL hosts file.

Table Name of the table to be created

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

SCD Editor The SCD editor helps to build and configure the data flow
for slowly changing dimension outputs.

For more information, see the section called “SCD
management methodologies”.

Use memory saving
Mode

Select this check box to improve system performance.

Use Transaction Select this check box when the database is configured in
NO_LOG mode.

Die on error This check box is cleared by default, meaning to skip the
row on error and to complete the process for error-free
rows.

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at a component
level.

Debug mode Select this check box to display each step of the process
by which data is written in the database.

Usage This component is an output component. Consequently, it requires an input
component and a connection of the Row > Main type.

Limitation n/a

Related scenario

For a scenario in which tInformixSCD might be used, see the section called “tMysqlSCD”.

tIngresSCD

168 Talend Open Studio Components Reference Guide

tIngresSCD

tIngresSCD Properties

Component family Databases/Ingress

Function tIngresSCD reflects and tracks changes in a dedicated Ingres SCD table.

Purpose tIngresSCD addresses Slowly Changing Dimension needs, reading regularly a
source of data and logging the changes into a dedicated SCD table

Basic settings Use an existing
connection

Select this check box and click the relevant DB connection
component on the Component list to reuse the connection
details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your Studio user
guide.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties
are stored. The fields to follow are pre-filled in using
fetched data.

Server Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and
Password

DB user authentication data.

Related scenario

Talend Open Studio Components Reference Guide 169

Table Name of the table to be written. Note that only one table
can be written at a time.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

SCD Editor The SCD editor helps to build and configure the data flow
for slowly changing dimension outputs.

For more information, see the section called “SCD
management methodologies”.

Use memory saving
Mode

Select this check box to maximize system performance.

Die on error This check box is cleared by default, meaning to skip the
row on error and to complete the process for error-free
rows.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component
level.

Debug mode Select this check box to display each step during
processing entries in a database.

Usage This component is used as Output component. It requires an Input component and
Row main link as input.

Limitation n/a

Related scenario

For related scenarios, see the section called “tMysqlSCD”.

tJasperOutput

170 Talend Open Studio Components Reference Guide

tJasperOutput

tJasperOutput Properties

This component is closely related to Jaspersoft's report designer -- iReport. It reads and processes data from an
input flow to create a report against a .jrxml report template defined via iReport.

Component family Business Intelligence/
Jasper

Function Reads and processes data from an input flow to create a report against a .jrxml report
template defined via iReport.

Purpose This component allows you to use Jaspersoft's iReport to create a report in rich
formats.

Basic settings Jrxml file Report template file created via iReport.

Temp path Path of temporary files.

Destination path Path of the final report file.

File name/Stream Name of the final report.

Report type File type of the final report.

Schema and Edit
schema

A schema is a row description, i.e. it defines the number
of fields to be processed and passed on to the next
component. The schema is either built-in or remotely
stored in the Repository.

Built-in: The schema is created and stored locally for
this component only. Related topic: see the Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Sync columns Click to synchronize the output file schema with the input
file schema. The Sync function only displays once the
Row connection is linked with the output component.

iReport Edit the command to provide the path of iReport's
execution file, e.g. replacing __IREPORT_PATH__\ with
E:\Program Files\Jaspersoft\iReport-4.1.1\bin\, or giving
the full path of the execution file such as "E:\Program
Files\Jaspersoft\iReport-4.1.1\bin\iReport.exe".

Launch Click to run iReport.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Specify Locale Select this check box to choose a locale from the Report
Locale list.

The first line of the Report Locale list is empty.
You can click it to customize a locale.

Scenario: Generating a report against a .jrxml template

Talend Open Studio Components Reference Guide 171

Encoding Select an encoding mode from this list. You can select
Custom from the list to enter an encoding method in the
field that appears.

Usage This component is closely related to Jaspersoft's report designer -- iReport. It reads
and processes data from an input flow to create a report against a .jrxml report
template defined via iReport.

Limitation n/a

Scenario: Generating a report against a .jrxml template

The following Job reads data from a .csv file and creates a .pdf report based on an existing .jrxml report template.
Note that the template file should be created via Jaspersoft's iReport based on a file that shares the same schema
with the source .csv file of this job.

Setting up the Job

1. Drag and drop the following components from the Palette to the workspace: tFileInputDelimited and
tJasperOutput.

2. Connect tFileInputDelimited and tJasperOutput using a Row link.

Configuring the input component

1. Double-click the tFileInputDelimited component to display its Basic settings view.

2. Select Built-In from the Property Type drop-down list.

Scenario: Generating a report against a .jrxml template

172 Talend Open Studio Components Reference Guide

You can select Repository from the Property Type drop-down list to fill in the relevant fields
automatically if the relevant metadata has been stored locally in the Repository. For more
information about Metadata, see the Talend Open Studio User Guide.

3. Fill in the File name/Stream field to give the path and name of the source file, e.g. "C:/Documents and
Settings/Andy ZHANG/nom.csv".

4. Keep the default settings for the Row Separator and Field Separator fields. You can also change them as
needed.

5. Set 1 in the Header field and 0 in the Footer field. Leave the Limit field empty. You can also change them
as needed.

6. Select Built-In from the Schema drop-down list and click Edit schema to define the data structure of the
input file. In this case, the input file has 2 columns: Nom and Prenom.

Configuring the output component

1. Double-click tJasperOutput to display its Basic settings view.

2. Enter the full path of the report template file created via Jaspersoft's iReport in the Jrxml file field. You can
click the three-dot button to browse.

The schema of the file, which is used to create a .jrxml template file via iReport, should be the same
as that of the source file that is used to create the report.

3. Enter the path for the temporary files generated during the job execution in the Temp path field. You can
click the three-dot button to browse.

4. Enter the path for the final report file generated during the job execution in the Destination path field. You
can click the three-dot button to browse.

Scenario: Generating a report against a .jrxml template

Talend Open Studio Components Reference Guide 173

5. Enter the name for the final report file generated during the job execution in the File name/Stream field.

6. Select the format for the final report file generated during the job execution in the Report type field.

7. Click Sync columns to retrieve the schema from the previous component.

8. Enter the path of execution file of Jaspersoft's iReport in the iReport field, e.g. replacing
__IREPORT_PATH__\ with E:\Program Files\Jaspersoft\iReport-4.1.1\bin\. You can click the Launch
button to run iReport.

This step is not mandatory. Yet, this helps you conveniently access the iReport software for relevant
operations, e.g. creating a report template, etc.

Job execution

1. Press CTRL+S to save your Job.

2. Press F6 to execute it.

You can find the file out.pdf in the folder specified in the Destination path field.

tJasperOutputExec

174 Talend Open Studio Components Reference Guide

tJasperOutputExec

tJasperOutputExec Properties

This component is closely related to Jaspersoft's report designer -- iReport. It reads and processes data from
a source file to create a report against a .jrxml report template defined via iReport. This component offers a
performance gain as it functions as a combination of an input component and a tJasperOutput component. The
advantage of using two separate components is that data can be transformed before being used to generate a report
and the input sources can be various and rich.

Component family Business Intelligence/
Jasper

Function Reads and processes data from a source file to create a report against a .jrxml report
template defined via iReport.

Purpose This component allows you to use Jaspersoft's iReport to create a report in rich
formats. It offers a performance gain as it functions as a combination of an input
component and a tJasperOutput component.

Basic settings Jrxml file Report template file created via iReport.

Source file Name of the source file.

Record delimiter Delimiter of the records.

Destination path Path of the final report file.

Use Default Output
Name

Select this check box to use the default name for the report
generated, which takes the source file's name.

Output Name Name of the final report.

This field does not appear if the Use Default
Output Name box has been selected.

Report type File type of the final report.

iReport Edit the command to provide the path of iReport's
execution file, e.g. replacing __IREPORT_PATH__\ with
E:\Program Files\Jaspersoft\iReport-4.1.1\bin\, or giving
the full path of the execution file such as "E:\Program Files
\Jaspersoft\iReport-4.1.1\bin\iReport.exe".

Launch Click to run iReport.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Specify Locale Select this check box to choose a locale from the Report
Locale list.

The first line of the Report Locale list is empty.
You can click it to customize a locale.

Encoding Select an encoding mode from this list. You can select
Custom from the list to enter an encoding method in the
field that appears.

Related Scenario

Talend Open Studio Components Reference Guide 175

Usage This component is closely related to Jaspersoft's report designer -- iReport. It reads
and processes data from a source file to create a report against a .jrxml report
template defined via iReport.

Limitation n/a

Related Scenario

For related scenarios, see the section called “Scenario: Generating a report against a .jrxml template”.

tLineChart

176 Talend Open Studio Components Reference Guide

tLineChart

tLineChart properties

Component family Business Intelligence/
Charts

Function tLineChart reads data from an input flow and transforms the data into a line chart
in a PNG image file.

Purpose tLineChart generates a line chart from the input data to ease technical analysis.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either built-in or remotely
stored in the Repository.

The schema of tLineChart contains three read-
only columns named series (string), x (integer),
and y (integer) respectively, in a fixed order. The
data in any extra columns will be only passed
to the next component, if any, without being
presented in the generated line chart.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Sync columns Click to synchronize the output file schema with the input
file schema. The Sync function only displays once the
Row connection is linked with the output component.

Generated image path Name and path of the output image file.

Chart title Enter the title of the line chart to be generated.

Domain axis label and
Range axis label

Enter the domain axis (X axis) and range axis (Y axis)
labels.

Plot orientation Select the plot orientation of the range axis: Vertical or
Horizontal.

Include legend Select this check box if you want your line chart to include
a legend, indicating the lines of different series in different
colors.

Image width and Image
height

Enter the width and height of the image, in pixels.

Moving average Select this check box to show a moving average for each
series on your line chart. With this check box selected, the
Period field appears, letting you define a period of which
you want to show the moving average.

Scenario: Creating a line chart to ease trend analysis

Talend Open Studio Components Reference Guide 177

Lower bound and Upper
bound

Define the lowest and highest values to be displayed on
the range axis.

Chart background and
Plot background

Select the chart background color and the plot area
background color.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is mainly used as Output component. It requires an Input component
and Row main link as input.

Scenario: Creating a line chart to ease trend analysis

This scenario describes a simple Job that reads data from a CSV file and transforms the data into a line chart to
facilitate trend analysis. The input file records how long (in minutes) per week a person watches different TV
channels over ten weeks, as shown below:

Because the input file has a different structure than required by the tLineChart component, this use case uses the
tMap component to map the data to a CSV file that meets the structure requirement before using the tLineChart
component to generate a line chart file.

You will usually use the tMap component to adjust the input schema in accordance with the schema
structure of the tLineChart component. For more information about how to use the tMap component,
see Talend Open Studio User Guide and the section called “tMap”.

Configuring the input component

1. Drop the following components from the Palette to the design workspace: two tFileInputDelimited
components, a tMap, three tFileOutputDelimited components, and a tLineChart. Relabel the components
to best describe their functionality.

Scenario: Creating a line chart to ease trend analysis

178 Talend Open Studio Components Reference Guide

2. Double-click the first tFileInputDelimited component to display its Basic settings view.

3. Fill in the File name field by browsing to the input file.

4. Specify the header row. In this use case, the first row of the input file is the header row. And leave the other
parameters as they are.

5. Click Edit schema to describe the data structure of the input file. In this use case, the input schema is made
of four columns: Week, Mins_TVA, Mins_TVB, and Mins_TVC. Upon defining the column names and data
type, click OK to close the schema dialog box.

Scenario: Creating a line chart to ease trend analysis

Talend Open Studio Components Reference Guide 179

Configuration in the tMap editor

1. Connect the tFileInputDelimited to the tMap using a Row > Main connection.

2. Double-click the tMap to open the Map Editor.

3. Click the green plus button on top of the output panel to add three output tables: TV_A, TV_B, and TV_C. These
output table names will appear as the labels of the connections linking the tMap to the output components
on the design workspace.

4. Use the Schema editor to add three columns to each output table: series (string), x (integer), and y (integer).

5. In the relevant Expression field of the output tables, enter the series names, as shown above. These series
names will appear in the legend of your line chart.

6. Drop the Week column of the input table onto the x column of each output table.

7. Drop the Mins_TVA column of the input table onto the y column of the TV_A table.

8. Drop the Mins_TVB column of the input table onto the y column of the TV_B table.

9. Drop the Mins_TVC column of the input table onto the y column of the TV_C table.

10. Click OK to save the mappings and close the Map Editor.

Scenario: Creating a line chart to ease trend analysis

180 Talend Open Studio Components Reference Guide

Setting up the mapping

1. Right-click the tMap component and select Row > TV_A to connect it to the first tFileOutputDelimited
component.

2. Connect the tMap to the other tFileOutputDelimited components in the same way but by selecting Row >
TV_B and Row > TV_C respectively

3. Double-click the first tFileOutputDelimited component to display its Basic settings view.

4. In the File Name field, define a CSV file to send the mapped data flows to. In this use case, we name the the
output file to be created InputTV.csv. This file will be used as the input to the tLineChart component. If an
existing file name is specified, make sure that the Append check box is cleared.

5. Leave the other parameters as they are.

6. For the other tFileOutputDelimited components, use the same file path as defined for the first
tFileOutputDelimited component, and select the Append check box.

Make sure that the Append check box is selected so that the mapped data flows will go to the same
file without overwriting the existing data.

7. Connect the first tFileInputDelimited component to the second tFileInputDelimited component using a
Trigger > OnSubjobOK connection.

8. Connect the second tFileInputDelimited component to the tLineChart using a Row > Main connection.

Configuring the input component for tLineChart

1. Double-click the second tFileInputDelimited component to display its Basic settings view.

2. Fill in the File name field with the file path and name defined in the Basic settings view of each of the
tFileOutputDelimited components. In this use case, the input file to the tLineChart is InputTV.csv.

3. Leave the other parameters as they are.

Scenario: Creating a line chart to ease trend analysis

Talend Open Studio Components Reference Guide 181

As the input schema needs to have a structure required by the tLineChart component, we will copy the
structure from the schema of the tLineChart component.

Configuring tLineChart

1. Double-click the tLineChart component to display its Basic settings view.

2. Click Edit schema to open the schema dialog box.

3. Copy all the columns from the output schema to the input schema by clicking the left-pointing double arrow
button. Then, click OK to close the schema dialog box.

4. In the Generated image path field, define the path of the image file to be generated.

5. In the Chart title field, define a title for the line chart. In this use case, the chart title is Average Weekly
Viewing (per person).

6. Define the domain (X) and range (Y) axis labels. In this use case, the axis labels are Week and Minutes
respectively.

7. Define the image size, the moving average period, the lower and upper bounds, the chart background color,
and the background color of the plot area, as you prefer.

In this use case, we set the image size to 450 by 450, set the lower and upper bounds to 210 and 340
respectively, select light gray as the chart background color, and keep the rest settings are they are.

Scenario: Creating a line chart to ease trend analysis

182 Talend Open Studio Components Reference Guide

Job execution

Press CTRL+S to save your Job and press F6 to launch it.

A line chart is generated as defined, showing a comparison of the average weekly viewing time and the viewing
trends of different TV channels over the past ten weeks.

tMondrianInput

Talend Open Studio Components Reference Guide 183

tMondrianInput

tMondrianInput Properties

Component family Business Intelligence/
OLAP Cube

Function tMondrianInput reads data from relational databases and produces
multidimensional data sets based on an MDX query.

Purpose tMondrianInput executes a multi-dimensional expression (MDX) query
corresponding to the dataset structure and schema definition. Then it passes on the
multidimensional dataset obtained to the next component via a Main row link.

Basic settings Mondrian Version Select the Mondrian version you are using.

DB type Select the relevant type of relational database

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties
are stored. The following fields are pre-filled in using
fetched data.

Datasource Name and path of the file containing the data.

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either built-in or remotely
stored in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Catalog Path to the catalog (structure of the data warehouse).

MDX Query Type in the MDX query paying particularly attention to
properly sequence the fields in order to match the schema
definition and the data warehouse structure.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers MDX queries for multi-dimensional datasets.

Scenario: Cross-join tables

184 Talend Open Studio Components Reference Guide

Scenario: Cross-join tables

This Job extracts multi-dimensional datasets from relational database tables stored in a MySQL base. The data are
retrieved using a multidimensional expression (MDX query). Obviously you need to have to know the structure
of your data, or at least have a structure description (catalog) as a reference for the dataset to be retrieved in the
various dimensions.

Setting up the Job

1. Drop tMondrianInput and tLogRow from the Palette to the design workspace.

2. Connect the Mondrian connector to the output component using a Row Main connection.

Setting up the DB connection

1. Double-click the tMondrianInput component to display its Basic settingsview.

2. In DB type field, select the relational database you are using with Mondrian.

3. Select the relevant Repository entry as Property type, if you store your DB connection details centrally. In
this example the properties are built-in.

4. Fill out the details of connection to your DB: Host, Port, Database name, User Name and Password.

5. Select the relevant Schema in the Repository if you store it centrally. In this example, the schema is to be
set (built-in).

Scenario: Cross-join tables

Talend Open Studio Components Reference Guide 185

Configuring the DB query

1. The relational database we want to query contains five columns: media, drink, unit_sales, store_cost and
store_sales.

2. The query aims at retrieving the unit_sales, store_cost and store_sales figures for various media / drink using
an MDX query such as in the example below:

3. Back on the Basic settings tab of the tMondrianInput component, set the Catalog path to the data
warehouse. This catalog describes the structure of the warehouse.

4. Then type in the MDX query such as:

"select
 {[Measures].[Unit Sales], [Measures].[Store Cost], [Measures].[Store
Sales]} on columns,
 CrossJoin(
 { [Promotion Media].[All Media].[Radio],
 [Promotion Media].[All Media].[TV],
 [Promotion Media].[All Media].[Sunday Paper],
 [Promotion Media].[All Media].[Street Handout] },

Scenario: Cross-join tables

186 Talend Open Studio Components Reference Guide

 [Product].[All Products].[Drink].children) on rows
 from Sales
 where ([Time].[1997])"

5. Eventually, select the Encoding type on the list.

Job execution

1. Select the tLogRow component and select the Print header check box to display the column names on the
console.

2. Then press F6 to run the Job.

The console shows the result of the unit_sales, store_cost and store_sales for each type of Drink (Beverages,
Dairy, Alcoholic beverages) crossed with each media (TV, Sunday Paper, Street handout) as shown previously
in a table form.

tMSSqlSCD

Talend Open Studio Components Reference Guide 187

tMSSqlSCD

tMSSqlSCD Properties

Component family Databases/MSSQL
Server

Function tMSSqlSCD reflects and tracks changes in a dedicated MSSQL SCD table.

Purpose tMSqlSCD addresses Slowly Changing Dimension needs, reading regularly a
source of data and logging the changes into a dedicated SCD table

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties
are stored. The following fields are pre-filled in using
fetched data.

Use an existing
connection

Select this check box and click the relevant DB connection
component on the Component list to reuse the connection
details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Server Database server IP address.

Port Listening port number of DB server.

Schema Name of the DB schema.

Database Name of the database.

Related scenario

188 Talend Open Studio Components Reference Guide

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

SCD Editor The SCD editor helps to build and configure the data flow
for slowly changing dimension outputs.

For more information, see the section called “SCD
management methodologies”.

Use memory saving
Mode

Select this check box to maximize system performance.

Die on error This check box is cleared by default, meaning to skip the
row on error and to complete the process for error-free
rows.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Debug mode Select this check box to display each step during
processing entries in a database.

Usage This component is used as Output component. It requires an Input component and
Row main link as input.

Limitation n/a

Related scenario

For related topics, see the section called “tMysqlSCD”.

tMysqlSCD

Talend Open Studio Components Reference Guide 189

tMysqlSCD

tMysqlSCD Properties

Component family Databases/MySQL

Function tMysqlSCD reflects and tracks changes in a dedicated MySQL SCD table.

Purpose tMysqlSCD addresses Slowly Changing Dimension needs, reading regularly a
source of data and logging the changes into a dedicated SCD table

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties
are stored. The following fields are pre-filled in using
fetched data.

Use an existing
connection

Select this check box and click the relevant DB connection
component on the Component list to reuse the connection
details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

DB Version Select the Mysql version you are using.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and
Password

DB user authentication data.

tMysqlSCD Properties

190 Talend Open Studio Components Reference Guide

Table Name of the table to be written. Note that only one table
can be written at a time.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

SCD Editor The SCD editor helps to build and configure the data flow
for slowly changing dimension outputs.

For more information, see the section called “SCD
management methodologies”.

Use memory saving
mode

Select this check box to maximize system performance.

Die on error This check box is cleared by default, meaning to skip the
row on error and to complete the process for error-free
rows.

Advanced settings Additional JDBC
Parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Debug mode Select this check box to display each step during
processing entries in a database.

Usage This component is used as Output component. It requires an Input component and
Row main link as input.

SCD management methodologies

Slowly Changing Dimensions (SCDs) are dimensions that have data that slowly changes. The SCD editor offers
the simplest method of building the data flow for the SCD outputs. In the SCD editor, you can map columns, select
surrogate key columns, and set column change attributes through combining SCD types.

The following figure illustrates an example of the SCD editor.

tMysqlSCD Properties

Talend Open Studio Components Reference Guide 191

SCD keys

You must choose one or more source keys columns from the incoming data to ensure its unicity.

You must set one surrogate key column in the dimension table and map it to an input column in the source table.
The value of the surrogate key links a record in the source to a record in the dimension table. The editor uses
this mapping to locate the record in the dimension table and to determine whether a record is new or changing.
The surrogate key is typically the primary key in the source, but it can be an alternate key as long as it uniquely
identifies a record and its value does not change.

Source keys: Drag one or more columns from the Unused panel to the Source keys panel to be used as the key(s)
that ensure the unicity of the incoming data.

Surrogate keys: Set the column where the generated surrogate key will be stored. A surrogate key can be generated
based on a method selected on the Creation list.

Creation: Select any of the below methods to be used for the key generation:

Auto increment: auto-incremental key.

Input field: key is provided in an input field.

When selected, you can drag the appropriate field from the Unused panel to the complement field.

Scenario: Tracking changes using Slowly Changing Dimensions (type 0 through type 3)

192 Talend Open Studio Components Reference Guide

Routine: from the complement field, you can press Ctrl+ Space to display the autocompletion list and select
the appropriate routine.

Table max +1: the maximum value from the SCD table is incremented to create a surrogate key.

DB Sequence: from the complement field, you can enter the name of the existing database sequence that will
automatically increment the column indicated in the name field.

This option is only available through the SCD Editor of the tOracleSCD component.

Combining SCD types

The Slowly Changing Dimensions support four types of changes: Type 0 through Type 3. You can apply any of
the SCD types to any column in a source table by a simple drag-and-drop operation.

Type 0: is not used frequently. Some dimension data may be overwritten and other may stay unchanged over time.
This is most appropriate when no effort has been made to deal with the changing dimension issues.

Type 1: no history is kept in the database. New data overwrites old data. Use this type if tracking changes is not
necessary. this is most appropriate when correcting certain typos, for example the spelling of a name.

Type2: the whole history is stored in the database. This type tracks historical data by inserting a new record in
the dimensional table with a separate key each time a change is made. This is most appropriate to track updates,
for example.

SCD Type 2 principle lies in the fact that a new record is added to the SCD table when changes are detected on the
columns defined. Note that although several changes may be made to the same record on various columns defined
as SCD Type 2, only one additional line tracks these changes in the SCD table.

The SCD schema in this type should include SCD-specific extra columns that hold standard log information such
as:

-start: adds a column to your SCD schema to hold the start date. You can select one of the input schema columns
as a start date in the SCD table.

-end: adds a column to your SCD schema to hold the end date value for a record. When the record is currently
active, the end date is NULL or you can select Fixed Year Value and fill in a fictive year to avoid having a null
value in the end date field.

-version: adds a column to your SCD schema to hold the version number of the record.

-active: adds a column to your SCD schema to hold the true or false status value. this column helps to easily
spot the active record.

Type 3: only the information about a previous value of a dimension is written into the database. This type tracks
changes using separate columns. This is most appropriate to track only the previous value of a changing column.

Scenario: Tracking changes using Slowly Changing
Dimensions (type 0 through type 3)

This five-component Java scenario describes a Job that tracks changes in four of the columns in a source delimited
file, writes changes and the history of changes in an SCD table, and displays error information on the Run console.

Scenario: Tracking changes using Slowly Changing Dimensions (type 0 through type 3)

Talend Open Studio Components Reference Guide 193

The source delimited file contains various personal details including firstname, lastname, address, city, company,
age, and status. An id column helps ensuring the unicity of the data.

We want any change in the marital status to overwrite the existing old status record. This type of change is
equivalent to an SCD Type 1.

We want to insert a new record in the dimensional table with a separate key each time a person changes his/her
company. This type of change is equivalent to an SCD Type 2.

We want to track only the previous city and previous address of a person. This type of change is equivalent to
an SCD Type 3.

To realize this kind of scenario, it is better to divide it into three main steps: defining the main flow of the Job,
setting up the SCD editor, and finally creating the relevant SCD table in the database.

Defining the main flow of the Job

1. Drop the following components from the Palette onto the design workspace: a tMysqlConnection, a
tFileInputDelimited, a tMysqlSCD, a tMysqlCommit, and two tLogRow components.

2. Connect the tFileInputDelimited, the first tLogRow, and the tMysqlSCD using the Row Main link. This
is the main flow of your Job.

3. Connect the tMysqlConnection to the tFileInputDelimited and tMysqlSCD to tMysqlCommit using the
OnComponntOk trigger.

4. Connect the tMysqlSCD to the second tLogRow using the Row Rejects link. Two columns, errorCode and
errorMessage, are added to the schema. This connection collects error information.

Scenario: Tracking changes using Slowly Changing Dimensions (type 0 through type 3)

194 Talend Open Studio Components Reference Guide

Configuring the DB connection and the input component

1. In the design workspace, double-click tMysqlConnection to display its Basic settings view and set the
database connection details. The tMysqlConnection component should be used to avoid setting several times
the same DB connection when multiple DB components are used.

If you have already stored the connection details locally in the Repository, drop the needed metadata
item to the design workspace and the database connection detail will automatically display in the
relevant fields. For more information about Metadata, see Talend Open Studio User Guide.

In this scenario, we want to connect to the SCD table where changes in the source delimited file will be
tracked down.

2. In the design workspace, double-click tFileInputDelimited to display its Basic settings view.

3. Click the three-dot button next to the File Name field to select the path to the source delimited file, dataset.csv
in this scenario, that contains the personal details.

4. Define the row and field separators used in the source file.

The File Name, Row separator, and Field separators are mandatory.

5. If needed, set Header, Footer, and Limit.

In this scenario, set Header to 1. Footer and limit for the number of processed rows are not set.

6. Click Edit schema to describe the data structure of the source delimited file.

In this scenario, the source schema is made of eight columns: id, firstName, lastName, address, city, company,
age, and status.

Scenario: Tracking changes using Slowly Changing Dimensions (type 0 through type 3)

Talend Open Studio Components Reference Guide 195

7. Define the basic settings for the first tLogRow in order to view the content of the source file with varying
attributes in cells of a table on the console before being processed through the SCD component.

Configuring tMysqlSCD and tMysqlCommit

1. In the design workspace, click the tMysqlSCD and select the Component tab to define its basic settings.

2. In the Basic settings view, select the Use an existing connection check box to reuse the connection details
defined on the tMysqlConnection properties.

3. In the Table field, enter the table name to be used to track changes.

4. If needed, click Sync columns to retrieve the output data structure from the tFileInputDelimited.

5. In the design workspace, double-click tMysqlCommit to define its basic settings.

6. Select the relevant connection on the Component list if more than one connection exists.

7. Define the basic settings of the second tLogRow in order to view reject information in cells of a table.

Scenario: Tracking changes using Slowly Changing Dimensions (type 0 through type 3)

196 Talend Open Studio Components Reference Guide

Setting up the SCD editor

1. Double-click the tMysqlSCD component in the design workspace or click the three-dot button next to the
SCD Editor in the component’s Basic settings view to open the SCD editor and build the data flow for
the SCD outputs.

All the columns from the preceding component are displayed in the Unused panel of the SCD editor. All
the other panels in the SCD editor are empty.

2. From the Unused list, drop the id column to the Source keys panel to use it as the key to ensure the unicity
of the incoming data.

3. In the Surrogate keys panel, enter a name for the surrogate key in the Name field, SK1 in this scenario.

4. From the Creation list, select the method to be used for the surrogate key generation, Auto-increment in
this scenario.

5. From the Unused list, drop the firstname and lastname columns to the Type 0 panel, changes in these two
columns do not interest us.

6. Drop the status column to the Type 1 panel. The new value will overwrite the old value.

7. Drop the company column to the Type 2 panel. Each time a person changes his/her company, a new record
will be inserted in the dimensional table with a separate key.

In the Versioning area:

- Define the start and end columns of your SCD table that will hold the start and end date values. The end
date is null for current records until a change is detected. Then the end date gets filled in and a new record
is added with no end date.

In this scenario, we select Fixed Year Value for the end column and fill in a fictive year to avoid having
a null value in the end date field.

- Select the version check box to hold the version number of the record.

- Select the active check box to spot the column that will hold the True or False status. True for the current
active record and False for the modified record.

8. Drop the address and city columns to the Type 3 panel to track only the information about the previous value
of the address and city.

For more information about SCD types, see the section called “SCD management methodologies”.

Scenario: Tracking changes using Slowly Changing Dimensions (type 0 through type 3)

Talend Open Studio Components Reference Guide 197

9. Click OK to validate your configuration and close the SCD editor.

Creating the SCD table

1. Click Edit schema to view the input and output data structures.

The SCD output schema should include the SCD-specific columns defined in the SCD editor to hold standard
log information.

Scenario: Tracking changes using Slowly Changing Dimensions (type 0 through type 3)

198 Talend Open Studio Components Reference Guide

If you adjust any of the input schema definitions, you need to check, and reconfigure if necessary, the
output flow definitions in the SCD editor to ensure that the output data structure is properly updated.

2. In the Basic settings view of the tMysqlSCD component, select Create table if not exists from the Action
on table list to avoid creating and defining the SCD table manually.

Job execution

Save your Job and press F6 to execute it.

The console shows the content of the input delimited file, and your SCD table is created in your database,
containing the initial dataset.

Janet gets divorced and moves to Adelanto at 355 Golf Rd. She works at Greenwood.

Adam gets married and moves to Belmont at 2505 Alisson ct. He works at Scoop.

Martin gets a new job at Phillips and Brothers.

Update the delimited file with the above information and press F6 to run your Job.

The console shows the updated personal information and the rejected data, and the SCD table shows the history of
valid changes made to the input file along with the status and version number. Because the name of Martin’s new
company exceeds the length of the column company defined in the schema, this change is directed to the reject
flow instead of being logged in the SCD table.

Scenario: Tracking changes using Slowly Changing Dimensions (type 0 through type 3)

Talend Open Studio Components Reference Guide 199

tMysqlSCDELT

200 Talend Open Studio Components Reference Guide

tMysqlSCDELT

tMysqlSCDELT Properties

Component family Databases/MySQL

Function tMysqlSCDELT reflects and tracks changes in a dedicated MySQL SCD table.

Purpose tMysqlSCDELT addresses Slowly Changing Dimension needs through SQL
queries (server-side processing mode), and logs the changes into a dedicated
MySQL SCD table.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally. Enter
properties manually.

Repository: Select the repository file where Properties are
stored. The fields that come after are pre-filled in using the
fetched data.

DB Version Select the Mysql version you are using.

Use an existing
connection

Select this check box and click the relevant
tMySqlConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host The IP address of the database server.

Port Listening port number of database server.

Database Name of the database

tMysqlSCDELT Properties

Talend Open Studio Components Reference Guide 201

Username and
Password

User authentication data for a dedicated database.

Source table Name of the input MySQL SCD table.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table Select to perform one of the following operations on the
table defined:

None: No action carried out on the table.

Drop and create the table: The table is removed and
created again

Create a table: A new table gets created.

Create a table if not exists: A table gets created if it does
not exist.

Clear a table: The table content is deleted. You have the
possibility to rollback the operation.

Truncate a table: The table content is deleted. You don
not have the possibility to rollback the operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Surrogate Key Select the surrogate key column from the list.

Creation Select the method to be used for the surrogate key
generation.

For more information regarding the creation methods, see
the section called “SCD keys”.

Source Keys Select one or more columns to be used as keys, to ensure
the unicity of incoming data.

Use SCD Type 1 fields Use type 1 if tracking changes is not necessary. SCD
Type 1 should be used for typos corrections for example.
Select the columns of the schema that will be checked for
changes.

Use SCD Type 2 fields Use type 2 if changes need to be tracked down. SCD Type
2 should be used to trace updates for example. Select the
columns of the schema that will be checked for changes.

Start date: Adds a column to your SCD schema to hold
the strat date value. You can select one of the input schema
columns as Start Date in the SCD table.

End Date: Adds a column to your SCD schema to hold the
end date value for the record. When the record is currently

Related Scenario

202 Talend Open Studio Components Reference Guide

active, the End Date column shows a null value, or you can
select Fixed Year value and fill it in with a fictive year to
avoid having a null value in the End Date field.

Log Active Status: Adds a column to your SCD schema
to hold the true or false status value. This column helps
to easily spot the active record.

Log versions: Adds a column to your SCD schema to hold
the version number of the record.

Advanced settings Debug mode Select this check box to display each step during
processing entries in a database.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component is used as an output component. It requires an input component and
Row main link as input.

Related Scenario

For related topics, see: the section called “tMysqlSCD” and the section called “Scenario: Tracking changes using
Slowly Changing Dimensions (type 0 through type 3)”.

tOracleSCD

Talend Open Studio Components Reference Guide 203

tOracleSCD

tOracleSCD Properties

Component family Databases/Oracle

Function tOracleSCD reflects and tracks changes in a dedicated Oracle SCD table.

Purpose tOracleSCD addresses Slowly Changing Dimension needs, reading regularly a
source of data and logging the changes into a dedicated SCD table

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties
are stored. The following fields are pre-filled in using
fetched data.

Use an existing
connection

Select this check box and click the relevant DB connection
component on the Component list to reuse the connection
details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Connection type Select the relevant driver on the list.

DB Version Select the Oracle version you are using.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Related scenario

204 Talend Open Studio Components Reference Guide

Schema Name of the DB schema.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time.

Action on table Select to perform one of the following operations on the
table defined:

- None: No action is carried out on the table.

- Create table: A new table is created.

- Create table if not exists: A table is created if it does not
exist.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

SCD Editor The SCD editor helps to build and configure the data flow
for slowly changing dimension outputs.

For more information, see the section called “SCD
management methodologies”.

Use memory saving
Mode

Select this check box to maximize system performance.

Die on error This check box is cleared by default, meaning to skip the
row on error and to complete the process for error-free
rows.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Debug mode Select this check box to display each step during
processing entries in a database.

Usage This component is used as Output component. It requires an Input component and
Row main link as input.

Related scenario

For related scenarios, see the section called “tMysqlSCD”.

tOracleSCDELT

Talend Open Studio Components Reference Guide 205

tOracleSCDELT

tOracleSCDELT Properties

Component family Databases/Oracle

Function tOracleSCDELT reflects and tracks changes in a dedicated Oracle SCD table.

Purpose tOracleSCDELT addresses Slowly Changing Dimension needs through SQL
queries (server-side processing mode), and logs the changes into a dedicated DB2
SCD table.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally. Enter
properties manually.

Repository: Select the repository file where Properties are
stored. The fields that come after are pre-filled in using the
fetched data.

Use an existing
connection

Select this check box and click the relevant
tOracleConnection component on the Component List
to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Connection type Select the relevant driver on the list.

DB Version Select the Oracle version you are using.

Host The IP address of the database server.

Port Listening port number of database server.

tOracleSCDELT Properties

206 Talend Open Studio Components Reference Guide

Database Name of the database

Username and
Password

User authentication data for a dedicated database.

Source table Name of the input DB2 SCD table.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table Select to perform one of the following operations on the
table defined:

None: No action carried out on the table.

Drop and create table: The table is removed and created
again

Create table: A new table gets created.

Create table if not exists: A table gets created if it does
not exist.

Clear table: The table content is deleted. You have the
possibility to rollback the operation.

Truncate table: The table content is deleted. You don not
have the possibility to rollback the operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Surrogate Key Select the surrogate key column from the list.

Creation Select the method to be used for the surrogate key
generation.

For more information regarding the creation methods, see
the section called “SCD keys”.

Source Keys Select one or more columns to be used as keys, to ensure
the unicity of incoming data.

Use SCD Type 1 fields Use type 1 if tracking changes is not necessary. SCD
Type 1 should be used for typos corrections for example.
Select the columns of the schema that will be checked for
changes.

Use SCD Type 2 fields Use type 2 if changes need to be tracked down. SCD Type
2 should be used to trace updates for example. Select the
columns of the schema that will be checked for changes.

Start date: Adds a column to your SCD schema to hold
the start date value. You can select one of the input schema
columns as Start Date in the SCD table.

Related Scenario

Talend Open Studio Components Reference Guide 207

End Date: Adds a column to your SCD schema to hold the
end date value for the record. When the record is currently
active, the End Date column shows a null value, or you can
select Fixed Year value and fill it in with a fictive year to
avoid having a null value in the End Date field.

Log Active Status: Adds a column to your SCD schema
to hold the true or false status value. This column helps
to easily spot the active record.

Log versions: Adds a column to your SCD schema to hold
the version number of the record.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

Debug mode Select this check box to display each step during
processing entries in a database.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is used as an output component. It requires an input component and
Row main link as input.

Related Scenario

For related topics, see the section called “tOracleSCD” and the section called “tMysqlSCD”.

tPaloCheckElements

208 Talend Open Studio Components Reference Guide

tPaloCheckElements

tPaloCheckElements Properties

Component family Business Intelligence/
Cube OLAP/Palo

Function This component checks whether elements are present in an incoming data flow
existing in a given cube.

Purpose This component can be used along with tPaloOutputMulti. It checks if the elements
from the input stream exist in the given cube, before writing them. It can also define
a default value to be used for nonexistent elements.

Basic settings Use an existing
connection

Select this check box and choose the relevant
DB connection component from the Connection
configuration list to use predefined connection details.

When a Job contains a parent Job and a child
Job, Connection configuration only lists the
connection components on the same Job level,
so if you need to use an existing connection
from another level, ensure that the connection
components available are sharing the connection
required.

For further information about sharing DB
connections across Job levels, refer to
Use or register a shared DB connection
in the properties table of the relevant
connection component in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can deactivate the connection
components and use the component's Dynamic
settings to define the connection manually. In this
case, ensure that the connection name is not used
elsewhere in the job, on any level. For further
information about Dynamic settings, see your
studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and
Password

Enter the Palo user authentication data.

Database Type in the name of the database in which the data is to
be written.

tPaloCheckElements Properties

Talend Open Studio Components Reference Guide 209

Cube Type in the name of the cube in which the data should be
written.

On element error Select what should happen if an element does not exist:

- Reject row: the corresponding row is rejected and placed
in the reject flow.

- Use default: the defined Default value is used.

- Stop: the entire process is interrupted.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Define the elements to be checked in the table provided.

- Column: shows the column(s) from the input schema. It
is completed automatically once a schema is retrieved or
created.

- Element type: select the element type for the input
column. Only one column can be defined as Measure.

- Default: type in the default value to be used if you have
selected the Use default option in the On element error
field.

Advanced settings tStat Catcher Statistics Select this check box to collect log data on the component
level.

Usage This component requires an input component.

Connections Outgoing links (from one component to another):

Row: Main; Rejects

Trigger: Run if; On Component Ok; On Component
Error.

Incoming links (from one component to another):

Row: Main; Rejects

For further information regarding connections, see Talend
Open Studio User Guide.

Limitation This component only works on Normal Palo cubes.

Related scenario

210 Talend Open Studio Components Reference Guide

Related scenario

For a related scenario, see the section called “Scenario 2: Rejecting inflow data when the elements to be written
do not exist in a given cube”.

tPaloConnection

Talend Open Studio Components Reference Guide 211

tPaloConnection

tPaloConnection Properties

Component family Business Intelligence/
Cube OLAP/Palo

Function This component opens a connection to a Palo Server and keeps it open throughout
the duration of the process it is required for. Every other Palo component used in
the process is able to use this connection.

Purpose This component allows other components involved in a process to share its
connection to a Palo server for the duration of the process.

Basic settings Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and
Password

Enter the Palo user authentication data.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is used along with Palo components to offer a shared connection
to a Palo server.

Connections Outgoing links (from one component to another):

Trigger: Run if; On Subjob Ok; On Subjob Error; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate

Trigger: Run if, On Subjob Ok, On Subjob Error, On
Component Ok, On Component Error.

For further information regarding connections, see Talend
Open Studio User Guide.

Limitation n/a

Related scenario

For related scenarios, see the section called “Scenario: Creating a dimension with elements”.

tPaloCube

212 Talend Open Studio Components Reference Guide

tPaloCube

tPaloCube Properties

Component family Business Intelligence/
Cube OLAP/Palo

Function This component creates, deletes or clears Palo cubes from existing dimensions in
a Palo database.

Purpose This component performs operations on a given Palo cube.

Basic settings Use an existing
connection

Select this check box and choose the relevant
DB connection component from the Connection
configuration list to reuse predefined connection details.

When a Job contains a parent Job and a child
Job, Connection configuration only lists the
connection components on the same Job level,
so if you need to use an existing connection
from another level, ensure that the connection
components available are sharing the connection
required.

For further information about sharing DB
connections across Job levels, refer to
Use or register a shared DB connection
in the properties table of the relevant
connection component in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can deactivate the connection
components and use the component's Dynamic
settings to define the connection manually. In this
case, ensure that the connection name is not used
elsewhere in the job, on any level. For further
information about Dynamic settings, see your
studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and
Password

Enter the Palo user authentication data.

Database Type in the name of the database in which the operation
is to take place.

tPaloCube Properties

Talend Open Studio Components Reference Guide 213

Cube Type in the name of the cube where the operation is to take
place.

Cube type From the drop-down list, select the type of cube on which
the operation is to be carried out:

- Normal: this is the normal and default type of cube.

- Attribut: an Attribute cube is created with a normal
cube.

- User Info: User Info cubes can be created/modified with
this component.

Action on cube Select the operation you want to carry out on the cube
defined:

- Create cube: the cube does not exist and will be created.

- Create cube if not exists: the cube is created if it does
not exist.

- Delete cube if exists and create: the cube is deleted if it
already exists and a new one will be created.

- Delete cube: the cube is deleted from the database.

- Clear cube: the data is cleared from the cube.

Dimension list Add rows and enter the name of existing database
dimension's to be used in the cube. The order of
the dimensions in the list determines the order of the
dimensions created.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage Can be used as a standalone component for dynamic cube creation with a defined
dimension list.

Global Variables Cubename: Indicates the name of the cube processed.
This is available as an After variable.

Returns a String.

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Trigger: Run if; On Subjob Ok; On Subjob Error; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate

Trigger: Run if; On Subjob Ok; On Subjob Error; On
Component Ok; On Component Error.

For further information regarding connections, see Talend
Open Studio User Guide.

Scenario: Creating a cube in an existing database

214 Talend Open Studio Components Reference Guide

Limitation The cube creation process does not create dimensions from scratch, so the
dimensions to be used in the cube must be created beforehand.

Scenario: Creating a cube in an existing database

The Job in this scenario creates a new two dimensional cube in the Palo demo database Biker.

To replicate this scenario, proceed as follows:

Configuring the tPaloCube component

1. Drop tPaloCube from the Palette onto the design workspace.

2. Double-click tPaloCube to open its Component view.

3. In the Host name field, type in the host name or the IP address of the host server, localhost for this example.

4. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

Scenario: Creating a cube in an existing database

Talend Open Studio Components Reference Guide 215

5. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

6. In the Database field, type in the database name in which you want to create the cube, Biker in this example.

7. In the Cube field, type in the name you want to use for the cube to be created, for example, bikerTalend.

8. In the Cube type field, select the Normal type from the drop-down list for the cube to be created, meaning
this cube will be normal and default.

9. In the Action on cube field, select the action to be performed. In this scenario, select Create cube.

10. Under the Dimension list table, click the plus button twice to add two rows into the table.

11. In the Dimension list table, type in the name for each newly added row to replace the default row name.
In this scenario, type in Months for the first row and Products for the second. These two dimensions exist
already in the Biker database where the new cube will be created.

Job execution

Press F6 to run the Job.

A new cube has been created in the Biker database and the two dimensions are added into this cube.

tPaloCubeList

216 Talend Open Studio Components Reference Guide

tPaloCubeList

tPaloCubeList Properties

Component family Business Intelligence/
Cube OLAP/Palo

Function This component retrieves a list of cube details from the given Palo database.

Purpose This component lists cube names, cube types, number of assigned dimensions, the
number of filled cells from the given database.

Basic settings Use an existing
connection

Select this check box and click the relevant DB connection
component on the Connection configuration to reuse the
connection details you already defined.

When a Job contains the parent Job and the child
Job, Connection configuration presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, make sure that the available
connection components are sharing the intended
connection.

For further information about how to share
a DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure
the connection name is unique and distinctive
all over through the two Job levels. For further
information about Dynamic settings, see your
studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and
Password

Enter the Palo user authentication data.

Database Type in the name of the database whose cube details you
want to retrieve.

Discovering the read-only output schema of tPaloCubeList

Talend Open Studio Components Reference Guide 217

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component can be used as a start component. It requires an output component.

Global Variables Number of cubes: indicates the number of the cubes
processed from the given database. This is available as an
After variable.

Returns an Integer

Cube_ID: indicates the IDs of the cubes being processed
from the given database. This is available as a Flow
variable.

Returns an Integer

Cubename: indicates the name of the cubes being
processed from the given database. This is available as an
Flow variable.

Returns a String.

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Row: Main, Iterate;

Trigger: Run if; On Subjob Ok; On Subjob Error; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate

Trigger: Run if; On Subjob Ok; On Subjob Error; On
Component Ok; On Component Error.

For further information regarding connections, see Talend
Open Studio User Guide.

Limitation The output schema is fixed and read-only.

Discovering the read-only output schema of
tPaloCubeList

The below table presents information related to the read-only schema of the tPaloCubeList component.

Column Type Description

Cube_id int Internal id of the cube.

Cube_name string Name of the cube.

Cube_dimensions int Number of dimensions inside the cube.

Cube_cells long Number of calculated cells inside the cube.

Scenario: Retrieving detailed cube information from a given database

218 Talend Open Studio Components Reference Guide

Column Type Description

Cube_filled_cells long Number of filled cells inside the cube.

Cube_status int Status of the cube. It may be:

- 0: unloaded

- 1: loaded

- 2: changed

Cube_type int Type of the cube. It may be:

- 0: normal

- 1: system

- 2: attribute

- 3: user info

- 4. gpu type

Scenario: Retrieving detailed cube information from a
given database

The Job in this scenario retrieves detailed information of the cubes pertaining to the demo Palo database, Biker.

To replicate this scenario, proceed as follows:

Setting up the Job

1. Drop tPaloCubeList and tLogRow from the component Palette onto the design workspace.

2. Right-click tPaloCubeList to open the contextual menu.

3. From this menu, select Row > Main to link the two components.

Configuring the tPaloCube component

1. Double-click the tPaloCube component to open its Component view.

Scenario: Retrieving detailed cube information from a given database

Talend Open Studio Components Reference Guide 219

2. In the Host name field, type in the host name or the IP address of the host server, localhost for this example.

3. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

4. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

5. In the Database field, type in the database name in which you want to create the cube, Biker in this example.

Job execution

Press F6 to run the Job.

The cube details are retrieved from the Biker database and are listed in the console of the Run view.

For further information about how to inteprete the cube details listed in the console, see the section called
“Discovering the read-only output schema of tPaloCubeList”.

tPaloDatabase

220 Talend Open Studio Components Reference Guide

tPaloDatabase

tPaloDatabase Properties

Component family Business Intelligence/
Cube OLAP/Palo

Function This component creates, drops or recreates databases in a given Palo server.

Purpose This component manages the databases inside a Palo server.

Basic settings Use an existing
connection

Select this check box and click the relevant DB connection
component on the Connection configuration to reuse the
connection details you already defined.

When a Job contains the parent Job and the child
Job, Connection configuration presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, make sure that the available
connection components are sharing the intended
connection.

For further information about how to share
a DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure
the connection name is unique and distinctive
all over through the two Job levels. For further
information about Dynamic settings, see your
studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and
Password

Enter the Palo user authentication data.

Database Type in the name of the database on which the given
operation should take place.

Scenario: Creating a database

Talend Open Studio Components Reference Guide 221

Action on database Select the operation you want to perform on the database
of interest:

- Create database: the database does not exist and will be
created.

- Create database if not exists: the database is created
when it does not exist.

- Delete database if exists and create: the database is
deleted if exist and a new one is then created.

- Delete database: the database is removed from the server

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component can be used in standalone for database management in a Palo server.

Global Variables Databasename: Indicates the name of the database being
processed. This is available as an After variable.

Returns a String.

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Trigger: Run if; On Subjob Ok; On Subjob Error; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate

Trigger: Run if; On Subjob Ok; On Subjob Error; On
Component Ok; On Component Error

For further information regarding connections, see Talend
Open Studio User Guide.

Limitation n/a

Scenario: Creating a database

The Job in this scenario creates a new database on a given Palo server.

To replicate this scenario, proceed as follows:

1. Drop tPaloDatabase from the component Palette onto the design workspace.

Scenario: Creating a database

222 Talend Open Studio Components Reference Guide

2. Double-click the tPaloDatabase component to open its Component view.

3. In the Host name field, type in the host name or the IP address of the host server, localhost for this example.

4. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

5. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

6. In the Database field, type in the database name in which you want to create the cube, talenddatabase in
this example.

7. In the Action on database field, select the action to be performed. In this scenario, select Create database
as the database to be created does not exist.

8. Press F6 to run the Job.

A new database is created on the given Palo server.

tPaloDatabaseList

Talend Open Studio Components Reference Guide 223

tPaloDatabaseList

tPaloDatabaseList Properties

Component family Business Intelligence/
Cube OLAP/Palo

Function This component retrieves a list of database details from the given Palo server.

Purpose This component lists database names, database types, number of cubes, number of
dimensions, database status and database id from a given Palo server.

Basic settings Use an existing
connection

Select this check box and click the relevant DB connection
component on the Connection configuration to reuse the
connection details you already defined.

When a Job contains the parent Job and the child
Job, Connection configuration presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, make sure that the available
connection components are sharing the intended
connection.

For further information about how to share
a DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure
the connection name is unique and distinctive
all over through the two Job levels. For further
information about Dynamic settings, see your
studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and
Password

Enter the Palo user authentication data.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component
level.

Discovering the read-only output schema of tPaloDatabaseList

224 Talend Open Studio Components Reference Guide

Usage This component can be used as a start component. It requires an output component.

Global Variables Number of databases: Indicates the number of the
databases processed. This is available as an After variable.

Returns a Integer.

Database_id: Indicates the id of the database being
processed. This is available as an Flow variable.

Returns a Long

Databasename: Indicates the name of the database
processed. This is available as an After variable.

Returns a String.

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Row: Main; Iterate

Trigger: Run if; On Subjob Ok; On Subjob Error; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate

Trigger: Run if; On Subjob Ok; On Subjob Error; On
Component Ok; On Component Error.

For further information regarding connections, see Talend
Open Studio User Guide.

Limitation The output schema is fixed and read-only.

Discovering the read-only output schema of
tPaloDatabaseList

The below table presents information related to the read-only output schema of the tPaloDatabaseList component.

Database Type Description

Database_id long Internal ID of the database.

Database_name string Name of the database.

Database_dimensions int Number of dimensions inside the database.

Database_cubes int Number of cubes inside the database.

Database_status int Status of the database.

- 0 = unloaded

- 1 = loaded

Scenario: Retrieving detailed database information from a given Palo server

Talend Open Studio Components Reference Guide 225

Database Type Description

- 2 = changed

Database_types int Type of the database.

- 0 =normal

- 1 =system

- 3 =user info

Scenario: Retrieving detailed database information
from a given Palo server

The Job in this scenario retrieves details of all of the databases from a given Palo server.

To replicate this scenario, proceed as follows:

Setting up the Job

1. Drop tPaloDatabaseList and tLogRow from the component Palette onto the design workspace.

2. Right-click tPaloDatabaseList to open the contextual menu.

3. From this menu, select Row > Main to link the two components.

Configuring the tPaloDatabaseList component

1. Double-click the tPaloDatabaseList component to open its Component view.

2. In the Host name field, type in the host name or the IP address of the host server, localhost for this example.

Scenario: Retrieving detailed database information from a given Palo server

226 Talend Open Studio Components Reference Guide

3. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

4. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

Job execution

Press F6 to run the Job.

Details of all of the databases in the Palo server are retrieved and listed in the console of the Run view.

For further information about the output schema, see the section called “Discovering the read-only output schema
of tPaloDatabaseList”.

tPaloDimension

Talend Open Studio Components Reference Guide 227

tPaloDimension

tPaloDimension Properties

Component family Business Intelligence/
Cube OLAP/Palo

Function This component creates, drops or recreates dimensions with or without dimension
elements inside a Palo database.

Purpose This component manages Palo dimensions, even elements inside a database

Basic settings Use an existing
connection

Select this check box and click the relevant DB connection
component on the Connection configuration to reuse the
connection details you already defined.

When a Job contains the parent Job and the child
Job, Connection configuration presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, make sure that the available
connection components are sharing the intended
connection.

For further information about how to share
a DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure
the connection name is unique and distinctive
all over through the two Job levels. For further
information about Dynamic settings, see your
studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and
Password

Enter the Palo user authentication data.

Database Type in the name of the database in which the dimensions
are managed.

tPaloDimension Properties

228 Talend Open Studio Components Reference Guide

Dimension Type in the name of the dimension on which the given
operation should take place.

Action on dimension Select the operation you want to perform on the dimension
of interest:

- None: no action is taken on this dimension.

- Create dimension: the dimension does not exist and will
be created.

- Create dimension if not exists: this dimension is created
only when it does not exist.

- Delete dimension if exists and create: this dimension is
deleted if exist and then a new one will be created.

- Delete dimension: this dimension is removed from the
database.

Create dimension
elements

Select this check box to activate the dimension
management fields and create dimension elements along
with the creation of this dimension.

The below fields
are available only
when the Create
dimension
elements check
box is selected

Dimension type

Available only
when the action
on dimension is
None.

Select the type of the dimension to be created. The type
may be:

- Normal

- User info

- System

- Attribute

Commit size Type in the number of elements which will be created
before saving them inside the dimension.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Consolidation type -
None

With this
option, you
activate the
corresponding
parameter
fields to be
completed.

Select this check box to move directly the incoming
elements into the given dimension. With this option, you
will not define any consolidations or hierarchy.

Input Column: select a column from the drop-down list.
The columns in the drop-down list are those you defined

tPaloDimension Properties

Talend Open Studio Components Reference Guide 229

for the schema. The values from this selected column
would be taken to process dimension elements.

Element type: Select the type of elements. It may be:

- Numeric

- Text

Creation mode: Select creation mode for elements to be
processed. This mode may be:

- Add: add simply an element to the dimension.

- Force add: force the creation of this element. If exist this
element will be recreated.

- Update: updates this element if it exists.

- Add or Update: if this element does not exist, it will
be created otherwise it will be updated. This is the default
option.

- Delete: delete this element from the dimension

Consolidation type -
Normal

With this
option, you
activate the
corresponding
parameter
fields to be
completed.

Select this check box to create elements and consolidate
them inside the given dimension. This consolidation
structures the created elements in different levels.

Input Column: select a column from the drop-down list.
The columns in the drop-down list are those you defined
for the schema. The values from this selected column
would be taken to process dimension elements.

Element type: Select the type of elements. It may be:

- Numeric

- Text

Creation mode: Select creation mode for elements to be
created. This mode may be

- Add: add simply an element to the dimension.

- Force add: force the creation of this element. If the
element exists, it will be recreated.

- Update: updates this element if it exists.

- Add or Update: if this element does not exist, it will be
created, otherwise it will be updated. This is the default
option.

Consolidation type -
Self-referenced

Select this check box to create elements and structure them
based on a parent-child relationship. The input stream is
responsible for the grouping of the consolidation.

tPaloDimension Properties

230 Talend Open Studio Components Reference Guide

With this
option, you
activate the
corresponding
parameter
fields to be
completed.

Element's type Select the type of elements. It may be:

- Numeric

- Text

Creation mode Select creation mode for elements to be created. This mode
may be

- Add: add simply an element to the dimension.

- Force add: force the creation of this element. If exist this
element will be recreated.

- Update: update this element if it exists.

- Add or Update: if this element does not exist, it will
be created otherwise it will be updated. This is the default
option.

Input Column: select a column from the drop-down list.
The columns in the drop-down list are those you defined
for the schema. The values from this selected column
would be taken to process dimension elements.

Hierarchy Element: select the type and the relationship
of this input column in the consolidation.

- Parent: set the input value as parent element.

- Child: relate the input value to the parent value and build
the consolidation.

- Factor: define the factor for this consolidation.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component can be used in standalone or as end component of a process.

Global Variables Dimensionname: Indicates the name of the dimension
processed. This is available as an After variable.

Returns a String.

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Trigger: Run if; On Subjob Ok; On Subjob Error; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Scenario: Creating a dimension with elements

Talend Open Studio Components Reference Guide 231

Row: Main; Iterate

Trigger: Run if; On Subjob Ok; On Subjob Error; On
Component Ok; On Component Error.

For further information regarding connections, see Talend
Open Studio User Guide.

Limitation Deletion of dimension elements is only possible with the consolidation type None.
Only consolidation type Self-Referenced allows the placing of an factor on this
consolidation.

Scenario: Creating a dimension with elements

The Job in this scenario creates a date dimension with simple element hierarchy composed of three levels: Year,
Month, Date.

To replicate this scenario, proceed as follows:

Setting up the Job

1. Drop tPaloConnection, tRowGenerator, tMap, tPaloDimension from the component Palette onto the
design workspace.

2. Right-click tPaloConnection to open the contextual menu and select Trigger > On Subjob Ok to link it
to tRowGenerator.

3. Right-click tRowGenerator to open the contextual menu and select Row > Main to link it to tMap.

tRowGenerator is used to generate rows at random in order to simplify this process. In the real case,
you can use one of the other input components to load your actual data.

4. Right-click tMap to open the contextual menu and select Row > New output to link to tPaloDimension,
then name it as out1 in the dialog box that pops up.

Setting up the DB connection

1. Double-click the tPaloConnection component to open its Component view.

Scenario: Creating a dimension with elements

232 Talend Open Studio Components Reference Guide

2. In the Host name field, type in the host name or the IP address of the host server, localhost for this example.

3. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

4. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

Configuring the input component

1. Double-click tRowGenerator to open its editor.

2. On the upper part of the editor, click the plus button to add one column and rename it as random_date in
the Column column.

3. In the newly added row, select Date in the Type column and getRandomDate in the Functions column.

4. In the Function parameters view on the lower part of this editor, type in the new minimum date and
maximum date values in the Value column. In this example, the minimum is 2010-01-01, the maximum is
2010-12-31.

5. Click OK to validate your modifications and close the editor.

6. On the dialog box that pops up, click OK to propagate your changes.

Scenario: Creating a dimension with elements

Talend Open Studio Components Reference Guide 233

Configuration in the tMap editor

1. Double-click tMap to open its editor.

2. On the Schema editor view on the lower part of the tMap editor, under the out1 table, click the plus button
to add three rows.

3. In the Column column of the out1 table, type in the new names for the three newly added rows. They are
Year, Month, and Date. These rows are then added automatically into the out1 table on the upper part of
the tMap editor.

4. In the out1 table on the upper part of the tMap editor, click the Expression column in the Year row to locate
the cursor.

5. Press Ctrl+space to open the drop-down variable list.

6. Double-click TalendDate.formatDate to select it from the list. The expression to get the date displays in the
Year row under the Expression column. The expression is TalendDate.formatDate("yyyy-MM-dd
HH:mm:ss",myDate).

7. Replace the default expression with TalendDate.formatDate("yyyy",row1.random_date) .

8. Do the same for the Month row and the Date row to add this default expression and to replace
it with TalendDate.formatDate("MM",row1.random_date) for the Month row and with
TalendDate.formatDate("dd-MM-yyyy", row1.random_date) for the Date row.

9. Click OK to validate this modification and accept the propagation by clicking OK in the dialog box that
pops up.

Configuring the tPaloDimension component

1. On the workspace, double-click tPaloDimension to open its Component view.

Scenario: Creating a dimension with elements

234 Talend Open Studio Components Reference Guide

2. Select the Use an existing connection check box. Then tPaloConnection_1 displays automatically in the
Connection configuration field.

3. In the Database field, type in the database in which the new dimension is created, talendDatabase for this
scenario.

4. In the Dimension field, type in the name you want to use for the dimension to be created, for example, Date.

5. In the Action on dimension field, select the action to be performed. In this scenario, select Create dimension
if not exist.

6. Select the Create dimension elements check box.

7. In the Consolidation Type area, select the Normal check box.

8. Under the element hierarchy table in the Consolidation Type area, click the plus button to add three rows
into the table.

9. In the Input column column of the element hierarchy table, select Year from the drop-down list for the first
row, Month for the second and Date for the third. This determinates levels of elements from different columns
of the input schema.

Job execution

Press F6 to run the Job.

A new dimension is then created in your Palo database talendDatabase.

Scenario: Creating a dimension with elements

Talend Open Studio Components Reference Guide 235

tPaloDimensionList

236 Talend Open Studio Components Reference Guide

tPaloDimensionList

tPaloDimensionList Properties

Component family Business Intelligence/
Cube OLAP/Palo

Function This component retrieves a list of dimension details from the given Palo database.

Purpose This component lists dimension names, dimension types, number of dimension
elements, maximum dimension indent, maximum dimension depth, maximum
dimension level, dimension id from a given Palo server.

Basic settings Use an existing
connection

Select this check box and click the relevant DB connection
component on the Connection configuration to reuse the
connection details you already defined.

When a Job contains the parent Job and the child
Job, Connection configuration presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, make sure that the available
connection components are sharing the intended
connection.

For further information about how to share
a DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure
the connection name is unique and distinctive
all over through the two Job levels. For further
information about Dynamic settings, see your
studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and
Password

Enter the Palo user authentication data.

Database The name of the database where the dimensions of interest
reside.

tPaloDimensionList Properties

Talend Open Studio Components Reference Guide 237

Retrieve cube
dimensions

Select this check box to retrieve dimension information
from an existing cube.

Cube

Available when
you select the
Retrieve cube
dimensions
check box.

Type in the name of the cube from which dimension
information is retrieved.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component can be used in standalone or as start component of a process.

Global Variables Dimension name: Indicates the name of the dimension
being processed. This is available as an Flow variable.

Returns a String.

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Row: Main; Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate

Trigger: Run if; On Subjob Ok; On Subjob Error; On
Component Ok; On Component Error.

For further information regarding connections, see Talend
Open Studio User Guide.

Limitation The output schema is fixed and read-only.

Discovering the read-only output schema of tPaloDimensionList

238 Talend Open Studio Components Reference Guide

Discovering the read-only output schema of
tPaloDimensionList
The below table presents information related to the read-only output schema of the tPaloDimensionList
component.

Database Type Description

Dimension_id long Internal ID of the dimension.

Dimension_name string Name of the dimension.

Dimension_attribute_cube string Name of the cube of attributes.

Dimension_rights_cube string Name of the cube of rights.

Dimension_elements int Number of the dimension elements

Dimension_max_level int Maximum level of the dimension

Dimension_max_indent int Maximum indent of the dimension

Dimension_max_depth int Maximum depth of the dimension

Dimension_type int Type of the dimension.

- 0 =normal

- 1 =system

- 2 =attribute

- 3 =user info

Scenario: Retrieving detailed dimension information
from a given database
The Job in this scenario retrieves details of all of the dimensions from a given database.

To replicate this scenario, proceed as follows:

Setting up the Job

1. Drop tPaloDimensionList and tLogRow from the component Palette onto the design workspace.

2. Right-click tPaloDimensionList to open the contextual menu.

3. From this menu, select Row > Main to link the two components.

Configuring the tPaloDimensionList component

1. Double-click the tPaloDimensionList component to open its Component view.

Scenario: Retrieving detailed dimension information from a given database

Talend Open Studio Components Reference Guide 239

2. In the Host name field, type in the host name or the IP address of the host server, localhost for this example.

3. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

4. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

5. In the Database field, type in the database name where the dimensions of interest reside, Biker in this example.

Job execution

Press F6 to run the Job.

Details of all the dimensions in the Biker database are retrieved and listed in the console of the Run view.

For further information about the output schema, see the section called “Discovering the read-only output schema
of tPaloDimensionList”.

tPaloInputMulti

240 Talend Open Studio Components Reference Guide

tPaloInputMulti

tPaloInputMulti Properties

Component family Business Intelligence/
Cube OLAP/Palo

Function This component retrieves data (elements as well as values) from a Palo cube.

Purpose This component retrieves the stored or calculated values in combination with the
element records out of a cube.

Basic settings Use an existing
connection

Select this check box and click the relevant DB connection
component on the Connection configuration to reuse the
connection details you already defined.

When a Job contains the parent Job and the child
Job, Connection configuration presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, make sure that the available
connection components are sharing the intended
connection.

For further information about how to share
a DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure
the connection name is unique and distinctive
all over through the two Job levels. For further
information about Dynamic settings, see your
studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and
Password

Enter the Palo user authentication data.

Database Type in the name of the database where the elements of
interest reside.

tPaloInputMulti Properties

Talend Open Studio Components Reference Guide 241

Cube Type in the name of the cube where the dimension
elements to be retrieved are stored.

Cube type Select the cube type from the drop-down list for the cube
of concern. This type may be:

- Normal

- Attribut

- System

- User Info

Commit size Type in the row count of each batch to be retrieved.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository. The MEASURE column and
the TEXT column are read-only, but you can add other
columns aside.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Cube Query Complete this table to precise the data you want to retrieve.
The columns to be filled are:

Column: the schema columns are added automatically
to this column once defined in the schema editor. The
schema columns are used to stored the retrieved dimension
elements.

Dimensions: type in each of the dimension names of the
cube from which you want to retrieve dimension elements.

The dimension order listed in this column must be
consistent with the order given in the cube that
stores these dimensions.

Elements: type in the dimension elements from which
data is retrieved. If several elements are needed from one
single dimension, separate them with a coma.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component requires an output component.

Connections Outgoing links (from one component to another):

Row: Main

Trigger: Run if; On Subjob Ok; On Subjob Error; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate

Scenario: Retrieving dimension elements from a given cube

242 Talend Open Studio Components Reference Guide

Trigger: Run if; On Subjob Ok; On Subjob Error; On
Component Ok; On Component Error.

For further information regarding connections, see Talend
Open Studio User Guide.

Limitation According to the architecture of OLAP-Systems only one single value (text or
numeric) could be retrieved from the cube. The MEASURE column and the TEXT
column are fixed and read-only.

Scenario: Retrieving dimension elements from a given
cube

The Job in this scenario retrieves several dimension elements from a demo Palo cube Sales.

To replicate this scenario, proceed as follows:

Setting up the Job

1. Drop tPaloInputMulti and tLogRow from the component Palette onto the design workspace.

2. Right-click tPaloInputMulti to open its contextual menu.

3. In the menu, select Row > Main to connect tPaloInputMulti to tLogRow with a row link.

Setting up the DB connection

1. Double-click the tPaloInputMulti component to open its Component view.

Scenario: Retrieving dimension elements from a given cube

Talend Open Studio Components Reference Guide 243

2. In the Host name field, type in the host name or the IP address of the host server, localhost for this example.

3. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

4. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

Configuring the Cube Query

1. In the Database field, type in the database name in which the cube to be used is stored.

2. In the Cube field, type in the cube name in which the dimensions of interests are stored. In this scenario, it
is one of the demo cubes Sales.

3. In the Cube type field, select the Normal type from the drop-down list for the cube to be created, meaning
this cube will be normal and default.

4. Next to the Edit schema field, click the three-dot button to open the schema editor.

Scenario: Retrieving dimension elements from a given cube

244 Talend Open Studio Components Reference Guide

5. In the schema editor, click the plus button to add the rows of the schema to be edited. In this example, add
rows corresponding to all of the dimensions stored in the Sales cube: Products, Regions, Months, Years,
Datatypes, Measures. Type in them in the order given in this cube.

6. Click OK to validate this editing and accept the propagation of this change to the next component. Then
these columns are added automatically into the Column column of the Cube query table in the Component
view. If the order is not consistent with the one in the Sales cube, adapt it using the up and down arrows
under the schema table.

7. In the Dimensions column of the Cube query table, type in each of the dimension names stored in the Sales
cube regarding to each row in the Column column. In the Sales cube, the dimension names are: Products,
Regions, Months, Years, Datatypes, Measures.

8. In the Elements columns of the Cube query table, type in the dimension elements you want to retrieve
regarding to the dimensions they belong to. In this example, the elements to be retrieved are All Products,
Germany and Austria (Belonging to the same dimension Regions, these two elements are entered in the same
row and separated with a coma.), Jan, 2009, Actual, Turnover.

Job execution

1. Click tLogRow to open its Component view.

2. In the Mode area, select the Table (print values in cells of a table) check box to display the execution result
in a table.

3. Press F6 to run the Job.

Scenario: Retrieving dimension elements from a given cube

Talend Open Studio Components Reference Guide 245

The dimension elements and the corresponding Measure values display in the Run console.

tPaloOutput

246 Talend Open Studio Components Reference Guide

tPaloOutput

tPaloOutput Properties

Component family Business Intelligence/
Cube OLAP/Palo

Function This component writes one row of data (elements as well as values) into a Palo cube.

Purpose This component takes the input stream and writes it to a given Palo cube.

Basic settings Use an existing
connection

Select this check box and click the relevant DB connection
component on the Connection configuration to reuse the
connection details you already defined.

When a Job contains the parent Job and the child
Job, Connection configuration presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, make sure that the available
connection components are sharing the intended
connection.

For further information about how to share
a DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure
the connection name is unique and distinctive
all over through the two Job levels. For further
information about Dynamic settings, see your
studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and
Password

Enter the Palo user authentication data.

Database Type in the name of the database where the cube of interest
resides.

Related scenario

Talend Open Studio Components Reference Guide 247

Cube Type in the name of the cube in which the incoming data
is written.

Commit size Type in the row count of each batch to be written into the
cube.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Column as Measure Select the column from the input stream which holds the
Measure or Text values.

Create element if not
exist

Select this check box to create the element being processed
if it does not exist originally.

Save cube at process
end

Select this check box to save the cube you have written the
data in at the end of this process.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component requires an input component.

Global variable Number of lines: Indicates the number of the lines
processed. This is available as an After variable.

Returns a Integer.

Connections Outgoing links (from one component to another):

Row: Iterate

Trigger: Run if

Incoming links (from one component to another):

Row: Main; Reject

For further information regarding connections, see Talend
Open Studio User Guide.

Limitation This component is able to write only one row of data into a cube.

Related scenario

For related topic, see the section called “Scenario 1: Writing data into a given cube”.

tPaloOutputMulti

248 Talend Open Studio Components Reference Guide

tPaloOutputMulti

tPaloOutputMulti Properties

Component family Business Intelligence/
Cube OLAP/Palo

Function This component writes data (elements as well as values) into a Palo cube.

Purpose This component takes the input stream and writes it to a given Palo cube.

Basic settings Use an existing
connection

Select this check box and click the relevant DB connection
component on the Connection configuration to reuse the
connection details you already defined.

When a Job contains the parent Job and the child
Job, Connection configuration presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, make sure that the available
connection components are sharing the intended
connection.

For further information about how to share
a DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure
the connection name is unique and distinctive
all over through the two Job levels. For further
information about Dynamic settings, see your
studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and
Password

Enter the Palo user authentication data.

Database Type in the name of the database where the cube of interest
resides.

tPaloOutputMulti Properties

Talend Open Studio Components Reference Guide 249

Cube Type in the name of the cube in which the incoming data
is written.

Cube type Select the cube type from the drop-down list for the cube
of concern. This type may be:

- Normal

- Attribut

- System

- User Info

Commit size Type in the row count of each batch to be written into the
cube.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Measure value Select the column from the input stream which holds the
Measure or Text values.

Splash mode Select the splash mode used to write data into a
consolidated element. The mode may be:

- Add: it writes values to the underlying elements.

- Default: it uses the default splash mode.

- Set: it simply sets or replaces the current value and make
the distribution based on the other values.

- Disable: it applies no splashing.

For further information about the Palo splash modes, see
Palo’s user guide.

Add values Select this check box to add new values to the current
values for a sum. Otherwise these new values will
overwrite the current ones.

Use eventprocessor Select this checkbox to call the supervision server.

Die on error This check box is cleared by default, meaning to skip the
row on error and to complete the process for error-free
rows.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component requires an input component.

Connections Outgoing links (from one component to another):

Row: Main

Scenario 1: Writing data into a given cube

250 Talend Open Studio Components Reference Guide

Trigger: Run if; On Component Ok; On Component
Error.

Incoming links (from one component to another):

Row: Main; Reject

For further information regarding connections, see Talend
Open Studio User Guide.

Limitation Numeric measures are only be accepted as Double or String type. When the string
type is used, write the value to be processed between quotation marks.

Scenario 1: Writing data into a given cube

The Job in this scenario writes new values in the Sales cube given as demo in the Demo database installed with Palo.

To replicate this scenario, proceed as follows:

Setting up the Job

1. Drop tFixedFlowInput and tPaloOutputMulti from the component Palette onto the design workspace.

2. Right-click tFixedFlowInput to open its contextual menu.

3. In this menu, select Row > Main to connect this component to tPaloOutputMulti.

Configuring the input component

1. Double-click the tFixedFlowInput component to open its Component view.

Scenario 1: Writing data into a given cube

Talend Open Studio Components Reference Guide 251

2. Click the three-dot button to open the schema editor.

3. In the schema editor, click the plus button to add 7 rows and rename them respectively as Products, Regions,
Months, Years, Datatypes, Measures and Values. The order of these rows must be consistent with that of
the corresponding dimensions in the Sales cube and the type of the Value column where the measure value
resides is set to double/Double.

4. Click OK to validate the editing and accept the propagation prompted by the dialog box that pops up. Then
the schema column labels display automatically in the Value table under the Use single table check box,
in the Mode area.

5. In the Value table, type in values for each row in the Value column. In this example, these values are: Desktop
L, Germany, Jan, 2009, Actual, Turnover, 1234.56.

Configuring the output component

1. Double-click tPaloOutputMulti to open its Component view.

Scenario 1: Writing data into a given cube

252 Talend Open Studio Components Reference Guide

2. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

3. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

4. In the Database field, type in the database name in which you want to create the cube, Demo in this example.

5. In the Cube field, type in the name of the cube you want to write data in, for example, Sales.

6. In the Cube type field, select the Normal type from the drop-down list for the cube to be created, meaning
this cube will be normal and default.

7. In the Measure Value field, select the Measure element. In this scenario, select Value.

Job execution

Press F6 to run the Job.

The inflow data has been written into the Sales cube.

Scenario 2: Rejecting inflow data when the elements to be written do not exist in a given cube

Talend Open Studio Components Reference Guide 253

Scenario 2: Rejecting inflow data when the elements
to be written do not exist in a given cube

The Job in this scenario tries to write data into the Sales cube but as the elements of interest do not exist in this
cube, the inflow data is rejected.

To replicate this scenario, proceed as follows:

Setting up the Job

1. Drop tFixedFlowInput, tPaloCheckElements, tPaloOutputMulti and tLogRow from the component
Palette onto the design workspace.

2. Right-click tFixedFlowInput to open its contextual menu.

3. In this menu, select Row > Main to connect this component to tPaloCheckElements.

4. Do the same to connect tPaloOutputMulti using row link.

5. Right-click tPaloCheckElements to open its contextual menu.

6. In this menu, select Row > Reject to connect this component to tLogRow.

Configuring the input component

1. Double-click the tFixedFlowInput component to open its Component view.

Scenario 2: Rejecting inflow data when the elements to be written do not exist in a given cube

254 Talend Open Studio Components Reference Guide

2. Click the three-dot button to open the schema editor.

3. In the schema editor, click the plus button to add 7 rows and rename them respectively as Products, Regions,
Months, Years, Datatypes, Measures and Values. The order of these rows must be consistent with that of
the corresponding dimensions in the Sales cube and the type of the Value column where the measure value
resides is set to double/Double.

4. Click OK to validate the editing and accept the propagation prompted by the dialog box that pops up. Then
the schema column labels display automatically in the Value table under the Use single table check box,
in the Mode area.

5. In the Value table, type in values for each row in the Value column. In this example, these values are: Smart
Products, Germany, Jan, 2009, Actual, Turnover, 1234.56. The Smart Products element does not exist in
the Sales cube.

Configuring the tPaloCheckElements component

1. Double-click tPaloCheckElements to open its Component view.

Scenario 2: Rejecting inflow data when the elements to be written do not exist in a given cube

Talend Open Studio Components Reference Guide 255

2. In the Host name field, type in localhost.

3. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

4. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

5. In the Database field, type in the database name in which you want to create the cube, Demo in this example.

6. In the Cube field, type in the name of the cube you want to write data in, for example, Sales.

7. In the On Element error field, select Reject row from the drop-down list.

8. In the element table at the bottom of the Basic settings view, click the Element type column in the Value
row and select Measure from the drop down list.

Configuring the output component

1. Double-click tPaloOutputMulti to open its Component view.

Scenario 2: Rejecting inflow data when the elements to be written do not exist in a given cube

256 Talend Open Studio Components Reference Guide

2. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

3. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

4. In the Database field, type in the database name in which you want to create the cube, Demo in this example.

5. In the Cube field, type in the name of the cube you want to write data in, for example, Sales.

6. In the Cube type field, select the Normal type from the drop-down list for the cube to be created, meaning
this cube will be normal and default.

7. In the Measure Value field, select the Measure element. In this scenario, select Value.

Job execution

Press F6 to run the Job.

The data to be written is rejected and displayed in the console of the Run view. You can read that the error message
is Smart Products.

tPaloRule

Talend Open Studio Components Reference Guide 257

tPaloRule

tPaloRule Properties

Component family Business Intelligence/
Cube OLAP/Palo

Function This component creates or modifies rules in a given cube.

Purpose This component allows you to manage rules in a given cube.

Basic settings Use an existing
connection

Select this check box and click the relevant DB connection
component on the Connection configuration to reuse the
connection details you already defined.

When a Job contains the parent Job and the child
Job, Connection configuration presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, make sure that the available
connection components are sharing the intended
connection.

For further information about how to share
a DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure
the connection name is unique and distinctive
all over through the two Job levels. For further
information about Dynamic settings, see your
studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and
Password

Enter the Palo user authentication data.

Database Type in the name of the database where the dimensions
applying the rules of interest reside.

Scenario: Creating a rule in a given cube

258 Talend Open Studio Components Reference Guide

Cube Type in the name of the cube whose dimension
information is retrieved.

Cube rules Complete this table to perform various actions on specific
rules.

Definition: type in the rule to be applied.

External Id: type in the user-defined external ID.

Comment: type in comment for this rule.

Activated: select this check box to activate this rule.

Action: select the action to be performed from the drop-
down list.

- Create: create this rule.

- Delete: delete this rule.

- Update: update this rule.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component can be used in standalone for rule creation, deletion or update.

Connections Outgoing links (from one component to another):

Trigger: Run if; On Subjob Ok; On Subjob Error; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate

Trigger: Run if; On Subjob Ok; On Subjob Error; On
Component Ok; On Component Error.

For further information regarding connections, see Talend
Open Studio User Guide.

Limitation Update or deletion of a rule is available only when this rule has been created with
external ID.

Scenario: Creating a rule in a given cube
The Job in this scenario creates a rule applied on dimensions of a given cube.

Scenario: Creating a rule in a given cube

Talend Open Studio Components Reference Guide 259

To replicate this scenario, proceed as follows:

Setting up the DB connection

1. Drop tPaloRule from the component Palette onto the design workspace.

2. Double-click the tPaloRule component to open its Component view.

3. In the Host name field, type in the host name or the IP address of the host server, localhost for this example.

4. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

5. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

6. In the Database field, type in the database name in which the dimensions applying the created rules reside,
Biker in this example.

7. In the Cube field, type in the name of the cube which the dimensions applying the created rules belong to,
for example, Orders.

Setting the Cube rules

1. Under the Cube rules table, click the plus button to add a new row.

2. In the Cube rules table, type in ['2009'] = 123 in the Definition column, OrderRule1 in the External
Id column and Palo Demo Rules in the Comment column.

3. In the Activated column, select the check box.

4. In the Action column, select Create from the drop-down list.

Scenario: Creating a rule in a given cube

260 Talend Open Studio Components Reference Guide

Job execution

Press F6 to run the Job.

The new rule has been created and the value of every 2009 element is 123.

tPaloRuleList

Talend Open Studio Components Reference Guide 261

tPaloRuleList

tPaloRuleList Properties

Component family Business Intelligence/
Cube OLAP/Palo

Function This component retrieves a list of rule details from the given Palo database.

Purpose This component lists all rules, formulas, comments, activation status, external IDs
from a given cube.

Basic settings Use an existing
connection

Select this check box and click the relevant DB connection
component on the Connection configuration to reuse the
connection details you already defined.

When a Job contains the parent Job and the child
Job, Connection configuration presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, make sure that the available
connection components are sharing the intended
connection.

For further information about how to share
a DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure
the connection name is unique and distinctive
all over through the two Job levels. For further
information about Dynamic settings, see your
studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and
Password

Enter the Palo user authentication data.

Database The name of the database where the cube of interest
resides.

Discovering the read-only output schema of tPaloRuleList

262 Talend Open Studio Components Reference Guide

Cube Type in the name of the cube in which you want to retrieve
the rule information.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component can be used in standalone or as start component of a process.

Global Variables Number of rules: Indicates the number of the rules
processed. This is available as an After variable.

Returns a Integer.

External ruleID: Indicates the external IDs of the rules
being processed. This is available as a Flow variable.

Returns a String

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Row: Main; Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate

Trigger: Run if; On Subjob Ok; On Subjob Error; On
Component Ok; On Component Error.

For further information regarding connections, see Talend
Open Studio User Guide.

Limitation The output schema is fixed and read-only.

Discovering the read-only output schema of
tPaloRuleList

The following table presents information related to the read-only output schema of the tPaloRuleList component.

Scenario: Retrieving detailed rule information from a given cube

Talend Open Studio Components Reference Guide 263

Database Type Description

rule_identifier long The internal identifier/id for this rule..

rule_definition string The formula of this rule. For further information about this
formula, see the Palo user guide.

rule_extern_id string The user-defined external id.

rule_comment string The user-edited comment on this rule.

rule_activated boolean Indicates if this rule had been activated or not.

Scenario: Retrieving detailed rule information from a
given cube

The Job in this scenario retrieves rule details applied on the dimensions of a given cube.

To replicate this scenario, proceed as follows:

Setting up the Job

1. Drop tPaloRuleList and tLogRow from the component Palette onto the design workspace.

2. Right-click tPaloRuleList to open the contextual menu.

3. From this menu, select Row > Main to link the two components.

Configuring the tPaloRuleList component

1. Double-click the tPaloRuleList component to open its Component view.

Scenario: Retrieving detailed rule information from a given cube

264 Talend Open Studio Components Reference Guide

2. In the Host name field, type in the host name or the IP address of the host server, localhost for this example.

3. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

4. In the Username and Password fields, type in the authentication information. In this example, both of them
are admin.

5. In the Database field, type in the database name where the dimensions applying the rules of interest reside,
Biker in this example.

6. In the Cube field, type in the name of the cube which the rules of interest belong to.

Job execution

Press F6 to run the Job.

Details of all of the rules in the Orders cube are retrieved and listed in the console of the Run view.

For further information about the output schema, see the section called “Discovering the read-only output schema
of tPaloRuleList”.

tParAccelSCD

Talend Open Studio Components Reference Guide 265

tParAccelSCD

tParAccelSCD Properties

Component family Databases/ParAccel

Function tParAccelSCD reflects and tracks changes in a dedicated ParAccel SCD table.

Purpose tParAccelSCD addresses Slowly Changing Dimension needs, reading regularly a
source of data and logging the changes into a dedicated SCD table

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties
are stored. The following fields are pre-filled in using
fetched data.

Use an existing
connection

Select this check box and click the relevant DB connection
component on the Component list to reuse the connection
details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Connection type Select the relevant driver on the list.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the DB schema.

Related scenario

266 Talend Open Studio Components Reference Guide

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

SCD Editor The SCD editor helps to build and configure the data flow
for slowly changing dimension outputs.

For more information, see the section called “SCD
management methodologies”.

Use memory saving
Mode

Select this check box to maximize system performance.

Die on error This check box is cleared by default, meaning to skip the
row on error and to complete the process for error-free
rows.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component
level.

Debug mode Select this check box to display each step during
processing entries in a database.

Usage This component is used as Output component. It requires an Input component and
Row main link as input.

Limitation n/a

Related scenario

For related scenarios, see the section called “tMysqlSCD”.

tPostgresPlusSCD

Talend Open Studio Components Reference Guide 267

tPostgresPlusSCD

tPostgresPlusSCD Properties

Component family Databases/PostgresPlus
Server

Function tPostgresPlusSCD reflects and tracks changes in a dedicated MSSQL SCD table.

Purpose tPostgresPlusSCD addresses Slowly Changing Dimension needs, reading regularly
a source of data and logging the changes into a dedicated SCD table

Basic settings Use an existing
connection

Select this check box and click the relevant DB connection
component on the Component list to reuse the connection
details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties
are stored. The following fields are pre-filled in using
fetched data.

Server Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the DB schema.

Related scenario

268 Talend Open Studio Components Reference Guide

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

SCD Editor The SCD editor helps to build and configure the data flow
for slowly changing dimension outputs.

For more information, see the section called “SCD
management methodologies”.

Use memory saving
Mode

Select this check box to maximize system performance.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Debug mode Select this check box to display each step during
processing entries in a database.

Usage This component is used as Output component. It requires an Input component and
Row main link as input.

Related scenario

For related topics, see the section called “tMysqlSCD”.

tPostgresPlusSCDELT

Talend Open Studio Components Reference Guide 269

tPostgresPlusSCDELT

tPostgresPlusSCDELT Properties

Component family Databases/Postgresql

Function tPostgresPlusSCDELT reflects and tracks changes in a dedicated Oracle SCD
table.

Purpose tPostgresPlusSCDELT addresses Slowly Changing Dimension needs through
SQL queries (server-side processing mode), and logs the changes into a dedicated
PostgresPlus SCD table.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally. Enter
properties manually.

Repository: Select the repository file where Properties are
stored. The fields that come after are pre-filled in using the
fetched data.

Use an existing
connection

Select this check box and click the relevant
tPostgresPlusConnection component on the Component
List to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host The IP address of the database server.

Port Listening port number of database server.

Database Name of the database.

tPostgresPlusSCDELT Properties

270 Talend Open Studio Components Reference Guide

Schema Exact name of the schema

Username and
Password

User authentication data for a dedicated database.

Source table Name of the input DB2 SCD table.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table Select to perform one of the following operations on the
table defined:

None: No action carried out on the table.

Drop and create table: The table is removed and created
again

Create table: A new table gets created.

Create table if not exists: A table gets created if it does
not exist.

Clear table: The table content is deleted. You have the
possibility to rollback the operation.

Truncate table: The table content is deleted. You don not
have the possibility to rollback the operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Surrogate Key Select the surrogate key column from the list.

Creation Select the method to be used for the surrogate key
generation.

For more information regarding the creation methods, see
the section called “SCD keys”.

Source Keys Select one or more columns to be used as keys, to ensure
the unicity of incoming data.

Use SCD Type 1 fields Use type 1 if tracking changes is not necessary. SCD
Type 1 should be used for typos corrections for example.
Select the columns of the schema that will be checked for
changes.

Use SCD Type 2 fields Use type 2 if changes need to be tracked down. SCD Type
2 should be used to trace updates for example. Select the
columns of the schema that will be checked for changes.

Start date: Adds a column to your SCD schema to hold
the start date value. You can select one of the input schema
columns as Start Date in the SCD table.

Related Scenario

Talend Open Studio Components Reference Guide 271

End Date: Adds a column to your SCD schema to hold the
end date value for the record. When the record is currently
active, the End Date column shows a null value, or you can
select Fixed Year value and fill it in with a fictive year to
avoid having a null value in the End Date field.

Log Active Status: Adds a column to your SCD schema
to hold the true or false status value. This column helps
to easily spot the active record.

Log versions: Adds a column to your SCD schema to hold
the version number of the record.

Advanced settings Debug mode Select this check box to display each step during
processing entries in a database.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is used as an output component. It requires an input component and
Row main link as input.

Related Scenario

For related topics, see the section called “tMysqlSCD”.

tPostgresqlSCD

272 Talend Open Studio Components Reference Guide

tPostgresqlSCD

tPostgresqlSCD Properties

Component family Databases/Postgresql
Server

Function tPostgresqlSCD reflects and tracks changes in a dedicated Postrgesql SCD table.

Purpose tPostgresqlSCD addresses Slowly Changing Dimension needs, reading regularly a
source of data and logging the changes into a dedicated SCD table

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties
are stored. The following fields are pre-filled in using
fetched data.

Use an existing
connection

Select this check box and click the relevant DB connection
component on the Component list to reuse the connection
details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the DB schema.

Related scenario

Talend Open Studio Components Reference Guide 273

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

SCD Editor The SCD editor helps to build and configure the data flow
for slowly changing dimension outputs.

For more information, see the section called “SCD
management methodologies”.

Use memory saving
Mode

Select this check box to maximize system performance.

Die on error This check box is cleared by default, meaning to skip the
row on error and to complete the process for error-free
rows.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Debug mode Select this check box to display each step during
processing entries in a database.

Usage This component is used as Output component. It requires an Input component and
Row main link as input.

Related scenario

For related topics, see the section called “tMysqlSCD”.

tPostgresqlSCDELT

274 Talend Open Studio Components Reference Guide

tPostgresqlSCDELT

tPostgresqlSCDELT Properties

Component family Databases/Postgresql

Function tPostgresqlSCDELT reflects and tracks changes in a dedicated Postgresql SCD
table.

Purpose tPostgresqlSCDELT addresses Slowly Changing Dimension needs through SQL
queries (server-side processing mode), and logs the changes into a dedicated DB2
SCD table.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally. Enter
properties manually.

Repository: Select the repository file where Properties are
stored. The fields that come after are pre-filled in using the
fetched data.

Use an existing
connection

Select this check box and click the relevant
tPostgresqlConnection component on the Component
List to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host The IP address of the database server.

Port Listening port number of database server.

Database Name of the database

tPostgresqlSCDELT Properties

Talend Open Studio Components Reference Guide 275

Username and
Password

User authentication data for a dedicated database.

Source table Name of the input DB2 SCD table.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table Select to perform one of the following operations on the
table defined:

None: No action carried out on the table.

Drop and create table: The table is removed and created
again

Create table: A new table gets created.

Create table if not exists: A table gets created if it does
not exist.

Clear table: The table content is deleted. You have the
possibility to rollback the operation.

Truncate table: The table content is deleted. You don not
have the possibility to rollback the operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Surrogate Key Select the surrogate key column from the list.

Creation Select the method to be used for the surrogate key
generation.

For more information regarding the creation methods, see
the section called “SCD keys”.

Source Keys Select one or more columns to be used as keys, to ensure
the unicity of incoming data.

Use SCD Type 1 fields Use type 1 if tracking changes is not necessary. SCD
Type 1 should be used for typos corrections for example.
Select the columns of the schema that will be checked for
changes.

Use SCD Type 2 fields Use type 2 if changes need to be tracked down. SCD Type
2 should be used to trace updates for example. Select the
columns of the schema that will be checked for changes.

Start date: Adds a column to your SCD schema to hold
the start date value. You can select one of the input schema
columns as Start Date in the SCD table.

End Date: Adds a column to your SCD schema to hold the
end date value for the record. When the record is currently

Related Scenario

276 Talend Open Studio Components Reference Guide

active, the End Date column shows a null value, or you can
select Fixed Year value and fill it in with a fictive year to
avoid having a null value in the End Date field.

Log Active Status: Adds a column to your SCD schema
to hold the true or false status value. This column helps
to easily spot the active record.

Log versions: Adds a column to your SCD schema to hold
the version number of the record.

Advanced settings Debug mode Select this check box to display each step during
processing entries in a database.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component is used as an output component. It requires an input component and
Row main link as input.

Related Scenario

For related topics, see the section called “tMysqlSCD”.

tSPSSInput

Talend Open Studio Components Reference Guide 277

tSPSSInput

Before being able to benefit from all functional objectives of the SPSS components, make sure to do the
following: -If you have already installed SPSS, add the path to the SPSS directory as the following: SET
PATH=%PATH%;<DR>:\program\SPSS, or -If you have not installed SPSS, you must copy the SPSS IO
“spssio32.dll” lib from the SPSS installation CD and paste it in Talend root directory.

tSPSSInput properties

Component family Business Intelligence

Function tSPSSInput reads data from an SPSS .sav file.

Purpose tSPSSInput addresses SPSS .sav data to write it for example in another file.

Basic settings Sync schema Click this button to synchronize with the columns of the
input SPSS .sav file.

Schema and Edit
Schema

The schema metadata in this component is retrieved
directly from the input SPSS .sav file and thus is read-only.

You can click Edit schema to view the retrieved metadata.

Filename Name or path of the SPSS .sav file to be read.

Translate labels Select this check box to translate the labels of the stored
values.

If you select this check box, you need to retrieve
the metadata again.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is used as a start component. It requires an output flow.

Scenario: Displaying the content of an SPSS .sav file

The following scenario creates a two-component Job, which aims at reading each row of a .sav file and displaying
the output on the log console.

Setting up the Job

1. Drop a tSPSSInput component and a tLogRow component from the Palette onto the design workspace.

Scenario: Displaying the content of an SPSS .sav file

278 Talend Open Studio Components Reference Guide

2. Right-click on tPSSInput and connect it to tLogRow using a Main Row link.

Configuring the input component

1. Click tSPSSInput to display its Basic settings view and define the component properties.

2. Click the three-dot button next to the Filename field and browse to the SPSS .sav file you want to read.

3. Click the three-dot button next to Sync schema. A message opens up prompting you to accept retrieving the
schema from the defined SPSS file.

4. Click Yes to close the message and proceed to the next step.

5. If required, click the three-dot button next to Edit schema to view the pre-defined data structure of the source
SPSS file.

6. Click OK to close the dialog box.

Job execution

Save the Job and press F6 to execute it.

The SPSS file is read row by row and the extracted fields are displayed on the log console.

Scenario: Displaying the content of an SPSS .sav file

Talend Open Studio Components Reference Guide 279

Translating the stored values

To translate the stored values, complete the following:

1. In the Basic settings view, select the Translate label check box.

2. Click Sync Schema a second time to retrieve the schema after translation.

A message opens up prompting you to accept retrieving the schema from the defined SPSS file.

3. Click Yes to close the message and proceed to the next step.

A second message opens up prompting you to accept propagating the changes.

4. Click Yes to close the message and proceed to the next step.

5. Save the Job and press F6 to execute it.

The SPSS file is read row by row and the extracted fields are displayed on the log console after translating the
stored values.

tSPSSOutput

280 Talend Open Studio Components Reference Guide

tSPSSOutput

Before being able to benefit from all functional objectives of the SPSS components, make sure to do the
following: -If you have already installed SPSS, add the path to the SPSS directory as the following: SET
PATH=%PATH%;<DR>:\program\SPSS, or -If you have not installed SPSS, you must copy the SPSS IO
"spssio32.dll" lib from the SPSS installation CD and paste it in Talend root directory.

tSPSSOutput properties

Component family Business Intelligence

Function tSPSSOutput writes data entries in an .sav file.

Purpose tSPSSOutput writes or appends data to an SPSS .sav file. It creates SPSS files on
the fly and overwrites existing ones.

Basic settings Sync schema Click this button to synchronize with the columns of the
SPSS .sav file.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Filename Name or path of the SPSS .sav file to be written.

Write Type Select an operation from the list:

Write: simply writes the new data.

Append: writes the new data at the end of the existing data.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component can not be used as start component. It requires an input flow

Scenario: Writing data in an .sav file

This Java scenario describes a very simple Job that writes data entries in an .sav file.

Setting up the Job

1. Drop a tRowGenerator component and a tSPSSOutput component from the Palette onto the design
workspace.

Scenario: Writing data in an .sav file

Talend Open Studio Components Reference Guide 281

2. Right-click on tRowGenerator and connect it to tSPSSOutput using a Main Row link.

Configuring the input component

1. In the design workspace, double click tRowGenerator to display its Basic Settings view and open its editor.
Here you can define your schema.

2. Click the plus button to add the columns you want to write in the .sav file.

3. Define the schema and set the parameters to the columns.

Make sure to define the length of your columns. Otherwise, an error message will display when
building your Job.

4. Click OK to validate your schema and close the editor.

Configuring the output component

1. Click tSPSSOutput to display its Basic settings view and define the component properties.

Scenario: Writing data in an .sav file

282 Talend Open Studio Components Reference Guide

2. Click the three-dot button next to the Filename field and browse to the SPSS .sav file in which you want
to write data.

3. Click the three-dot button next to Sync columns to synchronize columns with the previous component. In
this example, the schema to be inserted in the .sav file consists of the two columns: id and country.

4. If required, click Edit schema to view/edit the defined schema.

5. From the Write Type list, select Write or Append to simply write the input data in the .sav file or add it
to the end of the .sav file.

Job execution

Save the Job and press F6 to execute it.

The data generated by the tRowGenerator component is written in the defined .sav file.

tSPSSProperties

Talend Open Studio Components Reference Guide 283

tSPSSProperties

In order to benefit from all of the functional objectives of the SPSS components, do the following: -If you
have already installed SPSS, add the path to the SPSS directory as the following: SET PATH=%PATH
%;<DR>:\program\SPSS, or -If you have not installed SPSS, you must copy the SPSS IO "spssio32.dll"
lib from the SPSS installation CD and paste it in the Talend root directory.

tSPSSProperties properties

Component family Business Intelligence

Function tSPSSProperties describes the properties of a defined SPSS .sav file.

Purpose tSPSSProperties allows you to obtain information about the main properties of a
defined SPSS .sav file.

Basic settings Schema and Edit
Schema

The schema metadata in this component is predefined and
thus read-only. You can click Edit schema to view the
predefined metadata.

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Filename Name or path of the .sav file to be processed.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage Use this component as a start component. It needs an output flow.

Related scenarios

For related topics, see:

• the section called “Scenario: Reading master data in an MDM hub”.

• the section called “Scenario: Writing data in an .sav file”.

tSPSSStructure

284 Talend Open Studio Components Reference Guide

tSPSSStructure

Before being able to benefit from all functional objectives of the SPSS components, make sure to do the
following: -If you have already installed SPSS, add the path to the SPSS directory as the following: SET
PATH=%PATH%;<DR>:\program\SPSS, or -If you have not installed SPSS, you must copy the SPSS IO
"spssio32.dll" lib from the SPSS installation CD and paste it in Talend root directory.

tSPSSStructure properties

Component family Business Intelligence

Function tSPSSStructure retrieves information about the variables inside .sav files.

Purpose tSPSSStructure addresses variables inside .sav files. You can use this component in
combination with tFileList to gather information about existing *.sav files to further
analyze or check the findings.

Basic settings Schema and Edit Schema The schema metadata in this component is predefined and
thus read-only. It is based on the internal SPSS convention.
You can click Edit schema to view the predefined metadata.

A schema is a row description, i.e., it defines the number of
fields to be processed and passed on to the next component.
The schema is either Built-in or stored remotely in the
Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Filename Name or path of the .sav file to be processed.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage Use this component as a start component. It needs an output flow.

Related scenarios

For related topics, see:

• the section called “Scenario: Reading master data in an MDM hub”.

• the section called “Scenario: Writing data in an .sav file”.

tSybaseSCD

Talend Open Studio Components Reference Guide 285

tSybaseSCD

tSybaseSCD properties

Component family Databases/Sybase

Function tSybaseSCD reflects and tracks changes in a dedicated Sybase SCD table.

Purpose tSybaseSCD addresses Slowly Changing Dimension needs, reading regularly a
source of data and logging the changes into a dedicated SCD table

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties
are stored. The following fields are pre-filled in using
fetched data.

Use an existing
connection

Select this check box and click the relevant DB connection
component on the Component list to reuse the connection
details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and
Password

DB user authentication data.

Related scenarios

286 Talend Open Studio Components Reference Guide

Table Name of the table to be written. Note that only one table
can be written at a time.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

SCD Editor The SCD editor helps to build and configure the data flow
for slowly changing dimension outputs.

For more information, see the section called “SCD
management methodologies”.

Use memory saving
Mode

Select this check box to maximize system performance.

Die on error This check box is cleared by default, meaning to skip the
row on error and to complete the process for error-free
rows.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Debug mode Select this check box to display each step during
processing entries in a database.

Usage This component is used as Output component. It requires an Input component and
Row main link as input.

Limitation n/a

Related scenarios

For related topics, see the section called “tMysqlSCD”.

tSybaseSCDELT

Talend Open Studio Components Reference Guide 287

tSybaseSCDELT

tSybaseSCDELT Properties

Component family Databases/Sybase

Function tSybaseSCDELT reflects and tracks changes in a dedicated Sybase SCD table.

Purpose tSybaselSCDELT addresses Slowly Changing Dimension needs through SQL
queries (server-side processing mode), and logs the changes into a dedicated Sybase
SCD table.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally. Enter
properties manually.

Repository: Select the repository file where Properties are
stored. The fields that come after are pre-filled in using the
fetched data.

Use an existing
connection

Select this check box and click the relevant
tSybaseConnection component on the Component List
to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host The IP address of the database server.

Port Listening port number of database server.

Database Name of the database

tSybaseSCDELT Properties

288 Talend Open Studio Components Reference Guide

Username and
Password

User authentication data for a dedicated database.

Source table Name of the input Sybase SCD table.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table Select to perform one of the following operations on the
table defined:

None: No action carried out on the table.

Drop and create table: The table is removed and created
again

Create table: A new table gets created.

Create table if not exists: A table gets created if it does
not exist.

Clear table: The table content is deleted. You have the
possibility to rollback the operation.

Truncate table: The table content is deleted. You don not
have the possibility to rollback the operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Surrogate Key Select the surrogate key column from the list.

Creation Select the method to be used for the surrogate key
generation.

For more information regarding the creation methods, see
the section called “SCD keys”.

Source Keys Select one or more columns to be used as keys, to ensure
the unicity of incoming data.

Use SCD Type 1 fields Use type 1 if tracking changes is not necessary. SCD
Type 1 should be used for typos corrections for example.
Select the columns of the schema that will be checked for
changes.

Use SCD Type 2 fields Use type 2 if changes need to be tracked down. SCD Type
2 should be used to trace updates for example. Select the
columns of the schema that will be checked for changes.

Start date: Adds a column to your SCD schema to hold
the start date value. You can select one of the input schema
columns as Start Date in the SCD table.

End Date: Adds a column to your SCD schema to hold the
end date value for the record. When the record is currently

Related Scenario

Talend Open Studio Components Reference Guide 289

active, the End Date column shows a null value, or you can
select Fixed Year value and fill it in with a fictive year to
avoid having a null value in the End Date field.

Log Active Status: Adds a column to your SCD schema
to hold the true or false status value. This column helps
to easily spot the active record.

Log versions: Adds a column to your SCD schema to hold
the version number of the record.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

Debug mode Select this check box to display each step during
processing entries in a database.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is used as an output component. It requires an input component and
Row main link as input.

Limitation n/a

Related Scenario

For related topics, see the section called “tMysqlSCD” and the section called “Scenario: Tracking changes using
Slowly Changing Dimensions (type 0 through type 3)”.

Talend Open Studio Components Reference Guide

Talend Open Studio Components Reference Guide

Cloud components
This chapter details the main components which you can find in the Cloud family of the Talend Open Studio
Palette.

Private and public cloud databases, data services and SaaS-based applications (CRM, HR, ERP, etc.) are springing
up alongside on-premise applications and databases that have been the mainstay of corporate IT. The resulting
hybrid IT environments have more sources, of more diverse types, which require more modes of integration, and
more effort on data quality and consistency across sources.

The Cloud family comprises the most popular database connectors adapted to Cloud and SaaS applications and
technologies.

tAmazonMysqlClose

292 Talend Open Studio Components Reference Guide

tAmazonMysqlClose

tAmazonMysqlClose properties

Function tAmazonMysqlClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tAmazonMysqlConnection component in the
list if more than one connection are planned for the current
Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with AmazonMysql components, especially with
tAmazonMysqlConnection and tAmazonMysqlCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.

tAmazonMysqlCommit

Talend Open Studio Components Reference Guide 293

tAmazonMysqlCommit

tAmazonMysqlCommit Properties

This component is closely related to tAmazonMysqlConnection and tAmazonMysqlRollback. It usually doesn’t
make much sense to use these components independently in a transaction.

Component family Cloud/AmazonRDS/
MySQL

Function Validates the data processed through the job into the connected DB

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the tAmazonMysqlConnection component in the
list if more than one connection are planned for the current
job.

Close Connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection
to link tAmazonMysqlCommit to your Job, your
data will be commited row by row. In this case,
do not select the Close connection check box or
your connection will be closed before the end of
your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with AmazonMysql components, especially with
tAmazonMysqlConnection and tAmazonMysqlRollback components.

Limitation n/a

Related scenario

This component is closely related to tAmazonMysqlConnection and tAmazonMysqlRollback. It usually doesn’t
make much sense to use one of these without using a tAmazonMysqlConnection component to open a connection
for the current transaction.

For tAmazonMysqlCommit related scenario, see the section called “Scenario: Inserting data in mother/daughter
tables”.

tAmazonMysqlConnection

294 Talend Open Studio Components Reference Guide

tAmazonMysqlConnection

tAmazonMysqlConnection Properties

This component is closely related to tAmazonMysqlCommit and tAmazonMysqlRollback. It usually doesn’t
make much sense to use one of these without using a tAmazonMysqlConnection component to open a connection
for the current transaction.

Component family Cloud/AmazonRDS/
MySQL

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

DB Version MySQL 5 is available.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating.

Username and
Password

DB user authentication data.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Advanced settings Auto Commit Select this check box to automatically commit a
transaction when it is completed.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with AmazonMysql components, especially with
tAmazonMysqlCommit and tAmazonMysqlRollback components.

Limitation n/a

Scenario: Inserting data in mother/daughter tables

Talend Open Studio Components Reference Guide 295

Scenario: Inserting data in mother/daughter tables

The following Job is dedicated to advanced database users, who want to carry out multiple table insertions using
a parent table id to feed a child table. As a prerequisite to this Job, follow the steps described below to create the
relevant tables using an engine such as innodb.

Setting up the Job

1. In a command line editor, connect to your Mysql server. Once connected to the relevant database, type in the
following command to create the parent table: create table f1090_mum(id int not null auto_increment, name
varchar(10), primary key(id)) engine=innodb.

2. Then create the second table: create table baby (id_baby int not null, years int) engine=innodb.

Back into Talend Open Studio, the Job requires seven components including tAmazonMysqlConnection
and tAmazonMysqlCommit.

3. Drag and drop the following components from the Palette: tFileList, tFileInputDelimited, tMap,
tAmazonMysqlOutput (x2).

4. Connect the tFileList component to the input file component using an Iterate link as the name of the file to
be processed will be dynamically filled in from the tFileList directory using a global variable.

5. Connect the tFileInputDelimited component to the tMap and dispatch the flow between the two output
AmazonMysql DB components. Use a Row link for each for these connections representing the main data
flow.

6. Set the tFileList component properties, such as the directory name where files will be fetched from.

7. Add a tAmazonMysqlConnection component and connect it to the starter component of this job, in this
example, the tFileList component using an OnComponentOk link to define the execution order.

Setting up the DB connection

In the tAmazonMysqlConnection Component view, set the connection details manually or fetch them from the
Repository if you centrally stored them as a Metadata DB connection entry. For more information about Metadata,
see Talend Open Studio User Guide.

Scenario: Inserting data in mother/daughter tables

296 Talend Open Studio Components Reference Guide

Configuring the input component

1. On the tFileInputDelimited component’s Basic settings panel, press Ctrl+Space bar to access the variable
list. Set the File Name field to the global variable: tFileList_1.CURRENT_FILEPATH

2. Set the rest of the fields as usual, defining the row and field separators according to your file structure. Then
set the schema manually through the Edit schema feature or select the schema from the Repository. Make
sure the data type is correctly set, in accordance with the nature of the data processed.

Configuring the tMap component

1. In the tMap Output area, add two output tables, one called mum for the parent table, the second called baby,
for the child table.

2. Drag the Name column from the Input area, and drop it to the mum table. Drag the Years column from the
Input area and drop it to the baby table.

Make sure the mum table is on the top of the baby table as the order is determining for the flow sequence
hence the DB insert to perform correctly.

3. Then connect the output row link to distribute correctly the flow to the relevant DB output component.

Configuring the output component

1. In each of the tAmazonMysqlOutput components’ Basic settings panel, select the Use an existing
connection check box to retrieve the tAmazonMysqlConnection details.

Scenario: Inserting data in mother/daughter tables

Talend Open Studio Components Reference Guide 297

2. Set the Table name making sure it corresponds to the correct table, in this example either f1090_mum or
f1090_baby.

There is no action on the table as they are already created.

3. Select Insert as Action on data for both output components. Click on Sync columns to retrieve the schema
set in the tMap.

4. Go to the Advanced settings panel of each of the tAmazonMysqlOutput components. Notice that the
Commit every field will get overridden by the tAmazonMysqlCommit.

5. In the Additional columns area of the DB output component corresponding to the child table (f1090_baby),
set the id_baby column so that it reuses the id from the parent table. In the SQL expression field type in:
'(Select Last_Insert_id())'.

The position is Before and the Reference column is years.

Configuring the tAmazonMysqlCommit component

1. Add the tAmazonMysqlCommit component to the design workspace and connect it from the tFileList
component using a OnComponentOk connection in order for the Job to terminate with the transaction
commit.

2. On the tAmazonMysqlCommit Component view, select in the list the connection to be used.

Job execution

Save your Job and press F6 to execute it.

Scenario: Inserting data in mother/daughter tables

298 Talend Open Studio Components Reference Guide

The parent table id has been reused to feed the id_baby column.

tAmazonMysqlInput

Talend Open Studio Components Reference Guide 299

tAmazonMysqlInput

tAmazonMysqlInput properties

Component family Cloud/
AmazonRDS/
MySQL

Function tAmazonMysqlInput reads a database and extracts fields based on a query.

Purpose tAmazonMysqlInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next component
via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

DB Version MySQL 5 is available.

Use an existing
connection

Select this check box when using a configured
tAmazonMysqlConnection component.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the available
connection components are sharing the intended connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive all
over through the two Job levels. For more information about
Dynamic settings, see your studio user guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Scenario1: Writing columns from a MySQL database to an output file

300 Talend Open Studio Components Reference Guide

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table Name Name of the table to be read.

Query type and
Query

Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

When you need to handle data of the time-stamp
type 0000-00-00 00:00:00 using this component, set the
parameter as:

noDatetimeStringSync=true&zeroDa-
teTimeBehavior=convertToNull.

Enable stream Select this check box to enables streaming over buffering which
allows the code to read from a large table without consuming a large
amount of memory in order to optimize the performance.

Trim all the String/
Char columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

Deselect Trim all the String/Char columns to enable Trim
columns in this field.

tStatCatcher
Statistics

Select this check box to collect log data at the component level.

Usage This component covers all possible SQL queries for Mysql databases.

Scenario1: Writing columns from a MySQL database to
an output file

In this scenario we will read certain columns from a MySQL database, and then write them to a table in a local
output file.

Setting up the Job

1. Drop tAmazonMysqlInput and tFileOutputDelimited from the Palette onto the workspace.

2. Link tAmazonMysqlInput to tFileOutputDelimited using a Row > Main connection.

Scenario1: Writing columns from a MySQL database to an output file

Talend Open Studio Components Reference Guide 301

Configuring the input component

1. Double-click tAmazonMysqlInput to open its Basic Settings view in the Component tab.

2. From the Property Type list, select Repository if you have already stored the connection to database in the
Metadata node of the Repository tree view. The property fields that follow are automatically filled in.

For more information about how to store a database connection, see Talend Open Studio User Guide.

If you have not defined the database connection locally in the Repository, fill in the details manually after
selecting Built-in from the Property Type list.

3. Set the Schema as Built-in and click Edit schema to define the desired schema.

The schema editor opens:

4. Click the [+] button to add the rows that you will use to define the schema, four columns in this example
id, first_name, city and salary.

5. Under Column, click in the fields to enter the corresponding column names.

6. Click the field under Type to define the type of data. Click OK to close the schema editor.

Scenario1: Writing columns from a MySQL database to an output file

302 Talend Open Studio Components Reference Guide

7. Next to the Table Name field, click the [...] button to select the database table of interest.

A dialog box displays a tree diagram of all the tables in the selected database:

8. Click the table of interest and then click OK to close the dialog box.

9. Set the Query Type to Built-In. In the Query box, enter the query required to retrieve the desired columns
from the table.

Configuring the output component

1. Double-click tFileOutputDelimited to set its Basic Settings in the Component tab.

2. Next to the File Name field, click the [...] button to browse your directory to where you want to save the
output file, then enter a name for the file.

3. Select the Include Header check box to retrieve the column names as well as the data.

Job execution

Save the Job and press F6 to run it.

The output file is written with the desired column names and corresponding data, retrieved from the database:

Scenario1: Writing columns from a MySQL database to an output file

Talend Open Studio Components Reference Guide 303

The Job can also be run in the Traces Debug mode, which allows you to view the rows as they are being
written to the output file, in the workspace.

tAmazonMysqlOutput

304 Talend Open Studio Components Reference Guide

tAmazonMysqlOutput

tAmazonMysqlOutput properties

Component family Cloud/AmazonRDS/
MySQL

Function tAmazonMysqlOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tAmazonMysqlOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding component
in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

DB Version MySQL 5 is available.

Use an existing
connection

Select this check box when using a configured
tAmazonMysqlConnection component.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and
Password

DB user authentication data.

tAmazonMysqlOutput properties

Talend Open Studio Components Reference Guide 305

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create table: The table is removed and created
again.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does
not exist.

Drop table if exists and create: The table is removed if
it already exists and created again.

Clear table: The table content is deleted.

Truncate table: The table content is quickly deleted.
However, you will not be able to rollback the operation.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, the job stops.

Update: Make changes to existing entries.

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or creates them
if they do not exist.

Delete: Remove entries corresponding to the input flow.

Replace: Add new entries to the table. If an old row in the
table has the same value as a new row for a PRIMARY
KEY or a UNIQUE index, the old row is deleted before
the new row is inserted.

Insert or update on duplicate key or unique index: Add
entries if the inserted value does not exist or update entries
if the inserted value already exists and there is a risk of
violating a unique index or primary key.

Insert Ignore: Add only new rows to prevent duplicate
key errors.

You must specify at least one column as a primary
key on which the Update and Delete operations
are based. You can do that by clicking Edit
Schema and selecting the check box(es) next
to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the update and delete
operations. To do that: Select the Use field
options check box and then in the Key in update

tAmazonMysqlOutput properties

306 Talend Open Studio Components Reference Guide

column, select the check boxes next to the column
name on which you want to base the update
operation. Do the same in the Key in delete
column for the deletion operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row in error and complete the process for error-
free rows. If needed, you can retrieve the rows in error via
a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

You can press Ctrl+Space to access a list of
predefined global variables.

Extend Insert Select this check box to carry out a bulk insert of a defined
set of lines instead of inserting lines one by one. The gain
in system performance is considerable.

Number of rows per insert: enter the number of rows to
be inserted per operation. Note that the higher the value
specidied, the lower performance levels shall be due to the
increase in memory demands.

This option is not compatible with the Reject
link. You should therefore clear the check box
if you are using a Row > Rejects link with this
component.

If you are using this component with
tMysqlLastInsertID, ensure that the Extend
Insert check box in Advanced Settings is not
selected. Extend Insert allows for batch loading,
however, if the check box is selected, only the ID
of the last line of the last batch will be returned.

Use batch size Select this check box to activate the batch mode for data
processing. In the Batch Size field that appears when this
check box is selected, you can type in the number you need
to define the batch size to be processed.

This check box is available only when you have
selected, the Update or the Delete option in the
Action on data field.

tAmazonMysqlOutput properties

Talend Open Studio Components Reference Guide 307

Commit every Number of rows to be included in the batch before it
is committed to the DB. This option ensures transaction
quality (but not rollback) and, above all, a higher
performance level.

Additional Columns This option is not available if you have just created the DB
table (even if you delete it beforehand). This option allows
you to call SQL functions to perform actions on columns,
provided that these are not insert, update or delete actions,
or actions that require pre-processing.

Name: Type in the name of the schema column to be
altered or inserted.

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the data in the
corrsponding column.

Position: Select Before, Replace or After, depending on
the action to be performed on the reference column.

Reference column: Type in a reference column that
tAmazonMysqlOutput can use to locate or replace the
new column, or the column to be modified.

Use field options Select this check box to customize a request, particularly
if multiple actions are being carried out on the data.

Use Hint Options Select this check box to activate the hint configuration area
which helps you optimize a query’s execution. In this area,
parameters are:

- HINT: specify the hint you need, using the syntax

 /*+ */.

- POSITION: specify where you put the hint in a SQL
statement.

- SQL STMT: select the SQL statement you need to use.

Enable debug mode Select this check box to display each step involved in the
process of writing data in the database.

Use duplicate key
update mode insert

Updates the values of the columns specified, in the event
of duplicate primary keys.:

Column: Between double quotation marks, enter the name
of the column to be updated.

Value: Enter the action you want to carry out on the
column.

To use this option you must first of all select the
Insert mode in the Action on data list found in
the Basic Settings view.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a MySQL database. It also allows you to

Scenario 1: Adding a new column and altering data in a DB table

308 Talend Open Studio Components Reference Guide

create a reject flow using a Row > Rejects link to filter data in error. For an example
of tAmazonMysqlOutput in use, see the section called “Scenario 3: Retrieve data
in error with a Reject link”.

Scenario 1: Adding a new column and altering data in
a DB table

This Java scenario is a three-component Job that aims at creating random data using a tRowGenerator, duplicating
a column to be altered using the tMap component, and eventually altering the data to be inserted based on an SQL
expression using the tAmazonMysqlOutput component.

Setting up the Job

1. Drop the following components from the Palette onto the design workspace: tRowGenerator, tMap and
tAmazonMySQLOutput.

2. Connect tRowGenerator, tMap, and tAmazonMysqlOutput using the Row Main link.

Configuring the input component

1. In the design workspace, select tRowGenerator to display its Basic settings view.

2. Click the Edit schema three-dot button to define the data to pass on to the tMap component, two columns
in this scenario, name and random_date.

Scenario 1: Adding a new column and altering data in a DB table

Talend Open Studio Components Reference Guide 309

3. Click OK to close the dialog box.

4. Click the RowGenerator Editor three-dot button to open the editor and define the data to be generated.

5. Click in the corresponding Functions fields and select a function for each of the two columns,
getFirstName for the first column and getrandomDate for the second column.

6. In the Number of Rows for Rowgenerator field, enter 10 to generate ten first name rows and click Ok to
close the editor.

Configuring the tMap component

1. Double-click the tMap component to open the Map editor. The Map editor opens displaying the input
metadata of the tRowGenerator component.

2. In the Schema editor panel of the Map editor, click the [+] button of the output table to add two rows and
define the first as random_date and the second as random_date1.

Scenario 1: Adding a new column and altering data in a DB table

310 Talend Open Studio Components Reference Guide

In this scenario, we want to duplicate the random_date column and adapt the schema in order to alter the
data in the output component.

3. In the Map editor, drag the random_date row from the input table to the random_date and random_date1
rows in the output table.

4. Click OK to close the editor.

Configuring the output component

1. In the design workspace, double-click the tAmazonMysqlOutput component to display its Basic settings
view and set its parameters.

Scenario 1: Adding a new column and altering data in a DB table

Talend Open Studio Components Reference Guide 311

2. Set Property Type to Repository and then click the [...] button to open the [Repository content] dialog
box and select the correct DB connection. The connection details display automatically in the corresponding
fields.

If you have not stored the DB connection details in the Metadata entry in the Repository, select
Built-in on the property type list and set the connection detail manually.

3. Click the [...] button next to the Table field and select the table to be altered, Dates in this scenario.

4. On the Action on table list, select Drop table if exists and create, select Insert on the Action on data list.

5. If needed, click Sync columns to synchronize with the columns coming from the tMap component.

6. Click the Advanced settings tab to display the corresponding view and set the advanced parameters.

7. In the Additional Columns area, set the alteration to be performed on columns.

In this scenario, the One_month_later column replaces random_date_1. Also, the data itself gets altered using
an SQL expression that adds one month to the randomly picked-up date of the random_date_1 column. ex:
2007-08-12 becomes 2007-09-12.

-Enter One_Month_Later in the Name cell.

-In the SQL expression cell, enter the relevant addition script to be performed,
“adddate(Random_date, interval 1 month)” in this scenario.

-Select Replace on the Position list.

-Enter Random_date1 on the Reference column list.

For this job we duplicated the random_date_1 column in the DB table before replacing one instance
of it with the One_Month_Later column. The aim of this workaround was to be able to view upfront
the modification performed.

Scenario 2: Updating data in a database table

312 Talend Open Studio Components Reference Guide

Job execution

Save your Job and press F6 to execute it.

The new One_month_later column replaces the random_date1 column in the DB table and adds one month to
each of the randomly generated dates.

Related topic: see the section called “tDBOutput properties”.

Scenario 2: Updating data in a database table

This Java scenario describes a two-component Job that updates data in a MySQL table according to that in a
delimited file.

Setting up the Job

• Drop tFileInputDelimited and tAmazonMysqlOutput from the Palette onto the design workspace. Connect
the two components together using a Row Main link.

Configuring the input component

1. Double-click tFileInputDelimited to display its Basic settings view and define the component properties.

Scenario 2: Updating data in a database table

Talend Open Studio Components Reference Guide 313

2. From the Property Type list, select Repository if you have already stored the metadata of the delimited
file in the Metadata node in the Repository tree view. Otherwise, select Built-In to define manually the
metadata of the delimited file.

For more information about storing metadata, see Talend Open Studio User Guide.

3. In the File Name field, click the [...] button and browse to the source delimited file that contains the
modifications to propagate in the MySQL table.

In this example, we use the customer_update file that holds four columns: id, CustomerName,
CustomerAddress and idState. Some of the data in these four columns is different from that in the MySQL
table.

4. Define the row and field separators used in the source file in the corresponding fields. If needed, set Header,
Footer and Limit.

In this example, Header is set to 1 since the first row holds the names of columns, therefore it should be
ignored. Also, the number of processed lines is limited to 2000.

5. Select Built in from the Schema list then click the [...] button next to Edit Schema to open a dialog box
where you can describe the data structure of the source delimited file that you want to pass to the component
that follows.

6. Select the Key check box(es) next to the column name(s) you want to define as key column(s).

It is necessary to define at least one column as a key column for the Job to be executed correctly.
Otherwise, the Job is automatically interrupted and an error message displays on the console.

Configuring the output component

1. In the design workspace, double-click tAmazonMysqlOutput to open its Basic settings view where you
can define its properties.

Scenario 2: Updating data in a database table

314 Talend Open Studio Components Reference Guide

2. Click Sync columns to retrieve the schema of the preceding component. If needed, click the [...] button next
to Edit schema to open a dialog box where you can check the retrieved schema.

3. From the Property Type list, select Repository if you have already stored the connection metadata in the
Metadata node in the Repository tree view. Otherwise, select Built-In to define manually the connection
information.

For more information about storing metadata, see see Talend Open Studio User Guide.

4. In the Table field, enter the name of the table to update.

5. From the Action on table list, select the operation you want to perform, None in this example since the table
already exists.

6. From the Action on data list, select the operation you want to perform on the data, Update in this example.

Job execution

Save your Job and press F6 to execute it.

Using your DB browser, you can verify if the MySQL table, customers, has been modified according to the
delimited file.

Scenario 3: Retrieve data in error with a Reject link

Talend Open Studio Components Reference Guide 315

In the above example, the database table has always the four columns id, CustomerName, CustomerAddress and
idState, but certain fields have been modified according to the data in the delimited file used.

Scenario 3: Retrieve data in error with a Reject link

This scenario describes a four-component Job that carries out migration from a customer file to a MySQL database
table and redirects data in error towards a CSV file using a Reject link.

Setting up the Job

1. In the Repository, select the customer file metadata that you want to migrate and drop it onto the workspace.
In the [Components] dialog box, select tFileInputDelimited and click OK. The component properties will
be filled in automatically.

If you have not stored the information about your customer file under the Metadata node in the Repository,
drop a tFileInputDelimited component from the family File > Input, in the Palette, and fill in its properties
manually in the Component tab.

2. From the Palette, drop a tMap from the Processing family onto the workspace.

3. In the Repository, expand the Metadata node, followed by the Db Connections node and select the
connection required to migrate your data to the appropriate database. Drop it onto the workspace. In the
[Components] dialog box, select tAmazonMysqlOutput and click OK. The database connection properties
will be automatically filled in. For more information, see Talend Open Studio User Guide.

If you have not stored the database connection details under the Db Connections node in the Repository,
drop a tAmazonMysqlOutput from the Databases family in the Palette and fill in its properties manually
in the Component tab.

4. From the Palette, select a tFileOutputDelimited from the File > Output family, and drop it onto the
workspace.

5. Link the customers component to the tMap component, and the tMap and Localhost with a Row Main
link. Name this second link out.

6. Link the Localhost to the tFileOutputDelimited using a Row > Reject link.

Configuring the input component

1. Double-click the customers component to display the Component view.

Scenario 3: Retrieve data in error with a Reject link

316 Talend Open Studio Components Reference Guide

2. In the Property Type list, select Repository and click the [...] button in order to select the metadata containing
the connection to your file. You can also select the Built-in mode and fill in the fields manually.

3. Click the [...] button next to the File Name field, and fill in the path and the name of the file you want to use.

4. In the Row and Field Separator fields, type in between inverted commas the row and field separator used
in the file.

5. In the Header, Footer and Limit fields, type in the number of headers and footers to ignore, and the number
of rows to which processing should be limited.

6. In the Schema list, select Repository and click the [...] button in order to select the schema of your file, if
it is stored under the Metadata node in the Repository. You can also click the [...] button next to the Edit
schema field, and set the schema manually.

The schema is as follows:

Configuring the tMap component

1. Double-click the tMap component to open its editor.

Scenario 3: Retrieve data in error with a Reject link

Talend Open Studio Components Reference Guide 317

2. Select the id, CustomerName, CustomerAddress, idSate, id2, RegTime and RegisterTime columns on the table
on the left and drop them on the out table, on the right.

3. In the Schema editor area, at the bottom of the tMap editor, in the right table, change the length of the
CustomerName column to 28 to create an error. Thus, any data for which the length is greater than 28 will
create errors, retrieved with the Reject link.

4. Click OK. In the workspace, double-click the output Localhost component to display its Component view.

Scenario 3: Retrieve data in error with a Reject link

318 Talend Open Studio Components Reference Guide

5. In the Property Type list, select Repository and click the [...] button to select the connection to the database
metadata. The connection details will be automatically filled in. You can also select the Built-in mode and
set the fields manually.

6. In the Table field, type in the name of the table to be created. In this scenario, we call it customers_data.
In the Action on data list, select the Create table option. Click the Sync columns button to retrieve the
schema from the previous component.

Make sure the Die on error check box isn’t selected, so that the Job can be executed despite the error you
just created.

7. Click the Advanced settings tab of the Component view to set the advanced parameters of the component.

8. Deselect the Extend Insert check box which enables you to insert rows in batch, because this option is not
compatible with the Reject link.

Configuring the output component

1. Double-click the tFileOutputDelimited component to set its properties in the Component view.

2. Click the [...] button next to the File Name field to fill in the path and name of the output file. Click the Sync
columns button to retrieve the schema of the previous component.

Job execution

Save your Job and press F6 to execute it.

Scenario 3: Retrieve data in error with a Reject link

Talend Open Studio Components Reference Guide 319

The data in error are sent to the delimited file, as well as the error type met. Here, we have: Data truncation.

tAmazonMysqlRollback

320 Talend Open Studio Components Reference Guide

tAmazonMysqlRollback

tAmazonMysqlRollback properties

This component is closely related to tAmazonMysqlCommit and tAmazonMysqlConnection. It usually does
not make much sense to use these components independently in a transaction.

Component family Cloud/AmazonRDS/
Mysql

Function Cancel the transaction commit in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tAmazonMysqlConnection component in the
list if more than one connection are planned for the current
job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with AmazonMysql components, especially with
tAmazonMysqlConnection and tAmazonMysqlCommit components.

Limitation n/a

Scenario: Rollback from inserting data in mother/
daughter tables

Based on the section called “Scenario: Inserting data in mother/daughter tables”, insert a rollback function in order
to prevent unwanted commit.

Scenario: Rollback from inserting data in mother/daughter tables

Talend Open Studio Components Reference Guide 321

1. Drag and drop a tAmazonMysqlRollback to the design workspace and connect it to the Start component.

2. Set the Rollback unique field on the relevant DB connection.

This complementary element to the Job ensures that the transaction will not be partly committed.

tAmazonMysqlRow

322 Talend Open Studio Components Reference Guide

tAmazonMysqlRow

tAmazonMysqlRow properties

Component family Cloud/Amazon/MySQL

Function tAmazonMysqlRow is the specific component for this database query. It executes
the SQL query stated in the specified database. The row suffix means the component
implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tAmazonMysqlRow acts
on the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

DB Version MySQL 5 is available.

Use an existing
connection

Select this check box and click the relevant
tAmazonMysqlConnection component on the
Component list to reuse the connection details you
already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

tAmazonMysqlRow properties

Talend Open Studio Components Reference Guide 323

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table Name Name of the table to be processed.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Guess Query Click the Guess Query button to generate the query which
corresponds to your table schema in the Query field.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

Propagate QUERY’s
recordset

Select this check box to insert the result of the query in
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this checkbox if you want to query the
database using a PreparedStatement. In the Set
PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures

Scenario 1: Removing and regenerating a MySQL table index

324 Talend Open Studio Components Reference Guide

transaction quality (but not rollback) and above all better
performance on executions.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Scenario 1: Removing and regenerating a MySQL table
index

This scenario describes a four-component job that removes a table index, applies a select insert action onto a table
then regenerates the index.

Setting up the Job

1. Select and drop the following components onto the design workspace: tAmazonMysqlRow (x2),
tRowGenerator, and tAmazonMysqlOutput.

2. Connect tRowGenerator to tAmazonMysqlOutput.

3. Using a OnComponentOk connections, link the first tAmazonMysqlRow to tRowGenerator and
tRowGenerator to the second tAmazonMysqlRow.

Configuring the tAmazonMysqlRow component

1. Select the tAmazonMysqlRow to fill in the DB Basic settings.

2. In Property type as well in Schema, select the relevant DB entry in the list.

The DB connection details and the table schema are accordingly filled in.

3. Propagate the properties and schema details onto the other components of the Job.

4. The query being stored in the Metadata area of the Repository, you can also select Repository in the Query
type field and the relevant query entry.

Scenario 2: Using PreparedStatement objects to query data

Talend Open Studio Components Reference Guide 325

5. If you didn’t store your query in the Repository, type in the following SQL statement to alter the database
entries: drop index <index_name> on <table_name>

6. Select the second tAmazonMysqlRow component, check the DB properties and schema.

7. Type in the SQL statement to recreate an index on the table using the following statement: create index
<index_name> on <table_name> (<column_name>)

The tRowGenerator component is used to generate automatically the columns to be added to the DB output
table defined.

Configuring the output component

1. Select the tAmazonMysqlOutput component and fill in the DB connection properties> either from the
Repository, or manually for this specific use only. The table to be fed is named: comprehensive.

2. The schema should be automatically inherited from the data flow coming from the tRowGenerator. Edit the
schema to check its structure and check that it corresponds to the schema expected on the DB table specified.

3. The Action on table is None and the Action on data is Insert.

Job execution

Press F6 to run the job.

If you manage to watch the action on DB data, you can notice that the index is dropped at the start of the job and
recreated at the end of the insert action.

Related topics: the section called “tDBSQLRow properties”.

Scenario 2: Using PreparedStatement objects to query
data

This scenario describes a four component job which allows you to link a table column with a client file. The
MySQL table contains a list of all the American States along with the State ID, while the file contains the customer
information including the ID of the State in which they live. We want to retrieve the name of the State for each
client, using an SQL query. In order to process a large volume of data quickly, we use a PreparedStatement object
which means that the query is executed only once rather than against each row in turn. Then each row is sentas
a parameter.

For this scenario, we use a file and a database for which we have already stored the connection and properties
in the Rerpository metadata. For further information concerning the creation of metadata in delimited files, the
creation of database connection metadata and the usage of metadata, see Talend Open Studio User Guide.

Scenario 2: Using PreparedStatement objects to query data

326 Talend Open Studio Components Reference Guide

Configuring the input component

1. In the Repository, expand the Metadata and File delimited nodes. Select the metadata which corresponds
to the client file you want to use in the Job.

Here, we are using the customers metadata.

2. Slide the metadata onto the workspace and double-click tFileInputDelimited in the Components dialog box
so that the tFileInputDelimited component is created with the parameters already set.

3. In the Schema list, select Built-in so that you can modify the component’s schema. Then click on [...] next
to the Edit schema field to add a column into which the name of the State will be inserted.

4. Click on the [+] button to add a column to the schema. Rename this column LabelStateRecordSet and select
Object from the Type list. Click OK to save your modifications.

5. From the Palette, select the tAmazonMysqlRow, tParseRecordSet and tFileOutputDelimited components
and drop them onto the workspace. Connect the four components using Row > Main type links.

Setting up the DB connection

1. Double-click tAmazonMysqlRow to set its properties in the Basic settings tab of the Component view.

Scenario 2: Using PreparedStatement objects to query data

Talend Open Studio Components Reference Guide 327

2. In the Property Type list, select Repository and click on the [...] button to select a database connection from
the metadata in the Repository. The DB Version, Host, Port, Database, Username and Password fields are
completed automatically. If you are using the Built-in mode, complete these fields manually.

3. From the Schema list, select Built-in to set the schema properties manually and add the LabelStateRecordSet
column, or click directly on the Sync columns button to retrieve the schemma from the preceding component.

4. In the Query field, enter the SQL query you want to use. Here, we want to retrieve the names of the American
States from the LabelState column of the MySQL table, us_state:

"SELECT LabelState
FROM us_state WHERE idState=?"

The question mark, “?”, represents the parameter to be set in the Advanced settings tab.

Configuring the Advanced settings of tAmazonMysqlRow

1. Click Advanced settings to set the component's advanced properties.

2. Select the Propagate QUERY’s recordset check box and select the LabelStateRecordSet column from the
use column list to insert the query results in that column.

Scenario 2: Using PreparedStatement objects to query data

328 Talend Open Studio Components Reference Guide

3. Select the Use PreparedStatement check box and define the parameter used in the query in the Set
PreparedStatement Parameters table. Click on the [+] button to add a parameter.

4. In the Parameter Index cell, enter the parameter position in the SQL instruction. Enter “1” as we are only
using one parameter in this example.

5. In the Parameter Type cell, enter the type of parameter. Here, the parameter is a whole number, hence,
select Int from the list.

6. In the Parameter Value cell, enter the parameter value. Here, we want to retrieve the name of the State based
on the State ID for every client in the input file. Hence, enter “row1.idState”.

Configuring the tParseRecordSet component

1. Double-click tParseRecordSet to set its properties in the Basic settings tab of the Component view.

2. From the Prev. Comp. Column list, select the preceding components column for analysis. In this example,
select LabelStateRecordSet.

3. Click on the Sync columns button to retrieve the schema from the preceding component. The Attribute table
is automatically completed with the schema columns.

4. In the Attribute table, in the Value field which corresponds to the LabelStateRecordSet, enter the name of
the column containing the State names to be retrieved and matched with each client, within double quotation
marks. In this example, enter “LabelState”.

Configuring the output component

1. Double-click tFileOutputDelimited to set its properties in the Basic settings tab of the Component view.

Scenario 2: Using PreparedStatement objects to query data

Talend Open Studio Components Reference Guide 329

2. In the File Name field, enter the access path and name of the output file. Click Sync columns to retrieve the
schema from the preceding component.

Job execution

Save your Job and press F6 to run it.

A column containing the name of the American State corrresponding to each client is added to the file.

tAmazonOracleClose

330 Talend Open Studio Components Reference Guide

tAmazonOracleClose

tAmazonOracleClose properties

Function tAmazonOracleClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tAmazonOracleConnection component in the
list if more than one connection are planned for the current
Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with AmazonOracle components, especially
with tAmazonOracleConnection and tAmazonOracleCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.

tAmazonOracleCommit

Talend Open Studio Components Reference Guide 331

tAmazonOracleCommit

tAmazonOracleCommit Properties

This component is closely related to tAmazonOracleConnection and tAmazonOracleRollback. It usually
doesn’t make much sense to use these components independently in a transaction.

Component family Cloud/AmazonRDS/
Oracle

Function Validates the data processed through the job into the connected DB

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the tAmazonOracleConnection component in the
list if more than one connection are planned for the current
job.

Close Connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection
to link tAmazonOracleCommit to your Job, your
data will be commited row by row. In this case,
do not select the Close connection check box or
your connection will be closed before the end of
your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with AmazonOracle components, especially
with tAmazonOracleConnection and tAmazonOracleRollback components.

Limitation n/a

Related scenario

This component is closely related to tAmazonOracleConnection and tAmazonOracleRollback. It usually
doesn’t make much sense to use one of these without using a tAmazonOracleConnection component to open a
connection for the current transaction.

For tAmazonOracleCommit related scenario, see the section called “tMysqlConnection”

tAmazonOracleConnection

332 Talend Open Studio Components Reference Guide

tAmazonOracleConnection

tAmazonOracleConnection Properties

This component is closely related to tAmazonOracleCommit and tAmazonOracleRollback. It usually doesn’t
make much sense to use one of these without using a tAmazonOracleConnection component to open a connection
for the current transaction.

Component family Cloud/AmazonRDS/
Oracle

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Connection type Drop-down list of available drivers:

Oracle SID: Select this connection type to uniquely
identify a particular database on a system.

DB Version Oracle 11-5 is available.

Use tns file Select this check box to use the metadata of a context
included in a tns file.

One tns file may have many contexts.

TNS File: Enter the path to the tns file manually or browse
to the file by clicking the three-dot button next to the filed.

Select a DB Connection in Tns File: Click the three-dot
button to display all the contexts held in the tns file and
select the desired one.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the schema.

Username and
Password

DB user authentication data.

Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating.

You can set the encoding parameters through this
field.

Related scenario

Talend Open Studio Components Reference Guide 333

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Usage This component is to be used along with AmazonOracle components, especially
with tAmazonOracleCommit and tAmazonOracleRollback components.

Limitation n/a

Related scenario

This component is closely related to tAmazonOracleCommit and tAmazonOracleRollback. It usually doesn’t
make much sense to use one of these without using a tAmazonOracleConnection component to open a connection
for the current transaction.

For tAmazonOracleConnection related scenario, see the section called “tMysqlConnection”

tAmazonOracleInput

334 Talend Open Studio Components Reference Guide

tAmazonOracleInput

tAmazonOracleInput properties

Component family Cloud/AmazonRDS/
Oracle

Function tAmazonOracleInput reads a database and extracts fields based on a query.

Purpose tAmazonOracleInput executes a DB query with a strictly defined order which
must correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Connection type Drop-down list of available drivers:

Oracle SID: Select this connection type to uniquely
identify a particular database on a system.

DB Version Select the Oracle version in use.

Use an existing
connection

Select this check box when using a configured
tAmazonOracleConnection component.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Related scenarios

Talend Open Studio Components Reference Guide 335

Oracle schema Oracle schema name.

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table name Database table name.

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Use cursor When selected, helps to decide the row set to work with at
a time and thus optimize performance.

Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

Usage This component covers all possible SQL queries for Oracle databases.

Limitation n/a

Related scenarios

For related scenarios, see:

• the section called “Scenario 1: Displaying selected data from DB table”.

• the section called “Scenario 2: Using StoreSQLQuery variable”.

• the section called “Scenario: Dynamic context use in MySQL DB insert”.

tAmazonOracleOutput

336 Talend Open Studio Components Reference Guide

tAmazonOracleOutput

tAmazonOracleOutput properties

Component family Cloud/AmazonRDS/
Oracle

Function tAmazonOracleOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tAmazonOracleOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding component
in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box when using a
tAmazonOracleConnection component. When you
deselect it, a check box appears (selected by default and
followed by a field) in the Advanced settings, Batch Size,
which enables you to define the number of lines in each
processed batch.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Connection type Drop-down list of available drivers:

Oracle SID: Select this connection type to uniquely
identify a particular database on a system.

tAmazonOracleOutput properties

Talend Open Studio Components Reference Guide 337

DB Version Select the Oracle version in use.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and
Password

DB user authentication data.

Oracle schema Name of the Oracle schema.

Table Name of the table to be written. Note that only one table
can be written at a time.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next

tAmazonOracleOutput properties

338 Talend Open Studio Components Reference Guide

component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

You can press Ctrl+Space to access a list of
predefined global variables.

Override any existing
NLS_LANG
environment variable

Select this check box to override variables already set for
a NLS language environment.

Commit every Enter the number of rows to be completed before
committing batches of rows together into the DB. This
option ensures transaction quality (but not rollback) and,
above all, better performance at execution.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column.

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Use Hint Options Select this check box to activate the hint configuration area
which helps you optimize a query’s execution. In this area,
parameters are:

- HINT: specify the hint you need, using the syntax

 /*+ */.

Related scenarios

Talend Open Studio Components Reference Guide 339

- POSITION: specify where you put the hint in a SQL
statement.

- SQL STMT: select the SQL statement you need to use.

Convert columns and
table to uppercase

Select this check box to set the names of columns and table
in upper case.

Enable debug mode Select this check box to display each step during
processing entries in a database.

Use Batch Size When selected, enables you to define the number of lines
in each processed batch.

This option is available only when you do not Use
an existing connection in Basic settings.

Support null in “SQL
WHERE” statement

Select this check box to validate null in “SQL WHERE”
statement.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a Oracle database. It also allows you
to create a reject flow using a Row > Rejects link to filter data in error. For such
an example, see the section called “Scenario 3: Retrieve data in error with a Reject
link”.

Limitation n/a

Related scenarios

For tAmazonOracleOutput related topics, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”.

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tAmazonOracleRollback

340 Talend Open Studio Components Reference Guide

tAmazonOracleRollback

tAmazonOracleRollback properties

This component is closely related to tAmazonOracleCommit and tAmazonOracleConnection. It usually
doesn’t make much sense to use these components independently in a transaction.

Component family Cloud/AmazonRDS/
Oracle

Function Cancel the transaction commit in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tAmazonOracleConnection component in the
list if more than one connection are planned for the current
job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with AmazonOracle components, especially
with tAmazonOracleConnection and tAmazonOracleCommit components.

Limitation n/a

Related scenario

This component is closely related to tAmazonOracleConnection and tAmazonOracleCommit. It usually
doesn’t make much sense to use one of these without using a tAmazonOracleConnection component to open a
connection for the current transaction.

For tAmazonOracleRollback related scenario, see the section called “tMysqlRollback”.

tAmazonOracleRow

Talend Open Studio Components Reference Guide 341

tAmazonOracleRow

tAmazonOracleRow properties

Component family Cloud/AmazonRDS/
Oracle

Function tAmazonOracleRow is the specific component for this database query. It executes
the SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tAmazonOracleRow acts
on the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tAmazonOracleConnection component on the
Component list to reuse the connection details you
already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Connection type Drop-down list of available drivers.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

tAmazonOracleRow properties

342 Talend Open Studio Components Reference Guide

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this checkbox if you want to query the
database using a PreparedStatement. In the Set
PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Related scenarios

Talend Open Studio Components Reference Guide 343

Related scenarios

For related topics, see:

• the section called “Scenario: Resetting a DB auto-increment”.

• the section called “Scenario 1: Removing and regenerating a MySQL table index”.

tMarketoInput

344 Talend Open Studio Components Reference Guide

tMarketoInput

tMarketoInput belongs to two component families: Business and Cloud. For more information on it, see the
section called “tMarketoInput”.

tMarketoListOperation

Talend Open Studio Components Reference Guide 345

tMarketoListOperation

tMarketoListOperation belongs to two component families: Business and Cloud. For more information on it,
see the section called “tMarketoListOperation”.

tMarketoOutput

346 Talend Open Studio Components Reference Guide

tMarketoOutput

tMarketoOutput belongs to two component families: Business and Cloud. For more information on it, see the
section called “tMarketoOutput”.

tSalesforceBulkExec

Talend Open Studio Components Reference Guide 347

tSalesforceBulkExec

tSalesforceBulkExec belongs to two component families: Business and Cloud. For more information on it, see
the section called “tSalesforceBulkExec”.

tSalesforceConnection

348 Talend Open Studio Components Reference Guide

tSalesforceConnection

tSalesforceConnection belongs to two component families: Business and Cloud. For more information on it, see
the section called “tSalesforceConnection”.

tSalesforceGetDeleted

Talend Open Studio Components Reference Guide 349

tSalesforceGetDeleted

tSalesforceGetDeleted belongs to two component families: Business and Cloud. For more information on it, see
the section called “tSalesforceGetDeleted”.

tSalesforceGetServerTimestamp

350 Talend Open Studio Components Reference Guide

tSalesforceGetServerTimestamp

tDB2SCD belongs to two component families: Business and Cloud. For more information on it, see the section
called “tSalesforceGetServerTimestamp”.

tSalesforceGetUpdated

Talend Open Studio Components Reference Guide 351

tSalesforceGetUpdated

tSalesforceGetUpdated belongs to two component families: Business and Cloud. For more information on it, see
the section called “tSalesforceGetUpdated”.

tSalesforceInput

352 Talend Open Studio Components Reference Guide

tSalesforceInput

tSalesforceInput belongs to two component families: Business and Cloud. For more information on it, see the
section called “tSalesforceInput”.

tSalesforceOutput

Talend Open Studio Components Reference Guide 353

tSalesforceOutput

tSalesforceOutput belongs to two component families: Business and Cloud. For more information on it, see the
section called “tSalesforceOutput”.

tSalesforceOutputBulk

354 Talend Open Studio Components Reference Guide

tSalesforceOutputBulk

tSalesforceOutputBulk belongs to two component families: Business and Cloud. For more information on it, see
the section called “tSalesforceOutputBulk”.

tSalesforceOutputBulkExec

Talend Open Studio Components Reference Guide 355

tSalesforceOutputBulkExec

tSalesforceOutputBulkExec belongs to two component families: Business and Cloud. For more information on
it, see the section called “tSalesforceOutputBulkExec”.

tSugarCRMInput

356 Talend Open Studio Components Reference Guide

tSugarCRMInput

tSugarCRMInput belongs to two component families: Business and Cloud. For more information on it, see the
section called “tSugarCRMInput”.

tSugarCRMOutput

Talend Open Studio Components Reference Guide 357

tSugarCRMOutput

tSugarCRMOutput belongs to two component families: Business and Cloud. For more information on it, see
the section called “tSugarCRMOutput”.

Talend Open Studio Components Reference Guide

Talend Open Studio Components Reference Guide

Custom Code components
This chapter details the major components which belong to the Custom Code family in the Talend Open Studio
Palette.

The Custom Code components enable you to create codes for specific needs, quickly and efficiently.

tGroovy

360 Talend Open Studio Components Reference Guide

tGroovy

tGroovy properties

Component Family Custom Code

Function tGroovy allows you to enter customized code which you can integrate in the
Talend programme. The code is run only once.

Purpose tGroovy broadens the functionality if the Talend Job, using the Groovy language
which is a simplified Java syntax.

Basic settings Groovy Script Enter the Groovy code youo want to run.

Variables This table has two columns.

Name: Name of the variable called in the code..

Value: Value associated with the variable.

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at component
level.

Usage This component can be used alone or as a subjob along with one other component.

Limitation Knowledge of the Groovy language is required.

Related Scenarios

• For a scenario using the Groovy code, see the section called “Scenario: Calling a file which contains Groovy
code”.

• For a functional example, see the section called “Scenario: Printing out a variable content”

tGroovyFile

Talend Open Studio Components Reference Guide 361

tGroovyFile

tGroovyFile properties

Component Family Custom Code

Function tGroovyFile allows you to call an existing Groovy script.

Purpose tGroovyFile broadens the functionaility of Talend Jobs using the Groovy
language which is a simplified Java syntax.

Basic settings Groovy File Name and path of the file containing the Groovy code.

Variables This table contains two columns.

Name: Name of the variable called in the code.

Value: Value associated with this variable.

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at component
level.

Usage This component can be used alone or as a sub-job along with another component.

Limitation Knowledge of the Groovy language is required.

Scenario: Calling a file which contains Groovy code

This scenario uses tGroovyFile, on its own. The Job calls a file containing Groovy code in order to display the
file information in the Console. Below, is an example of the information displayed:

Setting up the Job

Open the Custom_Code folder in the Palette and drop a tGroovyFile component onto the workspace.

Configuring the tGroovyFile component

1. Double-click the component to display the Component view.

2. In the Groovy File field, enter the path to the file containing the Groovy code, or browse to the file in your
directory.

Scenario: Calling a file which contains Groovy code

362 Talend Open Studio Components Reference Guide

3. In the Variables table, add a line by clicking the [+] button.

4. In the Name column, enter “age”, then in the Value column, enter 50, as in the screenshot.

Job execution

Press F6 to save and run the Job.

The Console displays the information contained in the input file, to which the variable result is added.

tJava

Talend Open Studio Components Reference Guide 363

tJava

tJava properties

Component family Custom Code

Function tJava enables you to enter personalized code in order to integrate it in Talend
program. You can execute this code only once.

Purpose tJava makes it possible to extend the functionalities of a Talend Job through using
Java commands.

Basic settings Code Type in the Java code you want to execute according
to the task you need to perform. For further information
about Java functions syntax specific to Talend, see
Talend Open Studio Online Help (Help Contents >
Developer Guide > API Reference).

For a complete Java reference, check http://
docs.oracle.com/javaee/6/api/

Advanced settings Import Enter the Java code that helps to import, if necessary,
external libraries used in the Main code box of the Basic
settings view.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is generally used as a one-component subjob.

Limitation You should know Java language.

Scenario: Printing out a variable content

The following scenario is a simple demo of the extended application of the tJava component. The Job aims at
printing out the number of lines being processed using a Java command and the global variable provided in Talend
Open Studio.

http://docs.oracle.com/javaee/6/api/
http://docs.oracle.com/javaee/6/api/

Scenario: Printing out a variable content

364 Talend Open Studio Components Reference Guide

Setting up the Job

1. Select and drop the following components from the Palette onto the design workspace: tFileInputDelimited,
tFileOutputExcel, tJava.

2. Connect the tFileInputDelimited to the tFileOutputExcel using a Row Main connection. The content
from a delimited txt file will be passed on through the connection to an xls-type of file without further
transformation.

3. Then connect the tFileInputDelimited component to the tJava component using a Then Run link. This link
sets a sequence ordering tJava to be executed at the end of the main process.

Configuring the input component

1. Set the Basic settings of the tFileInputDelimited component.

2. Define the path to the input file in the File name field.

The input file used in this example is a simple text file made of two columns: Names and their respective
Emails.

3. Click the Edit Schema button, and set the two-column schema. Then click OK to close the dialog box.

4. When prompted, click OK to accept the propagation, so that the tFileOutputExcel component gets
automatically set with the input schema.

Configuring the output component

Set the output file to receive the input content without changes. If the file does not exist already, it will get created.

Scenario: Printing out a variable content

Talend Open Studio Components Reference Guide 365

In this example, the Sheet name is Email and the Include Header box is selected.

Configuring the tJava component

1. Then select the tJava component to set the Java command to execute.

2. In the Code area, type in the following command:

String var = "Nb of line processed: ";
var = var + globalMap.get("tFileInputDelimited_1_NB_LINE");
System.out.println(var);

In this use case, we use the NB_Line variable. To access the global variable list, press Ctrl + Space bar on
your keyboard and select the relevant global parameter.

Job execution

Save your Job and press F6 to execute it.

Scenario: Printing out a variable content

366 Talend Open Studio Components Reference Guide

The content gets passed on to the Excel file defined and the Number of lines processed are displayed on the Run
console.

tJavaFlex

Talend Open Studio Components Reference Guide 367

tJavaFlex

tJavaFlex properties

Component family Custom Code

Function tJavaFlex enables you to enter personalized code in order to integrate it in Talend
program. With tJavaFlex, you can enter the three java-code parts (start, main and
end) that constitute a kind of component dedicated to do a desired operation.

Objective tJava makes it possible to extend the functionalities of a Talend Job through using
Java commands.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes Built-in.

Click Sync columns to retrieve the schema from the
previous component in the Job.

Built-in: The schema is created and stored locally for
this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused. Related topic: see
Talend Open Studio User Guide.

Data Auto Propagate Select this check box to automatically propagate the
data to the component that follows.

Start code Enter the Java code that will be called during the
initialization phase.

Main code Enter the Java code to be applied for each line in the
data flow.

End code Enter the Java code that will be called during the closing
phase.

Advanced settings Import Enter the Java code that helps to import, if necessary,
external libraries used in the Main code box of the Basic
settings view.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a job level as well as at each component
level.

Usage You can use this component as a start, intermediate or output component. You can
as well use it as a one-component subjob.

Limitation You should know the Java language.

Scenario 1: Generating data flow

368 Talend Open Studio Components Reference Guide

Scenario 1: Generating data flow
This scenario describes a two-components Job that generates a three-line data flow describing different personal
titles (Miss, Mrs, and Mr) and displaying them on the console.

Setting up the Job

1. Drop tJavaFlex and tLogRow from the Palette onto the design workspace.

2. Connect the components together using a Row > Main link.

Configuring the tJavaFlex component

1. Double-click tJavaFlex to display its Basic settings view and define its properties.

2. Click the three-dot button next to Edit schema to open the corresponding dialog box where you can define
the data structure to pass to the component that follows.

Scenario 1: Generating data flow

Talend Open Studio Components Reference Guide 369

3. Click the [+] button to add two columns: key and value and then set their types to Integer and String
respectively.

4. Click OK to validate your changes and close the dialog box.

5. In the Basic settings view of tJavaFlex, select the Data Auto Propagate check box to automatically
propagate data to the component that follows.

In this example, we do not want to do any transformation on the retrieved data.

6. In the Start code field, enter the code to be executed in the initialization phase.

In this example, the code indicates the initialization of tJavaFlex by displaying the START message and sets
up the loop and the variables to be used afterwards in the Java code:

System.out.println("## START\n#");
String [] valueArray = {"Miss", "Mrs", "Mr"};

for (int i=0;i<valueArray.length;i++) {

7. In the Main code field, enter the code you want to apply on each of the data rows.

In this example, we want to display each key with its value:

row1.key = i;
row1.value = valueArray[i];

In the Main code field, "row1" corresponds to the name of the link that comes out of tJavaFlex. If
you rename this link, you have to modify the code of this field accordingly.

8. In the End code field, enter the code that will be executed in the closing phase.

In this example, the brace (curly bracket) closes the loop and the code indicates the end of the execution of
tJavaFlex by displaying the END message:

}
System.out.println("#\n## END");

Scenario 2: Processing rows of data with tJavaFlex

370 Talend Open Studio Components Reference Guide

9. If needed, double-click tLogRow and in its Basic settings view, click the [...] button next to Edit schema
to make sure that the schema has been correctly propagated.

Saving and executing the Job

1. Save your Job by pressing Ctrl+S.

2. Execute the Job by pressing F6 or clicking Run on the Run tab.

The three personal titles are displayed on the console along with their corresponding keys.

Scenario 2: Processing rows of data with tJavaFlex

This scenario describes a two-component Job that generates random data and then collects that data and does some
transformation on it line by line using Java code through the tJavaFlex component.

Setting up the Job

1. Drop tRowGenerator and tJavaFlex from the Palette onto the design workspace.

2. Connect the components together using a Row Main link.

Configuring the input component

1. Double-click tRowGenerator to display its Basic settings view and the [RowGenerator Editor] dialog box
where you can define the component properties.

Scenario 2: Processing rows of data with tJavaFlex

Talend Open Studio Components Reference Guide 371

2. Click the plus button to add four columns: number, txt, date and flag.

3. Define the schema and set the parameters to the four columns according to the above capture.

4. In the Functions column, select the three-dot function [...] for each of the defined columns.

5. In the Parameters column, enter 10 different parameters for each of the defined columns. These 10
parameters corresponds to the data that will be randomly generated when executing tRowGenerator.

6. Click OK to validate your changes and close the editor.

Configuring the tJavaFlex component

1. Double-click tJavaFlex to display its Basic settings view and define the components properties.

2. Click Sync columns to retrieve the schema from the preceding component.

3. In the Start code field, enter the code to be executed in the initialization phase.

In this example, the code indicates the initialization of the tJavaFlex component by displaying the START
message and defining the variable to be used afterwards in the Java code:

System.out.println("## START\n#");

Scenario 2: Processing rows of data with tJavaFlex

372 Talend Open Studio Components Reference Guide

int i = 0;

4. In the Main code field, enter the code to be applied on each line of data.

In this example, we want to show the number of each line starting from 0 and then the number and the random
text transformed to upper case and finally the random date set in the editor of tRowGenerator. Then, we
create a condition to show if the status is true or false and we increment the number of the line:

System.out.print(" row" + i + ":");
System.out.print("# number:" + row1.number);
System.out.print (" | txt:" + row1.txt.toUpperCase());
System.out.print(" | date:" + row1.date);
if(row1.flag) System.out.println(" | flag: true");
else System.out.println(" | flag: false");

i++;

In the Main code field, "row1" corresponds to the name of the link that connects to tJavaFlex. If
you rename this link, you have to modify the code.

5. In the End code field, enter the code that will be executed in the closing phase.

In this example, the code indicates the end of the execution of tJavaFlex by displaying the END message:

System.out.println("#\n## END");

Saving and executing the Job

1. Save your Job by pressing Ctrl+S.

Scenario 2: Processing rows of data with tJavaFlex

Talend Open Studio Components Reference Guide 373

2. Execute the Job by pressing F6 or clicking Run on the Run tab.

The console displays the randomly generated data that was modified by the java command set through
tJavaFlex.

tJavaRow

374 Talend Open Studio Components Reference Guide

tJavaRow

tJavaRow properties

Component Family Custom Code

Function tJavaRow allows you to enter customized code which you can integrate in a
Talend programme. With tJavaRow, you can enter the Java code to be applied
to each row of the flow.

Purpose tJavaRow allows you to broaden the functionality of Talend Jobs, using the Java
language.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes Built-in.

Click Sync columns to retrieve the schema from the
previous component in the Job.

Built-in: The schema is created and stored locally for
this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused. Related topic: see
Talend Open Studio User Guide.

Code Enter the Java code to be applied to each line of the data
flow.

Advanced settings Import Enter the Java code required to import, if required, the
external library used in the Main code field of the Basic
settings tab.

tStatCatcher Statistics Select this check box to collect the log data at a
component level..

Usage This component is used as an intermediary between two other components. It must
be linked to both an input and an output component.

Limitation Knowledge of Java language is necessary.

Scenario: Transforming data line by line using
tJavaRow

In this scenario, the information of a few cities read from an input delimited file is transformed using Java code
through the tJavaRow component and printed on the console.

Scenario: Transforming data line by line using tJavaRow

Talend Open Studio Components Reference Guide 375

Setting up the Job

1. Drop a tFileInputDelimited component and a tJavaRow component from the Palette onto the design
workspace, and label them to better identify their roles in the Job.

2. Connect the two components using a Row > Main connection.

Configuring the components

1. Double-click the tFileInputDelimited component to display its Basic settings view in the Component tab.

2. In the File name/Stream field, type in the path to the input file in double quotation marks, or browse to the
path by clicking the [...] button, and define the first line of the file as the header.

In this example, the input file has the following content:

City;Population;LandArea;PopDensity
Beijing;10233000;1418;7620
Moscow;10452000;1081;9644
Seoul;10422000;605;17215
Tokyo;8731000;617;14151
New York;8310000;789;10452

3. Click the [...] button next to Edit schema to open the [Schema] dialog box, and define the data structure of
the input file. Then, click OK to validate the schema setting and close the dialog box.

Scenario: Transforming data line by line using tJavaRow

376 Talend Open Studio Components Reference Guide

4. Double-click the tJavaRow component to display its Basic settings view in the Component tab.

5. Click Sync columns to make sure that the schema is correctly retrieved from the preceding component.

6. In the Code field, enter the code to be applied on each line of data based on the defined schema columns.

In this example, we want to transform the city names to upper case, group digits of numbers larger than 1000
using the thousands separator for ease of reading, and print the data on the console:

System.out.print("\n" + row1.City.toUpperCase() + ":");
System.out.print("\n - Population: "
+ FormatterUtils.format_Number(String.valueOf(row1.Population), ',',
 '.')
+ " people");
System.out.print("\n - Land area: "
+ FormatterUtils.format_Number(String.valueOf(row1.LandArea), ',',
 '.')
+ " km2");
System.out.print("\n - Population density: "
+ FormatterUtils.format_Number(String.valueOf(row1.PopDensity), ',',
 '.')
+ " people/km2\n");

In the Code field, "row1" refers to the name of the link that connects to tJavaRow. If you rename
the link, you have to modify the code.

Scenario: Transforming data line by line using tJavaRow

Talend Open Studio Components Reference Guide 377

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

The city information is transformed by the Java code set through tJavaRow and displayed on the console.

tLibraryLoad

378 Talend Open Studio Components Reference Guide

tLibraryLoad

tLibraryLoad properties

Famille de composant Custom Code

Function tLibraryLoad allows you to import a library.

Purpose tLibraryLoad allows you to load useable Java libraries in a Job.

Basic settings Library Select the library you want to import from the list, or
click on the [...] button to browse to the library in your
directory.

Advanced settings Dynamic Libs Lib Paths: Enter the access path to your library, between
double quotation marks.

Import Enter the Java code required to import, if required, the
external library used in the Main code field of the Basic
settings tab.

tStatCatcher Statistics Select this check box to collect the log data at component
level.

Usage This component may be used alone, although it is more logical to use it as part
of a Job.

Limitation n/a

Scenario: Checking the format of an e-mail addressl

This scenario uses two components, a tLibraryLoad and a tJava. The goal of this scenario is to check the format
of an e-mail address and verify whether the format is valid or not.

Setting up the Job

1. In the Palette, open the Custom_Code folder, and slide a tLibraryLoad and tJava component onto the
workspace.

Scenario: Checking the format of an e-mail addressl

Talend Open Studio Components Reference Guide 379

2. Connect tLibraryLoad to tJava using a Trigger > OnSubjobOk link.

Configuring the tLibraryLoad component

1. Double-click on tLibraryLoad to display its Basic settings. From the Library list, select jakarta-
oro-2.0.8.jar.

2. In the Import field of the Advanced settings tab, type import org.apache.oro.text.regex.*;

Configuring the tJava component

1. Double-click on tJava to display its Component view.

2. In the Basic settings tab, enter your code, as in the screenshot below. The code allows you to check whether
the character string pertains to an e-mail address, based on the regular expression: "^[\\w_.-]+@[\
\w_.-]+\\.[\\w]+$".

Scenario: Checking the format of an e-mail addressl

380 Talend Open Studio Components Reference Guide

Job execution

Press F6 to save and run the Job.

The Console displays the boolean false. Hence, the e-mail address is not valid as the format is incorrect.

tSetGlobalVar

Talend Open Studio Components Reference Guide 381

tSetGlobalVar

tSetGlobalVar properties

Component family Custom Code

Function tSetGlobalVar allows you to define and set global variables in GUI.

Purpose tSetGlobalVar facilitates the process of defining global variables.

Basic settings Variables This table contains two columns.

Key: Name of the variable to be called in the code.

Value: Value assigned to this variable.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is generally used as a one-component subjob.

Limitation Knowledge of Java language is required.

Scenario: Printing out the content of a global variable

This scenario is a simple Job that prints out the value of a global variable defined in the tSetGlobalVar component.

Setting up the Job

1. Drop the following components from the Palette onto the design workspace: tSetGlobalVar and tJava.

2. Connect the tSetGlobalVar component to the tJava component using a Trigger > OnSubjobOk connection.

Configuring the tSetGlobalVar component

1. Double-click the tSetGlobalVar component to display its Basic settings view.

Scenario: Printing out the content of a global variable

382 Talend Open Studio Components Reference Guide

2. Click the plus button to add a line in the Variables table, and fill the Key and Value fields with K1 and
20 respectively.

3. Then double-click the tJava component to display its Basic settings view.

4. In the Code area, type in the following lines:

String foo = "bar";
String K1;
String Result = "The value is:";

Result = Result + globalMap.get("K1");

System.out.println(Result);

In this use case, we use the Result variable. To access the global variable list, press Ctrl + Space bar on your
keyboard and select the relevant global parameter.

Job execution

Save your Job and press F6 to execute it.

The content of global variable K1 is displayed on the console.

Talend Open Studio Components Reference Guide

Data Quality components
This chapter details the main components that you can find in the Data Quality family of the Talend Open Studio
Palette.

The Data Quality family comprises dedicated components that help you improve the quality of your data. These
components covers various needs such as narrow down filtering the unique row, calculating CRC, finding data
based on fuzzy matching, and so on.

tAddCRCRow

384 Talend Open Studio Components Reference Guide

tAddCRCRow

tAddCRCRow properties

Component family Data Quality

Function tAddCRCRow calculates a surrogate key based on one or several columns and
adds it to the defined schema.

Purpose Providing a unique ID helps improving the quality of processed data.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either Built-in or remote in
the Repository. In this component, a new CRC column
is automatically added.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job designs. Related topic: see Talend Open Studio
User Guide.

Implication Select the check box facing the relevant columns to be
used for the surrogate key checksum.

Advanced Settings CRC type Select a CRC type in the list. The longer the CRC, the
least overlap you will have.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is an intermediary step. It requires an input flow as well as an
output.

Limitation n/a

Scenario: Adding a surrogate key to a file

This scenario describes a Job adding a surrogate key to a delimited file schema.

Setting up the Job

1. Drop the following components: tFileInputDelimited, tAddCRCRow and tLogRow.

Scenario: Adding a surrogate key to a file

Talend Open Studio Components Reference Guide 385

2. Connect them using a Main row connection.

Configuring the input component

1. In the tFileInputDelimited Component view, set the File Name path and all related properties in case these
are not stored in the Repository.

2. Create the schema through the Edit Schema button, if the schema is not stored already in the Repository.
Remember to set the data type column and for more information on the Date pattern to be filled in, visit http://
docs.oracle.com/javase/6/docs/api/index.html.

Configuring the tAddCRCRow component

1. In the tAddCRCRow Component view, select the check boxes of the input flow columns to be used to
calculate the CRC.

Notice that a CRC column (read-only) has been added at the end of the schema.

2. Select CRC32 as CRC Type to get a longer surrogate key.

http://docs.oracle.com/javase/6/docs/api/index.html
http://docs.oracle.com/javase/6/docs/api/index.html

Scenario: Adding a surrogate key to a file

386 Talend Open Studio Components Reference Guide

3. In the Basic settings view of tLogRow, select the Print values in cells of a table option to display the output
data in a table on the Console.

Job execution

Then save your Job and press F6 to execute it.

An additional CRC Column has been added to the schema calculated on all previously selected columns (in this
case all columns of the schema).

tChangeFileEncoding

Talend Open Studio Components Reference Guide 387

tChangeFileEncoding

tChangeFileEncoding component belongs to two component families: Data Quality and File. For more
information about tChangeFileEncoding, see the section called “tChangeFileEncoding”.

tExtractRegexFields

388 Talend Open Studio Components Reference Guide

tExtractRegexFields

tExtractRegexFields belongs to two component families: Data Quality and Processing. For more information on
tExtractRegexFields, see the section called “tExtractRegexFields”.

tFuzzyMatch

Talend Open Studio Components Reference Guide 389

tFuzzyMatch

tFuzzyMatch properties

Component family Data Quality

Function Compares a column from the main flow with a reference column from the lookup
flow and outputs the main flow data displaying the distance

Purpose Helps ensuring the data quality of any source data against a reference data source.

Basic settings Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Two read-only columns, Value and Match are added to
the output schema automatically.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and job designs. Related topic: see Talend Open Studio
User Guide.

Matching type Select the relevant matching algorithm among:

Levenshtein: Based on the edit distance theory.
It calculates the number of insertion, deletion or
substitution required for an entry to match the reference
entry.

Metaphone: Based on a phonetic algorithm for indexing
entries by their pronunciation. It first loads the phonetics
of all entries of the lookup reference and checks all
entries of the main flow against the entries of the
reference flow.

Double Metaphone: a new version of the Metaphone
phonetic algorithm, that produces more accurate results
than the original algorithm. It can return both a primary
and a secondary code for a string. This accounts for
some ambiguous cases as well as for multiple variants of
surnames with common ancestry.

Min distance (Levenshtein only) Set the minimum number of changes
allowed to match the reference. If set to 0, only perfect
matches are returned.

Max distance (Levenshtein only) Set the maximum number of changes
allowed to match the reference.

Matching column Select the column of the main flow that needs to be
checked against the reference (lookup) key column

Scenario 1: Levenshtein distance of 0 in first names

390 Talend Open Studio Components Reference Guide

Unique matching Select this check box if you want to get the best match
possible, in case several matches are available.

Matching item
separator

In case several matches are available, all of them are
displayed unless the unique match box is selected.
Define the delimiter between all matches.

Usage This component is not startable (green background) and it requires two input
components and an output component.

Scenario 1: Levenshtein distance of 0 in first names

This scenario describes a four-component Job aiming at checking the edit distance between the First Name column
of an input file with the data of the reference input file. The output of this Levenshtein type check is displayed
along with the content of the main flow on a table

• Drag and drop the following components from the Palette to the design workspace: tFileInputDelimited (x2),
tFuzzyMatch, tFileOutputDelimited.

• Define the first tFileInputDelimited Basic settings. Browse the system to the input file to be analyzed and most
importantly set the schema to be used for the flow to be checked.

• In the schema, set the Type of data in the Java version, especially if you are in Built-in mode.

• Link the defined input to the tFuzzyMatch using a Main row link.

• Define the second tFileInputDelimited component the same way.

Make sure the reference column is set as key column in the schema of the lookup flow.

• Then connect the second input component to the tFuzzyMatch using a main row (which displays as a Lookup
row on the design workspace).

• Select the tFuzzyMatch Basic settings.

• The Schema should match the Main input flow schema in order for the main flow to be checked against the
reference.

Scenario 1: Levenshtein distance of 0 in first names

Talend Open Studio Components Reference Guide 391

• Note that two columns, Value and Matching, are added to the output schema. These are standard matching
information and are read-only.

• Select the method to be used to check the incoming data. In this scenario, Levenshtein is the Matching type
to be used.

• Then set the distance. In this method, the distance is the number of char changes (insertion, deletion or
substitution) that needs to be carried out in order for the entry to fully match the reference.

• In this use case, we want the distance be of 0 for the min. or for the max. This means only the exact matches
will be output.

• Also, clear the Case sensitive check box.

• And select the column of the main flow schema that will be selected. In this example, the first name.

• No need to select the Unique matching check box nor hence the separator.

• Link the tFuzzyMatch to the standard output tLogRow. No other parameters than the display delimiter is to
be set for this scenario.

• Save the Job and press F6 to execute the Job.

As the edit distance has been set to 0 (min and max), the output shows the result of a regular join between the main
flow and the lookup (reference) flow, hence only full matches with Value of 0 are displayed.

Scenario 2: Levenshtein distance of 1 or 2 in first names

392 Talend Open Studio Components Reference Guide

A more obvious example is with a minimum distance of 1 and a max. distance of 2, see the section called “Scenario
2: Levenshtein distance of 1 or 2 in first names”

Scenario 2: Levenshtein distance of 1 or 2 in first
names

This scenario is based on the scenario 1 described above. Only the min and max distance settings in tFuzzyMatch
component get modified, which will change the output displayed.

• In the Component view of the tFuzzyMatch, change the min distance from 0 to 1. This excludes straight away
the exact matches (which would show a distance of 0).

• Change also the max distance to 2 as the max distance cannot be lower than the min distance. The output will
provide all matching entries showing a discrepancy of 2 characters at most.

• No other change of the setting is required.

• Make sure the Matching item separator is defined, as several references might be matching the main flow
entry.

• Save the new Job and press F6 to run it.

As the edit distance has been set to 2, some entries of the main flow match several reference entries.

You can also use another method, the metaphone, to assess the distance between the main flow and the reference,

Scenario 3: Metaphonic distance in first name

Talend Open Studio Components Reference Guide 393

Scenario 3: Metaphonic distance in first name

This scenario is based on the scenario 1 described above.

• Change the Matching type to Metaphone. There is no min nor max distance to set as the matching method is
based on the discrepancies with the phonetics of the reference.

• Save the Job and press F6. The phonetics value is displayed along with the possible matches.

tIntervalMatch

394 Talend Open Studio Components Reference Guide

tIntervalMatch

tIntervalMatch properties

Component family Data Quality

Function tIntervalMatch receives a main flow and aggregates it based on join to a lookup
flow (Java). Then it matches a specified value to a range of values and returns
related information.

Purpose Helps to return a value based on a Join relation.

Basic settings Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and job flowcharts. Related topic: see Talend Open
Studio User Guide.

Search column Select the main flow column containing the values to be
matched to a range of values

Column (LOOKUP) Select the lookup flow column containing the values to
be returned when the Join is ok.

Lookup Column min/
bounds strictly (min)

Select the column containing the min value of the tange.
Select the check box if the boundary is strict.

Lookup Column max/
bounds strictly (max)

Select the column containing the max value of the tange.
Select the check box if the boundary is strict.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component handles flow of data therefore it requires input and output, hence
is defined as an intermediary step.

Limitation n/a

Scenario: Identifying Ip country

In this Job, a incoming main flow provides 2 columns: Documents and IP dummy values. A second file used as
lookup flow in Java contains a list of sorted IP ranges and their corresponding country. This Job aims at retrieving
each document’s country from their IP value, in other words, creating a Join between the main flow and the lookup
flow.

Scenario: Identifying Ip country

Talend Open Studio Components Reference Guide 395

The Job requires one extra tFileInputDelimited, a tIntervalMatch and a tLogRow.

• Drop the components onto the design workspace.

• Set the basic settings of the tFileInputDelimited component.

• The schema is made of two columns, respectively Document and IP

• Set the Type column on String for the Document column and Integer for the IP column.

• Set now the second tFileInputDelimited properties.

• Don’t forget to define the Type of data.

• Propagate the schema from the incoming main flow to the tIntervalMatch component.

Scenario: Identifying Ip country

396 Talend Open Studio Components Reference Guide

• Note that the output schema from the tIntervalMatch component is read-only and is made of the input schema
plus an extra Lookup column which will output the requested lookup data.

• Set the other properties of the tIntervalMatch component.

• Set the tIntervalMatch other properties such as the min and max column corresponding to the range bounds.

• In the Column Lookup field, select the column where are the values to be returned.

• In the Search column field, select the main flow column containing the values to be matched to the range values.

• The tLogRow component does not require any specific setting for this Job.

Following result is displayed:

Only requested values (country) are included in the output.

tReplaceList

Talend Open Studio Components Reference Guide 397

tReplaceList

tReplaceList Properties

Component family Data Quality

Function Carries out a Search and Replace operation in the input columns defined based
on an external lookup.

Purpose Helps to cleanse all files before further processing.

Basic settings Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Two read-only columns, Value and Match are added to
the output schema automatically.

The data Type defined in the schemas must be
consistent, ie., an integer can only be replaced
by another integer using an integer as a look up
field. Values of one type cannot be replaced by
values of another type.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and job designs. Related topic: see Talend Open Studio
User Guide.

Lookup search column Type in the position number of the column to be searched
in the lookup schema.

0: first column read

1: second column read

n: position number of the column in the schema read.

In order to ensure the uniqueness of values
being searched, make sure this column is
marked as Key in your lookup schema.

Lookup replacement
column

Type in the position number of the column where the
replacement values are stored.

0: first column read

1: second column read

n: position number of the column in the schema read

Column options Select the columns of the main flow where the
replacement is to be carried out.

Scenario: Replacement from a reference file

398 Talend Open Studio Components Reference Guide

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage tReplaceList is an intermediary component. It requires an input flow and an
output component.

Scenario: Replacement from a reference file
The following Job searches and replaces a list of countries with their corresponding codes. The relevant codes
are taken from a reference file placed as lookup flow in the Job. The main flow is replicated and both outputs are
displayed on the console, in order to show the main flow before and after replacement.

• Drop the following components from the Palette to the design workspace: tMysqlInput, tFileInputDelimited,
tReplicate, tReplaceList and tLogRow (x2). Note that if your input schemas are stored in the Repository, you
can simply drag and drop the relevant node from the Repository’s Metadata Manager onto the design workspace
to retrieve automatically the input components’ setting. For more information, see Talend Open Studio User
Guide.

• Connect the components using Main Row connections via a right-click on each component. Notice that the
main row coming from the reference flow (tFileInputDelimited) is called a lookup row.

• Select the tMysqlInput component and set the input flow parameters.

• The input schema is made of two columns: Names, States. The column States gathered the name of the United
States of America which are to be replaced by their respective code.

• In the Query field, make sure the State column is included in the Select statement. In this use case, all
columns are selected.

Scenario: Replacement from a reference file

Talend Open Studio Components Reference Guide 399

• Check the tReplicate component setting. The schema is simply duplicated into two identical flows, but no
change to the schema can be made.

• Then double-click on the tFileInputDelimited component, to set the reference file.

• The file includes two columns: Postal, State where Postal provides the zipcode corresponding to the name given
in the respective row of the State column.

• The fields are delimited by semicolons and rows are separated by carriage returns.

• Edit the lookup flow schema.

• Make sure the lookup search column (in this use case: State) is a key, in order to ensure the uniqueness of the
values being searched.

• Select the tReplaceList and set the operation to carry out.

• The schema is retrieved from the previous component of the main flow.

• In Lookup search index field, type in the position index of the column being searched. In this use case, State
is the second column of the lookup input file, therefore type in 1 in this field.

• In Lookup replacement index field, fill in the position number of the column containing the replacement
values, in this example: Postal for the State codes.

Scenario: Replacement from a reference file

400 Talend Open Studio Components Reference Guide

• In the Column options table, select the States column as in this use case, the State names are to be replaced
with their corresponding code.

• In both tLogRow components, select the Print values in table cells check box for a better readability of the
outputs.

• Save the Job and press F6 to execute it.

The first flow output shows the States column with full state names as it comes from the main input flow.

The second flow output shows the States column after the State column names have been replaced with their
respective codes.

tSchemaComplianceCheck

Talend Open Studio Components Reference Guide 401

tSchemaComplianceCheck

tSchemaComplianceCheck Properties

Component family Data Quality

Function Validates all input rows against a reference schema or checks type, nullability, length
of rows against reference values. The validation can be carried out in full or partly.

Purpose Helps to ensure the data quality of any source data against a reference data source.

Basic settings Base Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in the
Repository.

Describe the structure and nature of your data to be processed
as it is.

Built-in: The schema will be created and stored locally for
this component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
designs. Related topic: see Talend Open Studio User Guide.

Check all columns from
schema

Select this option to carry out all checks on all columns
against the base schema.

Custom defined Select this option to carry out particular checks on particular
columns. When this option is selected, the Checked
Columns table and the Trim the excess content of column
when length checking chosen and the length is greater
than defined length check box show.

Checked Columns In this table, define what checks are to be carried out on
which columns.

Column: Displays the columns names.

Type: Select the type of data each column is supposed to
contain. This validation is mandatory for all columns.

Date pattern: Define the expected date format for each
column with the data type of Date.

Nullable: Select the check box in an individual column to
define the column to be nullable, that is, to allow rows with
this column empty to go to the output flow regardless of the
base schema definition. To define all columns to be nullable,
select the check box in the table header.

Undefined or empty: Select the check box in an individual
column to reject rows with this column empty while the
column is not nullable in the base schema definition. To carry
out this verification on all the columns, select the check box
in the table header.

Scenario: Validating data against schema

402 Talend Open Studio Components Reference Guide

Max length: Select the check box in an individual column
to verify the data length of the column against the length
definition of the base schema. To carry out this verification
on all the columns, select the check box in the table header.

Trim the excess content
of column when length
checking chosen and the
length is greater than
defined length

Select this check box to remove the part in excess of the
defined length from the valid output flow instead of rejecting
the row if the length check option is selected.

Use another schema for
compliance check

Define a reference schema as you expect the data to be, in
order to reject the non-compliant data.

It can be restrictive on data type, null values, and/or length.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Use Fastest Date Check Select this check box to perform a fast date format check
using the TalendDate.isDate() method of the TalendDate
system routine if Date pattern is not defined. For more
information about routines, see Talend Open Studio User
Guide.

Treat all empty string as
NULL

Select this check box to treat any empty fields in any columns
as null values, instead of empty strings.

By default, this check box is selected. When it is cleared, the
Choose Column(s) table shows to let you select individual
columns.

Usage This component is an intermediary step in the flow allowing to exclude from the main
flow the non-compliant data. This component cannot be a start component as it requires
an input flow. It also requires at least one output component to gather the validated
flow, and possibly a second output component for rejected data using Rejects link. For
more information, see Talend Open Studio User Guide.

Scenario: Validating data against schema

This very basic scenario shows how to check the type, nullability and length of an incoming flow against a defined
reference schema. The incoming flow comes from a simple CSV file that contains heterogeneous data including
wrong data type, data exceeding the maximum length, wrong ID and null values in non-nullable columns, as
shown below:

Upon validation, the valid rows and the rejected rows are displayed respectively in two tables on the Run console.

Scenario: Validating data against schema

Talend Open Studio Components Reference Guide 403

• Drop the following components: a tFileInputDelimited, a tSchemaComplianceCheck, and two tLogRow
components from the Palette to the design workspace.

• Connect the tFileInputDelimited component to the tSchemaComplianceCheck component using a Row >
Main connection.

• Connect the tSchemaComplianceCheck component to the first tLogRow component using a Row > Main
connection. This output flow will gather the valid data.

• Connect the tSchemaComplianceCheck component to the second tLogRow component using a Row > Rejects
connection. This second output flow will gather the non-compliant data.

• Select the Rejects connection, and notice that the schema passed to the second tLogRow contains two more
columns: ErrorCode and ErrorMessage. These two read-only columns provide information about the rejected
data to ease error handling and troubleshooting if needed.

• Double-click the tFileInputDelimited component to display its Basic settings view.

• Fill in the File name field by browsing to the input file.

• Specify the header row. In this use case, the first row of the input file is the header row.

• Leave the other parameters as they are.

• Click Edit schema to describe the data structure of the input file. In this use case, the schema is made of five
columns: ID, Name, BirthDate, State, and City.

Scenario: Validating data against schema

404 Talend Open Studio Components Reference Guide

• Leave the Type field as permissive as possible. You will define the actual type of the data in the
tSchemaComplianceCheck component.

• Fill the Length field for the Name, State and City columns with 7, 10 and 10 respectively.

• Click OK to propagate the schema and close the schema dialog box.

• Double-click the tSchemaComplianceCheck component to display its Basic settings view, wherein you will
define most of the validation parameters.

• Select the Custom defined option in the Mode area to perform custom defined checks.

In this example, we use the Checked columns table to set the validation parameters. However, you can also
select the Check all columns from schema check box if you want to perform all the checks (type, nullability
and length) on all the columns against the base schema, or select the Use another schema for compliance
check option and define a new schema as the expected structure of the data.

• In the Checked Columns table, define the checks to be performed. In this use case:

Scenario: Validating data against schema

Talend Open Studio Components Reference Guide 405

- The type of the ID column should be Int.

- The length of the Name, State and City columns should be checked.

- The type of the BirthDate column should be Date, and the expected date pattern is dd-MM-yyyy.

- All the columns should be checked for null values, so clear the Nullable check box for all the columns.

To send rows containing fields exceeding the defined maximum length to the reject flow, make sure that
the Trim the excess content of column when length checking chosen and the length is greater than
defined length check box is cleared.

• In the Advanced settings view of the tSchemaComplianceCheck component, select the Treat all empty
string as NULL option to sent any rows containing empty fields to the reject flow.

• To view the validation result in tables on the Run console, double-click each tLogRow component and select
the Table option in the Basic settings view.

• Save your Job and press F6 to launch it.

Two tables are displayed on the console, showing the valid data and rejected data respectively.

tUniqRow

406 Talend Open Studio Components Reference Guide

tUniqRow

tUniqRow Properties

Component family Data Quality

Function Compares entries and sorts out duplicate entries from the input flow.

Purpose Ensures data quality of input or output flow in a Job.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in the
Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and
job flowcharts. Related topic: see Talend Open Studio User
Guide.

Unique key In this area, select one or more columns to carry out
deduplication on the particular column(s)

- Select the Key attribute check box to carry out
deduplication on all the columns

- Select the Case sensitive check box to differentiate upper
case and lower case

Advanced settings Only once each
duplicated key

Select this check box if you want to have only the first
duplicated entry in the column(s) defined as key(s) sent to
the output flow for duplicates.

Use of disk (suitable for
processing large row set)

Select this check box to enable generating temporary files
on the hard disk when processing a large amount of data.
This helps to prevent Job execution failure caused by
memory overflow. With this check box selected, you need
also to define:

- Buffer size in memory: Select the number of rows that
can be buffered in the memory before a temporary file is
to be generated on the hard disk.

- Directory for temp files: Set the location where the
temporary files should be stored.

Scenario 1: Deduplicating entries

Talend Open Studio Components Reference Guide 407

Make sure that you specify an existing directory
for temporary files; otherwise your Job execution
will fail.

tStatCatcher Statistics Select this check box to gather the job processing metadata
at a job level as well as at each component level.

Usage This component handles flow of data therefore it requires input and output, hence is
defined as an intermediary step.

Limitation n/a

Scenario 1: Deduplicating entries

In this five-component Job, we will sort entries on an input name list, find out duplicated names, and display the
unique names and the duplicated names on the Run console.

Setting up the Job

1. Drop a tFileInputDelimited, a tSortRow, a tUniqRow, and two tLogRow components from the Palette to
the design workspace, and name the components as shown above.

2. Connect the tFileInputDelimited component, the tSortRow component, and the tUniqRow component
using Row > Main connections.

3. Connect the tUniqRow component and the first tLogRow component using a Main > Uniques connection.

4. Connect the tUniqRow component and the second tLogRow component using a Main > Duplicates
connection.

Configuring the components

1. Double-click the tFileInputDelimited component to display its Basic settings view.

Scenario 1: Deduplicating entries

408 Talend Open Studio Components Reference Guide

2. Click the [...] button next to the File Name field to browse to your input file.

3. Define the header and footer rows. In this use case, the first row of the input file is the header row.

4. Click Edit schema to define the schema for this component. In this use case, the input file has five columns:
Id, FirstName, LastName, Age, and City. Then click OK to propagate the schema and close the schema editor.

5. Double-click the tSortRow component to display its Basic settings view.

6. To rearrange the entries in the alphabetic order of the names, add two rows in the Criteria table by clicking
the plus button, select the FirstName and LastName columns under Schema column, select alpha as the
sorting type, and select the sorting order.

7. Double-click the tUniqRow component to display its Basic settings view.

Scenario 1: Deduplicating entries

Talend Open Studio Components Reference Guide 409

8. In the Unique key area, select the columns on which you want deduplication to be carried out. In this use
case, you will sort out duplicated names.

9. In the Basic settings view of each of the tLogRow components, select the Table option to view the Job
execution result in table mode.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Run the Job by pressing F6 or clicking the Run button on the Run tab.

The unique names and duplicated names are displayed in different tables on the Run console.

tUniservBTGeneric

410 Talend Open Studio Components Reference Guide

tUniservBTGeneric

This component will be available in the Palette of the studio on the condition that you have subscribed
to the relevant edition of Data Quality Service Hub Studio.

tUniservBTGeneric properties

Component family Data quality

Function tUniservBTGeneric enables the execution of a processing created with the
Uniserv product DQ Batch Suite.

Purpose tUniservBTGeneric sends the data to the DQ Batch Suite and starts the specified
DQ Batch Suite job. When the job execution is finished, the results are returned
to the Data Quality Service Hub Studio for further processing.

Basic settings Schema and Edit
schema

A schema is a row description, i.e. it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Click Retrieve Schema to create a schema for the
components that matches the input and output fields in
the DQ Batch Suite job.

Host name Host on which the Master Server of DQ Batch Suite runs,
between double quotation marks.

Port Port number on which the DQ Batch Suite server runs,
between double quotation marks.

Client Server Name of the client server of the DQ Batch Suite, between
double quotation marks.

User name User name for the registration on the DQ Batch Suite
server. The stated user must have the right to execute the
DQ Batch Suite job.

Password Password of the stated user.

Job directory Directory in the DQ Batch Suite, in which the job is
saved.

Job name Name of the DQ Batch Suite job that is to be executed.

Job file path File path under which the DQ Batch Suite job to be
executed will be saved. The path to the file must be stated
absolutely.

Advanced settings Temporary directory Directory in which the temporary files created during job
execution are to be saved.

Input Parameters These parameters must correspond to the parameters in
the function Input (tab "Format") of the DQ Batch Suite
job.

File location: State whether the input file is saved in the
pool or the local job directory.

tUniservBTGeneric properties

Talend Open Studio Components Reference Guide 411

Directory: If the File location = Pool, it means the
directory is related to the pool directory. If the File
location = Job, "input" must be specified here.

File name: Name of the delimiter file which has
been generated by tUniservBTGeneric and is to be
transferred to the DQ Batch Suite. The file name must
correspond to the file name which is defined in the
function Input of the DQ Batch Suite job.

No. of header rec.: 0 = no header record, 1 = header
record in the input file.

Field separator: Field separator defined in the function
Input of the DQ Batch Suite job.

Output Parameters These parameters must correspond to the parameters in
the function Output (tab "Format") of the DQ Batch
Suite job.

File location: State whether the output file is to be saved
in the pool or the local job directory.

Directory: If the File location = Pool, it means the
directory is related to the pool directory. If the File
location = Job, "output" must be specified here.

File name: Name of the output file in the delimiter
format, which is created by the DQ Batch Suite job. The
file name must correspond to the file name defined in the
function Output of the DQ Batch Suite job.

No. of header rec.: 0 = no header record, 1 = header
record in the output file.

Field separator: Field separator defined in the function
Output of the DQ Batch Suite job.

Usage tUniservBTGeneric sends data to DQ Batch Suite and starts the specified DQ
Batch Suite job. When the execution is finished, the output data of the job is
returned to Data Quality Service Hub Studio for further processing.

Limitation To use tUniservBTGeneric, the Uniserv software DQ Batch Suite must be
installed.

Please note the following:

• The job must be configured and executable in the DQ Batch Suite.

• The user must have the authority to execute the DQ Batch Suite job.

• The DQ Batch Suite job may only have one line.

• The files defined in the functions Input and Output must possess the
record format delimiter.

• Input and output data must be provided in the UTF-8 character set.

Scenario: Execution of a Job in the

412 Talend Open Studio Components Reference Guide

Scenario: Execution of a Job in the

This scenario describes a DQ Batch Suite job which execution results are processed in the Data Quality Service
Hub Studio. The input source for the job is provided by the Data Quality Service Hub Studio.

The job was completely defined in the DQ Batch Suite and saved under the name "BTGeneric_Sample". In the
function Input, the file "btinput.csv" was specified as the input file saved in the job directory and all fields were
assigned. The file is not yet existent physically as it will only be provided by the Data Quality Service Hub Studio,
so that the job cannot yet run.

In the Data Quality Service Hub Studio, the input source (here a table from an Oracle database) for this scenario
was already saved in the Repository, so that all schema metadata is available.

1. In the Repository view, expand the Metadata node and the directory in which you saved the source. Then
drag this source into the design workspace.

The dialog box below appears.

2. Select tOracleInput and then click OK to close the dialog box.

The component is displayed in the workspace. The table used in this scenario is called LOCATIONS.

3. Drag the following components from the Palette into the design workspace: two tMap components,
tOracleOutput and tUniservBTGeneric.

4. Connect the components via Row > Main.

During the process, accept the schema from tUniservBTGeneric by clicking Yes in the validation window.

Scenario: Execution of a Job in the

Talend Open Studio Components Reference Guide 413

5. Double-click tUniservBTGeneric to open its Basic Settings view.

6. Enter the connection data for the DQ Batch Suite job. Note that the absolute path must be entered in the field
Job File Path.

7. Click Retrieve Schema to automatically create a schema for tUniservBTGeneric from the input and output
definitions of the DQ Batch Suite job and automatically fill in the fields in the Advanced Settings.

8. Check the details in the Advanced Settings view. The definitions for input and output must be defined exactly
the same as the DQ Batch Suite job. If necessary, adapt the path for the temporary files.

Scenario: Execution of a Job in the

414 Talend Open Studio Components Reference Guide

9. Double-click tMap_1 to open the schema mapping window. On the left is the structure of the input source,
on the right is the schema of tUniservBTGeneric (and thus the input for the DQ Batch Suite job). At the
bottom is the Schema Editor, where you can find the attributes of the individual columns and edit them.

10. Assign the columns of the input source to the respective columns of tUniservBTGeneric. For this purpose,
select a column of the input source and drag it onto the appropriate column on the right side.

Scenario: Execution of a Job in the

Talend Open Studio Components Reference Guide 415

Click OK to close the dialog box.

11. Then define how to process the execution results of the job, including which components will be used.

12. Before starting the job, make sure that all path details are correct, the server of the DQ Batch Suite is running
and that you are able to access the job.

tUniservRTConvertName

416 Talend Open Studio Components Reference Guide

tUniservRTConvertName

This component will be available in the Palette of the studio on the condition that you have subscribed
to the relevant edition of Data Quality Service Hub Studio.

tUniservRTConvertName properties

Component family Data quality

Function tUniservRTConvertName analyzes the name line against the context. For
individual persons, it divides the name line into segments (name, first name, title,
name prefixes, name suffixes, etc.) and creates the address key.

The component recognizes company or institution addresses and is able to
provide the form of the organization separately. It also divides lines that contain
information on several persons to separate lines and is able to recognize certain
patterns that do not belong to the name information in the name line (customer
number, handling notes, etc.) and remove them or move them to special memo
fields.

Purpose tUniservRTConvertName provides the basis for a uniform structuring and
population of person and company names in the database as well as the
personalized salutation.

Basic settings Schema and Edit schema A schema is a row description, i.e. it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Host name Server host name between double quotation marks.

Port Listening port number of the server between double
quotation marks.

Service The service type/name is "cname_d" by default. Enter
a new name if necessary (e.g. due to service suffix),
between double quotation marks. Available services:

Germany "cname_d"

Italy "cname_i"

Austria "cname_a"

Netherlands "cname_nl"

Switzerland "cname_ch"

Belgium "cname_b"

France "cname_f"

Spain "cname_e"

Use rejects Select this option to separately output data sets from a
certain result class of the onward name analysis. Enter

Scenario: Analysis of a name line and assignment of the salutation

Talend Open Studio Components Reference Guide 417

the respective result class in the field if result class is
greater or equal to.

If this option is not selected, the sets are still output via
the Main connection even if the analysis failed.

If the option is selected, but the Rejects connection is
not established, the sets are simply sorted out when the
analysis failed.

Advanced settings Analysis Configuration For detailed information, please refer to the Uniserv user
manual convert-name.

Output Configuration For detailed information, please refer to the Uniserv user
manual convert-name.

Configuration of not
recognized input

For detailed information, please refer to the Uniserv user
manual convert-name.

Configuration of free
fields

For detailed information, please refer to the Uniserv user
manual convert-name.

Cache Configuration For detailed information, please refer to the Uniserv user
manual convert-name.

Usage tUniservRTConvertName provides the basis for a uniform structuring and
population of person and company names in the database as well as the
personalized salutation.

Limitation To use tUniservRTConvertName, the Uniserv software convert-name must be
installed.

Scenario: Analysis of a name line and assignment of
the salutation

This scenario describes a batch job that analyzes the person names in a file and assigns them a salutation.

The input file for this scenario is already saved in the Repository, so that all schema metadata is available.

Please observe that the data from the input source must all be related to the same country.

1. In the Repository view, expand the Metadata node and the directory in which the file is saved. Then drag
this file into the design workspace.

The dialog box below appears.

Scenario: Analysis of a name line and assignment of the salutation

418 Talend Open Studio Components Reference Guide

2. Select tFileInputDelimited and then click OK to close the dialog box.

The component is displayed in the workspace. The file used in this scenario is called SampleAddresses..

3. Drag the following components from the Palette into the design workspace: two tMap components,
tUniservRTConvertName, and tFileOutputDelimited..

4. Connect the components via Row > Main.

During the process, accept the schema from tUniservRTConvertName by clicking Yes in the validation
window.

5. Double-click tMap_1 to open the schema mapping window. On the left is the structure of the input file, on
the right is the schema of tUniservRTConvertName. At the bottom lies the Schema Editor, where you can
find the attributes of the individual columns and edit them.

Scenario: Analysis of a name line and assignment of the salutation

Talend Open Studio Components Reference Guide 419

6. Assign the columns of the input source to the respective columns of tUniservRTConvertName. For this
purpose, select a column of the input source and drag it onto the appropriate column on the right side. If
fields from the input file are to be passed on to the output file, like the address fields or IDs, you have to
define additional fields.

7. Click OK to close the dialog box.

8. Double-click tUniservRTConvertName to open its Basic Settings view.

9. Fill in the server information and specify the country-specific service.

10. Double-click tMap_3 to open the mapping window. On the left is the schema of tUniservRTConvertName
and on the right is the schema of the output file.

Scenario: Analysis of a name line and assignment of the salutation

420 Talend Open Studio Components Reference Guide

11. Click OK to close the window.

12. Double-click tFileOutputDelimited and enter the details for the output file.

tUniservRTMailBulk

Talend Open Studio Components Reference Guide 421

tUniservRTMailBulk

This component will be available in the Palette of the studio on the condition that you have subscribed
to the relevant edition of Data Quality Service Hub Studio.

tUniservRTMailBulk properties

Component family Data quality

Function tUniservRTMailBulk creates an index pool for mailRetrieval with predefined
input data.

Purpose tUniservRTMailBulk prepares the index pool for duplicate search.

Basic settings Schema and Edit schema A schema is a row description, i.e. it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Host name Server host name between double quotation marks.

Port Listening port number of the server between double
quotation marks.

Service The service name is "mail" by default. Enter a new
name if necessary (e.g. due to service suffix), between
double quotation marks.

Advanced settings Uniserv Parameters For detailed information, please refer to the Uniserv user
manual mailRetrieval.

tStatCatcher Statistics Select this check box to collect log data at the Job and
the component levels.

Usage tUniservRTMailBulk prepares the index pool for duplicate search.

Limitation To use tUniservRTMailBulk, the Uniserv software mailRetrieval must be
installed.

An input component and a map are needed to read the address from the database
or a file. The component does not have an output connection.

Scenario: Creating an index pool

This scenario describes a batch job that loads the address list of an SQL database into the index pool.

The database for this scenario is already saved in the Repository, so that all schema metadata is available.

1. In the Repository view, expand the Metadata node and the directory in which the database is saved. Then
drag this database into the design workspace.

The dialog box below appears.

Scenario: Creating an index pool

422 Talend Open Studio Components Reference Guide

2. Select tMysqlInput and then click OK to close the dialog box.

The component is then displayed in the workspace.

3. Drag the following components from the Palette into the design workspace: tMap and
tUniservRTMailBulk.

4. Connect the components via Row > Main.

During the process, accept the schema from tUniservRTMailBulk by clicking Yes in the validation window.

5. Double-click tMap_1 to open the schema mapping window. On the left is the schema of the database file and
on the right is the schema of tUniservRTMailBulk. At the bottom is displayed the Schema Editor, where
you can find the attributes of the individual columns and edit them.

Scenario: Creating an index pool

Talend Open Studio Components Reference Guide 423

6. Assign the columns of the input source to the respective columns of tUniservRTMailBulk. For this purpose,
select a column of the input source and drag it onto the appropriate column on the right side. The meaning
of the individual arguments is described in the Uniserv user manual mailRetrieval.

7. Click OK to close the window.

8. Double-click tUniservRTMailBulk to open its Basic Settings view.

9. Fill in the server information and specify the service.

10. Select Advanced Settings to adapt the server parameters.

Scenario: Creating an index pool

424 Talend Open Studio Components Reference Guide

tUniservRTMailOutput

Talend Open Studio Components Reference Guide 425

tUniservRTMailOutput

This component will be available in the Palette of the studio on the condition that you have subscribed
to the relevant edition of Data Quality Service Hub Studio.

tUniservRTMailOutput properties

Component family Data Quality

Function tUniservRTMailOutput updates the index pool that is used for duplicate search..

Purpose tUniservRTMailOutput keeps the index pool synchronized.

Basic settings Schema and Edit schema A schema is a row description, i.e. it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Host name Server host name between double quotation marks.

Port Listening port number of the server between double
quotation marks.

Service The service name is "mail" by default. Enter a new
name if necessary (e.g. due to service suffix), between
double quotation marks.

Action on data Operations that can be made on the index pool.

Insert: inserts a new record in the index pool. This
request will fail if the record with the given reference
already exists in the index pool.

Update: updates an existing record in the index pool.
This request will fail if the record with the given
reference does not exist in the index pool.

Insert or update: inserts a new record in the index pool.
If the record with the given reference already exists, an
update would be made.

Update or insert: updates the record with the given
reference. If the record does not exist in the index pool,
a new record would be inserted.

Delete: deletes the record with the given reference from
the index pool.

Advanced settings Uniserv Parameters For detailed information, please refer to the Uniserv user
manual mailRetrieval.

tStatCatcher Statistics Select this check box to collect log data at the Job and
the component levels.

Usage tUniservRTMailOutput updates the index pool and passes the input set on. The
output is amended by the status of the operation. If the operation fails, an error
message will be displayed.

Related scenarios

426 Talend Open Studio Components Reference Guide

Limitation To use tUniservRTMailOutput, the Uniserv software mailRetrieval must be
installed.

Before the first use of tUniservRTMailOutput, an index pool must be
created. You can create the index pool with tUniservRTMailBulk.

Related scenarios

For a related scenario, see the section called “Scenario: Adding contacts to the mailRetrieval index pool”.

tUniservRTMailSearch

Talend Open Studio Components Reference Guide 427

tUniservRTMailSearch

This component will be available in the Palette of the studio on the condition that you have subscribed
to the relevant edition of Data Quality Service Hub Studio.

tUniservRTMailSearch properties

Component family Data quality

Function tUniservRTMailSearch searches for similar data based on the given input record.

Purpose tUniservRTMailSearch searches for duplicate values and adds additional data
to each record.

Basic settings Schema and Edit schema A schema is a row description, i.e. it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Host name Server host name between double quotation marks.

Port Listening port number of the server between double
quotation marks.

Service The service name is "mail" by default. Enter a new
name if necessary (e.g. due to service suffix), between
double quotation marks.

Maximum of displayed
duplicates (0 = All)

Enter the maximum number of duplicates to be
displayed in the Run view. The default value is 0, which
means that all duplicates will be displayed (up to 1000
duplicates can be displayed).

Use rejects Select this check box to set parameters based on which
duplicate records should be added to the reject flow.
Then set the:

Element: Duplicate count.

Operator: <, <=, =, >=, >.

Value: Enter the number manually.

Advanced settings Uniserv Parameters For detailed information, please refer to the Uniserv user
manual mailRetrieval.

tStatCatcher Statistics Select this check box to collect log data at the Job and
the component levels.

Usage tUniservRTMailSearch requires an input component and one or more output
components.

Limitation To use tUniservRTMailSearch, the Uniserv software mailRetrieval must be
installed.

Before the first use of tUniservRTMailSearch, an index pool must be
created. You can create the index pool with tUniservRTMailBulk.

Scenario: Adding contacts to the mailRetrieval index pool

428 Talend Open Studio Components Reference Guide

Scenario: Adding contacts to the mailRetrieval index
pool

This scenario describes a batch job that adds contacts to the index pool of mailRetrieval. Before the addition, it
must be checked whether these contacts already exist.

The input file for this scenario is already saved in the Repository, so that all schema metadata is available.

Please note that the data from the input source must be related to the same country.

Dropping and connecting the components

1. In the Repository view, expand the Metadata node and the directory in which the file is saved. Then drag
this file into the design workspace.

The dialog box below appears.

2. Select tFileInputDelimited and then click OK to close the dialog box.

The component is displayed in the workspace.

3. Drag the following components from the Palette into the design workspace: two tMap components,
tUniservRTMailSearch and tUniservRTMailOutput .

4. Connect the components via Row > Main.

During the process, accept the schema from tUniservRTMailSearch by clicking Yes in the validation
window.

Scenario: Adding contacts to the mailRetrieval index pool

Talend Open Studio Components Reference Guide 429

Configuring the components

1. Double-click tMap_1 to open the schema mapping window. On the left is the structure of the input file and
on the right is the schema of tUniservRTMailSearch. At the bottom lies the Schema Editor, where you can
find the attributes of the individual columns and edit them.

2. Assign the columns of the input file to the respective columns of tUniservRTMailSearch. For this purpose,
select a column of the input source and drag it onto the appropriate column on the right side.

3. When your input list contains a reference ID, you should adopt it. In order to do so, create a new column
IN_DBREF in the Schema Editor and connect it with your reference ID.

Click OK to close the window.

4. Double-click tUniservRTMailSearch to open its Basic settings view.

Scenario: Adding contacts to the mailRetrieval index pool

430 Talend Open Studio Components Reference Guide

5. Under Maximum of displayed "duplicates", enter 0 to display all the duplicates.

Select Define rejects to open the rejects definition window.

6. Click the [+] button to insert a new line in the window. Select Duplicate count under the element column,
> under the operator column, and 0 under the value column. So all the existing contacts are disqualified and
only the new contact will be added to the index pool.

7. Enter the Advanced settings view and check the parameters. Reasonable parameters are preset. Detailed
information can be found in the manual mailRetrieval.

8. Double-click tMap_3 to open schema mapping window. On the left is the schema of tUniservRTMailSearch
and on the right is the schema of tUniservRTMailOutput.

9. Click Auto map! to assign the fields automatically.

10. The only field that must be assigned manually is the reference ID. In order to do so, drag OUT-DBREF from
the left side onto the field IN_DBREF on the right side.

Scenario: Adding contacts to the mailRetrieval index pool

Talend Open Studio Components Reference Guide 431

Click OK to close the dialog box.

11. Double-click tUniservRTMailOutput to open the Basic settings view.

From the Action on Data list, select Insert or update. This way, all new contacts are added to the index pool.

tUniservRTPost

432 Talend Open Studio Components Reference Guide

tUniservRTPost

This component will be available in the Palette of the studio on the condition that you have subscribed
to the relevant edition of Data Quality Service Hub Studio.

tUniservRTPost properties

Component family Data quality

Function tUniservRTPost provides postal validation and correction of addresses, which
is critical to improving the quality of addresses. This way, you will be
more successful in personalized one-on-one marketing, reducing costs and
increasing the efficiency and cost-effectiveness of address management in all the
applications.

Purpose tUniservRTPost helps to improve the addresses quality, which is extremely
important for CRM and e-business as it is directly related to postage and
advertising costs.

Basic settings Schema and Edit schema A schema is a row description, i.e. it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Host name Server host name between double quotation marks.

Port Listening port number of the server between double
quotation marks.

Service The service name is "post" by default. Enter a new
name if necessary (e.g. due to service suffix), between
double quotation marks.

Use rejects Select this check box to collect faulty addresses via the
rejects connection. Usually they are the addresses with
the post result class 5. Valid values for the result class
are 1-5. The value must be between double quotation
marks.

If this check box is not selected, the faulty addresses are
output via the Main connection.

If the check box is selected but the rejects connection is
not created, the faulty addresses are simply rejected.

Use File for ambiguous
results

Select the check box to define a file for writing the
selection list to it.

When an address cannot be corrected unambiguously, a
selection list is created.

This list can be further processed via the AMBIGUITY
connection. All potential candidate results then run
via this connection. The schema of this connection
is preinitialized with the arguments of the dissolved
selection list of the service 'post'.

Scenario 1: Checking and correcting the postal code, city and street

Talend Open Studio Components Reference Guide 433

Advanced settings Uniserv Parameters Select this check box to define the corresponding
parameters. For detailed information, please refer to the
Uniserv user manual International Postal Framework.

tStatCatcher Statistics Select this check box to collect log data at the Job and
the component levels.

“Full address” selection
list

Select the check box Display to show all the columns.
Or, select the check box next to a particular column to
show it alone.

This option controls the content of the file for
ambiguous addresses. Only selected columns would be
written into the file.

Usage tUniservRTPost requires an input set. Its postal validation will then be checked.
In case of an unambiguous result, the corrected set will be output via the Main
connection. If the address is ambiguous, the potential candidates will be output
via the Ambiguity connection. If an address was not found, it will be passed on
via the Reject connection.

Limitation To use tUniservRTPost, the Uniserv software International Postal Framework
and the required post servers must be installed.

Scenario 1: Checking and correcting the postal code,
city and street

This scenario describes a batch job that checks and corrects the addresses and postal codes from a file.

The input file for this scenario is already saved in the Repository, so that all schema metadata is available.

1. In the Repository view, expand the Metadata node and the directory in which the file is saved. Then drag
this file into the design workspace.

The dialog box below appears.

Scenario 1: Checking and correcting the postal code, city and street

434 Talend Open Studio Components Reference Guide

2. Select tFileInputDelimited and click OK to close the dialog box.

The component is displayed in the workspace. The file used in this scenario is called SampleAddresses. It
contains address data that comes with a country code. The street and house number are saved together in the
street field, while postal code and city are respectively saved in separate fields.

3. Drag the following components from the Palette into the design workspace: two tMap components,
tUniservRTPost and tFileOutputDelimited .

4. Connect the components via Row > Main.

5. During the process, accept the schema from tUniservRTPost by clicking Yes in the validation window.

6. Double-click tMap_1 to open the schema mapping window. On the left is the structure of the input file and
on the right is the schema of tUniservRTPost. At the bottom is displayed the Schema Editor, where you
can find the attributes of the individual columns and edit them.

Scenario 1: Checking and correcting the postal code, city and street

Talend Open Studio Components Reference Guide 435

7. Assign the columns of the input file to the respective columns of tUniservRTPost. For this purpose, select a
column of the input source and drag it onto the appropriate column on the right side. If fields from the input
file are to be passed on to the output file, e.g. the names or the IDs, additional fields must be defined.

When assigning the fields, note that street and house number can either be saved together in the
street column or respectively in separate fields. If your data list does not have a country code but
the addresses are from the same country, the relevant ISO-country code should be manually entered
between double quotation marks in the column IN_COUNTRY. If you have an international data list
without country code, just leave the column IN_COUNTRY empty. For detailed information, please
refer to the Uniserv user manual International Postal Framework.

8. Click OK to close the window.

9. Double-click tUniservRTPost and enter its Advanced settings view.

Scenario 1: Checking and correcting the postal code, city and street

436 Talend Open Studio Components Reference Guide

10. Change the parameters and field lengths if necessary and select the output fields.

Make sure sufficient field length is defined. For detailed information, please refer to the Uniserv user
manual International Postal Framework.

11. Double-click tMap_3 to open schema mapping window. On the left is the schema of tUniservRTPost and
on the right is the schema of the output file.

Scenario 2: Checking and correcting the postal code, city and street, as well as rejecting the unfeasible

Talend Open Studio Components Reference Guide 437

12. Click OK to close the dialog box.

13. Double-click tFileOutputDelimited to enter the details for the output file.

Scenario 2: Checking and correcting the postal code,
city and street, as well as rejecting the unfeasible

This scenario is closely related to the one above. But the difference is that, the addresses that cannot be assigned
are written into a separate file for manual checking. Additionally, to write ambiguous addresses in a separate file,
the procedure is the same as described here.

1. Create a job as described in the previous scenario.

2. Drag the following additional components from the Palette into the design workspace: tMap and
tFileOutputDelimited.

3. Double-click tUniservRTPost to open its Basic settings view.

4. Select the Use rejects check box and enter "5" in the field if result class greater or equals to. This is the
result class from the check of postal codes in addresses, which contain too few or unfeasible data.

Scenario 2: Checking and correcting the postal code, city and street, as well as rejecting the unfeasible

438 Talend Open Studio Components Reference Guide

5. Connect tUniservRTPost with tMap_5 via Row > Rejects.

6. Connect tMap with tFileOutputDelimited via Row > Main.

7. Define the fields for the output file in the mapping window.

Talend Open Studio Components Reference Guide

Databases - traditional components
This chapter describes connectors for the most popular and traditional databases. These connectors cover various
needs, including: opening connections, reading and writing tables, committing transactions as a whole, as well as
performing rollback for error handling. Over 40 RDBMS are supported. These components can be found in the
Databases family in Palette of Talend Open Studio.

Other types of database connectors, such as connectors for Appliance/DW databases and database management,
are documented in Databases - appliance/datawarehouse components and Databases - other components.

tAccessBulkExec

440 Talend Open Studio Components Reference Guide

tAccessBulkExec

tAccessBulkExec properties

The tAccessOutputBulk and tAccessBulkExec components are generally used together to output data to a
delimited file and then to perform various actions on the file in an Access database, in a two step process. These two
steps are fused together in the tAccessOutputBulkExec component, detailed in a separate section. The advantage
of using a two step process is that it makes it possible to carry out transformations on the data before loading it
in the database.

Component family Databases/Access

Function This component executes an Insert action on the data provided.

Purpose As a dedicated component, tAccessBulkExec offers gains in performance when
carrying out Insert operations in an Access database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data is stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and select the appropriate
tAccessConnection component from the Component list
if you want to re-use connection parameters that you have
already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio
User Guide.

DB version Select the version of your database.

Database Type in the directory where your database is stored.

Related scenarios

Talend Open Studio Components Reference Guide 441

Username and
Password

DB user authentication data.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create table: The table is removed and created
again.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does
not exist.

Clear table: The table content is deleted.

Table Name of the table to be written. Note that only one table
can be written at a time and that the table must exist already
for the insert operation to succeed.

Local filename Browse to the delimited file to be loaded into your
database.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

Include header Select this check box to include the column header.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with tAccessOutputBulk component. Used
together, they can offer gains in performance while feeding an Access database.

Related scenarios

For use cases in relation with tAccessBulkExec, see the following scenarios:

• the section called “Scenario: Inserting transformed data in MySQL database”

• the section called “Scenario: Inserting data in MySQL database”

tAccessCommit

442 Talend Open Studio Components Reference Guide

tAccessCommit

tAccessCommit Properties

This component is closely related to tAccessConnection and tAccessRollback. It usually doesn’t make much
sense to use these components independently in a transaction.

Component family Databases/Access

Function Validates the data processed through the Job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the tAccessConnection component in the list if
more than one connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection to
link tAccessCommit to your Job, your data will
be commited row by row. In this case, do not
select the Close connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Access components, especially with
tAccessConnection and tAccessRollback components.

Limitation n/a

Related scenario

This component is closely related to tAccessConnection and tAccessRollback. It usually does not make much
sense to use one of these without using a tAccessConnection component to open a connection for the current
transaction.

For tAccessCommit related scenario, see the section called “tMysqlConnection”

tAccessConnection

Talend Open Studio Components Reference Guide 443

tAccessConnection

tAccessConnection Properties

This component is closely related to tAccessCommit, tAccessInput and tAccessOutput. It usually does not make
much sense to use one of these without using a tAccessConnection component to open a connection for the current
transaction.

Component family Databases/Access

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

DB Version Access 2003 or later versions.

Database Name of the database.

Username and
Password

DB user authentication data.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating.

Usage This component is to be used along with Access components, especially with
tAccessCommit and tAccessOutput components.

Limitation n/a

Scenario: Inserting data in parent/child tables

The following Job is dedicated to advanced database users, who want to carry out multiple table insertions using
a parent table Table1 to generate two child tables: Name and Birthday.

• In Access 2007, create an Access database named Database1.

• Once the Access database is created, create a table named Table1 with two column headings: Name and Birthday.

Scenario: Inserting data in parent/child tables

444 Talend Open Studio Components Reference Guide

Back into Talend Open Studio, the Job requires twelve components including tAccessConnection,
tAccessCommit, tAccessInput, tAccessOutput and tAccessClose.

• Drop the following components from the Palette to the design workspace: tFileList, tFileInputDelimited,
tMap, tAccessOutput (x2), tAccessInput (x2), tAccessCommit, tAccessClose and tLogRow (x2).

• Connect the tFileList component to the input file component using an Iterate link. Thus, the name of the file
to be processed will be dynamically filled in from the tFileList directory using a global variable.

• Connect the tFileInputDelimited component to the tMap component and dispatch the flow between the two
output Access components. Use a Row link for each of these connections representing the main data flow.

• Set the tFileList component properties, such as the directory where files will be fetched from.

• Add a tAccessConnection component and connect it to the starter component of this Job. In this example, the
tFileList component uses an OnComponentOk link to define the execution order.

• In the tAccessConnection Component view, set the connection details manually or fetch them from the
Repository if you centrally store them as a Metadata DB connection entry. For more information about
Metadata, see Talend Open Studio User Guide.

• In the tFileInputDelimited component’s Basic settings view, press Ctrl+Space bar to access the variable list.
Set the File Name field to the global variable: tFileList_1.CURRENT_FILEPATH. For more information about
using variables, see Talend Open Studio User Guide.

• Set the rest of the fields as usual, defining the row and field separators according to your file structure.

Scenario: Inserting data in parent/child tables

Talend Open Studio Components Reference Guide 445

• Then set the schema manually through the Edit schema dialog box or select the schema from the Repository.
Make sure the data type is correctly set, in accordance with the nature of the data processed.

• In the tMap Output area, add two output tables, one called Name for the Name table, the second called Birthday,
for the Birthday table. For more information about the tMap component, see Talend Open Studio User Guide.

• Drag the Name column from the Input area, and drop it to the Name table.

• Drag the Birthday column from the Input area, and drop it to the Birthday table.

• Then connect the output row links to distribute the flow correctly to the relevant DB output components.

• In each of the tAccessOutput components’ Basic settings view, select the Use an existing connection check
box to retrieve the tAccessConnection details.

• Set the Table name making sure it corresponds to the correct table, in this example either Name or Birthday.

• There is no action on the table as they are already created.

• Select Insert as Action on data for both output components.

• Click on Sync columns to retrieve the schema set in the tMap.

• Then connect the first tAccessOutput component to the first tAccessInput component using an
OnComponentOk link.

• In each of the tAccessInput components’ Basic settings view, select the Use an existing connection check
box to retrieve the distributed data flow. Then set the schema manually through Edit schema dialog box.

• Then set the Table Name accordingly. In tAccessInput_1, this will be Name.

• Click on the Guess Query.

• Connect each tAccessInput component to tLogRow component with a Row > Main link. In each of the
tLogRow components’ basic settings view, select Table in the Mode field.

• Add the tAccessCommit component below the tFileList component in the design workspace and connect them
together using an OnComponentOk link in order to terminate the Job with the transaction commit.

• In the basic settings view of tAccessCommit component and from the Component list, select the connection
to be used, tAccessConnection_1 in this scenario.

• Save your Job and press F6 to execute it.

Scenario: Inserting data in parent/child tables

446 Talend Open Studio Components Reference Guide

The parent table Table1 is reused to generate the Name table and Birthday table.

tAccessInput

Talend Open Studio Components Reference Guide 447

tAccessInput

tAccessInput properties

Component family Databases/Access

Function tAccessInput reads a database and extracts fields based on a query.

Purpose tAccessInput executes a DB query with a strictly defined statement which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Row > Main connection.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box and select the appropriate
tAccessConnection component from the Component list
if you want to re-use connection parameters that you have
already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio
User Guide.

DB Version Select the version of Access that you are using.

Related scenarios

448 Talend Open Studio Components Reference Guide

Database Name of the database.

Username and
Password

DB user authentication data.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

Usage This component offers the flexibility benefit of the DB query and covers all possible
SQL queries.

Related scenarios

For related topics, see the tDBInput scenarios:

• the section called “Scenario 1: Displaying selected data from DB table”.

• the section called “Scenario 2: Using StoreSQLQuery variable”.

Related topic in description of the section called “tContextLoad”.

tAccessOutput

Talend Open Studio Components Reference Guide 449

tAccessOutput

tAccessOutput properties

Component family Databases/Access

Function tAccessOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tAccessOutput executes the action defined on the table and/or on the data contained
in the table, based on the flow incoming from the preceding component in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box and select the appropriate
tAccessConnection component from the Component list
if you want to re-use connection parameters that you have
already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio
User Guide.

DB Version Select the version of Access that you are using.

Database Name of the database

tAccessOutput properties

450 Talend Open Studio Components Reference Guide

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, Job stops.

Update: Make changes to existing entries.

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing.

Delete: Remove entries corresponding to the input flow.

You must specify at least one column as a primary
key on which the Update and Delete operations
are based. You can do that by clicking Edit
Schema and selecting the check box(es) next
to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the update and delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
name on which you want to base the update
operation. Do the same in the Key in delete
column for the deletion operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

tAccessOutput properties

Talend Open Studio Components Reference Guide 451

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

You can press Ctrl+Space to access a list of
predefined global variables.

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and, above all, better
performance at executions.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Enable debug mode Select this check box to display each step during
processing entries in a database.

Support null in “SQL
WHERE” statement

Select this check box if you want to deal with the Null
values contained in a DB table.

Make sure the Nullable check box is selected for
the corresponding columns in the schema.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a Access database. It also allows you
to create a reject flow using a Row > Rejects link to filSchemaSchemater data in
error. For an example of tMySqlOutput in use, see the section called “Scenario 3:
Retrieve data in error with a Reject link”.

Related scenarios

452 Talend Open Studio Components Reference Guide

Related scenarios

For related topics, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tAccessOutputBulk

Talend Open Studio Components Reference Guide 453

tAccessOutputBulk

tAccessOutputBulk properties

The tAccessOutputBulk and tAccessBulkExec components are generally used together to output data to a
delimited file and then to perform various actions on the file in an Access database, in a two step process. These two
steps are fused together in the tAccessOutputBulkExec component, detailed in a separate section. The advantage
of using a two step process is that it makes it possible to carry out transformations on the data before loading it
in the database.

Component family Databases/Access

Function tAccessOutputBulk writes a delimited file.

Purpose tAccessOutputBulk prepares the file which contains the data used to feed the Access
database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Create directory if not
exists

Select this check box to create the as yet non-existant file
directory that specified in the File name field.

Append Select this check box to add any new rows to the end of
the file

Schema and Edit schema A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and
Job designs. Related topic: see Talend Open Studio User
Guide.

Advanced settings Include header Select this check box to include the column header in the
file.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with tAccessBulkExec component. Used together
they offer gains in performance while feeding an Access database.

Related scenarios

454 Talend Open Studio Components Reference Guide

Related scenarios

For use cases in relation with tAccessOutputBulk, see the following scenarios:

• the section called “Scenario: Inserting transformed data in MySQL database”

• the section called “Scenario: Inserting data in MySQL database”

tAccessOutputBulkExec

Talend Open Studio Components Reference Guide 455

tAccessOutputBulkExec

tAccessOutputBulkExec properties

The tAccessOutputBulk and tAccessBulkExec components are generally used together to output data to a
delimited file and then to perform various actions on the file in an Access database, in a two step process. These
two steps are fused together in tAccessOutputBulkExec.

Component family Databases/Access

Function The tAccessOutputBulkExec component executes an Insert action on the data
provided.

Purpose As a dedicated component, it improves performance during Insert operations in an
Access database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and select the appropriate
tAccessConnection component from the Component list
if you want to re-use connection parameters that you have
already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio
User Guide.

DB Version Select the version of Access that you are using.

DB name Name of the database

Username and
Password

DB user authentication data.

tAccessOutputBulkExec properties

456 Talend Open Studio Components Reference Guide

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if doesn’t exist: The table is created if it
does not already exist.

Clear a table: The table content is deleted.

Table Name of the table to be written.

Note that only one table can be written at a time
and that the table must already exist for the insert
operation to succeed

FileName Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Create directory if not
exists

Select this check box to create the as yet non existant file
directory specified in the File name field.

Append Select this check box to append new rows to the end of
the file.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

You can press Ctrl+Space to access a list of
predefined global variables.

Include header Select this check box to include the column header to the
file.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

tStatCatcher Statistics Select this check box to collect the log data at the
component level.

Related scenarios

Talend Open Studio Components Reference Guide 457

Usage This component is mainly used when no particular transformation is required on the
data to be loaded in the database.

Limitation n/a

Related scenarios

For use cases in relation with tAccessOutputBulkExec, see the following scenarios:

• the section called “Scenario: Inserting data in MySQL database”

• the section called “Scenario: Inserting transformed data in MySQL database”

tAccessRollback

458 Talend Open Studio Components Reference Guide

tAccessRollback

tAccessRollback properties

This component is closely related to tAccessConnection and tAccessCommit components. It usually does not
make much sense to use these components independently in a transaction.

Component family Databases/Access

Function tAccessRollback cancels the transaction committed in the connected DB.

Purpose Avoids involuntary commitment of part of a transaction.

Basic settings Component list Select the tAccessConnection component in the list if
more than one connection are planned for the current Job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Access components, especially with
tAccessConnection and tAccessCommit.

Limitation n/a

Related scenarios

For tAccessRollback related scenario, see tMysqlRollback.

tAccessRow

Talend Open Studio Components Reference Guide 459

tAccessRow

tAccessRow properties

Component family Databases/Access

Function tAccessRow is the specific component for this database query. It executes the SQL
query stated onto the specified database. The row suffix means the component
implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tAccessRow acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and select the appropriate
tAccessConnection component from the Component list
if you want to re-use connection parameters that you have
already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio
User Guide.

DB Version Select the Access database version that you are using.

Database Name of the database

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next

tAccessRow properties

460 Talend Open Studio Components Reference Guide

component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table Name Name of the source table where changes made to data
should be captured.

Query type The query can be Built-in for a particular Job, or for
commonly used query, it can be stored in the Repository
to ease the query reuse.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this check box if you want to query
the database using a PreparedStatement. In the
Set PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

Related scenarios

Talend Open Studio Components Reference Guide 461

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Related scenarios

For related topics, see:

• the section called “Scenario: Resetting a DB auto-increment”

• the section called “Scenario 1: Removing and regenerating a MySQL table index”.

tAS400Close

462 Talend Open Studio Components Reference Guide

tAS400Close

tAS400Close properties

Component family Databases/AS400

Function tAS400Close closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tAS400Connection component in the list if
more than one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with AS400 components, especially with
tAS400Connection and tAS400Commit.

Limitation n/a

Related scenario

No scenario is available for this component yet.

tAS400Commit

Talend Open Studio Components Reference Guide 463

tAS400Commit

tAS400Commit Properties

This component is closely related to tAS400Connection and tAS400Rollback. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/AS400

Function Validates the data processed through the Job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the tAS400Connection component in the list if
more than one connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection to
link tAS400Commit to your Job, your data will
be commited row by row. In this case, do not
select the Close connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with AS400 components, especially with
tAS400Connection and tAS400Rollback components.

Limitation n/a

Related scenario

This component is closely related to tAS400Connection and tAS400Rollback. It usually does not make much
sense to use one of these without using a tAS400Connection component to open a connection for the current
transaction.

For tAS400Commit related scenario, see the section called “tMysqlConnection”

tAS400Connection

464 Talend Open Studio Components Reference Guide

tAS400Connection

tAS400Connection Properties

This component is closely related to tAS400Commit and tAS400Rollback. It usually does not make much sense
to use one of the components without using a tAS400Connection component to open a connection for the current
transaction.

Component family Databases/AS400

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

DB Version Select the AS400 version in use

Host Database server IP address

Database Name of the database

Username and
Password

DB user authentication data.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

Auto commit Select this check box to automatically commit a
transaction when it is completed.

tStatCatcher Statistics Select this check box to gather the job processing metadata
at a Job level as well as at each component level.

Usage This component is to be used along with AS400components, especially with
tAS400Commit and tAS400Rollback components.

Limitation n/a

Related scenario

Talend Open Studio Components Reference Guide 465

Related scenario

This component is closely related to tAS400Commit and tAS400Rollback. It usually does not make much sense
to use one of these without using a tAS400Connection component to open a connection for the current transaction.

For tAS400Connection related scenario, see the section called “tMysqlConnection”

tAS400Input

466 Talend Open Studio Components Reference Guide

tAS400Input

tAS400Input properties

Component family Databases/AS400

Function tAS400Input reads a database and extracts fields based on a query.

Purpose tAS400SInput executes a DB query with a strictly defined statement which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Use an existing
connection

Select this check box and click the relevant
tAS400Connection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio
User Guide.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

DB Version Select the AS 400 version in use

Related scenarios

Talend Open Studio Components Reference Guide 467

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Related scenarios

For related topic, see tDBInput scenarios:

• the section called “Scenario 1: Displaying selected data from DB table”

• the section called “Scenario 2: Using StoreSQLQuery variable”.

•

Related topic in tContextLoad, see the section called “Scenario: Dynamic context use in MySQL DB insert”.

tAS400LastInsertId

468 Talend Open Studio Components Reference Guide

tAS400LastInsertId

tAS400LastInsertId properties

Component family Databases

Function tAS400LastInsertId fetches the last inserted ID from a selected AS400 Connection.

Purpose tAS400LastInsertId obtains the primary key value of the record that was last
inserted in an AS400 table by a user.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: You have already created the schema and
stored it in the Repository. You can reuse it in various
projects and job flow charts. Related topic: see Talend
Open Studio User Guide.

Component list Select the relevant tAS400Connection component in the
list if more than one connection is planned for the current
job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used as an intermediary component.

Limitation n/a

Related scenario

For a related scenario, see the section called “Scenario: Get the ID for the last inserted record”.

tAS400Output

Talend Open Studio Components Reference Guide 469

tAS400Output

tAS400Output properties

Component family Databases/DB2

Function tAS400Output writes, updates, makes changes or suppresses entries in a database.

Purpose tAS400Output executes the action defined on the table and/or on the data contained
in the table, based on the flow incoming from the preceding component in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

DB Version Select the AS400 version in use

Use an existing
connection

Select this check box and click the relevant
tAS400Connection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio
User Guide.

Host Database server IP address

tAS400Output properties

470 Talend Open Studio Components Reference Guide

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, Job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

tAS400Output properties

Talend Open Studio Components Reference Guide 471

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Use commit control Select this check box to have access to the Commit every
field where you can define the commit operation.

Commit every: Enter the number of rows to be completed
before committing batches of rows together into the DB.
This option ensures transaction quality (but not rollback)
and, above all, better performance at execution.

Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

You can press Ctrl+Space to access a list of
predefined global variables.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Enable debug mode Select this check box to display each step during
processing entries in a database.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a AS400 database. It also allows you to
create a reject flow using a Row > Rejects link to filter data in error. For an example

Related scenarios

472 Talend Open Studio Components Reference Guide

of tMySqlOutput in use, see the section called “Scenario 3: Retrieve data in error
with a Reject link”.

Related scenarios

For related topics, see

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”.

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tAS400Rollback

Talend Open Studio Components Reference Guide 473

tAS400Rollback

tAS400Rollback properties

This component is closely related to tAS400Commit and tAS400Connection. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/AS400

Function tAS400Rollback cancels the transaction committed in the connected DB.

Purpose Avoids involuntary commitment of part of a transaction.

Basic settings Component list Select the tAS400Connection component in the list if
more than one connection are planned for the current Job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with AS400 components, especially with
tAS400Connection and tAS400Commit.

Limitation n/a

Related scenarios

For tAS400Rollback related scenario, see the section called “Scenario: Rollback from inserting data in mother/
daughter tables”.

tAS400Row

474 Talend Open Studio Components Reference Guide

tAS400Row

tAS400Row properties

Component family Databases/AS400

Function tAS400Row is the specific component for this database query. It executes the SQL
query stated onto the specified database. The row suffix means the component
implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tAS400Row acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write easily your SQL statements.

Basic settings Use an existing
connection

Select this check box and click the relevant
tAS400Connection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio
User Guide.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

DB Version Select the AS400 version in use

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

tAS400Row properties

Talend Open Studio Components Reference Guide 475

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Additional JDBC
Parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this check box if you want to query
the database using a PreparedStatement. In the
Set PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Related scenarios

476 Talend Open Studio Components Reference Guide

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Related scenarios

For related topics, see:

• the section called “Scenario: Resetting a DB auto-increment”

• the section called “Scenario 1: Removing and regenerating a MySQL table index”.

tDB2BulkExec

Talend Open Studio Components Reference Guide 477

tDB2BulkExec

tDB2BulkExec properties

Component family Databases/DB2

Function tDB2BulkExec executes the Insert action on the data provided.

Purpose As a dedicated component, tDB2BulkExec allows gains in performance during
Insert operations to a DB2 database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tDB2Connection component on the Component List to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Table Schema Name of the DB schema.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

tDB2BulkExec properties

478 Talend Open Studio Components Reference Guide

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create table: The table is removed and created
again.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does
not exist.

Drop table if exists and create: The table is removed if
it already exists and created again.

Clear table: The table content is deleted.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: You create the schema and store it locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: You have already created the schema and
stored it in the Repository, hence can reuse it. Related
topic: see Talend Open Studio User Guide.

Data file Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, Job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

Advanced settings Field terminated by Character, string or regular expression to separate fields.

Date Format Use this field to define the way months and days are
ordered.

Time Format Use this field to define the way hours, minutes and seconds
are ordered.

Timestamp Format Use this field to define the way date and time are ordered.

Remove load pending When the box is ticked, tables blocked in "pending" status
following a bulk load are de-blocked.

Load options Click + to add data loading options:

Parameter: select a loading parameter from the list.

Related scenarios

Talend Open Studio Components Reference Guide 479

Value: enter a value for the parameter selected.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This dedicated component offers performance and flexibility of DB2 query
handling.

Limitation n/a

Related scenarios

For tDB2BulkExec related topics, see:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Truncating and inserting file data into Oracle DB”.

tDB2Close

480 Talend Open Studio Components Reference Guide

tDB2Close

tDB2Close properties

Component family Databases/DB2

Function tDB2Close closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tDB2Connection component in the list if more
than one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with DB2 components, especially with
tDB2Connection and tDB2Commit.

Limitation n/a

Related scenario

No scenario is available for this component yet.

tDB2Commit

Talend Open Studio Components Reference Guide 481

tDB2Commit

tDB2Commit Properties

This component is closely related to tDB2Connection and tDB2Rollback. It usually doesn’t make much sense
to use these components independently in a transaction.

Component family Databases/DB2

Function Validates the data processed through the Job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the tDB2Connection component in the list if more
than one connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection
to link tDB2Commit to your Job, your data will
be commited row by row. In this case, do not
select the Close connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with DB2 components, especially with
tDB2Connection and tDB2Rollback components.

Limitation n/a

Related scenario

This component is closely related to tDB2Connection and tDB2Rollback. It usually doesn’t make much sense
to use one of these without using a tDB2Connection component to open a connection for the current transaction.

For tDB2Commit related scenario, see the section called “tMysqlConnection”

tDB2Connection

482 Talend Open Studio Components Reference Guide

tDB2Connection

tDB2Connection properties

This component is closely related to tDB2Commit and tDB2Rollback. It usually does not make much sense to
use one of these without using a tDB2Connection to open a connection for the current transaction.

Component family Databases/DB2

Function tDB2Connection opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host name Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Table Schema Name of the schema.

Username and
Password

DB user authentication data.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Advanced settings Auto commit Select this check box to automatically commit a
transaction when it is completed.

tStatCatcher Statistics Select this check box to gather the job processing metadata
at a Job level as well as at each component level.

Usage This component is to be used along with DB2 components, especially with
tDB2Commit and tDB2Rollback.

Limitation n/a

Related scenarios

Talend Open Studio Components Reference Guide 483

Related scenarios

This component is closely related to tDB2Commit and tDB2Rollback. It usually does not make much sense to
use one of these without using a tDB2Connection component to open a connection for the current transaction.

For tDB2Connection related scenario, see the section called “tMysqlConnection”

tDB2Input

484 Talend Open Studio Components Reference Guide

tDB2Input

tDB2Input properties

Component family Databases/DB2

Function tDB2Input reads a database and extracts fields based on a query.

Purpose tDB2Input executes a DB query with a strictly defined order which must correspond
to the schema definition. Then it passes on the field list to the next component via
a Main row link.

If double quotes exist in the column names of a table, the double quotation
marks cannot be retrieved when retrieving the column. Therefore, it is
recommended not to use double quotes in column names in a DB2 database
table.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box and click the relevant
tDB2Connection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over

Related scenarios

Talend Open Studio Components Reference Guide 485

through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Name of the schema.

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table name Select the source table where to capture any changes made
on data.

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers all possible SQL queries for DB2 databases.

Limitation n/a

Related scenarios

For related topics, see the tDBInput scenarios:

• the section called “Scenario 1: Displaying selected data from DB table”.

• the section called “Scenario 2: Using StoreSQLQuery variable”.

See also the related topic in the section called “Scenario: Dynamic context use in MySQL DB insert”.

tDB2Output

486 Talend Open Studio Components Reference Guide

tDB2Output

tDB2Output properties

Component family Databases/DB2

Function tDB2Output writes, updates, makes changes or suppresses entries in a database.

Purpose tDB2Output executes the action defined on the table and/or on the data contained
in the table, based on the flow incoming from the preceding component in the Job.

Basic settings Use an existing
connection

Select this check box and click the relevant
tDB2Connection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connention across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding to
the database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Host Database server IP address

Port Listening port number of DB server.

tDB2Output properties

Talend Open Studio Components Reference Guide 487

Database Name of the database

Table schema Name of the DB schema.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

Default: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, Job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

You must specify at least one column as a primary
key on which the Update and Delete operations
are based. You can do that by clicking Edit
Schema and selecting the check box(es) next
to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the update and delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
name on which you want to base the update
operation. Do the same in the Key in delete
column for the deletion operation

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

tDB2Output properties

488 Talend Open Studio Components Reference Guide

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before
committing batches of rows together into the DB. This
option ensures transaction quality (but not rollback) and,
above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Convert columns and
table names to
uppercase

Select this check box to uppercase the names of the
columns and the name of the table.

Enable debug mode Select this check box to display each step during
processing entries in a database.

Support null in “SQL
WHERE” statement

Select this check box if you want to deal with the Null
values contained in a DB table.

Make sure the Nullable check box is selected for
the corresponding columns in the schema.

Use batch size Select this check box to activate the batch mode for data
processing. In the Batch Size field that appears when this
check box is selected, you can type in the number you need
to define the batch size to be processed.

This check box is available only when you have
selected the Insert, the Update or the Delete
option in the Action on data field.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Related scenarios

Talend Open Studio Components Reference Guide 489

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a DB2 database. It also allows you to
create a reject flow using a Row > Rejects link to filter data in error. For an example
of tMySqlOutput in use, see the section called “Scenario 3: Retrieve data in error
with a Reject link”.

Limitation n/a

Related scenarios

For tDB2Output related topics, see

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tDB2Rollback

490 Talend Open Studio Components Reference Guide

tDB2Rollback

tDB2Rollback properties

This component is closely related to tDB2Commit and tDB2Connection. It usually does not make much sense
to use these components independently in a transaction.

Component family Databases/DB2

Function tDB2Rollback cancels the transaction committed in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tDB2Connection component in the list if more
than one connection are planned for the current Job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with DB2 components, especially with
tDB2Connection and tDB2Commit.

Limitation n/a

Related scenarios

For tDB2Rollback related scenario, see the section called “Scenario: Rollback from inserting data in mother/
daughter tables” of the tMysqlRollback.

tDB2Row

Talend Open Studio Components Reference Guide 491

tDB2Row

tDB2Row properties

Component family Databases/DB2

Function tDB2Row is the specific component for this database query. It executes the SQL
query stated onto the specified database. The row suffix means the component
implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tDB2Row acts on the actual
DB structure or on the data (although without handling data). The SQLBuilder tool
helps you write easily your SQL statements.

Basic settings Use an existing
connection

Select this check box and click the relevant
tDB2Connection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

tDB2Row properties

492 Talend Open Studio Components Reference Guide

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

Use PreparedStatement Select this checkbox if you want to query the
database using a PreparedStatement. In the Set
PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Limitation n/a

Related scenarios

Talend Open Studio Components Reference Guide 493

Related scenarios

For tDB2Row related topics, see:

• the section called “Scenario: Resetting a DB auto-increment”

• the section called “Scenario 1: Removing and regenerating a MySQL table index”.

tDB2SCD

494 Talend Open Studio Components Reference Guide

tDB2SCD

tDB2SCD belongs to two component families: Business Intelligence and Databases. For more information on it,
see the section called “tDB2SCD”.

tDB2SCDELT

Talend Open Studio Components Reference Guide 495

tDB2SCDELT

tDB2SCDELT belongs to two component families: Business Intelligence and Databases. For more information
on it, see the section called “tDB2SCDELT”.

tDB2SP

496 Talend Open Studio Components Reference Guide

tDB2SP

tDB2SP properties

Component family Databases/DB2

Function tDB2SP calls the database stored procedure.

Purpose tDB2SP offers a convenient way to centralize multiple or complex queries in a
database and call them easily.

Basic settings Use an existing
connection

Select this check box and click the relevant
tDB2Connection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Related scenarios

Talend Open Studio Components Reference Guide 497

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

SP Name Type in the exact name of the Stored Procedure

Is Function / Return
result in

Check this box, if a value only is to be returned.

Select on the list the schema column, the value to be
returned is based on.

Parameters Click the Plus button and select the various Schema
Columns that will be required by the procedures. Note
that the SP schema can hold more columns than there are
parameters used in the procedure.

Select the Type of parameter:

IN: Input parameter

OUT: Output parameter/return value

IN OUT: Input parameters is to be returned as value, likely
after modification through the procedure (function).

RECORDSET: Input parameters is to be returned as a set
of values, rather than single value.

Check the the section called
“tPostgresqlCommit” component if you want to
analyze a set of records from a database table or
DB query and return single records.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component is used as intermediary component. It can be used as start
component but only input parameters are thus allowed.

Limitation The Stored Procedures syntax should match the Database syntax.

Related scenarios

For related topic, see the section called “Scenario: Executing a stored procedure in the MDM Hub”.

Check the section called “tPostgresqlCommit” as well if you want to analyze a set of records from a database table
or DB query and return single records.

tInformixBulkExec

498 Talend Open Studio Components Reference Guide

tInformixBulkExec

tInformixBulkExec Properties

tInformixOutputBulk and tInformixBulkExec are generally used together in a two step process. In the first step,
an output file is generated. In the second step, this file is used in the INSERT operation used to feed a database.
These two steps are fused together in the tInformixOutputBulkExec component, detailed in another section. The
advantage of using two components is that data can be transformed before it is loaded in the database.

Component Family Databases/Informix

Function tInformixBulkExec executes Insert operations on the data supplied.

Purpose tInformixBulkExec is a dedicated component which improves performance during
Insert operations in Informix databases.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Execution Platform Select the operating system you are using.

Use an existing
connection

Select this check box and click the relevant
tInformixBulkExec component on the Component List
to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address.

Port DB server listening port.

Database Name of the database.

tInformixBulkExec Properties

Talend Open Studio Components Reference Guide 499

Schema Name of the schema.

Username et Password DB user authentication data.

Instance Name of the Informix instance to be used. This
information can generally be found in the SQL hosts file.

Table Name of the table to be written. Note that only one table
can be written at a time.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and
job designs. Related topic: see Talend Open Studio User
Guide.

Informix Directory Indicate the access path to your Informix directory.

Data file Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Action on data On the data of the table defined, you can perform the
following operations:

Insert: Add new data to the table. If duplicates are found,
the job stops.

Update: Update the existing table data.

Insert or update: Add data or update the existing data.

Update or insert : Update the existing entries or create
them if they do not already exist.

Delete: Delete the entry data which corresponds to the
input flow.

You must specify at least one key upon which the
Update and Delete operations are to be based.

Related scenario

500 Talend Open Studio Components Reference Guide

It is possible to define the columns which should
be used as the key from the schema, from both
the Basic Settings and the Advanced Settings, to
optimise these operations.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

Field terminated by Character, string or regular expression which separates the
fields.

Set DBMONEY Select this check box to define the decimal separator in the
Decimal separator field.

Set DBDATE Select the date format that you want to apply.

Rows Before Commit Enter the numbere of rows to be processed before the
commit.

Bad Rows Before Abort Enter the number of rows in error at which point the Job
should stop.

tStat Catcher Statistics Select this check box to colelct the log data at component
level.

Output Where the output should go.

Usage This component offers database query flexibility and covers all possible DB2
queries which may be required.

Limitation n/a

Related scenario

For a scenario in which tInformixBulkExec might be used, see:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Truncating and inserting file data into Oracle DB”.

tInformixClose

Talend Open Studio Components Reference Guide 501

tInformixClose

tInformixClose properties

Component Family Databases/Informix

Function tInformixClose closes an active connection to a database.

Purpose This component closes connection to Informix databases.

Basic settings Component list If there is more than one connection used in the Job, select
tInformixConnection from the list.

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at a component
level.

Usage This component is generally used as an input component. It requires an output
component.

Limitation n/a

Related scenario

This component is for use with tInformixConnection and tInformixRollback. They are generally used along
with tInformixConnection as the latter allows you to open a connection for the transaction which is underway.

To see a scenario in which tInformixClose might be used, see the section called “tMysqlConnection”.

tInformixCommit

502 Talend Open Studio Components Reference Guide

tInformixCommit

tInformixCommit properties

This component is closely related to tInformixConnection and tInformixRollback. They are generally used to
execute transactions together.

Component Family Databases/Informix

Function tInformixCommit validates data processed in a job from a connected database.

Purpose Using a single connection, make a global commit just once instead of commiting
every row or batch of rows separately. This improves performance.

Basic settings Component list If there is more than one connection in the Job, select
tInformixConnection from the list.

Close connection This check box is selected by default. It means that the
database conenction will be closed once the commit has
been made. Clear the check box to continue using the
connection once the component has completed its task.

If you are using a Row > Main type connection to
link tInformixCommit to your Job, your data will
be committed row by row. If this is the case, do
not select this check bx otherwise the conenction
will be closed before the commit of your first row
is finalized.

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at a component
level.

Usage This component is generally used along with Informix components, particularly
tInformixConnection and tInformixRollback.

Limitation n/a

Related Scenario

This component is for use with tInformixConnection and tInformixRollback. They are generally used along
with tInformixConnection as the latter allows you to open a connection for the transaction which is underway

To see a scenario in which tInformixCommit might be used, see the section called “tMysqlConnection”.

tInformixConnection

Talend Open Studio Components Reference Guide 503

tInformixConnection

tInformixConnection properties

This component is closely related to tInformixCommit and tInformixRollback. They are generally used along
with tInformixConnection, with tInformixConnection opening the connection for the transaction.

Database Family Databases/Informix

Function tInformixConnection opens a connection to a database in order that a transaction
may be made.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address.

Port DB server listening port.

Database Name of the database.

Schema Name of the schema

Username et Password DB user authentication data.

Instance Name of the Informix instance to be used. This
information can generally be found in the SQL hosts file.

Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Advanced settings Use Transaction Clear this check box when the database is configured in
NO_LOG. mode. If the check box is selected, you can
choose whether to activate the Auto Commit option.

tStatCatcher Statistics Select this check box to collect the log data at a component
level.

Usage This component is generally used with other Informix components, particularly
tInformixCommit and tInformixRollback.

Limitation n/a

Related scenario

504 Talend Open Studio Components Reference Guide

Related scenario

For a scenario in which the tInformixConnection, might be used, see the section called “Scenario: Inserting data
in mother/daughter tables”.

tInformixInput

Talend Open Studio Components Reference Guide 505

tInformixInput

tInformixInput properties

Component family Databases/Informix

Function tInformixInput reads a database and extracts fields based on a query.

Purpose tInformixInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

DB server Name of the database server

Username and
Password

DB user authentication data.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Usage This component covers all possible SQL queries for DB2 databases.

Limitation n/a

Related scenarios

506 Talend Open Studio Components Reference Guide

Related scenarios

For related topics, see the tDBInput scenarios:

• the section called “Scenario 1: Displaying selected data from DB table”.

• the section called “Scenario 2: Using StoreSQLQuery variable”.

See also scenario for tContextLoad: the section called “Scenario: Dynamic context use in MySQL DB insert”.

tInformixOutput

Talend Open Studio Components Reference Guide 507

tInformixOutput

tInformixOutput properties

Component family Databases/Informix

Function tInformixOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tInformixOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding component
in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

DB server Name of the database server

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

tInformixOutput properties

508 Talend Open Studio Components Reference Guide

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, Job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

sYou can press Ctrl+Space to access a list of
predefined global variables.

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and, above all, better
performance at executions.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL

Related scenarios

Talend Open Studio Components Reference Guide 509

functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Enable debug mode Select this check box to display each step during
processing entries in a database.

Use Batch Size When selected, enables you to define the number of lines
in each processed batch.

Optimize the batch
insertion

Ensure the check box is selected, to optimize the insertion
of batches of data.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a Informix database. It also allows
you to create a reject flow using a Row > Rejects link to filter data in error. For an
example of tMySqlOutput in use, see the section called “Scenario 3: Retrieve data
in error with a Reject link”.

Limitation n/a

Related scenarios

For tInformixOutput related topics, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”.

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tInformixOutputBulk

510 Talend Open Studio Components Reference Guide

tInformixOutputBulk

tInformixOutputBulk properties

tInformixOutputBulk and tInformixBulkExec are generally used together in a two step process. In the first step,
an output file is generated. In the second step, this file is used in the INSERT operation used to feed a database.
These two steps are fused together in the tInformixOutputBulkExec component, detailed in another section. The
advantage of using two components is that data can be transformed before it is loaded in the database.

Component family Databases/Informix

Function Writes a file composed of columns, based on a defined delimiter and on Informix
standards.

Purpose Prepares the file to be used as a parmameter in the INSERT query used to feed
Informix databases.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally

Repository: Select the repository file in which the
properties are stored. The fields that follow are
completed automatically using the data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to append new rows to the end of
the file.

Schema and Edit
schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend
Open Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and job designs. Related topic: see Talend Open Studio
User Guide.

Advanced settings Row separator String (ex: “\n”on Unix) to distinguish rows.

Field separator Character, string or regular expression used to separate
fields

Set DBMONEY Select this box if you want to define the decimal
separator in the corresponding field.

Set DBDATE Select the date format that you want to apply.

Create directory if not
exists

This check box is selected automatically. The option
allows you to create a folder for the output file if it
doesn’t already exist.

Custom the flush buffer
size

Select this box in order to customize the memory size
used to store the data temporarily. In the Row number

Related scenario

Talend Open Studio Components Reference Guide 511

field enter the number of rows at which point the
memory should be freed.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

tStatCatcher Statistics Select this check box to collect log data at the
component level.

Usage This component is generally used along with tInformixBulkExec. Together,
they improve performance levels when adding data to an Informix database.

Limitation n/a

Related scenario

For a scenario in which tInformixOutputBulk might be used, see:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

tInformixOutputBulkExec

512 Talend Open Studio Components Reference Guide

tInformixOutputBulkExec

tInformixOutputBulkExec properties

tInformixOutputBulk and tInformixBulkExec are generally used together in a two step process. In the first step,
an output file is generated. In the second step, this file is used in the INSERT operation used to feed a database.
These two steps are fused together in the tInformixOutputBulkExec component.

Component Family Databases/Informix

Function tInformixOutputBulkExec carries out Insert operations using the data provided.

Purpose tInformixOutputBulkExec is a dedicated componant which improves
performance during Insert operations in Informix databases.

Basic settings Property Type Either Built-in or Repository.

No properties stored centrally

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Execution platform Select the operating system you are using.

Use an existing
connection

Select the check box and choose the appropriate
tInformixConnection component from the list to use pre-
defined connection parameters.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio
User Guide.

Host Database server IP address.

Port DB server listening port.

Database Name of the database.

Schema Name of the schema.

tInformixOutputBulkExec properties

Talend Open Studio Components Reference Guide 513

Username et Password DB user authentication data.

Instance Name of the Informix instance to be used. This
information can generally be found in the SQL hosts file.

Table Name of the table to be written. Note that only one table
can be written at a time and the table must already exist
for the insert operation to be authorised.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: You have already created the schema and
stored it in the Repository. You can reuse it in various
projects and job flowcharts. Related topic: see Talend
Open Studio User Guide.

Informix Directory Indicate the access path to your Informix directory.

Data file Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add rows to the end of the file.

Action on data Select the operation you want to perform:

Bulk insert Bulk update The details asked will be
different according to the action chosen.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

You can press Ctrl+Space to access a list of
predefined global variables.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Fields terminated by Character, string or regular expression used to separate the
fields

Related scenario

514 Talend Open Studio Components Reference Guide

Set DBMONEY Select this check box to define the decimal separator used
in the corresponding field.

Set DBDATE Select the date format you want to apply.

Rows Before Commit Enter the number of rows to be processed before the
commit.

Bad Rows Before Abort Enter the number of rows in error at which point the Job
should stop.

Create directory if not
exists

This check box is selected by default. It creates a directory
to hold the output table if required.

Custom the flush buffer
size

Select this box in order to customize the memory size
used to store the data temporarily. In the Row number
field enter the number of rows at which point the memory
should be freed.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

tStatCatcher Statistics Select this check box to collect the log data at a component
level.

Output Where the output should go.

Usage This component is generally used when no particular transformation is required on
the data to be inserted in the database.

Limitation n/a

Related scenario

For a scenario in which tInformixOutputBulkExec might be used, see:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

tInformixRollback

Talend Open Studio Components Reference Guide 515

tInformixRollback

tInformixRollback properties

This component is closely related to tInformixCommit and tInformixConnection. They are generally used
together to execute transactions.

Famille de composant Databases/Informix

Function tInformixRollback cancels transactions in connected databases.

Purpose This component prevents involuntary transaction commits.

Basic settings Component list Select the tInformixConnection component from the list
if you plan to add more than one connection to the Job.

Close Connection Clear this checkbox if you want to continue to use the
connection once the component has completed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at a component
level.

Usage This component must be used with other Informix components, particularly
tInformixConnection and tInformixCommit.

Limitation n/a

Related Scenario

For a scenario in which tInformixRollback might be used, see the section called “Scenario: Rollback from
inserting data in mother/daughter tables”.

tInformixRow

516 Talend Open Studio Components Reference Guide

tInformixRow

tInformixRow properties

Component family Databases/Informix

Function tInformixRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the component
implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tInformixRow acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tInformixConnection component on the Component list
to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

tInformixRow properties

Talend Open Studio Components Reference Guide 517

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder.

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this check box if you want to query
the database using a PreparedStatement. In the
Set PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Related scenarios

518 Talend Open Studio Components Reference Guide

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Limitation n/a

Related scenarios

For related topics, see:

• the section called “Scenario: Resetting a DB auto-increment”.

• the section called “Scenario 1: Removing and regenerating a MySQL table index”.

tInformixSCD

Talend Open Studio Components Reference Guide 519

tInformixSCD

The tInformixSCD component belongs to two different families: Business Intelligence and Databases. For
further information, see the section called “tInformixSCD”.

tInformixSP

520 Talend Open Studio Components Reference Guide

tInformixSP

tInformixSP properties

Component Family Databases/Informix

Function tInformixSP calls procedures stored in a database.

Purpose tInformixSP allows you to centralise multiple and complex queries in a database
and enables you to call them more easily.

Basic settings Property type Either Built-in or Repository.

Built-in: No properties stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select the check box and choose the appropriate
tInformixConnection component from the list to use pre-
defined connection parameters.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the schema.

Username et Password User authentication information.

Instance Name of the Informix instance to be used. This
information can generally be found in the SQL hosts file.

Related scenario

Talend Open Studio Components Reference Guide 521

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: You have already created the schema and
stored it in the Repository. You can reuse it in various
projects and job flowcharts. Related topic: see Talend
Open Studio User Guide.

SP Name Enter the exact name of the stored procedure (SP).

Is Function / Return
result in

Select this check box if only one value must be returned.

From the list, select the the schema column upon which
the value to be obtained is based.

Parameters Click the Plus button and select the various Schema
Columns that will be required by the procedures. Note
that the SP schema can hold more columns than there are
parameters used in the procedure.

Select the Type of parameter:

IN: Input parameter

OUT: Output parameter/return value

IN OUT: Input parameters is to be returned as value, likely
after modification through the procedure (function).

RECORDSET: Input parameters is to be returned as a set
of values, rather than single value.

Check the section called “tPostgresqlCommit”,
if you want to analyze a set of records from
a database table or DB query and return single
records.

Use Transaction Clear this check box if the database is configured in the
NO_LOG mode.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

tStatCatcher Statistics Select this check box to collect log data at a component
level.

Usage This is an intermediary component. It can also be used as an entry component. In
this case, only the entry parameters are authorized.

Limitation The stored procedure syntax must correspond to that of the database.

Related scenario

For a scenario in which tInformixSP may be used, see:

Related scenario

522 Talend Open Studio Components Reference Guide

• the section called “Scenario: Executing a stored procedure in the MDM Hub”.

• the section called “Scenario: Checking number format using a stored procedure”.

Also, see the section called “tPostgresqlCommit” if you want to analyse a set of records in a table or SQL query.

tMSSqlBulkExec

Talend Open Studio Components Reference Guide 523

tMSSqlBulkExec

tMSSqlBulkExec properties

The tMSSqlOutputBulk and tMSSqlBulkExec components are used together in a two step process. In the first
step, an output file is generated. In the second step, this file is used in the INSERT operation used to feed a database.
These two steps are fused together in the tMSSqlOutputBulkExec component, detailed in a separate section. The
advantage of using a two step process is that the data can be transformed before it is loaded in the database.

Component family Databases/MSSql

Function Executes the Insert action on the provided data.

Purpose As a dedicated component, tMSSqlBulkExec offers gains in performance while
carrying out the Insert operations to a MSSql database

Basic settings Property type Either Built-in or Repository.

Built-in: No property data is stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tMSSqlConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the schema.

tMSSqlBulkExec properties

524 Talend Open Studio Components Reference Guide

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time and that the table must exist for
the insert operation to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create table: The table is removed and created
again.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does
not exist.

Clear table: The table content is deleted.

Truncate table: The table content is deleted. You do not
have the possibility to rollback the operation.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Remote File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Advanced settings Action Select the action to be carried out

Bulk insert Bulk update Bcp query out Depending on
the action selected, the requied information varies.

Bulk insert & Bulk update Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

Fields terminated Character, string or regular expression to separate fields.

Rows terminated Character, string or regular expression to separate rows.

First row Type in the number of the row where the action should
start

Code page This value can be any of the followings:

OEM (by default value)

ACP RAW User-defined

Data file type Select the type of data being handled.

Related scenarios

Talend Open Studio Components Reference Guide 525

Output Select the type of output for the standard output of the
MSSql database:

to console,

to global variable.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Bcp query out Fields terminated Character, string or regular expression to separate fields.

Rows terminated Character, string or regular expression to separate rows.

Data file type Select the type of data being handled.

Output Select the type of output to pass the processed data onto:

to console: data is viewed in the Log view.

to global variable: data is put in output variable linked to
a tsystem component

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with tMSSqlOutputBulk component. Used
together, they can offer gains in performance while feeding a MSSql database.

Limitation n/a

Related scenarios

For use cases in relation with tMSSqlBulkExec, see the following scenarios:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

tMSSqlColumnList

526 Talend Open Studio Components Reference Guide

tMSSqlColumnList

tMSSqlColumnList Properties

Component family Databases/MS SQL

Function Iterates on all columns of a given table through a defined MS SQL connection.

Purpose Lists all column names of a given MSSql table.

Basic settings Component list Select the tMSSqlConnection component in the list if
more than one connection are planned for the current job.

Table name Enter the name of the tabe.

Usage This component is to be used along with MSSql components, especially with
tMSSqlConnection.

Limitation n/a

Related scenario

For tMSSqlColumnList related scenario, see the section called “Scenario: Iterating on a DB table and listing its
column names”.

tMSSqlClose

Talend Open Studio Components Reference Guide 527

tMSSqlClose

tMSSqlClose properties

Component family Databases/MSSql

Function tMssqlClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tMssqlConnection component in the list if
more than one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with tMssql components, especially with
tMssqlConnection and tMssqlCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.

tMSSqlCommit

528 Talend Open Studio Components Reference Guide

tMSSqlCommit

tMSSqlCommit properties

This component is closely related to tMSSqlConnection and tMSSqlRollback. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/MSSql

Function tMSSqlCommit validates the data processed through the job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the tMSSqlConnection component in the list if
more than one connection are planned for the current Job.

Close connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection to
link tMSSqlCommit to your Job, your data will
be commited row by row. In this case, do not
select the Close connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing metadata
at a job level as well as at each component level.

Usage This component is to be used along with Mssql components, especially with
tMSSqlConnection and tMSSqlRollback components.

Limitation n/a

Related scenarios

This component is closely related to tMSSqlConnection and tMSSqlRollback. It usually does not make much
sense to use one of these without using a tMSSqlConnection component to open a connection for the current
transaction.

For a tMSSqlCommit related scenario, see the section called “Scenario: Inserting data in mother/daughter tables”.

tMSSqlConnection

Talend Open Studio Components Reference Guide 529

tMSSqlConnection

tMSSqlConnection properties
This component is closely related to tMSSqlCommit and tMSSqlRollback. Both components are usually used
with a tMSSqlConnection component to open a connection for the current transaction.

Component family Databases/MSSQL

Function tMSSqlConnection opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address.

Port Listening port number of DB server.

Schema Schema name.

Database Name of the database.

Username and
Password

DB user authentication data.

Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Advanced settings Auto commit Select this check box to automatically commit a
transaction when it is completed.

tStatCatcher Statistics Select this check box to gather the job processing metadata
at a Job level as well as at each component level.

Usage This component is to be used along with MSSql components, especially with
tMSSqlCommit and tMSSqlRollback.

Limitation n/a

Related scenarios
This component is closely related to tMSSqlCommit and tMSSqlRollback. It usually does not make much sense
to use one if these without using a tMSSqlConnection component to open a connection for the current transaction.

Related scenarios

530 Talend Open Studio Components Reference Guide

For tMSSqlConnection related scenario, see the section called “Scenario: Inserting data in mother/daughter
tables”.

tMSSqlInput

Talend Open Studio Components Reference Guide 531

tMSSqlInput

tMSSqlInput properties

Component family Databases/MS SQL
Server

Function tMSSqlInput reads a database and extracts fields based on a query.

Purpose tMSSqlInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box and click the relevant
tMSSqlConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address.

Related scenarios

532 Talend Open Studio Components Reference Guide

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the schema.

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers all possible SQL queries for MS SQL server databases.

Limitation n/a

Related scenarios

Related topics in tDBInput scenarios:

• the section called “Scenario 1: Displaying selected data from DB table”

• the section called “Scenario 2: Using StoreSQLQuery variable”.

For related topic in tContextLoad, see the section called “Scenario: Dynamic context use in MySQL DB insert”.

tMSSqlLastInsertId

Talend Open Studio Components Reference Guide 533

tMSSqlLastInsertId

tMSSqlLastInsertId properties

Component Family Databases/MS SQL
server

Function tMSSqlLastInsertId displays the last IDs added to a table from a MSSql specified
connection.

Purpose tMSSqlLastInsertId enables you to retrieve the last primary keys added by a user
to a MSSql table.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Component list Select the tMSSqlConnection component on the
Component list to reuse the connection details you
already defined, if there are more than one component in
this list.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Limitation n/a

Related scenario

For a related scenario, see the section called “Scenario: Get the ID for the last inserted record”

tMSSqlOutput

534 Talend Open Studio Components Reference Guide

tMSSqlOutput

tMSSqlOutput properties

Component family Databases/MS SQL
server

Function tMSSqlOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tMSSqlOutput executes the action defined on the table and/or on the data contained
in the table, based on the flow incoming from the preceding component in the job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box and click the relevant
tMSSqlConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

tMSSqlOutput properties

Talend Open Studio Components Reference Guide 535

Schema Name of the schema.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

Default: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Truncate table: The table content is deleted. You do not
have the possibility to rollback the operation.

Turn on identity insert Select this check box to use your own sequence for the
identity value of the inserted records (instead of having the
SQL Server pick the next sequential value).

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, job stops.

Single Insert Query: Add entries to the table in a batch

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

Insert if not exist : Add new entries to the table if they
do not exist.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update

tMSSqlOutput properties

536 Talend Open Studio Components Reference Guide

column, select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

Specify identity field Select this check box to specify the identity field, which
is made up of an automatically incrementing identification
number. When this check box is selected, three other fields
display:

Identity field: select the column you want to define as the
identity field from the list.

Start value: type in a start value, used for the very first
row loaded into the table.

Step: type in an incremental value, added to the value of
the previous row that was loaded.

You can also specify the identity field from the
schema of the component. To do so, set the DB
Type of the relevant column to INT IDENTITY.

When the Specify identity field check box is
selected, the INT IDENTITY DB Type in the
schema is ignored.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

You can press Ctrl+Space to access a list of
predefined global variables.

Commit every Enter the number of rows to be completed before
committing batches of rows together into the DB. This
option ensures transaction quality (but not rollback) and,
above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Related scenarios

Talend Open Studio Components Reference Guide 537

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Enable debug mode Select this check box to display each step during
processing entries in a database.

Support null in “SQL
WHERE” statement

Select this check box if you want to deal with the Null
values contained in a DB table.

Make sure that the Nullable check box is selected
for the corresponding columns in the schema.

Use batch size Select this check box to activate the batch mode for data
processing. In the Batch Size field that appears when this
check box is selected, you can type in the number you need
to define the batch size to be processed.

This check box is available only when you have
selected the Insert, the Update, the Single Insert
Query or the Delete option in the Action on data
field.

If you are using the MS Sql Server 2008 version,
make sure that the Batch Size is less than or equal
to 2000 parameter markers divided by the number
of columns in the schema.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a MSSql database. It also allows you to
create a reject flow using a Row > Rejects link to filter data in error. For an example
of tMySqlOutput in use, see the section called “Scenario 3: Retrieve data in error
with a Reject link”.

Limitation n/a

Related scenarios

For tMSSqlOutput related topics, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”.

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

Related scenarios

538 Talend Open Studio Components Reference Guide

tMSSqlOutputBulk

Talend Open Studio Components Reference Guide 539

tMSSqlOutputBulk

tMSSqlOutputBulk properties
The tMSSqlOutputBulk and tMSSqlBulkExec components are used together in a two step process. In the first
step, an output file is generated. In the second step, this file is used in the INSERT operation used to feed a database.
These two steps are fused together in the tMSSqlOutputBulkExec component, detailed in a separate section. The
advantage of using a two step process is that the data can be transformed before it is loaded in the database.

Component family Databases/MSSql

Function Writes a file with columns based on the defined delimiter and the MSSql
standards.

Purpose Prepares the file to be used as parameter in the INSERT query to feed the MSSql
database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are
completed automatically using the data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end of
the records.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend
Open Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and job designs. Related topic: see Talend Open Studio
User Guide.

Advanced settings Row separator String (ex: “\n”on Unix) to distinguish rows.

Field separator Character, string or regular expression to separate
fields.

Include header Select this check to include the column header.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

tStaCatcher statistics Select this check box to collect log data at the
component level.

Usage This component is to be used along with tMSSqlBulkExec component. Used
together they offer gains in performance while feeding a MSSql database.

Related scenarios

540 Talend Open Studio Components Reference Guide

Related scenarios

For use cases in relation with tMSSqlOutputBulk, see the following scenarios:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

tMSSqlOutputBulkExec

Talend Open Studio Components Reference Guide 541

tMSSqlOutputBulkExec

tMSSqlOutputBulkExec properties
The tMSSqlOutputBulk and tMSSqlBulkExec components are used together in a two step process. In the first
step, an output file is generated. In the second step, this file is used in the INSERT operation used to feed a database.
These two steps are fused together in the tMSSqlOutputBulkExec component.

Component family Databases/MSSql

Function Executes actions on the provided data provided.

Purpose As a dedicated component, it allows gains in performance during Insert operations
to a MSSql database.

Basic settings Action Select the action to be carried out

Bulk insert Bulk update

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tMSSqlConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

DB name Name of the database

tMSSqlOutputBulkExec properties

542 Talend Open Studio Components Reference Guide

Schema Name of the schema.

Username and
Password

DB user authentication data.

Table Name of the table to be written.

Note that only one table can be written at a time and that
the table must exist for the insert operation to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Truncate table: The table content is deleted. You do not
have the possibility to rollback the operation.

Clear a table: The table content is deleted. You have the
possibility to rollback the operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: You have already created the schema and
stored it in the Repository. You can reuse it in various
projects and job flowcharts. Related topic: see Talend
Open Studio User Guide.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end of
the records

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

You can press Ctrl+Space to access a list of
predefined global variables.

Field separator Character, string or regular expression to separate fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

First row Type in the number of the row where the action should
start.

Include header Select this check box to include the column header.

Related scenarios

Talend Open Studio Components Reference Guide 543

Code page OEM code pages used to map a specific set of characters
to numerical code point values.

Data file type Select the type of data being handled.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

tStaCatcher statistics Select this check box to collect log data at the component
level.

Usage This component is mainly used when no particular transformation is required on the
data to be loaded onto the database.

Limitation n/a

Related scenarios

For use cases in relation with tMSSqlOutputBulkExec, see the following scenarios:

• the section called “Scenario: Inserting transformed data in MySQL database”

• the section called “Scenario: Inserting data in MySQL database”

tMSSqlRollback

544 Talend Open Studio Components Reference Guide

tMSSqlRollback

tMSSqlRollback properties

This component is closely related to tMSSqlCommit and tMSSqlConnection. It usually doesn’t make much
sense to use these components independently in a transaction.

Component family Databases

Function Cancel the transaction commit in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tMSSqlConnection component in the list if
more than one connection are planned for the current job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with MSSql components, especially with
tMSSqlConnection and tMSSqlCommit components.

Limitation n/a

Related scenario

For tMSSqlRollback related scenario, see the section called “Scenario: Rollback from inserting data in mother/
daughter tables”.

tMSSqlRow

Talend Open Studio Components Reference Guide 545

tMSSqlRow

tMSSqlRow properties

Component family Databases/DB2

Function tMSSqlRow is the specific component for this database query. It executes the SQL
query stated onto the specified database. The row suffix means the component
implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tMSSqlRow acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tMSSqlConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Name of the schema.

Username and
Password

DB user authentication data.

tMSSqlRow properties

546 Talend Open Studio Components Reference Guide

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table name Name of the table to be used.

Turn on identity insert Select this check box to use your own sequence for the
identity value of the inserted records (instead of having the
SQL Server pick the next sequential value).

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Guess Query Click the Guess Query button to generate the query which
corresponds to your table schema in the Query field.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this checkbox if you want to query the
database using a PreparedStatement. In the Set
PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Related scenarios

Talend Open Studio Components Reference Guide 547

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Limitation n/a

Related scenarios

For related topics, see:

• the section called “Scenario: Resetting a DB auto-increment”.

• the section called “Scenario 1: Removing and regenerating a MySQL table index”.

tMSSqlSCD

548 Talend Open Studio Components Reference Guide

tMSSqlSCD

tMSSqlSCD belongs to two component families: Business Intelligence and Databases. For more information on
it, see the section called “tMSSqlSCD”.

tMSSqlSP

Talend Open Studio Components Reference Guide 549

tMSSqlSP

tMSSqlSP Properties

Component family Databases/MSSql

Function tMSSqlSP calls the database stored procedure.

Purpose tMSSqlSP offers a convenient way to centralize multiple or complex queries in a
database and call them easily.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tMSSqlConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the schema.

Username and
Password

DB user authentication data.

Schema and Edit
Schema

In SP principle, the schema is an input parameter.

Related scenario

550 Talend Open Studio Components Reference Guide

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

SP Name Type in the exact name of the Stored Procedure

Is Function / Return
result in

Select this check box, if only a value is to be returned.

Select on the list the schema column, the value to be
returned is based on.

Parameters Click the Plus button and select the various Schema
Columns that will be required by the procedures. Note
that the SP schema can hold more columns than there are
paramaters used in the procedure.

Select the Type of parameter:

IN: Input parameter

OUT: Output parameter/return value

IN OUT: Input parameters is to be returned as value, likely
after modification through the procedure (function).

RECORDSET: Input parameters is to be returned as a set
of values, rather than single value.

Check the section called “tPostgresqlCommit”,
if you want to analyze a set of records from
a database table or DB query and return single
records.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is used as intermediary component. It can be used as start
component but only input parameters are thus allowed.

Limitation The Stored Procedures syntax should match the Database syntax.

Related scenario

For related scenarios, see:

• the section called “Scenario: Executing a stored procedure in the MDM Hub”.

• the section called “Scenario: Checking number format using a stored procedure”.

Related scenario

Talend Open Studio Components Reference Guide 551

Check as well the section called “tPostgresqlCommit” to analyze a set of records from a database table or DB
query and return single records.

tMSSqlTableList

552 Talend Open Studio Components Reference Guide

tMSSqlTableList

tMSSqlTableList Properties

Component family Databases/MS SQL

Function Iterates on a set of table names through a defined MS SQL connection.

Purpose Lists the names of a given set of MSSql tables using a select statement based on a
Where clause.

Basic settings Component list Select the tMSSqlConnection component in the list if
more than one connection are planned for the current job.

Where clause for table
name selection

Enter the Where clause to identify the tables to iterate on.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with MSSql components, especially with
tMSSqlConnection.

Limitation n/a

Related scenario

For tMSSqlTableList related scenario, see the section called “Scenario: Iterating on a DB table and listing its
column names”.

tMysqlBulkExec

Talend Open Studio Components Reference Guide 553

tMysqlBulkExec

tMysqlBulkExec properties

The tMysqlOutputBulk and tMysqlBulkExec components are used together in a two step process. In the first
step, an output file is generated. In the second step, this file is used in the INSERT statement used to feed a database.
These two steps are fused together in the tMysqlOutputBulkExec component, detailed in a separate section. The
advantage of using two separate steps is that the data can be transformed before it is loaded in the database.

Component family Databases/Mysql

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, tMysqlBulkExec offers gains in performance while
carrying out the Insert operations to a Mysql database

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

DB Version Select the version of My SQL that you are using.

Use an existing
connection

Select this check box when using a configured
tMysqlConnection component.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

tMysqlBulkExec properties

554 Talend Open Studio Components Reference Guide

Username and
Password

DB user authentication data.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create table: The table is removed and created
again.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does
not exist.

Truncate table: The table content is deleted. You do not
have the possibility to rollback the operation.

Clear table: The table content is deleted. You have the
possibility to rollback the operation.

Table Name of the table to be written. Note that only one table
can be written at a time and that the table must exist for
the insert operation to succeed.

Local file Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guides.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

Lines terminated by Character or sequence of characters used to separate lines.

Fields terminated by Character, string or regular expression to separate fields.

Enclosed by Character used to enclose text.

Action on data On the data of the table defined, you can perform:

Insert records in table: Add new records to the table.

Update records in table: Make changes to existing
records.

Replace records in table: Replace existing records with
new ones. Ignore records in table: Ignore the existing
records, or insert the new ones.

Records contain NULL
value

Check this box if you want to retrieve the null values
from the input data flow. If you do not check this box, the

Related scenarios

Talend Open Studio Components Reference Guide 555

null values from the input data flow will be considered as
empty fields in the output data flow.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with tMysqlOutputBulk component. Used
together, they can offer gains in performance while feeding a Mysql database.

Limitation n/a

Related scenarios

For use cases in relation with tMysqlBulkExec, see the following scenarios:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

• the section called “Scenario: Truncating and inserting file data into Oracle DB”.

tMysqlClose

556 Talend Open Studio Components Reference Guide

tMysqlClose

tMysqlClose properties

Function tMysqlClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tMysqlConnection component in the list if
more than one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Mysql components, especially with
tMysqlConnection and tMysqlCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.

tMysqlColumnList

Talend Open Studio Components Reference Guide 557

tMysqlColumnList

tMysqlColumnList Properties

Component family Databases/MySQL

Function Iterates on all columns of a given table through a defined Mysql connection.

Purpose Lists all column names of a given Mysql table.

Basic settings Component list Select the tMysqlConnection component in the list if
more than one connection are planned for the current job.

Table name Enter the name of the table.

Usage This component is to be used along with Mysql components, especially with
tMysqlConnection.

Limitation n/a

Scenario: Iterating on a DB table and listing its column
names

The following Java scenario creates a five-component job that iterates on a given table name from a Mysql database
using a Where clause and lists all column names present in the table.

• Drop the following components from the Palette onto the design workspace: tMysqlConnection,
tMysqlTableList, tMysqlColumnList, tFixedFlowInput, and tLogRow.

• Connect tMysqlConnection to tMysqlTableList using an OnSubjobOk link.

• Connect tMysqlTableList, tMysqlColumnList, and tFixedFlowInput using Iterate links.

• Connect tFixedFlowInput to tLogRow using a Row Main link.

• In the design workspace, select tMysqlConnection and click the Component tab to define its basic settings.

Scenario: Iterating on a DB table and listing its column names

558 Talend Open Studio Components Reference Guide

• In the Basic settings view, set the database connection details manually or select them from the context variable
list, through a Ctrl+Space click in the corresponding field if you have stored them locally as Metadata DB
connection entries.

For more information about Metadata, see Talend Open Studio User Guide.

In this example, we want to connect to a Mysql database called customers.

• In the design workspace, select tMysqlTableList and click the Component tab to define its basic settings.

• On the Component list, select the relevant Mysql connection component if more than one connection is used.

• Enter a Where clause using the right syntax in the corresponding field to iterate on the table name(s) you want
to list on the console.

In this scenario, the table we want to iterate on is called customer.

• In the design workspace, select tMysqlColumnList and click the Component tab to define its basic settings.

• On the Component list, select the relevant Mysql connection component if more than one connection is used.

• In the Table name field, enter the name of the DB table you want to list its column names.

In this scenario, we want to list the columns present in the DB table called customer.

• In the design workspace, select tFixedFlowInput and click the Component tab to define its basic settings.

• Set the Schema to Built-In and click the three-dot [...] button next to Edit Schema to define the data you want
to use as input. In this scenario, the schema is made of two columns, the first for the table name and the second
for the column name.

Scenario: Iterating on a DB table and listing its column names

Talend Open Studio Components Reference Guide 559

• Click OK to close the dialog box, and accept propagating the changes when prompted by the system. The
defined columns display in the Values panel of the Basic settings view.

• Click in the Value cell for each of the two defined columns and press Ctrl+Space to access the global variable
list.

• From the global variable list, select ((String)globalMap.get("tMysqlTableList_1_CURRENT_TABLE")) and
((String)globalMap.get("tMysqlColumnList_1_COLUMN_NAME")) for the TableName and ColumnName
respectively.

• In the design workspace, select tLogRow.

• Click the Component tab and define the basic settings for tLogRow as needed.

• Save your job and press F6 to execute it.

The name of the DB table is displayed on the console along with all its column names.

tMysqlCommit

560 Talend Open Studio Components Reference Guide

tMysqlCommit

tMysqlCommit Properties

This component is closely related to tMysqlConnection and tMysqlRollback. It usually doesn’t make much
sense to use these components independently in a transaction.

Component family Databases/MySQL

Function Validates the data processed through the job into the connected DB

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the tMysqlConnection component in the list if
more than one connection are planned for the current job.

Close Connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection to
link tMysqlCommit to your Job, your data will
be commited row by row. In this case, do not
select the Close connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Mysql components, especially with
tMysqlConnection and tMysqlRollback components.

Limitation n/a

Related scenario

This component is closely related to tMysqlConnection and tMysqlRollback. It usually doesn’t make much sense
to use one of these without using a tMysqlConnection component to open a connection for the current transaction.

For tMysqlCommit related scenario, see the section called “Scenario: Inserting data in mother/daughter tables”.

tMysqlConnection

Talend Open Studio Components Reference Guide 561

tMysqlConnection

tMysqlConnection Properties

This component is closely related to tMysqlCommit and tMysqlRollback. It usually doesn’t make much sense to
use one of these without using a tMysqlConnection component to open a connection for the current transaction.

Component family Databases/MySQL

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating.

Username and
Password

DB user authentication data.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Usage This component is to be used along with Mysql components, especially with
tMysqlCommit and tMysqlRollback components.

Limitation n/a

Scenario: Inserting data in mother/daughter tables

The following Job is dedicated to advanced database users, who want to carry out multiple table insertions using
a parent table id to feed a child table. As a prerequisite to this Job, follow the steps described below to create the
relevant tables using an engine such as innodb.

• In a command line editor, connect to your Mysql server.

Scenario: Inserting data in mother/daughter tables

562 Talend Open Studio Components Reference Guide

• Once connected to the relevant database, type in the following command to create the parent table: create table
f1090_mum(id int not null auto_increment, name varchar(10), primary key(id)) engine=innodb;

• Then create the second table: create table baby (id_baby int not null, years int) engine=innodb;

Back in Talend Open Studio, the Job requires seven components including tMysqlConnection and
tMysqlCommit.

• Drag and drop the following components from the Palette: tFileList, tFileInputDelimited, tMap,
tMysqlOutput (x2).

• Connect the tFileList component to the input file component using an Iterate link as the name of the file to be
processed will be dynamically filled in from the tFileList directory using a global variable.

• Connect the tFileInputDelimited component to the tMap and dispatch the flow between the two output Mysql
DB components. Use a Row link for each for these connections representing the main data flow.

• Set the tFileList component properties, such as the directory. name where files will be fetched from.

• Add a tMysqlConnection component and connect it to the starter component of this job, in this example, the
tFileList component using an OnComponentOk link to define the execution order.

• In the tMysqlConnection Component view, set the connection details manually or fetch them from the
Repository if you centrally stored them as a Metadata DB connection entry. For more information about
Metadata, see Talend Open Studio User Guide.

• On the tFileInputDelimited component’s Basic settings panel, press Ctrl+Space bar to access the variable
list. Set the File Name field to the global variable: tFileList_1.CURRENT_FILEPATH

• Set the rest of the fields as usual, defining the row and field separators according to your file structure.

Scenario: Inserting data in mother/daughter tables

Talend Open Studio Components Reference Guide 563

• Then set the schema manually through the Edit schema feature or select the schema from the Repository. In
Java version, make sure the data type is correctly set, in accordance with the nature of the data processed.

• In the tMap Output area, add two output tables, one called mum for the parent table, the second called baby,
for the child table.

• Drag the Name column from the Input area, and drop it to the mum table.

• Drag the Years column from the Input area and drop it to the baby table.

• Make sure the mum table is on the top of the baby table as the order is determining for the flow sequence hence
the DB insert to perform correctly.

• Then connect the output row link to distribute correctly the flow to the relevant DB output component.

• In each of the tMysqlOutput components’ Basic settings panel, select the Use an existing connection check
box to retrieve the tMysqlConnection details.

• Set the Table name making sure it corresponds to the correct table, in this example either f1090_mum or
f1090_baby.

• There is no action on the table as they are already created.

• Select Insert as Action on data for both output components.

• Click on Sync columns to retrieve the schema set in the tMap.

• In the Additional columns area of the DB output component corresponding to the child table (f1090_baby),
set the id_baby column so that it reuses the id from the parent table.

• In the SQL expression field type in: '(Select Last_Insert_id())'

• The position is Before and the Reference column is years.

Scenario: Inserting data in mother/daughter tables

564 Talend Open Studio Components Reference Guide

• Add the tMysqlCommit component to the design workspace and connect it from the tFileList component using
a OnComponentOk connection in order for the Job to terminate with the transaction commit.

• On the tMysqlCommit Component view, select in the list the connection to be used.

• Save your Job and press F6 to execute it.

The parent table id has been reused to feed the id_baby column.

tMysqlInput

Talend Open Studio Components Reference Guide 565

tMysqlInput

tMysqlInput properties

Component family Databases/MySQL

Function tMysqlInput reads a database and extracts fields based on a query.

Purpose tMysqlInput executes a DB query with a strictly defined order which must correspond to
the schema definition. Then it passes on the field list to the next component via a Main
row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing
connection

Select this check box when using a configured tMysqlConnection
component.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the available
connection components are sharing the intended connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive all
over through the two Job levels. For more information about
Dynamic settings, see your studio user guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and
Password

DB user authentication data.

Scenario 1: Writing columns from a MySQL database to an output file

566 Talend Open Studio Components Reference Guide

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table Name Name of the table to be read.

Query type and
Query

Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

When you need to handle data of the time-stamp
type 0000-00-00 00:00:00 using this component, set the
parameter as:

noDatetimeStringSync=true&zeroDa-
teTimeBehavior=convertToNull.

Enable stream Select this check box to enables streaming over buffering which
allows the code to read from a large table without consuming a large
amount of memory in order to optimize the performance.

Trim all the String/
Char columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

Clear Trim all the String/Char columns to enable Trim
columns in this field.

tStatCatcher
Statistics

Select this check box to collect log data at the component level.

Usage This component covers all possible SQL queries for Mysql databases.

Scenario 1: Writing columns from a MySQL database
to an output file

In this scenario we will read certain columns from a MySQL database, and then write them to a table in a local
output file.

Dragging and dropping components and linking them together

1. Drop tMysqlInput and tFileOutputDelimited from the Palette onto the workspace.

2. Link tMysqlInput to tFileOutputDelimited using a Row > Main connection.

Scenario 1: Writing columns from a MySQL database to an output file

Talend Open Studio Components Reference Guide 567

Configuring the components

1. Double-click tMysqlInput to open its Basic Settings view in the Component tab.

2. From the Property Type list, select Repository if you have already stored the connection to database in the
Metadata node of the Repository tree view. The property fields that follow are automatically filled in.

For more information about how to store a database connection, see Talend Open Studio User Guide.

If you have not defined the database connection locally in the Repository, fill in the details manually after
selecting Built-in from the Property Type list.

3. Set the Schema as Built-in and click Edit schema to define the desired schema.

The schema editor opens:

Scenario 1: Writing columns from a MySQL database to an output file

568 Talend Open Studio Components Reference Guide

4. Click the [+] button to add the rows that you will use to define the schema, four columns in this example
id, first_name, city and salary.

Under Column, click in the fields to enter the corresponding column names.

Click the field under Type to define the type of data.

Click OK to close the schema editor.

5. Next to the Table Name field, click the [...] button to select the database table of interest.

A dialog box displays a tree diagram of all the tables in the selected database:

6. Click the table of interest and then click OK to close the dialog box.

7. Set the Query Type as Built-In.

8. In the Query box, enter the query required to retrieve the desired columns from the table.

9. Double-click tFileOutputDelimited to set its Basic settings in the Component tab.

Scenario 2: Using context parameters when reading a table from a MySQL database

Talend Open Studio Components Reference Guide 569

10. Next to the File Name field, click the [...] button to browse your directory to where you want to save the
output file, then enter a name for the file.

Select the Include Header check box to retrieve the column names as well as the data.

11. Save the Job.

Executing the Job

The results below can be found after F6 is pressed to run the Job.

As shown above, the output file is written with the desired column names and corresponding data, retrieved from
the database:

The Job can also be run in the Traces Debug mode, which allows you to view the rows as they are being
written to the output file, in the workspace.

Scenario 2: Using context parameters when reading a
table from a MySQL database

In this scenario, we will read a table from a MySQL database, using a context parameter to refer to the table name.

Dragging and dropping components and linking them together

1. Drop tMysqlInput and tLogRow from the Palette onto the workspace.

2. Link tMysqlInput to tLogRow using a Row > Main connection.

Scenario 2: Using context parameters when reading a table from a MySQL database

570 Talend Open Studio Components Reference Guide

Configuring the components

1. Double-click tMysqlInput to open its Basic Settings view in the Component tab.

2. From the Property Type list, select Repository if you have already stored the connection to database in the
Metadata node of the Repository tree view. The property fields that follow are automatically filled in.

For more information about how to store a database connection, see Talend Open Studio User Guide.

If you have not defined the database connection in the Repository, fill in the details manually after selecting
Built-in from the Property Type list.

3. Set the Schema as Built-In and click Edit schema to define the desired schema.

The schema editor opens:

Scenario 2: Using context parameters when reading a table from a MySQL database

Talend Open Studio Components Reference Guide 571

4. Click the [+] button to add the rows that you will use to define the schema, seven columns in this example:
id, first_name, last_name, city, state, date_of_birth and salary.

Under Column, click the fields to enter the corresponding column names.

Click the fields under Type to define the type of data.

Click OK to close the schema editor.

5. Put the cursor in the Table Name field and press F5 for context parameter setting.

For more information about context settings, see Talend Open Studio User Guide.

Scenario 2: Using context parameters when reading a table from a MySQL database

572 Talend Open Studio Components Reference Guide

6. Keep the default setting in the Name field and type in the name of the database table in the Default value
field, employees in this case.

7. Click Finish to validate the setting.

The context parameter context.TABLE automatically appears in the Table Name field.

8. In the Query type list, select Built-In. Then, click Guess Query to get the query statement.

In this use case, we want to read the records with the salary above 8000. Therefore, we add a Where clause
and the final query statement is as follows:

"SELECT
 "+context.TABLE+".`id`,
 "+context.TABLE+".`first_name`,
 "+context.TABLE+".`last_name`,
 "+context.TABLE+".`city`,
 "+context.TABLE+".`state`,
 "+context.TABLE+".`date_of_birth`,
 "+context.TABLE+".`salary`
FROM "+context.TABLE+"
WHERE
 "+context.TABLE+".`salary` > 8000"

9. Double-click tLogRow to set its Basic Settings in the Component tab.

10. In the Mode area, select Table (print values in cells of a table) for a better display of the results.

11. Save the Job.

Executing the Job

The results below can be found after F6 is pressed to run the Job.

As shown above, the records with the salary greater than 8000 are retrieved.

tMysqlLastInsertId

Talend Open Studio Components Reference Guide 573

tMysqlLastInsertId

tMysqlLastInsertId properties

Component family Databases

Function tMysqlLastInsertId fetches the last inserted ID from a selected MySQL
Connection.

Purpose tMysqlLastInsertId obtains the primary key value of the record that was last
inserted in a Mysql table by a user.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: You have already created the schema and
stored it in the Repository. You can reuse it in various
projects and job flow charts. Related topic: see Talend
Open Studio User Guide.

Component list Select the relevant tMysqlConnection component in the
list if more than one connection is planned for the current
job.

Usage This component is to be used as an intermediary component.

If you use this component with tMySqlOutput, verify that the Extend Insert
check box in the Advanced Settings tab is not selected. Extend Insert allows
you to make a batch insertion, however, if the check box is selected, only
the ID of the last line in the last batch will be returned.

Limitation n/a

Scenario: Get the ID for the last inserted record

The following Java scenario creates a job that opens a connection to Mysql database, writes the defined data into
the database, and finally fetches the last inserted ID on the existing connection.

• Drop the following components from the Palette onto the design workspace: tMySqlConnection,
tMySqlCommit, tFileInputDelimited, tMySqlOutput, tMysqlLastInsertId, and tLogRow.

• Connect tMySqlConnection to tFileInputDelimited using an OnSubjobOk link.

• Connect tFileInputDelimited to tMySqlCommit using an OnSubjobOk link.

• Connect tFileInputdelimited to the three other components using Row Main links.

Scenario: Get the ID for the last inserted record

574 Talend Open Studio Components Reference Guide

• In the design workspace, select tMysqlConnection.

• Click the Component tab to define the basic settings for tMysqlConnection.

• In the Basic settings view, set the connection details manually or select them from the context variable list,
through a Ctrl+Space click in the corresponding field if you stored them locally as Metadata DB connection
entries. For more information about Metadata, see Talend Open Studio User Guide.

• In the design workspace, select tMysqlCommit and click the Component tab to define its basic settings.

• On the Component List, select the relevant tMysqlConnection if more than one connection is used.

• In the design workspace, select tFileInputDelimited.

• Click the Component tab to define the basic settings of tFileInputDelimited.

Scenario: Get the ID for the last inserted record

Talend Open Studio Components Reference Guide 575

• Fill in a path to the processed file in the File Name field. The file used in this example is Customers.

• Define the Row separator that allow to identify the end of a row. Then define the Field separator used to
delimit fields in a row.

• Set the header, the footer and the number of processed rows as necessary. In this scenario, we have one header.

• Click the three-dot button next to Edit Schema to define the data to pass on to the next component.

Related topics: see Talend Open Studio User Guide.

In this scenario, the schema consists of two columns, name and age. The first holds three employees’ names and
the second holds the corresponding age for each.

• In the design workspace, select tMySqlOutput.

• Click the Component tab to define the basic settings of tMySqlOuptput.

• Select the Use an existing connection check box.

• In the Table field, enter the name of the table where to write the employees’ list, in this example: employee.

• Select relevant actions on the Action on table and Action on data lists. In this example, no action is carried
out on table, and the action carried out on data is Insert.

• Click Sync columns to synchronize columns with the previous component. In this example, the schema to be
inserted into the MySql database table consists of the two columns name and age.

Scenario: Get the ID for the last inserted record

576 Talend Open Studio Components Reference Guide

• In the design workspace, select tMySqlLastInsertId.

• Click the Component tab to define the basic settings of tMySqlLastInserId.

• On the Component List, select the relevant tMysqlConnection, if more than one connection is used.

• Click Sync columns to synchronize columns with the previous component. In the output schema of
tMySqlLastInsertId, you can see the read-only column last_insert_id that will fetch the last inserted ID on
the existing connection.

You can select the data type Long from the Type drop-down list in case of a huge number of entries.

• In the design workspace, select tLogRow and click the Component tab to define its basic settings. For more
information, see the section called “tLogRow”.

• Save your job and press F6 to execute it.

Scenario: Get the ID for the last inserted record

Talend Open Studio Components Reference Guide 577

tMysqlLastInsertId fetched the last inserted ID for each line on the existing connection.

tMysqlOutput

578 Talend Open Studio Components Reference Guide

tMysqlOutput

tMysqlOutput properties

Component family Databases/MySQL

Function tMysqlOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tMysqlOutput executes the action defined on the table and/or on the data contained
in the table, based on the flow incoming from the preceding component in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

DB Version Select the MySQL version you are using.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box when using a configured
tMysqlConnection component.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address.

Port Listening port number of DB server.

tMysqlOutput properties

Talend Open Studio Components Reference Guide 579

Database Name of the database.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

Default: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Truncate table: The table content is quickly deleted.
However, you will not be able to rollback the operation.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, the job stops.

Update: Make changes to existing entries.

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or creates them
if they do not exist.

Delete: Remove entries corresponding to the input flow.

Replace: Add new entries to the table. If an old row in the
table has the same value as a new row for a PRIMARY
KEY or a UNIQUE index, the old row is deleted before
the new row is inserted.

Insert or update on duplicate key or unique index: Add
entries if the inserted value does not exist or update entries
if the inserted value already exists and there is a risk of
violating a unique index or primary key.

Insert Ignore: Add only new rows to prevent duplicate
key errors.

You must specify at least one column as a primary
key on which the Update and Delete operations
are based. You can do that by clicking Edit
Schema and selecting the check box(es) next
to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously

tMysqlOutput properties

580 Talend Open Studio Components Reference Guide

define primary keys for the update and delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
name on which you want to base the update
operation. Do the same in the Key in delete
column for the deletion operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row in error and complete the process for error-
free rows. If needed, you can retrieve the rows in error via
a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

You can press Ctrl+Space to access a list of
predefined global variables.

Extend Insert Select this check box to carry out a bulk insert of a defined
set of lines instead of inserting lines one by one. The gain
in system performance is considerable.

Number of rows per insert: enter the number of rows to
be inserted per operation. Note that the higher the value
specified, the lower performance levels shall be due to the
increase in memory demands.

This option is not compatible with the Reject
link. You should therefore clear the check box
if you are using a Row > Rejects link with this
component.

If you are using this component with
tMysqlLastInsertID, ensure that the Extend
Insert check box in Advanced Settings is not
selected. Extend Insert allows for batch loading,
however, if the check box is selected, only the ID
of the last line of the last batch will be returned.

Use batch size Select this check box to activate the batch mode for data
processing. In the Batch Size field that appears when this
check box is selected, you can type in the number you need
to define the batch size to be processed.

tMysqlOutput properties

Talend Open Studio Components Reference Guide 581

This check box is available only when you have
selected, the Update or the Delete option in the
Action on data field.

Commit every Number of rows to be included in the batch before it
is committed to the DB. This option ensures transaction
quality (but not rollback) and, above all, a higher
performance level.

Additional Columns This option is not available if you have just created the DB
table (even if you delete it beforehand). This option allows
you to call SQL functions to perform actions on columns,
provided that these are not insert, update or delete actions,
or actions that require pre-processing.

Name: Type in the name of the schema column to be
altered or inserted.

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the data in the
corrsponding column.

Position: Select Before, Replace or After, depending on
the action to be performed on the reference column.

Reference column: Type in a reference column that
tMySqlOutput can use to locate or replace the new
column, or the column to be modified.

Use field options Select this check box to customize a request, particularly
if multiple actions are being carried out on the data.

Use Hint Options Select this check box to activate the hint configuration area
which helps you optimize a query’s execution. In this area,
parameters are:

- HINT: specify the hint you need, using the syntax /*
+ */.

- POSITION: specify where you put the hint in a SQL
statement.

- SQL STMT: select the SQL statement you need to use.

Enable debug mode Select this check box to display each step involved in the
process of writing data in the database.

Use duplicate key
update mode insert

Updates the values of the columns specified, in the event
of duplicate primary keys.:

Column: Between double quotation marks, enter the name
of the column to be updated.

Value: Enter the action you want to carry out on the
column.

To use this option you must first of all select the
Insert mode in the Action on data list found in
the Basic Settings view.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

Scenario 1: Adding a new column and altering data in a DB table

582 Talend Open Studio Components Reference Guide

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a MySQL database. It also allows you to
create a reject flow using a Row > Rejects link to filter data in error. For an example
of tMySqlOutput in use, see the section called “Scenario 3: Retrieve data in error
with a Reject link”.

Scenario 1: Adding a new column and altering data in
a DB table

This Java scenario is a three-component job that aims at creating random data using a tRowGenerator, duplicating
a column to be altered using the tMap component, and eventually altering the data to be inserted based on an SQL
expression using the tMysqlOutput component.

• Drop the following components from the Palette onto the design workspace: tRowGenerator, tMap and
tMySQLOutput.

• Connect tRowGenerator, tMap, and tMysqlOutput using the Row Main link.

• In the design workspace, select tRowGenerator to display its Basic settings view.

• Click the Edit schema three-dot button to define the data to pass on to the tMap component, two columns in
this scenario, name and random_date.

• Click OK to close the dialog box.

Scenario 1: Adding a new column and altering data in a DB table

Talend Open Studio Components Reference Guide 583

• Click the RowGenerator Editor three-dot button to open the editor and define the data to be generated.

• Click in the corresponding Functions fields and select a function for each of the two columns, getFirstName
for the first column and getrandomDate for the second column.

• In the Number of Rows for Rowgenerator field, enter 10 to generate ten first name rows and click Ok to
close the editor.

• Double-click the tMap component to open the Map editor. The Map editor opens displaying the input metadata
of the tRowGenerator component.

• In the Schema editor panel of the Map editor, click the plus button of the output table to add two rows and
define the first as random_date and the second as random_date1.

Scenario 1: Adding a new column and altering data in a DB table

584 Talend Open Studio Components Reference Guide

In this scenario, we want to duplicate the random_date column and adapt the schema in order to alter the data
in the output component.

• In the Map editor, drag the random_date row from the input table to the random_date and random_date1 rows
in the output table.

• Click OK to close the editor.

• In the design workspace, double-click the tMysqlOutput component to display its Basic settings view and set
its parameters.

• Set Property Type to Repository and then click the three-dot button to open the [Repository content] dialog
box and select the correct DB connection. The connection details display automatically in the corresponding
fields.

If you have not stored the DB connection details in the Metadata entry in the Repository, select Built-
in on the property type list and set the connection detail manually.

• Click the three-dot button next to the Table field and select the table to be altered, Dates in this scenario.

• On the Action on table list, select Drop table if exists and create, select Insert on the Action on data list.

Scenario 1: Adding a new column and altering data in a DB table

Talend Open Studio Components Reference Guide 585

• If needed, click Sync columns to synchronize with the columns coming from the tMap component.

• Click the Advanced settings tab to display the corresponding view and set the advanced parameters.

• In the Additional Columns area, set the alteration to be performed on columns.

In this scenario, the One_month_later column replaces random_date_1. Also, the data itself gets altered using
an SQL expression that adds one month to the randomly picked-up date of the random_date_1 column. ex:
2007-08-12 becomes 2007-09-12.

-Enter One_Month_Later in the Name cell.

-In the SQL expression cell, enter the relevant addition script to be performed, “adddate(Random_date,
interval 1 month)” in this scenario.

-Select Replace on the Position list.

-Enter Random_date1 on the Reference column list.

For this job we duplicated the random_date_1 column in the DB table before replacing one instance of
it with the One_Month_Later column. The aim of this workaround was to be able to view upfront the
modification performed.

• Save your job and press F6 to execute it.

The new One_month_later column replaces the random_date1 column in the DB table and adds one month to
each of the randomly generated dates.

Related topic: see the section called “tDBOutput properties”.

Scenario 2: Updating data in a database table

586 Talend Open Studio Components Reference Guide

Scenario 2: Updating data in a database table

This Java scenario describes a two-component Job that updates data in a MySQL table according to that in a
delimited file.

• Drop tFileInputDelimited and tMysqlOutput from the Palette onto the design workspace.

• Connect the two components together using a Row Main link.

• Double-click tFileInputDelimited to display its Basic settings view and define the component properties.

• From the Property Type list, select Repository if you have already stored the metadata of the delimited file
in the Metadata node in the Repository tree view. Otherwise, select Built-In to define manually the metadata
of the delimited file.

For more information about storing metadata, see Talend Open Studio User Guide.

• In the File Name field, click the three-dot button and browse to the source delimited file that contains the
modifications to propagate in the MySQL table.

In this example, we use the customer_update file that holds four columns: id, CustomerName, CustomerAddress
and idState. Some of the data in these four columns is different from that in the MySQL table.

Scenario 2: Updating data in a database table

Talend Open Studio Components Reference Guide 587

• Define the row and field separators used in the source file in the corresponding fields.

• If needed, set Header, Footer and Limit.

In this example, Header is set to 1 since the first row holds the names of columns, therefore it should be ignored.
Also, the number of processed lines is limited to 2000.

• Click the three-dot button next to Edit Schema to open a dialog box where you can describe the data structure
of the source delimited file that you want to pass to the component that follows.

• Select the Key check box(es) next to the column name(s) you want to define as key column(s).

It is necessary to define at least one column as a key column for the Job to be executed correctly. Otherwise,
the Job is automatically interrupted and an error message displays on the console.

• In the design workspace, double-click tMysqlOutput to open its Basic settings view where you can define
its properties.

• Click Sync columns to retrieve the schema of the preceding component. If needed, click the three-dot button
next to Edit schema to open a dialog box where you can check the retrieved schema.

Scenario 3: Retrieve data in error with a Reject link

588 Talend Open Studio Components Reference Guide

• From the Property Type list, select Repository if you have already stored the connection metadata in the
Metadata node in the Repository tree view. Otherwise, select Built-In to define manually the connection
information.

For more information about storing metadata, see Talend Open Studio User Guide.

• Fill in the database connection information in the corresponding fields.

• In the Table field, enter the name of the table to update.

• From the Action on table list, select the operation you want to perform, None in this example since the table
already exists.

• From the Action on data list, select the operation you want to perform on the data, Update in this example.

• Save your Job and press F6 to execute it.

Using you DB browser, you can verify if the MySQL table, customers, has been modified according to the
delimited file.

In the above example, the database table has always the four columns id, CustomerName, CustomerAddress and
idState, but certain fields have been modified according to the data in the delimited file used.

Scenario 3: Retrieve data in error with a Reject link

This scenario describes a four-component Job that carries out migration from a customer file to a MySQL database
table and redirects data in error towards a CSV file using a Reject link.

Scenario 3: Retrieve data in error with a Reject link

Talend Open Studio Components Reference Guide 589

• In the Repository, select the customer file metadata that you want to migrate and drop it onto the workspace.
In the [Components] dialog box, select tFileInputDelimited and click OK. The component properties will be
filled in automatically.

• If you have not stored the information about your customer file under the Metadata node in the Repository.
Drop a tFileInputDelimited component from the family File > Input, in the Palette, and fill in its properties
manually in the Component tab.

• From the Palette, drop a tMap from the Processing family onto the workspace.

• In the Repository, expand the Metadata node, followed by the Db Connections node and select the connection
required to migrate your data to the appropriate database. Drop it onto the workspace. In the [Components]
dialog box, select tMysqlOutput and click OK. The database connection properties will be automatically filled
in.

• If you have not stored the database connection details under the Db Connections node in the Repository, drop
a tMysqlOutput from the Databases family in the Palette and fill in its properties manually in the Component
tab.

For more information, see Talend Open Studio User Guide.

• From the Palette, select a tFileOutputDelimited from the File > Output family, and drop it onto the workspace.

• Link the customers component to the tMap component, and the tMap and Localhost with a Row Main link.
Name this second link out.

• Link the Localhost to the tFileOutputDelimited using a Row > Reject link.

• Double-click the customers component to display the Component view.

• In the Property Type list, select Repository and click the [...] button in order to select the metadata containing
the connection to your file. You can also select the Built-in mode and fill in the fields manually.

• Click the [...] button next to the File Name field, and fill in the path and the name of the file you want to use.

Scenario 3: Retrieve data in error with a Reject link

590 Talend Open Studio Components Reference Guide

• In the Row and Field Separator fields, type in between inverted commas the row and field separator used in
the file.

• In the Header, Footer and Limit fields, type in the number of headers and footers to ignore, and the number
of rows to which processing should be limited.

• In the Schema list, select Repository and click the [...] button in order to select the schema of your file, if it is
stored under the Metadata node in the Repository. You can also click the [...] button next to the Edit schema
field, and set the schema manually.

The schema is as follows:

• Double-click the tMap component to open its editor.

• Select the id, CustomerName, CustomerAddress, idSate, id2, RegTime and RegisterTime columns on the table
on the left and drop them on the out table, on the right.

Scenario 3: Retrieve data in error with a Reject link

Talend Open Studio Components Reference Guide 591

• In the Schema editor area, at the bottom of the tMap editor, in the right table, change the length of the
CustomerName column to 28 to create an error. Thus, any data for which the length is greater than 28 will
create errors, retrieved with the Reject link.

• Click OK.

• In the workspace, double-click the output Localhost component to display its Component view.

• In the Property Type list, select Repository and click the [...] button to select the connection to the database
metadata. The connection details will be automatically filled in. You can also select the Built-in mode and set
the fields manually.

• In the Table field, type in the name of the table to be created. In this scenario, we call it customers_data.

• In the Action on data list, select the Create table option.

• Click the Sync columns button to retrieve the schema from the previous component.

• Make sure the Die on error check box isn’t selected, so that the Job can be executed despite the error you
just created.

• Click the Advanced settings tab of the Component view to set the advanced parameters of the component.

Scenario 3: Retrieve data in error with a Reject link

592 Talend Open Studio Components Reference Guide

• Deselect the Extend Insert check box which enables you to insert rows in batch, because this option is not
compatible with the Reject link.

• Double-click the tFileOutputDelimited component to set its properties in the Component view.

• Click the [...] button next to the File Name field to fill in the path and name of the output file.

• Click the Sync columns button to retrieve the schema of the previous component.

• Save your Job and press F6 to execute it.

Scenario 3: Retrieve data in error with a Reject link

Talend Open Studio Components Reference Guide 593

The data in error are sent to the delimited file, as well as the error type met. Here, we have: Data truncation.

tMysqlOutputBulk

594 Talend Open Studio Components Reference Guide

tMysqlOutputBulk

tMysqlOutputBulk properties

The tMysqlOutputBulk and tMysqlBulkExec components are used together in a two step process. In the first
step, an output file is generated. In the second step, this file is used in the INSERT statement used to feed a database.
These two steps are fused together in the tMysqlOutputBulkExec component, detailed in a separate section. The
advantage of using two separate steps is that the data can be transformed before it is loaded in the database.

Component family Databases/MySQL

Function Writes a file with columns based on the defined delimiter and the MySql
standards

Purpose Prepares the file to be used as parameter in the INSERT query to feed the MySQL
database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are
completed automatically using the data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end
of the file

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend
Open Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and job designs. Related topic: see Talend Open Studio
User Guide.

Advanced settings Row separator String (ex: "\n" on Unix) to distinguish rows.

Field separator Character, string or regular expression to separate
fields.

Text enclosure Character used to enclose the text.

Create directory if does
not exist

This check box is selected by default. It creates a
directory to hold the output table if required.

Custom the flush buffer
size

Customize the amount of memory used to temporarily
store output data. In the Row number field, enter the
number of rows after which the memory is to be freed
again.

Scenario: Inserting transformed data in MySQL database

Talend Open Studio Components Reference Guide 595

Records contain NULL
value

This check box is selected by default. It allows you
to take account of NULL value fields. If you clear
the check box, the NULL values will automatically be
replaced with empty values.

Check disk space Select the this check box to throw an exception during
execution if the disk is full.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

tStatCatcher Statistics Select this check box to collect the log data at the
component level.

Usage This component is to be used along with tMySQlBulkExec component. Used
together they offer gains in performance while feeding a MySQL database.

Limitation n/a

Scenario: Inserting transformed data in MySQL
database
This scenario describes a four-component job which aims at fueling a database with data contained in a file,
including transformed data. Two steps are required in this job, first step is to create the file, that will then be used
in the second step. The first step includes a tranformation phase of the data included in the file.

Dropping and linking components

1. Drag and drop a tRowGenerator, a tMap, a tMysqlOutputBulk as well as a tMysqlBulkExec component.

2. Connect the main flow using row Main links.

3. And connect the start component (tRowgenerator in this example) to the tMysqlBulkExec using a trigger
connection, of type OnComponentOk.

Configuring the components

1. A tRowGenerator is used to generate random data. Double-click on the tRowGenerator component to
launch the editor.

Scenario: Inserting transformed data in MySQL database

596 Talend Open Studio Components Reference Guide

2. Define the schema of the rows to be generated and the nature of data to generate. In this example, the clients
file to be produced will contain the following columns: ID, First Name, Last Name, Address, City which all
are defined as string data but the ID that is of integer type.

Some schema information don’t necessarily need to be displayed. To hide them away, click on Columns list
button next to the toolbar, and uncheck the relevant entries, such as Precision or Parameters.

Use the plus button to add as many columns to your schema definition.

Click the Refresh button to preview the first generated row of your output.

3. Then select the tMap component to set the transformation.

4. Drag and drop all columns from the input table to the output table.

5. Apply the transformation on the LastName column by adding .toUpperCase() in its expression field.

Then, click OK to validate the transformation.

6. Double-click on the tMysqlOutputBulk component.

7. Define the name of the file to be produced in File Name field. If the delimited file information is stored in
the Repository, select it in Property Type field, to retrieve relevant data. In this use case the file name is
clients.txt.

The schema is propagated from the tMap component, if you accepted it when prompted.

Scenario: Inserting transformed data in MySQL database

Talend Open Studio Components Reference Guide 597

8. In this example, don’t include the header information as the table should already contain it.

9. Click OK to validate the output.

10. Then double-click on the tMysqlBulkExec component to set the INSERT query to be executed.

11. Define the database connection details. We recommend you to store this type of information in the
Repository, so that you can retrieve them at any time for any Job.

12. Set the table to be filled in with the collected data, in the Table field.

13. Fill in the column delimiters in the Field terminated by area.

14. Make sure the encoding corresponds to the data encoding.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

The clients database table is filled with data from the file including upper-case last name as transformed in
the job.

For simple Insert operations that don’t include any transformations, the use of tMysqlOutputBulkExec allows
you to skip a step in the process and thus improves performance.

Scenario: Inserting transformed data in MySQL database

598 Talend Open Studio Components Reference Guide

Related topic: the section called “tMysqlOutputBulkExec properties”

tMysqlOutputBulkExec

Talend Open Studio Components Reference Guide 599

tMysqlOutputBulkExec

tMysqlOutputBulkExec properties

The tMysqlOutputBulk and tMysqlBulkExec components are used together in a two step process. In the first
step, an output file is generated. In the second step, this file is used in the INSERT statement used to feed a
database. These two steps are fused together in the tMysqlOutputBulkExec component.

Component family Databases/MySQL

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, it improves performance during Insert operations to a
MySQL database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

DB Version Select the version of MySQL that you are using.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

tCreateTable can
be used as a
substitute for this
function.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if doesn’t exist: The table is created if it
does not already exist.

Clear a table: The table content is deleted.

Table Name of the table to be written.

Note that only one table can be written at a time
and that the table must already exist for the insert
operation to succeed

Local FileName Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select the check box for this option to append new rows
to the end of the file.

Scenario: Inserting data in MySQL database

600 Talend Open Studio Components Reference Guide

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

You can press Ctrl+Space to access a list of
predefined global variables.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Field separator Character, string or regular expression to separate fields.

Escape char Character of the row to be escaped

Text enclosure Character used to enclose the text.

Create directory if does
not exist

This check box is selected by default. It creates a directory
to hold the output table if required.

Custom the flush buffer
size

Customize the amount of memory used to temporarily
store output data. In the Row number field, enter the
number of rows after which the memory is to be freed
again.

Action on data On the data of the table defined, you can carry out the
following opertaions:

Insert records in table: Add new records to the table.

Update records in table: Make changes to existing
records.

Replace records in table: Replace existing records with
new one. Ignore records in table: Ignore existing records
or insert the new ones.

Records contain NULL
value

This check box is selected by default. It allows you to
take account of NULL value fields. If you clear the check
box, the NULL values will automatically be replaced with
empty values.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

tStatCatcher Statistics Select this check box to collect the log data at the
component level.

Usage This component is mainly used when no particular transformation is required on the
data to be loaded onto the database.

Limitation n/a

Scenario: Inserting data in MySQL database

This scenario describes a two-component Job which carries out the same operation as the one described for the
section called “tMysqlOutputBulk properties” and the section called “tMysqlBulkExec properties”, although no
data is transformed.

Scenario: Inserting data in MySQL database

Talend Open Studio Components Reference Guide 601

• Drop a tRowGenerator and a tMysqlOutputBulkExec component from the Palette to the design workspace.

• Connect the components using a link such as Row > Main.

• Set the tRowGenerator parameters the same way as in the section called “Scenario: Inserting transformed data
in MySQL database”. The schema is made of four columns including: ID, First Name, Last Name, Address
and City.

• In the workspace, double-click the tMysqlOutputBulkExec to display the Component view and set the
properties.

• Define the database connection details in the corresponding fields, if necessary. Consult the recommendations
detailed in the section called “Scenario: Inserting transformed data in MySQL database”, concerning the
conservation of connection details in the Repository, under the Metadata node. In the component view, select
Repository in the Property Type field and then select the appropriate connection in the adjacent field. The
following fields will be filled in automatically.

For further information, see Talend Open Studio User Guide.

• In the Action on table field, select the None option as you want to insert the data into a table which already
exists.

• In the Table field, enter the name of the table you want to populate, the name being clients in this example.

• In the Local filename field, indicate the access path and the name of the file which contains the data to be added
to the table. In this example, the file is clients.txt.

• Click on the Advanced settings tab to define the component’s advanced parameters.

Scenario: Inserting data in MySQL database

602 Talend Open Studio Components Reference Guide

• In the Action on data list, select the Insert records in table to insert the new data in the table.

• Press F6 to run the Job.

The result should be pretty much the same as in the section called “Scenario: Inserting transformed data in MySQL
database”, but the data might differ as these are regenerated randomly everytime the Job is run.

tMysqlRollback

Talend Open Studio Components Reference Guide 603

tMysqlRollback

tMysqlRollback properties

This component is closely related to tMysqlCommit and tMysqlConnection. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases

Function Cancel the transaction commit in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tMysqlConnection component in the list if
more than one connection are planned for the current job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Mysql components, especially with
tMysqlConnection and tMysqlCommit components.

Limitation n/a

Scenario: Rollback from inserting data in mother/
daughter tables

Based on the section called “Scenario: Inserting data in mother/daughter tables”, insert a rollback function in order
to prevent unwanted commit.

• Drag and drop a tMysqlRollback to the design workspace and connect it to the Start component.

• Set the Rollback unique field on the relevant DB connection.

Scenario: Rollback from inserting data in mother/daughter tables

604 Talend Open Studio Components Reference Guide

This complementary element to the job ensures that the transaction will not be partly committed.

tMysqlRow

Talend Open Studio Components Reference Guide 605

tMysqlRow

tMysqlRow properties

Component family Databases/MySQL

Function tMysqlRow is the specific component for this database query. It executes the
SQL query stated in the specified database. The row suffix means the component
implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tMysqlRow acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

DB Version Select the MySQL version that you are using.

Use an existing
connection

Select this check box and click the relevant
tMysqlConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

tMysqlRow properties

606 Talend Open Studio Components Reference Guide

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table Name Name of the table to be processed.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Guess Query Click the Guess Query button to generate the query which
corresponds to your table schema in the Query field.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

Propagate QUERY’s
recordset

Select this check box to insert the result of the query in
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this checkbox if you want to query the
database using a PreparedStatement. In the Set
PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

Scenario 1: Removing and regenerating a MySQL table index

Talend Open Studio Components Reference Guide 607

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Scenario 1: Removing and regenerating a MySQL table
index

This scenario describes a four-component job that removes a table index, applies a select insert action onto a table
then regenerates the index.

• Select and drop the following components onto the design workspace: tMysqlRow (x2), tRowGenerator, and
tMysqlOutput.

• Connect tRowGenerator to tMysqlIntput.

• Using a OnComponentOk connections, link the first tMysqlRow to tRowGenerator and tRowGenerator to
the second tMysqlRow.

• Select the tMysqlRow to fill in the DB Basic settings.

• In Property type as well in Schema, select the relevant DB entry in the list.

• The DB connection details and the table schema are accordingly filled in.

• Propagate the properties and schema details onto the other components of the Job.

• The query being stored in the Metadata area of the Repository, you can also select Repository in the Query
type field and the relevant query entry.

• If you didn’t store your query in the Repository, type in the following SQL statement to alter the database
entries: drop index <index_name> on <table_name>

• Select the second tMysqlRow component, check the DB properties and schema.

• Type in the SQL statement to recreate an index on the table using the following statement: create index
<index_name> on <table_name> (<column_name>)

The tRowGenerator component is used to generate automatically the columns to be added to the DB output
table defined.

• Select the tMysqlOutput component and fill in the DB connection properties either from the Repository or
manually the DB connection details are specific for this use only. The table to be fed is named: comprehensive.

Scenario 2: Using PreparedStatement objects to query data

608 Talend Open Studio Components Reference Guide

• The schema should be automatically inherited from the data flow coming from the tLogRow. Edit the schema
to check its structure and check that it corresponds to the schema expected on the DB table specified.

• The Action on table is None and the Action on data is Insert.

• No additional Columns is required for this job.

• Press F6 to run the job.

If you manage to watch the action on DB data, you can notice that the index is dropped at the start of the job and
recreated at the end of the insert action.

Related topics: the section called “tDBSQLRow properties”.

Scenario 2: Using PreparedStatement objects to query
data

This scenario describes a four component job which allows you to link a table column with a client file. The
MySQL table contains a list of all the American States along with the State ID, while the file contains the customer
information including the ID of the State in which they live. We want to retrieve the name of the State for each
client, using an SQL query. In order to process a large volume of data quickly, we use a PreparedStatement object
which means that the query is executed only once rather than against each row in turn. Then each row is sent as a
parameter. Note that PreparedStatement object can also be used in avoiding SQL injection.

For this scenario, we use a file and a database for which we have already stored the connection and properties
in the Rerpository metadata. For further information concerning the creation of metadata in delimited files, the
creation of database connection metadata and the usage of metadata, see Talend Open Studio User Guide.

• In the Repository, expand the Metadata and File delimited nodes.

• Select the metadata which corresponds to the client file you want to use in the Job. Here, we are using the
customers metadata.

• Slide the metadata onto the workspace and double-click tFileInputDelimited in the Components dialog box
so that the tFileInputDelimited component is created with the parameters already set.

• In the Schema list, select Built-in so that you can modify the component’s schema. Then click on [...] next to
the Edit schema field to add a column into which the name of the State will be inserted.

Scenario 2: Using PreparedStatement objects to query data

Talend Open Studio Components Reference Guide 609

• Click on the [+] button to add a column to the schema. Rename this column LabelStateRecordSet and select
Object from the Type list. Click OK to save your modifications.

• From the Palette, select the tMysqlRow, tParseRecordSet and tFileOutputDelimited components and drop
them onto the workspace.

• Connect the four components using Row > Main type links.

• Double click tMysqlRow to set its properties in the Basic settings tab of the Component view.

Scenario 2: Using PreparedStatement objects to query data

610 Talend Open Studio Components Reference Guide

• In the Property Type list, select Repository and click on the [...] button to select a database connection from
the metadata in the Repository. The DB Version, Host, Port, Database, Username and Password fields are
completed automatically. If you are using the Built-in mode, complete these fields manually.

• From the Schema list, select Built-in to set the schema properties manually and add the LabelStateRecordSet
column, or click directly on the Sync columns button to retrieve the schemma from the preceding component.

• In the Query field, enter the SQL query you want to use. Here, we want to retrieve the names of the
American States from the LabelState column of the MySQL table, us_state: "SELECT LabelState FROM
us_state WHERE idState=?".

The question mark, “?”, represents the parameter to be set in the Advanced settings tab.

• Click Advanced settings to set the components advanced properties.

• Select the Propagate QUERY’s recordset check box and select the LabelStateRecordSet column from the use
column list to insert the query results in that column.

• Select the Use PreparedStatement check box and define the parameter used in the query in the Set
PreparedStatement Parameters table.

• Click on the [+] button to add a parameter.

• In the Parameter Index cell, enter the parameter position in the SQL instruction. Enter “1” as we are only
using one parameter in this example.

• In the Parameter Type cell, enter the type of parameter. Here, the parameter is a whole number, hence, select
Int from the list.

• In the Parameter Value cell, enter the parameter value. Here, we want to retrieve the name of the State based
on the State ID for every client in the input file. Hence, enter “row1.idState”.

• Double click tParseRecordSet to set its properties in the Basic settings tab of the Component view.

Scenario 2: Using PreparedStatement objects to query data

Talend Open Studio Components Reference Guide 611

• From the Prev. Comp. Column list, select the preceding components column for analysis. In this example,
select LabelStateRecordSet.

• Click on the Sync columns button to retrieve the schema from the preceding component. The Attribute table
is automatically completed with the schema columns.

• In the Attribute table, in the Value field which corresponds to the LabelStateRecordSet, enter the name of
the column containing the State names to be retrieved and matched with each client, within double quotation
marks. In this example, enter “LabelState”.

• Double click tFileOutputDelimited to set its properties in the Basic settings tab of the Component view.

• In the File Name field, enter the access path and name of the output file.

• Click Sync columns to retrieve the schema from the preceding component.

• Save your Job and press F6 to run it.

Scenario 2: Using PreparedStatement objects to query data

612 Talend Open Studio Components Reference Guide

A column containing the name of the American State corrresponding to each client is added to the file.

tMysqlSCD

Talend Open Studio Components Reference Guide 613

tMysqlSCD

tMysqlSCD belongs to two component families: Business Intelligence and Databases. For more information on
it, see the section called “tMysqlSCD”.

tMysqlSCDELT

614 Talend Open Studio Components Reference Guide

tMysqlSCDELT

tMysqlSCDELT belongs to two component families: Business Intelligence and Databases. For more information
on it, see the section called “tMysqlSCDELT”.

tMysqlSP

Talend Open Studio Components Reference Guide 615

tMysqlSP

tMysqlSP Properties

Component family Databases/Mysql

Function tMysqlSP calls the database stored procedure.

Purpose tMysqlSP offers a convenient way to centralize multiple or complex queries in a
database and call them easily.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

SP Name Type in the exact name of the Stored Procedure

Is Function / Return
result in

Select this check box, if a value only is to be returned.

Select on the list the schema column, the value to be
returned is based on.

Parameters Click the Plus button and select the various Schema
Columns that will be required by the procedures. Note
that the SP schema can hold more columns than there are
paramaters used in the procedure.

Select the Type of parameter:

IN: Input parameter

OUT: Output parameter/return value

IN OUT: Input parameters is to be returned as value, likely
after modification through the procedure (function).

Scenario: Finding a State Label using a stored procedure

616 Talend Open Studio Components Reference Guide

RECORDSET: Input parameters is to be returned as a set
of values, rather than single value.

Check the tPostgresqlCommit component if you
want to analyze a set of records from a database
table or DB query and return single records.

Usage This component is used as intermediary component. It can be used as start
component but only input parameters are thus allowed.

Limitation The Stored Procedures syntax should match the Database syntax.

Scenario: Finding a State Label using a stored
procedure

The following job aims at finding the State labels matching the odd State IDs in a Mysql two-column table. A
stored procedure is used to carry out this operation.

• Drag and drop the following components used in this example: tRowGenerator, tMysqlSP, tLogRow.

• Connect the components using the Row Main link.

• The tRowGenerator is used to generate the odd id number. Double-click on the component to launch the editor.

• Click on the Plus button to add a column to the schema to generate.

• Select the Key check box and define the Type to Int.

• The Length equals to 2 digits max.

• Use the preset function called sequence but customize the Parameters in the lower part of the window.

Scenario: Finding a State Label using a stored procedure

Talend Open Studio Components Reference Guide 617

• Change the Value of step from 1 to 2 for this example, still starting from 1.

• Set the Number of generated rows to 25 in order for all the odd State id (of 50 states) to be generated.

• Click OK to validate the configuration.

• Then select the tMysqlSP component and define its properties.

• Set the Property type field to Repository and select the relevant entry on the list. The connection details get
filled in automatically.

• Else, set manually the connection information.

• Click Sync Column to retrieve the generated schema from the preceding component.

• Then click Edit Schema and add an extra column to hold the State Label to be output, in addition to the ID.

Scenario: Finding a State Label using a stored procedure

618 Talend Open Studio Components Reference Guide

• Type in the name of the procedure in the SP Name field as it is called in the Database. In this example, getstate.
The procedure to be executed states as follows:

DROP PROCEDURE
IF EXISTS `talend`.`getstate` $$
CREATE DEFINER=`root`@`localhost` PROCEDURE `getstate`(IN pid INT, OUT
pstate VARCHAR(50))
BEGIN
SELECT LabelState INTO pstate FROM us_states WHERE idState = pid;
END $$

• In the Parameters area, click the plus button to add a line to the table.

• Set the Column field to ID, and the Type field to IN as it will be given as input parameter to the procedure.

• Add a second line and set the Column field to State and the Type to Out as this is the output parameter to
be returned.

• Eventually, set the tLogRow component properties.

• Synchronize the schema with the preceding component.

• And select the Print values in cells of a table check box for reading convenience.

• Then save your Job and execute it.

The output shows the state labels corresponding to the odd state ids as defined in the procedure.

Check the tPostgresqlCommit component if you want to analyze a set of records from a database table
or DB query and return single records.

tMysqlTableList

Talend Open Studio Components Reference Guide 619

tMysqlTableList

tMysqlTableList Properties

Component family Databases/MySQL

Function Iterates on a set of table names through a defined Mysql connection.

Purpose Lists the names of a given set of Mysql tables using a select statement based on a
Where clause.

Basic settings Component list Select the tMysqlConnection component in the list if
more than one connection are planned for the current job.

Where clause for table
name selection

Enter the Where clause to identify the tables to iterate on.

Usage This component is to be used along with Mysql components, especially with
tMysqlConnection.

Limitation n/a

Scenario: Iterating on DB tables and deleting their
content using a user-defined SQL template

The following Java scenario creates a three-component job that iterates on given table names from a MySQL
database using a WHERE clause. It then deletes the content of the tables directly on the DBMS using a user-
defined SQL template.

For advanced use, start with creating a connection to the database that contains the tables you want to empty of
their content.

• In the Repository tree view, expand Metadata and right click DB Connections to create a connection to the
relevant database and to store the connection information locally.

For more information about Metadata, see Talend Open Studio User Guide.

Otherwise, drop a tMySQLConnection component in the design workspace and fill the connection details
manually.

• Drop the database connection you created from the Repository onto the design workspace.

The [Components] dialog box displays.

• Select tMysqlConnection and click OK.

The tMysqlConnection components displays on the design workspace with all connection details automatically
filled in its Basic settings view.

• Drop the following two components from the Palette onto the design workspace: tMysqlTableList and tELT.

• Connect tMysqlConnection to tMysqlTableList using an OnSubjobOk link.

Scenario: Iterating on DB tables and deleting their content using a user-defined SQL template

620 Talend Open Studio Components Reference Guide

• Connect tMysqlTableList to tELT using an Iterate link.

• If needed, double-click tMysqlConnection to display its Basic settings view and verify the connection details.

In this example, we want to connect to a MySQL database called examples.

• In the design workspace, double-click tMysqlTableList to display its Basic settings view and define its settings.

• On the Component list, select the relevant MySQL connection component if more than one connection is used.

• Enter a WHERE clause using the right syntax in the corresponding field to iterate on the table name(s) you
want to delete the content of.

In this scenario, we want the job to iterate on all the tables which names start with “ex”.

• In the design workspace, double-click tELT to display its Basic settings view and define its settings.

• In Database Name, enter the name of the database containing the tables you want to process.

• On the Component list, select the relevant MySQL connection component if more than one connection is used.

Scenario: Iterating on DB tables and deleting their content using a user-defined SQL template

Talend Open Studio Components Reference Guide 621

• Click in the Table name field and press Ctrl+Space to access the global variable list.

• From the global variable list, select ((String)globalMap.get("tMysqlTableList_1_CURRENT_TABLE")).

To create the user-defined SQL template:

• In the Repository tree view, expand SQL Templates and MySQL in succession.

• Right-click UserDefined and select Create SQLTemplate from the drop-down list.

The New SQLTemplate wizard opens.

Scenario: Iterating on DB tables and deleting their content using a user-defined SQL template

622 Talend Open Studio Components Reference Guide

• Enter a name for the new SQL template and fill in the other fields If needed and then click Finish to close
the wizard.

An SQL pattern editor opens on the design workspace.

• Delete the existing code and enter the code necessary to carry out the desired action, deleting the content of all
tables which names start with “ex” in this example.

In the SQL template code, you must use the correct variable name attached to the table name parameter
(“__TABLE-NAME__” in this example). To display the variable name used, put your pointer in the Table
Name field in the basic settings of the tELT component.

• Press Ctrl+S to save the new user-defined SQL template.

The next step is to add the new user-defined SQL template to the SQL template list in the tELT component.

To add the user-defined SQL template to the SQL template list:

• In the Component view of tELT, click the SQL Templates tab to display the SQLTemplate List.

• Click the Add button and add two SQL template lines.

• Click in the first line to display a drop-down arrow and then click the arrow to display the SQL template list.

Related scenario

Talend Open Studio Components Reference Guide 623

• Select in the list the user-defined SQL template you already created.

• Make sure that the SQL template in the second line is Commit.

• Save your job and press F6 to execute it.

All tables in the MySQL examples database which names begin with “ex” are emptied from their content.

Related scenario

For tMysqlTableList related scenario, see the section called “Scenario: Iterating on a DB table and listing its
column names”.

tOracleBulkExec

624 Talend Open Studio Components Reference Guide

tOracleBulkExec

tOracleBulkExec properties

The tOracleOutputBulk and tOracleBulkExec components are used together in a two step process. In the first
step, an output file is generated. In the second step, this file is used in the INSERT operation used to feed a database.
These two steps are fused together in the tOracleOutputBulkExec component, detailed in a separate section. The
advantage of using two separate steps is that the data can be transformed before it is loaded in the database.

Component family Databases/Oracle

Function tOracleBulkExec inserts, appends, replaces or truncate data in an Oracle database.

Purpose As a dedicated component, it allows gains in performance during operations
performed on data of an Oracle database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box when you are using the component
tOracleConnection.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Connection type Drop-down list of available drivers

DB Version Select the Oracle version in use

Host IP address of the database server

Port Port number listening the database server

Database Database name.

tOracleBulkExec properties

Talend Open Studio Components Reference Guide 625

Schema Schema name.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if doesn’t exist: The table is created if it
does not exist.

Clear a table: The table content is deleted.

Truncate table: The table content is deleted. You do not
have the possibility to rollback the operation.

Data file name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Action on data On the data of the table defined, you can perform:

Insert: Inserts rows to an empty table. If duplicates are
found, Job stops.

Update: Update the existing data of the table.

Append: Adds rows to the existing data of the table

Replace: Overwrites some rows of the table

Truncate: Drops table entries and inserts new input flow
data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Advanced settings Advanced separator (for
number)

Select this check box to change the separator used for the
numbers.

Use existing control file Select this check box if you use a control file (.ctl) and
specify its path in the .ctl file name field.

Record format Define the record format:

Default: format parameters are set by default.

Stream: set Record terminator.

Fixed: set the Record length.

Variable: set the Field size of the record length.

tOracleBulkExec properties

626 Talend Open Studio Components Reference Guide

Specify .ctl file’s INTO
TABLE clause manually

Select this check box to manually fill in the INTO TABLE
clause of the control file.

Fields terminated by Character, string or regular expression to separate fields:

None: no separator is used.

Whitespace: the separator used is a space.

EOF (used for loading LOBs from lobfile): the separator
used is an EOF character (End Of File).

Other terminator: Set another terminator in the Field
terminator field.

Use fields enclosure Select this check box if you want to use enclosing
characters for the text:

Fields enclosure (left part): character delimiting the left
of the field.

Field enclosure (right part): character delimiting the
right of the field.

Use schema’s Date
Pattern to load Date
field

Select this check box to use the date pattern of the schema
in the date field.

Specify field condition Select this check box to define data loading condition.

Preserve blanks Select this check box to preserve the blanks.

Trailing null columns Select this check box to load null columns.

Load options Click + to add data loading options:

Parameter: select a loading parameter from the list.

Value: enter a value for the parameter selected.

NLS Language In the list, select the language used for the data that are not
used in Unicode.

Set Parameter
NLS_TERRITORY

Select this check box to modify the territory conventions
used for day and weeks numbering. Your OS value is the
default value used.

Encoding Select the encoding type from the list or select Custom and
define it manually. This field is compulsory for database
data handling.

Output Select the type of output for the standard output of the
Oracle database:

to console,

to global variable.

Convert columns and
table names to
uppercase

Select this check box to uppercase the names of the
columns and the name of the table.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This dedicated component offers performance and flexibility of Oracle DB query
handling.

Scenario: Truncating and inserting file data into Oracle DB

Talend Open Studio Components Reference Guide 627

Scenario: Truncating and inserting file data into
Oracle DB

This scenario describes how to truncate the content of an Oracle DB and load an input file content. The related job
is composed of three components that respectively creates the content, output this content into a file to be loaded
onto the Oracle database after the DB table has been truncated.

• Drop the following components: tOracleInput, tFileOutputDelimited, tOracleBulkExec from the Palette to
the design workspace

• Connect the tOracleInput with the tFileOutputDelimited using a row main link.

• And connect the tOracleInput to the tOracleBulkExec using a OnSubjobOk trigger link.

• Define the Oracle connection details. We recommend you to store the DB connection details in the Metadata
repository in order to retrieve them easily at any time in any job.

• Define the schema, if it isn’t stored either in the Repository. In this example, the schema is as follows:
ID_Contract, ID_Client, Contract_type, Contract_Value.

• Define the tFileOutputDelimited component parameters, including output File Name, Row separator and
Fields delimiter.

• Then double-click on the tOracleBulkExec to define the DB feeding properties.

Scenario: Truncating and inserting file data into Oracle DB

628 Talend Open Studio Components Reference Guide

• In the Property Type, select Repository mode if you stored the database connection details under the Metadata
node of the Repository or select Built-in mode to define them manually. In this scenario, we use the Built-
in mode.

• Thus, set the connection parameters in the following fields: Host, Port, Database, Schema, Username, and
Password.

• Fill in the name of the Table to be fed and the Action on data to be carried out, in this use case: insert.

• In the Schema field, select Built-in mode, and click [...] button next to the Edit schema field to describe the
structure of the data to be passed on to the next component.

• Click the Advanced settings view to configure the advanced settings of the component.

Scenario: Truncating and inserting file data into Oracle DB

Talend Open Studio Components Reference Guide 629

• Select the Use an existing control file check box if you want to use a control file (.ctl) storing the status of
the physical structure of the database. Or, fill in the following fields manually: Record format, Specify .ctl
file’s INTO TABLE clause manually, Field terminated by, Use field enclosure, Use schema’s Date Pattern
to load Date field, Specify field condition, Preserve blanks, Trailing null columns, Load options, NLS
Language et Set Parameter NLS_TERRITORY according to your database.

• Define the Encoding as in preceding steps.

• For this scenario, in the Output field, select to console to output the standard output f the database to the console.

Press F6 to run the job. The log output displays in the Run tab and the table is fed with the parameter file data.

Related topic: see the section called “Scenario: Inserting data in MySQL database”.

tOracleClose

630 Talend Open Studio Components Reference Guide

tOracleClose

tOracleClose properties

Function tOracleClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tOracleConnection component in the list if
more than one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Oracle components, especially with
tOracleConnection and tOracleCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.

tOracleCommit

Talend Open Studio Components Reference Guide 631

tOracleCommit

tOracleCommit Properties

This component is closely related to tOracleConnection and tOracleRollback. It usually doesn’t make much
sense to use these components independently in a transaction.

Component family Databases/Oracle

Function Validates the data processed through the job into the connected DB

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the tOracleConnection component in the list if
more than one connection are planned for the current job.

Close Connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection to
link tOracleCommit to your Job, your data will
be commited row by row. In this case, do not
select the Close connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Oracle components, especially with
tOracleConnection and tOracleRollback components.

Limitation n/a

Related scenario

This component is closely related to tOracleConnection and tOracleRollback. It usually doesn’t make much
sense to use one of these without using a tOracleConnection component to open a connection for the current
transaction.

For tOracleCommit related scenario, see the section called “tMysqlConnection”

tOracleConnection

632 Talend Open Studio Components Reference Guide

tOracleConnection

tOracleConnection Properties

This component is closely related to tOracleCommit and tOracleRollback. It usually doesn’t make much sense
to use one of these without using a tOracleConnection component to open a connection for the current transaction.

Component family Databases/Oracle

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Connection type Drop-down list of available drivers:

Oracle OCI: Select this connection type to use Oracle
Call Interface with a set of C-language software APIs that
provide an interface to the Oracle database.

Oracle RAC: Select this connection type to access a
clustered database.

Oracle Service Name: Select this connection type to use
the TNS alias that you give when you connect to the
remote database.

WALLET: Select this connection type to store credentials
in an Oracle wallet.

Oracle SID: Select this connection type to uniquely
identify a particular database on a system.

DB Version Select the Oracle version in use.

Use tns file Select this check box to use the metadata of a context
included in a tns file.

One tns file may have many contexts.

TNS File: Enter the path to the tns file manually or browse
to the file by clicking the three-dot button next to the filed.

Select a DB Connection in Tns File: Click the three-dot
button to display all the contexts held in the tns file and
select the desired one.

Host Database server IP address.

Port Listening port number of DB server.

Related scenario

Talend Open Studio Components Reference Guide 633

Database Name of the database.

Schema Name of the schema.

Username and
Password

DB user authentication data.

Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating.

You can set the encoding parameters through this
field.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Usage This component is to be used along with Oracle components, especially with
tOracleCommit and tOracleRollback components.

Limitation n/a

Related scenario

This component is closely related to tOracleCommit and tOracleRollback. It usually doesn’t make much sense
to use one of these without using a tOracleConnection component to open a connection for the current transaction.

For tOracleConnection related scenario, see the section called “tMysqlConnection”

tOracleInput

634 Talend Open Studio Components Reference Guide

tOracleInput

tOracleInput properties

Component family Databases/Oracle

Function tOracleInput reads a database and extracts fields based on a query.

Purpose tOracleInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box when using a configured
tOracleConnection component.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Connection type Drop-down list of available drivers:

tOracleInput properties

Talend Open Studio Components Reference Guide 635

Oracle OCI: Select this connection type to use Oracle
Call Interface with a set of C-language software APIs that
provide an interface to the Oracle database.

Oracle RAC: Select this connection type to access a
clustered database.

Oracle Service Name: Select this connection type to use
the TNS alias that you give when you connect to the
remote database.

WALLET: Select this connection type to store credentials
in an Oracle wallet.

Oracle SID: Select this connection type to uniquely
identify a particular database on a system.

DB Version Select the Oracle version in use.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Oracle schema Oracle schema name.

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table name Database table name.

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Use cursor When selected, helps to decide the row set to work with at
a time and thus optimize performance.

Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

No null values Check this box to improve the performance if there are no
null values.

Usage This component covers all possible SQL queries for Oracle databases.

Limitation n/a

Scenario 1: Using context parameters when reading a table from an Oracle database

636 Talend Open Studio Components Reference Guide

Scenario 1: Using context parameters when reading a
table from an Oracle database

In this scenario, we will read a table from an Oracle database, using a context parameter to refer to the table name.

Dragging and dropping components and linking them together

1. Drop tOracleInput and tLogRow from the Palette onto the workspace.

2. Link tOracleInput to tLogRow using a Row > Main connection.

Configuring the components

1. Double-click tOracleInput to open its Basic Settings view in the Component tab.

2. In the Host field, enter the Oracle database serverse's IP address, "192.168.0.19" in this example.

In the Port field, enter the port number, "1521" in this example.

In the Database field, enter the database name, "talend" in this example.

In the Oracle schema field, enter the Oracle schema name, "TALEND" in this example.

In the Username and Password fields, enter the authentication details, respectively "talend" and "oracle"
in this example.

3. Set the Schema as Built-In and click Edit schema to define the desired schema.

The schema editor opens:

Scenario 1: Using context parameters when reading a table from an Oracle database

Talend Open Studio Components Reference Guide 637

4. Click the [+] button to add the rows that you will use to define the schema, three columns in this example:
id, name and age.

Under Column, click the fields to enter the corresponding column names.

Click the fields under Type to define the type of data.

Click OK to close the schema editor.

5. Put the cursor in the Table Name field and press F5 for context parameter setting.

For more information about context settings, see Talend Open Studio User Guide.

6. Keep the default setting in the Name field and type in the name of the database table in the Default value
field, staff in this use case.

7. Click Finish to validate the setting.

Related scenarios

638 Talend Open Studio Components Reference Guide

The context parameter context.TABLE automatically appears in the Table Name field.

8. In the Query type list, select Built-In. Then, click Guess Query to get the query statement.

"SELECT
 TALEND."+context.TABLE+".id,
 TALEND."+context.TABLE+".name,
 TALEND."+context.TABLE+".age
FROM TALEND."+context.TABLE

9. Double-click tLogRow to set its Basic Settings in the Component tab.

10. In the Mode area, select Table (print values in cells of a table) for a better display of the results.

11. Save the Job.

Executing the Job

The results below can be found after F6 is pressed to run the Job.

Related scenarios

For related scenarios, see:

• the section called “Scenario 1: Displaying selected data from DB table”.

• the section called “Scenario 2: Using StoreSQLQuery variable”.

• the section called “Scenario: Dynamic context use in MySQL DB insert”.

tOracleOutput

Talend Open Studio Components Reference Guide 639

tOracleOutput

tOracleOutput properties

Component family Databases/Oracle

Function tOracleOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tOracleOutput executes the action defined on the table and/or on the data contained
in the table, based on the flow incoming from the preceding component in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box when using a tOracleConnection
component. When you deselect it, a check box appears
(selected by default and followed by a field) in the
Advanced settings, Batch Size, which enables you to
define the number of lines in each processed batch.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Connection type Drop-down list of available drivers:

tOracleOutput properties

640 Talend Open Studio Components Reference Guide

Oracle OCI: Select this connection type to use Oracle
Call Interface with a set of C-language software APIs that
provide an interface to the Oracle database.

Oracle RAC: Select this connection type to access a
clustered database.

Oracle Service Name: Select this connection type to use
the TNS alias that you give when you connect to the
remote database.

WALLET: Select this connection type to store credentials
in an Oracle wallet.

Oracle SID: Select this connection type to uniquely
identify a particular database on a system.

DB Version Select the Oracle version in use.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete

tOracleOutput properties

Talend Open Studio Components Reference Guide 641

operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

You can press Ctrl+Space to access a list of
predefined global variables.

Commit every Enter the number of rows to be completed before
committing batches of rows together into the DB. This
option ensures transaction quality (but not rollback) and,
above all, better performance at execution.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column.

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Related scenarios

642 Talend Open Studio Components Reference Guide

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Use Hint Options Select this check box to activate the hint configuration area
which helps you optimize a query’s execution. In this area,
parameters are:

- HINT: specify the hint you need, using the syntax /*
+ */. - POSITION: specify where you put the hint in
a SQL statement.

- SQL STMT: select the SQL statement you need to use.

Convert columns and
table to uppercase

Select this check box to set the names of columns and table
in upper case.

Enable debug mode Select this check box to display each step during
processing entries in a database.

Use Batch Size When selected, enables you to define the number of lines
in each processed batch.

This option is available only when you do not Use
an existing connection in Basic settings.

Support null in “SQL
WHERE” statement

Select this check box to validate null in “SQL WHERE”
statement.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a Oracle database. It also allows you to
create a reject flow using a Row > Rejects link to filter data in error. For an example
of tMysqlOutput in use, see the section called “Scenario 3: Retrieve data in error
with a Reject link”.

Limitation n/a

Related scenarios

For tOracleOutput related topics, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”.

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tOracleOutputBulk

Talend Open Studio Components Reference Guide 643

tOracleOutputBulk

tOracleOutputBulk properties

The tOracleOutputBulk and tOracleBulkExec components are used together in a two step process. In the first
step, an output file is generated. In the second step, this file is used in the INSERT operation used to feed a database.
These two steps are fused together in the tOracleOutputBulkExec component, detailed in a separate section. The
advantage of using two separate steps is that the data can be transformed before it is loaded in the database.

Component family Databases/Oracle

Function Writes a file with columns based on the defined delimiter and the Oracle
standards

Purpose Prepares the file to be used as parameter in the INSERT query to feed the Oracle
database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are
completed automatically using the data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end
of the file

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend
Open Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and job designs. Related topic: see Talend Open Studio
User Guide.

Advanced settings Advanced separator
(for number)

Select this check box to change data separators for
numbers:

Thousands separator: define separators you want to
use for thousands.

Decimal separator: define separators you want to use
for decimals.

Field separator Character, string or regular expression to separate
fields.

Row separator String (ex: “\n”on Unix) to separate rows.

Related scenarios

644 Talend Open Studio Components Reference Guide

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Bulk file parameters Set the parameters Buffer Size and StringBuilder Size
for a performance gain according to the memory size.

tStatCatcher Statistics Select this check box to gather the job processing
metadata at a job level as well as at each component
level.

Usage This component is to be used along with tOracleBulkExec component. Used
together they offer gains in performance while feeding a Oracle database.

Related scenarios

For use cases in relation with tOracleOutputBulk, see the following scenarios:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

• the section called “Scenario: Truncating and inserting file data into Oracle DB”.

tOracleOutputBulkExec

Talend Open Studio Components Reference Guide 645

tOracleOutputBulkExec

tOracleOutputBulkExec properties

The tOracleOutputBulk and tOracleBulkExec components are used together in a two step process. In the first
step, an output file is generated. In the second step, this file is used in the INSERT operation used to feed a database.
These two steps are fused together in the tOracleOutputBulkExec component.

Component family Databases/Oracle

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert operations
to an Oracle database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tOracleConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Connection type List of available drivers

DB Version Select the Oracle version in use

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

tOracleOutputBulkExec properties

646 Talend Open Studio Components Reference Guide

Schema Name of the schema.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time and that the table must exist for
the insert operation to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operations is carried out.

Drop and create the table: The table is removed and
created again.

Create a table: The table does not exist and gets created.

Create table if doesn’t exist: The table is created if does
not exist.

Clear a table: The table content is deleted.

Truncate table: The table content is deleted. You do not
have the possibility to rollback the operation.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Create directory if not
exists

This check box is selected by default. It creates a directory
to hold the output table if required.

Append Select this check box to add the new rows at the end of
the file.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Truncate: Remove all entries from table.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Field separator Character, string or regular expression to separate fields.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Advanced settings Advanced separator (for
number)

Select this check box to change data separators for
numbers:

Thousands separator: define separators you want to use
for thousands.

Related scenarios

Talend Open Studio Components Reference Guide 647

Decimal separator: define separators you want to use for
decimals.

Use existing control file Select this check box and browse to the .ctl control file you
want to use.

Field separator Character, string or regular expression to separate fields.

Row separator String (ex: “\n”on Unix) to separate rows.

Specify .ctl file’s INTO
TABLE clause manually

Select this check box to enter manually the INTO TABLE
clause of the control file directly into the code.

Use schema’s Date
Pattern to load Date
field

Select this check box to use the date model indicated in
the schema for dates.

Specify field condition Select this check box to define a condition for loading data.

Preserve blanks Select this check box to preserve blank spaces.

Trailing null columns Select this check box to load data with all empty columns.

Load options Click + to add data loading options:

Parameter: select a loading parameter from the list.

Value: enter a value for the parameter selected.

NLS Language From the drop-down list, select the language for your data
if the data is not in Unicode.

Set Parameter
NLS_TERRITORY

Select this check box to modify the conventions used for
date and time formats. The default value is that of the
operating system.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Set Oracle Encoding
Type

Select this check box to type in the characterset next to the
Oracle Encoding Type field.

Output Select the type of output for the standard output of the
Oracle database:

to console,

to global variable.

Convert columns and
table names to
uppercase

Select this check box to put columns and table names in
upper case.

Bulk file parameters Set the parameters Buffer Size and StringBuilder Size for
a performance gain according to the memory size.

tStatCatcher Statistics Select this check box to gather the job processing metadata
at a job level as well as at each component level.

Usage This component is mainly used when no particular transformation is required on the
data to be loaded onto the database.

Limitation n/a

Related scenarios

For use cases in relation with tOracleOutputBulkExec, see the following scenarios:

Related scenarios

648 Talend Open Studio Components Reference Guide

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

• the section called “Scenario: Truncating and inserting file data into Oracle DB”.

tOracleRollback

Talend Open Studio Components Reference Guide 649

tOracleRollback

tOracleRollback properties

This component is closely related to tOracleCommit and tOracleConnection. It usually doesn’t make much
sense to use these components independently in a transaction.

Component family Databases

Function Cancel the transaction commit in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tOracleConnection component in the list if
more than one connection are planned for the current job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Oracle components, especially with
tOracleConnection and tOracleCommit components.

Limitation n/a

Related scenario

This component is closely related to tOracleConnection and tOracleCommit. It usually doesn’t make much
sense to use one of these without using a tOracleConnection component to open a connection for the current
transaction.

For tOracleRollback related scenario, see the section called “tMysqlRollback”

tOracleRow

650 Talend Open Studio Components Reference Guide

tOracleRow

tOracleRow properties

Component family Databases/Oracle

Function tOracleRow is the specific component for this database query. It executes the SQL
query stated onto the specified database. The row suffix means the component
implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tOracleRow acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tOracleConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Connection type Drop-down list of available drivers.

DB Version Select the Oracle version in use

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

tOracleRow properties

Talend Open Studio Components Reference Guide 651

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this checkbox if you want to query the
database using a PreparedStatement. In the Set
PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need
to execute the same query several times.
Performance levels are increased. You can also
use PreparedStatement to avoid SQL injection.
For a detailed scenario of utilizing this feature,
see the section called “Scenario 2: Using
PreparedStatement objects to query data”.

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Related scenarios

652 Talend Open Studio Components Reference Guide

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Related scenarios

For related topics, see:

• the section called “Scenario: Resetting a DB auto-increment”.

• the section called “Scenario 1: Removing and regenerating a MySQL table index”.

• the section called “Scenario 2: Using PreparedStatement objects to query data”.

tOracleSCD

Talend Open Studio Components Reference Guide 653

tOracleSCD

tOracleSCD belongs to two component families: Business Intelligence and Databases. For more information on
it, see the section called “tOracleSCD”.

tOracleSCDELT

654 Talend Open Studio Components Reference Guide

tOracleSCDELT

tOracleSCDELT belongs to two component families: Business Intelligence and Databases. For more information
on it, see the section called “tOracleSCDELT”.

tOracleSP

Talend Open Studio Components Reference Guide 655

tOracleSP

tOracleSP Properties

Component family Databases/Oracle

Function tOracleSP calls the database stored procedure.

Purpose tOracleSP offers a convenient way to centralize multiple or complex queries in a
database and call them easily.

Basic settings Use an existing
connection

Select this check box to use an established connection
from tOracleConnection. Once you select it, the
Component list field appears allowing you to choose
the tOracleConnection component to be used from those
already established on the studio workspace.

For more information on tOracleConnection, see the
section called “tOracleConnection”.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Connection type Drop-down list of available drivers.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

DB Version Select the Oracle version in use

Host Database server IP address

Port Listening port number of DB server.

tOracleSP Properties

656 Talend Open Studio Components Reference Guide

Database Name of the database

Schema Name of the schema.

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

SP Name Type in the exact name of the Stored Procedure (or
Function)

Is Function / Return
result in

Select this check box, if the stored procedure is a function
and one value only is to be returned.

Select on the list the schema column, the value to be
returned is based on.

Parameters Click the Plus button and select the various Schema
Columns that will be required by the procedures. Note
that the SP schema can hold more columns than there are
parameters used in the procedure.

Select the Type of parameter:

IN: Input parameter

OUT: Output parameter/return value

IN OUT: Input parameter is to be returned as value, likely
after modification through the procedure (function).

RECORDSET: Input parameters is to be returned as a set
of values, rather than single value.

Check the tPostgresqlCommit component if you
want to analyze a set of records from a database
table or DB query and return single records.

The Custom Type is used when a Schema Column you
want to use is user-defined. Two Custom Type columns
are available in the Parameters table. In the first Custom
Type column:

- Select the check box in the Custom Type column when
the corresponding Schema Column you want to use is of
user-defined type.

- If all listed Schema Columns in the Parameters table
are of custom type, you can select the check box before
Custom Type once for them all.

Select a database type from the DB Type list to map the
source database type to the target database type:

Scenario: Checking number format using a stored procedure

Talend Open Studio Components Reference Guide 657

- Auto-Mapping: Map the source database type to the
target database type automatically.(default)

- CLOB: Character large object

- BLOB: Binary large object

- DECIMAL: Decimal numeric object

- NUMERIC: Character 0 to 9

In the second Custom Type column, you can precise what
the custom type is. The type may be:

- STRUCT: used for one element.

- ARRAY: used for a collection of elements.

In the Custom name column, specify the name of the
custom type that you have given to this type.

When an OUT parameter uses the custom type,
make sure that its corresponding Schema Column
has chosen the Object type in the schema table.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

NLS Language In the list, select the language used for the data that are not
used in Unicode.

NLS Territory Select the conventions used for date and time formats. The
default value is that of the operating system.

tStatCatcher Statistics Select this check box to gather the job processing metadata
at a Job level as well as at each component level.

Usage This component is used as intermediary component. It can be used as start
component but only input parameters are thus allowed.

Limitation The Stored Procedures syntax should match the Database syntax.

When the parameters set in this component are of Custom Type, the tJava family
components should be placed before the component in order for users to define
values for the custom-type parameters, or after the component so as to read and
output the Out-type custom parameters.

Scenario: Checking number format using a stored
procedure

The following job aims at connecting to an Oracle Database containing Social Security Numbers and their holders’
name, calling a stored procedure that checks the SSN format of against a standard ###-##-#### format. Then the
verification output results, 1 for valid format and 0 for wrong format get displayed onto the execution console.

Scenario: Checking number format using a stored procedure

658 Talend Open Studio Components Reference Guide

• Drag and drop the following components from the Palette: tOracleConnection, tOracleInput, tOracleSP and
tLogRow.

• Link the tOracleConnection to the tOracleInput using a Then Run connection as no data is handled here.

• And connect the other components using a Row Main link as rows are to be passed on as parameter to the SP
component and to the console.

• In the tOracleConnection, define the details of connection to the relevant Database. You will then be able to
reuse this information in all other DB-related components.

• Then select the tOracleInput and define its properties.

• Select the Use an existing connection check box and select the tOracleConnection component in the list in
order to reuse the connection details that you already set.

• Select Repository as Property type as the Oracle schema is defined in the DB Oracle connection entry of the
Repository. If you haven’t recorded the Oracle DB details in the Repository, then fill in the Schema name
manually.

• Then select Repository as Schema, and retrieve the relevant schema corresponding to your Oracle DB table.

• In this example, the SSN table has a four-column schema that includes ID, NAME, CITY and SSNUMBER.

• In the Query field, type in the following Select query or select it in the list, if you stored it in the Repository.

select ID, NAME, CITY, SSNUMBER from SSN

• Then select the tOracleSP and define its Basic settings.

Scenario: Checking number format using a stored procedure

Talend Open Studio Components Reference Guide 659

• Like for the tOracleInput component, select Repository in the Property type field and select the Use an
existing connection check box, then select the relevant entries in the respective list.

• The schema used for the tOracleSP slightly differs from the input schema. Indeed, an extra column (SSN_Valid)
is added to the Input schema. This column will hold the format validity status (1 or 0) produced by the procedure.

• In the SP Name field, type in the exact name of the stored procedure (or function) as called in the Database.
In this use case, the stored procedure name is is_ssn.

• The basic function used in this particular example is as follows:

CREATE OR REPLACE FUNCTION is_ssn(string_in VARCHAR2)
RETURN PLS_INTEGER
IS
-- validating ###-##-#### format
BEGIN
 IF TRANSLATE(string_in, '0123456789A', 'AAAAAAAAAAB') =
 'AAA-AA-AAAA' THEN
 RETURN 1;
 END IF;
 RETURN 0;
END is_ssn;
/

• As a return value is expected in this use case, the procedure acts as a function, so select the Is function check box.

• The only return value expected is based on the ssn_valid column, hence select the relevant list entry.

• In the Parameters area, define the input and output parameters used in the procedure. In this use case, only the
SSNumber column from the schema is used in the procedure.

• Click the plus sign to add a line to the table and select the relevant column (SSNumber) and type (IN).

• Then select the tLogRow component and click Sync Column to make sure the schema is passed on from the
preceding tOracleSP component.

Scenario: Checking number format using a stored procedure

660 Talend Open Studio Components Reference Guide

• Select the Print values in cells of a table check box to facilitate the output reading.

• Then save your job and press F6 to run it.

On the console, you can read the output results. All input schema columns are displayed eventhough they are not
used as parameters in the stored procedure.

The final column shows the expected return value, i.e. whether the SS Number checked is valid or not.

Check the tPostgresqlCommit component if you want to analyze a set of records from a database table
or DB query and return single records.

tOracleTableList

Talend Open Studio Components Reference Guide 661

tOracleTableList

tOracleTableList properties

Component family Databases/Oracle

Function tOracleTableList iterates on a set of tables through a defined Oracle connection.

Purpose This component lists the names of specified Oracle tables using a SELECT
statement based on a WHERE clause.

Basic settings Component list Select the tOracleConnection component in the list if
more than one connection is planned for the current Job.

Where clause for table
name selection

Enter the WHERE clause that will be used to identify the
tables to iterate on.

Usage This component is to be used along with other Oracle components, especially with
tOracleConnection.

Limitation n/a

Related scenarios

For a tOracleTablerList related scenario, see the section called “Scenario: Iterating on DB tables and deleting
their content using a user-defined SQL template”.

tPostgresqlBulkExec

662 Talend Open Studio Components Reference Guide

tPostgresqlBulkExec

tPostgresqlBulkExec properties

tPostgresqlOutputBulk and tPostgresqlBulkExec components are used together to first output the file
that will be then used as parameter to execute the SQL query stated. These two steps compose the
tPostgresqlOutputBulkExec component, detailed in a separate section. The interest in having two separate
elements lies in the fact that it allows transformations to be carried out before the data loading in the database.

Component family Databases/Postgresql

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, tPostgresqlBulkExec offers gains in performance while
carrying out the Insert operations to a Postgresql database

Basic settings Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tPostgrresqlConnection component on the Component
list to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the schema.

tPostgresqlBulkExec properties

Talend Open Studio Components Reference Guide 663

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time and that the table must exist for
the insert operation to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create table: The table is removed and created
again.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does
not exist.

Clear table: The table content is deleted.

Truncate table: The table content is deleted. You don not
have the possibility to rollback the operation.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component.The schema is either Built-in or stored
remotely in the Repository

Advanced settings Action on data On the data of the table defined, you can perform:

Bulk Insert: Add multiple entries to the table. If duplicates
are found, job stops.

Bulk Update: Make simultaneous changes to multiple
entries.

Copy the OID for each
row

Retrieve the ID item for each row.

Contains a header line
with the names of each
column in the file

Specify that the table contains header.

File type Select the type of file being handled.

Null string String displayed to indicate that the value is null..

Fields terminated by Character, string or regular expression to separate fields.

Escape char Character of the row to be escaped.

Text enclosure Character used to enclose text.

Activate
standard_conforming_string

Activate the variable.

Force not null for
columns

Define the columns nullability

Force not null: Select the check box next to the column
you want to define as not null.

Related scenarios

664 Talend Open Studio Components Reference Guide

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with tPostgresqlOutputBulk component. Used
together, they can offer gains in performance while feeding a Postgresql database.

Limitation n/a

Related scenarios

For use cases in relation with tPostgresqlBulkExec, see the following scenarios:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

• the section called “Scenario: Truncating and inserting file data into Oracle DB”.

tPostgresqlCommit

Talend Open Studio Components Reference Guide 665

tPostgresqlCommit

tPostgresqlCommit Properties

This component is closely related to tPostgresqlCommit and tPostgresqlRollback. It usually does not make
much sense to use these components independently in a transaction.

Function Validates the data processed through the job into the connected DB

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the tPostgresqlConnection component in the list if
more than one connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection to
link tPostgresqlCommit to your Job, your data
will be commited row by row. In this case, do not
select the Close connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Postgresql components, especially with
tPostgresqlConnection and tPostgresqlRollback components.

Limitation n/a

Related scenario

This component is closely related to tPostgresqlConnection and tPostgresqlRollback. It usually does not make
much sense to use one of these without using a tPostgresqlConnection component to open a connection for the
current transaction.

For tPostgresqlCommit related scenario, see the section called “Scenario: Inserting data in mother/daughter
tables”.

tPostgresqlClose

666 Talend Open Studio Components Reference Guide

tPostgresqlClose

tPostgresqlClose properties

Component family Databases/Postgresql

Function tPostgresqlClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tPostgresqlConnection component in the list if
more than one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Postgresql components, especially with
tPostgresqlConnection and tPostgresqlCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.

tPostgresqlConnection

Talend Open Studio Components Reference Guide 667

tPostgresqlConnection

tPostgresqlConnection Properties

This component is closely related to tPostgresqlCommit and tPostgresqlRollback. It usually doesn’t make much
sense to use one of these without using a tPostgresqlConnection component to open a connection for the current
transaction.

Component family Databases/Postgresql

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Exact name of the schema

Username and
Password

DB user authentication data.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Usage This component is to be used along with Postgresql components, especially with
tPostgresqlCommit and tPostgresqlRollback components.

Limitation n/a

Related scenario

This component is closely related to tPostgresqlCommit and tPostgresqlRollback. It usually doesn’t make much
sense to use one of these without using a tPostgresqlConnection component to open a connection for the current
transaction.

For tPostgresqlConnection related scenario, see the section called “tMysqlConnection”

tPostgresqlInput

668 Talend Open Studio Components Reference Guide

tPostgresqlInput

tPostgresqlInput properties

Component family Databases/ PostgreSQL

Function tPostgresqlInput reads a database and extracts fields based on a query.

Purpose tPostgresqlInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box when using a configured
tPostgresqlConnection component.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

Related scenarios

Talend Open Studio Components Reference Guide 669

Database Name of the database

Schema Exact name of the schema.

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table name Name of the table to be read.

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Advanced settings Use cursor When selected, helps to decide the row set to work with at
a time and thus optimize performance.

Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers all possible SQL queries for Postgresql databases.

Limitation n/a

Related scenarios

For related scenarios, see:

• the section called “Scenario 1: Displaying selected data from DB table”.

• the section called “Scenario 2: Using StoreSQLQuery variable”.

• the section called “Scenario: Dynamic context use in MySQL DB insert”.

tPostgresqlOutput

670 Talend Open Studio Components Reference Guide

tPostgresqlOutput

tPostgresqlOutput properties

Component family Databases/Postgresql

Function tPostgresqlOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tPostgresqlOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding component
in the job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box when using a configured
tPostgresqlConnection component.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

tPostgresqlOutput properties

Talend Open Studio Components Reference Guide 671

Database Name of the database

Schema Exact name of the schema.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
already exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

tPostgresqlOutput properties

672 Talend Open Studio Components Reference Guide

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before
committing batches of rows together into the DB. This
option ensures transaction quality (but not rollback) and,
above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Enable debug mode Select this check box to display each step during
processing entries in a database.

Support null in “SQL
WHERE” statement

Select this check box if you want to deal with the Null
values contained in a DB table.

Ensure that the Nullable check box is selected for
the corresponding columns in the schema.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a Postgresql database. It also allows
you to create a reject flow using a Row > Rejects link to filter data in error. For an
example of tMySqlOutput in use, see the section called “Scenario 3: Retrieve data
in error with a Reject link”.

Limitation n/a

Related scenarios

Talend Open Studio Components Reference Guide 673

Related scenarios

For tPostgresqlOutput related topics, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”.

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tPostgresqlOutputBulk

674 Talend Open Studio Components Reference Guide

tPostgresqlOutputBulk

tPostgresqlOutputBulk properties

The tPostgresqlOutputBulk and tPostgresqlBulkExec components are generally used together as part of a two
step process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in the tPostgresqlOutputBulkExec component,
detailed in a separate section. The advantage of having two separate steps is that it makes it possible to transform
data before it is loaded in the database.

Component family Databases/Postgresql

Function Writes a file with columns based on the defined delimiter and the Postgresql
standards

Purpose Prepares the file to be used as parameters in the INSERT query to feed the
Postgresql database.

Basic settings Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are
completed automatically using the data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end
of the file

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend
Open Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and job designs. Related topic: see Talend Open Studio
User Guide.

Advanced settings Row separator String (ex: “\n”on Unix) to distinguish rows.

Field separator Character, string or regular expression to separate
fields.

Include header Select this check box to include the column header to
the file.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

tStatCatcher Statistics Select this check box to collect log data at the
component level.

Related scenarios

Talend Open Studio Components Reference Guide 675

Usage This component is to be used along with tPostgresqlBulkExec component. Used
together they offer gains in performance while feeding a Postgresql database.

Related scenarios

For use cases in relation with tPostgresqlOutputBulk, see the following scenarios:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

• the section called “Scenario: Truncating and inserting file data into Oracle DB”.

tPostgresqlOutputBulkExec

676 Talend Open Studio Components Reference Guide

tPostgresqlOutputBulkExec

tPostgresqlOutputBulkExec properties

The tPostgresqlOutputBulk and tPostgresqlBulkExec components are generally used together as part of a two
step process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in the tPostgresqlOutputBulkExec component.

Component family Databases/Postgresql

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert operations
to a Postgresql database.

Basic settings Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Name of the schema.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time and that the table must exist for
the insert operation to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
already exists and created again.

Clear a table: The table content is deleted.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide

Related scenarios

Talend Open Studio Components Reference Guide 677

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and
job designs. Related topic: see Talend Open Studio User
Guide.

Advanced settings Action on data On the data of the table defined, you can perform:

Bulk Insert: Add multiple entries to the table. If duplicates
are found, job stops.

Bulk Update: Make simultaneous changes to multiple
entries.

Copy the OID for each
row

Retrieve the ID item for each row.

Contains a header line
with the names of each
column in the file

Specify that the table contains header.

Encoding Select the encoding from the list or select CUSTOM and
define it manually. This field is compulsory for DB data
handling.

File type Select the type of file being handled.

Null string String displayed to indicate that the value is null..

Row separator String (ex: “\n”on Unix) to distinguish rows.

Fields terminated by Character, string or regular expression to separate fields.

Escape char Character of the row to be escaped.

Text enclosure Character used to enclose text.

Activate
standard_conforming_string

Activate the variable.

Force not null for
columns

Define the columns nullability

Force not null:: Select the check box next to the column
you want to define as not null.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is mainly used when no particular tranformation is required on the
data to be loaded onto the database.

Related scenarios

For use cases in relation with tPostgresqlOutputBulkExec, see the following scenarios:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

Related scenarios

678 Talend Open Studio Components Reference Guide

• the section called “Scenario: Truncating and inserting file data into Oracle DB”.

tPostgresqlRollback

Talend Open Studio Components Reference Guide 679

tPostgresqlRollback

tPostgresqlRollback properties

This component is closely related to tPostgresqlCommit and tPostgresqlConnection. It usually does not make
much sense to use these components independently in a transaction.

Component family Databases

Function Cancel the transaction commit in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tPostgresqlConnection component in the list if
more than one connection are planned for the current Job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Postgresql components, especially with
tPostgresqlConnection and tPostgresqlCommit components.

Limitation n/a

Related scenario

This component is closely related to tPostgresqlConnection and tPostgresqlCommit. It usually does not make
much sense to use one of them without using a tPostgresqlConnection component to open a connection for the
current transaction.

For tPostgresqlRollback related scenario, see the section called “tMysqlRollback”

tPostgresqlRow

680 Talend Open Studio Components Reference Guide

tPostgresqlRow

tPostgresqlRow properties

Component family Databases/Postgresql

Function tPostgresqlRow is the specific component for the database query. It executes the
SQL query stated onto the specified database. The row suffix means the component
implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tPostgresqlRow acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write easily your SQL statements.

Basic settings Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tPostgresqlConnection component on the Component
list to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Name of the schema.

Username and
Password

DB user authentication data.

tPostgresqlRow properties

Talend Open Studio Components Reference Guide 681

Schema using CDC and
Edit Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type Either Built-in or Repository

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this checkbox if you want to query the
database using a PreparedStatement. In the Set
PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all possible
SQL queries.

Related scenarios

682 Talend Open Studio Components Reference Guide

Related scenarios

For related topics, see:

• the section called “Scenario: Resetting a DB auto-increment”.

• the section called “Scenario 1: Removing and regenerating a MySQL table index”.

tPostgresqlSCD

Talend Open Studio Components Reference Guide 683

tPostgresqlSCD

tPostgresqlSCD belongs to two component families: Business Intelligence and Databases. For more information
on it, see the section called “tPostgresqlSCD”.

tPostgresqlSCDELT

684 Talend Open Studio Components Reference Guide

tPostgresqlSCDELT

tPostgresqlSCDELT belongs to two component families: Business Intelligence and Databases. For more
information on it, see the section called “tPostgresqlSCDELT”.

tSybaseBulkExec

Talend Open Studio Components Reference Guide 685

tSybaseBulkExec

tSybaseBulkExec Properties

The tSybaseOutputBulk and tSybaseBulkExec components are generally used together as parts of a two step
process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in the tSybaseOutputBulkExec component, detailed
in a separate section. The advantage of using two separate components is that the data can be transformed before
it is loaded in the database.

Component family Databases

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert operations
to a Sybase database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tSybaseConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Server Database server IP address

Port Listening port number of DB server.

Database Database name

tSybaseBulkExec Properties

686 Talend Open Studio Components Reference Guide

Username and
Password

DB user authentication data.

Bcp Utility Name of the utility to be used to copy data over to the
Sybase server.

Server IP address of the database server for the Bcp utility
connection.

Batch size Number of lines in each processed batch.

Table Name of the table to be written. Note that only one table
can be written at a time and that the table must exist for
the insert operation to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Clear a table: The table content is deleted.

Truncate table: The table content is deleted. You do not
have the possibility to rollback the operation.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: You have already created and stored the
schema in the Repository, hence can be reused. Related
topic: see Talend Open Studio User Guide.

Advanced settings Use an interface file Select this check box to specify an interface file in the field
Interface file.

Additional JDBC
parameters

Specify additional connection properties in the existing
DB connection, to allow specific character set support.
E.G.: CHARSET=KANJISJIS_OS to get support of
Japanese characters.

Action on data On the data of the table defined, you can perform:

Bulk Insert: Add multiple entries to the table. If duplicates
are found, Job stops.

Bulk Update: Make simultaneous changes to multiple
entries.

Field Terminator Character, string or regular expression to separate fields.

Related scenarios

Talend Open Studio Components Reference Guide 687

With the row/field separators compliant with the
Sybase syntax, this component allows for the use
of Sybase-orientated characters, such as \x09.

Row Terminator String (ex: “\n” in Unix) to separate lines.

Head row Number of head lines to be ignored in the beginning of a
file.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Output Select the type of output for the standard output of the
Sybase database:

to console,

to global variable.

tStataCatcher statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage This component is mainly used when no particular transformation is required on the
data to be loaded onto the database.

Limitation As opposed to the Oracle dedicated bulk component, no action on data is possible
using this Sybase dedicated component.

Related scenarios

For tSybaseBulkExec related topics, see:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Truncating and inserting file data into Oracle DB”.

tSybaseClose

688 Talend Open Studio Components Reference Guide

tSybaseClose

tSybaseClose properties

Function tSybaseClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tSybaseConnection component in the list if
more than one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Sybase components, especially with
tSybaseConnection and tSybaseCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.

tSybaseCommit

Talend Open Studio Components Reference Guide 689

tSybaseCommit

tSybaseCommit Properties

This component is closely related to tSybaseConnection and tSybaseRollback. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/Sybase

Function tSybaseCommit validates the data processed through the Job into the connected DB

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the tSybaseConnection component in the list if
more than one connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection to
link tSybaseCommit to your Job, your data will
be commited row by row. In this case, do not
select the Close connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Sybase components, especially with
tSybaseConnection and tSybaseRollback.

Limitation n/a

Related scenario

This component is closely related to tSybaseConnection and tSybaseRollback. It usually does not make much
sense to use one of these without using a tSybaseConnection component to open a connection for the current
transaction.

For tSybaseCommit related scenario, see the section called “Scenario: Inserting data in mother/daughter tables”.

tSybaseConnection

690 Talend Open Studio Components Reference Guide

tSybaseConnection

tSybaseConnection Properties

This component is closely related to tSybaseCommit and tSybaseRollback. It usually does not make much sense
to use one of these without using a tSybaseConnection component to open a connection for the current transaction.

Component family Databases/Sybase

Function tSybaseConnection opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database.

Username and
Password

DB user authentication data.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Usage This component is to be used along with Sybase components, especially with
tSybaseCommit and tSybaseRollback.

Limitation n/a

Related scenarios

For a tSybaseConnection related scenario, see the section called “Scenario: Inserting data in mother/daughter
tables”.

tSybaseInput

Talend Open Studio Components Reference Guide 691

tSybaseInput

tSybaseInput Properties

Component family Databases/Sybase

Function tSybaseInput reads a database and extracts fields based on a query.

Purpose tSybaseInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box and click the relevant
tSybaseConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Server Database server IP address

Related scenarios

692 Talend Open Studio Components Reference Guide

Port Listening port number of DB server.

Database Name of the database

Sybase Schema Exact name of the Sybase schema.

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table Name Name of the table to read.

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers all possible SQL queries for Sybase databases.

Limitation n/a

Related scenarios

For related topics, see:

• the section called “Scenario 1: Displaying selected data from DB table”.

• the section called “Scenario 2: Using StoreSQLQuery variable”.

• the section called “Scenario: Dynamic context use in MySQL DB insert”.

tSybaseIQBulkExec

Talend Open Studio Components Reference Guide 693

tSybaseIQBulkExec

tSybaseIQBulkExec Properties

Component family Databases/Sybase IQ

Function tSybaseIQBulkExec uploads a bulk file in a Sybase IQ database.

Purpose As a dedicated component, it allows gains in performance during Insert operations
to a Sybase IQ database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

DB Version The available Sybase versions are:

- Sybase IQ 12;

- Sybase IQ 15.

The Sybase IQ 15 version is connected to via
ODBC while the Sybase IQ 12 version is via
JDBC, so the fields to be completed on the
Basic settings view vary slightly between the
alternative versions.

Use an existing
connection

Sybase IQ 12
only.

Select this check box and click the relevant
tSybaseConnection component on the Component List
to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information

tSybaseIQBulkExec Properties

694 Talend Open Studio Components Reference Guide

about Dynamic settings, see your studio user
guide.

Host

Sybase IQ 12
only.

Database server IP address

Port

Sybase IQ 12
only.

Listening port number of DB server.

Data Source

Sybase IQ 15
only.

Select the type of the data source to be used and complete
the corresponding DSN information in the field alongside.
The available types are:

- DSN;

- FILEDSN.

When the FILEDSN type is used, a three-dot button
appears next to the Data Source field to allow you to
browse to the data source file of interest.

Database Database name

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time and that the table must exist for
the insert operation to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create table: The table is removed and created
again.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does
not exist.

Clear table: The table content is deleted.

Truncate table: The table content is deleted. You do not
have the possibility to rollback the operation.

Local filename Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Related scenarios

Talend Open Studio Components Reference Guide 695

Repository: You have already created and stored the
schema in the Repository, hence can be reused. Related
topic: see Talend Open Studio User Guide.

Advanced settings Additional JDBC
Parameters

Specify additional connection properties in the existing
DB connection, to allow specific character set support.

Lines terminated by Character or sequence of characters used to separate lines.

Field Terminated by Character, string or regular expression to separate fields.

With the row/field separators compliant with the
Sybase syntax, this component allows the use of
Sybase-oriented separators, such as \x09.

Use enclosed quotes Select this check box to use data enclosure characters.

Use fixed length Select this check box to set a fixed width for data lines.

tStatCatcher Statistics Select this check box to gather the job processing metadata
at a job level as well as at each component level.

Usage This dedicated component offers performance and flexibility of Sybase IQ DB query
handling.

Limitation As opposed to the Oracle dedicated bulk component, no action on data is possible
using this Sybase dedicated component.

Related scenarios

For tSybaseIQBulkExec related topics, see:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Truncating and inserting file data into Oracle DB”.

tSybaseIQOutputBulkExec

696 Talend Open Studio Components Reference Guide

tSybaseIQOutputBulkExec

tSybaseIQOutputBulkExec properties

Component family Databases/Sybase IQ

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert operations to a
Sybase IQ database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

DB Version The available Sybase versions are:

- Sybase IQ 12;

- Sybase IQ 15.

The Sybase IQ 15 version is connected to via
ODBC while the Sybase IQ 12 version is via
JDBC, so the fields to be completed on the
Basic settings view vary slightly between the
alternative versions.

Use an existing connection

Sybase IQ 12 only.

Select this check box and click the relevant
tSybaseConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information

tSybaseIQOutputBulkExec properties

Talend Open Studio Components Reference Guide 697

about Dynamic settings, see your studio user
guide.

Host

Sybase IQ 12 only.

Database server IP address.

Port

Sybase IQ 12 only.

Listening port number of DB server.

Data Source

Sybase IQ 15 only.

Select the type of the data source to be used and complete
the corresponding DSN information in the field alongside.
The available types are:

- DSN;

- FILEDSN.

When the FILEDSN type is used, a three-dot button
appears next to the Data Source field to allow you to
browse to the data source file of interest.

Database Name of the database

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time and that the table must exist for
the insert operation to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and
created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Clear a table: The table content is deleted.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append the file select this check box to add the new rows at the end of the
records.

Schema and Edit Schema A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: You have already created and stored the
schema in the Repository, hence can be reused. Related
topic: see Talend Open Studio User Guide.

Related scenarios

698 Talend Open Studio Components Reference Guide

Advanced settings Additional JDBC
Parameters

Specify additional connection properties in the existing
DB connection, to allow specific character set support.

Fields terminated by Character, string or regular expression to separate fields.

As a combination of tSybaseOutputBulk and
tSybaseIQBulkExec, this component does not
allow the use of Sybase-oriented row/field
separators, such as \x09. To achieve the
desired effect (for example, displaying fields
in the tabular form), you need to use
tSybaseOutputBulk and tSybaseIQBulkExec
together to replace tSybaseIQOutputBulkExec,
with \t used in the former component and \x09
used in the latter.

Lines terminated by Character or sequence of characters used to separate lines.

Use enclose quotes Select this check box to use data enclosure characters.

Include Head Select this heck box to include the column header.

Encoding Select the encoding type from the list or select Custom
and define it manually. This field is compulsory for DB
data handling.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is mainly used when no particular transformation is required on the data
to be loaded onto the database.

Limitation n/a

Related scenarios

For use cases in relation with tSybaseIQOutputBulkExec, see the following scenarios:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

• the section called “Scenario: Truncating and inserting file data into Oracle DB”.

tSybaseOutput

Talend Open Studio Components Reference Guide 699

tSybaseOutput

tSybaseOutput Properties

Component family Databases/Sybase

Function tSybaseOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tSybaseOutput executes the action defined on the table and/or on the data contained
in the table, based on the flow incoming from the preceding component in the job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tSybaseConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Server Database server IP address

Port Listening port number of DB server.

tSybaseOutput Properties

700 Talend Open Studio Components Reference Guide

Database Name of the database

Sybase Schema Exact name of the Sybase schema.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

Default: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Truncate table: The table content is deleted. You do not
have the possibility to rollback the operation.

Turn on identity insert Select this check box to use your own sequence for the
identity value of the inserted records (instead of having the
SQL Server pick the next sequential value).

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

tSybaseOutput Properties

Talend Open Studio Components Reference Guide 701

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before
committing batches of rows together into the DB. This
option ensures transaction quality (but not rollback) and,
above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Enable debug mode Select this check box to display each step during
processing entries in a database.

Use batch size Select this check box to activate the batch mode for data
processing. In the Batch Size field that appears when this
check box is selected, you can type in the number you need
to define the batch size to be processed.

This check box is available only when you have
selected the Insert, the Update or the Delete
option in the Action on data field.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a Sybase database. It also allows you to

Related scenarios

702 Talend Open Studio Components Reference Guide

create a reject flow using a Row > Rejects link to filter data in error. For an example
of tMySqlOutput in use, see the section called “Scenario 3: Retrieve data in error
with a Reject link”.

Limitation n/a

Related scenarios

For use cases in relation with tSybaseOutput, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”.

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tSybaseOutputBulk

Talend Open Studio Components Reference Guide 703

tSybaseOutputBulk

tSybaseOutputBulk properties

The tSybaseOutputBulk and tSybaseBulkExec components are generally used together as parts of a two step
process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in the tSybaseOutputBulkExec component, detailed
in a separate section. The advantage of using two separate components is that the data can be transformed before
it is loaded in the database.

Component family Databases/Sybase

Function Writes a file with columns based on the defined delimiter and the Sybase
standards

Purpose Prepares the file to be used as parameter in the INSERT query to feed the Sybase
database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are
completed automatically using the data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end of
the file.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: You create and store the schema locally for
this component only. Related topic: see Talend Open
Studio User Guide.

Repository: You have already created and stored the
schema in the Repository, hence can be reused in
various projects and job designs. Related topic: see
Talend Open Studio User Guide.

Advanced settings Row separator String (ex: “\n”on Unix) to distinguish rows.

Field separator Character, string or regular expression to separate
fields.

Fully in line with the Java syntax, this
component does not allow the use of Sybase-
orientated row/field separators, such as \x09.

Include header Select this check box to include the column header in
the file.

Related scenarios

704 Talend Open Studio Components Reference Guide

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

tStatCatcher Statistics Select this check box to collect log data at the
component level

Usage This component is to be used along with tSybaseBulkExec component. Used
together they offer gains in performance while feeding a Sybase database.

Related scenarios

For use cases in relation with tSybaseOutputBulk, see the following scenarios:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

• the section called “Scenario: Truncating and inserting file data into Oracle DB”.

tSybaseOutputBulkExec

Talend Open Studio Components Reference Guide 705

tSybaseOutputBulkExec

tSybaseOutputBulkExec properties

The tSybaseOutputBulk and tSybaseBulkExec components are generally used together as parts of a two step
process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in the tSybaseOutputBulkExec component.

Component family Databases/Sybase

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert operations
to a Sybase database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tSybaseConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Server Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

tSybaseOutputBulkExec properties

706 Talend Open Studio Components Reference Guide

Bcp utility Name of the utility to be used to copy data over to the
Sybase server.

Batch row number Number of lines in each processed batch.

Table Name of the table to be written. Note that only one table
can be written at a time and that the table must exist for
the insert operation to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Clear a table: The table content is deleted.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end of
the records.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: You have already created and stored the
schema in the Repository, hence can be reused. Related
topic: see Talend Open Studio User Guide.

Advanced settings Use an interface file Select this check box to specify an interface file in the field
Interface file.

Additional JDBC
parameters

Specify additional connection properties in the existing
DB connection, to allow specific character set support.
E.G.: CHARSET=KANJISJIS_OS to get support of
Japanese characters.

Action on data On the data of the table defined, you can perform:

Bulk Insert: Add multiple entries to the table. If duplicates
are found, job stops.

Bulk Update: Make simultaneous changes to multiple
entries.

Field terminator Character, string or regular expression to separate fields.

As a combination of tSybaseOutputBulk and
tSybaseBulkExec, this component does not allow
the use of Sybase-oriented row/field separators,
such as \x09. To achieve the desired effect

Related scenarios

Talend Open Studio Components Reference Guide 707

(for example, displaying fields in the tabular
form), you need to use tSybaseOutputBulk
and tSybaseBulkExec together to replace
tSybaseOutputBulkExec, with \t used in the
former component and \x09 used in the latter.

DB Row terminator String (ex: “\n”on Unix) to distinguish rows in the DB.

First row NO. of file Type in the number of the file row where the action should
start at.

FILE Row terminator Character, string or regular expression to separate fields
in a file.

Include Head Select this heck box to include the column header.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Output Select the type of output for the standard output of the
Sybase database:

to console,

to global variable.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is mainly used when no particular transformation is required on the
data to be loaded onto the database.

Limitation n/a

Related scenarios

For use cases in relation with tSybaseOutputBulkExec, see the following scenarios:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

• the section called “Scenario: Truncating and inserting file data into Oracle DB”.

tSybaseRollback

708 Talend Open Studio Components Reference Guide

tSybaseRollback

tSybaseRollback properties

This component is closely related to tSybaseCommit and tSybaseConnection. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/Sybase

Function tSybaseRollback cancels the transaction committed in the connected DB.

Purpose This component avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tSybaseConnection component in the list if
more than one connection are planned for the current job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Sybase components, especially with
tSybaseConnection and tSybaseCommit.

Limitation n/a

Related scenarios

For tSybaseRollback related scenario, see the section called “Scenario: Rollback from inserting data in mother/
daughter tables”.

tSybaseRow

Talend Open Studio Components Reference Guide 709

tSybaseRow

tSybaseRow Properties

Component family Databases/Sybase

Function tSybaseRow is the specific component for this database query. It executes the SQL
query stated onto the specified database. The row suffix means the component
implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tSybaseRow acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tSybaseConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Server Database server IP address

Port Listening port number of DB server.

Database Name of the database

Sybase Schema Exact name of the sybase schema.

Username and
Password

DB user authentication data.

tSybaseRow Properties

710 Talend Open Studio Components Reference Guide

Table Name Name of the table to be processed.

Turn on identity insert Select this check box to use your own sequence for the
identity value of the inserted records (instead of having the
SQL Server pick the next sequential value).

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this checkbox if you want to query the
database using a PreparedStatement. In the Set
PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Related scenarios

Talend Open Studio Components Reference Guide 711

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Limitation n/a

Related scenarios

For tSybaseRow related topics, see:

• the section called “Scenario: Resetting a DB auto-increment”.

• the section called “Scenario 1: Removing and regenerating a MySQL table index”.

tSybaseSCD

712 Talend Open Studio Components Reference Guide

tSybaseSCD

tSybaseSCD belongs to two component families: Business Intelligence and Databases. For more information on
it, see the section called “tSybaseSCD”.

tSybaseSCDELT

Talend Open Studio Components Reference Guide 713

tSybaseSCDELT

tSybaseSCDELT belongs to two component families: Business Intelligence and Databases. For more information
on it, see the section called “tSybaseSCDELT”.

tSybaseSP

714 Talend Open Studio Components Reference Guide

tSybaseSP

tSybaseSP properties

Component family Databases/Sybase

Function tSybaseSP calls the database stored procedure.

Purpose tSybaseSP offers a convenient way to centralize multiple or complex queries in a
database and call them easily.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tSybaseConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Related scenarios

Talend Open Studio Components Reference Guide 715

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

SP Name Type in the exact name of the Stored Procedure

Is Function / Return
result in

Select this check box, if a value is to be returned.

Select on the list the schema column, the value to be
returned is based on.

Timeout Interval Maximum waiting time for the results of the stored
procedure.

Parameters Click the Plus button and select the various Schema
Columns that will be required by the procedures. Note
that the SP schema can hold more columns than there are
parameters used in the procedure.

Select the Type of parameter:

IN: Input parameter

OUT: Output parameter/return value

IN OUT: Input parameters is to be returned as value, likely
after modification through the procedure (function).

RECORDSET: Input parameters is to be returned as a set
of values, rather than single value.

Check the tPostgresqlCommit component if you
want to analyze a set of records from a database
table or DB query and return single records.

Advanced settings Use Multiple SELECT
Procedure

Select this check box to use procedures which contain
multiple SELECT statements.

tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage This component is used as intermediary component. It can be used as start
component but only input parameters are thus allowed.

Limitation The Stored Procedures syntax should match the Database syntax.

Related scenarios

For related topic, see the section called “Scenario: Finding a State Label using a stored procedure”.

Check the section called “tMysqlConnection” as well if you want to analyze a set of records from a database table
or DB query and return single records.

Talend Open Studio Components Reference Guide

Talend Open Studio Components Reference Guide

Databases - appliance/datawarehouse
components
This chapter describes connectors for specific databases oriented to the processing of large volume of data.
These connectors cover various needs, including: opening connections, reading and writing tables, committing
transactions as a whole, and performing rollback for error handling. These components can be found in the
Databases family in the Palette of Talend Open Studio.

Other types of database connectors, such as connectors for traditional databases and database management, are
documented in Databases - traditional components and Databases - other components.

tGreenplumBulkExec

718 Talend Open Studio Components Reference Guide

tGreenplumBulkExec

tGreenplumBulkExec Properties

The tGreenplumOutputBulk and tGreenplumBulkExec components are used together in a two step process.
In the first step, an output file is generated. In the second step, this file is used in the INSERT statement used to
feed a database. These two steps are fused together in the tGreenplumOutputBulkExec component, detailed in
a separate section. The advantage using a two step process is that it makes it possible to transform data before
it is loaded in the database.

Component Family Databases/Greenplum

Function tGreenplumBulkExec performs an Insert action on the data.

Purpose tGreenplumBulkExec is a component which is specifically designed to improve
performance when loading data in ParAccel database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box if you use a configured
tGreenplumConnection.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Exact name of the schema.

tGreenplumBulkExec Properties

Talend Open Studio Components Reference Guide 719

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Filename Path and name of the file to be processed.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Advanced settings Action on data Select the operation you want to perform:

Bulk insert Bulk update The details asked will be
different according to the action chosen.

Copy the OID for each
row

Retrieve the ID item for each row.

Contains a header line
with the names of each
column in the file

Specify that the table contains header.

File type Select the file type to process.

Null string String displayed to indicate that the value is null.

Fields terminated by Character, string or regular expression to separate fields.

Escape char Character of the row to be escaped

Text enclosure Character used to enclose text.

Force not null for
columns

Define the columns nullability

Force not null:: Select the check box next to the column
you want to define as not null.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Related scenarios

720 Talend Open Studio Components Reference Guide

Usage This component is generally used with a tGreenplumOutputBulk component.
Used together they offer gains in performance while feeding a Greenplum database.

Related scenarios

For more information about tGreenplumBulkExec, see:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

• the section called “Scenario: Truncating and inserting file data into Oracle DB”.

tGreenplumClose

Talend Open Studio Components Reference Guide 721

tGreenplumClose

tGreenplumClose properties

Component family Databases/Greenplum

Function tGreenplumClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tGreenplumConnection component in the list
if more than one connection are planned for the current
Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Greenplum components, especially with
tGreenplumConnection and tGreenplumCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.

tGreenplumCommit

722 Talend Open Studio Components Reference Guide

tGreenplumCommit

tGreenplumCommit Properties

This component is closely related to tGreenplumConnection and tGreenplumRollback. It usually doesn’t make
much sense to use these components independently in a transaction.

Component family Databases/Greenplum

Function Validates the data processed through the Job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the tGreenplumConnection component in the list
if more than one connection are planned for the current
Job.

Close Connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection to
link tGreenplumCommit to your Job, your data
will be commited row by row. In this case, do not
select the Close connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Greenplum components, especially with
tGreenplumConnection and tGreenplumRollback components.

Limitation n/a

Related scenario

This component is closely related to tGreenplumConnection and tGreenplumRollback. It usually doesn’t make
much sense to use one of these without using a tGreenplumConnection component to open a connection for the
current transaction.

For tGreenplumCommit related scenario, see the section called “tMysqlConnection”

tGreenplumConnection

Talend Open Studio Components Reference Guide 723

tGreenplumConnection

tGreenplumConnection properties

This component is closely related to tGreenplumCommit and tGreenplumRollback. It usually does not make
much sense to use one of these without using a tGreenplumConnection to open a connection for the current
transaction.

Component family Databases/Greenplum

Function tGreenplumConnection opens a connection to the database for a current
transaction.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Exact name of the schema.

Username and
Password

DB user authentication data.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Advanced settings Auto commit Select this check box to automatically commit a
transaction when it is completed.

tStatCatcher Statistics Select this check box to gather the job processing metadata
at a Job level as well as at each component level.

Usage This component is to be used along with Greenplum components, especially with
tGreenplumCommit and tGreenplumRollback.

Limitation n/a

Related scenarios

724 Talend Open Studio Components Reference Guide

Related scenarios

This component is closely related to tGreenplumCommit and tGreenplumRollback. It usually does not make
much sense to use one of these without using a tGreenplumConnection component to open a connection for the
current transaction.

For tGreenplumConnection related scenario, see the section called “tMysqlConnection”

tGreenplumGPLoad

Talend Open Studio Components Reference Guide 725

tGreenplumGPLoad

This component invokes Greenplum's gpload utility to insert records into a Greenplum database. This component
can be used either in standalone mode, loading from an existing data file, or connected to an input flow to load
data from the connected component.

tGreenplumGPLoad properties

Component family Databases/Greenplum

Function tGreenplumGPLoad inserts data into a Greenplum database table using
Greenplum's gpload utility.

Purpose This component is used to bulk load data into a Greenplum table either from an
existing data file, an input flow, or directly from a data flow in streaming mode
through a named-pipe.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address.

Port Listening port number of the DB server.

Database Name of the Greenplum database.

Schema Exact name of the schema.

Username and
Password

DB user authentication data.

Table Name of the table into which the data is to be inserted.

Action on table On the table defined, you can perform one of the following
operations before loading the data:

None: No operation is carried out.

Clear table: The table content is deleted before the data
is loaded.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does
not exist.

Drop and create table: The table is removed and created
again.

Drop table if exists and create: The table is removed if
it already exists and created again.

Truncate table: The table content is deleted. You do not
have the possibility to rollback the operation.

Action on data On the data of the table defined, you can perform:

tGreenplumGPLoad properties

726 Talend Open Studio Components Reference Guide

Insert: Add new entries to the table. If duplicates are
found, Job stops.

Update: Make changes to existing entries.

Merge: Updates or adds data to the table.

It is necessary to specify at least one column
as a primary key on which the Update and
Merge operations are based. You can do that
by clicking Edit Schema and selecting the check
box(es) next to the column(s) you want to set
as primary key(s). To define the Update/Merge
options, select in the Match Column column the
check boxes corresponding to the column names
that you want to use as a base for the Update
and Merge operations, and select in the Update
Column column the check boxes corresponding
to the column names that you want to update. To
define the Update condition, type in the condition
that will be used to update the data.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Data file Full path to the data file to be used. If this component is
used in standalone mode, this is the name of an existing
data file to be loaded into the database. If this component
is connected with an input flow, this is the name of the file
to be generated and written with the incoming data to later
be used with gpload to load into the database. This field is
hidden when the Use named-pipe check box is selected.

Use named-pipe Select this check box to use a named-pipe. This option is
only applicable when the component is connected with an
input flow. When this check box is selected, no data file
is generated and the data is transferred to gpload through
a named-pipe. This option greatly improves performance
in both Linux and Windows.

This component on named-pipe mode uses a JNI
interface to create and write to a named-pipe on
any Windows platform. Therefore the path to the
associated JNI DLL must be configured inside the
java library path. The component comes with two
DLLs for both 32 and 64 bit operating systems
that are automatically provided in the Studio with
the component.

Named-pipe name Specify a name for the named-pipe to be used. Ensure that
the name entered is valid.

tGreenplumGPLoad properties

Talend Open Studio Components Reference Guide 727

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Use existing control file
(YAML formatted)

Select this check box to provide a control file to be
used with the gpload utility instead of specifying all the
options explicitly in the component. When this check box
is selected, Data file and the other gpload related options
no longer apply. Refer to Greenplum's gpload manual for
details on creating a control file.

Control file Enter the path to the control file to be used, between double
quotation marks, or click [...] and browse to the control
file. This option is passed on to the gpload utility via the
-f argument.

CSV mode Select this check box to include CSV specific parameters
such as Escape char and Text enclosure.

Field separator Character, string, or regular expression used to separate
fields.

This is gpload's delim argument. The default
value is |. To improve performance, use the
default value.

Escape char Character of the row to be escaped.

Text enclosure Character used to enclose text.

Header (skips the first
row of data file)

Select this check box to skip the first row of the data file.

Additional options Set the gpload arguments in the corresponding table. Click
[+] as many times as required to add arguments to the
table. Click the Parameter field and choose among the
arguments from the list. Then click the corresponding
Value field and enter a value between quotation marks.

LOCAL_HOSTNAME: The host name or IP address
of the local machine on which gpload is running. If this
machine is configured with multiple network interface
cards (NICs), you can specify the host name or IP of each
individual NIC to allow network traffic to use all NICs
simultaneously. By default, the local machine’s primary
host name or IP is used.

PORT (gpfdist port): The specific port number that the
gpfdist file distribution program should use. You can also
specify a PORT_RANGE to select an available port from
the specified range. If both PORT and PORT_RANGE
are defined, then PORT takes precedence. If neither
PORT or PORT_RANGE is defined, an available port
between 8000 and 9000 is selected by default. If multiple
host names are declared in LOCAL_HOSTNAME, this
port number is used for all hosts. This configuration is
desired if you want to use all NICs to load the same file or
set of files in a given directory location.

PORT_RANGE: Can be used instead of PORT (gpfdist
port) to specify a range of port numbers from which
gpload can choose an available port for this instance of the
gpfdist file distribution program.

Related scenario

728 Talend Open Studio Components Reference Guide

NULL_AS: The string that represents a null value. The
default is \N (backslash-N) in TEXT mode, and an empty
value with no quotation marks in CSV mode. Any source
data item that matches this string will be considered a null
value.

FORCE_NOT_NULL: In CSV mode, processes each
specified column as though it were quoted and hence not
a NULL value. For the default null string in CSV mode
(nothing between two delimiters), this causes missing
values to be evaluated as zero-length strings.

ERROR_LIMIT (2 or higher): Enables single row error
isolation mode for this load operation. When enabled and
the error limit count is not reached on any Greenplum
segment instance during input processing, all good rows
will be loaded and input rows that have format errors
will be discarded or logged to the table specified in
ERROR_TABLE if available. When the error limit is
reached, input rows that have format errors will cause the
load operation to abort. Note that single row error isolation
only applies to data rows with format errors, for example,
extra or missing attributes, attributes of a wrong data type,
or invalid client encoding sequences. Constraint errors,
such as primary key violations, will still cause the load
operation to abort if encountered. When this option is not
enabled, the load operation will abort on the first error
encountered.

ERROR_TABLE: When ERROR_LIMIT is declared,
specifies an error table where rows with formatting errors
will be logged when running in single row error isolation
mode. You can then examine this error table to see error
rows that were not loaded (if any).

Log file Browse to or enter the access path to the log file in your
directory.

Encoding Define the encoding type manually in the field.

Specify gpload path Select this check box to specify the full path to the gpload
executable. You must check this option if the gpload path
is not specified in the PATH environment variable.

Full path to gpload
executable

Full path to the gpload executable on the machine in use.
It is advisable to specify the gpload path in the PATH
environment variable instead of selecting this option.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is mainly used when no particular transformation is required on the
data to be loaded on to the database.

This component can be used as a standalone or an output component.

Limitation n/a

Related scenario

For a related use case, see the section called “Scenario: Inserting data in MySQL database”.

tGreenplumInput

Talend Open Studio Components Reference Guide 729

tGreenplumInput

tGreenplumInput properties

Component family Databases/Greenplum

Function tGreenplumInput reads a database and extracts fields based on a query.

Purpose tGreenplumInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Exact name of the schema.

Username and
Password

DB user authentication data.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Guess Query Click the Guess Query button to generate the query which
corresponds to your table schema in the Query field.

Guess schema Click the Guess schema button to retrieve the table
schema.

Related scenarios

730 Talend Open Studio Components Reference Guide

Advanced settings Use cursor When selected, helps to decide the row set to work with at
a time and thus optimize performance.

Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers all possible SQL queries for FireBird databases.

Related scenarios

For related topics, see the tDBInput scenarios:

• the section called “Scenario 1: Displaying selected data from DB table”.

• the section called “Scenario 2: Using StoreSQLQuery variable”.

See also related topic: the section called “Scenario: Dynamic context use in MySQL DB insert”.

tGreenplumOutput

Talend Open Studio Components Reference Guide 731

tGreenplumOutput

tGreenplumOutput Properties

Component Family Databases/Greenplum

Function tGreenplumOutput writes, updates, modifies or deletes the data in a database.

Purpose tGreenplumOutput executes the action defined on the table and/or on the data of
a table, according to the input flow form the previous component.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box if you use a configured
tGreenplumConnection.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database

tGreenplumOutput Properties

732 Talend Open Studio Components Reference Guide

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, Job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column , select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Related scenarios

Talend Open Studio Components Reference Guide 733

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before
committing batches of rows together into the DB. This
option ensures transaction quality (but not rollback) and,
above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers all possible SQL queries for Greenplum databases. It allows
you to carry out actions on a table or on the data of a table in a Greenplum database.
It enables you to create a reject flow, with a Row > Rejects link filtering the data
in error. For a usage example, see the section called “Scenario 3: Retrieve data in
error with a Reject link”.

Related scenarios

For a related scenario, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”.

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tGreenplumOutputBulk

734 Talend Open Studio Components Reference Guide

tGreenplumOutputBulk

tGreenplumOutputBulk properties

The tGreenplumOutputBulk and tGreenplumBulkExec components are used together in a two step process.
In the first step, an output file is generated. In the second step, this file is used in the INSERT operation used to
feed a database. These two steps are fused together in the tGreenplumOutputBulkExec component, detailed in
a separate section. The advantage of using a two step process is that it makes it possible to transform data before
it is loaded in the database.

Component family Databases/Greenplum

Function Writes a file with columns based on the defined delimiter and the Greenplum
standards

Purpose Prepares the file to be used as parameter in the INSERT query to feed the
Greenplum database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are
completed automatically using the data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end of
the records

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend
Open Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and job designs. Related topic: see Talend Open Studio
User Guide.

Advanced settings Row separator String (ex: “\n”on Unix) to distinguish rows.

Field separator Character, string or regular expression to separate
fields.

Include header Select this check to include the column header.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

tStaCatcher statistics Select this check box to collect log data at the
component level.

Related scenarios

Talend Open Studio Components Reference Guide 735

Usage This component is to be used along with tGreenplumBulkExec component.
Used together they offer gains in performance while feeding a Greenplum
database.

Related scenarios

For use cases in relation with tGreenplumOutputBulk, see the following scenarios:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

tGreenplumOutputBulkExec

736 Talend Open Studio Components Reference Guide

tGreenplumOutputBulkExec

tGreenplumOutputBulkExec properties

The tGreenplumOutputBulk and tGreenplumBulkExec components are used together in a two step process. In
the first step, an output file is generated. In the second step, this file is used in the INSERT operation used to feed
a database. These two steps are fused together in the tGreenplumOutputBulkExec component.

Component family Databases/Greenplum

Function Executes the action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert operations
to a Greenplum database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address.

Port Listening port number of DB server.

Database name Name of the database.

Schema Exact name of the schema.

Username and
Password

DB user authentication data.

Table Name of the table to be written.

Note that only one table can be written at a time and that
the table must exist for the insert operation to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Clear a table: The table content is deleted. You have the
possibility to rollback the operation.

File Name Name of the file to be processed.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Related scenarios

Talend Open Studio Components Reference Guide 737

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: You have already created the schema and
stored it in the Repository. You can reuse it in various
projects and job flowcharts. Related topic: see Talend
Open Studio User Guide.

Advanced settings Action on data Select the operation you want to perform:

Bulk insert Bulk update The details asked will be
different according to the action chosen.

Copy the OID for each
row

Retrieve the ID item for each row.

Contains a header line
with the names of each
column in the file

Specify that the table contains header.

File type Select the file type to process.

Null string String displayed to indicate that the value is null.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Fields terminated by Character, string or regular expression to separate fields.

Escape char Character of the row to be escaped

Text enclosure Character used to enclose text.

Force not null for
columns

Define the columns nullability

Force not null: Select the check box next to the column
you want to define as not null.

tStatCatcherStatistics Select this check box to collect log data at the component
level.

Usage This component is mainly used when no particular transformation is required on the
data to be loaded onto the database.

Limitation n/a

Related scenarios

For use cases in relation with tGreenplumOutputBulkExec, see the following scenarios:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

tGreenplumRollback

738 Talend Open Studio Components Reference Guide

tGreenplumRollback

tGreenplumRollback properties

This component is closely related to tGreenplumCommit and tGreenplumConnection. It usually does not make
much sense to use these components independently in a transaction.

Component family Databases/Greenplum

Function tGreenplumRollback cancels the transaction committed in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tGreenplumConnection component in the list
if more than one connection are planned for the current
Job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Greenplum components, especially with
tGreenplumConnection and tGreenplumCommit.

Limitation n/a

Related scenarios

For tGreenplumRollback related scenario, see the section called “Scenario: Rollback from inserting data in
mother/daughter tables”.

tGreenplumRow

Talend Open Studio Components Reference Guide 739

tGreenplumRow

tGreenplumRow Properties

Component Family Databases/Greenplum

Function tGreenplumRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the component
implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tGreenplumRow acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tFirebirdConnection component on the Component list
to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Exact name of the schema.

Username et Password DB user authentication data.

tGreenplumRow Properties

740 Talend Open Studio Components Reference Guide

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table Name Name of the table to be read.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder.

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Guess Query Click the Guess Query button to generate the query which
corresponds to your table schema in the Query field.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this checkbox if you want to query the
database using a PreparedStatement. In the Set
PreparedStatement Parameter table, define the
represented by “?” in the SQL instruction of the Query
field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Related scenarios

Talend Open Studio Components Reference Guide 741

Related scenarios

For a related scenario, see:

• the section called “Scenario: Resetting a DB auto-increment”.

• the section called “Scenario 1: Removing and regenerating a MySQL table index”.

tGreenplumSCD

742 Talend Open Studio Components Reference Guide

tGreenplumSCD

tGreenplumSCD belongs to two component families: Business Intelligence and Databases. For more information
on it, see the section called “tGreenplumSCD”.

tIngresClose

Talend Open Studio Components Reference Guide 743

tIngresClose

tIngresClose properties

Component family Databases/Ingres

Function tIngresClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tIngresConnection component in the list if
more than one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Ingres components, especially with
tIngresConnection and tIngresCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.

tIngresCommit

744 Talend Open Studio Components Reference Guide

tIngresCommit

tIngresCommit Properties

This component is closely related to tIngresConnection and tIngresRollback. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/Ingres

Function Validates the data processed through the Job into the connected DB

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the tIngresConnection component in the list if
more than one connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection to
link tIngresCommit to your Job, your data will
be commited row by row. In this case, do not
select the Close connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Ingres components, especially with
tIngresConnection and tIngresRollback.

Limitation n/a

Related scenario

For tIngresCommit related scenario, see the section called “Scenario: Inserting data in mother/daughter tables”.

tIngresConnection

Talend Open Studio Components Reference Guide 745

tIngresConnection

tIngresConnection Properties

This component is closely related to tIngresCommit and tIngresRollback. It usually does not make much sense
to use one of these without using a tIngresConnection component to open a connection for the current transaction.

Component family Databases/Ingres

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Server Database server IP address.

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Usage This component is to be used along with Ingres components, especially with
tIngresCommit and tIngresRollback.

Limitation n/a

Related scenarios

For tIngresConnection related scenario, see the section called “Scenario: Inserting data in mother/daughter
tables”.

tIngresInput

746 Talend Open Studio Components Reference Guide

tIngresInput

tIngresInput properties

Component family Databases/Ingres

Function tIngresInput reads a database and extracts fields based on a query.

Purpose tIngresInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Server Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

Related scenarios

Talend Open Studio Components Reference Guide 747

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers all possible SQL queries for Ingres databases.

Limitation n/a

Related scenarios

For related topics, see the tDBInput scenarios:

• the section called “Scenario 1: Displaying selected data from DB table”

• the section called “Scenario 2: Using StoreSQLQuery variable”.

See also the scenario for tContextLoad: the section called “Scenario: Dynamic context use in MySQL DB insert”.

tIngresOutput

748 Talend Open Studio Components Reference Guide

tIngresOutput

tIngresOutput properties

Component family Databases/Ingres

Function tIngresOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tIngresOutput executes the action defined on the table and/or on the data contained
in the table, based on the flow incoming from the preceding component in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, Job stops.

tIngresOutput properties

Talend Open Studio Components Reference Guide 749

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before
committing batches of rows together into the DB. This
option ensures transaction quality (but not rollback) and,
above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Related scenarios

750 Talend Open Studio Components Reference Guide

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Enable debug mode Select this check box to display each step during
processing entries in a database.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a Ingres database. It also allows you to
create a reject flow using a Row > Rejects link to filter data in error. For an example
of tMySqlOutput in use, see the section called “Scenario 3: Retrieve data in error
with a Reject link”.

Limitation n/a

Related scenarios

For related topics, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tIngresRollback

Talend Open Studio Components Reference Guide 751

tIngresRollback

tIngresRollback properties

This component is closely related to tIngresCommit and tIngresConnection. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/Ingres

Function tIngresRollback cancels the transaction committed in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tIngresConnection component in the list if
more than one connection are planned for the current Job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Ingres components, especially with
tIngresConnection and tIngresCommit.

Limitation n/a

Related scenarios

For tIngresRollback related scenario, see the section called “Scenario: Rollback from inserting data in mother/
daughter tables”.

tIngresRow

752 Talend Open Studio Components Reference Guide

tIngresRow

tIngresRow properties

Component family Databases/Ingres

Function tIngresRow is the specific component for this database query. It executes the SQL
query stated onto the specified database. The row suffix means the component
implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tIngresRow acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Related scenarios

Talend Open Studio Components Reference Guide 753

Advanced Settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this checkbox if you want to query the
database using a PreparedStatement. In the Set
PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Limitation n/a

Related scenarios

For related topics, see:

• the section called “Scenario: Resetting a DB auto-increment”.

• the section called “Scenario 1: Removing and regenerating a MySQL table index”.

tIngresSCD

754 Talend Open Studio Components Reference Guide

tIngresSCD

tIngresSCD belongs to two component families: Business Intelligence and Databases. For more information on
it, see the section called “tIngresSCD”.

tNetezzaBulkExec

Talend Open Studio Components Reference Guide 755

tNetezzaBulkExec

tNetezzaBulkExec properties

Component family Databases/Netezza

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, tNetezzaBulkExec offers gains in performance while
carrying out the Insert operations to a Netezza database

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box when you are using the component
tNetezzaConnection.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time and that the table must exist for
the insert operation to succeed.

Related scenarios

756 Talend Open Studio Components Reference Guide

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Advanced settings Field Separator Character, string or regular expression to separate fields.

Require quotes (“)
around data files

Select this check box to use data enclosure characters.

Row Separator String (ex: “\n”on Unix) to distinguish rows.

Escape character Character of the row to be escaped.

Date format / Date
delimiter

Use Date format to distinguish the way years, months and
days are represented in a string. Use Date delimiter to
specify the separator between date values.

Time format/ Time
delimiter

Use Time format to distinguish the time is represented in a
string. Use Time delimiter to specify the separator between
time values.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Max Errors Enter the maximum error limit that will not stop the
process.

Skip Rows Enter the number of rows to be skipped.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is mainly used when non particular transformation is required on
the data to be loaded on to the database.

Limitation n/a

Related scenarios

For use cases in relation with tNetezzaBulkExec, see the following scenarios:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

• the section called “Scenario: Truncating and inserting file data into Oracle DB”.

tNetezzaClose

Talend Open Studio Components Reference Guide 757

tNetezzaClose

tNetezzaClose properties

Component family Databases/Netezza

Function tNetezzaClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tNetezzaConnection component in the list if
more than one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Netezza components, especially with
tNetezzaConnection and tNetezzaCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.

tNetezzaCommit

758 Talend Open Studio Components Reference Guide

tNetezzaCommit

tNetezzaCommit Properties

This component is closely related to tNetezzaConnection and tNetezzaRollback. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/Netezza

Function tNetezzaCommit validates the data processed through the Job into the connected
DB

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the tNetezzaConnection component in the list if
more than one connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection to
link tNetezzaCommit to your Job, your data will
be commited row by row. In this case, do not
select the Close connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Netezza components, especially with
tNetezzaConnection and tNetezzaRollback.

Limitation n/a

Related scenario

This component is closely related to tNetezzaConnection and tNetezzaRollback. It usually does not make much
sense to use one of these without using a tNetezzaConnection component to open a connection for the current
transaction.

For tNetezzaCommit related scenario, see the section called “Scenario: Inserting data in mother/daughter tables”.

tNetezzaConnection

Talend Open Studio Components Reference Guide 759

tNetezzaConnection

tNetezzaConnection Properties

This component is closely related to tNetezzaCommit and tNetezzaRollback. It usually does not make much
sense to use one of these without using a tNetezzaConnection component to open a connection for the current
transaction.

Component family Databases/Netezza

Function tNetezzaConnection opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Additional JDBC
Parameters

Specify additional connection properties for the DB
connection you are creating.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Usage This component is to be used along with Netezza components, especially with
tNetezzaCommit and tNetezzaRollback.

Limitation n/a

Related scenarios

For a tNetezzaConnection related scenario, see the section called “Scenario: Inserting data in mother/daughter
tables”.

tNetezzaInput

760 Talend Open Studio Components Reference Guide

tNetezzaInput

tNetezzaInput properties

Component family Databases/Netezza

Function tNetezzaInput reads a database and extracts fields based on a query.

Purpose tNetezzaInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box when using a tNetezzaConnection
component.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

Related scenarios

Talend Open Studio Components Reference Guide 761

Database Name of the database

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table Name Name of the table to be read.

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Advanced settings Use cursor When selected, helps to decide the row set to work with at
a time and thus optimize performance.

Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers all possible SQL queries for Netezza databases.

Limitiation n/a

Related scenarios

Related scenarios for tNetezzaInput are:

• the section called “Scenario 1: Displaying selected data from DB table”.

• the section called “Scenario 2: Using StoreSQLQuery variable”.

• the section called “Scenario: Dynamic context use in MySQL DB insert”.

tNetezzaNzLoad

762 Talend Open Studio Components Reference Guide

tNetezzaNzLoad

This component invokes Netezza's nzload utility to insert records into a Netezza database. This component can
be used either in standalone mode, loading from an existing data file; or connected to an input row to load data
from the connected component.

tNetezzaNzLoad properties

Component family Databases/Netezza

Function tNetezzaNzLoad inserts data into a Netezza database table using Netezza's nzload
utility.

Purpose To bulk load data into a Netezza table either from an existing data file, an input flow,
or directly from a data flow in streaming mode through a named-pipe.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address.

Port Listening port number of the DB server.

Database Name of the Netezza database.

Username and
Password

DB user authentication data.

Table Name of the table into which the data is to be inserted.

Action on table On the table defined, you can perform one of the following
operations before loading the data:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create table if not exists: The table is created if it does
not exist.

Drop table if exists and create: The table is removed if
it already exists and created again.

Clear table: The table content is deleted before the data
is loaded.

Truncate table: executes a truncate statement prior to
loading the data to clear the entire content of the table.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next

tNetezzaNzLoad properties

Talend Open Studio Components Reference Guide 763

component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Data file Full path to the data file to be used. If this component is
used on its own (not connected to another component with
input flow) then this is the name of an existing data file
to be loaded into the database. If it is connected, with an
input flow to another component; this is the name of the
file to be generated and written with the incoming data to
later be used with nzload to load into the database.

Use named-pipe Select this check box to use a named-pipe instead of a data
file. This option can only be used when the component is
connected with an input flow to another component. When
the check box is selected, no data file is generated and the
data is transferred to nzload through a named-pipe. This
option greatly improves performance in both Linux and
Windows.

This component on named-pipe mode uses a JNI
interface to create and write to a named-pipe on
any Windows platform. Therefore the path to the
associated JNI DLL must be configured inside the
java library path. The component comes with two
DLLs for both 32 and 64 bit operating systems
that are automatically provided in the Studio with
the component.

Named-pipe name Specify a name for the named-pipe to be used. Ensure that
the name entered is valid.

Advanced settings Use existing control file Select this check box to provide a control file to be
used with the nzload utility instead of specifying all the
options explicitly in the component. When this check box
is selected, Data file and the other nzload related options
no longer apply. Please refer to Netezza's nzload manual
for details on creating a control file.

Control file Enter the path to the control file to be used, between double
quotation marks, or click [...] and browse to the control
file. This option is passed on to the nzload utility via the
-cf argument.

Field separator Character, string or regular expression used to separate
fields.

This is nzload's delim argument. If you do not use
the Wrap quotes around fields option, you must
make sure that the delimiter is not included in the
data that's inserted to the database. The default
value is \t or TAB. To improve performance, use
the default value.

Wrap quotes around
fields

This option is only applied to columns of String, Byte,
Byte[], Char, and Object types. Select either:

tNetezzaNzLoad properties

764 Talend Open Studio Components Reference Guide

None: do not wrap column values in quotation marks.

Single quote: wrap column values in single quotation
marks.

Double quote: wrap column values in double quotation
marks.

If using the Single quote or Double quoteoption,
it is necessary to use \ as the Escape char.

Advanced options Set the nzload arguments in the corresponding table. Click
[+] as many times as required to add arguments to the
table. Click the Parameter field and choose among the
arguments from the list. Then click the corresponding
Value field and enter a value between quotation marks.

Parameter -If Name of the log file to generate. The logs will be
appended if the log file already exists. If the parameter
is not specified, the default name for the log file is
'<table_name>.<db_name>.nzlog'. And it's generated
under the current working directory where the job is
running.

-bf Name of the bad file to generate. The bad file contains
all the records that could not be loaded due to an
internal Netezza error. The records will be appended
if the bad file already exists. If the parameter is
not specified, the default name for the bad file is
'<table_name>.<db_name>.nzbad'. And it's generated
under the current working directory where the job is
running.

-ouputDir Directory path to where the log and the bad file are
generated. If the parameter is not specified the files are
generated under the current directory where the job is
currently running.

-logFileSize Maximum size for the log file. The value is in MB. The
default value is 2000 or 2GB. To save hard disk space,
specify a smaller amount if your job runs often.

-compress Specify this option if the data file is compressed. Valid
values are "TRUE" or "FALSE". Default value if
"FALSE".

This option is only valid if this component is used
by itself and not connected to another component
via an input flow.

-skipRows <n> Number of rows to skip from the beginning of the data file.
Set the value to "1" if you like to skip the header row from
the data file. The default value is "0".

This option should only be used if this component
is used by itself and not connected to another
component via an input flow.

-maxRows <n> Maximum number of rows to load from the data file.

tNetezzaNzLoad properties

Talend Open Studio Components Reference Guide 765

This option should only be used if this component
is used by itself and not connected to another
component via an input flow.

-maxErrors Maximum number of error records to allow before
terminating the load process. The default value is "1".

-ignoreZero Binary zero bytes in the input data will generate errors. Set
this option to "NO" to generate error or to "YES" to ignore
zero bytes. The default value is "NO".

-requireQuotes This option requires all the values to be wrapped in quotes.
The default value is "FALSE".

This option currently does not work with input
flow. Use this option only in standalone mode
with an existing file.

-nullValue <token> Specify the token to indicate a null value in the data
file. The default value is "NULL". To improve slightly
performance you can set this value to an empty field by
specifying the value as single quotes: "\'\'".

-fillRecord Treat missing trailing input fields as null. You do not need
to specify a value for this option in the value field of the
table. This option is not turned on by default, therefore
input fields must match exactly all the columns of the table
by default.

Trailing input fields must be nullable in the
database.

-ctrlChar Accept control chars in char/varchar fields (must escape
NUL, CR and LF). You do not need to specify a value for
this option in the value field of the table. This option is
turned off by default.

-ctInString Accept un-escaped CR in char/varchar fields (LF becomes
only end of row). You do not need to specify a value for
this option in the value field of the table. This option is
turned off by default.

-truncString Truncate any string value that exceeds its declared char/
varchar storage. You do not need to specify a value for this
option in the value field of the table. This option is turned
off by default.

-dateStyle Specify the date format in which the input data is
written in. Valid values are: "YMD", "Y2MD", "DMY",
"DMY2", "MDY", "MDY2", "MONDY", "MONDY2".
The default value is "YMD".

The date format of the column in the component's
schema must match the value specified here. For
example if you want to load a DATE column,
specify the date format in the component schema
as "yyyy-MM-dd" and the -dateStyle option as
"YMD".

For more description on loading date and time fields,
see the section called “Loading DATE, TIME and
TIMESTAMP columns”.

tNetezzaNzLoad properties

766 Talend Open Studio Components Reference Guide

-dateDelim Delimiter character between date parts. The default value
is "-" for all date styles except for "MONDY[2]" which is
" " (empty space).

The date format of the column in the component's
schema must match the value specified here.

-y2Base First year expressible using two digit year (Y2) dateStyle.

-timeStyle Specify the time format in which the input data is
written in. Valid values are: "24HOUR" and "12HOUR".
The default value is "24HOUR". For slightly better
performance you should keep the default value.

The time format of the column in the component's
schema must match the value specified here. For
example if you want to load a TIME column,
specify the date format in the component schema
as "HH:mm:ss" and the -timeStyle option as
"24HOUR".

For more description on loading date and time fields,
see the section called “Loading DATE, TIME and
TIMESTAMP columns”.

-timeDelim Delimiter character between time parts. The default value
is ":".

The time format of the column in the component's
schema must match the value specified here.

-timeRoundNanos Allow but round non-zero digits with smaller than
microsecond resolution.

-boolStyle Specify the format in which Boolean data is written in
the data. The valid values are: "1_0", "T_F", "Y_N",
"TRUE_FALSE", "YES". The default value is "1_0". For
slightly better performance keep the default value.

-allowRelay Allow load to continue after one or more SPU reset or
failed over. The default behaviour is not allowed.

-allowRelay <n> Specify number of allowable continuation of a load.
Default value is "1".

Encoding Select the encoding type from the list.

Specify nzload path Select this check box to specify the full path to the nzload
executable. You must check this option if the nzload path
is not specified in the PATH environment variable.

Full path to nzload
executable

Full path to the nzload executable on the machine in use.
It is advisable to specify the nzload path in the PATH
environment variable instead of selecting this option.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is mainly used when non particular transformation is required on
the data to be loaded ont to the database.

This component can be used as a standalone or an output component.

Limitation n/a

Related scenario

Talend Open Studio Components Reference Guide 767

Loading DATE, TIME and TIMESTAMP columns

When this component is used with an input flow, the date format specified inside the component's schema must
match the value specified for -dateStyle, -dateDelim, -timeStyle, and -timeDelim options. Please refer to following
examples:

DB Type Schema date format -dateStyle -dateDelim -timeStyle -timeDelim

DATE "yyyy-MM-dd" "YMD" "-" n/a n/a

TIME "HH:mm:ss" n/a n/a "24HOUR" ":"

TIMESTAMP "yyyy-MM-dd HH:mm:ss" "YMD" "-" "24HOUR" ":"

Related scenario

For a related use case, see the section called “Scenario: Inserting data in MySQL database”.

tNetezzaOutput

768 Talend Open Studio Components Reference Guide

tNetezzaOutput

tNetezzaOutput properties

Component family Databases/Netezza

Function tNetezzaOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tNetezzaOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding component
in the designed Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box when using a tNetezzaConnection
component.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

tNetezzaOutput properties

Talend Open Studio Components Reference Guide 769

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

Default: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

tNetezzaOutput properties

770 Talend Open Studio Components Reference Guide

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

You can press Ctrl+Space to access a list of
predefined global variables.

Use batch size Select this check box to activate the batch mode for data
processing. In the Batch Size field that appears when this
check box is selected, you can type in the number you need
to define the batch size to be processed.

This check box is available only when you have
selected the Insert, Update or the Delete option
in the Action on data list.

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and, above all, better
performance at executions.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a Netezza database. It also allows you to

Related scenarios

Talend Open Studio Components Reference Guide 771

create a reject flow using a Row > Rejects link to filter data in error. For an example
of tMySqlOutput in use, see the section called “Scenario 3: Retrieve data in error
with a Reject link”.

Limitation n/a

Related scenarios

For tNetezzaOutput related topics, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”.

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tNetezzaRollback

772 Talend Open Studio Components Reference Guide

tNetezzaRollback

tNetezzaRollback properties

This component is closely related to tNetezzaCommit and tNetezzaConnection. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/Netezza

Function tNetezzaRollback cancels the transaction committed in the connected DB.

Purpose This component avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tNetezzaConnection component in the list if
more than one connection are planned for the current job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Netezza components, especially with
tNetezzaConnection and tNetezzaCommit.

Limitation n/a

Related scenarios

For tNetezzaRollback related scenario, see the section called “Scenario: Rollback from inserting data in mother/
daughter tables”.

tNetezzaRow

Talend Open Studio Components Reference Guide 773

tNetezzaRow

tNetezzaRow properties

Component family Databases/Netezza

Function tNetezzaRow is the specific component for this database query. It executes the SQL
query stated onto the specified database. The row suffix means that the component
implements a flow in the job design although it does not provide output.

Purpose Depending on the nature of the query and the database, tNetezzaRow acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tNetezzaConnection component on the Component list
to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

tNetezzaRow properties

774 Talend Open Studio Components Reference Guide

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table Name Enter the name of the table to be processed.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this checkbox if you want to query the
database using a PreparedStatement. In the Set
PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Related scenarios

Talend Open Studio Components Reference Guide 775

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Limitation n/a

Related scenarios

For a tNetezzaRow related scenario, see the section called “Scenario 1: Removing and regenerating a MySQL
table index”.

tParAccelBulkExec

776 Talend Open Studio Components Reference Guide

tParAccelBulkExec

tParAccelBulkExec Properties

The tParAccelOutputBulk and tParAccelBulkExec components are generally used together in a two step
process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in the tParAccelOutputBulkExec component, detailed
in a different section. The advantage of using two separate steps is that the data can be transformed before it is
loaded in the database.

Component Family Databases/ParAccel

Function tParAccelBulkExec performs an Insert action on the data.

Purpose tParAccelBulkExec is a component which is specifically designed to improve
performance when loading data in ParAccel database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box if you use a configured
tParAccelConnection.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address.

Port Listening port number of the DB server.

Database Database name.

Schema Exact name of the schema.

tParAccelBulkExec Properties

Talend Open Studio Components Reference Guide 777

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
already exists and created again.

Clear a table: The table content is deleted.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Advanced settings Copy mode Select the copy mode you want to use from either:

Basic: Standard mode, without optimisation.

Parallel: Allows you to use several internal ParAccel APIs
in order to optimise loading speed.

Filename Name and path of the file to be processed.

File Type Select the file type from the list.

Field Layout Select the field layout from the list.

Field separator Character, string or regular expression to separate fields.

Explicit IDs The ID is already present in the file to be loaded or will
be set by the database.

Remove Quotes Select this check box to remove quotation marks from the
file to be loaded.

Max. Errors Type in the maximum number of errors before your Job
stops.

Date Format Type in the date format to be used.

Time/Timestamp
Format

Enter the date and hour format to be used.

Additional COPY
Options

Enter the specific, customized ParAccel option that you
want to use.

Related scenarios

778 Talend Open Studio Components Reference Guide

Log file Browse to or enter the access path to the log file in your
directory.

Logging level Select the information type you want to record in your log
file.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers all possible SQL database queries. It allows you to carry
out actions on a table or on the data of a table in a ParAccel database. It enables
you to create a reject flow, with a Row > Reject link filtering the data in error. For
a usage example, see the section called “Scenario 3: Retrieve data in error with a
Reject link”.

Limitation n/a

Related scenarios

For a related scenario, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”.

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tParAccelClose

Talend Open Studio Components Reference Guide 779

tParAccelClose

tParAccelClose properties

Component family Databases/ParAccel

Function tParAccelClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tParAccelConnection component in the list if
more than one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with ParAccel components, especially with
tParAccelConnection and tParAccelCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.

tParAccelCommit

780 Talend Open Studio Components Reference Guide

tParAccelCommit

tParAccelCommit Properties

This component is closely related to tParAccelConnection and tParAccelRollback. It usually doesn’t make much
sense to use these components independently in a transaction.

Component family Databases/ParAccel

Function Validates the data processed through the job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the tParAccelConnection component in the list if
more than one connection are planned for the current job.

Close Connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection to
link tParAccelCommit to your Job, your data will
be commited row by row. In this case, do not
select the Close connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with ParAccel components, especially with
tParAccelConnection and tParAccelRollback components.

Limitation n/a

Related scenario

This component is closely related to tParAccelConnection and tParAccelRollback. It usually does not make
much sense to use one of these without using a tParAccelConnection component to open a connection for the
current transaction.

For tParAccelCommit related scenario, see the section called “tMysqlConnection”

tParAccelConnection

Talend Open Studio Components Reference Guide 781

tParAccelConnection

tParAccelConnection Properties
This component is closely related to tParAccelCommit and tParAccelRollback. It usually doesn’t make much
sense to use one of these without using a tParAccelConnection component to open a connection for the current
transaction.

Component family Databases/ParAccel

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Name of the schema

Username and
Password

DB user authentication data.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Advanced settings Auto commit Select this check box to automatically commit a
transaction when it is completed.

tStatCatcher Statistics Select this check box to gather the job processing metadata
at a Job level as well as at each component level.

Usage This component is to be used along with ParAccel components, especially with
tParAccelCommit and tParAccelRollback components.

Limitation n/a

Related scenario
This component is closely related to tParAccelCommit and tParAccelRollback. It usually does not make much
sense to use one of these without using a tParAccelConnection component to open a connection for the current
transaction.

Related scenario

782 Talend Open Studio Components Reference Guide

For tParAccelConnection related scenario, see the section called “tMysqlConnection”

tParAccelInput

Talend Open Studio Components Reference Guide 783

tParAccelInput

tParAccelInput properties

Component family Databases/ ParAccel

Function tParAccelInput reads a database and extracts fields based on a query.

Purpose tParAccelInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box when using a configured
tParAccelConnection component.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address.

Port Listening port number of the DB server.

Related scenarios

784 Talend Open Studio Components Reference Guide

Database Name of the database

Schema Exact name of the schema

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table name Name of the table to be read.

Query type and Query Enter your DB query paying particularly attention to
sequence the fields properly in order to match the schema
definition.

Guess Query Click the Guess Query button to generate the query which
corresponds to your table schema in the Query field.

Guess schema Click the Guess schema button to retrieve the table
schema.

Advanced settings Use cursor When selected, helps to decide the row set to work with at
a time and thus optimize performance.

Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers all possible SQL queries for ParAccel databases.

Related scenarios

For related scenarios, see:

• the section called “Scenario 1: Displaying selected data from DB table”.

• the section called “Scenario 2: Using StoreSQLQuery variable”.

tParAccelOutput

Talend Open Studio Components Reference Guide 785

tParAccelOutput

tParAccelOutput Properties

Component Family Databases/ParAccel

Function tParAccelOutput writes, updates, modifies or deletes the data in a database.

Purpose tParAccelOutput executes the action defined on the table and/or on the data of a
table, according to the input flow form the previous component.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box if you use a configured
tParAccelConnection.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address.

Port Listening port number of the DB server.

Database Database name.

tParAccelOutput Properties

786 Talend Open Studio Components Reference Guide

Schema Exact name of the schema.

Username et Password DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
already exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Related scenarios

Talend Open Studio Components Reference Guide 787

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before
committing batches of rows together into the DB. This
option ensures transaction quality (but not rollback) and,
above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers all possible SQL database queries. It allows you to carry out
actions on a table or on the data of a table in a ParAccel database. It enables you
to create a reject flow, with a Row > Rejects link filtering the data in error. For
a usage example, see the section called “Scenario 3: Retrieve data in error with a
Reject link”.

Limitation n/a

Related scenarios

For a related scenario, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”.

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tParAccelOutputBulk

788 Talend Open Studio Components Reference Guide

tParAccelOutputBulk

tParAccelOutputBulk properties

The tParAccelOutputBulk and tParAccelBulkExec components are generally used together in a two step
process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in the tParAccelOutputBulkExec component, detailed
in a different section. The advantage of using two separate steps is that the data can be transformed before it is
loaded in the database.

Component family Databases/ParAccel

Function Writes a file with columns based on the defined delimiter and the ParAccel
standards

Purpose Prepares the file to be used as parameter in the INSERT query to feed the
ParAccel database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are
completed automatically using the data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end
of the file

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend
Open Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and job designs. Related topic: see Talend Open Studio
User Guide.

Advanced settings Row separator String (ex: “\n”on Unix) to distinguish rows.

Field separator Character, string or regular expression to separate
fields.

Include header Select this check box to include the column header.

Encoding Select the encoding type from the list or select Custom
and define it manually. This field is compulsory for DB
data handling.

tStatCatcher Statistics Select this check box to collect log data at the
component level.

Related scenarios

Talend Open Studio Components Reference Guide 789

Usage This component is to be used along with tParAccelBulkExec component. Used
together they offer gains in performance while feeding a ParAccel database.

Related scenarios

For use cases in relation with tParAccelOutputBulk, see the following scenarios:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

• the section called “Scenario: Truncating and inserting file data into Oracle DB”.

tParAccelOutputBulkExec

790 Talend Open Studio Components Reference Guide

tParAccelOutputBulkExec

tParAccelOutputBulkExec Properties

The tParAccelOutputBulk and tParAccelBulkExec components are generally used together in a two step
process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in tParAccelOutputBulkExec.

Component Family Databases/ParAccel

Function tParAccelOutputBulkExec performs an Insert action on the data.

Purpose tParAccelOutputBulkExec is a component which is specifically designed to
improve performance when loading data in ParAccel database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address.

Port Listening port number of the DB server.

Database Database name.

Schema Exact name of the schema.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
already exists and created again.

Clear a table: The table content is deleted.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Related scenarios

Talend Open Studio Components Reference Guide 791

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Copy mode Select the copy mode you want to use from either:

Basic: Standard mode, without optimisation.

Parallel: Allows you to use several internal ParAccel APIs
in order to optimise loading speed.

Filename Name and path of the file to be processed.

Advanced settings File Type Select the file type from the list.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Fields terminated by Character, string or regular expression to separate fields.

Append Select this check box to add the new rows at the end of
the file.

Explicit IDs The ID is already present in the file to be loaded or will
be set by the database.

Remove Quotes Select this check box to remove quotation marks from the
file to be loaded.

Max. Errors Type in the maximum number of errors before your Job
stops.

Date Format Type in the date format to be used.

Time/Timestamp
Format

Enter the date and hour format to be used.

Additional COPY
Options

Enter the specific, customized ParAccel option that you
want to use.

Log file Browse to or enter the access path to the log file in your
directory.

Logging level Select the information type you want to record in your log
file.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers all possible SQL database queries. It allows you to carry
out actions on a table or on the data of a table in a ParAccel database. It enables
you to create a reject flow, with a Row > Reject link filtering the data in error. For
a usage example, see the section called “Scenario 3: Retrieve data in error with a
Reject link”.

Related scenarios

For a related scenario, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”.

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tParAccelRollback

792 Talend Open Studio Components Reference Guide

tParAccelRollback

tParAccelRollback properties

This component is closely related to tParAccelCommit and tParAccelConnection. It usually doesn’t make much
sense to use these components independently in a transaction.

Component family Databases

Function Cancel the transaction commit in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tParAccelConnection component in the list if
more than one connection are planned for the current job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with ParAccel components, especially with
tParAccelConnection and tParAccelCommit components.

Limitation n/a

Related scenario

This component is closely related to tParAccelConnection and tParAccelCommit. It usually doesn’t make much
sense to use one of them without using a tParAccelConnection component to open a connection for the current
transaction.

For tParAccelRollback related scenario, see the section called “tMysqlRollback”.

tParAccelRow

Talend Open Studio Components Reference Guide 793

tParAccelRow

tParAccelRow Properties

Component Family Databases/ParAccel

Function tParAccelRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the component
implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tParAccelRow acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tFirebirdConnection component on the Component list
to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Exact name of the schema.

Username et Password DB user authentication data.

tParAccelRow Properties

794 Talend Open Studio Components Reference Guide

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table Name Name of the table to be read.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder.

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Guess Query Click the Guess Query button to generate the query which
corresponds to your table schema in the Query field.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this checkbox if you want to query the
database using a PreparedStatement. In the Set
PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all possible
SQL queries.

Related scenarios

Talend Open Studio Components Reference Guide 795

Limitation n/a

Related scenarios

For a related scenario, see:

• the section called “Scenario: Resetting a DB auto-increment”.

• the section called “Scenario 1: Removing and regenerating a MySQL table index”.

tParAccelSCD

796 Talend Open Studio Components Reference Guide

tParAccelSCD

tParAccelSCD belongs to two component families: Business Intelligence and Databases. For more information
on it, see the section called “tParAccelSCD”.

tTeradataClose

Talend Open Studio Components Reference Guide 797

tTeradataClose

tTeradataClose properties

Component family Databases/Teradata

Function tTeradataClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tTeradataConnection component in the list if
more than one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Teradata components, especially with
tTeradataConnection and tTeradataCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.

tTeradataCommit

798 Talend Open Studio Components Reference Guide

tTeradataCommit

tTeradataCommit Properties

This component is closely related to tTeradataConnection and tTeradataRollback. It usually does not make
much sense to use these components independently in a transaction.

Component family Databases/Teradata

Function tTeradataCommit validates the data processed through the Job into the connected
DB.

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the tTeradataConnection component in the list if
more than one connection are planned for the current job.

Close connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection to
link tTeradataCommit to your Job, your data will
be commited row by row. In this case, do not
select the Close connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Teradata components, especially with
tTeradataConnection and tTeradataRollback components.

Limitation n/a

Related scenario

This component is closely related to tTeradataConnection and tTeradataRollback. It usually does not make
much sense to use one of these without using a tTeradataConnection component to open a connection for the
current transaction.

For tTeradataCommit related scenario, see the section called “tVerticaConnection”

tTeradataConnection

Talend Open Studio Components Reference Guide 799

tTeradataConnection

tTeradataConnection Properties

This component is closely related to tTeradataCommit and tTeradataRollback. It usually doesn’t make much
sense to use one of these without using a tTeradataConnection component to open a connection for the current
transaction.

Component family Databases/Teradata

Function tTeradataConnection opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address.

Database Name of the database.

Username and
Password

DB user authentication data.

Additional JDBC
parameters

Specify additional connection properties in the existing
DB connection, to allow specific character set support.
E.G.: CHARSET=KANJISJIS_OS to get support of
Japanese characters.

You can set the encoding parameters through this
field.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Advanced settings Auto commit Select this check box to automatically commit a
transaction when it is completed.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Utilisation This component is to be used along with Teradata components, especially with
tTeradataCommit and tTeradataRollback components.

Limitation n/a

Related scenario

800 Talend Open Studio Components Reference Guide

Related scenario

This component is closely related to tTeradataCommit and tTeradataRollback. It usually doesn’t make much
sense to use one of these without using a tTeradataConnection component to open a connection for the current
transaction.

For tTeradataConnection related scenario, see the section called “tMysqlConnection”.

tTeradataFastExport

Talend Open Studio Components Reference Guide 801

tTeradataFastExport

tTeradataFastExport Properties

Component Family Databases/Teradata

Function tTeradataFastExport exports rapidly voluminous data batches from a Teradata
table or view.

Purpose tTeradataFastExport exports data batches from a Teradata table to a cutsomer
system or to a smaller database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Execution platform Select the Operating System type you use.

Host Server name or IP.

Database name Database name.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Use query Select this check box to enter the SQL statement in the
Query box.

Log database Log database name.

Log table Log table name.

Script generated folder Browse your directory and select the destination of the file
which will be created.

Exported file Name and path to the file which will be created.

Field separator Character, string or regular expression to separate fields.

Error file Browse your directory and select the destination of the file
where the error messages will be recorded.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Related scenario

802 Talend Open Studio Components Reference Guide

Usage This component offers the flexibility benefit of the DB query and covers all possible
SQL queries.

Related scenario

No scenario is available for this component yet.

tTeradataFastLoad

Talend Open Studio Components Reference Guide 803

tTeradataFastLoad

tTeradataFastLoad Properties

Component Family Databases/Teradata

Function tTeradataFastLoad reads a database and extracts fields using queries.

Purpose tTeradataFastLoad executes a database query according to a strict order which
must be the same as the one in the schema. The retrieve list of fields is then transfered
to the next component, using a connexion flow (Main row).

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address.

Database Database name.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time.

Execute Batch every Number of rows per batch to be loaded.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all possible
SQL queries.

Limitation n/a

Related scenario

804 Talend Open Studio Components Reference Guide

Related scenario

No scenario is available for this component yet.

tTeradataFastLoadUtility

Talend Open Studio Components Reference Guide 805

tTeradataFastLoadUtility

tTeradataFastLoadUtility Properties

Component Family Databases/Teradata

Function tTeradataFastLoadUtility reads a database and extracts fields using queries.

Purpose tTeradataFastLoadUtility executes a database query according to a strict order
which must be the same as the one in the schema. The retrieve list of fields is then
transfered to the next component, using a connexion flow (Main row).

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Execution platform Select the Operating System type you use.

Host Host name or IP address of the database server.

Database name Database name.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Script generated folder Browse your directory and select the destination of the file
which will be created.

Load file Browse your directory and select the file from which you
want to load data.

Field separator Character, string or regular expression to separate fields.

Error file Browse your directory and select the destination of the file
where the error messages will be recorded.

Advanced settings Define character set Specify the character encoding you need use for your
system.

Check point Enter the check point value.

Error files Enter the file name where the error messages are stored.
By default, the code ERRORFILES table_ERR1,

Related scenario

806 Talend Open Studio Components Reference Guide

table_ERR2 is entered, meaning that the two tables
table_ERR1 and table_ERR2 are used to record the error
messages.

Return fastload error Select this check box to specify the exit code number to
indicate the point at which an error message should display
in the console.

ERRLIMIT Enter the limit number of errors detected during the
loading phase. Processing stops when the limit is reached.

The default error limit value is 1000000.

For more information, see Teradata FastLoad Reference
documentation.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Related scenario

For related topic, see the section called “Scenario: Inserting data into a Teradata database table”.

tTeradataInput

Talend Open Studio Components Reference Guide 807

tTeradataInput

tTeradataInput Properties

Component family Databases/Teradata

Function tTeradataInput reads a database and extracts fields based on a query.

Purpose tTeradataInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tTeradataConnection component on the Component list
to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Host Database server IP address

Related scenarios

808 Talend Open Studio Components Reference Guide

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Advanced settings Additional JDBC
parameters

Specify additional connection properties in the existing
DB connection, to allow specific character set support.
E.G.: CHARSET=KANJISJIS_OS to get support of
Japanese characters.

Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers all possible SQL queries for Teradata databases.

Limitation n/a

Related scenarios

For related scenarios, see:

• the section called “Scenario 1: Displaying selected data from DB table”.

• the section called “Scenario 2: Using StoreSQLQuery variable”.

• the section called “Scenario: Dynamic context use in MySQL DB insert”.

tTeradataMultiLoad

Talend Open Studio Components Reference Guide 809

tTeradataMultiLoad

tTeradataMultiLoad Properties

Component Family Databases/Teradata

Function tTeradataMultiLoad reads a database and extracts fields using queries.

Purpose tTeradataMultiLoad executes a database query according to a strict order which
must be the same as the one in the schema. The retrieve list of fields is then transfered
to the next component, using a connexion flow (Main row).

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Execution platform Select the Operating System type you use.

Host Host name or IP address of the database server.

Database name Database name.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused. Related topic: see see
Talend Open Studio User Guide.

Script generated folder Browse your directory and select the destination of the file
which will be created.

Action to data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete

Related scenario

810 Talend Open Studio Components Reference Guide

operations are based. You can do that by clicking
Edit Schema and selecting the check box(es) next
to the column(s) you want to set as primary key(s).

Where condition in case
Delete

Type in a condition, which, once verified, will delete the
row.

Load file Browse your directory and select the file from which you
want to load data.

Field separator Character, string or regular expression to separate fields.

Error file Browse your directory and select the destination of the file
where the error messages will be recorded.

Advanced settings Define Log table This check box is selected to define a log table you want to
use in place of the default one that is the database table you
defined in Basic settings. The syntax required to define
the log table is databasename.logtablename.

BEGIN LOAD This field allows you to define your BEGIN LOAD
command to initiate or restart a load task. You can specify
the number of sessions to use, the error limit, any other
parameters needed to execute the task.

For more information, see Teradata MultiLoad Reference
documentation.

Return mload error Select this check box to specify the exit code number to
indicate the point at which an error message should display
in the console.

Define character set Specify the character encoding you need use for your
system

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Related scenario

For related topic, see the section called “Scenario: Inserting data into a Teradata database table”.

tTeradataOutput

Talend Open Studio Components Reference Guide 811

tTeradataOutput

tTeradataOutput Properties

Component family Databases/Teradata

Function tTeradataOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tTeradataOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding component
in the job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tTeradataConnection component on the Component list
to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Host Database server IP address

tTeradataOutput Properties

812 Talend Open Studio Components Reference Guide

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and ceate: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Create This is not visible by default, until you choose to create a
table from the Action on table drop-down list. The table
to be created may be:

- SET TABLE: tables which do not allow to duplicate

- MULTI SET TABLE: tables allowing duplicate rows.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
names you want to use as a base for the Update

tTeradataOutput Properties

Talend Open Studio Components Reference Guide 813

operation. Do the same in the Key in delete
column for the Delete operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

This is intended to allow specific character set support.
E.G.: CHARSET=KANJISJIS_OS to get support of
Japanese characters.

You can press Ctrl+Space to access a list of
predefined global variables.

Commit every Enter the number of rows to be completed before
committing batches of rows together into the DB. This
option ensures transaction quality (but not rollback) and,
above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Enable debug mode Select this check box to display each step during
processing entries in a database.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Related scenarios

814 Talend Open Studio Components Reference Guide

Use Batch Size When selected, enables you to define the number of lines
in each processed batch.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a Teradata database. It also allows
you to create a reject flow using a Row > Rejects link to filter data in error. For an
example of tMySqlOutput in use, see the section called “Scenario 3: Retrieve data
in error with a Reject link”.

Limitation n/a

Related scenarios

For related topics, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tTeradataRollback

Talend Open Studio Components Reference Guide 815

tTeradataRollback

tTeradataRollback Properties

This component is closely related to tTeradataCommit and tTeradataConnection. It usually doesn’t make much
sense to use these components independently in a transaction.

Component family Databases/Teradata

Function tTeradataRollback cancels the transaction commit in the connected DB.

Purpose tTeradataRollback avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the TeradataConnection component in the list if
more than one connection are planned for the current job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Teradata components, especially with
tTeradataConnection and tTeradataCommit components.

Limitation n/a

Related scenario

For tTeradataRollback related scenario, see the section called “Scenario: Rollback from inserting data in mother/
daughter tables”.

tTeradataRow

816 Talend Open Studio Components Reference Guide

tTeradataRow

tTeradataRow Properties

Component family Databases/Teradata

Function tTeradataRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the component
implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tTeradataRow acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tTeradataConnection component on the Component list
to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of the DB server.

Database Name of the database

Username and
Password

DB user authentication data.

tTeradataRow Properties

Talend Open Studio Components Reference Guide 817

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

This is intended to allow specific character set support.
E.G.: CHARSET=KANJISJIS_OS to get support of
Japanese characters.

Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this checkbox if you want to query the
database using a PreparedStatement. In the Set
PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Related scenarios

818 Talend Open Studio Components Reference Guide

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Limitation n/a

Related scenarios

For related topics, see:

• the section called “Scenario: Resetting a DB auto-increment”.

• the section called “Scenario 1: Removing and regenerating a MySQL table index”.

tTeradataTPTUtility

Talend Open Studio Components Reference Guide 819

tTeradataTPTUtility

tTeradataTPTUtility Properties

Component Family Databases/Teradata

Function tTeradataTPTUtility combines the utilities of tTeradataFastLoad,
tTeradataMultiLoad, tTeradataTPump, and tTeradataFastExport into one
comprehensive utility.

Purpose tTeradataTPTUtility allows you to insert data to load data into and delete data
from any accessible table in the Teradata Database or from any other data stores for
which an access operator or an access module exists.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Filename Browse your directory and select the file to save the output
data.

Append Select this check box to append the work table to the path
set in the Filename field.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es) next
to the column(s) you want to set as primary key(s).

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Execution platform Select the Operating System type you use.

tTeradataTPTUtility Properties

820 Talend Open Studio Components Reference Guide

TDPID Teradata director program identifier. It can be either the
name or the IP address of the Teradata Database system
being accessed.

If you do not specify a TDPID, the system will
use the name of Teradata database as the default
TDPID. The customized TDPID can be up to 256
characters and can be a domain server name. For
further information about TDPID, see Teradata
Parallel Transporter Reference.

Database name Fill this field with the name of the Teradata database.

Load Operator A consumer operator that functions similarly to
tTeradataFastLoad to load data from data streams and
inserts data into individual rows of a target table in the
Teradata database.

Data Connector Functions as either a file reader to read from flat files or
access modules or a file writer to write to flat files or access
modules.

For further information about flat file, see Flat file
database.

Job Name Name of a Teradata Parallel Transporter Job which is
defined using Teradata tbuild command.

If you do not specify a Job name, the default is the
user name followed by a hyphen and a generated
TPT Job sequence number as follows:

<user name>-<job sequence number>

For further information about Teradata
commands, see Teradata Parallel Transporter
Reference.

Layout Name(schema) A schema for the data to be interchanged.

Username and
Password

The Teradata database username and the Teradata
database password associated with the username for
Teradata database authentication.

Table Name of the table to be written into the Teradata database.
Note that only one table can be written at a time.

Script generated folder Browse your directory and select the destination of the file
which will be created.

Where condition in case
Delete

Type in script as a condition, which, once verified, will
delete the row.

Error file Browse your directory and select the destination of the file
where the error messages will be recorded.

 Advanced settings Row seperator Character, string or regular expression to separate rows.

Field seperator Character, string or regular expression to separate fields.

Include header Select this check box to include the column header to the
file.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

http://developer.teradata.com/sites/all/files/documentation/linked_docs/html/online/B035-2436-088A/wwhelp/wwhimpl/js/html/wwhelp.htm
http://developer.teradata.com/sites/all/files/documentation/linked_docs/html/online/B035-2436-088A/wwhelp/wwhimpl/js/html/wwhelp.htm
http://en.wikipedia.org/wiki/Flat_file_database#Flat_files
http://en.wikipedia.org/wiki/Flat_file_database#Flat_files
http://developer.teradata.com/sites/all/files/documentation/linked_docs/html/online/B035-2436-088A/wwhelp/wwhimpl/js/html/wwhelp.htm
http://developer.teradata.com/sites/all/files/documentation/linked_docs/html/online/B035-2436-088A/wwhelp/wwhimpl/js/html/wwhelp.htm

Related scenario

Talend Open Studio Components Reference Guide 821

Define Log table This check box is selected to define a log table you want
to use in place of the default one that is the database table
you defined in Basic settings followed by "_log". The
syntax required to define the log table is logtablename.

Return mload error Select this check box to specify the exit code number to
indicate the point at which an error message should display
in the console. For further information about this error, see
Teradata MultiLoad Reference.

Define character set Specify the character encoding to be used in your system.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries. For further information about the usage of this component, see Teradata
Parallel Transporter Reference.

Related scenario

For related topic, see the section called “Scenario: Inserting data into a Teradata database table”.

https://developer.teradata.com/tools/reference/teradata-multiload-reference/13-10
http://developer.teradata.com/sites/all/files/documentation/linked_docs/html/online/B035-2436-088A/wwhelp/wwhimpl/js/html/wwhelp.htm
http://developer.teradata.com/sites/all/files/documentation/linked_docs/html/online/B035-2436-088A/wwhelp/wwhimpl/js/html/wwhelp.htm

tTeradataTPump

822 Talend Open Studio Components Reference Guide

tTeradataTPump

tTeradataTPump Properties

Component Family Databases/Teradata

Function tTeradataTPump reads a database and extracts fields using queries.

Purpose tTeradataTPump executes a database query according to a strict order which must
be the same as the one in the schema. The retrieve list of fields is then transfered to
the next component, using a connexion flow (Main row).

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Execution platform Select the Operating System type you use.

Host Host name or IP address of the database server.

Database name Database name.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Script generated folder Browse your directory and select the destination of the file
which will be created.

Action to data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete

Scenario: Inserting data into a Teradata database table

Talend Open Studio Components Reference Guide 823

operations are based. You can do that by clicking
Edit Schema and selecting the check box(es) next
to the column(s) you want to set as primary key(s).

Where condition in case
Delete

Type in a condition, which, once verified, will delete the
row.

Load file Browse your directory and select the file from which you
want to load data.

Field separator Character, string or regular expression to separate fields.

Error file Browse your directory and select the destination of the file
where the error messages will be recorded.

Advanced settings Define Log table This check box is selected to define a log table you want to
use in place of the default one that is the database table you
defined in Basic settings. The syntax required to define
the log table is databasename.logtablename.

BEGIN LOAD This field allows you to define your BEGIN LOAD
command to initiate or restart a TPump task. You can
specify the number of sessions to use, the error limit and
any other parameters needed to execute the task. The
default value is:

SESSIONS 8 PACK 600 ARRAYSUPPORT ON
CHECKPOINT 60 TENACITY 2 ERRLIMIT 1000.

For more information, see Teradata Parallel Data Pump
Reference documentation.

Return tpump error Select this check box to specify the exit code number to
indicate the point at which an error message should display
in the console.

Define character set Specify the character encoding you need use for your
system

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Scenario: Inserting data into a Teradata database table
In this scenario, you create a Job using tTeradataTPump to insert customer data into a Teradata database table
and specify the exit code to be displayed in the event of an exception error.

Three components are used in this Job:

• tRowGenerator: generates rows as required using random customer data taken from a list.

• tFileOutputDelimited: outputs the customer data into a delimited file.

• tTeradataTPump: inserts the customer data into the Teradata database table in the Tpump mode.

Dropping components

1. Drop the required components: tRowGenerator, tFileOutputDelimited and tTeradataTPump from the
Palette onto the design workspace.

Scenario: Inserting data into a Teradata database table

824 Talend Open Studio Components Reference Guide

2. Link tRowGenerator to tFileOutputDelimited using a Row > Main connection.

3. Link tRowGenerator to tTeradataTPump using a Trigger > On SubjobOk connection.

Configuring the components

1. Double click tRowGenerator to open the tRowGenerator Editor window.

In the tRowGenerator Editor window, define the data to be generated. For this Job, the schema is composed
of two columns: ID and Name.

Enter the Number of Rows for RowGenerator to generate.

2. Double click tFileOutputDelimited to define its properties in the Component view.

3. Next to File Name, browse to the output file or enter a name for the output file to be created.

4. Between double quotation marks, enter the delimiters to be used next to Row Separator and Field Separator.

Scenario: Inserting data into a Teradata database table

Talend Open Studio Components Reference Guide 825

Click Edit schema and check that the schema matches the input schema. If need be, click Sync Columns.

5. Double click tTeradataTPump to open its Component view.

In the Basic settings tab of the Component view, define the tTeradataTPump parameters. I

6. Enter the Database name, User name and Password in accordance with your database authentication
information.

7. Specify the Table into which you want to insert the customer data. In this scenario, it is called mytable.

8. In the Script generated folder field, browse to the folder in which you want to store the script files generated.

9. In the Load file field, browse to the file which contains the customer data.

10. In the Error file field, browse to the file in which you want to log the error information.

11. In the Action on data field, select Insert.

Scenario: Inserting data into a Teradata database table

826 Talend Open Studio Components Reference Guide

Executing the Job

1. Press F6 to execute the Job.

2. The Run view console reads as follows:

3. Double-click the tTeradataTPump component to go back to its Component view.

4. On the Advanced settings tab, select the Return tpump error check box and type in the exit code number
to indicate the point at which an error message should be displayed in the console. In this example, enter the
number 4 and use the default values for the other parameters.

5. Press F6 to run the Job.

6. The Run view console reads as follows:

An exception error occurs and TPump returned exit code 12 is displayed. If you need to view
detailed information about the exception error, you can open the log file stored in the directory you specified
in the Error file field in the Basic settings tab of the Component view.

tVectorWiseCommit

Talend Open Studio Components Reference Guide 827

tVectorWiseCommit

tVectorWiseCommit Properties

This component is closely related to tVectorWiseConnection and tVectorWiseRollback. It usually doesn’t make
much sense to use these components independently in a transaction.

Component family Databases/VectorWise

Function tVectorWiseCommit validates the data processed in a Job into the connected DB.

Purpose Using a single connection, this component commits a global transaction in one go
instead of doing so on every row or every batch. This provides a gain in performance

Basic settings Component list Select the tVectorWiseConnection component from the
list if more than one connection is planned for the current
job.

Close connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection to
link tVectorWiseCommit to your Job, your data
will be commited row by row. In this case, do not
select the Close connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is generally used with other VectorWise components, notably
tVectorWiseConnection and tVectorWiseRollback.

Limitation n/a

Related scenario

This component is closely related to tVectorWiseConnection and tVectorWiseRollback. It usually doesn’t make
much sense to use one of these without using a tVectorWiseConnection component to open a connection for
the current transaction.

For a tVectorWiseCommit related scenario, see the section called “tVerticaConnection”.

tVectorWiseConnection

828 Talend Open Studio Components Reference Guide

tVectorWiseConnection

tVectorWiseConnection Properties

This component is closely related to tVectorWiseCommit and tVectorWiseRollback. It usually doesn’t make
much sense to use one of these without using a tVectorWiseConnection component to open a connection for
the current transaction.

Component family Databases/VectorWise

Function tVectorWiseConnection opens a connection to a database for a transaction to be
carried out.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties
are stored. The fields that follow are completed
automatically using the data retrieved.

Server Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username et Password Authentication information of the database user.

Use or register a shared
DB Connection

Select this check box to share your connection or retrieve
a connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child. Shared DB Connection Name:
set or type in the shared connection name.

Advanced settings Auto Commit Select this check box to commit a transaction
automatically upon completion.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with VectorWise components, particularly
tVectorWiseCommit and tVectorWiseRollback.

Limitation n/a

Related scenario

This component is closely related to tVectorWiseCommit and tVectorWiseRollback. It usually doesn’t make
much sense to use one of these without using a tVectorWiseConnection component to open a connection for
the current transaction.

For a tVectorWiseConnection related scenario, see the section called “tMysqlConnection”.

tVectorWiseInput

Talend Open Studio Components Reference Guide 829

tVectorWiseInput

tVectorWiseInput Properties

Component family Databases/VectorWise

Function tVectorWiseInput reads a database and extracts fields based on a query.

Purpose tVectorWiseInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where Properties are
stored. The fields that follow are completed automatically
using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box when using a configured
tVectorWiseConnection component.

When a Job contains the parent Job and the
child Job, the Component list only presents the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, make sure that the available
connection components are sharing the intended
connection.

For further information about how to share
a DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding to
the database you are using.

Otherwise, you can deactivate the connection
components and use the Dynamic settings of the
component to specify the connection manually.
In this case, enssure that the connection name
is unique and distinctive throughout the two Job
levels. For further information about Dynamic
settings, see your studio user guide.

Server Database server IP address.

Port Listening port number of the DB server.

Related scenario

830 Talend Open Studio Components Reference Guide

Database Name of the database.

Username a Password Authentication information of the database user.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table name Name of the table to be read.

Query type and Query Enter your DB query, ensuring that the field order matches
the order in the schema.

Guess Query Click this button to generate a query that corresponds to
your table schema in the Query field.

Guess schema Click this button to retrieve the schema from the table.

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Define columns from which to remove leading and trailing
whitespace.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers all possibile SQL queries forVertica databases.

Limitation n/a

Related scenario

For tVectorWiseInput related scenarios, see:

• the section called “Scenario 1: Displaying selected data from DB table”.

• the section called “Scenario 2: Using StoreSQLQuery variable”.

• the section called “Scenario: Dynamic context use in MySQL DB insert”.

tVectorWiseOutput

Talend Open Studio Components Reference Guide 831

tVectorWiseOutput

tVectorWiseOutput Properties

Component family Databases/VectorWise

Function tVectorWiseOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tVectorWiseOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding component
in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box when using a configured
tVerticaConnection component.

When a Job contains the parent Job and the
child Job, the Component list only presents the
connection components of the same Job level,
so if you need to use an existing connection
from the other level, make sure that the available
connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can deactivate the connection
components and use Dynamic settings of the
component to specify the intended connection
manually. In this case, make sure the connection
name is unique and distinctive throughout the two
Job levels. For more information about Dynamic
settings, see your studio user guide.

Host Database server IP address.

Port Listening port number of the DB server.

tVectorWiseOutput Properties

832 Talend Open Studio Components Reference Guide

Database Name of the database.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

tVectorWiseOutput Properties

Talend Open Studio Components Reference Guide 833

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and, above all, better
performance at executions.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column.

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Enable debug mode Select this check box to display each step during
processing entries in a database.

Support null in “SQL
WHERE” statement

Select this check box if you want to deal with the Null
values contained in a DB table.

Ensure that the Nullable check box is selected for
the corresponding columns in the schema.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a Vertica database. It also allows you to
create a reject flow using a Row > Rejects link to filter data in error. For an example
of tMySqlOutput in use, see the section called “Scenario 3: Retrieve data in error
with a Reject link”.

Limitation n/a

Related scenario

834 Talend Open Studio Components Reference Guide

Related scenario

For tVectorWiseOutput related topics, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”.

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tVectorWiseRollback

Talend Open Studio Components Reference Guide 835

tVectorWiseRollback

tVectorWiseRollback Properties

This component is closely related to tVectorWiseCommit and tVectorWiseConnection. It usually doesn’t make
much sense to use these components independently in a transaction.

Component family Databases/VectorWise

Function tVectorWiseRollback cancels transactions commited to the DB connected.

Purpose This component prevents involuntary commits.

Basic settings Component list Select the tVectorWiseConnection component from the
list if more than one connection is planned for the current
job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Teradata components, especially with
tVectorWiseConnection and tVectorWiseCommit components.

Limitation n/a

Related scenario

For a tVectorWiseRollback related scenario, see the section called “Scenario: Rollback from inserting data in
mother/daughter tables”.

tVectorWiseRow

836 Talend Open Studio Components Reference Guide

tVectorWiseRow

tVectorWiseRow Properties

Component family Databases/VectorWise

Function tVectorWiseRow is the specific component for this database query. It executes the
SQL query stated in the specified database. The row suffix means the component
implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tVectorWiseRow acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write your SQL statements easily.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties
are stored. The fields that follow after are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tVectorWiseConnection component on the Component
list to reuse the connection details you already defined.

When a Job contains the parent Job and the
child Job, the Component list only presents the
connection components of the same Job level,
so if you need to use an existing connection
from the other level, make sure that the available
connection components are sharing the intended
connection.

For further information about how to share
a DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding to
the database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address.

Port Listening port number of the DB server.

Database Name of the database.

Username and
Password

DB user authentication data.

tVectorWiseRow Properties

Talend Open Studio Components Reference Guide 837

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table Name Name of the table to be processed.

Query type Either Built-in or Repository.

Built-in: Fill in the query statement manually or build it
graphically using the SQLBuilder.

Repository: Select the relevant query stored in the
Repository. The Query field is filled in accordingly.

Guess Query Click this button to generate a query that corresponds to
your table schema in the Query field.

Query Enter your DB query taking care to sequence the fields
properly in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this checkbox if you want to query the
database using a PreparedStatement. In the Set
PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Related scenario

838 Talend Open Studio Components Reference Guide

Limitation n/a

Related scenario

For related topics, see:

• the section called “Scenario: Resetting a DB auto-increment”.

• the section called “Scenario 1: Removing and regenerating a MySQL table index”.

tVerticaBulkExec

Talend Open Studio Components Reference Guide 839

tVerticaBulkExec

tVerticaBulkExec Properties

The tVerticaOutputBulk and tVerticaBulkExec components are generally used together as parts of a two step
process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in the tVerticaOutputBulkExec component, detailed
in a separate section. The advantage of using two separate components is that the data can be transformed before
it is loaded in the database.

Component family Databases/Vertica

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, tVerticaBulkExec offers gains in performance while
carrying out the Insert operations to a Mysql database

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box when using a configured
tVerticaConnection component.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Related scenarios

840 Talend Open Studio Components Reference Guide

Username and
Password

DB user authentication data.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create table: The table is removed and created
again.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does
not exist.

Clear table: The table content is deleted. You have the
possibility to rollback the operation.

Table Name of the table to be written. Note that only one table
can be written at a time and that the table must exist for
the insert operation to succeed.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Remote Filename Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Advanced settings Write to ROS (Read
Optimized Store)

Select this check box to store the data in a physical storage
area, in order to optimize the reading, as the data is
compressed and pre-sorted.

Exit job if no row was
loaded

The Job automatically stops if no row has been loaded.

Fields terminated by Character, string or regular expression to separate fields.

Null string String displayed to indicate that the value is null.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with tVerticaOutputBulk component. Used
together, they can offer gains in performance while feeding a Vertica database.

Limitation n/a

Related scenarios

For related topics, see:

• the section called “Scenario: Inserting transformed data in MySQL database”.

Related scenarios

Talend Open Studio Components Reference Guide 841

• the section called “Scenario: Inserting data in MySQL database”.

• the section called “Scenario: Truncating and inserting file data into Oracle DB”.

tVerticaClose

842 Talend Open Studio Components Reference Guide

tVerticaClose

tVerticaClose properties

Component family Databases/Vertica

Function tVerticaClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tVerticaConnection component in the list if
more than one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Vertica components, especially with
tVerticaConnection and tVerticaCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.

tVerticaCommit

Talend Open Studio Components Reference Guide 843

tVerticaCommit

tVerticaCommit Properties

This component is closely related to tVerticaConnection and tVerticaRollback. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/Vertica

Function tVerticaConnection validates the data processed through the Job into the connected
DB.

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the tVerticaConnection component in the list if
more than one connection are planned for the current job.

Close connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection to
link tVerticaCommit to your Job, your data will
be commited row by row. In this case, do not
select the Close connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Mysql components, especially with
tVerticaConnection and tVerticaRollback components.

Limitation n/a

Related scenario

This component is closely related to tVerticaConnection and tVerticaRollback. It usually does not make much
sense to use one of these without using a tVerticaConnection component to open a connection for the current
transaction.

For tVerticaCommit related scenario, see the section called “tVerticaConnection”

tVerticaConnection

844 Talend Open Studio Components Reference Guide

tVerticaConnection

tVerticaConnection Properties

This component is closely related to tVerticaCommit and tVerticaRollback. It usually does not make much
sense to use one of these without using a tVerticaConnection component to open a connection for the current
transaction.

Component family Databases/Vertica

Function tVerticaConnection opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

DB Version Select the version of Vertica you are using from the list.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Utilisation This component is to be used along with Vertica components, especially with
tVerticaCommit and tVerticaRollback components.

Limitation n/a

Related scenario

This component is closely related to tVerticaCommit and tVerticaRollback. It usually does not make much
sense to use one of these without using a tVerticaConnection component to open a connection for the current
transaction.

Related scenario

Talend Open Studio Components Reference Guide 845

For tVerticaConnection related scenario, see the section called “tMysqlConnection”.

tVerticaInput

846 Talend Open Studio Components Reference Guide

tVerticaInput

tVerticaInput Properties

Component family Databases/Vertica

Function tVerticaInput reads a database and extracts fields based on a query.

Purpose tVerticaInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where Properties are
stored. The fields that come after are pre-filled in using the
fetched data.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

DB Version Select the version of Vertica you are using from the list.

Use an existing
connection

Select this check box when using a configured
tVerticaConnection component.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Related scenarios

Talend Open Studio Components Reference Guide 847

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table Name Name of the table to be read.

Query type and Query Enter your DB query, ensuring that the field order matches
the order in the schema.

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers all possible SQL queries for Vertica databases.

Limitation n/a

Related scenarios

For related scenarios, see:

• the section called “Scenario 1: Displaying selected data from DB table”.

• the section called “Scenario 2: Using StoreSQLQuery variable”.

• the section called “Scenario: Dynamic context use in MySQL DB insert”.

tVerticaOutput

848 Talend Open Studio Components Reference Guide

tVerticaOutput

tVerticaOutput Properties

Component family Databases/Vertica

Function tVerticaOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tVerticaOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding component
in the job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User
Guide.

DB Version Select the version of Vertica you are using from the list.

Use an existing
connection

Select this check box when using a configured
tVerticaConnection component.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding to
the database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

tVerticaOutput Properties

Talend Open Studio Components Reference Guide 849

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time.

Action on table On the table defined, you can perform one of the following
operations:

Default: No operation is carried out.

Drop and create table: The table is removed and created
again.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does
not exist.

Drop table if exists and create: The table is removed if it
already exists and created again.

Clear table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

Copy: Read data from a text file and insert tuples of entries
into the WOS (Write Optimized Store) or directly into the
ROS (Read Optimized Store). This option is ideal for bulk
loading. For further information, see your Vertica SQL
Reference Manual.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

tVerticaOutput Properties

850 Talend Open Studio Components Reference Guide

Schema and Edit
schema

A schema is a row description, i.e., it defines the number of
fields to be processed and passed on to the next component.
The schema is either Built-in or stored remotely in the
Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and, above all, better
performance at executions.

Copy parameters

This area is avail-
able only when the
Action on data is
Copy. For further
details about the
Copy parameters,
see your Vertica
SQL Reference
Manual.

Abort on error Select this check box to stop the Copy operation on data
if a row is rejected and rolls back this operation. Thus no
data is loaded.

Maximum rejects Type in a number to set the REJECTMAX command used
by Vertica, which indicates the upper limit on the number
of logical records to be rejected before a load fails. If not
specified or if value is 0, an unlimited number of rejections
are allowed.

No commit Select this check box to prevent the current transaction
from committing automatically.

Exception file Type in the path to, or browse to the file in which messages
are written indicating the input line number and the reason
for each rejected data record.

Exception file node Type in the node of the exception file. If not specified,
operations default to the query’s initiator node.

Rejected data file Type in the path to, or browse to the file in which to
write rejected rows. This file can then be edited to resolve
problems and reloaded.

Rejected data file node Type in the node of the rejected data file. If not specified,
operations default to the query’s initiator node.

Use batch mode Select this check box to activate the batch mode for data
processing. In the Batch Size field that appears when this
check box is selected, you can type in the number you need
to define the batch size to be processed.

Related scenarios

Talend Open Studio Components Reference Guide 851

This check box is available only when you have
selected the Insert, the Update, the Delete or the
Copy option in the Action on data field.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Enable debug mode Select this check box to display each step during
processing entries in a database.

Support null in "SQL
WHERE" statement

Select this check box to allow for the Null value in the
"SQL WHERE" statement.

Create projection when
create table

Select this check box to create a projection for a table to
be created.

This check box is available only when you have
selected the table creation related option in the
Action on table field.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a Vertica database. It also allows you to
create a reject flow using a Row > Rejects link to filter data in error. For an example
of tMySqlOutput in use, see the section called “Scenario 3: Retrieve data in error
with a Reject link”.

Limitation n/a

Related scenarios

For tVerticaOutput related topics, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tVerticaOutputBulk

852 Talend Open Studio Components Reference Guide

tVerticaOutputBulk

tVerticaOutputBulk Properties

The tVerticaOutputBulk and tVerticaBulkExec components are generally used together as parts of a two step
process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in the tVerticaOutputBulkExec component, detailed
in a separate section. The advantage of using two separate components is that the data can be transformed before
it is loaded in the database.

Component family Databases/Vertica

Function tVerticaBulkOutputExec writes a file with columns based on the defined
delimiter and the Vertica standards.

Purpose tVerticaBulkOutputExec prepares the file to be used as parameter in the
INSERT query to feed the Vertica database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are
completed automatically using the data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end of
the file.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend
Open Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and job designs. Related topic: see Talend Open Studio
User Guide.

Advanced settings Row separator String (ex: “\n”on Unix) to distinguish rows.

Field separator Character, string or regular expression to separate
fields.

Include header Select this check box to include the column header to
the file.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

tStatCatcher Statistics Select this check box to collect log data at the
component level.

Related scenarios

Talend Open Studio Components Reference Guide 853

Utilisation This component is to be used along with tVerticaBulkExec. Used together, they
offer gains in performance while feeding a Vertica database.

Related scenarios

For use cases in relation with tVerticaOutputBulk, see the following scenarios:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

tVerticaOutputBulkExec

854 Talend Open Studio Components Reference Guide

tVerticaOutputBulkExec

tVerticaOutputBulkExec Properties

The tVerticaOutputBulk and tVerticaBulkExec components are generally used together as parts of a two step
process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in the tVerticaOutputBulkExec component.

Component family Databases/Vertica

Function tVerticaOutputBulkExec executes the Insert action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert operations
to a Vertica database.

Basic settings Property Type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

DB Version Select the version of Vertica you are using from the list.

Host Database server IP address.

Port Listening port number of DB server.

DB Name Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time and that the table must exist for
the insert operation to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Clear a table: The table content is deleted.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Related scenarios

Talend Open Studio Components Reference Guide 855

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and
job designs. Related topic: see Talend Open Studio User
Guide.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end of
the file

Advanced settings Write to ROS (Read
Optimized Store)

Select this check box to store the data in a physical storage
area, in order to optimize the reading, as the data is
compressed and pre-sorted.

Exit job if no row was
loaded

The Job automatically stops if no row has been loaded.

Field Separator Character, string or regular expression to separate fields.

Null string String displayed to indicate that the value is null.

Include header Select this check box to include the column header to the
file.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is mainly used when no particular transformation is required on the
data to be loaded onto the database.

Limitation n/a

Related scenarios

For use cases in relation with tVerticaOutputBulkExec, see the following scenarios:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

tVerticaRollback

856 Talend Open Studio Components Reference Guide

tVerticaRollback

tVerticaRollback Properties

This component is closely related to tVerticaCommit and tVerticaConnection. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/Vertica

Function tVerticaRollback cancels the transaction commit in the connected DB.

Purpose tVerticaRollback avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the VerticaConnection component in the list if
more than one connection are planned for the current job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Mysql components, especially with
tVerticaConnection and tVerticaCommit components.

Limitation n/a

Related scenario

For tVerticaRollback related scenario, see the section called “Scenario: Rollback from inserting data in mother/
daughter tables”.

tVerticaRow

Talend Open Studio Components Reference Guide 857

tVerticaRow

tVerticaRow Properties

Component family Databases/Vertica

Function tVerticaRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the component
implements a flow in the job design although it does not provide output.

Purpose Depending on the nature of the query and the database, tVerticaRow acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

DB Version Select the version of Vertica you are using from the list.

Use an existing
connection

Select this check box and click the relevant
tVerticaConnection component on the Component list
to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

tVerticaRow Properties

858 Talend Open Studio Components Reference Guide

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table name Name of the table to be processed.

Query type Either Built-in or Repository.

Built-in: Fill in the query statement manually or build it
graphically using the SQLBuilder.

Repository: Select the relevant query stored in the
Repository. The Query field is filled in accordingly.

Query Enter your DB query taking care to sequence the fields
properly in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this check box if you want to query
the database using a PreparedStatement. In the
Set PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Limitation n/a

Related scenario

Talend Open Studio Components Reference Guide 859

Related scenario

For related topics, see:

• the section called “Scenario: Resetting a DB auto-increment”.

• the section called “Scenario 1: Removing and regenerating a MySQL table index”.

Talend Open Studio Components Reference Guide

Talend Open Studio Components Reference Guide

Databases - other components
This chapter describes connectors that give access to a variety of databases and provide tools for database
management. These connectors cover various needs, including: opening connections, reading and writing tables,
committing transactions as a whole, as well as performing rollback for error handling. These components can be
found in the Databases family in the Palette of Talend Open Studio

Other types of database connectors, such as connectors for traditional and appliance/DW databases, are
documented in Databases - traditional components and Databases - appliance/datawarehouse components.

tCreateTable

862 Talend Open Studio Components Reference Guide

tCreateTable

You can find this component at the root of Databases group of the Palette of Talend Open Studio. tCreateTable
covers needs related indirectly to the use of any database.

tCreateTable Properties

Component family Databases

Function tCreateTable creates, drops and creates or clear the specified table.

Purpose This Java specific component helps create or drop any database table

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Database Type Select the DBMS type from the list.

The component properties may differ slightly
according to the database type selected from the
list.

Table Action Select the action to be carried out on the database among:

Create table: when you know already that the table
doesn’t exist.

Create table if not exists: when you don’t know whether
the table is already created or not

Drop table if exits and create: when you know that the
table exists already and needs to be replaced.

MySQL Temporary table Select this check box if you want to save the created table
temporarily.

MSSQLServer, MySQL,
Oracle, PostgresPlus,
Postgresql

Use an existing
connection

Select this check box in case you use a database
connection component, for example: tMysqlConnection
or tOracleConnection, etc.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

tCreateTable Properties

Talend Open Studio Components Reference Guide 863

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Oracle Connection Type Drop-down list of available drivers:

Oracle SID: Select this connection type to uniquely
identify a particular database on a system.

Oracle Service Name: Select this connection type to use
the TNS alias that you give when you connect to the
remote database.

Oracle OCI: Select this connection type to use Oracle
Call Interface with a set of C-language software APIs that
provide an interface to the Oracle database.

WALLET: Select this connection type to store credentials
in an Oracle wallet.

Access Access File Name and path of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Firebird Firebird File Name and path of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Interbase Interbase File Name and path of the file to be processed.

Related topic: see Talend Open Studio User Guide.

SQLite SQLite File Name and path of the file to be processed.

Related topic: see Talend Open Studio User Guide.

JavaDb Framework Type Select from the list a framework for your database.

HSQLDb Running Mode Select from the list the Server Mode that correspond to
your DB setup.

HSQLDb Use TLS/SSL Sockets Select this check box to enable the secured mode, if
required.

AS400/Oracle DB Version Select the database version in use.

Teradata Create Select the table type from the drop-down list. The type may
be:

- SET TABLE: tables which do not allow to duplicate.

- MULTI SET TABLE: tables allowing duplicate rows

All database types except
Access, JavaDb, SQLite
and ODBC

Host Database server IP address

All database types
except Access, Firebird,
HSQLDb, SQLite and
ODBC

Database name Name of the database.

Scenario: Creating new table in a Mysql Database

864 Talend Open Studio Components Reference Guide

JavaDb DB Root Path Browse to your database root.

All database types except
Access, AS400, Firebird,
Interbase, JavaDb,
SQLite and ODBC

Port Listening port number of the DB server.

HSQLDb DB Alias Name of the database.

Informix DB Server Name of the database server.

ODBC ODBC Name Name of the database.

Username and
Password

DB user authentication data.

Table name Type in between quotes a name for the newly created table.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various Jobs and
projects. Related topic: see Talend Open Studio User
Guide.

Advanced settings tStatcatcher Statistics Select this check box to gather the job processing metadata
at a Job level as well as at each component level.

AS400/ MSSQL Server Additional JDBC
Parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries. More scenarios are available for specific DB Input components

Limitation n/a

Scenario: Creating new table in a Mysql Database

The Job described below aims at creating a table in a database, made of a dummy schema taken from a delimited
file schema stored in the Repository. This Job is composed of a single component.

1. Drop a tCreateTable component from the Databases family in the Palette to the design workspace.

2. In the Basic settings view, and from the Database Type list, select Mysql for this scenario.

Scenario: Creating new table in a Mysql Database

Talend Open Studio Components Reference Guide 865

3. From the Table Action list, select Create table.

4. Select the Use Existing Connection check box only if you are using a dedicated DB connection component
the section called “tMysqlConnection”. In this example, we won’t use this option.

5. In the Property type field, select Repository so that the connection fields that follow are automatically filled
in. If you have not defined your DB connection metadata in the DB connection directory under the Metadata
node, fill in the details manually as Built-in.

6. In the Table Name field, fill in a name for the table to be created.

7. If you want to retrieve the Schema from the Metadata (it doesn’t need to be a DB connection Schema
metadata), select Repository then the relevant entry.

8. In any case (Built-in or Repository) click Edit Schema to check the data type mappingClick Edit Schema
to define the data structure.

9. Click the Reset DB Types button in case the DB type column is empty or shows discrepancies (marked in
orange). This allows you to map any data type to the relevant DB data type. Then, click OK to validate your
changes and close the dialog box.

10. Save your Job and press F6 to execute it.

The table is created empty but with all columns defined in the Schema.

Scenario: Creating new table in a Mysql Database

866 Talend Open Studio Components Reference Guide

tDBInput

Talend Open Studio Components Reference Guide 867

tDBInput

tDBInput properties

Component family Databases/DB Generic

Function tDBInput reads a database and extracts fields based on a query.

To use this component, relevant DBMSs' ODBC drivers should be installed
and the corresponding ODBC connections should be configured via the
database connection configuration wizard.

Purpose tDBInput executes a DB query with a strictly defined order which must correspond
to the schema definition. Then it passes on the field list to the next component via
a Main row link.

For performance reasons, a specific Input component (e.g.: tMySQLInput
for MySQL database) should always be preferred to the generic component.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open the database connection
configuration wizard and store the database connection
parameters you set in the component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Database Name of the data source defined via the database
connection configuration wizard.

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table Name Name of the source table where changes made to data
should be captured.

Query type Either Built-in or Repository.

Scenario 1: Displaying selected data from DB table

868 Talend Open Studio Components Reference Guide

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries using a generic ODBC connection.

Scenario 1: Displaying selected data from DB table

The following scenario creates a two-component Job, reading data from a database using a DB query and outputting
delimited data into the standard output (console).

As a prerequisite of this Job, the MySQL ODBC driver must have been installed and the corresponding
ODBC connection must have been configured.

1. Drop a tDBInput and tLogRow component from the Palette to the design workspace.

2. Connect the components using Row > Main link.

3. Double-click tDBInput to open its Basic settings view in the Component tab.

4. Fill in the database name, the username and password in the corresponding fields.

Scenario 2: Using StoreSQLQuery variable

Talend Open Studio Components Reference Guide 869

5. Click Edit Schema and create a 2-column description including shop code and sales.

6. Enter the table name in the corresponding field.

7. Type in the query making sure it includes all columns in the same order as defined in the Schema. In this
case, as we’ll select all columns of the schema, the asterisk symbol makes sense.

8. Click on the second component to define it.

9. Enter the fields separator. In this case, a pipe separator.

10. Now go to the Run tab, and click on Run to execute the Job.

The DB is parsed and queried data is extracted from the specified table and passed on to the job log console.
You can view the output file straight on the console.

Scenario 2: Using StoreSQLQuery variable

StoreSQLQuery is a variable that can be used to debug a tDBInput scenario which does not operate correctly. It
allows you to dynamically feed the SQL query set in your tDBInput component.

1. Use the same scenario as scenario 1 above and add a third component, tJava.

2. Connect tDBInput to tJava using a trigger connection of the OnComponentOk type. In this case, we want
the tDBInput to run before the tJava component.

3. Set both tDBInput and tLogRow component as in tDBInput scenario 1.

4. Click anywhere on the design workspace to display the Contexts property panel.

Scenario 2: Using StoreSQLQuery variable

870 Talend Open Studio Components Reference Guide

5. Create a new parameter called explicitly StoreSQLQuery. Enter a default value of 1. This value of 1 means
the StoreSQLQuery is “true” for a use in the QUERY global variable.

6. Click on the tJava component to display the Component view. Enter the
System.Out.println(“”)command to display the query content, press Ctrl+Space bar to access the
variable list and select the global variable QUERY.

7. Go to your Run tab and execute the Job.

8. The query entered in the tDBInput component shows at the end of the job results, on the log:

tDBOutput

Talend Open Studio Components Reference Guide 871

tDBOutput

tDBOutput properties

Component family Databases/DB Generic

Function tDBOutput writes, updates, makes changes or suppresses entries in a database.

To use this component, relevant DBMSs' ODBC drivers should be installed
and the corresponding ODBC connections should be configured via the
database connection configuration wizard.

Purpose tDBOutput executes the action defined on the data in a table, based on the flow
incoming from the preceding component in the Job.

Specific Output component should always be preferred to generic
component.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open the database connection
configuration wizard and store the database connection
parameters you set in the component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Database Name of the data source defined via the database
connection configuration wizard.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, Job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete

tDBOutput properties

872 Talend Open Studio Components Reference Guide

operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

Clear data in table Select this check box to delete data in the selected table
before any operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before
committing batches of rows together into the DB. This
option ensures transaction quality (but not rollback) and,
above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After depending on
the action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Enable debug mode Select this check box to display each step during
processing entries in a database.

Scenario: Writing a row to a table in the MySql database via an ODBC connection

Talend Open Studio Components Reference Guide 873

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on the data of a table in a database. It also allows you to create a reject flow
using a Row > Rejects link to filter data in error. For a related scenario, see the
section called “Scenario 3: Retrieve data in error with a Reject link”.

Scenario: Writing a row to a table in the MySql
database via an ODBC connection

This scenario clears the data in a table of a MySql database first and then adds a row to it.

The table, named Date, contains one column called date with the type being date.

As a prerequisite of this Job, the MySQL ODBC driver must have been installed and the corresponding
ODBC connection must have been configured.

1. Drop tDBOutput and tRowGenerator from the Palette to the design workspace.

2. Connect the components using a Row > Main link.

3. Double-click tRowGenerator to open its Schema editor.

4. Click the [+] button to add a line.

Enter date as the column name.

Select Date from the data type list.

Scenario: Writing a row to a table in the MySql database via an ODBC connection

874 Talend Open Studio Components Reference Guide

Select getCurrentDate from the Functions list.

Enter 1 in the Number of Rows for RowGenerator field as only one row will be added to the table.

Click OK to close the editor and propagate the schema changes to tDBOutput subsequently.

5. Double-click tDBOutput to open its Basic settings view in the Component tab.

6. In the Database field, enter the name of the data source defined during the configuration of the MySql ODBC
connection.

To configure an ODBC connection, click to open the database connection configuration wizard.

7. In the Username and Password fields, enter the database authentication credentials.

8. In the Table field, enter the table name, Date in this example.

9. In the Action on data field, select Insert to insert a line to the table.

10. Select the check box Clear data in table to clear the table before the insertion.

11. Save the Job and press F6 to run.

As shown above, the table now has only one line about the current date and time.

tDBSQLRow

Talend Open Studio Components Reference Guide 875

tDBSQLRow

tDBSQLRow properties

Component family Databases/DB Generic

Function tDBSQLRow is the generic component for database query. It executes the SQL
query stated onto the specified database. The row suffix means the component
implements a flow in the job design although it does not provide output.

For performance reasons, specific DB component should always be
preferred to the generic component.

Purpose Depending on the nature of the query and the database, tDBSQLRow acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write easily your SQL statements.

To use this component, relevant DBMSs' ODBC drivers should be installed
and the corresponding ODBC connections should be configured via the
database connection configuration wizard.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Datasource Name of the data source defined via the database
connection configuration wizard.

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table Name Name of the source table where changes made to data
should be captured.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Scenario: Resetting a DB auto-increment

876 Talend Open Studio Components Reference Guide

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this check box if you want to query
the database using a PreparedStatement. In the
Set PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Note that the relevant DBRow component should be preferred according to your
DBMSs. Most of the DBMSs have their specific DBRow components.

Scenario: Resetting a DB auto-increment

This scenario describes a single component Job which aims at re-initializing the DB auto-increment to 1. This job
has no output and is generally to be used before running a script.

As a prerequisite of this Job, the relevant DBMS's ODBC driver must have been installed and the
corresponding ODBC connection must have been configured.

1. Drag and drop a tDBSQLRow component from the Palette to the design workspace.

2. Double-click tDBSQLRow to open its Basic settings view.

Scenario: Resetting a DB auto-increment

Talend Open Studio Components Reference Guide 877

3. Select Repository in the Property Type list as the ODBC connection has been configured and saved in the
Repository. The follow-up fields gets filled in automatically.

For more information on storing DB connections in the Repository, see Talend Open Studio User Guide.

4. The Schema is built-in for this Job and it does not really matter in this example as the action is made on the
table auto-increment and not on data.

5. The Query type is also built-in. Click on the [...] button next to the Query statement box to launch the
SQLbuilder editor, or else type in directly in the statement box:

Alter table <TableName> auto_increment = 1

6. Press Ctrl+S to save the Job and F6 to run.

The database autoincrement is reset to 1.

tEXAInput

878 Talend Open Studio Components Reference Guide

tEXAInput

tEXAInput properties

Component Family Databases/EXA

Function tEXAInput reads databases and extracts fields using queries.

Purpose tEXAInput executes queries in databases according to a strict order which must
correspond exactly to that defined in the schema. The list of fields retrieved is then
transmitted to the following component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No properties stored centrally

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Host name Database server IP address.

Port Listening port number of the DB server

Schema name Enter the schema name.

Username et Password User authentication information.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide

Table Name Enter the table name.

Query type and Query Enter your database query, taking care to ensure that the
order of the fields corressponds exactly to that defined in
the schema.

Guess Query Click this button to generate a query that corresponds to
your table schema in the Query field.

Guess schema Click this button to retrieve the schema from the table.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if

Related scenarios

Talend Open Studio Components Reference Guide 879

you have selected the Use an existing connection check
box in the Basic settings.

Trim all the String/Char
columns

Select this check box to delete the spaces at the start and
end of fields in all of the columns containing strings.

Trim column Deletes the spaces from the start and end of fields in the
selected columns.

tStatCatcher Statistics Select this check box to collect the log data and a
component level.

Usage This component covers all possible SQL queries for EXA databases.

Limitation n/a

Related scenarios

For scenarios in which tEXAInput might be used, see the following tBIInput scenarios:

• the section called “Scenario 1: Displaying selected data from DB table”

• the section called “Scenario 2: Using StoreSQLQuery variable”

tEXAOutput

880 Talend Open Studio Components Reference Guide

tEXAOutput

tEXAOutput properties

Famille de composant Databases/EXA

Function tEXAOutput writes, updates, modifies or deletes data from databases.

Purpose tEXAOutput executes the action defined on the table and/or on the table data,
depending on the function of the input flow, from the preceding component.

Basic settings Property type Either Built-in or Repository.

Built-in: No properties stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Host Database server IP address.

Port Listening port number of the DB serve.

Schema name Enter the schema name.

Username and
Password

User authentication data.

Table Name of the table to be created. You can only create one
table at a time.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, Job stops.

tEXAOutput properties

Talend Open Studio Components Reference Guide 881

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

You must specify at least one column as a primary
key on which the Update and Delete operations
are based. You can do that by clicking Edit
Schema and selecting the check box(es) next
to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the update and delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
name on which you want to base the update
operation. Do the same in the Key in delete
column for the deletion operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Use commit control Select this box to display the Commit every field in which
you can define the number of rows to be processed brefore
comitting.

Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

You can press Ctrl+Space to access a list of
predefined global variables.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing

Name: Enter the name of the column to be modified or
inserted.

Related scenario

882 Talend Open Studio Components Reference Guide

SQL expression: Enter the SQL expression to be executed
to modify or insert data in the corresponding columns.

Position : Select Before, Replace or After, depending on
the action to be carried out on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, particularly
when there are several actions to be carried out on the data.

Enable debug mode Select this check box to display each step of the process
by which the data is written in the database.

tStatCatcher Statistics Select this check box to collect the log data at a component
level.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in an EXA database. It also allows you
to create a reject flow using a Row > Rejects link to filter data in error. For a user
scenario, see the section called “Scenario 3: Retrieve data in error with a Reject
link”.

Limitation n/a

Related scenario

For a scenario in which tEXAOutput might be used, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”.

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tEXARow

Talend Open Studio Components Reference Guide 883

tEXARow

tEXARow properties

Component Family Databases/EXA

Function The tEXARow component is specific to this type of database. It executes SQL
queries on specified databases. The Row suffix indicates that it is used to channel a
flow in a Job although it does not produce any output data.

Purpose Depending on the nature of the query and the database, tEXARow acts on the actual
structure of the database, or indeed the data, although without modifying them.

Basic settings Property type Either Built-in or Repository.

Built-in: No properties stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address.

Port Listening port number of the DB server.

Schema name Enter the schema name.

Username and
Password

User authentication information.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide

Table Name Name of the table to be processed.

Query type Either Built-in or Repository.

Built-in: Enter the query manually or with the help of the
SQLBuilder.

Repository: Select the appropriate query from the
Repository. The Query field is then completed
automatically.

Guess Query Click the Guess Query button to generate the query that
corresponds to the table schema in the Query field.

Query Enter your query, taking care to ensure that the field order
matches that defined in the schema.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-

Related scenarios

884 Talend Open Studio Components Reference Guide

free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

Propagate QUERY’s
recordset

Select this check box to insert the query results in one of
the flow columns. Select the particular column from the
use column list.

Commit every Number of rows to be included in the batch before the
data is written. This option guarantees the quality of the
transaction (although there is no rollback option) and
improves performance.

tStatCatcher Statistics Select this check box to collect the log data at a component
level.

Usage This component offers query flexibility as it covers all possible SQL query
requirements.

Limitation n/a

Related scenarios

For a scenario in which tEXARow might be used, see:

• the section called “Scenario: Resetting a DB auto-increment”

• the section called “Scenario 1: Removing and regenerating a MySQL table index”

tEXistConnection

Talend Open Studio Components Reference Guide 885

tEXistConnection

tEXistConnection properties

This component is closely related to tEXistGet and tEXistPut. Once you have set the connection properties in
this component, you have the option of reusing the connection without having to set the properties again for each
tEXist component used in the Job.

Component family Databases/eXist

Function tEXistConnection opens a connection to an eXist database in order that a
transaction may be carried out.

Purpose Opens a connection to an eXist database in order that a transaction may be carried
out.

Basic settings URI URI of the database you want to connect to.

Collection Enter the path to the collection of interest on the database
server.

Driver This field is automatically populated with the standard
driver.

Users can enter a different driver, depending on
their needs.

Username and
Password

User authentication information.

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing metadata
at a Job level as well as at each component level.

Usage This component is to be used along with the other tEXist components such as
tEXistGet and tEXistPut.

eXist-db is an open source database management system built using XML
technology. It stores XML data according to the XML data model and features
efficient, index-based XQuery processing.

For further information about XQuery, see XQuery.

For further information about the XQuery update extension, see XQuery update
extension.

Limitation n/a

Related scenarios

This component is closely related to tEXistGet and tEXistPut. It usually does not make much sense to use one
of these without using a tEXistConnection component to open a connection for the current transaction.

For tEXistConnection related scenario, see the section called “tMysqlConnection”

http://exist.sourceforge.net/xquery.html
http://exist.sourceforge.net/update_ext.html
http://exist.sourceforge.net/update_ext.html

tEXistDelete

886 Talend Open Studio Components Reference Guide

tEXistDelete

tEXistDelete properties

Component family Databases/eXist

Function This component deletes resources from an eXist database.

Purpose tEXistDelete deletes specified resources from remote eXist databases.

Basic settings Use an existing
connection/Component
List

Select this check box and click the relevant
tEXistConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the
child Job, Component list presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, make sure that the available
connection components are sharing the intended
connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the
intended connection manually. In this case,
make sure the connection name is unique and
distinctive all over through the two Job levels.
For more information about Dynamic settings,
see your studio user guide.

URI URI of the database you want to connect to.

Collection Enter the path to the collection of interest on the database
server.

Driver This field is automatically populated with the standard
driver.

Users can enter a different driver, depending on
their needs.

Username and
Password

User authentication information.

Target Type Either Resource, Collection, or All.

Files Click the plus button to add the lines you want to use as
filters:

Filemask: enter the filename or filemask using
wildcharacters (*) or regular expressions.

Related scenario

Talend Open Studio Components Reference Guide 887

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing
metadata at a job level as well as at each component
level.

Usage This component is typically used as a single component sub-job but can also be
used as an output or end object. eXist-db is an open source database management
system built using XML technology. It stores XML data according to the XML
data model and features efficient, index-based XQuery processing.

For further information about XQuery, see XQuery.

For further information about the XQuery update extension, see XQuery update
extension.

Limitation n/a

Related scenario

No scenario is available for this component yet.

http://exist.sourceforge.net/xquery.html
http://exist.sourceforge.net/update_ext.html
http://exist.sourceforge.net/update_ext.html

tEXistGet

888 Talend Open Studio Components Reference Guide

tEXistGet

tEXistGet properties

Component family Databases/eXist

Function This component retrieves resources from a remote eXist DB server.

Purpose tEXistGet downloads selected resources from a remote DB server to a defined
local directory.

Basic settings Use an existing
connection/Component
List

Select this check box and click the relevant
tEXistConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the
child Job, Component list presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, make sure that the available
connection components are sharing the intended
connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the
intended connection manually. In this case,
make sure the connection name is unique and
distinctive all over through the two Job levels.
For more information about Dynamic settings,
see your studio user guide.

URI URI of the database you want to connect to.

Collection Enter the path to the collection of interest on the database
server.

Driver This field is automatically populated with the standard
driver.

Users can enter a different driver, depending on
their needs.

Username and
Password

User authentication information.

Local directory Path to the file’s destination location.

Files Click the plus button to add the lines you want to use as
filters:

Scenario: Retrieve resources from a remote eXist DB server

Talend Open Studio Components Reference Guide 889

Filemask: enter the filename or filemask using
wildcharacters (*) or regular expressions

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing
metadata at a job level as well as at each component
level.

Usage This component is typically used as a single component sub-job but can also be
used as an output or end object. eXist-db is an open source database management
system built using XML technology. It stores XML data according to the XML
data model and features efficient, index-based XQuery processing.

For further information about XQuery, see XQuery.

For further information about the XQuery update extension, see XQuery update
extension.

Limitation n/a

Scenario: Retrieve resources from a remote eXist DB
server

This is a single-component Job that retrieves data from a remote eXist DB server and download the data to a
defined local directory.

This simple Job requires one component: tEXistGet.

1. Drop the tEXistGet component from the Palette into the design workspace.

2. Double-click the tEXistGet component to open the Component view and define the properties in its Basic
settings view.

http://exist.sourceforge.net/xquery.html
http://exist.sourceforge.net/update_ext.html
http://exist.sourceforge.net/update_ext.html

Scenario: Retrieve resources from a remote eXist DB server

890 Talend Open Studio Components Reference Guide

3. Fill in the URI field with the URI of the eXist database you want to connect to.

In this scenario, the URI is xmldb:exist://192.168.0.165:8080/exist/xmlrpc. Note that the URI used in this use
case is for demonstration purpose only and is not an active address.

4. Fill in the Collection field with the path to the collection of interest on the database server, /db/talend in
this scenario.

5. Fill in the Driver field with the driver for the XML database, org.exist.xmldb.DatabaseImpl in this scenario.

6. Fill in the Username and Password fields by typing in admin and talend respectively in this scenario.

7. Click the three-dot button next to the Local directory field to set a path for saving the XML file downloaded
from the remote database server.

In this scenario, set the path to your desktop, for example C:/Documents and Settings/galano/Desktop/
ExistGet.

8. In the Files field, click the plus button to add a new line in the Filemask area, and fill it with a complete file
name to retrieve data from a particular file on the server, or a filemask to retrieve data from a set of files.
In this scenario, fill in dictionary_en.xml.

9. Save your Job and press F6 to execute it.

Scenario: Retrieve resources from a remote eXist DB server

Talend Open Studio Components Reference Guide 891

The XML file dictionary_en.xml is retrieved and downloaded to the defined local directory.

tEXistList

892 Talend Open Studio Components Reference Guide

tEXistList

tEXistList properties

Component family Databases/eXist

Function This component lists the resources stored on a remote DB server.

Purpose tEXistList lists the resources stored on a remote database server.

Basic settings Use an existing
connection/Component
List

Select this check box and click the relevant
tEXistConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the
child Job, Component list presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, make sure that the available
connection components are sharing the intended
connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the
intended connection manually. In this case,
make sure the connection name is unique and
distinctive all over through the two Job levels.
For more information about Dynamic settings,
see your studio user guide.

URI URI of the database you want to connect to.

Collection Enter the path to the collection of interest on the database
server.

Driver This field is automatically populated with the standard
driver.

Users can enter a different driver, depending on
their needs.

Username and
Password

Server authentication information.

Files Click the plus button to add the lines you want to use as
filters:.

Filemask: enter the filename or filemask using
wildcharacters (*) or regular expressions.

Related scenario

Talend Open Studio Components Reference Guide 893

Target Type Either Resource, Collection or All contents:

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing
metadata at a job level as well as at each component
level.

Usage This component is typically used along with a tEXistGetcomponent to retrieve
the files listed, for example.

eXist-db is an open source database management system built using XML
technology. It stores XML data according to the XML data model and features
efficient, index-based XQuery processing.

For further information about XQuery, see XQuery.

For further information about the XQuery update extension, see XQuery update
extension.

Limitation n/a

Related scenario

No scenario is available for this component yet.

http://exist.sourceforge.net/xquery.html
http://exist.sourceforge.net/update_ext.html
http://exist.sourceforge.net/update_ext.html

tEXistPut

894 Talend Open Studio Components Reference Guide

tEXistPut

tEXistPut properties

Component family Databases/eXist

Function This component uploads resources to a DB server.

Purpose tEXistPut uploads specified files from a defined local directory to a remote DB
server.

Basic settings Use an existing
connection/Component
List

Select this check box and click the relevant
tEXistConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the
child Job, Component list presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, make sure that the available
connection components are sharing the intended
connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the
intended connection manually. In this case,
make sure the connection name is unique and
distinctive all over through the two Job levels.
For more information about Dynamic settings,
see your studio user guide.

URI URI of the database you want to connect to.

Collection Enter a path to indicate where the resource is to be saved
on the server.

Driver This field is automatically populated with the standard
driver.

Users can enter a different driver, depending on
their needs.

Username and
Password

User authentication information.

Local directory Path to the source location of the file(s).

Files Click the plus button to add the lines you want to use as
filters:.

Related scenario

Talend Open Studio Components Reference Guide 895

Filemask: enter the filename or filemask using
wildcharacters (*) or regular expressions.

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing
metadata at a job level as well as at each component
level.

Usage This component is typically used as a single component sub-job but can also be
used as an output or end object.

eXist-db is an open source database management system built using XML
technology. It stores XML data according to the XML data model and features
efficient, index-based XQuery processing.

For further information about XQuery, see XQuery.

For further information about the XQuery update extension, see XQuery update
extension.

Limitation n/a

Related scenario

No scenario is available for this component yet.

http://exist.sourceforge.net/xquery.html
http://exist.sourceforge.net/update_ext.html
http://exist.sourceforge.net/update_ext.html

tEXistXQuery

896 Talend Open Studio Components Reference Guide

tEXistXQuery

tEXistXQuery properties

Component family Databases/eXist

Function This component uses local files containing XPath queries to query XML files
stored on remote databases.

Purpose tEXistXQuery queries XML files located on remote databases and outputs the
results to an XML file stored locally.

Basic settings Use an existing
connection/Component
List

Select this check box and click the relevant
tEXistConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the
child Job, Component list presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, make sure that the available
connection components are sharing the intended
connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the
intended connection manually. In this case,
make sure the connection name is unique and
distinctive all over through the two Job levels.
For more information about Dynamic settings,
see your studio user guide.

URI URI of the database you want to connect to.

Collection Enter the path to the XML file location on the database.

Driver This field is automatically populated with the standard
driver.

Users can enter a different driver, depending on
their needs.

Username and
Password

DB server authentication information.

XQuery Input File Browse to the local file containing the query to be
executed.

Local Output Browse to the directory in which the query results should
be saved.

Related scenario

Talend Open Studio Components Reference Guide 897

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing
metadata at a job level as well as at each component
level.

Usage This component is typically used as a single component Job but can also be used
as part of a more complex Job.

eXist-db is an open source database management system built using XML
technology. It stores XML data according to the XML data model and features
efficient, index-based XQuery processing.

For further information about XQuery, see XQuery.

For further information about the XQuery update extension, see XQuery update
extension.

Limitation n/a

Related scenario

No scenario is available for this component yet.

http://exist.sourceforge.net/xquery.html
http://exist.sourceforge.net/update_ext.html
http://exist.sourceforge.net/update_ext.html

tEXistXUpdate

898 Talend Open Studio Components Reference Guide

tEXistXUpdate

tEXistXUpdate properties

Component family Databases/eXist

Function This component processes XML file records and updates the records on the DB
server.

Purpose tEXistXUpdate processes XML file records and updates the existing records on
the DB server.

Basic settings Use an existing
connection/Component
List

Select this check box and click the relevant
tEXistConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the
child Job, Component list presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, make sure that the available
connection components are sharing the intended
connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the
intended connection manually. In this case,
make sure the connection name is unique and
distinctive all over through the two Job levels.
For more information about Dynamic settings,
see your studio user guide.

URI URI of the database you want to connect to.

Collection Enter the path to the collection and file of interest on the
database server.

Driver This field is automatically populated with the standard
driver.

Users can enter a different driver, depending on
their needs.

Username and
Password

DB server authentication information.

Update File Browse to the local file in the local directory to be used
to update the records on the database.

Related scenario

Talend Open Studio Components Reference Guide 899

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing
metadata at a job level as well as at each component
level.

Usage This component is typically used as a single component Job but can also be used
as part of a more complex Job.

eXist-db is an open source database management system built using XML
technology. It stores XML data according to the XML data model and features
efficient, index-based XQuery processing.

For further information about XQuery, see XQuery.

For further information about the XQuery update extension, see XQuery update
extension.

Limitation n/a

Related scenario

No scenario is available for this component yet.

http://exist.sourceforge.net/xquery.html
http://exist.sourceforge.net/update_ext.html
http://exist.sourceforge.net/update_ext.html

tFirebirdClose

900 Talend Open Studio Components Reference Guide

tFirebirdClose

tFirebirdClose properties

Component family Databases/Firebird

Function tFirebirdClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tFirebirdConnection component in the list if
more than one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Firebird components, especially with
tFirebirdConnection and tFirebirdCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.

tFirebirdCommit

Talend Open Studio Components Reference Guide 901

tFirebirdCommit

tFirebirdCommit Properties

This component is closely related to tFirebirdConnection and tFirebirdRollback. It usually doesn’t make much
sense to use these components independently in a transaction.

Component family Databases/Firebird

Function Validates the data processed through the Job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the tFirebirdConnection component in the list if
more than one connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection
to link tFirebirdCommit to your Job, your data
will be commited row by row. In this case, do not
select the Close connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Firebird components, especially with
tFirebirdConnection and tFirebirdRollback components.

Limitation n/a

Related scenario

This component is closely related to tFirebirdConnection and tFirebirdRollback. It usually doesn’t make much
sense to use one of these without using a tFirebirdConnection component to open a connection for the current
transaction.

For tFirebirdCommit related scenario, see the section called “tMysqlConnection”

tFirebirdConnection

902 Talend Open Studio Components Reference Guide

tFirebirdConnection

tFirebirdConnection properties

This component is closely related to tFirebirdCommit and tFirebirdRollback. It usually does not make much
sense to use one of these without using a tFirebirdConnection to open a connection for the current transaction.

Component family Databases/Firebird

Function tFirebirdConnection opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host name Database server IP address.

Database Name of the database.

Username and
Password

DB user authentication data.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Advanced settings Auto commit Select this check box to automatically commit a
transaction when it is completed.

tStatCatcher Statistics Select this check box to gather the job processing metadata
at a Job level as well as at each component level.

Usage This component is to be used along with Firebird components, especially with
tFirebirdCommit and tFirebirdRollback.

Limitation n/a

Related scenarios

This component is closely related to tFirebirdCommit and tFirebirdRollback. It usually does not make much
sense to use one of these without using a tFirebirdConnection component to open a connection for the current
transaction.

For tFirebirdConnection related scenario, see the section called “tMysqlConnection”

tFirebirdInput

Talend Open Studio Components Reference Guide 903

tFirebirdInput

tFirebirdInput properties

Component family Databases/FireBird

Function tFirebirdInput reads a database and extracts fields based on a query.

Purpose tFirebirdInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address

Port Listening port number of the DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Advanced Settings Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers all possible SQL queries for FireBird databases.

Limitation n/a

Related scenarios

904 Talend Open Studio Components Reference Guide

Related scenarios

For related topics, see the tDBInput scenarios:

• the section called “Scenario 1: Displaying selected data from DB table”.

• the section called “Scenario 2: Using StoreSQLQuery variable”.

See also related topic: the section called “Scenario: Dynamic context use in MySQL DB insert”.

tFirebirdOutput

Talend Open Studio Components Reference Guide 905

tFirebirdOutput

tFirebirdOutput properties

Component family Databases/FireBird

Function tFirebirdOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tFirebirdOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding component
in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, Job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

tFirebirdOutput properties

906 Talend Open Studio Components Reference Guide

Update or insert: Update existing entries or create it if non
existing

Delete: Remove entries corresponding to the input flow.

You must specify at least one column as a primary
key on which the Update and Delete operations
are based. You can do that by clicking Edit
Schema and selecting the check box(es) next to the
column(s) you want to set as primary key(s). For
an advanced use, click the Advanced settings view
where you can simultaneously define primary keys
for the update and delete operations. To do that:
Select the Use field options check box and then in
the Key in update column, select the check boxes
next to the column name on which you want to
base the update operation. Do the same in the Key
in delete column for the deletion operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number of
fields to be processed and passed on to the next component.
The schema is either Built-in or stored remotely in the
Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before
committing batches of rows together into the DB. This
option ensures transaction quality (but not rollback) and,
above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Related scenarios

Talend Open Studio Components Reference Guide 907

Enable debug mode Select this check box to display each step during
processing entries in a database.

Support null in “SQL
WHERE” statement

Select this check box if you want to deal with the Null
values contained in a DB table.

Make sure the Nullable check box is selected for
the corresponding columns in the schema.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a Firebird database. It also allows you to
create a reject flow using a Row > Rejects link to filter data in error. For an example
of tMySqlOutput in use, see the section called “Scenario 3: Retrieve data in error
with a Reject link”.

Limitation n/a

Related scenarios

For related topics, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”.

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tFirebirdRollback

908 Talend Open Studio Components Reference Guide

tFirebirdRollback

tFirebirdRollback properties

This component is closely related to tFirebirdCommit and tFirebirdConnection. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/Firebird

Function tFirebirdRollback cancels the transaction committed in the connected database.

Purpose This component avoids to commit part of a transaction involuntarily..

Basic settings Component list Select the tFirebirdConnection component in the list if
more than one connection are planned for the current Job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Firebird components, especially with
tFirebirdConnection and tFirebirdCommit.

Limitation n/a

Related scenario

For tFirebirdRollback related scenario, see the section called “Scenario: Rollback from inserting data in mother/
daughter tables”.

tFirebirdRow

Talend Open Studio Components Reference Guide 909

tFirebirdRow

tFirebirdRow properties

Component family Databases/FireBird

Function tFirebirdRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the component
implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tFirebirdRow acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tFirebirdConnection component on the Component list
to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Database Name of the database

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next

tFirebirdRow properties

910 Talend Open Studio Components Reference Guide

component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this checkbox if you want to query the
database using a PreparedStatement. In the Set
PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all possible
SQL queries.

Limitation n/a

Related scenarios

Talend Open Studio Components Reference Guide 911

Related scenarios

For related topics, see:

• the section called “Scenario: Resetting a DB auto-increment”.

• the section called “Scenario 1: Removing and regenerating a MySQL table index”.

tHiveClose

912 Talend Open Studio Components Reference Guide

tHiveClose

tHiveClose component belongs to two component families: Big Data and Databases. For more information about
tHiveClose, see the section called “tHiveClose”.

tHiveConnection

Talend Open Studio Components Reference Guide 913

tHiveConnection

tHiveConnection component belongs to two component families: Big Data and Databases. For more information
about tHiveConnection, see the section called “tHiveConnection”.

tHiveRow

914 Talend Open Studio Components Reference Guide

tHiveRow

tHiveRow component belongs to two component families: Big Data and Databases. For more information about
tHiveRow, see the section called “tHiveRow”.

tHSQLDbInput

Talend Open Studio Components Reference Guide 915

tHSQLDbInput

tHSQLDbInput properties

Component family Databases/HSQLDb

Function tHSQLDbInput reads a database and extracts fields based on a query.

Purpose tHSQLDbInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Running Mode Select on the list the Server Mode corresponding to your
DB setup among the four propositions :

HSQLDb Server, HSQLDb WebServer, HSQLDb In
Process Persistent, HSQLDb In Memory.

Use TLS/SSL sockets select this check box to enable the secured mode if
required.

Host Database server IP address

Port Listening port number of DB server.

Database Alias Alias name of the database

Username and
Password

DB user authentication data.

DB path Specify the directory to the database you want to connect
to. This field is available only to the HSQLDb In Process
Persistent running mode.

By default, if the database you specify in this field
does not exist, it will be created automatically. If
you want to change this default setting, modify
the connection parameter set in the Additional
JDBC parameter field in the Advanced settings
view

Db name Enter the database name that you want to connect to.
This field is available only to the HSQLDb In Process

tHSQLDbInput properties

916 Talend Open Studio Components Reference Guide

Persistent running mode and the HSQLDb In Memory
running mode.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. When the running mode is
HSQLDb In Process Persistent , this additional property
is set as ifexists=true by default, meaning that the
database will be automatically created when needed.

Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers all possible SQL queries for HSQLDb databases.

Global Variables Number of Lines: Indicates the number of lines
processed. This is available as an After variable.

Returns an integer.

Query: Indicates the query to be processed. This is
available as a Flow variable.

Returns a string

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Row: Main; Iterate

Trigger: Run if; On Component Ok; On Component
Error; On Subjob Ok; On Subjob Error.

Incoming links (from one component to another):

Row: Iterate;

Trigger: Run if; On Component Ok; On Component
Error; On Subjob Ok; On Subjob Error.

Related scenarios

Talend Open Studio Components Reference Guide 917

For further information regarding connections, see Talend
Open Studio User Guide.

Limitation n/a

Related scenarios

For related topics, see the tDBInput scenarios:

• the section called “Scenario 1: Displaying selected data from DB table”.

• the section called “Scenario 2: Using StoreSQLQuery variable”

tHSQLDbOutput

918 Talend Open Studio Components Reference Guide

tHSQLDbOutput

tHSQLDbOutput properties

Component family Databases/HSQLDb

Function tHSQLDbOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tHSQLDbOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding component
in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Running Mode Select on the list the Server Mode corresponding to your
DB setupamong the four propositions :

HSQLDb Server, HSQLDb WebServer, HSQLDb In
Process Persistent, HSQLDb In Memory.

Use TLS/SSL sockets Select this check box to enable the secured mode if
required.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

DB path Specify the directory to the database you want to connect
to. This field is available only to the HSQLDb In Process
Persistent running mode.

By default, if the database you specify in this field
does not exist, it will be created automatically. If
you want to change this default setting, modify
the connection parameter set in the Additional
JDBC parameter field in the Advanced settings
view

Db name Enter the database name that you want to connect to.
This field is available only to the HSQLDb In Process

tHSQLDbOutput properties

Talend Open Studio Components Reference Guide 919

Persistent running mode and the HSQLDb In Memory
running mode.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, Job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

tHSQLDbOutput properties

920 Talend Open Studio Components Reference Guide

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. When the running mode is
HSQLDb In Process Persistent , this additional property
is set as ifexists=true by default, meaning that the
database will be automatically created when needed.

You can press Ctrl+Space to access a list of
predefined global variables.

Commit every Enter the number of rows to be completed before
committing batches of rows together into the DB. This
option ensures transaction quality (but not rollback) and,
above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Enable debug mode Select this check box to display each step during
processing entries in a database.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a MySQL database. It also allows you to
create a reject flow using a Row > Rejects link to filter data in error. For an example
of tMySqlOutput in use, see the section called “Scenario 3: Retrieve data in error
with a Reject link”.

Global Variables Number of Lines: Indicates the number of lines
processed. This is available as an After variable.

Returns an integer.

Related scenarios

Talend Open Studio Components Reference Guide 921

NB line Updated: Indicates the number of lines updated.
This is available as an After variable.

Returns an integer.

NB line Inserted: Indicates the number of lines inserted.
This is available as an After variable.

Returns an integer.

NB line Deleted: Indicates the number of lines deleted.
This is available as an After variable.

Returns an integer.

NB line Rejected: Indicates the number of lines rejected.
This is available as an After variable.

Returns an integer

Query: Indicates the query to be processed. This is
available as a After variable.

Returns a string

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Row: Main; Reject

Trigger: Run if; On Component Ok; On Component
Error; On Subjob Ok; On Subjob Error.

Incoming links (from one component to another):

Row: Main;

Trigger: Run if; On Component Ok; On Component
Error; On Subjob Ok; On Subjob Error.

For further information regarding connections, see Talend
Open Studio User Guide.

Limitation n/a

Related scenarios

For related topics, see

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tHSQLDbRow

922 Talend Open Studio Components Reference Guide

tHSQLDbRow

tHSQLDbRow properties

Component family Databases/HSQLDb

Function tHSQLDbRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the component
implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tHSQLDbRow acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Running Mode Select on the list the Server Mode corresponding to your
DB setup among the four propositions :

HSQLDb Server, HSQLDb WebServer, HSQLDb In
Process Persistent, HSQLDb In Memory.

Use TLS/SSL sockets Select this check box to enable the secured mode if
required.

Host Database server IP address

Port Listening port number of DB server.

Database Alias Name of the database

Username and
Password

DB user authentication data.

DB path Specify the directory to the database you want to connect
to. This field is available only to the HSQLDb In Process
Persistent running mode.

By default, if the database you specify in this field
does not exist, it will be created automatically. If
you want to change this default setting, modify
the connection parameter set in the Additional
JDBC parameter field in the Advanced settings
view

Database Enter the database name that you want to connect to.
This field is available only to the HSQLDb In Process
Persistent running mode and the HSQLDb In Memory
running mode.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next

tHSQLDbRow properties

Talend Open Studio Components Reference Guide 923

component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. When the running mode is
HSQLDb In Process Persistent , this additional property
is set as ifexists=true by default, meaning that the
database will be automatically created when needed.

Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Global Variables Query: Indicates the query to be processed. This is
available as a Flow variable.

Returns a string

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Row: Main; Reject; Iterate

Trigger: Run if; On Component Ok; On Component
Error; On Subjob Ok; On Subjob Error.

Incoming links (from one component to another):

Row: Main; Iterate

Related scenarios

924 Talend Open Studio Components Reference Guide

Trigger: Run if; On Component Ok; On Component
Error; On Subjob Ok; On Subjob Error.

For further information regarding connections, see Talend
Open Studio User Guide.

Limitation n/a

Related scenarios

For related topics, see:

• the section called “Scenario: Resetting a DB auto-increment”.

• the section called “Scenario 1: Removing and regenerating a MySQL table index”.

tInterbaseClose

Talend Open Studio Components Reference Guide 925

tInterbaseClose

tInterbaseClose properties

Component family Databases/Interbase

Function tInterbaseClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tInterbaseConnection component in the list if
more than one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Interbase components, especially with
tInterbaseConnection and tInterbaseCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.

tInterbaseCommit

926 Talend Open Studio Components Reference Guide

tInterbaseCommit

tInterbaseCommit Properties

This component is closely related to tInterbaseConnection and tInterbaseRollback. It usually doesn’t make
much sense to use JDBC components independently in a transaction.

Component family Databases/Interbase

Function Validates the data processed through the Job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the tInterbaseConnection component in the list if
more than one connection are planned for the current Job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

If you want to use a Row > Main connection
to link tInterbaseCommit to your Job, your data
will be commited row by row. In this case, do not
select the Close connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Interbase components, especially with the
tInterbaseConnection and tInterbaseRollback components.

Limitation n/a

Related scenario

This component is closely related to tInterbaseConnection and tInterbaseRollback. It usually doesn’t make
much sense to use JDBC components without using the tInterbaseConnection component to open a connection
for the current transaction.

For tInterbaseCommit related scenario, see the section called “tMysqlConnection”

tInterbaseConnection

Talend Open Studio Components Reference Guide 927

tInterbaseConnection

tInterbaseConnection properties

This component is closely related to tInterbaseCommit and tInterbaseRollback. It usually does not make much
sense to use one of these without using a tInterbaseConnection to open a connection for the current transaction.

Component family Databases/Interbase

Function tInterbaseConnection opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host name Database server IP address.

Database Name of the database.

Username and
Password

DB user authentication data.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Advanced settings Auto commit Select this check box to automatically commit a
transaction when it is completed.

tStatCatcher Statistics Select this check box to gather the job processing metadata
at a Job level as well as at each component level.

Usage This component is to be used along with Interbase components, especially with
tInterbaseCommit and tInterbaseRollback.

Limitation n/a

Related scenarios

This component is closely related to tInterbaseCommit and tInterbaseRollback. It usually does not make much
sense to use one of these without using a tInterbaseConnection component to open a connection for the current
transaction.

For tInterbaseConnection related scenario, see the section called “tMysqlConnection”

tInterbaseInput

928 Talend Open Studio Components Reference Guide

tInterbaseInput

tInterbaseInput properties

Component family Databases/Interbase

Function tInterbaseInput reads a database and extracts fields based on a query.

Purpose tInterbaseInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Host Database server IP address

Database Name of the database

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Related scenarios

Talend Open Studio Components Reference Guide 929

Usage This component covers all possible SQL queries for Interbase databases.

Limitation n/a

Related scenarios

For related topics, see the tDBInput scenarios:

• the section called “Scenario 1: Displaying selected data from DB table”.

• the section called “Scenario 2: Using StoreSQLQuery variable”.

See also the related topic in tContextLoad: the section called “Scenario: Dynamic context use in MySQL DB
insert”.

tInterbaseOutput

930 Talend Open Studio Components Reference Guide

tInterbaseOutput

tInterbaseOutput properties

Component family Databases/Interbase

Function tInterbaseOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tInterbaseOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding component
in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Host Database server IP address

Database Name of the database

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

tInterbaseOutput properties

Talend Open Studio Components Reference Guide 931

Insert: Add new entries to the table. If duplicates are
found, Job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

Clear data in table Wipes out data from the selected table before action.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before
committing batches of rows together into the DB. This
option ensures transaction quality (but not rollback) and,
above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

Related scenarios

932 Talend Open Studio Components Reference Guide

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Enable debug mode Select this check box to display each step during
processing entries in a database.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a Interbase database. It also allows
you to create a reject flow using a Row > Rejects link to filter data in error. For an
example of tMySqlOutput in use, see the section called “Scenario 3: Retrieve data
in error with a Reject link”.

Limitation n/a

Related scenarios

For related topics, see

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”.

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tInterbaseRollback

Talend Open Studio Components Reference Guide 933

tInterbaseRollback

tInterbaseRollback properties

This component is closely related to tInterbaseCommit and tInterbaseConnection. It usually does not make
much sense to use these components independently in a transaction.

Component family Databases/Interbase

Function tInterbaseRollback cancels the transaction committed in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tInterbaseConnection component in the list if
more than one connection are planned for the current Job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Interbase components, especially with
tInterbaseConnection and tInterbaseCommit.

Limitation n/a

Related scenarios

For tInterbaseRollback related scenario, see the section called “Scenario: Rollback from inserting data in mother/
daughter tables”.

tInterbaseRow

934 Talend Open Studio Components Reference Guide

tInterbaseRow

tInterbaseRow properties

Component family Databases/Interbase

Function tInterbaseRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the component
implements a flow in the job design although it does not provide output.

Purpose Depending on the nature of the query and the database, tInterbaseRow acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tInterbaseConnection component on the Component list
to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Database Name of the database

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next

tInterbaseRow properties

Talend Open Studio Components Reference Guide 935

component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this checkbox if you want to query the
database using a PreparedStatement. In the Set
PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Limitation n/a

Related scenarios

936 Talend Open Studio Components Reference Guide

Related scenarios

• For tDBSQLRow related scenario: see the section called “Scenario: Resetting a DB auto-increment”

• For tMySQLRow related scenario: see the section called “Scenario 1: Removing and regenerating a MySQL
table index”.

tJavaDBInput

Talend Open Studio Components Reference Guide 937

tJavaDBInput

tJavaDBInput properties

Component family Databases/JavaDB

Function tJavaDBInput reads a database and extracts fields based on a query.

Purpose tJavaDBInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Framework Select your Java database framework on the list

Database Name of the database

DB root path Browse to your database root.

Username and
Password

DB user authentication data.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

Related scenarios

938 Talend Open Studio Components Reference Guide

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers all possible SQL database queries.

Limitation n/a

Related scenarios

For related topics, see the tDBInput scenarios:

• the section called “Scenario 1: Displaying selected data from DB table”.

• the section called “Scenario 2: Using StoreSQLQuery variable”.

See also the related topic in tContextLoad: the section called “Scenario: Dynamic context use in MySQL DB
insert”.

tJavaDBOutput

Talend Open Studio Components Reference Guide 939

tJavaDBOutput

tJavaDBOutput properties

Component family Databases/JavaDB

Function tJavaDBOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tJavaDBOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding component
in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Framework Select your Java database framework on the list

Database Name of the database

DB root path Browse to your database root.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

tJavaDBOutput properties

940 Talend Open Studio Components Reference Guide

Insert: Add new entries to the table. If duplicates are
found, Job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before
committing batches of rows together into the DB. This
option ensures transaction quality (but not rollback) and,
above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Related scenarios

Talend Open Studio Components Reference Guide 941

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Enable debug mode Select this check box to display each step during
processing entries in a database.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a Java database. It also allows you to
create a reject flow using a Row > Rejects link to filter data in error. For an example
of tMysqlOutput in use, see the section called “Scenario 3: Retrieve data in error
with a Reject link”.

Limitation n/a

Related scenarios

For related topics, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”.

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tJavaDBRow

942 Talend Open Studio Components Reference Guide

tJavaDBRow

tJavaDBRow properties

Component family Databases/JavaDB

Function tJavaDBRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the component
implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tJavaDBRow acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Framework Select your Java database framework on the list

Database Name of the database

DB root path Browse to your database root.

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Related scenarios

Talend Open Studio Components Reference Guide 943

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this checkbox if you want to query the
database using a PreparedStatement. In the Set
PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Limitation n/a

Related scenarios

For related topics, see:

• the section called “Scenario: Resetting a DB auto-increment”.

• the section called “Scenario 1: Removing and regenerating a MySQL table index”.

tJDBCColumnList

944 Talend Open Studio Components Reference Guide

tJDBCColumnList

tJDBCColumnList Properties

Component family Databases/JDBC

Function Iterates on all columns of a given table through a defined JDBC connection.

Purpose Lists all column names of a given JDBC table.

Basic settings Component list Select the tJDBCConnection component in the list if
more than one connection are planned for the current Job.

Table name Enter the name of the tabe.

Usage This component is to be used along with JDBC components, especially with
tJDBCConnection.

Limitation n/a

Related scenario

For tJDBCColumnList related scenario, see the section called “Scenario: Iterating on a DB table and listing its
column names”.

tJDBCClose

Talend Open Studio Components Reference Guide 945

tJDBCClose

tJDBCClose properties

Component family Databases/JDBC

Function tJDBCClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tJDBCConnection component in the list if
more than one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with JDBC components, especially with
tJDBCConnection and tJDBCCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.

tJDBCCommit

946 Talend Open Studio Components Reference Guide

tJDBCCommit

tJDBCCommit Properties

This component is closely related to tJDBCConnection and tJDBCRollback. It usually doesn’t make much sense
to use JDBC components independently in a transaction.

Component family Databases/JDBC

Function Validates the data processed through the Job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the tJDBCConnection component in the list if
more than one connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection to
link tJDBCCommit to your Job, your data will
be commited row by row. In this case, do not
select the Close connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with JDBC components, especially with the
tJDBCConnection and tJDBCRollback components.

Limitation n/a

Related scenario

This component is closely related to tJDBCConnection and tJDBCRollback. It usually doesn’t make much sense
to use JDBC components without using the tJDBCConnection component to open a connection for the current
transaction.

For tJDBCCommit related scenario, see the section called “tMysqlConnection”

tJDBCConnection

Talend Open Studio Components Reference Guide 947

tJDBCConnection

tJDBCConnection Properties

This component is closely related to tJDBCCommit and tJDBCRollback. It usually doesn’t make much sense
to use one of JDBC components without using the tJDBCConnection component to open a connection for the
current transaction.

Component family Databases/JDBC

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings

JDBC URL Enter the JDBC URL to connect to the desired DB. For
example, enter: jdbc:mysql://IP address/database name to
connect to a mysql database.

Driver JAR Click the plus button under the table to add lines of the
count of your need for the purpose of loading several
JARs. Then on each line, click the three dot button to open
the Select Module wizard from which you can select a
driver JAR of your interest for each line.

Driver Class Enter the driver class related o your connection. For
example, enter com.mysql.jdbc.Driver as a driver class to
connect to a mysql database.

Username and
Password

Enter your DB authentication data.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Advanced settings Use Auto-Commit Select this check box to display the Auto Commit check
box. Select it to activate auto commit mode.

Once you clear the Use Auto-Commit check box, the
auto-commit statement will be removed from the codes.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with JDBC components, especially with the
tJDBCCommit and tJDBCRollback components.

Limitation n/a

Related scenario

948 Talend Open Studio Components Reference Guide

Related scenario

This component is closely related to tJDBCCommit and tJDBCRollback. It usually doesn’t make much sense
to use one of JDBC components without using the tJDBCConnection component to open a connection for the
current transaction.

For tJDBCConnection related scenario, see the section called “tMysqlConnection”

tJDBCInput

Talend Open Studio Components Reference Guide 949

tJDBCInput

tJDBCInput properties

Component family Databases/JDBC

Function tJDBCInput reads any database using a JDBC API connection and extracts fields
based on a query.

Purpose tJDBCInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tJDBCConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

JDBC URL Type in the database location path

Related scenarios

950 Talend Open Studio Components Reference Guide

Driver JAR Click the plus button under the table to add lines of the
count of your need for the purpose of loading several
JARs. Then on each line, click the three dot button to open
the Select Module wizard from which you can select a
driver JAR of your interest for each line.

Class Name Type in the Class name to be pointed to in the driver.

Username and
Password

DB user authentication data.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table Name Type in the name of the table.

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Advanced settings Use cursor When selected, helps to decide the row set to work with at
a time and thus optimize performance.

Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers all possible SQL queries for any database using a JDBC
connection.

Related scenarios

Related topics in tDBInput scenarios:

• the section called “Scenario 1: Displaying selected data from DB table”.

• the section called “Scenario 2: Using StoreSQLQuery variable”.

Related topic in tContextLoad: see the section called “Scenario: Dynamic context use in MySQL DB insert”.

tJDBCOutput

Talend Open Studio Components Reference Guide 951

tJDBCOutput

tJDBCOutput properties

Component family Databases/JDBC

Function tJDBCOutput writes, updates, makes changes or suppresses entries in any type of
database connected to a JDBC API.

Purpose tJDBCOutput executes the action defined on the data contained in the table, based
on the flow incoming from the preceding component in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tJDBCConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

JDBC URL Type in the database location path

tJDBCOutput properties

952 Talend Open Studio Components Reference Guide

Driver JAR Click the plus button under the table to add lines of the
count of your need for the purpose of loading several
JARs. Then on each line, click the three dot button to open
the Select Module wizard from which you can select a
driver JAR of your interest for each line.

Class Name Type in the Class name to be pointed to in the driver.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, Job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es) next
to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before
committing batches of rows together into the DB. This

Related scenarios

Talend Open Studio Components Reference Guide 953

option ensures transaction quality (but not rollback) and,
above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Enable debug mode Select this check box to display each step during
processing entries in a database.

Use Batch Size When selected, enables you to define the number of lines
in each processed batch.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a JDBC database. It also allows you to
create a reject flow using a Row > Rejects link to filter data in error. For an example
of tMySqlOutput in use, see the section called “Scenario 3: Retrieve data in error
with a Reject link”.

Related scenarios

For tJDBCOutput related topics, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”.

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tJDBCRollback

954 Talend Open Studio Components Reference Guide

tJDBCRollback

tJDBCRollback properties

This component is closely related to tJDBCCommit and tJDBCConnection. It usually does not make much sense
to use JDBC components independently in a transaction.

Component family Databases/JDBC

Function Cancels the transaction committed in the connected DB.

Purpose Avoid commiting part of a transaction accidentally.

Basic settings Component list Select the tJDBCConnection component in the list if
more than one connection are planned for the current Job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with JDBC components, especially with
tJDBCConnection and tJDBCCommit components.

Limitation n/a

Related scenario

This component is closely related to tJDBCConnection and tJDBCCommit. It usually does not make much
sense to use JDBC components without using the tJDBCConnection component to open a connection for the
current transaction.

For tJDBCRollback related scenario, see the section called “tMysqlRollback”

tJDBCRow

Talend Open Studio Components Reference Guide 955

tJDBCRow

tJDBCRow properties

Component family Databases/JDBC

Function tJDBCRow is the component for any type database using a JDBC API. It executes
the SQL query stated onto the specified database. The row suffix means the
component implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tJDBCRow acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write easily your SQL statements.

Basic settings Use an existing
connection

Select this check box and click the relevant
tJDBCConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

JDBC URL Type in the database location path.

Driver JAR Click the plus button under the table to add lines of the
count of your need for the purpose of loading several
JARs. Then on each line, click the three dot button to open
the Select Module wizard from which you can select a
driver JAR of your interest for each line.

Class Name Type in the Class name to be pointed to in the driver.

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next

tJDBCRow properties

956 Talend Open Studio Components Reference Guide

component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table Name Name of the table to be processed.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this checkbox if you want to query the
database using a PreparedStatement. In the Set
PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query for any database using a JDBC
connection and covers all possible SQL queries.

Related scenarios

Talend Open Studio Components Reference Guide 957

Related scenarios

For related topics, see:

• the section called “Scenario: Resetting a DB auto-increment”.

• the section called “Scenario 1: Removing and regenerating a MySQL table index”.

tJDBCSP

958 Talend Open Studio Components Reference Guide

tJDBCSP

tJDBCSP Properties

Component family Databases/JDBC

Function tJDBCSP calls the specified database stored procedure.

Purpose tJDBCSP offers a convenient way to centralize multiple or complex queries in a
database and call them easily.

Basic settings JDBC URL Type in the database location path

Driver JAR Click the plus button under the table to add lines of the
count of your need for the purpose of loading several
JARs. Then on each line, click the three dot button to open
the Select Module wizard from which you can select a
driver JAR of your interest for each line.

Class Name Type in the Class name to be pointed to in the driver.

Username and
Password

DB user authentication data.

Schema and Edit
Schema

In SP principle, the schema is an input parameter.

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes Built-in.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

SP Name Type in the exact name of the Stored Procedure.

Is Function / Return
result in

Select this check box , if a value only is to be returned.

Select on the list the schema column, the value to be
returned is based on.

Parameters Click the Plus button and select the various Schema
Columns that will be required by the procedures. Note
that the SP schema can hold more columns than there are
paramaters used in the procedure.

Select the Type of parameter:

IN: Input parameter

OUT: Output parameter/return value

Related scenario

Talend Open Studio Components Reference Guide 959

IN OUT: Input parameters is to be returned as value, likely
after modification through the procedure (function).

RECORDSET: Input parameters is to be returned as a set
of values, rather than single value.

Check the section called “tPostgresqlCommit”,
if you want to analyze a set of records from
a database table or DB query and return single
records.

Usage This component is used as intermediary component. It can be used as start
component but only input parameters are thus allowed.

Limitation The Stored Procedures syntax should match the Database syntax.

Related scenario

For related scenarios, see:

• the section called “Scenario: Executing a stored procedure in the MDM Hub”.

• the section called “Scenario: Checking number format using a stored procedure”

Check as well the section called “tPostgresqlCommit” if you want to analyze a set of records from a database table
or DB query and return single records.

tJDBCTableList

960 Talend Open Studio Components Reference Guide

tJDBCTableList

tJDBCTableList Properties

Component family Databases/JDBC

Function Iterates on a set of table names through a defined JDBC connection.

Purpose Lists the names of a given set of JDBC tables using a select statement based on a
Where clause.

Basic settings Component list Select the tJDBCConnection component in the list if
more than one connection are planned for the current Job.

Where clause for table
name selection

Enter the Where clause to identify the tables to iterate on.

Usage This component is to be used along with JDBC components, especially with
tJDBCConnection.

Limitation n/a

Related scenario

For tJDBCTableList related scenario, see the section called “Scenario: Iterating on a DB table and listing its
column names”.

tLDAPAttributesInput

Talend Open Studio Components Reference Guide 961

tLDAPAttributesInput

tLDAPAttributesInput Properties

Component family Databases/LDAP

Function tLDAPAttributesInput analyses each object found via the LDAP query and lists a
collection of attributes associated with the object.

Purpose tLDAPAttributesInput executes an LDAP query based on the given filter and
corresponding to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tLDAPConnection component on the Component list to
reuse the connection details you already defined.

Host LDAP Directory server IP address.

Port Listening port number of server.

Base DN Path to user’s authorised tree leaf.

Protocol Select the protocol type on the list.

LDAP : no encryption is used

LDAPS: secured LDAP. When this option is chosen, the
Advanced CA check box appears. Once selected, the
advanced mode allows you to specify the directory and
the keystore password of the certificate file for storing
a specific CA. However, you can still deactivate this
certificate validation by selecting the Trust all certs check
box.

TLS: certificate is used. When this option is chosen, the
Advanced CA check box appears and is used the same
way as that of the LDAPS type.

Authentication User and
Password

Select the Authentication check box if LDAP login is
required. Note that the login must match the LDAP syntax
requirement to be valid. e.g.: “cn=Directory Manager”.

Filter Type in the filter as expected by the LDAP directory db.

Multi valued field
separator

Type in the value separator in multi-value fields.

Alias dereferencing Select the option on the list. Never improves search
performance if you are sure that no alias is to be
dereferenced. By default, Always is to be used:

Always: Always dereference aliases

tLDAPAttributesInput Properties

962 Talend Open Studio Components Reference Guide

Never: Never dereferences aliases.

Searching:Dereferences aliases only after name
resolution.

Finding: Dereferences aliases only during name
resolution

Referral handling Select the option on the list:

Ignore: does not handle request redirections

Follow:does handle request redirections

Limit Fill in a limit number of records to be read If needed.

Time Limit Fill in a timeout period for the directory. access

Paging Specify the number of entries returned at a time by the
LDAP server.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

As this component is intended to list the attributes
associated with a LDAP object, its schema is then
pre-defined. You should retain these established
columns, even though you may need to add some
new columns. Hence you should use the Built-in
mode.

The pre-defined schema lists:

- objectclass: list of object classes

- mandatoryattributes: list of mandatory attributes to these
classes

- optionalattributes: list of optional attributes to these
classes

- objectattributes: list of attributes that are essential for the
analysed object.

Advanced settings Class Definition Root Specify the root of the object class definition namespace.

tStatCatcher Statistics Select this check box to gather the job processing metadata
at a job level as well as at each component level.

Usage This component covers all possible LDAP queries.

Related scenario

Talend Open Studio Components Reference Guide 963

Note: Press Ctrl + Space bar to access the global variable list, including the
GetResultName variable to retrieve automatically the relevant Base

Related scenario

The tLDAPAttributesInput component follows the usage similar to that of tLDAPInput. Hence for
tLDAPInput related scenario, see the section called “Scenario: Displaying LDAP directory’s filtered content”.

tLDAPConnection

964 Talend Open Studio Components Reference Guide

tLDAPConnection

tLDAPConnection Properties

Component family Databases/LDAP

Function Opens a connection to an LDAP Directory server for data transaction.

Purpose This component creates a connection to an LDAP Directory server. Then it can be
invoked by other components that need to access the LDAP Directory server, e.g.,
tLDAPInput, tLDAPOutput, etc.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host LDAP Directory server IP address.

Port Listening port number of server.

Protocol Select the protocol type on the list.

LDAP: no encryption is used

LDAPS: secured LDAP. When this option is chosen, the
Advanced CA check box appears. Once selected, the
advanced mode allows you to specify the directory and
the keystore password of the certificate file for storing
a specific CA. However, you can still deactivate this
certificate validation by selecting the Trust all certs check
box.

TLS: certificate is used. When this option is chosen, the
Advanced CA check box appears and is used the same
way as that of the LDAPS type.

Base DN Path to user’s authorized tree leaf.

User and Password Fill in the User and Password as required by the directory

Note that the login must match the LDAP syntax
requirement to be valid. e.g.: “cn=Directory Manager”.

Alias dereferencing Select the option on the list. Never improves search
performance if you are sure that no aliases is to be
dereferenced. By default, Always is to be used:

Always: Always dereference aliases

Never: Never dereferences aliases.

Searching:Dereferences aliases only after name
resolution.

Related scenarios

Talend Open Studio Components Reference Guide 965

Finding: Dereferences aliases only during name
resolution

Referral handling Select the option on the list:

Ignore: does not handle request redirections

Follow:does handle request redirections

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing metadata
at a job level as well as at each component level.

Usage This component is to be used with other LDAP components, especially with
tLDAPInput and tLDAPOutput.

Related scenarios

This component is closely related to tLDAPInput and tLDAPOutput as it frees you from filling in the connection
details repeatedly if multiple LDAP input/output components exist.

For tLDAPConnection related scenarios, see the section called “Scenario: Inserting data in mother/daughter
tables”.

tLDAPInput

966 Talend Open Studio Components Reference Guide

tLDAPInput

tLDAPInput Properties

Component family Databases/LDAP

Function tLDAPInput reads a directory and extracts data based on the defined filter.

Purpose tLDAPInput executes an LDAP query based on the given filter and corresponding
to the schema definition. Then it passes on the field list to the next component via
a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box and click the relevant
tLDAPConnection component on the Component list to
reuse the connection details you already defined.

Host LDAP Directory server IP address.

Port Listening port number of server.

Base DN Path to the user’s authorised tree leaf.

To retrieve the full DN information, enter a field
named DN in the schema, in either upper case or
lower case.

Protocol Select the protocol type on the list.

LDAP : no encryption is used

LDAPS: secured LDAP. When this option is chosen, the
Advanced CA check box appears. Once selected, the
advanced mode allows you to specify the directory and
the keystore password of the certificate file for storing
a specific CA. However, you can still deactivate this
certificate validation by selecting the Trust all certs check
box.

TLS: certificate is used When this option is chosen, the
Advanced CA check box appears and is used the same
way as that of the LDAPS type.

Scenario: Displaying LDAP directory’s filtered content

Talend Open Studio Components Reference Guide 967

Authentication User and
Password

Select the Authentication check box if LDAP login is
required. Note that the login must match the LDAP syntax
requirement to be valid. e.g.: “cn=Directory Manager”.

Filter Type in the filter as expected by the LDAP directory db.

Multi valued field
separator

Type in the value separator in multi-value fields.

Alias dereferencing Select the option on the list. Never improves search
performance if you are sure that no alias is to be
dereferenced. By default, Always is to be used:

Always: Always dereference aliases

Never: Never dereferences aliases.

Searching:Dereferences aliases only after name
resolution.

Finding: Dereferences aliases only during name
resolution

Referral handling Select the option on the list:

Ignore: does not handle request redirections

Follow:does handle request redirections

Limit Fill in a limit number of records to be read If needed.

Time Limit Fill in a timeout period for the directory. access

Paging Specify the number of entries returned at a time by the
LDAP server.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Usage This component covers all possible LDAP queries.

Note: Press Ctrl + Space bar to access the global variable list, including the
GetResultName variable to retrieve automatically the relevant Base.

Scenario: Displaying LDAP directory’s filtered content

The Job described below simply filters the LDAP directory and displays the result on the console.

Scenario: Displaying LDAP directory’s filtered content

968 Talend Open Studio Components Reference Guide

• Drop the tLDAPInput component along with a tLogRow from the Palette to the design workspace.

• Set the tLDAPInput properties.

• Set the Property type on Repository if you stored the LDAP connection details in the Metadata Manager in
the Repository. Then select the relevant entry on the list.

• In Built-In mode, fill in the Host and Port information manually. Host can be the IP address of the LDAP
directory server or its DNS name.

• No particular Base DN is to be set.

• Then select the relevant Protocol on the list. In this example: a simple LDAP protocol is used.

• Select the Authentication check box and fill in the login information if required to read the directory. In this
use case, no authentication is needed.

• In the Filter area, type in the command, the data selection is based on. In this example, the filter is:
(&(objectClass=inetorgperson)&(uid=PIERRE DUPONT)).

• Fill in Multi-valued field separator with a comma as some fields may hold more than one value, separated
by a comma.

• As we do not know if some aliases are used in the LDAP directory, select Always on the list.

• Set Ignore as Referral handling.

• Set the limit to 100 for this use case.

Scenario: Displaying LDAP directory’s filtered content

Talend Open Studio Components Reference Guide 969

• Set the Schema as required by your LDAP directory. In this example, the schema is made of 6 columns including
the objectClass and uid columns which get filtered on.

• In the tLogRow component, no particular setting is required.

Only one entry of the directory corresponds to the filter criteria given in the tLDAPInput component.

tLDAPOutput

970 Talend Open Studio Components Reference Guide

tLDAPOutput

tLDAPOutput Properties

Component family Databases/LDAP

Function tLDAPOutput writes into an LDAP directory.

Purpose tLDAPOutput executes an LDAP query based on the given filter and corresponding
to the schema definition. Then it passes on the field list to the next component via
a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box and click the relevant
tLDAPConnection component on the Component list to
reuse the connection details you already defined.

Host LDAP Directory server IP address.

Port Listening port number of server.

Base DN Path to user’s authorized tree leaf.

Protocol Select the protocol type on the list.

LDAP : no encryption is used

LDAPS: secured LDAP. When this option is chosen, the
Advanced CA check box appears. Once selected, the
advanced mode allows you to specify the directory and
the keystore password of the certificate file for storing
a specific CA. However, you can still deactivate this
certificate validation by selecting the Trust all certs check
box.

TLS: certificate is used When this option is chosen, the
Advanced CA check box appears and is used the same
way as that of the LDAPS type.

User and Password Fill in the User and Password as required by the directory

Note that the login must match the LDAP syntax
requirement to be valid. e.g.: “cn=Directory Manager”.

tLDAPOutput Properties

Talend Open Studio Components Reference Guide 971

Multi valued field
separator

Character, string or regular expression to separate data in
a multi-value field.

Alias dereferencing Select the option on the list. Never improves search
performance if you are sure that no aliases is to be
dereferenced. By default, Always is to be used:

Always: Always dereference aliases

Never: Never dereferences aliases.

Searching:Dereferences aliases only after name
resolution.

Finding: Dereferences aliases only during name
resolution

Referral handling Select the option on the list:

Ignore: does not handle request redirections

Follow:does handle request redirections

Insert mode Select the editing mode on the list:

Add: add a value in a multi-value attribute,

Insert: insert new data,

Updata: updates the existing data,

Delete: remove the selected data from the directory,

Insert or Update: insert new data or update existing ones.

DN Column Name Select in the list the type of the LDAP input entity used.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Reject link.

Advanced settings Use Attribute Options
(for update mode)

Select this check box to choose the desired attribute
(including dn, dc, ou, objectClass, mail and uid) and
the corresponding operation (including Add, Replace,
Remove Attribute and Remove Value).

tStatCatcher Statistics Select this check box to gather the job processing metadata
at a job level as well as at each component level.

Usage This component covers all possible LDAP queries.

Scenario: Editing data in a LDAP directory

972 Talend Open Studio Components Reference Guide

Note: Press Ctrl + Space bar to access the global variable list, including the
GetResultName variable to retrieve the relevant DN Base automatically. This
component allows you to carry out actions on a table or on the data of a table in an
database. It also allows you to create a reject flow using a Row > Rejects link to
filter data in error. For an example of tMySqlOutput in use, see the section called
“Scenario 3: Retrieve data in error with a Reject link”.

Scenario: Editing data in a LDAP directory

The following scenario describes a Job that reads an LDAP directory, updates the email of a selected entry and
displays the output before writing the LDAP directory. To keep it simple, no alias dereferencing nor referral
handling is performed. This scenario is based on the section called “Scenario: Displaying LDAP directory’s filtered
content”. The result returned was a single entry, related to an organisational person, whom email is to be updated.

• Drop the tLDAPInput, tLDAPOutput, tMap and tLogRow components from the Palette to the design
workspace.

• Connect the input component to the tMap then to the tLogRow and to the output component.

• In the tLDAPInput Component view, set the connection details to the LDAP directory server as well as the
filter as described in the section called “Scenario: Displaying LDAP directory’s filtered content”.

• Change the schema to make it simpler, by removing the unused fields: dc, ou, objectclass.

• Then open the mapper to set the edit to be carried out.

• Drag & drop the uid column from the input table to the output as no change is required on this column.

• In the Expression field of the dn column (output), fill in with the exact expression expected by the LDAP server
to reach the target tree leaf and allow directory writing on the condition that you haven’t set it already in the
Base DN field of the tLDAPOutput component.

• In this use case, the GetResultName global variable is used to retrieve this path automatically. Press Ctrl
+Space bar to access the variable list and select tLDAPInput_1_RESULT_NAME.

• In the mail column’s expression field, type in the new email that will overwrite the current data in the LDAP
directory. In this example, we change to Pierre.Dupont@talend.com.

Scenario: Editing data in a LDAP directory

Talend Open Studio Components Reference Guide 973

• Click OK to validate the changes.

• The tLogRow component does not need any particular setting.

• Then select the tLDAPOutput component to set the directory writing properties.

• Set the Port and Host details manually if they aren’t stored in the Repository.

• In Base DN field, set the highest tree leaf you have the rights to access. If you have not set previously the exact
and full path of the target DN you want to access, then fill in it here. In this use case, the full DN is provided by
the dn output from the tMap component, therefore only the highest accessible leaf is given: o=directoryRoot.

• Select the relevant protocol to be used: LDAP for this example.

• Fill in the User and Password as expected by the LDAP directory.

• Fill in Multi-valued field separator with a comma as some fields may hold more than one value, separated
by a comma.

• Use the default setting of Alias Dereferencing and Referral Handling fields, respectively Always and Ignore.

• The Insert mode for this use case is Update (the email address).

• The schema was provided by the previous component through the propagation operation.

• Save the Job and execute.

The output shows the following fields: dn, uid and mail as defined in the Job.

tLDAPRenameEntry

974 Talend Open Studio Components Reference Guide

tLDAPRenameEntry

tLDAPRenameEntry properties

Component family Databases/LDAP

Function tLDAPRenameEntry renames entries in an LDAP directory.

Purpose The tLDAPRenameEntry component rename ones or more entries in a specific
LDAP directory.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tLDAPConnection component on the Component list to
reuse the connection details you already defined.

Host LDAP directory server IP address.

Port Number of the listening port of the server.

Base DN Path to user’s authorized tree leaf.

Protocol Select the protocol type on the list.

LDAP: no encryption is used,

LDAPS: secured LDAP,

TLS: certificate is used.

User and Password Fill in user authentication information.

Note that the login must match the LDAP syntax
requirement to be valid. e.g.: “cn=Directory Manager”.

Alias dereferencing Select the option on the list. Never improves search
performance if you are sure that no alias is to be
dereferenced. By default, Always is to be used:

Always: Always dereference aliases,

Never: Never dereferences aliases,

Searching: Dereferences aliases only after name
resolution,

Finding: Dereferences aliases only during name
resolution.

Referrals handling Select the option on the list:

Ignore: does not handle request redirections,

Follow: does handle request redirections.

Related scenarios

Talend Open Studio Components Reference Guide 975

Previous DN and New
DN

Select from the list the schema column that holds the old
DN (Previous DN) and the column that holds the new DN
(New DN).

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Reject link.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers all possible LDAP queries. It is usually used as a one-
component subjob but you can use it with other components as well.

Note: Press Ctrl + Space bar to access the global variable list, including the
GetResultName variable to retrieve automatically the relevant DN Base.

Related scenarios

For use cases in relation with tLDAPRenameEntry, see the following scenarios:

• the section called “Scenario: Displaying LDAP directory’s filtered content”.

• the section called “Scenario: Editing data in a LDAP directory”.

tMaxDBInput

976 Talend Open Studio Components Reference Guide

tMaxDBInput

tMaxDBInput properties

Component Family Databases/MaxDB

Function tMaxDBInput reads a database and extracts fields based on a query.

Purpose tMaxDBInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Host name Database server IP address

Port Listening port number of DB server.

Database Name of the database.

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table name Type in the table name.

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Guess Query Click the Guess Query button to generate the query which
corresponds to your table schema in the Query field.

Guess schema Click the Guess schema button to retrieve the table
schema.

Related scenario

Talend Open Studio Components Reference Guide 977

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Limitation n/a

Related scenario

For a related scenario, see:

• the section called “Scenario 1: Displaying selected data from DB table”.

• the section called “Scenario 2: Using StoreSQLQuery variable”.

tMaxDBOutput

978 Talend Open Studio Components Reference Guide

tMaxDBOutput

tMaxDBOutput properties

Component Family Databases/MaxDB

Function tMaxDBOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tMaxDBOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding component
in the job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time and that the table must exist for
the insert operation to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create table: The table is removed and created
again.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does
not exist.

Clear table: The table content is deleted.

Truncate table: The table content is deleted. You do not
have the possibility to rollback the operation.

Action on data On the data of the table defined, you can perform:

tMaxDBOutput properties

Talend Open Studio Components Reference Guide 979

Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before
committing batches of rows together into the DB. This
option ensures transaction quality (but not rollback) and,
above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Related scenario

980 Talend Open Studio Components Reference Guide

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Enable debug mode Select this check box to display each step during
processing entries in a database.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a database. It also allows you to create
a reject flow using a Row > Rejects link to filter data in error. For an example of
tMySqlOutput in use, see the section called “Scenario 3: Retrieve data in error with
a Reject link”.

Limitation n/a

Related scenario

For a related scenario, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”.

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tMaxDBRow

Talend Open Studio Components Reference Guide 981

tMaxDBRow

tMaxDBRow properties

Component Family Databases/MaxDB

Function tMaxDBRow is the specific component for this database query. It executes the
SQL query stated onto the specified database. The row suffix means the component
implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tMaxDBRow acts on the
actual DB structure or on the data (although without handling data). The SQLBuilder
tool helps you write easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database.

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table name Type in the table name.

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Guess Query Click the Guess Query button to generate the query which
corresponds to your table schema in the Query field.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Related scenario

982 Talend Open Studio Components Reference Guide

Use PreparedStatement Select this checkbox if you want to query the
database using a PreparedStatement. In the Set
PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all possible
SQL queries.

Limitation n/a

Related scenario

For a related scenario, see:

• the section called “Scenario 1: Displaying selected data from DB table”

• the section called “Scenario 2: Using StoreSQLQuery variable”

tParseRecordSet

Talend Open Studio Components Reference Guide 983

tParseRecordSet

You can find this component at the root of Databases group of the Palette of Talend Open Studio.
tParseRecordSet covers needs related indirectly to the use of any database.

tParseRecordSet properties

Component family Databases

Function tParseRecordSet parses a set of records from a database table or DB query and
possibly returns single records.

Purpose .Parses a recordset rather than individual records from a table.

Basic settings Prev. Comp. Column list Set the column from the database that holds the recordset.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Attribute table Set the position value of each column for single records
from the recordset.

Usage This component is used as intermediary component. It can be used as start
component but only input parameters are thus allowed.

Limitation This component is mainly designed for a use with the SP component Recordset
feature.

Related Scenario

For an example of tParseRecordSet in use, see the section called “Scenario 2: Using PreparedStatement objects
to query data”.

tPostgresPlusBulkExec

984 Talend Open Studio Components Reference Guide

tPostgresPlusBulkExec

tPostgresPlusBulkExec properties

The tPostgresplusOutputBulk and tPostgresplusBulkExec components are generally used together as part of a
two step process. In the first step, an output file is generated. In the second step, this file is used in the INSERT
operation used to feed a database. These two steps are fused together in the tPostgresPlusOutputBulkExec
component, detailed in a separate section. The advantage of using two separate components is that the data can
be transformed before it is loaded in the database.

Component family Databases/PostgresPlus

Function tPostgresPlusBulkExec executes the Insert action on the data provided.

Purpose As a dedicated component, tPostgresPlusBulkExec allows gains in performance
during Insert operations to a DB2 database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tPostgresPlusConnection component on the Component
List to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Related scenarios

Talend Open Studio Components Reference Guide 985

Schema Name of the DB schema.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create table: The table is removed and created
again.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does
not exist.

Clear table: The table content is deleted.

Truncate table: The table content is deleted. You do not
have the possibility to rollback the operation.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: You create the schema and store it locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: You have already created the schema and
stored it in the Repository, hence can reuse it. Related
topic: see Talend Open Studio User Guide.

Advanced settings Action Select the action to be carried out

Bulk insert Bulk update Depending on the action
selected, the required information varies.

Field terminated by Character, string or regular expression to separate fields.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This dedicated component offers performance and flexibility of DB2 query
handling.

Related scenarios

For tPostgresPlusBulkExec related topics, see:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Truncating and inserting file data into Oracle DB”.

tPostgresPlusClose

986 Talend Open Studio Components Reference Guide

tPostgresPlusClose

tPostgresPlusClose properties

Component family Databases/Postgres

Function tPostgresPlusClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tPostgresPlusConnection component in the list
if more than one connection are planned for the current
Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with PostgresPlus components, especially with
tPostgresPlusConnection and tPostgresPlusCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.

tPostgresPlusCommit

Talend Open Studio Components Reference Guide 987

tPostgresPlusCommit

tPostgresPlusCommit Properties

This component is closely related to tPostgresPlusConnection and tPostgresPlusRollback. It usually does not
make much sense to use JDBC components independently in a transaction.

Component family Databases/PostgresPlus

Function Validates the data processed through the Job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the tPostgresPlusConnection component in the list
if more than one connection are planned for the current
Job.

Close Connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection to
link tPostgresPlusCommit to your Job, your data
will be commited row by row. In this case, do not
select the Close connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with PostgresPlus components, especially with
the tPostgresPlusConnection and tPostgresPlusRollback components.

Limitation n/a

Related scenario

This component is closely related to tPostgresPlusConnection and tPostgresPlusRollback. It usually doesn’t
make much sense to use PostgresPlus components without using the tPostgresPlusConnection component to
open a connection for the current transaction.

For tPostgresPlusCommit related scenario, see the section called “tMysqlConnection”

tPostgresPlusConnection

988 Talend Open Studio Components Reference Guide

tPostgresPlusConnection

tPostgresPlusConnection Properties
This component is closely related to tPostgresPlusCommit and tPostgresPlusRollback. It usually doesn’t make
much sense to use one of PostgresPlus components without using the tPostgresPlusConnection component to
open a connection for the current transaction.

Component family Databases/PostgresPlus

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Exact name of the schema

Username and
Password

Enter your DB authentication data.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Advanced settings Auto commit Select this check box to automatically commit a
transaction when it is completed.

tStatCatcher Statistics Select this check box to gather the job processing metadata
at a Job level as well as at each component level.

Usage This component is to be used along with PostgresPlus components, especially with
the tPostgresPlusCommit and tPostgresPlusRollback components.

Limitation n/a

Related scenario
This component is closely related to tPostgresPlusCommit and tPostgresPlusRollback. It usually doesn’t make
much sense to use one of PostgresPlus components without using the tPostgresPlusConnection component to
open a connection for the current transaction.

Related scenario

Talend Open Studio Components Reference Guide 989

For tPostgresPlusConnection related scenario, see the section called “tMysqlConnection”

tPostgresPlusInput

990 Talend Open Studio Components Reference Guide

tPostgresPlusInput

tPostgresPlusInput properties

Component family Databases/ PostgresPlus

Function tPostgresPlusInput reads a database and extracts fields based on a query.

Purpose tPostgresPlusInput executes a DB query with a strictly defined order which must
correspond to the schema definition. Then it passes on the field list to the next
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box when using a configured
tPostgresplusConnection component.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio
User Guide.

Host Database server IP address.

Port Listening port number of DB server.

Related scenarios

Talend Open Studio Components Reference Guide 991

Database Name of the database.

Schema Exact name of the schema.

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table name Name of the table to be read.

Query type and Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Advanced settings Use cursor When selected, helps to decide the row set to work with at
a time and thus optimize performance.

Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component covers all possible SQL queries for Postgresql databases.

Related scenarios

For related scenarios, see:

• the section called “Scenario 1: Displaying selected data from DB table”.

• the section called “Scenario 2: Using StoreSQLQuery variable”.

tPostgresPlusOutput

992 Talend Open Studio Components Reference Guide

tPostgresPlusOutput

tPostgresPlusOutput properties

Component family Databases/PostgresPlus

Function tPostgresPlusOutput writes, updates, makes changes or suppresses entries in a
database.

Purpose tPostgresPlusOutput executes the action defined on the table and/or on the data
contained in the table, based on the flow incoming from the preceding component
in the job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Use an existing
connection

Select this check box when using a configured
tPostgresPlusConnection component.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio
User Guide.

Host Database server IP address

Port Listening port number of DB server.

tPostgresPlusOutput properties

Talend Open Studio Components Reference Guide 993

Database Name of the database

Schema Exact name of the schema.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
already exists and created again.

Clear a table: The table content is deleted.

Truncate table: The table content is deleted. You don not
have the possibility to rollback the operation.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, Job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next

tPostgresPlusOutput properties

994 Talend Open Studio Components Reference Guide

component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before
committing batches of rows together into the DB. This
option ensures transaction quality (but not rollback) and,
above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Enable debug mode Select this check box to display each step during
processing entries in a database.

Support null in “SQL
WHERE” statement

Select this check box if you want to deal with the Null
values contained in a DB table.

Ensure that the Nullable check box is selected for
the corresponding columns in the schema.

Use batch size Select this check box to activate the batch mode for data
processing. In the Batch Size field that appears when this
check box is selected, you can type in the number you need
to define the batch size to be processed.

This check box is available only when you have
selected the Insert, the Update or the Delete
option in the Action on data field.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

Related scenarios

Talend Open Studio Components Reference Guide 995

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a PostgresPlus database. It also allows
you to create a reject flow using a Row > Rejects link to filter data in error. For an
example of tMySqlOutput in use, see the section called “Scenario 3: Retrieve data
in error with a Reject link”.

Related scenarios

For tPostgresPlusOutput related topics, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”.

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tPostgresPlusOutputBulk

996 Talend Open Studio Components Reference Guide

tPostgresPlusOutputBulk

tPostgresPlusOutputBulk properties

The tPostgresplusOutputBulk and tPostgresplusBulkExec components are generally used together as part of a
two step process. In the first step, an output file is generated. In the second step, this file is used in the INSERT
operation used to feed a database. These two steps are fused together in the tPostgresPlusOutputBulkExec
component, detailed in a separate section. The advantage of using two separate components is that the data can
be transformed before it is loaded in the database.

Component family Databases/PostgresPlus

Function Writes a file with columns based on the defined delimiter and the PostgresPlus
standards

Purpose Prepares the file to be used as parameter in the INSERT query to feed the
PostgresPlus database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are
completed automatically using the data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Field separator Character, string or regular expression to separate
fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Append Select this check box to add the new rows at the end
of the file

Include header Select this check box to include the column header to
the file.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend
Open Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and job designs. Related topic: see Talend Open Studio
User Guide.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Related scenarios

Talend Open Studio Components Reference Guide 997

Usage This component is to be used along with tPostgresPlusBulkExec component.
Used together they offer gains in performance while feeding a PostgresPlus
database.

Related scenarios

For use cases in relation with tPostgresplusOutputBulk, see the following scenarios:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

• the section called “Scenario: Truncating and inserting file data into Oracle DB”.

tPostgresPlusOutputBulkExec

998 Talend Open Studio Components Reference Guide

tPostgresPlusOutputBulkExec

tPostgresPlusOutputBulkExec properties

The tPostgresplusOutputBulk and tPostgresplusBulkExec components are generally used together as part of a
two step process. In the first step, an output file is generated. In the second step, this file is used in the INSERT
operation used to feed a database. These two steps are fused together in the tPostgresPlusOutputBulkExec
component.

Component family Databases/PostgresPlus

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert operations
to a PostgresPlus database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Exact name of the schema.

Username and
Password

DB user authentication data.

Table Name of the table to be written. Note that only one table
can be written at a time and that the table must exist for
the insert operation to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Clear a table: The table content is deleted.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Advanced settings Action Select the action to be carried out

Related scenarios

Talend Open Studio Components Reference Guide 999

Bulk insert Bulk update Depending on the action
selected, the required information varies.

File type Select the type of file being handled.

Null string String displayed to indicate that the value is null.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Field terminated by Character, string or regular expression to separate fields.

Text enclosure Character used to enclose text.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is mainly used when no particular tranformation is required on the
data to be loaded onto the database.

Related scenarios

For use cases in relation with tPostgresPlusOutputBulkExec, see the following scenarios:

• the section called “Scenario: Inserting transformed data in MySQL database”.

• the section called “Scenario: Inserting data in MySQL database”.

• the section called “Scenario: Truncating and inserting file data into Oracle DB”.

tPostgresPlusRollback

1000 Talend Open Studio Components Reference Guide

tPostgresPlusRollback

tPostgresPlusRollback properties

This component is closely related to tPostgresPlusCommit and tPostgresPlusConnection. It usually does not
make much sense to use these components independently in a transaction.

Component family Databases/PostgresPlus

Function tPostgresPlusRollback cancels the transaction committed in the connected DB.

Purpose This component avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tPostgresPlusConnection component in the list
if more than one connection are planned for the current job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with PostgresPlus components, especially with
tPostgresPlusConnection and tPostgresPlusCommit.

Limitation n/a

Related scenarios

For tPostgresPlusRollback related scenario, see the section called “Scenario: Rollback from inserting data in
mother/daughter tables”.

tPostgresPlusRow

Talend Open Studio Components Reference Guide 1001

tPostgresPlusRow

tPostgresPlusRow properties

Component family Databases/Postgresplus

Function tPostgresPlusRow is the specific component for the database query. It executes the
SQL query stated onto the specified database. The row suffix means the component
implements a flow in the job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tPostgresPlusRow acts
on the actual DB structure or on the data (although without handling data). The
SQLBuilder tool helps you write easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tPostgresPlusConnection component on the Component
list to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio
User Guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Exact name of the schema.

Username and
Password

DB user authentication data.

tPostgresPlusRow properties

1002 Talend Open Studio Components Reference Guide

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Table name Name of the table to be read.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this checkbox if you want to query the
database using a PreparedStatement. In the Set
PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Related scenarios

Talend Open Studio Components Reference Guide 1003

Related scenarios

For related topics, see:

• the section called “Scenario: Resetting a DB auto-increment”.

• the section called “Scenario 1: Removing and regenerating a MySQL table index”.

tPostgresPlusSCD

1004 Talend Open Studio Components Reference Guide

tPostgresPlusSCD

tPostgresPlusSCD belongs to two component families: Business Intelligence and Databases. For more
information on it, see the section called “tPostgresPlusSCD”.

tPostgresPlusSCDELT

Talend Open Studio Components Reference Guide 1005

tPostgresPlusSCDELT

tPostgresPlusSCDELT belongs to two component families: Business Intelligence and Databases. For more
information on it, see the section called “tPostgresPlusSCDELT”.

tSasInput

1006 Talend Open Studio Components Reference Guide

tSasInput

Before being able to benefit from all functional objectives of the SAS components, make sure to install
the following three modules: sas.core.jar, sas.intrnet.javatools.jar and sas.svc.connection.jar in the path
lib > java in your Talend Open Studio directory. You can later verify, if needed whether the modules are
successfully installed through the Modules view of the Studio.

tSasInput properties

Component family Databases/SAS

Function tSasInput reads a database and extracts fields based on a query.

Purpose tSasInput executes a DB query with a strictly defined statement which must
correspond to the schema definition. Then it passes on the field list to the component
that follows via a Row > Main connection.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Host name SAS server IP address.

Port Listening port number of server.

Librefs Enter the directory name that holds the table to read
followed by its access path. For example:

“TpSas ‘C:/SAS/TpSas’”

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Related scenarios

Talend Open Studio Components Reference Guide 1007

Table Name Enter the name of the table to read preceded
by the directory name that holds it. For example:
“TpSas.Customers”.

Query type The query can be Built-in for a particular job, or for
commonly used query, it can be stored in the Repository
to ease the query reuse.

Query If your query is not stored in the Repository, type in
your DB query paying particularly attention to properly
sequence the fields in order to match the schema
definition.

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing metadata
at a Job level as well as at each component level.

Usage This component covers all possible SQL queries for databases using SAS
connections.

Limitation n/a

Related scenarios

For related topics, see:

• the section called “Scenario 1: Displaying selected data from DB table”.

• the section called “Scenario 2: Using StoreSQLQuery variable”.

• the section called “Scenario: Dynamic context use in MySQL DB insert”.

tSasOutput

1008 Talend Open Studio Components Reference Guide

tSasOutput

Before being able to benefit from all functional objectives of the SAS components, make sure to install
the following three modules: sas.core.jar, sas.intrnet.javatools.jar and sas.svc.connection.jar in the path
lib > java in your Talend Open Studio directory. You can later verify, if needed whether the modules are
successfully installed through the Modules view of the Studio.

tSasOutput properties

Component family Databases/SAS

Function tSasOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tSasOutput executes the action defined on the table and/or on the data contained in
the table, based on the incoming flow from the preceding component in the Job.

Basic settings Use an existing
connection

Select this check box and click the relevant
tSASConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

SAS URL Enter the URL to connect to the desired DB.

Driver JAR In the drop down list, select a desired available driver, or
download one from a local directory through clicking the
three-dot button.

Class Name Type in the Class name to be pointed to in the driver.

Username and
Password

DB user authentication data.

Table Name of the table to read.

Action on data On the data of the table defined, you can perform:

tSasOutput properties

Talend Open Studio Components Reference Guide 1009

Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

Clear data in table Select this check box to delete data in the selected table
before any operation.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before
committing batches of rows together into the DB. This
option ensures transaction quality (but not rollback) and,
above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as a new column.

Related scenarios

1010 Talend Open Studio Components Reference Guide

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tSasOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Enable debug mode Select this check box to display each step during
processing entries in a database.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility benefit of the DB query and covers all of the
SQL queries possible.

This component must be used as an output component. It allows you to carry out
actions on a table or on the data of a table in a SAS database. It also allows you to
create a reject flow using a Row > Rejects link to filter data in error. For an example
of tMySQLOutput in use, see the section called “Scenario 3: Retrieve data in error
with a Reject link”.

Limitation n/a

Related scenarios

For scenarios in which tSasOutput might be used, see:

• the section called “Scenario: Writing a row to a table in the MySql database via an ODBC connection”.

• the section called “Scenario 1: Adding a new column and altering data in a DB table”.

tSQLiteClose

Talend Open Studio Components Reference Guide 1011

tSQLiteClose

tSQLiteClose properties

Component family Databases/SQLite

Function tSQLiteClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tSQLiteConnection component in the list if
more than one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with SQLite components, especially with
tSQLiteConnection and tSQLiteCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.

tSQLiteCommit

1012 Talend Open Studio Components Reference Guide

tSQLiteCommit

tSQLiteCommit Properties

This component is closely related to tSQLiteConnection and tSQLiteRollback. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/SQLite

Function tSQLiteCommit validates the data processed through the Job into the connected DB

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the tSQLiteConnection component in the list if
more than one connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection to
link tSQLiteCommit to your Job, your data will
be commited row by row. In this case, do not
select the Close connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with SQLite components, especially with
tSQLiteConnection and tSQLiteRollback.

Limitation n/a

Related scenario

This component is closely related to tSQLiteConnection and tSQLiteRollback. It usually does not make much
sense to use one of these without using a tSQLiteConnection component to open a connection for the current
transaction.

For tSQLiteCommit related scenario, see the section called “Scenario: Inserting data in mother/daughter tables”.

tSQLiteConnection

Talend Open Studio Components Reference Guide 1013

tSQLiteConnection

SQLiteConnection properties

This component is closely related to tSQLiteCommit and tSQLiteRollback. It usually does not make much sense
to use one of these without using a tSQLiteConnection to open a connection for the current transaction.

Component family Databases/SQLite

Function tSQLiteConnection opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in
just a single transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Database Name of the database.

Use or register a shared
DB Connection

Select this check box to share your connection or fetch a
connection shared by a parent or child Job. This allows
you to share one single DB connection among several DB
connection components from different Job levels that can
be either parent or child.

Shared DB Connection Name: set or type in the shared
connection name.

Advanced settings Auto commit Select this check box to automatically commit a
transaction when it is completed.

tStatCatcher Statistics Select this check box to gather the job processing metadata
at a Job level as well as at each component level.

Usage This component is to be used along with SQLite components, especially with
tSQLiteCommit and tSQLiteRollback.

Limitation n/a

Related scenarios

This component is closely related to tSQLiteCommit and tSQLiteRollback. It usually does not make much sense
to use one of these without using a tSQLiteConnection component to open a connection for the current transaction.

For tSQLiteConnection related scenario, see the section called “tMysqlConnection”

tSQLiteInput

1014 Talend Open Studio Components Reference Guide

tSQLiteInput

tSQLiteInput Properties

Component family Databases

Function tSQLiteInput reads a database file and extracts fields based on an SQL query. As
it embeds the SQLite engine, no need of connecting to any database server.

Purpose tSQLiteInput executes a DB query with a defined command which must
correspond to the schema definition. Then it passes on rows to the next component
via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tSQLiteConnection component on the Component list
to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see see Talend Open
Studio User Guide.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Database Filepath to the SQLite database file.

Scenario: Filtering SQlite data

Talend Open Studio Components Reference Guide 1015

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Query type Either Built-in or Repository.

Query If your query is not stored in the Repository, type in
your DB query paying particularly attention to properly
sequence the fields in order to match the schema
definition.

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing
whitespace from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined
columns.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is standalone as it includes the SQLite engine. This is a startable
component that can iniate a data flow processing.

Scenario: Filtering SQlite data

This scenario describes a rather simple job which uses a select statement based on a filter to extract rows from a
source SQLite Database and feed an output SQLite table.

• Drop from the Palette, a tSQLiteInput and a tSQLiteOutput component from the Palette to the design
workspace.

• Connect the input to the output using a row main link.

• On the tSQLiteInput Basic settings, type in or browse to the SQLite Database input file.

Scenario: Filtering SQlite data

1016 Talend Open Studio Components Reference Guide

• The file contains hundreds of lines and includes an ip column which the select statement will based on

• On the tSQLite Basic settings, edit the schema for it to match the table structure.

• In the Query field, type in your select statement based on the ip column.

• On the tSQLiteOutput component Basic settings panel, select the Database filepath.

• Type in the Table to be fed with the selected data.

• Select the Action on table and Action on Data. In this use case, the action on table is Drop and create and
the action on data is Insert.

• The schema should be synchronized with the input schema.

Scenario: Filtering SQlite data

Talend Open Studio Components Reference Guide 1017

• Save the job and run it.

The data queried is returned in the defined SQLite file.

tSQLiteOutput

1018 Talend Open Studio Components Reference Guide

tSQLiteOutput

tSQLiteOutput Properties

Component family Databases

Function tSQLiteOutput writes, updates, makes changes or suppresses entries in an SQLite
database. As it embeds the SQLite engine, no need of connecting to any database
server.

Purpose tSQLiteOutput executes the action defined on the table and/or on the data contained
in the table, based on the flow incoming from the preceding component in the job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tSQLiteConnection component on the Component list
to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio
User Guide.

Click this icon to open a database connection wizard and
store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing
database connection parameters, see Talend Open Studio
User Guide.

Database Filepath to the Database file

tSQLiteOutput Properties

Talend Open Studio Components Reference Guide 1019

Table Name of the table to be written. Note that only one table
can be written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created
again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does
not exist.

Drop a table if exists and create: The table is removed if
it already exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are
found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if
non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as
a primary key on which the Update and Delete
operations are based. You can do that by clicking
Edit Schema and selecting the check box(es)
next to the column(s) you want to set as primary
key(s). For an advanced use, click the Advanced
settings view where you can simultaneously
define primary keys for the Update and Delete
operations. To do that: Select the Use field
options check box and then in the Key in update
column, select the check boxes next to the column
names you want to use as a base for the Update
operation. Do the same in the Key in delete
column for the Delete operation.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Related Scenario

1020 Talend Open Studio Components Reference Guide

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic:see Talend
Open Studio User Guide.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via
a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before
committing batches of rows together into the DB. This
option ensures transaction quality (but not rollback) and,
above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without
drop) the DB table. This option allows you to call SQL
functions to perform actions on columns, which are not
insert, nor update or delete actions, or action that require
particular preprocessing.

Name: Type in the name of the schema column to be
altered or inserted as new column

SQL expression: Type in the SQL statement to be
executed in order to alter or insert the relevant column
data.

Position: Select Before, Replace or After following the
action to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered
column.

Use field options Select this check box to customize a request, especially
when there is double action on data.

Enable debug mode Select this check box to display each step during
processing entries in a database.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component must be connected to an Input component. It allows you to carry
out actions on a table or on the data of a table in an SQLite database. It also allows
you to create reject flows using a Row > Reject link to filter erroneous data. For
an example of tSQLiteOuput in use, see the section called “Scenario 3: Retrieve
data in error with a Reject link”.

Related Scenario

For scenarios related to tSQLiteOutput, see the section called “Scenario 3: Retrieve data in error with a Reject
link”.

tSQLiteRollback

Talend Open Studio Components Reference Guide 1021

tSQLiteRollback

tSQLiteRollback properties

This component is closely related to tSQLiteCommit and tSQLiteConnection. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/SQLite

Function tSQLiteRollback cancels the transaction committed in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tSQLiteConnection component in the list if
more than one connection are planned for the current Job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with SQLite components, especially with
tSQLiteConnection and tSQLiteCommit.

Limitation n/a

Related scenarios

For tSQLiteRollback related scenario, see the section called “Scenario: Rollback from inserting data in mother/
daughter tables”.

tSQLiteRow

1022 Talend Open Studio Components Reference Guide

tSQLiteRow

tSQLiteRow Properties

Component family Databases

Function tSQLiteRow executes the defined query onto the specified database and uses the
parameters bound with the column.

Purpose A prepared statement uses the input flow to replace the placeholders with the values
for each parameters defined. This component can be very useful for updates.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

Use an existing
connection

Select this check box and click the relevant
tSQLiteConnection component on the Component list
to reuse the connection details you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a DB
connection across Job levels, see Use or register
a shared DB connection in any database
connection component corresponding to the
database you are using.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see see Talend Open
Studio User Guide.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Scenario: Updating SQLite rows

Talend Open Studio Components Reference Guide 1023

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic :see Talend
Open Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it
graphically using SQLBuilder

Repository: Select the relevant query stored in the
Repository. The Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to
properly sequence the fields in order to match the schema
definition.

Die on error Clear this check box to skip the row on error and complete
the process for error-free rows.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into
a COLUMN of the current flow. Select this column from
the use column list.

Use PreparedStatement Select this checkbox if you want to query the
database using a PreparedStatement. In the Set
PreparedStatement Parameter table, define the
parameters represented by “?” in the SQL instruction of
the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the
SQL instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute
the same query several times. Performance levels
are increased

Commit every Number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and above all better
performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component
level.

Usage This component offers the flexibility of the DB query and covers all possible SQL
queries.

Scenario: Updating SQLite rows

This scenario describes a job which updates an SQLite database file based on a prepared statement and using a
delimited file.

• Drop a tFileInputDelimited and a tSQLiteRow component from the Palette to the design workspace.

Scenario: Updating SQLite rows

1024 Talend Open Studio Components Reference Guide

• On the tFileInputDelimited Basic settings panel, browse to the input file that will be used to update rows in
the database.

• There is no Header nor Footer. The Row separator is a carriage return and the Field separator is a semi-colon.

• Click the [...] button next to Edit schema and define the schema structure in case it is not stored in the
Repository.

• Make sure the length and type are respectively correct and large enough to define the columns.

• Then in the tSQLiteRow Basic settings panel, set the Database filepath to the file to be updated.

• The schema is read-only as it is required to match the input schema.

• Type in the query or retrieve it from the Repository. In this use case, we updated the type_os for the id defined
in the Input flow. The statement is as follows: “Update download set type_os=? where id=?”.

• Then select the Use PreparedStatement check box to display the placeholders’ parameter table.

Scenario: Updating SQLite rows

Talend Open Studio Components Reference Guide 1025

• In the Input parameters table, add as many lines as necessary to cover all placeholders. In this scenario, type_os
and id are to be defined.

• Set the Commit every field.

• Save the job and press F6 to run it.

The download table from the SQLite database is thus updated with new type_os code according to the delimited
input file.

Talend Open Studio Components Reference Guide

Talend Open Studio Components Reference Guide

DotNET components
This chapter details the main components which you can find in the DotNET family of the Talend Open Studio
Palette.

The DotNET family comprises the most popular database connectors that are utilized to integrate with .NET
objects.

tDotNETInstantiate

1028 Talend Open Studio Components Reference Guide

tDotNETInstantiate

tDotNETInstantiate properties

Component family DotNET

Function tDotNETInstantiate instantiates an object in the .NET for later reuse.

Purpose tDotNETInstantiate invokes the constructor of a .NET object that is intended for later
reuse.

Basic settings Dll to load Type in the path, or browse to the DLL library containing
the classe(es) of interest or enter the assembly’s name
to be used. For example, System.Data, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089
for an OleDb assembly.

 Fully qualified class name(i.e.
ClassLibrary1.NameSpace2.Class1)

Enter a fully qualified name for the class of interest.

 Value(s) to pass to the
constructor

Click the plus button to add one or more values to be
passed to the constructor for the object. Or, leave this table
empty to call a default constructor for the object.

The valid value(s) should be the parameters required by
the class to be used.

 Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Enable parallel execution Select this check box to perform high-speed
data processing, by treating multiple data flows
simultaneously.

In the Number of parallel executions field, either:

- Enter the number of parallel executions desired.

- Press Ctrl + Space and select the appropriate context
variable from the list.

For further information, see Talend Open Studio User
Guide.

The Action on table field is not available with the
parallelization function. Therefore, you must use
a tCreateTable component if you want to create
a table.

When parallel execution is enabled, it is not
possible to use global variables to retrieve return
values in a subJob.

Usage This component can be used as a start component in a flow or an independent subjob

To use this component, you must first install the runtime DLLs, for example janet-win32.dll
for Windows 32-bit version and janet-win64.dll for Windows 64-bit version, from the

Related scenario

Talend Open Studio Components Reference Guide 1029

corresponding Microsoft Visual C++ Redistributable Package. This allows you to avoid
errors like the UnsatisfiedLinkError on dependent DLL.

So ensure that the runtime and all of the other DLLs which the DLL to be called depends
on are installed and their versions are consistent among one another.

The required DLLs can be installed in the System32 folder or in the bin folder of
the Java runtime to be used.

If you need to export a Job using this component to run it outside the Studio, you
have to specify the runtime container of interest by setting the -Djava.library.path
argument accordingly.

Related scenario

For a related scenario, see the section called “Scenario: Utilizing .NET in Talend”.

tDotNETRow

1030 Talend Open Studio Components Reference Guide

tDotNETRow

tDotNETRow properties

Component family DotNET

Function tDotNETRow sends data to and from libraries and classes within .NET or other custom
DLL files.

Purpose tDotNETRow helps you facilitate data transform by utilizing custom or built-in .NET
classes.

 Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either built-in or remotely
stored in the Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties
are stored. The following fields are pre-filled in using
fetched data

Use a static method Select this check box to invoke a static method in .NET
and this will disable Use an existing intance check box.

Propagate a data to output Select this check box to propagate a transformed data to
output.

Use an existing instance Select this check box to reuse an existing instance of
a .NET object from the Existing instance to use list.

Existing instance to use: Select an existing instance
of .NET objects created by the other .NET components
from the list.

This check box will be disabled if
you have selected Use a static method
and selecting this check box will disable
Dll to load, Fully qualified class
name(i.e. ClassLibrary1.NameSpace2.Class1)
and Value(s) to pass to the constructor.

Dll to load Type in the path, or browse to the DLL library containing
the class(es) of interest or enter the assembly's name
to be used. For example, System.Data, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=b77a5c561934e089
for an OleDb assembly.

 Fully qualified class name(i.e.
ClassLibrary1.NameSpace2.Class1)

Enter a fully qualified name for the class of interest.

 Method name Fill this field with the name of the method to be invoked
in .NET.

Value(s) to pass to the
constructor

Click the plus button to add one or more lines for values to
be passed to the constructor for the object. Or, leave this
table empty to call a default constructor for the object.

tDotNETRow properties

Talend Open Studio Components Reference Guide 1031

The valid value(s) should be the parameters required by
the class to be used.

Method Parameters Click the plus button to add one or more lines for
parameters to be passed to the method.

Output value target column Select a column in the output row from the list to put value
into it.

 Advanced settings Create a new instance at each
row

Select this check box to create a new instance at each row
that passes through the component.

Method doesn't return a value Select this check box to invoke a method without returning
a value as a result of the processing.

Returns an instance of a .NET
Object

Select this check box to return an instance of a .NET object
as a result of a invoked method.

Store the returned value for
later use

Select this check box to store the returned value of
a method for later reuse in another tDotNETRow
component.

tStatCatcher Statistics Select this check box to collect log data at the component
level.

Enable parallel execution Select this check box to perform high-speed
data processing, by treating multiple data flows
simultaneously.

In the Number of parallel executions field, either:

- Enter the number of parallel executions desired.

- Press Ctrl + Space and select the appropriate context
variable from the list.

For further information, see Talend Open Studio User
Guide.

The Action on table field is not available with the
parallelization function. Therefore, you must use
a tCreateTable component if you want to create
a table.

When parallel execution is enabled, it is not
possible to use global variables to retrieve return
values in a SubJob.

Usage This component is utilized to integrate with .NET objects.

To use this component, you must first install the runtime DLLs, for example janet-win32.dll
for Windows 32-bit version and janet-win64.dll for Windows 64-bit version, from the
corresponding Microsoft Visual C++ Redistributable Package. This allows you to avoid
errors like the UnsatisfiedLinkError on dependent DLL.

So ensure that the runtime and all of the other DLLs which the DLL to be called depends
on are installed and their versions are consistent among one another.

The required DLLs can be installed in the System32 folder or in the bin folder of
the Java runtime to be used.

If you need to export a Job using this component to run it outside the Studio, you
have to specify the runtime container of interest by setting the -Djava.library.path
argument accordingly.

Scenario: Utilizing .NET in Talend

1032 Talend Open Studio Components Reference Guide

Scenario: Utilizing .NET in Talend

This scenario describes a three-component Job that uses a DLL library containing a class called Test1.Class1 Class
and invokes a method on it that processes the value and output the result onto the console.

Prerequisites

Before replicating this scenario, you need first to build up your runtime environment.

• Create the DLL to be loaded by tDotNETInstantiate

This example class built into .NET reads as follows:

using System;
using System.Collections.Generic;
using System.Text;

namespace Test1
{
 public class Class1
 {
 string s = null;
 public Class1(string s)
 {
 this.s = s;
 }

 public string getValue()
 {
 return "Return Value from Class1: " + s;
 }

 }
 }

This class reads the input value and adds the text Return Value from Class1: in front of this value. It is compiled
using the latest .NET.

• Install the runtime DLL from the latest .NET. In this scenario, we use janet-win32.dll on Windows 32-bit version
and place it in the System32 folder.

Scenario: Utilizing .NET in Talend

Talend Open Studio Components Reference Guide 1033

Thus the runtime DLL is compatible with the DLL to be loaded.

Connecting components

1. Drop the following components from the Palette to the design workspace: tDotNETInstantiate,
tDotNETRow and tLogRow.

2. Connect tDotNETInstantiate to tDotNETRow using a Trigger On Subjob OK connection.

3. Connect tDotNETRow to tLogRow using a Row Main connection.

Configuring tDotNETInstantiate

1. Double-click tDotNETInstantiate to display its Basic settings view and define the component properties.

2. Click the three-dot button next to the Dll to load field and browse to the DLL file to be loaded. Alternatively,
you can fill the field with an assembly. In this example, we use :

"C:/Program Files/ClassLibrary1/bin/Debug/ClassLibrary1.dll""

3. Fill the Fully qualified class name field with a valid class name to be used. In this example, we use:

"Test1.Class1"

4. Click the plus button beneath the Value(s) to pass to the constructor table to add a new line for the value
to be passed to the constructor.

In this example, we use:

"Hello world"

Configuring tDotNETRow

1. Double-click tDotNETRow to display its Basic settings view and define the component properties.

Scenario: Utilizing .NET in Talend

1034 Talend Open Studio Components Reference Guide

2. Select Propagate data to output check box.

3. Select Use an existing instance check box and select tDotNETInstantiate_1 from the Existing instance
to use list on the right.

4. Fill the Method Name field with a method name to be used. In this example, we use "getValue", a custom
method.

5. Click the three-dot button next to Edit schema to add one column to the schema.

Click the plus button beneath the table to add a new column to the schema and click OK to save the setting.

6. Select newColumn from the Output value target column list.

Configuring tLogRow

1. Double-click tLogRow to display its Basic settings view and define the component properties.

Scenario: Utilizing .NET in Talend

Talend Open Studio Components Reference Guide 1035

2. Click Sync columns button to retrieve the schema defined in the preceding component.

3. Select Table in the Mode area.

Save your Job and press F6 to execute it.

From the result, you can read that the text Return Value from Class1 is added in front of the retrieved
value Hello world.

Talend Open Studio Components Reference Guide

Talend Open Studio Components Reference Guide

ELT components
This chapter details the main components that you can find in the ELT family of the Talend Open Studio Palette.

The ELT family groups together the most popular database connectors and processing components, all dedicated
to the ELT mode where the target DBMS becomes the transformation engine.

This mode supports all of the most popular databases including Teradata, Oracle, Vertica, Netezza, Sybase, etc.

tCombinedSQLAggregate

1038 Talend Open Studio Components Reference Guide

tCombinedSQLAggregate

tCombinedSQLAggregate properties

Component family ELT/CombinedSQL

Function tCombinedSQLAggregate collects data values from one or more columns of a
table for statistical purposes. This component has real-time capabilities since it
runs the data transformation on the DBMS itself.

Purpose Helps to provide a set of matrix based on values or calculations.

Basic settings Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: You have already created the schema and
stored it in the Repository. You can reuse it in various
projects and Jobs. Related topic: see Talend Open Studio
User Guide

Group by Define the aggregation sets, the values of which will be
used for calculations.

Output Column: Select the column label in the list
offered according to the schema structure you defined.
You can add as many output columns as you wish to
make more precise aggregations.

Input Column: Select the input column label to match
the output column’s expected content, in case the output
label of the aggregation set needs to be different.

Operations Select the type of operation along with the value to use
for the calculation and the output field.

Output Column: Select the destination field in the list.

Function: Select any of the following operations to
perform on data: count, min, max, avg, sum, first, last,
distinct and count (distinct).

Input column: Select the input column from which you
want to collect the values to be aggregated.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Scenario: Filtering and aggregating table columns directly on the DBMS

Talend Open Studio Components Reference Guide 1039

Usage This component is an intermediary component. The use of the corresponding
connection and commit components is recommended when using this component
to allow a unique connection to be open and then closed during the Job execution.

Limitation n/a

Scenario: Filtering and aggregating table columns
directly on the DBMS

The following scenario creates a Job that opens a connection to a MySQL database and:

• instantiates the schema from a database table in part (for column filtering),

• filters two columns in the same table to get only the data that meets two filtering conditions,

• collects data from the filtered column(s), grouped by specific value(s) and writes aggregated data in a target
database table.

To filter and aggregate database table columns:

• Drop the following components from the Palette onto the design workspace: tMysqlConnection,
tCombinedSQLInput, tCombinedSQLFilter, tCombinedSQLAggregate, tCombinedSQLOutput and
tMysqlCommit.

• Connect tMysqlConnection, tCombinedSQLInput and tMysqlCommit using OnSubjobOk links.

• Connect tCombinedSQLInput, tCombinedSQLFilter, tCombinedSQLAggregate and
tCombinedSQLOutput using a Combine link.

• In the design workspace, select tMysqlConnection and click the Component tab to define its basic settings.

• In the Basic settings view, set the database connection details manually or select Repository from the Property
Type list and select your DB connection if it has already been defined and stored in the Metadata area of the
Repository tree view.

For more information on centralizing DB connection details in the Repository, see Talend Open Studio User
Guide.

Scenario: Filtering and aggregating table columns directly on the DBMS

1040 Talend Open Studio Components Reference Guide

• In the design workspace, select tCombinedSQLInput and click the Component tab to access the configuration
panel.

• Enter the source table name in the Table field, and click the three-dot button next to Edit schema to define
the data structure.

The schema defined through tCombinedSQLInput can be different from that of the source table as you
can just instantiate the desired columns of the source table. Therefore, tCombinedSQLInput also plays
a role of column filtering.

In this scenario, the source database table has seven columns: id, first_name, last_name, city, state, date_of_birth,
and salary while tCombinedSQLInput only instantiates four columns that are needed for the aggregation: id,
state, date_of_birth, and salary from the source table.

• In the design workspace, select tCombinedSQLFilter and click the Component tab to access the configuration
panel.

Scenario: Filtering and aggregating table columns directly on the DBMS

Talend Open Studio Components Reference Guide 1041

• Click the Sync columns button to retrieve the schema from the previous component, or configure the schema
manually by selecting Built-in from the Schema list and clicking the [...] button next to Edit schema.

When you define the data structure for tCombinedSQLFilter, column names automatically appear in the
Input column list in the Conditions table.

In this scenario, the tCombinedSQLFilter component instantiates four columns: id, state, date_of_birth, and
salary.

• In the Conditions table, set input parameters, operators and expected values in order to only extract the records
that fulfill these criteria.

In this scenario, the tCombinedSQLFilter component filters the state and date_of_birth columns in the source
table to extract the employees who were born after Oct. 19, 1960 and who live in the states Utah, Ohio and Iowa.

• Select And in the Logical operator between conditions list to apply the two conditions at the same time. You
can also customize the conditions by selecting the Use custom SQL box and editing the conditions in the code
box.

• In the design workspace, select tCombinedSQLAggregate and click the Component tab to access the
configuration panel.

• Click the Sync columns button to retrieve the schema from the previous component, or configure the schema
manually by selecting Built-in from the Schema list and clicking on the [...] button.

The tCombinedSQLAggregate component instantiates four columns: id, state, date_of_birth, and salary, coming
from the previous component.

Scenario: Filtering and aggregating table columns directly on the DBMS

1042 Talend Open Studio Components Reference Guide

The Group by table helps you define the data sets to be processed based on a defined column. In this example:
State.

• In the Group by table, click the [+] button to add one line.

• In the Output column drop-down list, select State. This column will be used to hold the data filtered on State.

The Operations table helps you define the type of aggregation operations to be performed. The Output column
list available depends on the schema you want to output (through the tCombinedSQLOutput component). In this
scenario, we want to group employees based on the state they live. We want then count the number of employees
per state, calculate the average/lowest/highest salaries as well as the oldest/youngest employees for each state.

• In the Operations table, click the [+] button to add one line and then click in the Output column list to select
the output column that will hold the computed data.

• In the Function field, select the relevant operation to be carried out.

• In the design workspace, select tCombinedSQLOutput and click the Component tab to access the
configuration panel.

• On the Database type list, select the relevant database.

• On the Component list, select the relevant database connection component if more than one connection is used.

Scenario: Filtering and aggregating table columns directly on the DBMS

Talend Open Studio Components Reference Guide 1043

• In the Table field, enter the name of the target table which will store the results of the aggregation operations.

In this example, the Schema field doesn't need to be filled out as the database is not Oracle.

• Click the three-dot button next to Edit schema to define the data structure of the target table.

In this scenario, tCombinedSQLOutput instantiates seven columns coming from the previous component in the
Job design (tCombinedSQLAggregate): state, empl_count, avg_salary, min_salary, max_salary, oldest_empl
and youngest_empl.

• In the design workspace, select tCombinedSQLCommit and click the Component tab to access the
configuration panel.

• On the Component list, select the relevant database connection component if more than one connection is used.

• Save your Job and press F6 to execute it.

Rows are inserted into a seven-column table empl_by_state in the database. The table shows, per defined state,
the number of employees, the average salary, the lowest and highest salaries as well as the oldest and youngest
employees.

tCombinedSQLFilter

1044 Talend Open Studio Components Reference Guide

tCombinedSQLFilter

tCombinedSQLFilter Properties

Component family ELT/CombinedSQL

Function tCombinedSQLFilter allows you to alter the schema of a source table through
column name mapping and to define a row filter on that table. Therefore, it can be
used to filter columns and rows at the same time. This component has real-time
capabilities since it runs the data filtering on the DBMS itself.

Purpose Helps to filter data by reorganizing, deleting or adding columns based on the
source table and to filter the given data source using the filter conditions.

Basic settings Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: You have already created the schema and
stored it in the Repository. You can reuse it in various
projects and Jobs. Related topic: see Talend Open Studio
User Guide.

Logical operator
between conditions

Select the logical operator between the filter conditions
defined in the Conditions panel.

Two operators are available: Or, And.

Conditions Select the type of WHERE clause along with the values
and the columns to use for row filtering.

Input Column: Select the column to filter in the list.

Operator: Select the type of the WHERE clause: =, < >,
>, <, >=, <=, LIKE, IN, NOT IN, and EXIST IN.

Values: Type in the values to be used in the WHERE
clause.

Negate: Select this check box to enable the condition that
is opposite to the current setting.

Use custom SQL Customize a WHERE clause by selecting this check box
and editing in the SQL Condition field.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Related Scenario

Talend Open Studio Components Reference Guide 1045

Usage This component is an intermediary component. The use of the corresponding
connection and commit components is recommended when using this component
to allow a unique connection to be open and then closed during the Job execution.

Limitation n/a

Related Scenario

For a related scenario, see the section called “Scenario: Filtering and aggregating table columns directly on the
DBMS”.

tCombinedSQLInput

1046 Talend Open Studio Components Reference Guide

tCombinedSQLInput

tCombinedSQLInput properties

Component family ELT/CombinedSQL

Function tCombinedSQLInput extracts fields from a database table based on its schema.
This component also has column filtering capabilities since its schema can be
different from that of the database table.

Purpose tCombinedSQLInput extracts fields from a database table based on its schema
definition. Then it passes on the field list to the next component via a Combine
row link. The schema of tCombinedSQLInput can be different from that of the
source database table but must correspond to it in terms of the column order.

Basic settings Table Name of the source database table.

Schema Name of the source table’s schema. This field has to be
filled if the database is Oracle.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: You have already created the schema and
stored it in the Repository. You can reuse it in various
projects and Jobs. Related topic: see Talend Open Studio
User Guide

Add additional columns This option allows you to call SQL functions to perform
actions on columns, provided that these are not insert,
update or delete actions, or actions that require pre-
processing.

Name: Type in the name of the schema column to be
altered.

SQL expression: Type in the SQL statement to be
executed in order to alter the data in the corresponding
column.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is an intermediary component. The use of the corresponding
connection and commit components is recommended when using this component
to allow a unique connection to be open and then closed during the Job execution.

Limitation n/a

Related scenario

Talend Open Studio Components Reference Guide 1047

Related scenario

For a related scenario, see the section called “Scenario: Filtering and aggregating table columns directly on the
DBMS”.

tCombinedSQLOutput

1048 Talend Open Studio Components Reference Guide

tCombinedSQLOutput

tCombinedSQLOutput properties

Component family ELT/CombinedSQL

Function tCombinedSQLOutput inserts records to an existing database table.

Purpose tCombinedSQLOutput inserts records from the incoming flow to an existing
database table.

Basic settings Database Type Select the database type.

Component list Select the relevant DB connection component in the list
if more than one connection is used for the current Job.

Table Name of the target database table.

Schema Name of the target database table’s schema. This field
has to be filled if the database is Oracle.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: You have already created the schema and
stored it in the Repository. You can reuse it in various
projects and Jobs. Related topic: see Talend Open Studio
User Guide

Action on data Select INSERT from the list to insert the records from
the incoming flow to the target database table.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is an intermediary component. The use of the corresponding
connection and commit components is recommended when using this component
to allow a unique connection to be open and then closed during the Job execution.

Limitation n/a

Related scenario

Talend Open Studio Components Reference Guide 1049

Related scenario

For a related scenario, see the section called “Scenario: Filtering and aggregating table columns directly on the
DBMS”.

tELTJDBCInput

1050 Talend Open Studio Components Reference Guide

tELTJDBCInput

tELTJDBCInput properties

The three ELT JDBC components are closely related, in terms of their operating conditions. These components
should be used to handle JDBC DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/JDBC

Function Provides the table schema to be used for the SQL statement to execute.

Purpose Allows you to add as many Input tables as required for the most complicated Insert
statement.

Basic settings Schema and Edit
schema

A schema is a row description, i.e., it defines the nature
and number of fields to be processed. The schema is either
built-in or remotely stored in the Repository. The Schema
defined is then passed on to the ELT Mapper to be included
to the Insert SQL statement.

Click Edit Schema to modify the schema. Note that if you
make the modifcation, the schema switches automatically
to the Built-in mode.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Default Table Name Type in the default table name.

Default Schema Name Type in the default schema name.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage tELTJDBCInput is to be used along with the tELTJDBCMap. Note that the
Output link to be used with these components must correspond strictly to the syntax
of the table name

Note that the ELT components do not handle actual data flow but only
schema information.

Related scenarios

For use cases in relation with tELTJDBCInput, see tELTMysqlMap scenarios:

• the section called “Scenario 1: Aggregating table columns and filtering”

• the section called “Scenario 2: ELT using an Alias table”

Related scenarios

Talend Open Studio Components Reference Guide 1051

tELTJDBCMap

1052 Talend Open Studio Components Reference Guide

tELTJDBCMap

tELTJDBCMap properties

The three ELT JDBC components are closely related, in terms of their operating conditions. These components
should be used to handle JDBC DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/JDBC

Function Helps to graphically build the SQL statement using the table provided as input.

Purpose Uses the tables provided as input, to feed the parameter in the built statement. The
statement can include inner or outer joins to be implemented between tables or
between one table and its aliases.

Basic settings Use an existing
connection

Select this check box and select the appropriate
Connection component from the Component list if you
want to re-use connection parameters that you have
already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

ELT JDBC Map Editor The ELT Map editor allows you to define the output
schema and make a graphical build of the SQL statement
to be executed. The column names of schema can be
different from the column names in the database.

Style link Select the way in which links are displayed.

Related scenario:

Talend Open Studio Components Reference Guide 1053

Auto: By default, the links between the input and output
schemas and the Web service parameters are in the form
of curves.

Bezier curve: Links between the schema and the Web
service parameters are in the form of curve.

Line: Links between the schema and the Web service
parameters are in the form of straight lines.

This option slightly optimizes performance.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties
are stored. The following fields are pre-filled in using
fetched data.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and
Password

DB user authentication data.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage tELTJDBCMap is used along with tELTJDBCInput and tELTJDBCOutput.
Note that the Output link to be used with these components must correspond strictly
to the syntax of the table name.

Note that the ELT components do not handle actual data flow but only
schema information.

Related scenario:

For related scenarios, see tELTMysqlMap scenarios:

• the section called “Scenario 1: Aggregating table columns and filtering”.

• the section called “Scenario 2: ELT using an Alias table”.

tELTJDBCOutput

1054 Talend Open Studio Components Reference Guide

tELTJDBCOutput

tELTJDBCOutput properties

The three ELT JDBC components are closely related, in terms of their operating conditions. These components
should be used to handle JDBC DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/JDBC

Function Carries out the action on the table specified and inserts the data according to the
output schema defined the ELT Mapper.

Purpose Executes the SQL Insert, Update and Delete statement to the JDBC database

Basic settings Action on data On the data of the table defined, you can perform the
following operation:

Insert: Adds new entries to the table. If duplicates are
found, Job stops.

Update: Updates entries in the table.

Delete: Deletes the entries which correspond to the entry
flow.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either built-in or remotely
stored in the Repository.

Click Edit Schema to modify the schema. Note that if you
make the modifcation, the schema switches automatically
to the Built-in mode.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Where clauses for (for
UPDATE and DELETE
only)

Enter a clause to filter the data to be updated or deleted
during the update or delete operations.

Default Table Name Enter the default table name, between double quotation
marks.

Default Schema Name Enter the default schema name,between double quotation
marks.

Use different table name Select this check box to define a different output table
name, between double quotation marks, in the Table
name field which appears.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Related scenarios

Talend Open Studio Components Reference Guide 1055

Usage tELTJDBCOutput is to be used along with the tELTJDBCMap. Note that the
Output link to be used with these components must correspond strictly to the syntax
of the table name.

Note that the ELT components do not handle actual data flow but only
schema information.

Related scenarios

For use cases in relation with tELTJDBCOutput, see tELTMysqlMap scenarios:

• the section called “Scenario 1: Aggregating table columns and filtering”

• the section called “Scenario 2: ELT using an Alias table”

tELTMSSqlInput

1056 Talend Open Studio Components Reference Guide

tELTMSSqlInput

tELTMSSqlInput properties

The three ELT MSSql components are closely related, in terms of their operating conditions. These components
should be used to handle MSSql DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/MSSql

Function Provides the table schema to be used for the SQL statement to execute.

Purpose Allows you to add as many Input tables as required for the most complicated Insert
statement.

Basic settings Schema and Edit
schema

A schema is a row description, i.e., it defines the nature
and number of fields to be processed. The schema is either
built-in or remotely stored in the Repository. The Schema
defined is then passed on to the ELT Mapper to be included
to the Insert SQL statement.

Click Edit Schema to modify the schema. Note that if you
make the modifcation, the schema switches automatically
to the Built-in mode.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Default Table Name Type in the default table name.

Default Schema Name Type in the default schema name.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage tELTMySSqlInput is to be used along with the tELTMSSsqlMap. Note that the
Output link to be used with these components must correspond strictly to the syntax
of the table name.

Note that the ELT components do not handle actual data flow but only
schema information.

Related scenarios

For use cases in relation with tELTMSSqlInput, see tELTMysqlMap scenarios:

• the section called “Scenario 1: Aggregating table columns and filtering”

• the section called “Scenario 2: ELT using an Alias table”

Related scenarios

Talend Open Studio Components Reference Guide 1057

tELTMSSqlMap

1058 Talend Open Studio Components Reference Guide

tELTMSSqlMap

tELTMSSqlMap properties

The three ELT MSSql components are closely related, in terms of their operating conditions. These components
should be used to handle MSSql DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/MSSql

Function Helps you to build the SQL statement graphically, using the table provided as input.

Purpose Uses the tables provided as input, to feed the parameter in the built statement. The
statement can include inner or outer joins to be implemented between tables or
between one table and its aliases.

Basic settings Use an existing
connection

Select this check box and select the appropriate
Connection component from the Component list if you
want to re-use connection parameters that you have
already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

ELT MSSql Map Editor The ELT Map editor allows you to define the output
schema and make a graphical build of the SQL statement
to be executed. The column names of schema can be
different from the column names in the database.

Style link Select the way in which links are displayed.

Related scenario:

Talend Open Studio Components Reference Guide 1059

Auto: By default, the links between the input and output
schemas and the Web service parameters are in the form
of curves.

Bezier curve: Links between the schema and the Web
service parameters are in the form of curve.

Line: Links between the schema and the Web service
parameters are in the form of straight lines.

This option slightly optimizes performance.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties
are stored. The following fields are pre-filled in using
fetched data.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and
Password

DB user authentication data.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage tELTMSSqlMap is used along with a tELTMSSqlInput and tELTMSSqlOutput.
Note that the Output link to be used with these components must correspond strictly
to the syntax of the table name.

Note that the ELT components do not handle actual data flow but only
schema information.

Related scenario:

For related scenarios, see tELTMysqlMap scenarios:

• the section called “Scenario 1: Aggregating table columns and filtering”.

• the section called “Scenario 2: ELT using an Alias table”.

tELTMSSqlOutput

1060 Talend Open Studio Components Reference Guide

tELTMSSqlOutput

tELTMSSqlOutput properties

The three ELT MSSql components are closely related, in terms of their operating conditions. These components
should be used to handle MSSql DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/MSSql

Function Carries out the action on the table specified and inserts the data according to the
output schema defined the ELT Mapper.

Purpose Executes the SQL Insert, Update and Delete statement to the MSSql database

Basic settings Action on data On the data of the table defined, you can perform the
following operation:

Insert: Adds new entries to the table. If duplicates are
found, Job stops.

Update: Updates entries in the table.

Delete: Deletes the entries which correspond to the entry
flow.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to modify the schema. Note that if you
make the modifcation, the schema switches automatically
to the Built-in mode.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Where clauses for (for
UPDATE and DELETE
only)

Enter a clause to filter the data to be updated or deleted
during the update or delete operations.

Default Table Name Enter the default table name, between double quotation
marks.

Default Schema Name Enter the default schema name,between double quotation
marks.

Use different table name Select this check box to define a different output table
name, between double quotation marks, in the Table
name field which appears.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Related scenarios

Talend Open Studio Components Reference Guide 1061

Usage tELTMSSqlOutput is to be used along with the tELTMSSqlMap. Note that the
Output link to be used with these components must correspond strictly to the syntax
of the table name.

Note that the ELT components do not handle actual data flow but only
schema information.

Limitation n/a

Related scenarios

For use cases in relation with tELTMSSqlOutput, see tELTMysqlMap scenarios:

• the section called “Scenario 1: Aggregating table columns and filtering”

• the section called “Scenario 2: ELT using an Alias table”

tELTMysqlInput

1062 Talend Open Studio Components Reference Guide

tELTMysqlInput

tELTMysqlInput properties

The three ELT Mysql components are closely related, in terms of their operating conditions. These components
should be used to handle Mysql DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Mysql

Function Provides the table schema to be used for the SQL statement to execute.

Purpose Allows you to add as many Input tables as required for the most complicated Insert
statement.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the nature
and number of fields to be processed. The schema is either
built-in or remotely stored in the Repository. The Schema
defined is then passed on to the ELT Mapper to be included
to the Insert SQL statement.

Click Edit Schema to modify the schema. Note that if you
make the modifcation, the schema switches automatically
to the Built-in mode.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Default Table Name Enter the default table name, between double quotation
marks.

Usage tELTMysqlInput is to be used along with the tELTMysqlMap. Note that the
Output link to be used with these components must correspond strictly to the syntax
of the table name

Note that the ELT components do not handle actual data flow but only
schema information.

Related scenarios

For use cases in relation with tELTMysqlInput, see tELTMysqlMap scenarios:

• the section called “Scenario 1: Aggregating table columns and filtering”

• the section called “Scenario 2: ELT using an Alias table”

tELTMysqlMap

Talend Open Studio Components Reference Guide 1063

tELTMysqlMap

tELTMysqlMap properties

The three ELT Mysql components are closely related, in terms of their operating conditions. These components
should be used to handle Mysql DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Mysql

Function Helps to graphically build the SQL statement using the table provided as input.

Purpose Uses the tables provided as input, to feed the parameter in the built statement. The
statement can include inner or outer joins to be implemented between tables or
between one table and its aliases.

Basic settings Use an existing
connection

Select this check box and select the appropriate
Connection component from the Component list if you
want to re-use connection parameters that you have
already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

ELT Mysql Map editor The ELT Map editor allows you to define the output
schema as well as build graphically the SQL statement to
be executed. The column names of schema can be different
from the column names in the database.

Style link Select the way in which links are displayed.

tELTMysqlMap properties

1064 Talend Open Studio Components Reference Guide

Auto: By default, the links between the input and output
schemas and the Web service parameters are in the form
of curves.

Bezier curve: Links between the schema and the Web
service parameters are in the form of curve.

Line: Links between the schema and the Web service
parameters are in the form of straight lines.

This option slightly optimizes performance.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties
are stored. The following fields are pre-filled in using
fetched data.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and
Password

DB user authentication data.

Usage tELTMysqlMap is used along with a tELTMysqlInput and tELTMysqlOutput.
Note that the Output link to be used with these components must correspond strictly
to the syntax of the table name.

The ELT components do not handle actual data flow but only schema
information.

Connecting ELT components

The ELT components do not handle any data as such but table schema information that will be used to build the
SQL query to execute.

Therefore the only connection required to connect these components together is a simple link.

The output name you give to this link when creating it should always be the exact name of the table to be
accessed as this parameter will be used in the SQL statement generated.

Related topic: see Talend Open Studio User Guide.

Mapping and joining tables

In the ELT Mapper, you can select specific columns from input schemas and include them in the output schema.

• As you would do it in the regular Map editor, simply drag & drop the content from the input schema towards
the output table defined.

• Use the Ctrl and Shift keys for multiple selection of contiguous or non contiguous table columns.

You can implement explicit joins to retrieve various data from different tables.

Scenario 1: Aggregating table columns and filtering

Talend Open Studio Components Reference Guide 1065

• Select the Explicit join check box for the relevant column, and selct a type of join from the Join list.

• Possible joins include: Inner Join, Left Outer Join, Right Outer Join or Full Outer Join and Cross Join.

• By default the Inner Join is selected.

You can also create Alias tables to retrieve various data from the same table.

• In the Input area, click on the plus [+] button to create an Alias.

• Define the table to base the alias on.

• Type in a new name for the alias table, preferably not the same as the main table.

Adding where clauses

You can also restrict the Select statement based on a Where clause. Click the Add filter row button at the top of
the output table and type in the relevant restriction to be applied.

Make sure that all input components are linked correctly to the ELT Map component to be able to implement all
inclusions, joins and clauses.

Generating the SQL statement

The mapping of elements from the input schemas to the output schemas create instantly the corresponding Select
statement.

The clause are also included automatically.

Scenario 1: Aggregating table columns and filtering

This scenario describes a Job that gathers together several input DB table schemas and implementing a clause to
filter the output using an SQL statement.

Scenario 1: Aggregating table columns and filtering

1066 Talend Open Studio Components Reference Guide

• Drop the following components from the Palette onto the design workspace: three tELTMysqlInput
components, a tELTMysqlMap, and a tELTMysqlOutput. Label these components to best describe their
functionality.

• Double-click the first tELTMysqlInput component to display its Basic settings view.

• Select Repository from the Schema list, click the three dot button preceding Edit schema, and select your DB
connection and the desired schema from the [Repository Content] dialog box.

The selected schema name appears in the Default Table Name field automatically.

In this use case, the DB connection is Talend_MySQL and the schema for the first input component is owners.

• Set the second and third tELTMysqlInput components in the same way but select cars and resellers
respectively as their schema names.

In this use case, all the involved schemas are stored in the Metadata node of the Repository tree view
for easy retrieval. For further information concerning metadata, see Talend Open Studio User Guide.

You can also select the three input components by dropping the relevant schemas from the Metadata
area onto the design workspace and double-clicking tELTMysqlInput from the [Components] dialog
box. Doing so allows you to skip the steps of labeling the input components and defining their schemas
manually.

• Connect the three tELTMysqlInput components to the tELTMysqlMap component using links named
following strictly the actual DB table names: owners, cars and resellers.

• Connect the tELTMysqlMap component to the tELTMysqlOutput component and name the link agg_result,
which is the name of the database table you will save the aggregation result to.

Scenario 1: Aggregating table columns and filtering

Talend Open Studio Components Reference Guide 1067

• Click the tELTMysqlMap component to display its Basic settings view.

• Select Repository from the Property Type list, and select the same DB connection that you use for the input
components.

All the database details are automatically retrieved.

• Leave all the other settings as they are.

• Double-click the tELTMysqlMap component to launch the ELT Map editor to set up joins between the input
tables and define the output flow.

• Add the input tables by clicking the green plus button at the upper left corner of the ELT Map editor and selecting
the relevant table names in the [Add a new alias] dialog box.

• Drop the ID_Owner column from the owners table to the corresponding column of the cars table.

• In the cars table, select the Explicit join check box in front of the ID_Owner column.

As the default join type, INNER JOIN is displayed on the Join list.

• Drop the ID_Reseller column from the cars table to the corresponding column of the resellers table to set up
the second join, and define the join as an inner join in the same way.

• Select the columns to be aggregated into the output table, agg_result.

• Drop the ID_Owner, Name, and ID_Insurance columns from the owners table to the output table.

• Drop the Registration, Make, and Color columns from the cars table to the output table.

Scenario 1: Aggregating table columns and filtering

1068 Talend Open Studio Components Reference Guide

• Drop the Name_Reseller and City columns from the resellers table to the output table.

• With the relevant columns selected, the mappings are displayed in yellow and the joins are displayed in dark
violet.

• Set up a filter in the output table. Click the Add filter row button on top of the output table to display the
Additional clauses expression field, drop the City column from the resellers table to the expression field, and
complete a WHERE clause that reads resellers.City ='Augusta'.

• Click the Generated SQL Select query tab to display the corresponding SQL statement.

• Click OK to save the ELT Map settings.

• Double-click the tELTMysqlOutput component to display its Basic settings view.

Scenario 2: ELT using an Alias table

Talend Open Studio Components Reference Guide 1069

• Select an action from the Action on data list as needed.

• Select Repository as the schema type, and define the output schema in the same way as you defined the input
schemas. In this use case, select agg_result as the output schema, which is the name of the database table used
to store the mapping result.

You can also use a built-in output schema and retrieve the schema structure from the preceding component;
however, make sure that you specify an existing target table having the same data structure in your
database.

• Leave all the other settings as they are.

• Save your Job and press F6 to launch it.

All selected data is inserted in the agg_result table as specified in the SQL statement.

Scenario 2: ELT using an Alias table

This scenario describes a Job that maps information from two input tables and an alias table, serving as a virtual
input table, to an output table. The employees table contains employees’ IDs, their department numbers, their
names, and the IDs of their respective managers. The managers are also considered as employees and hence
included in the employees table. The dept table contains the department information. The alias table retrieves the
names of the managers from the employees table.

• Drop two tELTMysqlInput components, a tELTMysqlMap component, and a tELTMysqlOutput
component to the design workspace, and label them to best describe their functionality.

• Double-click the first tELTMysqlInput component to display its Basic settings view.

Scenario 2: ELT using an Alias table

1070 Talend Open Studio Components Reference Guide

• Select Repository from the Schema list, and define the DB connection and schema by clicking the three dot
button preceding Edit schema.

The DB connection is Talend_MySQL and the schema for the first input component is employees.

In this use case, all the involved schemas are stored in the Metadata node of the Repository tree view
for easy retrieval. For further information concerning metadata, see Talend Open Studio User Guide.

• Set the second tELTMysqlInput component in the same way but select dept as its schema.

• Double-click the tELTMysqlOutput component to display its Basic settings view.

• Select an action from the Action on data list as needed, Insert in this use case.

• Select Repository as the schema type, and define the output schema in the same way as you defined the input
schemas. In this use case, select result as the output schema, which is the name of the database table used to
store the mapping result.

The output schema contains all the columns of the input schemas plus a ManagerName column.

• Leave all the other parameters as they are.

• Connect the two tELTMysqlInput components to the tELTMysqlMap component using Link connections
named strictly after the actual input table names, employees and dept in this use case.

• Connect the tELTMysqlMap component to the tELTMysqlOutput component using a Link connection.
When prompted, click Yes to allow the ELT Mapper to retrieve the output table structure from the output
schema.

• Click the tELTMysqlMap component and select the Component tab to display its Basic settings view.

• Select Repository from the Property Type list, and select the same DB connection that you use for the input
components.

All the DB connection details are automatically retrieved.

• Leave all the other parameters as they are.

Scenario 2: ELT using an Alias table

Talend Open Studio Components Reference Guide 1071

• Click the three-dot button next to ELT Mysql Map Editor or double-click the tELTMysqlMap component
on the design workspace to launch the ELT Map editor.

With the tELTMysqlMap component connected to the output component, the output table is displayed in the
output area.

• Add the input tables, employees and dept, in the input area by clicking the green plus button and selecting the
relevant table names in the [Add a new alias] dialog box.

• Create an alias table based on the employees table by selecting employees from the Select the table to use list
and typing in Managers in the Type in a valid alias field in the the [Add a new alias] dialog box.

• Drop the DeptNo column from the employees table to the dept table.

• Select the Explicit join check box in front of the DeptNo column of the dept table to set up an inner join.

• Drop the ManagerID column from the employees table to the ID column of the Managers table.

• Select the Explicit join check box in front of the ID column of the Managers table and select LEFT OUTER
JOIN from the Join list to allow the output rows to contain Null values.

• Drop all the columns from the employees table to the corresponding columns of the output table.

• Drop the DeptName and Location columns from the dept table to the corresponding columns of the output table.

• Drop the Name column from the Managers table to the ManagerName column of the output table.

Scenario 2: ELT using an Alias table

1072 Talend Open Studio Components Reference Guide

• Click on the Generated SQL Select query tab to display the SQL query statement to be executed.

• Save your Job and press F6 to run it.

The output database table result contains all the information about the employees, including the names of their
respective managers.

tELTMysqlOutput

Talend Open Studio Components Reference Guide 1073

tELTMysqlOutput

tELTMysqlOutput properties
The three ELT Mysql components are closely related, in terms of their operating conditions. These components
should be used to handle Mysql DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Mysql

Function Carries out the action on the table specified and inserts the data according to the
output schema defined the ELT Mapper.

Purpose Executes the SQL Insert, Update and Delete statement to the Mysql database

Basic settings

Use tCreateTable
as substitute for
this function.

Action on data On the data of the table defined, you can perform the
following operation:

Insert: Add new entries to the table. If duplicates are
found, Job stops.

Update: Updates entries in the table.

Delete: Deletes the entries which correspond to the entry
flow.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either built-in or remotely
stored in the Repository.

Click Edit Schema to modify the schema. Note that if you
make the modifcation, the schema switches automatically
to the Built-in mode.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Where clauses for (for
UPDATE and DELETE
only)

Enter a clause to filter the data to be updated or deleted
during the update or delete operations.

Default Table Name Enter the default table name, between inverted commas.

Use different table name Select this check box to define a different output table
name, between double quotation marks, in the Table
name field which appears.

Usage tELTMysqlOutput is to be used along with the tELTMysqlMap. Note that the
Output link to be used with these components must correspond strictly to the syntax
of the table name.

Note that the ELT components do not handle actual data flow but only
schema information.

Related scenarios

1074 Talend Open Studio Components Reference Guide

Related scenarios

For use cases in relation with tELTMysqlOutput, see tELTMysqlMap scenarios:

• the section called “Scenario 1: Aggregating table columns and filtering”

• the section called “Scenario 2: ELT using an Alias table”

tELTOracleInput

Talend Open Studio Components Reference Guide 1075

tELTOracleInput

tELTOracleInput properties

The three ELT Oracle components are closely related, in terms of their operating conditions. These components
should be used to handle Oracle DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Oracle

Function Provides the table schema to be used for the SQL statement to execute.

Purpose Allows you to add as many Input tables as required for the most complicated Insert
statement.

Basic settings Schema and Edit
schema

A schema is a row description, i.e., it defines the nature
and number of fields to be processed. The schema is either
built-in or remotely stored in the Repository. The Schema
defined is then passed on to the ELT Mapper to be included
to the Insert SQL statement.

Click Edit Schema to modify the schema. Note that if you
make the modifcation, the schema switches automatically
to the Built-in mode.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Default Table Name Enter the default table name, between double quotation
marks.

Default Schema Name Enter the default schema name,between double quotation
marks.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage tELTOracleInput is to be used along with the tELTOracleMap. Note that the
Output link to be used with these components must must correspond strictly to the
syntax of the table name

The ELT components do not handle actual data flow but only schema
information.

Related scenarios

For use cases in relation with tELTOracleInput, see the section called “Scenario: Updating Oracle DB entries”.

tELTOracleMap

1076 Talend Open Studio Components Reference Guide

tELTOracleMap

tELTOracleMap properties

The three ELT Oracle components are closely related, in terms of their operating conditions. These components
should be used to handle Oracle DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Oracle

Function Helps to graphically build the SQL statement using the table provided as input.

Purpose Uses the tables provided as input, to feed the parameter in the built statement. The
statement can include inner or outer joins to be implemented between tables or
between one table and its aliases.

Basic settings Use an existing
connection

Select this check box and select the appropriate
tOracleConnection component from the Component list
if you want to re-use connection parameters that you have
already defined

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

ELT Oracle Map Editor The ELT Map editor allows you to define the output
schema and make a graphical build of the SQL statement
to be executed. The column names of schema can be
different from the column names in the database.

Style link Auto: By default, the links between the input and output
schemas and the Web service parameters are in the form
of curves.

tELTOracleMap properties

Talend Open Studio Components Reference Guide 1077

Bezier curve: Links between the schema and the Web
service parameters are in the form of curve.

Line: Links between the schema and the Web service
parameters are in the form of straight lines.

This option slightly optimizes performance.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties
are stored. The following fields are pre-filled in using
fetched data.

Connection type Drop-down list of the available drivers.

DB Version Select the Oracle version you are using.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Mapping Automatically set mapping parameter.

Advanced settings Additional JDBC
Parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

Use Hint Options Select this check box to activate the hint configuration
area to help you optimize a query’s execution. In this area,
parameters are:

- HINT: specify the hint you need, using the syntax /*
+ */. - POSITION: specify where you put the hint in
a SQL statement.

- SQL STMT: select the SQL statement you need to use.

tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage tELTOracleMap is used along with a tELTOracleInput and tELTOracleOutput.
Note that the Output link to be used with these components must correspond strictly
to the syntax of the table name.

Note that the ELT components do not handle actual data flow but only
schema information.

Connecting ELT components

For detailed information regarding ELT component connections, see the section called “Connecting ELT
components”.

Related topic: see Talend Open Studio User Guide.

Scenario: Updating Oracle DB entries

1078 Talend Open Studio Components Reference Guide

Mapping and joining tables

In the ELT Mapper, you can select specific columns from input schemas and include them in the output schema.

For detailed information regarding the table schema mapping and joining, see the section called “Mapping and
joining tables”.

When you need to join a lot of tables or need to join tables by multiple join conditions with outer joins,
it is recommended to use the LEFT OUTER JOIN (+) and the RIGHT OUTER JOIN (+) options that
allow you to use the Oracle private keywords. For further information about these two private keywords,
see the site: http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/queries006.htm

Adding where clauses

For details regarding the clause handling, see the section called “Adding where clauses”.

Generating the SQL statement

The mapping of elements from the input schemas to the output schemas create instantly the corresponding Select
statement.

The clause defined internally in the ELT Mapper are also included automatically.

Scenario: Updating Oracle DB entries

This scenario is based on the data aggregation scenario, the section called “Scenario 1: Aggregating table columns
and filtering”. As the data update action is available in Oracle DB, this scenario describes a Job that updates
particular data in the agg_result table.

• As described in the section called “Scenario 1: Aggregating table columns and filtering”, set up a Job for data
aggregation using the corresponding ELT components for Oracle DB, tELTOracleInput, tELTOracleMap,

http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/queries006.htm
http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/queries006.htm
http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/queries006.htm

Scenario: Updating Oracle DB entries

Talend Open Studio Components Reference Guide 1079

and tELTOracleOutput, and execute the Job to save the aggregation result in a database table named
agg_result.

When defining filters in the ELT Map editor, note that strings are case sensitive in Oracle DB.

• Launch the ELT Map editor and add a new output table named update_data.

• Add a filter row to the update_data table to set up a relationship between input and output tables:
owners.ID_OWNER = agg_result.ID_OWNER.

• Drop the MAKE column from the cars table to the update_data table.

• Drop the NAME_RESELLER column from the resellers table to the update_data table.

• Add a model enclosed in single quotation marks, A8 in this use case, to the MAKE column from the cars table,
preceded by a double pipe.

• Add Sold by enclosed in single quotation marks in front of the NAME_RESELLER column from the resellers
table, with a double pipe in between.

• Check the Generated SQL select query tab to be executed.

• Click OK to validate the changes in the ELT Mapper.

• Deactivate the tELTOracleOutput component labeled Agg_Result by right-clicking it and selecting Deactivate
Agg_Result from the contextual menu.

• Drop a new tELTOracleOutput component from the Palette to the design workspace, and label it Update_Data
to better identify its functionality.

• Connect the tELTOracleMap component to the new tELTOracleOutput component using the link
corresponding to the new output table defined in the ELT Mapper, update_data in this use case.

• Double-click the new tELTOracleOutput component to display its Basic settings view.

Scenario: Updating Oracle DB entries

1080 Talend Open Studio Components Reference Guide

• From the Action on data list, select Update.

• Check the schema, and click Sync columns to retrieve the schema structure from the preceding component if
necessary.

• In the WHERE clauses area, add a clause that reads agg_result.MAKE = 'Audi' to update data relating
to the make of Audi in the database table agg_result.

• Fill the Default Table Name field with the name of the output link, update_data in this use case.

• Select the Use different table name check box, and fill the Table name field with the name of the database
table to be updated, agg_result in this use case.

• Leave the other parameters as they are.

• Save your Job and press F6 to run it.

The relevant data in the database table is updated as defined.

tELTOracleOutput

Talend Open Studio Components Reference Guide 1081

tELTOracleOutput

tELTOracleOutput properties

The three ELT Oracle components are closely related, in terms of their operating conditions. These components
should be used to handle Oracle DB schemas to generate Insert, Update or Delete statements, including clauses,
which are to be executed in the DB output table defined.

Component family ELT/Map/Oracle

Function Carries out the action on the table specified and inserts the data according to the
output schema defined the ELT Mapper.

Purpose Executes the SQL Insert, Update and Delete statement to the Mysql database

Basic Settings Action on data On the data of the table defined, you can perform the
following operation:

Insert: Add new entries to the table. If duplicates are
found, the Job stops.

Update: Updates entries in the table. Delete: Deletes the
entries which correspond to the entry flow.: MERGE:
Updates or adds data to the table.

The options available for the MERGE operation
are different to those available for the Insert,
Update or Delete operations

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either built-in or remotely
stored in the Repository.

Click Edit Schema to modify the schema. Note that if you
make the modification, the schema switches automatically
to the Built-in mode.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Where clauses for (for
UPDATE and DELETE
only)

Enter a clause to filter the data to be updated or deleted
during the update or delete operations.

Use Merge Update (for
MERGE)

Select this check box to update the data in the output table.

Column : Lists the columns in the entry flow.

Update : Select the check box which corresponds to the
name of the column you want to update.

Scenario: Using the Oracle MERGE function to update and add data simultaneously

1082 Talend Open Studio Components Reference Guide

Use Merge Update Where Clause : Select this check box
and enter the WHERE clause required to filter the data to
be updated, if necessary.

Use Merge Update Delete Clause: Select this check box
and enter the WHERE clause required to filter the data to
be deleted and updated, if necessary.

Use Merge Insert (for
MERGE)

Select this check box to insert the data in the table.

Column: Lists the entry flow columns.

Check All: Select the check box corresponding to the
name of the column you want to insert.

Use Merge Update Where Clause: Select this check box
and enter the WHERE clause required to filter the data to
be inserted.

Default Table Name Enter a default name for the table, between double
quotation marks.

Default Schema Name Enter a name for the default Oracle schema, between
double quotation marks.

Use different table name Select this check box to define a different output table
name, between double quotation marks, in the Table
name field which appears.

Advanced settings Use Hint Options Select this check box to activate the hint configuration
area when you want to use a hint to optimize a query’s
execution. In this area, parameters are:

- HINT: specify the hint you need, using the syntax /*
+ */.

- POSITION: specify where you put the hint in a SQL
statement.

- SQL STMT: select the SQL statement you need to use.

tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage tELTOracleOutput is to be used along with the tELTOracleInput and
tELTOracleMap components. Note that the Output link to be used with these
components must correspond strictly to the syntax of the table name.

Note that the ELT components do not handle actual data flow but only
schema information.

Scenario: Using the Oracle MERGE function to update
and add data simultaneously

This scenario describes a Job that allows you to add new customer information and update existing customer
information in a database table using the Oracle MERGE command.

Scenario: Using the Oracle MERGE function to update and add data simultaneously

Talend Open Studio Components Reference Guide 1083

• Drop the following components from the Palette to the design workspace: tELTOracleInput,
tELTOracleMap, and tELTOracleOutput, and label them to identify their functionality.

• Double-click the tELTOracleInput component to display its Basic settings view.

• Select Repository from the Schema list, click the three dot button preceding Edit schema, and select your DB
connection and the desired schema from the [Repository Content] dialog box.

The selected schema name appears in the Default Table Name field automatically.

In this use case, the DB connection is Talend_Oracle and the schema is new_customers.

In this use case, the input schema is stored in the Metadata node of the Repository tree view for easy
retrieval. For further information concerning metadata, see Talend Open Studio User Guide.

You can also select the input component by dropping the relevant schema from the Metadata area onto
the design workspace and double-clicking tELTOracleInput from the [Components] dialog box. Doing
so allows you to skip the steps of labeling the input component and defining its schema manually.

• Connect the tELTOracleInput component to the tELTOraclelMap component using the link named strictly
after the actual DB table name, new_customers in this use case.

• Connect the tELTOraclelMap component to the tELTOracleOutput component and name the link
customers_merge, which is the name of the database table you will save the merge result to.

• Click the tELTOracleMap component to display its Basic settings view.

• Select Repository from the Property Type list, and select the same DB connection that you use for the input
components.

Scenario: Using the Oracle MERGE function to update and add data simultaneously

1084 Talend Open Studio Components Reference Guide

All the database details are automatically retrieved.

• Leave the other settings as they are.

• Double-click the tELTOracleMap component to launch the ELT Map editor to set up the data transformation
flow.

• Display the input table by clicking the green plus button at the upper left corner of the ELT Map editor and
selecting the relevant table name in the [Add a new alias] dialog box.

In this use case, the only input table is new_customers.

• Select all the columns in the input table and drop them to the output table.

• Click the Generated SQL Select query tab to display the query statement to be executed.

• Click OK to validate the ELT Map settings and close the ELT Map editor.

Scenario: Using the Oracle MERGE function to update and add data simultaneously

Talend Open Studio Components Reference Guide 1085

• In the design workspace, double-click the tELTOracleOutput component to display its Basic settings view.

• From the Action on data list, select MERGE.

• Click the Sync columns button to retrieve the schema from the preceding component.

• Select the Use Merge Update check box to update the data using Oracle’s MERGE function.

• In the table that appears, select the check boxes for the columns you want to update.

In this use case, we want to update all the data according to the customer ID. Therefore, select all the check
boxes except the one for the ID column.

The columns defined as the primary key CANNOT and MUST NOT be made subject to updates.

• Select the Use Merge Insert check box to insert new data while updating the existing data by leveraging Oracle’s
MERGE function.

• In the table that appears, select the check boxes for the columns into which you want to insert new date.

In this use case, we want to insert all the new customer data. Therefore, select all the check boxes by clicking
the Check All check box.

• Fill the Default Table Name field with the name of the target table already existing in your database. In this
example, fill in customers_merge.

• Leave the other parameters as they are.

Scenario: Using the Oracle MERGE function to update and add data simultaneously

1086 Talend Open Studio Components Reference Guide

• Save your Job and press F6 to run it.

The data is updated and inserted in the database. The query used is displayed on the console.

tELTPostgresqlInput

Talend Open Studio Components Reference Guide 1087

tELTPostgresqlInput

tELTPostgresqlInput properties

The three ELT Postgresql components are closely related, in terms of their operating conditions. These components
should be used to handle Postgresql DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Postgresql

Function Provides the table schema to be used for the SQL statement to execute.

Purpose Allows you to add as many Input tables as required for the most complicated Insert
statement.

Basic settings Schema and Edit
schema

A schema is a row description, i.e., it defines the nature
and number of fields to be processed. The schema is either
built-in or remotely stored in the Repository. The Schema
defined is then passed on to the ELT Mapper to be included
to the Insert SQL statement.

Click Edit Schema to modify the schema. Note that if you
make the modifcation, the schema switches automatically
to the Built-in mode.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Default Table Name Enter the default table name, between double quotation
marks.

Default Schema Name Enter the default schema name, between double quotation
marks.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage tELTPostgresqlInput is to be used along with the tELTPostgresqlMap. Note that
the Output link to be used with these components must correspond strictly to the
syntax of the table name

Note that the ELT components do not handle actual data flow but only
schema information.

Related scenarios

For use cases in relation with tELTPostgresqlInput, see tELTMysqlMap scenarios:

• the section called “Scenario 1: Aggregating table columns and filtering”

Related scenarios

1088 Talend Open Studio Components Reference Guide

• the section called “Scenario 2: ELT using an Alias table”

tELTPostgresqlMap

Talend Open Studio Components Reference Guide 1089

tELTPostgresqlMap

tELTPostgresqlMap properties

The three ELT Postgresql components are closely related, in terms of their operating conditions. These components
should be used to handle Postgresql DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Postgresql

Function Helps to build the SQL statement graphically, using the table provided as input.

Purpose Uses the tables provided as input, to feed the parameter in the built statement. The
statement can include inner or outer joins to be implemented between tables or
between one table and its aliases.

Basic settings Use an existing
connection

Select this check box and select the appropriate
Connection component from the Component list if you
want to re-use connection parameters that you have
already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

ELT Postgresql Map
Editor

The ELT Map editor allows you to define the output
schema and make a graphical build of the SQL statement
to be executed. The column names of schema can be
different from the column names in the database.

Style link Select the way in which links are displayed.

Related scenario:

1090 Talend Open Studio Components Reference Guide

Auto: By default, the links between the input and output
schemas and the Web service parameters are in the form
of curves.

Bezier curve: Links between the schema and the Web
service parameters are in the form of curve.

Line: Links between the schema and the Web service
parameters are in the form of straight lines.

This option slightly optimizes performance.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties
are stored. The following fields are pre-filled in using
fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB
connection you are creating. This option is not available if
you have selected the Use an existing connection check
box in the Basic settings.

tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage tELTPostgresqlMap is used along with a tELTPostgresqlInput and
tELTPostgresqlOutput. Note that the Output link to be used with these
components must correspond strictly to the syntax of the table name.

Note that the ELT components do not handle actual data flow but only
schema information.

Related scenario:

For related scenarios, see tELTMysqlMap scenarios:

• the section called “Scenario 1: Aggregating table columns and filtering”.

• the section called “Scenario 2: ELT using an Alias table”.

tELTPostgresqlOutput

Talend Open Studio Components Reference Guide 1091

tELTPostgresqlOutput

tELTPostgresqlOutput properties

The three ELT Postgresql components are closely related, in terms of their operating conditions. These components
should be used to handle Mysql DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Postgresql

Function Carries out the action on the table specified and inserts the data according to the
output schema defined the ELT Mapper.

Purpose Executes the SQL Insert, Update and Delete statement to the Postgresql database

Basic settings Action on data On the data of the table defined, you can perform the
following operation:

Insert: Add new entries to the table. If duplicates are
found, Job stops.

Update: Updates entries in the table.

Delete: Deletes the entries which correspond to the entry
flow.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either built-in or remotely
stored in the Repository.

Click Edit Schema to modify the schema. Note that if you
make the modifcation, the schema switches automatically
to the Built-in mode.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Where clauses for (for
UPDATE and DELETE
only)

Enter a clause to filter the data to be updated or deleted
during the update or delete operations.

Default Table Name Enter the default table name between double quotation
marks.

Default Schema Name Enter the default schema name between double quotation
marks

Use different table name Select this check box to enter a different output table name,
between double quotation marks, in the Table name field
which appears.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Related scenarios

1092 Talend Open Studio Components Reference Guide

Usage tELTPostgresqlOutput is to be used along with the tELTPostgresqlMap. Note
that the Output link to be used with these components must correspond strictly to
the syntax of the table name.

Note that the ELT components do not handle actual data flow but only
schema information.

Related scenarios

For use cases in relation with tELTPostgresqlOutput, see tELTMysqlMap scenarios:

• the section called “Scenario 1: Aggregating table columns and filtering”

• the section called “Scenario 2: ELT using an Alias table”

tELTSybaseInput

Talend Open Studio Components Reference Guide 1093

tELTSybaseInput

tELTSybaseInput properties

The three ELT Sybase components are closely related, in terms of their operating conditions. These components
should be used to handle Sybase DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Sybase

Function Provides the table schema for the SQL statement to execute

Purpose Allows you to add as many Input tables as required, for Insert statements which can
be complex.

Basic settings Schema and Edit
schema

A schema is a row description, i.e., it defines the number
and nature of the fields to be processed. The schema is
either built-in (local) or stored remotely in the Repository.
The Schema defined is then passed on to the ELT Mapper
for inclusion in the Insert SQL statement.

Click on Edit Schema, to modify the schema. Note that if
you modify the schema, it automatically becomes built-in.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository. Hence, it can be re-used for other projects and
Jobs. Related topic: see Talend Open Studio User Guide.

Default Table Name Enter a default name for the table, between double
quotation marks.

Default Schema Name Enter a default name for the Sybase schema, between
double quotation marks.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage tELTSybaseInput is intended for use with tELTSybaseMap. Note that the Output
link to be used with these components must correspond strictly to the syntax of the
table name.

ELT components only handle schema information. They do not handle
actual data flow..

Related scenarios

For scenarios in which tELTSybaseInput may be used, see tELTMysqlMap scenarios:

• the section called “Scenario 1: Aggregating table columns and filtering”

• the section called “Scenario 2: ELT using an Alias table”.

Related scenarios

1094 Talend Open Studio Components Reference Guide

tELTSybaseMap

Talend Open Studio Components Reference Guide 1095

tELTSybaseMap

tELTSybaseMap properties

The three ELT Sybase components are closely related in terms of their operating conditions. These components
should be used to handle Sybase DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Sybase

Function Allows you construct a graphical build of the SQL statement using the table provided
as input.

Purpose Uses the tables provided as input to feed the parameters required to execute the SQL
statement. The statement can include inner or outer joins to be implemented between
tables or between a table and its aliases

Basic settings Use an existing
connection

Select this check box and select the appropriate
tSybaseConnection component from the Component list
if you want to re-use connection parameters that you have
already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, ensure that the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

ELT Sybase Map Editor The ELT Map editor allows you to define the output
schema and make a graphical build of the SQL statement
to be executed. The column names of schema can be
different from the column names in the database.

Style link Select the way in which links are displayed.

Related scenarios

1096 Talend Open Studio Components Reference Guide

Auto: By default, the links between the input and output
schemas and the Web service parameters are in the form
of curves.

Bezier curve: Links between the schema and the Web
service parameters are in the form of curve.

Line: Links between the schema and the Web service
parameters are in the form of straight lines.

This option slightly optimizes performance.

Property type Can be either Built-in or Repository.

Built-in : No property data is stored centrally.

Repository : Select the Repository file where the
component properties are stored. The following fields are
pre-filled using collected data

Host Database server IP address

Port Listening port number of DB server

Database Name of the database

Username et Password DB user authentication data.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at component level.

Usage tELTSybaseMap is intended for use with tELTSybaseInput and
tELTSybaseOutput. Note that the Output link to be used with these components
must correspond strictly to the syntax of the table name.

The ELT components only handle schema information. They do not handle
actual data flow.

Related scenarios

For scenarios in which tELTSybaseMap may be used, see the following tELTMysqlMap scenarios:

• the section called “Scenario 1: Aggregating table columns and filtering”.

• the section called “Scenario 2: ELT using an Alias table”.

tELTSybaseOutput

Talend Open Studio Components Reference Guide 1097

tELTSybaseOutput

tELTSybaseOutput properties

The three ELT Sybase components are closely related in terms of their operating conditions. These components
should be used to handle Sybase DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Componant family ELT/Map/Sybase

Function Carries out the action on the table specified and inserts the data according to the
output schema defined the ELT Mapper.

Purpose Executes the SQL Insert, Update and Delete statement in the Mysql database

Basic settings

Use tCreate Table
as substitute for
this function.

Action on data On the data of the table defined, you can perform the
following operation:

Insert: Add new entries to the table. If duplicates are found,
the Job stops.

Update: Updates entries in the table.

Delete: Deletes the entries which correspond to the entry
flow.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
and nature of the fields to be processed and passed on to
the next component. The schema is either Built-in (local)
or stored remotely in the Repository. The Schema defined
is then passed on to the ELT Mapper for inclusion in the
Insert SQL statement.

Click on Edit Schema, to modify the schema. Note that if
you modify the schema, it automatically becomes built-in.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository. Hence, it can be re-used for other projects and
Jobs. Related topic: see Talend Open Studio User Guide.

Where clauses for (for
UPDATE and DELETE
only)

Enter a clause to filter the data to be updated or deleted
during the update or delete operations.

Default Table Name Enter a default name for the table, between double
quotation marks.

Default Schema Name Enter a default name for the Sybase schema, between
double quotation marks.

Use different table name Select this check box to enter a different output table name,
between double quotation marks, in the Table name field
which appears.

Related scenarios

1098 Talend Open Studio Components Reference Guide

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at component level.

Usage tELTSybaseOutput is intended for use with the tELTMysqlInput and
tELTSybaseMap components. Note that the Output link to be used with these
components must correspond strictly to the syntax of the table name..

ELT components only handle schema information. They do not handle
actual data flow.

Limitation n/a

Related scenarios

For scenarios in which tELTSybaseOutput may be used, see the following tELTMysqlMap scenarios :

• the section called “Scenario 1: Aggregating table columns and filtering”.

• the section called “Scenario 2: ELT using an Alias table”.

tELTTeradataInput

Talend Open Studio Components Reference Guide 1099

tELTTeradataInput

tELTTeradataInput properties

The three ELT Teradata components are closely related, in terms of their operating conditions. These components
should be used to handle Teradata DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Teradata

Function Provides the table schema to be used for the SQL statement to execute.

Purpose Allows you to add as many Input tables as required for the most complicated Insert
statement.

Basic settings Schema and Edit
schema

A schema is a row description, i.e., it defines the nature
and number of fields to be processed. The schema is either
built-in or remotely stored in the Repository. The Schema
defined is then passed on to the ELT Mapper to be included
to the Insert SQL statement.

Click Edit Schema to modify the schema. Note that if you
make the modifcation, the schema switches automatically
to the Built-in mode.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Default Table Name Enter a default name for the table, between double
quotation marks.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at component level.

Usage tELTTeradataInput is to be used along with the tELTTeradataMap. Note that
the Output link to be used with these components must correspond strictly to the
syntax of the table name

Note that the ELT components do not handle actual data flow but only
schema information.

Related scenarios

For use cases in relation with tELTTeradataInput, see tELTMysqlMap scenarios:

• the section called “Scenario 1: Aggregating table columns and filtering”

• the section called “Scenario 2: ELT using an Alias table”

Related scenarios

1100 Talend Open Studio Components Reference Guide

tELTTeradataMap

Talend Open Studio Components Reference Guide 1101

tELTTeradataMap

tELTTeradataMap properties

The three ELT Teradata components are closely related, in terms of their operating conditions. These components
should be used to handle Teradata DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Teradata

Function Helps to graphically build the SQL statement using the table provided as input.

Purpose Uses the tables provided as input, to feed the parameter in the built statement. The
statement can include inner or outer joins to be implemented between tables or
between one table and its aliases.

Basic settings Use an existing
connection

Select this check box and select the appropriate
tSybaseConnection component from the Component list
if you want to re-use connection parameters that you have
already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you
need to use an existing connection from the other
level, make sure that the available connection
components are sharing the intended connection.

For more information on how to share a
DB connection across Job levels, see Use
or register a shared DB connection in any
database connection component corresponding
to the database you are using, in Databases -
traditional components, Databases - appliance/
datawarehouse components, or Databases - other
components.

Otherwise, you can as well deactivate the
connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information
about Dynamic settings, see your studio user
guide.

ELT Teradata Map
editor

The ELT Map editor allows you to define the output
schema as well as build graphically the SQL statement to
be executed. The column names of schema can be different
from the column names in the database.

Style link Select the way in which links are displayed.

tELTTeradataMap properties

1102 Talend Open Studio Components Reference Guide

Auto: By default, the links between the input and output
schemas and the Web service parameters are in the form
of curves.

Bezier curve: Links between the schema and the Web
service parameters are in the form of curve.

Line: Links between the schema and the Web service
parameters are in the form of straight lines.

This option slightly optimizes performance.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties
are stored. The following fields are pre-filled in using
fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and
Password

DB user authentication data.

Usage tELTTeradataMap is used along with a tELTTeradataInput and
tELTTeradataOutput. Note that the Output link to be used with these components
must faithfully reflect the name of the tables.

The ELT components do not handle actual data flow but only schema
information.

Connecting ELT components

For detailed information regarding ELT component connections, see the section called “Connecting ELT
components”.

Related topic: see Talend Open Studio User Guide.

Mapping and joining tables

In the ELT Mapper, you can select specific columns from input schemas and include them in the output schema.

For detailed information regarding the table schema mapping and joining, see the section called “Mapping and
joining tables”.

Adding WHERE clauses

For details regarding the clause handling, see the section called “Adding where clauses”.

Related scenarios

Talend Open Studio Components Reference Guide 1103

Generating the SQL statement

The mapping of elements from the input schemas to the output schemas create instantly the corresponding Select
statement.

The clause defined internally in the ELT Mapper are also included automatically.

Related scenarios

For use cases in relation with tELTTeradataMap, see tELTMysqlMap scenarios:

• the section called “Scenario 1: Aggregating table columns and filtering”.

• the section called “Scenario 2: ELT using an Alias table”.

tELTTeradataOutput

1104 Talend Open Studio Components Reference Guide

tELTTeradataOutput

tELTTeradataOutput properties

The three ELT Teradata components are closely related, in terms of their operating conditions. These components
should be used to handle Teradata DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Teradata

Function Carries out the action on the table specified and inserts the data according to the
output schema defined the ELT Mapper.

Purpose Executes the SQL Insert, Update and Delete statement to the Teradata database

Basic settings

Use tCreate Table
as substitute for
this function.

Action on data On the data of the table defined, you can perform the
following operation:

Insert: Add new entries to the table. If duplicates are
found, Job stops.

Update: Updates entries in the table.

Delete: Deletes the entries which correspond to the entry
flow.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to modify the schema. Note that if you
make the modifcation, the schema switches automatically
to the Built-in mode.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Where clauses for (for
UPDATE and DELETE
only)

Enter a clause to filter the data to be updated or deleted
during the update or delete operations.

Default Table Name Enter a default name for the table, between double
quotation marks.

Use different table name Select this check box to enter a different output table name,
between double quotation marks, in the Table name field
which appears.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at component level.

Related scenarios

Talend Open Studio Components Reference Guide 1105

Usage tELTTeradataOutput is to be used along with the tELTTeradataMap. Note that
the Output link to be used with these components must correspond strictly to the
syntax of the table name.

Note that the ELT components do not handle actual data flow but only
schema information.

Limitation n/a

Related scenarios

For use cases in relation with tELTTeradataOutput, see tELTMysqlMap scenarios:

• the section called “Scenario 1: Aggregating table columns and filtering”.

• the section called “Scenario 2: ELT using an Alias table”.

tSQLTemplateAggregate

1106 Talend Open Studio Components Reference Guide

tSQLTemplateAggregate

tSQLTemplateAggregate properties

Component family ELT/SQLTemplate

Function tSQLTemplateAggregate collects data values from one or more columns with
the intent to manage the collection as a single unit. This component has real-time
capabilities since it runs the data transformation on the DBMS itself.

Purpose Helps to provide a set of matrix based on values or calculations.

Basic settings Database Type Select the database type you want to connect to from the
list.

Component List Select the relevant DB connection component in the list
if you use more than one connection in the current Job.

Database name Name of the database.

Source table name Name of the table holding the data you want to collect
values from.

Target table name Name of the table you want to write the collected and
transformed data in.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: You have already created the schema and
stored it in the Repository. You can reuse it in various
projects and Job flowcharts. Related topic: see Talend
Open Studio User Guide

Operations Select the type of operation along with the value to use
for the calculation and the output field.

Output Column: Select the destination field in the list.

Function: Select any of the following operations to
perform on data: count, min, max, avg, sum, and count
(distinct).

Input column position: Select the input column from
which you want to collect the values to be aggregated.

Group by Define the aggregation sets, the values of which will be
used for calculations.

Output Column: Select the column label in the list
offered according to the schema structure you defined.

Scenario: Filtering and aggregating table columns directly on the DBMS

Talend Open Studio Components Reference Guide 1107

You can add as many output columns as you wish to
make more precise aggregations.

Input Column position: Match the input column label
with your output columns, in case the output label of the
aggregation set needs to be different.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

SQL Template SQL Template List To add a default system SQL template: Click the Add
button to add the default system SQL template(s) in the
SQL Template List.

Click in the SQL template field and then click the
arrow to display the system SQL template list. Select the
desired system SQL template provided by Talend.

Note: You can create your own SQL template and add
them to the SQL Template List.

To create a user-defined SQL template:

-Select a system template from the SQL Template list
and click on its code in the code box. You will be
prompted by the system to create a new template.

-Click Yes to open the SQL template wizard.

-Define your new SQL template in the corresponding
fields and click Finish to close the wizard. An SQL
template editor opens where you can enter the template
code.

-Click the Add button to add the new created template
to the SQL Template list.

For more information, see Talend Open Studio User
Guide.

Usage This component is used as an intermediate component with other relevant DB
components, especially the DB connection and commit components.

Limitation n/a

Scenario: Filtering and aggregating table columns
directly on the DBMS

The following Java scenario creates a Job that opens a connection to a Mysql database and:

• instantiates the schemas from a database table whose rows match the column names specified in the filter,

• filters a column in the same database table to have only the data that matches a WHERE clause,

• collects data grouped by specific value(s) from the filtered column and writes aggregated data in a target database
table.

To filter and aggregate database table columns:

Scenario: Filtering and aggregating table columns directly on the DBMS

1108 Talend Open Studio Components Reference Guide

• Drop the following components from the Palette onto the design
workspace: tELTMysqlconnection, tSQLTemplateFilterColumns, tSQLTemplateFilterRows,
tSQLTemplateAggregate, tSQLTemplateCommit, and tSQLTemplateRollback.

• Connect the five first components using OnComponentOk links.

• Connect tSQLTemplateAggregate to tSQLTemplateRollback using an OnComponentError link.

• In the design workspace, select tMysqlConnection and click the Component tab to define the basic settings
for tMysqlConnection.

• In the Basic settings view, set the database connection details manually or select Repository from the Property
Type list and select your DB connection if it has already been defined and stored in the Metadata area of the
Repository tree view.

For more information about Metadata, see Talend Open Studio User Guide.

• In the design workspace, select tSQLTemplateFilterColumns and click the Component tab to define its basic
settings.

Scenario: Filtering and aggregating table columns directly on the DBMS

Talend Open Studio Components Reference Guide 1109

• On the Database type list, select the relevant database.

• On the Component list, select the relevant database connection component if more than one connection is used.

• Enter the names for the database, source table, and target table in the corresponding fields and click the three-
dot buttons next to Edit schema to define the data structure in the source and target tables.

When you define the data structure for the source table, column names automatically appear in the
Column list in the Column filters panel.

In this scenario, the source table has five columns: id, First_Name, Last_Name, Address, and id_State.

• In the Column filters panel, set the column filter by selecting the check boxes of the columns you want to
write in the source table.

In this scenario, the tSQLTemplateFilterColumns component instantiates only three columns: id, First_Name,
and id_State from the source table.

In the Component view, you can click the SQL Template tab and add system SQL templates or create
your own and use them within your Job to carry out the coded operation. For more information, see the
section called “tSQLTemplateFilterColumns Properties”.

• In the design workspace, select tSQLTemplateFilterRows and click the Component tab to define its basic
settings.

• On the Database type list, select the relevant database.

• On the Component list, select the relevant database connection component if more than one connection is used.

• Enter the names for the database, source table, and target table in the corresponding fields and click the three-
dot buttons next to Edit schema to define the data structure in the source and target tables.

In this scenario, the source table has the three initially instantiated columns: id, First_Name, and id_State and the
source table has the same three-column schema.

• In the Where condition field, enter a WHERE clause to extract only those records that fulfill the specified
criterion.

In this scenario, the tSQLTemplateFilterRows component filters the First_Name column in the source table to
extract only the first names that contain the “a” letter.

• In the design workspace, select tSQLTemplateAggregate and click the Component tab to define its basic
settings.

• On the Database type list, select the relevant database.

• On the Component list, select the relevant database connection component if more than one connection is used.

• Enter the names for the database, source table, and target table in the corresponding fields and click the three-
dot buttons next to Edit schema to define the data structure in the source and target tables.

Scenario: Filtering and aggregating table columns directly on the DBMS

1110 Talend Open Studio Components Reference Guide

The schema for the source table consists of the three columns: id, First_Name, and id_State. The schema for the
target table consists of two columns: customers_status and customers_number. In this scenario, we want to group
customers by their marital status and count customer number in each marital group. To do that, we define the
Operations and Group by panels accordingly.

• In the Operations panel, click the plus button to add one or more lines and then click in the Output column
line to select the output column that will hold the counted data.

• Click in the Function line and select the operation to be carried on.

• In the Group by panel, click the plus button to add one or more lines and then click in the Output column line
to select the output column that will hold the aggregated data.

• In the design workspace, select tSQLTemplateCommit and click the Component tab to define its basic
settings.

• On the Database type list, select the relevant database.

• On the Component list, select the relevant database connection component if more than one connection is used.

• Do the same for tSQLTemplateRollback.

• Save your Job and press F6 to execute it.

A two-column table aggregate_customers is created in the database. It groups customers according to their marital
status and count customer number in each marital group.

tSQLTemplateCommit

Talend Open Studio Components Reference Guide 1111

tSQLTemplateCommit

tSQLTemplateCommit properties

This component is closely related to tSQLTemplateRollback and to the ELT connection component for the
database you work with. tSQLTemplateCommit, tSQLTemplateRollback and the ELT database connection
component are usually used together in a transaction.

Component family ELT/SQLTemplate

Function tSQLTemplateCommit validates the data processed in a Job in a specified
database.

Purpose Using a single connection, this component commits a global action in one go instead
of doing so for every row or every batch of rows, separately. This provides a gain
in performance.

Basic settings Database Type Select the database type you want to connect to from the
list.

Component List Select the ELT database connection component in the list
if more than one connection is required for the current Job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

SQL Template SQL Template List To add a default system SQL template: Click the Add
button to add the default system SQL template(s) in the
SQL Template List.

Click in the SQL template field and then click the arrow
to display the system SQL template list. Select the desired
system SQL template provided by Talend.

Note: You can create your own SQL template and add
them to the SQL Ttemplate List.

To create a user-defined SQL template:

-Select a system template from the SQL Template list and
click on its code in the code box. You will be prompted by
the system to create a new template.

-Click Yes to open the SQL template wizard.

-Define your new SQL template in the corresponding
fields and click Finish to close the wizard. An SQL
template editor opens where you can enter the template
code.

-Click the Add button to add the new created template to
the SQL Template list.

Related scenario

1112 Talend Open Studio Components Reference Guide

For more information, see Talend Open Studio User
Guide.

Usage This component is to be used with ELT components, especially with
tSQLTemplateRollback and the relevant database connection component.

Limitation n/a

Related scenario

This component is closely related to tSQLTemplateRollback and to the ELT connection component depending
on the database you are working with. It usually does not make much sense to use ELT components without using
the relevant ELT database connection component as its purpose is to open a connection for a transaction.

For more information on tSQLTemplateCommit, see the section called “Scenario: Filtering and aggregating
table columns directly on the DBMS”.

tSQLTemplateFilterColumns

Talend Open Studio Components Reference Guide 1113

tSQLTemplateFilterColumns

tSQLTemplateFilterColumns Properties

Component family ELT/SQLTemplate

Function tSQLTemplateFilterColumns makes specified changes to the defined schema of
the database table based on column name mapping. This component has real-time
capabilities since it runs the data filtering on the DBMS itself

Purpose Helps homogenize schemas by reorganizing, deleting or adding new columns.

Basic settings Database Type Select the type of database you want to work on from the
drop-down list.

Component List Select the relevant DB connection component in the list
if you use more than one connection in the current Job.

Database name Name of the database.

Source table name Name of the table holding the data you want to filter.

Target table name Name of the table you want to write the filtered data in.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: You have already created the schema and
stored it in the Repository. You can reuse it in various
projects and Job flowcharts. Related topic: see Talend
Open Studio User Guide.

Column Filters In the table, click the Filter check box to filter all of the
columns. To select specific columns for filtering, select
the check box(es) which correspond(s) to the column
name(s).

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

SQL Template SQL Template List To add a default system SQL Template: Click the Add
button to add the default system SQL template(s) in the
SQL Template List.

Click in the SQL template field and then click the
arrow to display the system SQL template list. Select the
desired system SQL template provided by Talend.

Related Scenario

1114 Talend Open Studio Components Reference Guide

Note: You can create your own SQL templates and add
them to the SQL Template List.

To create a user-defined SQL list:

-Select a system template from the SQL Template list
and click on its code in the code box. You will be
prompted by the system to create a new template.

-Click Yes to open the SQL Template wizard.

-Define your new SQL template in the corresponding
fields and click Finish to close the wizard. An SQL
template editor opens where you can enter the template
code.

-Click the Add button to add the new created template
to the SQL Template list.

For more information, see Talend Open Studio User
Guide.

Usage This component is used as an intermediary component with other relevant DB
components, especially DB connection components.

Limitation n/a

Related Scenario

For a related scenario, see the section called “Scenario: Filtering and aggregating table columns directly on the
DBMS”.

tSQLTemplateFilterRows

Talend Open Studio Components Reference Guide 1115

tSQLTemplateFilterRows

tSQLTemplateFilterRows Properties

Component family ELT/SQLTemplate

Function tSQLTemplateFilterRows allows you to define a row filter on one table. This
component has real-time capabilities since it runs the data filtering on the DBMS
itself.

Purpose Helps to set row filters for any given data source, based on a WHERE clause.

Basic settings Database Type Select the type of database you want to work on from the
drop down list.

Component List Select the relevant DB connection component in the list
if you are using more than one connection in the current
Job.

Database name Name of the database.

Source table name Name of the table holding the data you want to filter.

Target table name Name of the table you want to write the filtered data in.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: You have already created the schema and
stored it in the Repository. You can reuse it in various
projects and Job flowcharts. Related topic: see Talend
Open Studio User Guide.

Where condition Use a WHERE clause to set the criteria that you want
the rows to meet.

You can use the WHERE clause to select specific rows
from the table that match specified criteria or conditions.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

SQL Template SQL Template List To add a default system SQL template: Click the Add
button to add the default system SQL template(s) in the
SQL Template List.

Click in the SQL template field and then click the
arrow to display the system SQL template list. Select the
desired system SQL template provided by Talend.

Related Scenario

1116 Talend Open Studio Components Reference Guide

Note: You can create your own SQL template and add
them to the SQL Template List.

To create a user-defined SQL template:

-Select a system template from the SQL Template list
and click on its code in the code box. You will be
prompted by the system to create a new template.

-Click Yes to open the SQL template wizard.

-Define your new SQL template in the corresponding
fields and click Finish to close the wizard. An SQL
template editor opens where you can enter the template
code.

-Click the Add button to add the new created template
to the SQL Template list.

For more information, see Talend Open Studio User
Guide.

Usage This component is used as an intermediary component with other DB components,
particularly DB connection components.

Limitation n/a

Related Scenario

For a related scenario, see the section called “Scenario: Filtering and aggregating table columns directly on the
DBMS”.

tSQLTemplateMerge

Talend Open Studio Components Reference Guide 1117

tSQLTemplateMerge

tSQLTemplateMerge properties

Component family ELT/SQLTemplate

Function This component creates an SQL MERGE statement to merge data into a database
table.

Purpose This component is used to merge data into a database table directly on the DBMS
by creating and executing a MERGE statement.

Basic settings Database Type Select the type of database you want to work on from the
drop-down list.

Component list Select the relevant DB connection component from the list
if you use more than one connection in the current Job.

Source table name Name of the database table holding the data you want to
merge into the target table.

Target table name Name of the table you want to merge data into.

Schema and Edit
schema

This component involves two schemas: source schema and
target schema.

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either built-in or remotely
stored in the Repository.

Click Edit Schema to modify the schema. Note that if you
make the modification, the schema switches automatically
to the Built-in mode.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Merge ON Specify the target and source columns you want to use as
the primary keys.

Use UPDATE (WHEN
MATCHED)

Select this check box to update existing records. With the
check box selected, the UPDATE Columns table appears,
allowing you to define the columns in which records are
to be updated.

Specify additional
output columns

Select this check box to update records in additional
columns other than those listed in the UPDATE Columns
table. With this check box selected, the Additional
UPDATE Columns table appears, allowing you to specify
additional columns.

Specify UPDATE
WHERE clause

Select this check box and type in a WHERE clause in
the WHERE clause field to filter data during the update
operation.

tSQLTemplateMerge properties

1118 Talend Open Studio Components Reference Guide

This option may not work with certain database
versions, including Oracle 9i.

Use INSERT (WHEN
MATCHED)

Select this check box to insert new records. With the
check box selected, the INSERT Columns table appears,
allowing you to specify the columns to be involved in the
insert operation.

Specify additional
output columns

Select this check box to insert records to additional
columns other than those listed in the INSERT Columns
table. With this check box selected, the Additional
INSERT Columns table appears, allowing you to specify
additional columns.

Specify INSERT
WHERE clause

Select this check box and type in a WHERE clause in
the WHERE clause field to filter data during the insert
operation.

This option may not work with certain database
versions, including Oracle 9i.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at component level.

SQL Template SQL Template List To add a default system SQL template: Click the Add
button to add the default system SQL template(s) in the
SQL Template List.

Click in the SQL template field and then click the arrow
to display the system SQL template list. Select the desired
system SQL template provided by Talend.

Note: You can create your own SQL template and add
them to the SQL Template List.

To create a user-defined SQL template:

-Select a system template from the SQL Template list and
click on its code in the code box. You will be prompted by
the system to create a new template.

-Click Yes to open the SQL template wizard.

-Define your new SQL template in the corresponding
fields and click Finish to close the wizard. An SQL
template editor opens where you can enter the template
code.

-Click the Add button to add the new created template to
the SQL Template list.

For more information, see Talend Open Studio User
Guide.

Usage This component is used as an intermediate component with other relevant DB
components, especially the DB connection and commit components.

Scenario: Merging data directly on the DBMS

Talend Open Studio Components Reference Guide 1119

Scenario: Merging data directly on the DBMS

This scenario describes a simple Job that opens a connection to a MySQL database, merges data from a source
table into a target table according to customer IDs, and displays the contents of the target table before and after
the merge action. A WHERE clause is used to filter data during the merge operation.

• Drop a tMysqlConnection component, a tSQLTemplateMerge component, two tMysqlInput components
and two tLogRow components from the Palette onto the design workspace.

• Connect the tMysqlConnection component to the first tMysqlInput component using a Trigger >
OnSubjobOK connection.

• Connect the first tMysqlInput component to the first tLogRow component using a Row > Main connection.
This row will display the initial contents of the target table on the console.

• Connect the first tMysqlInput component to the tSQLTemplateMerge component, and the
tSQLTemplateMerge component to the second tMysqlInput component using Trigger > OnSubjobOK
connections.

• Connect the second tMysqlInput component to the second tLogRow component using a Row > Main
connection. This row will display the merge result on the console.

• Double-click the tMysqlConnection component to display its Basic settings view.

Scenario: Merging data directly on the DBMS

1120 Talend Open Studio Components Reference Guide

• Set the database connection details manually or select Repository from the Property Type list and select your
DB connection if it has already been defined and stored in the Metadata area of the Repository tree view.

For more information about Metadata, see Talend Open Studio User Guide.

• Double-click the first tMysqlInput component to display its Basic settings view.

• Select the Use an existing connection check box. If you are using more than one DB connection component in
your Job, select the component you want to use from the Component List.

• Click the three-dot button next to Edit schema and define the data structure of the target table, or select
Repository from the Schema list and select the target table if the schema has already been defined and stored
in the Metadata area of the Repository tree view.

In this scenario, we use built-in schemas.

• Define the columns as shown above, and then click OK to propagate the schema structure to the output
component and close the schema dialog box.

• Fill the Table Name field with the name of the target table, customer_info_merge in this scenario.

• Click the Guess Query button, or type in “SELECT * FROM customer_info_merge” in the Query
area, to retrieve all the table columns.

• Define the properties of the second tMysqlInput component, using exactly the same settings as for the first
tMysqlInput component.

Scenario: Merging data directly on the DBMS

Talend Open Studio Components Reference Guide 1121

• In the Basic settings view of each tLogRow component, select the Table option in the Mode area so that the
contents will be displayed in table cells on the console.

• Double-click the tSQLTemplateMerge component to display its Basic settings view.

• Type in the names of the source table and the target table in the relevant fields.

In this scenario, the source table is new_customer_info, which contains eight records; the target table is
customer_info_merge, which contains five records, and both tables have the same data structure.

The source table and the target table may have different schema structures. In this case, however, make
sure that the source column and target column specified in each line of the Merge ON table, the UPDATE
Columns table, and the INSERT Columns table are identical in data type and the target column length
allows the insertion of the data from the corresponding source column.

• Define the source schema manually, or select Repository from the Schema list and select the relevant table if
the schema has already been defined and stored in the Metadata area of the Repository tree view.

In this scenario, we use built-in schemas.

Scenario: Merging data directly on the DBMS

1122 Talend Open Studio Components Reference Guide

• Define the columns as shown above and click OK to close the schema dialog box, and do the same for the
target schema.

• Click the green plus button beneath the Merge ON table to add a line, and select the ID column as the primary
key.

• Select the Use UPDATE check box to update existing data during the merge operation, and define the columns
to be updated by clicking the green plus button and selecting the desired columns.

In this scenario, we want to update all the columns according to the customer IDs. Therefore, we select all the
columns except the ID column.

The columns defined as the primary key CANNOT and MUST NOT be made subject to updates.

• Select the Specify UPDATE WHERE clause check box and type in customer_info_merge.ID >= 4
within double quotation marks in the WHERE clause field so that only those existing records with an ID equal
to or greater than 4 will be updated.

• Select the Use INSERT check box and define the columns to take data from and insert data to in the INSERT
Columns table.

In this example, we want to insert all the records that do not exist in the target table.

Scenario: Merging data directly on the DBMS

Talend Open Studio Components Reference Guide 1123

• Select the SQL Template view to display and add the SQL templates to be used.

By default, the SQLTemplateMerge component uses two system SQL templates: MergeUpdate and
MergeInsert.

In the SQL Template tab, you can add system SQL templates or create your own and use them
within your Job to carry out the coded operation. For more information, see the section called
“tSQLTemplateFilterColumns Properties”.

• Click the Add button to add a line and select Commit from the template list to commit the merge result to
your database.

Alternatively, you can connect the tSQLTemplateMerge component to a tSQLTemplateCommit or
tMysqlCommit component using a Trigger > OnSubjobOK connection to commit the merge result to your
database.

• Save your Job and press F6 to run it.

Both the original contents of the target table and the merge result are displayed on the console. In the target
table, records No. 4 and No. 5 contain the updated information, and records No.6 through No. 8 contain the
inserted information.

Scenario: Merging data directly on the DBMS

1124 Talend Open Studio Components Reference Guide

tSQLTemplateRollback

Talend Open Studio Components Reference Guide 1125

tSQLTemplateRollback

tSQLTemplateRollback properties

This component is closely related to tSQLTemplateCommit and to the ELT connection component relative to
the database you work with. tSQLTemplateRollback, tSQLTemplateCommit and the ELT database connection
component are usually used together in a transaction.

Component family ELT/SQLTemplate

Function tSQLTemplateRollback cancels the transaction committed in the database you
connect to.

Purpose To avoid committing transactions accidentally.

Basic settings Database Type Select the database type you want to connect to from the
list.

Component List Select the ELT database connection component in the list
if more than one connection is planned for the current Job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

SQL Template SQL Template List To add a default system SQL template: Click the Add
button to add the default system SQL template(s) in the
SQL Template List.

Click in the SQL template field and then click the arrow
to display the system SQL template list. Select the desired
system SQL template provided by Talend.

Note: You can create your own SQL template and add
them to the SQL Template List.

To create a user-defined SQL template:

-Select a system template from the SQL Template list and
click on its code in the code box. You will be prompted by
the system to create a new template.

-Click Yes to open the SQL template wizard.

-Define your new SQL template in the corresponding
fields and click Finish to close the wizard. An SQL
template editor opens where you can enter the template
code.

-Click the Add button to add the new created template to
the SQL Template list.

For more information, see Talend Open Studio User
Guide.

Related scenarios

1126 Talend Open Studio Components Reference Guide

Usage This component is to be used with ELT components, especially with
tSQLTemplateCommit and the relevant database connection component.

Limitation n/a

Related scenarios

For a tSQLTemplateRollback related scenario, see the section called “Scenario: Filtering and aggregating table
columns directly on the DBMS”.

Talend Open Studio Components Reference Guide

ESB components
This chapter details the main components that you can find in the ESB family of the Talend Open Studio Palette.

The ESB component family groups together the components dedicated to ESB related tasks.

tESBConsumer

1128 Talend Open Studio Components Reference Guide

tESBConsumer

tESBConsumer properties

Component family ESB/Web Services

Function Calls the defined method from the invoked Web service and returns the class as
defined, based on the given parameters.

Purpose Invokes a Method through a Web service.

Basic settings Property Type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the desired web service from the
Repository, to the granularity of the port name and
operation.

Service configuration Description of Web service bindings and configuration.
The Endpoint field gets filled in automatically upon
completion of the service configuration.

Connection time
out(second)

Set a value in seconds for Web service connection time
out.

Receive time
out(second)

Set a value in seconds for server answer.

Input Schema and Edit
schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to
the next component. The schema is either Built-in or
stored remotely in the Repository Click Edit schema
to make changes to the schema. Note that if you make
changes, the schema automatically becomes Built-in.
Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Built-in: The schema is created and stored locally for
this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused. Related topic: see
Talend Open Studio User Guide.

Response Schema and
Edit schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository Click Edit schema to make
changes to the schema. Note that if you make changes,
the schema automatically becomes Built-in.

Built-in: The schema is created and stored locally for
this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused. Related topic: see
Talend Open Studio User Guide.

tESBConsumer properties

Talend Open Studio Components Reference Guide 1129

Fault Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository Click Edit schema to make
changes to the schema. Note that if you make changes,
the schema automatically becomes Built-in.

Built-in: The schema is created and stored locally for
this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused. Related topic: see
Talend Open Studio User Guide.

ESB Service Settings Use Service Locator: Maintains the availability of
the service to help meet demands and service level
agreements (SLAs).

Use Service Activity Monitor: Captures events and
stores this information to facilitate in-depth analysis
of service activity and track-and-trace of messages
throughout a business transaction. This can be used to
analyze service response times, identify traffic patterns,
perform root cause analysis and more.

Use Authentication: Select this check box to enable the
authentication option. Select from Basic HTTP, SAML
Token (ESB runtime only) and Username Token.
Enter a username and a password in the corresponding
fields as required. Authentication with the username
token works both from the studio and at runtime.
Authentication with the SAML token works at runtime
only.

Use http proxy/Proxy
host, Proxy port,
Proxy user, and Proxy
password

Select this check box if you are using a proxy server and
fill in the necessary information.

Trust server with
SSL/TrustStore file and
TrustStore password

Select this check box to validate the server certificate
to the client via an SSL protocol and fill in the
corresponding fields:

TrustStore file: Enter the path (including filename) to
the certificate TrustStore file that contains the list of
certificates that the client trusts.

TrustStore password: Enter the password used to check
the integrity of the TrustStore data.

Mapping links display
as

Auto: By default, the links between the input and output
schemas and the Web service parameters are in the form
of curves.

Curves: Links between the schema and the Web service
parameters are in the form of curves.

Lines (fast): Links between the schema and the Web
service parameters are in the form of straight lines. This
option slightly optimizes performance.

Die on error Select this check box to kill the Job when an error occurs.

Scenario: Returning valid email

1130 Talend Open Studio Components Reference Guide

Advanced settings Service Locator Custom
Properties

This table appears when Use Service Locator is
selected. You can add as many lines as needed in the
table to customize the relevant properties. Enter the
name and the value of each property between double
quotation marks in the Property Name field and the
Property Value field respectively.

Service Activity Custom
Properties

This table appears when Use Service Activity Monitor
is selected. You can add as many lines as needed in
the table to customize the relevant properties. Enter the
name and the value of each property between double
quotation marks in the Property Name field and the
Property Value field respectively.

Temporary folder (for
wsdl2java)

Set or browse to a temporary folder that you configured
in order to store the WSDL files.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component can be used as an intermediate component. It requires to be linked
to an output component.

Limitation A JDK is required for this component to operate.

Scenario: Returning valid email

This scenario describes a Job that uses a tESBConsumer component to retrieve the valid email.

Dropping and linking the components

1. Drop the following components from the Palette onto the design workspace: a tFixedFlowInput, a
tXMLMap, a tESBConsumer, and two tLogRow components.

2. Right-click the tFixedFlowInput component, select Row > Main from the contextual menu and click the
tXMLMap component.

3. Right-click the tXMLMap component, select Row > *New Output* (Main) from the contextual menu and
click the tESBConsumer component. Enter payload in the popup dialog box to name this row and accept
the propagation that prompts you to get the schema from the tESBConsumer component.

Scenario: Returning valid email

Talend Open Studio Components Reference Guide 1131

4. Right-click the tESBConsumer component, select Row > Response from the contextual menu and click one
of the tLogRow component.

5. Right-click the tESBConsumer component again, select Row > Fault from the contextual menu and click
the other tLogRow component.

Configuring the components

Configuring the tFixedFlowInput component

1. Double-click the tFixedFlowInput component to open its Basic settings view in the Component tab.

2. Click the three-dot button next to Edit Schema. In the schema dialog box, click the plus button to add a new
line of String type and name it payloadString. Click OK to close the dialog box.

3. In the Number of rows field, set the number of rows as 1.

4. In the Mode area, select Use Single Table and input the following request in double quotation marks into
the Value field:

nomatter@gmail.com

Configuring the tXMLMap component

1. In the design workspace, double-click the tXMLMap component to open the Map Editor.

2. In the output table, right-click the root node and select Rename from the contextual menu. Enter IsValidEmail
in the dialog box that appears.

Scenario: Returning valid email

1132 Talend Open Studio Components Reference Guide

3. Right-click the IsValidEmail node and select Set A Namespace from the contextual menu. Enter http://
www.webservicex.net in the dialog box that appears.

4. Right-click the IsValidEmail node again and select Create Sub-Element from the contextual menu. Enter
Email in the dialog box that appears.

5. Right-click the Email node and select As loop element from the contextual menu.

6. Click the payloadString node in the input table and drop it to the Expression column in the row of the Email
node in the output table.

7. Click OK to validate the mapping and close the Map Editor.

Configuring the tESBConsumer component

1. In the design workspace, double-click the tESBConsumer component to open its Basic settings view in the
Component tab.

Scenario: Returning valid email

Talend Open Studio Components Reference Guide 1133

2. Click the three-dot button next to Service configuration.

3. In the dialog box that appears, type in: http://www.webservicex.net/ValidateEmail.asmx?WSDL in the WSDL
field and click the refresh button to retrieve port name and operation name. In the Port Name list, select
the port you want to use, ValidateEmailSoap in this example. Click OK to validate your settings and close
the dialog box.

4. Set the Input Schema as follows:

Scenario: Returning valid email

1134 Talend Open Studio Components Reference Guide

5. Set the Response Schema as follows:

6. Set the Fault Schema as follows:

Configuring the tLogRow components

1. In the design workspace, double-click the tLogRow component that monitors the fault message to display
its Basic settings view in the Component tab.

2. Click the three-dot button next to Edit Schema and define the schema as follows:

3. In the design workspace, double-click the tLogRow component that monitors the response message to display
its Basic settings view in the Component tab.

Scenario: Returning valid email

Talend Open Studio Components Reference Guide 1135

4. Click the three-dot button next to Edit Schema and define the schema as follows:

5. Press Ctrl+S to save your Job.

Executing the Job

Click the Run view to display it and click the Run button to launch the execution of your Job. You can also press
F6 to execute it. In the execution log you will see:

tESBProviderFault

1136 Talend Open Studio Components Reference Guide

tESBProviderFault

This component is relevant only when used with the ESB version of the Studio, as it should be used with
the Service Repository node and the Data Service creation related wizard(s).

tESBProviderFault properties

Component family ESB/Web Services

Function Serves a Talend Job cycle result as a Fault message of the Web service in case of
a request response communication style.

Purpose Acts as Fault message of the Web Service response at the end of a Talend Job cycle.

Basic settings Schema and Edit
schema

A schema is a row description, i.e. it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes Built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

EBS service
settings/fault title

Value of the faultString in the Fault message.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage This component should only be used with the tESBProviderRequest component.

Limitation A JDK is required for this component to operate.

Scenario: Returning Fault message

The Jobs, which are built upon the components under the ESB/Web Services family, act as the implementations
of web services defined in the Services node of the Repository. They require the creation of and association with
relevant services. For more information about services, see the related topics in the Talend Open Studio User
Guide.

In this scenario, a provider Job and a consumer Job are needed. In the meantime, the related service should already
exist in the Services node, with the WSDL URI being http://127.0.0.1.8088/esb/provider/?WSDL, the port name
being LOCAL_providerSoapBinding and the operation being invoke(anyType):anyType.

Scenario: Returning Fault message

Talend Open Studio Components Reference Guide 1137

The provider Job consists of a tESBProviderRequest, a tESBProviderFault, a tXMLMap, and two tLogRow
components.

• From the Palette, drop a tESBProviderRequest, a tESBProviderFault, a tXMLMap, and two tLogRow onto
the design workspace.

• Double-click tESBProviderRequest_1 to display its Component view and set its Basic settings.

• Select Repository from the Property Type list and click the three-dot button to choose the service, to the
granularity of port name and operation.

• Click OK.

• Click the three-dot button next to Edit schema to view the schema of tESBProviderRequest_1.

Scenario: Returning Fault message

1138 Talend Open Studio Components Reference Guide

• Connect tESBProviderRequest_1 to tLogRow_1.

• Double-click the tLogRow_1 to display its Component view and set its Basic settings.

• Click the three-dot button next to the Edit schema and define the schema as follow.

• Connect tLogRow_1 to tXMLMap_1.

• Connect tXMLMap_1 to tLogRow_2 and name this row as payload.

• Double-click tXMLMap_1 to open the Map Editor.

• In the left table, right-click root to open the contextual menu.

• From the contextual menu, select Create Sub-Element and type in request in the popup dialog box.

• Repeat this operation to create a sub-element response of the root node in the output table.

• Right-click the request node in the input table and select As loop element from the contextual menu.

• Click the request node in the input table and drop it to the Expression column in the row of the response node
in the output table.

• Click OK to validate the mapping and close the Map Editor.

Scenario: Returning Fault message

Talend Open Studio Components Reference Guide 1139

• In the design workspace, double-click tLogRow_2 to display its Component view and set its Basic settings.

• Click the three-dot button next to the Edit schema and define the schema as follow.

• Connect tLogRow_2 to tESBProviderFault_1.

• In the design workspace, double-click tESBProviderFault_1 to display its Component view and set its Basic
settings.

Scenario: Returning Fault message

1140 Talend Open Studio Components Reference Guide

• Click the three-dot button next to the Edit schema and define the schema as follow.

• The Job can be run without errors.

The consumer Job consists of a tFixedFlowInput, a tXMLMap, a tESBConsumer, and two tLogRow
components.

• From the Palette, drop a tFixedFlowInput, a tXMLMap, a tESBConsumer, and two tLogRow components
onto the design workspace.

• Double-click tFixedFlowInput_1 to display its Component view and set its Basic settings.

• Click the three-dot button next to Edit schema.

Scenario: Returning Fault message

Talend Open Studio Components Reference Guide 1141

• Click the plus button to add a new line of string type and name it payloadString.

• Click OK.

• In the Mode area, select Use Single Table and input Test error in quotations into the Value field.

• Connect tFixedFlowInput_1 to tXMLMap_1.

• Connect tXMLMap_1 to tESBConsumer_1 and name this row as payload.

• In the design workspace, double-click tXMLMap_1 to open the Map Editor.

• On the lower right part of the map editor, click the plus button to add one row to the payload table and name
this row as payload.

• In the Type column of this payload row, select Document as the data type. The corresponding XML root is
added automatically to the table on the right side which represents the output flow.

• In the payload table, right-click root to open the contextual menu.

• From the contextual menu, select Create Sub-Element and type in request in the popup dialog box.

• Right-click the request node and select As loop element from the contextual menu.

• Click the payloadstring node in the input table and drop it to the Expression column in the row of the request
node in the output table.

• Click OK to validate the mapping and close the Map Editor.

Scenario: Returning Fault message

1142 Talend Open Studio Components Reference Guide

• Start the provider Job. In the executing log you can see:

...
web service [endpoint: http://127.0.0.1:8088/esb/provider] published
...

• On the tESBConsumer_1 Component view of the consumer Job, click the three-dot button next to the Service
Configuration to open the editor.

• In the WSDL field, type in: http://127.0.0.1:8088/esb/provider/?WSDL.

• Click the Refresh button to retrieve port name and operation name.

Scenario: Returning Fault message

Talend Open Studio Components Reference Guide 1143

• Click OK.

• In the Basic settings of the tESBConsumer_1 component, set the Input schema as follow:

• Set the Response schema as follow:

• Set the Fault schema as follow:

• Connect tESBConsumer_1 to tLogRow_1 and tLogRow_2.

• Stop the provider Job.

• In the consumer Job, double-click tLogRow_1 to display its Component view and set its Basic settings.

Scenario: Returning Fault message

1144 Talend Open Studio Components Reference Guide

• Click the three-dot button next to Edit schema and define the schema as follow:

• In the design workspace, double-click tLogRow_2 to display its Component view and set its Basic settings.

• Click the three-dot button next to Edit schema and define the schema as follow:

• The Job can be run without errors.

• Run the provider Job. In the execution log you will see:

...
2011-04-19 15:38:33.486:INFO::jetty-7.2.2.v20101205
2011-04-19 15:38:33.721:INFO::Started
 SelectChannelConnector@127.0.0.1:8088

Scenario: Returning Fault message

Talend Open Studio Components Reference Guide 1145

web service [endpoint: http://127.0.0.1:8088/esb/provider] published

• Run the consumer Job. In the execution log of the Job you will see:

Starting job consumer at 15:39 19/04/2011.

[statistics] connecting to socket on port 3850
[statistics] connected
LOCAL_provider
LOCAL_providerSoapBinding
|
{http://talend.org/esb/service/job}LOCAL_provider
{http://talend.org/esb/service/job}LOCAL_providerSoapBinding
invoke
[tLogRow_1] faultString: TestFaultTitle [tESBProviderFault_1]
faultDetail: <?xml version="1.0" encoding="UTF-8"?>
<response xmlns="http://talend.org/esb/service/job">Fault message
text: Test error!</response>
[statistics] disconnected
Job consumer ended at 15:39 19/04/2011. [exit code=0]

• In the provider’s log you will see the exception trace log:

...
WARNING: Application {http://talend.org/esb/service/
job}LOCAL_provider#{http://talend.org/esb/service/job}invoke
has thrown exception, unwinding now
org.apache.cxf.binding.soap.SoapFault: TestFaultTitle
 [tESBProviderFault_1]
...

It is expected because the Fault message is generated.

tESBProviderRequest

1146 Talend Open Studio Components Reference Guide

tESBProviderRequest

This component is relevant only when used with the ESB version of the Studio, as it should be used with
the Service Repository node and the Data Service creation related wizard(s).

tESBProviderRequest properties

Component family ESB/Web Services

Function Wraps Talend Job as web service.

Purpose Waits for a request message from a consumer and passes it to the next component.

Basic settings Property Type Either Built-in or Repository.

Built-in: No WSDL file is configured for the job.

Repository: Select the desired web service from the
Repository, to the granularity of the port name and
operation.

Schema and Edit
schema

A schema is a row description, i.e. it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes Built-in.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema is created and stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Keep listening Check this box when you want to ensure that the provider
(and therefore Talend Job) will continue listening for
requests after processing the first incoming request.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage This component covers the possibility that a Talend Job can be wrapped as a service,
with the ability to input a request to a service into a Job and return the Job result
as a service response.

The tESBProviderRequest component should be used with the
tESBProviderResponse component to provide a Job result as a response, in case
of a request-response communication style.

Limitation A JDK is required for this component to operate.

Scenario: Service sending a message without expecting a response

Talend Open Studio Components Reference Guide 1147

Scenario: Service sending a message without
expecting a response

The Jobs, which are built upon the components under the ESB/Web Services family, act as the implementations
of web services defined in the Services node of the Repository. They require the creation of and association with
relevant services. For more information about services, see the related topics in the Talend Open Studio User
Guide.

In this scenario, a provider Job and a consumer Job are needed. In the meantime, the related service should already
exist in the Services node, with the WSDL URI being http://127.0.0.1.8088/esb/provider/?WSDL, the port name
being TEST_ProviderJobSoapBinding and the operation being invoke(anyType):anyType.

The provider Job consists of a tESBProviderRequest, a tXMLMap, and two tLogRow components.

• Drop the following components from the Palette onto the design workspace: a tESBProviderRequest, a
tXMLMap, and two tLogRow.

• Double-click tESBProviderRequest_1 in the design workspace to display its Component view and set its
Basic settings.

• Select Repository from the Property Type list and click the three-dot button to choose the service, to the
granularity of port name and operation.

Scenario: Service sending a message without expecting a response

1148 Talend Open Studio Components Reference Guide

• Click OK.

• Click the three-dot button next to Edit schema to view the schema of tESBProviderRequest_1.

• Click OK.

• Connect tESBProviderRequest_1 to tLogRow_1.

• Double-click tLogRow_1 in the design workspace to display its Component view and set its Basic settings.

• Click the three-dot button next to Edit schema. and define the schema as follow.

• Connect tLogRow_1 to tXMLMap_1.

• Connect tXMLMap_1 to tLogRow_2 and name this row as payload.

• In the design workspace, double-click tXMLMap_1 to open the Map Editor.

• On the lower right part of the map editor, click the plus button to add one row to the payload table and name
this row as payload.

• In the Type column of this payload row, select Document as the data type. The corresponding XML root is
added automatically to the top table on the right side which represents the output flow.

• In the payload table, right-click root to open the contextual menu.

• From the contextual menu, select Create Sub-Element and type in response in the popup dialog box.

• Right-click the response node and select As loop element from the contextual menu.

Scenario: Service sending a message without expecting a response

Talend Open Studio Components Reference Guide 1149

• Repeat this operation to create a sub-element request of the root node in the input table and set the request
node as loop element.

• Click the request node in the input table and drop it to the Expression column in the row of the response node
in the output table.

• Click OK to validate the mapping and close the map editor.

• Double-click tLogRow_2 in the design workspace to display its Component view and set its Basic settings.

• Click the three-dot button next to Edit Schema and define the schema as follow.

Scenario: Service sending a message without expecting a response

1150 Talend Open Studio Components Reference Guide

• Save the Job.

The consumer Job consists of a tFixedFlowInput, a tXMLMap, a tESBConsumer, and two tLogRow
components.

• Drop the following components from the Palette onto the design workspace: a tFixedFlowInput, a tXMLMap,
a tESBConsumer, and two tLogRow.

• Double-click tFixedFlowInput_1 in the design workspace to display its Component view and set its Basic
settings.

• Edit the schema of the tFixedFlowInput_1 component.

Scenario: Service sending a message without expecting a response

Talend Open Studio Components Reference Guide 1151

• Click the plus button to add a new line of string type and name it payloadString.

• Click OK.

• In the Number of rows field, set the number of rows as 1.

• In the Mode area, select Use Single Table and input world in quotations into the Value field.

• Connect tFixedFlowInput_1 to tXMLMap_1.

• Connect tXMLMap_1 to tESBConsumer_1 and name this row as payload.

• In the design workspace, double-click tXMLMap_1 to open the Map Editor.

• In the output table, right-click the root node to open the contextual menu.

• From the contextual menu, select Create Sub-Element and type in request in the popup dialog box.

• Right-click the request node and select As loop element from the contextual menu.

• Click the payloadstring node in the input table and drop it to the Expression column in the row of the request
node in the output table.

• Click OK to validate the mapping and close the Map Editor.

• Start the Provider Job. In the executing log you can see:

...
web service [endpoint: http://127.0.0.1:8088/esb/provider] published
...

• In the tESBConsumer_1 Component view, set its Basic settings.

Scenario: Service sending a message without expecting a response

1152 Talend Open Studio Components Reference Guide

• Click the three-dot button next to the Service Configuration to open the editor.

• In the WSDL field, type in: http://127.0.0.1:8088/esb/provider?WSDL.

• Click the Refresh button to retrieve port name and operation name.

• Click OK.

Scenario: Service sending a message without expecting a response

Talend Open Studio Components Reference Guide 1153

• In the Basic settings of the tESBConsumer, set the Input Schema as follow:

• Set the Response Schema as follow:

• Set the Fault Schema as follow:

• Connect tESBConsumer_1 to tLogRow_1 and tLogRow_2.

• In the design workspace, double-click the tLogRow_1 component to display its Component view and set its
Basic settings.

• Click the three-dot button next to Edit Schema and define the schema as follow:

• In the Job Design, double-click tLogRow_2 to display its Component view and set its Basic settings.

Scenario: Service sending a message without expecting a response

1154 Talend Open Studio Components Reference Guide

• Click the three-dot button next to Edit Schema and define the schema as follow.

• Save the Job.

• Run the provider Job. In the execution log you will see:

INFO: Setting the server's publish address to be http://127.0.0.1:8088/esb/provider

2011-04-21 14:14:36.793:INFO::jetty-7.2.2.v20101205

2011-04-21 14:14:37.856:INFO::Started

SelectChannelConnector@127.0.0.1:8088

web service [endpoint: http://127.0.0.1:8088/esb/provider] published

• Run the consumer Job. In the execution log of the Job you will see:

Starting job CallProvider at 14:15 21/04/2011.

[statistics] connecting to socket on port 3942
[statistics] connected
TEST_ESBProvider2
TEST_ESBProvider2SoapBingding
|
[tLogRow_2] payloadString: <request>world</request>
{http://talend.org/esb/service/job}TEST_ESBProvider2
{http://talend.org/esb/service/job}TEST_ESBProvider2SoapBinding
invoke
[tLogRow_1] payload: null
[statistics] disconnected
Job CallProvider2 ended at 14:16 21/04/2011. [exit code=0]

• In the provider’s log you will see the trace log:

web service [endpoint: http://127.0.0.1:8088/esb/provider]

Scenario: Service sending a message without expecting a response

Talend Open Studio Components Reference Guide 1155

published
[tLogRow_1] payload: <?xml version="1.0" encoding="UTF-8"?>
<request>world</request>
world
[tLogRow_2] content: world
[tLogRow_3] payload: <?xml version="1.0" encoding="UTF-8"?>
<response xmlns="http://talend.org/esb/service/job">Hello, world!</
response>
web service [endpoint: http://127.0.0.1:8088/esb/provider] unpublished
[statistics] disconnected
Job ESBProvider2 ended at 14:16 21/04/2011. [exit code=0]

tESBProviderResponse

1156 Talend Open Studio Components Reference Guide

tESBProviderResponse

This component is relevant only when used with the ESB version of the Studio, as it should be used with
the Service Repository node and the Data Service creation related wizard(s).

tESBProviderResponse properties

Component family ESB/Web Services

Function Serves a Talend Job cycle result as a response message.

Purpose Acts as a service provider response builder at the end of each Talend Job cycle.

Basic settings Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository

Click Edit schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes Built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage The tESBProviderResponse component should only be used with the
tESBProviderRequest component to provide a Job result as response for a web
service provider, in case of a request-response communication style.

Limitation A JDK is required for this component to operate.

Scenario: Returning Hello world response

The Jobs, which are built upon the components under the ESB/Web Services family, act as the implementations
of web services defined in the Services node of the Repository. They require the creation of and association with
relevant services. For more information about services, see the related topics in the Talend Open Studio User
Guide.

In this scenario, a provider Job and a consumer Job are needed. In the meantime, the related service should already
exist in the Services node, with the WSDL URI being http://127.0.0.1.8088/esb/provider/?WSDL, the port name
being TEST_ProviderJobSoapBinding and the operation being invoke(anyType):anyType.

Scenario: Returning Hello world response

Talend Open Studio Components Reference Guide 1157

The provider Job consists of a tESBProviderRequest, a tESBProviderResponse, a tXMLMap, and two
tLogRow components.

• Drop the following components from the Palette onto the design workspace: a tESBProviderRequest, a
tESBProviderResponse, a tXMLMap, and two tLogRow.

• In the design workspace, double-click tESBProviderRequest_1 to display its Component view and set its
Basic settings.

• Select Repository from the Property Type list and click the three-dot button to choose the service, to the
granularity of port name and operation.

• Click OK.

• Click the three-dot button next to Edit schema to view its schema.

Scenario: Returning Hello world response

1158 Talend Open Studio Components Reference Guide

• Connect tESBProviderRequest_1 to tLogRow_1.

• Double-click tLogRow_1 to display its Component view and set its Basic settings.

• Click the three-dot button next to Edit schema and define the schema as follow.

• Connect tLogRow_1 to tXMLMap_1.

• Connect tXMLMap_1 to tLogRow_2 and name this row as payload.

• In the design workspace, double-click tXMLMap_1 to open the Map Editor.

• On the lower right part of the map editor, click the plus button to add one row to the payload table and name
this row as payload.

• In the Type column of this payload row, select Document as the data type. The corresponding XML root is
added automatically to the top table on the right side which represents the output flow.

• In the payload table, right-click root to open the contextual menu.

• From the contextual menu, select Create Sub-Element and type in response in the popup dialog box.

• Right-click the response node and select As loop element from the contextual menu.

• Repeat this operation to create a sub-element request of the root node in the input table and set the request
node as loop element.

• Click the request node in the input table and drop it to the Expression column in the row of the response node
in the output table.

Scenario: Returning Hello world response

Talend Open Studio Components Reference Guide 1159

• Click OK to validate the mapping and close the map editor.

• In the design workspace, double-click tLogRow_2 to display its Component view and set its Basic settings.

• Click the three-dot button next to Edit schema and define the schema as follow.

• Connect tLogRow_2 to tESBProviderResponse_1.

• In the design workspace, double-click tESBProviderResponse_1 to open its Component view and set its Basic
settings.

Scenario: Returning Hello world response

1160 Talend Open Studio Components Reference Guide

• Click the three-dot button next to Edit schema and define the schema as follow.

• Save the provider Job.

The consumer Job consists of a tFixedFlowInput, a tXMLMap, a tESBConsumer, and two tLogRow
components.

• Drop the following components from the Palette onto the design workspace: a tFixedFlowInput, a tXMLMap,
a tESBConsumer, and two tLogRow.

• Double-click tFixedFlowInput_1 in the design workspace to display its Component view and set its Basic
settings.

• Click the three-dot button next to Edit schema.

Scenario: Returning Hello world response

Talend Open Studio Components Reference Guide 1161

• Click the plus button to add a new line of string type and name it payloadString.

• Click OK.

• In the Number of rows field, set the number of rows as 1.

• In the Mode area, select Use Single Table and input world in quotations into the Value field.

• Connect tFixedFlowInput to tXMLMap.

• Connect tXMLMap to tESBConsumer and name this row as payload.

• In the design workspace, double-click tXMLMap_1 to open the Map Editor.

• In the payload table, right-click root to open the contextual menu.

• From the contextual menu, select Create Sub-Element and type in request in the popup dialog box.

• Right-click the request node and select As loop element from the contextual menu.

• Click the payloadstring node in the input table and drop it to the Expression column in the row of the request
node in the output table.

• Click OK to validate the mapping and close the Map Editor.

• Start the Provider Job. In the executing log you can see:

...
web service [endpoint: http://127.0.0.1:8088/esb/provider] published

Scenario: Returning Hello world response

1162 Talend Open Studio Components Reference Guide

...

• In the tESBConsumer_1 Component view, set its Basic settings.

• Click the three-dot button next to the Service Configuration to open the editor.

• In the WSDL field, type in: http://127.0.0.1:8088/esb/provider/?WSDL

Scenario: Returning Hello world response

Talend Open Studio Components Reference Guide 1163

• Click the Refresh button to retrieve port name and operation name.

• Click OK.

• In the Basic settings of the tESBConsumer, set the Input Schema as follow:

• Set the Response Schema as follow:

• Set the Fault Schema as follow:

• Connect tESBConsumer_1 to tLogRow_1 and tLogRow_2.

• In the design workspace, double-click tLogRow_1 to display its Component view and set its Basic settings.

• Click the three-dot button next to Edit Schema and define the schema as follow.

Scenario: Returning Hello world response

1164 Talend Open Studio Components Reference Guide

• In the Job Design, double-click tLogRow_2 to display its Component view and set its Basic settings.

• Click the three-dot button next to Edit Schema and define the schema as follow:

• Save the consumer Job.

• Run the provider Job. In the execution log you will see:

2011-04-21 15:28:26.874:INFO::jetty-7.2.2.v20101205

2011-04-21 15:28:27.108:INFO::Started

SelectChannelConnector@127.0.0.1:8088

web service [endpoint: http://127.0.0.1:8088/esb/provider] published

• Run the consumer Job. In the execution log of the Job you will see:

Starting job CallProvider at 15:29 21/04/2011.

[statistics] connecting to socket on port 3690
[statistics] connected
TEST_ProviderJob
TEST_ProviderJobSoapBingding
|
{http://talend.org/esb/service/job}TEST_ProviderJob
{http://talend.org/esb/service/job}TEST_ProviderJobSoapBinding
invoke
[tLogRow_2] payload: <?xml version="1.0" encoding="UTF-8"?>
<response xmlns="http://talend.org/esb/service/job">Hello, world!</
response>
[statistics] disconnected
Job ConsumerJob ended at 15:29 21/04/2011. [exit code=0]

• In the provider’s log you will see the trace log:

Scenario: Returning Hello world response

Talend Open Studio Components Reference Guide 1165

[tLogRow_1] payload: <?xml version="1.0" encoding="UTF-8"?>
<request>world</request>
world
[tLogRow_2] content: world
[tLogRow_3] payload: <?xml version="1.0" encoding="UTF-8"?>
<response xmlns="http://talend.org/esb/service/job">Hello, world!</
response>
web service [endpoint: http://127.0.0.1:8088/esb/provider] unpublished
[statistics] disconnected
Job ProviderJob ended at 15:29 21/04/2011. [exit code=0]

tRESTRequest

1166 Talend Open Studio Components Reference Guide

tRESTRequest

tRESTRequest properties
This component is only available in Talend Open Studio for ESB.

Component family ESB/REST

Function tRESTRequest is a server-side component which accepts the HTTP and/or HTTPS
requests from the clients and support GET, POST, PUT and DELETE HTTP
methods.

To enable the HTTPS support, you have to generate a keystore and add
some HTTPS security configuration properties in the org.ops4j.pax.web.cfg
file of your Runtime container before deploying the service on it. For more
information, see the Talend ESB Container Administration Guide.

Purpose This component allows you to receive GET/POST/PUT/DELETE requests from the
clients on the server end.

Basic settings REST Endpoint Fill this field with the URI location where REST-ful web
service will be accessible for requests.

If you want your service to be available on both
HTTP and HTTPS, fill the field with a relative
path.

REST API Mapping Click the [+] button beneath the mapping table to add lines
to specify HTTP request:

Output Flow: Click the [...] button to specify the name of
an output flow and set the schema for that output flow in
the dialog box afterwards.

The schema is not mandatory, so if you do not need to pass
additional parameters to the tRESTRequest component,
you can leave the schema empty. However, you will have
to populate the schema if you have URI Path parameters
set in the URI Pattern field or if you need to add optional
request parameters such as URI Query, HTTP Header
or Form parameters, to the URI specified in the REST
Endpoint field. If you specify URI parameters in the
output flow schema, you might need to define what type
of parameter it is in the Comment field of the schema.
By default, if you leave the Comment field empty, the
parameter is considered as a Path parameter. Below is a
list of supported Comment values:

• empty or path corresponds to the default @PathParam,

• query corresponds to @QueryParam,

• form corresponds to @FormParam,

• header corresponds to @HeaderParam.

Scenario 1: REST service accepting a HTTP request and sending a response

Talend Open Studio Components Reference Guide 1167

We recommend you to set the default values of
your optional parameters (Header, Query, Form).
To do so, fill in the Default columns of the
schema.

HTTP Verb: Select a HTTP method (GET/POST/PUT/
DELETE) from the list.

URI pattern: Fill this field with REST-ful URIs that
describe the resource.

Use HTTP Basic
Authentication

Select this check box to enable the HTTP Basic
authentication method for the current service.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage This component covers the possibility that a Talend Job can be wrapped as a service,
with the ability to input a request to a service into a Job and return the Job result
as a service response.

The tRESTRequest component should be used with the tRESTResponse
component to provide a Job result as a response, in case of a request-response
communication style.

Limitation n/a

Scenario 1: REST service accepting a HTTP request
and sending a response

This scenario describes the process of accepting an HTTP request from the client, processing it and sending the
response back.

Configuring the tRESTRequest component

1. Drop the following components from the Palette onto the design workspace: tRESTRequest, tXMLMap
and tRESTResponse.

2. Double-click tRESTRequest in the design workspace to display its Basic settings view.

Scenario 1: REST service accepting a HTTP request and sending a response

1168 Talend Open Studio Components Reference Guide

3. Fill the REST Endpoint field with the URI location where the REST-ful web service will be accessible for
requests. For example, "http://192.168.0.235:8088/user".

If you want your service to be available on both HTTP and HTTPS, fill the field with a
relative path. For example, if you type in "/test", your service will be available on both http://
<DefaultHTTPEnpointAddress>/test and https://<DefaultHTTPSEnpointAddress>/test, provided
that you have configured your Runtime container to support HTTPS. For more information, see the
Talend ESB Container Administration Guide.

4. Click the [+] button to add one line in the REST API Mapping table.

5. Select the newly-added line and click the [...] button in the Output Flow column to add a schema for the
output flow.

In this scenario, the output flow will be named as GetOneUser.

Then click the [+] button to add a new line id to the schema in the dialog box.

6. Click OK to save the schema.

7. Select GET from the list in the HTTP Verb column.

8. Fill the field in the URI Pattern column with "/{id}/".

Configuring the tXMLMap component

1. Connect tRESTRequest to tXMLMap using the Row > GetOneUser connection.

2. Double-click tXMLMap in the design workspace to open the Map Editor.

Scenario 1: REST service accepting a HTTP request and sending a response

Talend Open Studio Components Reference Guide 1169

3. Click the [+] button on the top right to add an output and name it as ResponseUsers.

4. Click the [+] button on the bottom right to add two columns for the output.

Name the first column as body and set the Type to Document.

Name the second column as string and set the Type to String.

5. Right-click on the node root and select Create Sub-Element to create a sub-element.

Name the sub-element as foo in the popup dialog box.

6. Right-click on the foo node created in the previous step and select As loop element.

Scenario 1: REST service accepting a HTTP request and sending a response

1170 Talend Open Studio Components Reference Guide

7. Select the id column of the GetOneUser table to the left and drop it onto the Expression field of the foo node
of the ResponseUsers table to the right.

8. Click OK to save the settings.

Configuring the tRESTResponse component

1. Connect tXMLMap to tRESTResponse using Row > ResponseUsers connection.

2. Click Sync columns to retrieve the schema defined in the preceding component.

3. Select OK(200) from the Return status code list.

4. Leave the rest of the settings as they are.

Saving and executing the Job

1. Save the Job and press F6 to execute it.

Scenario 2: Using URI Query parameters to explore the data of a database

Talend Open Studio Components Reference Guide 1171

2. Go to your browser if you want to test the service.

The HTTP request for a user id is accepted by the REST service and the HTTP response is sent back to the
server.

Scenario 2: Using URI Query parameters to explore
the data of a database

This scenario describes how to use URI query parameters in tRESTRequest to explore data of a database, and
send the response via the tRESTResponse.

To do so, you can create two subjobs linked together by an OnSubjobOk connection; this way the two subjobs
will be executed sequencially. For more information on Trigger connection, see the Talend Open Studio User
Guide. The first subjob will create and populate the database and the second one will allow to explore the database
through the REST service.

Scenario 2: Using URI Query parameters to explore the data of a database

1172 Talend Open Studio Components Reference Guide

Creating the first subjob

To do this, proceed as follows:

1. Drop the following components from the Palette onto the design workspace: tFixedFlowInput from the
Misc family and tMysqlOutput from the Databases > Mysql family.

2. Link tFixedFlowInput to tMysqlOutput using a Row > Main connection.

3. Double-click tFixedFlowInput to display its Basic settings view:

4. Click the [...] button next to Edit schema to open the schema editor.

5. In the schema editor, click the [+] button three times to add three lines and set them as displayed in the above
screenshot.

6. Click Ok.

7. Back to tFixedFlowInput Basic settings view, in the Mode area, select the Use inline table option.

8. Under the inline table, click the [+] button three times to add three rows in the table.

9. In the inline table, click the id field of the first row and type in 1.

Scenario 2: Using URI Query parameters to explore the data of a database

Talend Open Studio Components Reference Guide 1173

10. Click the firstname field of the first row, press Ctrl+Space to display the autocompletion list and select the
TalendDataGenerator.getFirstName() variable in the list.

11. Click the lastname field of the first row, press Ctrl+Space to display the autocompletion list and select the
TalendDataGenerator.getLastName() variable in the list.

12. Do the same for the two following rows to obtain the settings displayed in the screenshot.

13. Double-click tMysqlOutput to display its Basic settings view:

14. From the Property Type list, leave Built-in and fill in the Host, Port, Database, Username and Password
fields manually. If you centralized your connection information to the database in the Metadata > DB
Connections node of the Repository, you can select Repository from the list and the fields will be
automatically filled in.

For more information about storing metadata, see Talend Open Studio User guide.

15. In the Table field, type in the name of the table in which the data will be loaded, for example: users.

16. From the Action on table list, select Drop table if exists and create, select Insert from the Action on data
list.

17. Click Sync columns to retrieve the schema coming from the previous component.

Creating the second subjob

To do this, proceed as follows:

• Drop and place the following components as displayed in the first screenshot:

• tRESTRequest and tRESTResponse from the ESB > REST family,

• tFlowToIterate from the Orchestration family,

• tMysqlInput from the Databases > Mysql family,

• tXMLMap from the Processing family.

Scenario 2: Using URI Query parameters to explore the data of a database

1174 Talend Open Studio Components Reference Guide

Configuring the tRESTRequest component

To do this, proceed as follows:

1. Double-click tRESTRequest in the design workspace to display its Basic settings view:

2. Fill the REST Endpoint field with the URI location where the REST-ful web service will be accessible for
requests. For example, "http://localhost:8088/users".

3. Click the [+] button to add one line in the REST API Mapping table.

4. Select the newly-added line and click the [...] button in the Output Flow column to add a schema for the
output flow.

5. In the dialog box, name the output flow getUsers. A schema editor dialog box appears.

6. In the schema editor, click the [+] button twice to add two lines and set them as displayed in the above
screenshot.

7. Click OK.

8. Back to tRESTRequest Basic settings view, select GET from the list in the HTTP Verb column.

9. Leave the URI Pattern column as is.

Now that you created the tRESTRequest output flow, you can use the corresponding link to connect to the
following component:

Scenario 2: Using URI Query parameters to explore the data of a database

Talend Open Studio Components Reference Guide 1175

1. Connect tRESTRequest to tFlowToIterate using Row > getUsers connection.

2. Leave the tFlowToIterate settings as is.

3. Connect tFlowToIterate to tMysqlInput using Row > Iterate connection.

Configuring the tMysqlInput component

To do this, proceed as follows:

1. Double-click tMysqlInput to display its Basic settings view:

2. From the Property Type list, leave Built-in and fill in the Host, Port, Database, Username and Password
fields manually. If you centralized your connection information to the database in the Metadata > DB
Connections node of the Repository, you can select Repository from the list and the fields will be
automatically filled in.

For more information about storing metadata, see Talend Open Studio User guide.

3. Leave the Schema list as Built-in and click the [...] button next to the Edit schema field.

4. In the schema editor, define the schema exactly like the one of the tFixedFlowInput.

5. In the Table Name field, fill in the name of the table in which the data are stored: users.

6. Leave the Query Type list as Built-in and fill in the Query field with the following SQL query allowing to
explore the database data with the URI query set in the tRESTRequest component:

"select * from users where id >= " + globalMap.get("getUsers.from") + "
 and id <= " + globalMap.get("getUsers.to")

Configuring the tXMLMap component

1. Right-click tMysqlInput, hold and drag to tXMLMap to connect the two components together.

Scenario 2: Using URI Query parameters to explore the data of a database

1176 Talend Open Studio Components Reference Guide

2. Double-click tXMLMap in the design workspace to open the Map Editor.

3. Click the [+] button on the top right to add an output and name it as ResponseUsers.

4. Click the [+] button on the bottom right to add two columns for the output.

Name the first column as body and set the Type to Document.

Name the second column as string and set the Type to String.

5. Right-click on the root node, select Rename in the list and rename it users

6. Right-click on the root node and select Create Sub-Element to create a sub-element.

Name the sub-element user in the popup dialog box.

7. Right-click on the user node created in the previous step and select As loop element.

Scenario 2: Using URI Query parameters to explore the data of a database

Talend Open Studio Components Reference Guide 1177

8. Select the id column of the row2 table to the left and drop it onto the user node of the ResponseUsers table
to the right.

9. In the [Selection] dialog box, select the Create as attribute of target node option and click OK.

10. Select the firstname and lastname columns of the row2 table to the left and drop it onto the user node of the
ResponseUsers table to the right.

11. In the [Selection] dialog box, select the Create as sub-element of target node option and click OK.

12. Click the wrench icon on the top of the ResponseUsers table to open the setting panel.

Scenario 2: Using URI Query parameters to explore the data of a database

1178 Talend Open Studio Components Reference Guide

13. Set the All in one feature as true, this way all XML data is outputted in one single flow.

14. Click OK to save the settings.

Configuring the tRESTResponse component

1. Connect tXMLMap to tRESTResponse using Row > ResponseUsers connection.

2. Double-click tRESTResponse in the design workspace to display its Basic settings view.

3. Click Sync columns to retrieve the schema defined in the preceding component.

4. Leave the other settings as they are.

Connecting the two subjobs

Now that the two subjobs are created, you can connect them together:

1. Right-click the tFixedFlowInput component of the first subjob.

Scenario 2: Using URI Query parameters to explore the data of a database

Talend Open Studio Components Reference Guide 1179

2. Select Trigger > OnSubjobOk on the list.

3. Click the tRESTRequest component of the second subjob.

This way, when executing the job, the second subjob will be executed only if the first one's execution succeeded.

Saving and executing the Job

1. Save the Job and press F6 to execute it.

2. Go to your browser if you want to test the service.

For example, use the URI query ?to=2 to retrieve the data of the two first users.

The HTTP request for a user id is accepted by the REST service and the HTTP response is sent back to the
server.

tRESTResponse

1180 Talend Open Studio Components Reference Guide

tRESTResponse

tRESTResponse properties

This component is only available in Talend Open Studio for ESB.

Component family ESB/REST

Function tRestResponse sends HTTP and/or HTTPS responses to the client end when
receiving the HTTP and/or HTTPS requests.

To enable the HTTPS support, you have to generate a keystore and add
some HTTPS security configuration properties in the org.ops4j.pax.web.cfg
file of your Runtime container. For more information, see the Talend ESB
Container Administration Guide.

Purpose This component allows you to return a specific HTTP status code to the client end
as a response to the HTTP request.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository

Click Edit schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes Built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused. Related topic: see
Talend Open Studio User Guide.

Return status code Select a status code from the list to indicate the request
status.

<<Custom>>: This option allows you to customize the
status code. Enter the status code of your choice in the
field.

Bad Request (400): The request had bad syntax or was
inherently impossible to be satisfied.

Internal Server Error (500): The server encountered an
unexpected condition which prevented it from fulfilling
the request.

OK (200): The request was fulfilled.

Resource Not Found (404): The server has not found
anything matching the URI given.

Related scenario

Talend Open Studio Components Reference Guide 1181

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component level.

Usage This component covers the possibility that a Talend Job can be wrapped as a service,
with the ability to input a request to a service into a Job and return the Job result
as a service response.

The tRESTResponse component should only be used with the tRESTRequest
component to provide a Job result as response for a web service provider, in case of
a request-response communication style.

Limitation In the schema of the tRestResponse component, the Document type column must
be named body.

Related scenario

For a scenario in which tRESTResponse is used, see the section called “Scenario 1: REST service accepting a
HTTP request and sending a response”.

Talend Open Studio Components Reference Guide

Talend Open Studio Components Reference Guide

File components
This chapter details the main components that you can find in File family of the Talend Open Studio Palette.

The File family groups together components that read and write data in all types of files, from the most popular
to the most specific format (in the Input and Output subfamilies). In addition, the Management subfamily groups
together File-dedicated components that perform various tasks on files, including unarchiving, deleting, copying,
comparing files and so on.

tAdvancedFileOutputXML

1184 Talend Open Studio Components Reference Guide

tAdvancedFileOutputXML

tAdvancedFileOutputXML belongs to two component families: File and XML. For more information on
tAdvancedFileOutputXML, see the section called “tAdvancedFileOutputXML”.

tApacheLogInput

Talend Open Studio Components Reference Guide 1185

tApacheLogInput

tApacheLogInput properties

Component family File/Input

Function tApacheLogInput reads the access-log file for an Apache HTTP server.

Purpose tApachLogInput helps to effectively manage the Apache HTTP Server,. It is necessary
to get feedback about the activity and performance of the server as well as any problems
that may be occurring.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties are
stored. The fields that follow are completed automatically using
the data retrieved.

Schema and Edit Schema A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in the
Repository.

In the context of tApacheLogInput usage, the schema is read-
only.

Built-in: You can create the schema and store it locally for this
component. Related topic: see Talend Open Studio User Guide.

Repository: You have already created and stored the schema
in the Repository. You can reuse it in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

File Name Name of the file and/or the variable to be processed.

Related topic: see Talend Open Studio User Guide.

Die on error Select this check box to stop the execution of the Job when an
error occurs. Clear the check box to skip the row on error and
complete the process for error-free rows. If needed, you can
collect the rows on error using a Row > Reject link.

Advanced settings Encoding Select the encoding type from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

tStatCatcher Statistics Select this check box to gather the processing metadata at the
Job level as well as at each component level.

Usage tApacheLogInput can be used with other components or as a standalone component. It
allows you to create a data flow using a Row > Main connection, or to create a reject flow
to filter specified data using a Row > Reject connection. For an example of how to use
these two links, see the section called “Scenario 2: Extracting correct and erroneous data
from an XML field in a delimited file”.

Limitation n/a

Scenario: Reading an Apache access-log file

1186 Talend Open Studio Components Reference Guide

Scenario: Reading an Apache access-log file

The following scenario creates a two-component Job, which aims at reading the access-log file for an Apache
HTTP server and displaying the output in the Run log console.

1. Drop a tApacheLogInput component and a tLogRow component from the Palette onto the design
workspace.

2. Right-click on the tApacheLogInput component and connect it to the tLogRow component using a Main
Row link.

3. In the design workspace, select tApacheLogInput.

4. Click the Component tab to define the basic settings for tApacheLogInput.

5. If desired, click the Edit schema button to see the read-only columns.

6. In the File Name field, enter the file path or browse to the access-log file you want to read.

7. In the design workspace, select tLogRow and click the Component tab to define its basic settings. For more
information, see the section called “tLogRow”

8. Press F6 to execute the Job.

The log lines of the defined file are displayed on the console.

tCreateTemporaryFile

Talend Open Studio Components Reference Guide 1187

tCreateTemporaryFile

tCreateTemporaryFile properties

Component family File/Management

Function tCreateTemporaryFile creates and manages temporary files.

Purpose tCreateTemporaryFile helps to create a temporary file and puts it in a defined
directory. This component allows you to either keep the temporary file or delete
it after Job execution.

Basic settings Remove file when
execution is over

Select this check box to delete the temporary file after
Job execution.

Use default temporary
system directory

Select this check box to create the file in the system’s
default temporary directory.

Directory Select this check box to create the temporary file .

Template Enter a name to the temporary file respecting the
template.

Suffix Enter the filename extension to indicate the file format
you want to give to the temporary file.

Usage tCreateTemporaryFile provides the possibility to manage temporary files so that
the memory can be freed for other ends and thus optimizes system performance.

Global Variables Filepath: Retrieves the path to where the file was
created. This is available as an After variable.

Returns a string.

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Trigger: On Subjob Ok; On Subjob Error; Run if; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error;
On component Ok; On Component Error; Synchronize;
Parallelize.

For further information regarding connections, see
Talend Open Studio User Guide.

Limitation n/a

Scenario: Creating a temporary file and writing data in it

1188 Talend Open Studio Components Reference Guide

Scenario: Creating a temporary file and writing data in
it

The following scenario describes a simple Job that creates an empty temporary file in a defined directory, writes
data in it and deletes it after Job execution.

Dropping and linking components

1. Drop the following components from the Palette onto the design workspace: tCreate temporaryFile,
tRowGenerator, tFileOutputDelimited, tFileInputDelimited and tLogRow.

2. Connect tCreateTemporaryFile to tRowGenerator using a SubjobOk link.

3. Connect tRowGenerator to tFileOutputDelimited using a Row Main link.

4. Connect tRowGenerator to tFileInputDelimited using a SubjobOk link.

5. Connect tFileInputDelimited to tLogRow using a Row Main link.

Configuring the components

1. In the design workspace, select tCreateTemporaryFile.

2. Click the Component tab to define the basic settings for tCreateTemporaryFile.

3. Select the Remove file when execution is over check box to delete the created temporary file when Job
execution is over.

4. Click the three-dot button next to the Directory field to browse to the directory where temporary files will
be stored, or enter the path manually.

Scenario: Creating a temporary file and writing data in it

Talend Open Studio Components Reference Guide 1189

5. In the Template field, enter a name for the temporary file respecting the template format.

6. In the Suffix field, enter a filename extension to indicate the file format you want to give to the temporary file.

7. In the design workspace, select tRowGenerator and click the Component tab to define its basic settings.

8. Set the Schema to Built-In.

9. Click the Edit schema three-dot button to define the data to pass on to the tFileOutputDelimited component,
one column in this scenario, value.

Click OK to close the dialog box.

10. Click the RowGenerator Editor three-dot button to open the editor dialog box.

11. In the Number of Rows for Rowgenerator field, enter 5 to generate five rows and click Ok to close the
dialog box.

12. In the design workspace, select tFileOutputDelimited and click the Component tab to define its basic
settings.

Scenario: Creating a temporary file and writing data in it

1190 Talend Open Studio Components Reference Guide

13. Set Property Type to Built-In.

14. Click in the File Name field and use the Ctrl+Space bar combination to access the variable completion
list. To output data in the created temporary file, select tCreateTemporaryFile_1.FILEPATH on
the global variable list.

15. Set the row and field separators in their corresponding fields as needed.

16. Set Schema to Built-In and click Sync columns to synchronize input and output columns. Note that the row
connection feeds automatically the output schema.

For more information about schema types, see Talend Open Studio User Guide.

17. In the design workspace, select the tFileInputDelimited component.

18. Click the Component tab to define the basic settings of tFileInputDelimited.

19. Click in the File Name field and use the Ctrl+Space bar combination to access the variable completion
list. To read data in the created temporary file, select tCreateTemporaryFile_1.FILEPATH on the
global variable list.

20. Set the row and field separators in their corresponding fields as needed.

21. Set Schema to Built in and click Edit schema to define the data to pass on to the tLogRow component. The
schema consists of one column here, value.

Saving and executing the Job

1. Press Ctrl+S to save the Job.

2. Press F6 to execute the Job or click the Run button of the Run tab.

Scenario: Creating a temporary file and writing data in it

Talend Open Studio Components Reference Guide 1191

The temporary file is created in the defined directory during Job execution and the five generated rows are written
in it. The temporary file is deleted when Job execution is over.

tChangeFileEncoding

1192 Talend Open Studio Components Reference Guide

tChangeFileEncoding

tChangeFileEncoding Properties

Component family File/Management

Function tChangeFileEncoding changes the encoding of a given file.

Purpose tChangeFileEncoding transforms the character encoding of a given file and
generates a new file with the transformed character encoding.

Basic settings Use Custom Input
Encoding

Select this check box to customize input encoding
type. When it is selected, a list of input encoding
types appears, allowing you to select an input encoding
type or specify an input encoding type by selecting
CUSTOM.

Encoding From this list of character encoding types, you
can select one of the offered options or customize
the character encoding by selecting CUSTOM and
specifying a character encoding type.

Input File Name Path of the input file.

Output File Name Path of the output file.

Usage This component can be used as standalone component.

Limitation n/a

Scenario: Transforming the character encoding of a
file.

This Java scenario describes a very simple Job that transforms the character encoding of a text file and generates
a new file with the new character encoding.

1. Drop a tChangeFileEncoding component onto the design workspace.

2. Double-click the tChangeFileEncoding component to display its Basic settings view.

Scenario: Transforming the character encoding of a file.

Talend Open Studio Components Reference Guide 1193

3. Select Use Custom Input Encoding check box. Set the Encoding type to GB2312.

4. In the Input File Name field, enter the file path or browse to the input file.

5. In the Output File Name field, enter the file path or browse to the output file.

6. Select CUSTOM from the second Encoding list and enter UTF-16 in the text field.

7. Press F6 to execute the Job.

The encoding type of the file in.txt is transformed and out.txt is generated with the UTF-16 encoding type.

tFileArchive

1194 Talend Open Studio Components Reference Guide

tFileArchive

tFileArchive properties

Component Family File/Management

Function The tFileArchive zips one or several files according to the parameters defined
and places the archive created in the directory selected.

Purpose This component zips one or several files for processing.

Basic settings Directory Path where the zipped file will be created.

Subdirectories: Select this check box if the selected
directory contains subfolders.

Archive file Destination path and name of the archive file.

Compress level Select the compression level you want to apply.

Best: the compression quality will be optimum, but the
compression time will be long.

Normal: compression quality and time will be average.

Fast: compression will be fast, but quality will be lower.

All files Select this check box if you want all files in the directory
to be zipped. Clear it to specify the file(s) you want to
zip in the Files table.

Filemask: type in a file name or a file mask using a
special character or a regular expression.

Create directory if not
exists

This check box is selected by default. It creates a
destination folder for the output table if it does not
already exist.

Encoding Select the encoding type from the list or select Custom
and define it manually. This field is compulsory for DB
data handling.

Overwrite Existing
Archive

This check box is selected by default. This allows you to
save an archive by replacing the existing one. But if you
clear the check box, an error is reported, the replacement
fails and the new archive cannot be saved.

When the replacement fails, the Job runs.

Encrypt files Select this check box if you want your archive to
be password protected. The Enter Password text box
appears to let you enter your password.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata
at the Job level as well as at each component level.

Usage This component must be used as a standalone component.

Scenario: Zip files using a tFileArchive

Talend Open Studio Components Reference Guide 1195

Global Variables Archive File Path: Retrieves the path to the archive file.
This is available as an After variable.

Returns a string.

Archive File Name: Retrieves the name of the archive
file. This is available as an After variable.

Returns a string.

For further information about variables, see Talend
Open Studio User Guide.

Connections Outgoing links (from one component to another):

Row: Main; Reject; Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Main; Reject; Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error;
On component Ok; On Component Error; Synchronize;
Parallelize.

For further information regarding connections, see
Talend Open Studio User Guide.

Limitation n/a

Scenario: Zip files using a tFileArchive

This scenario creates a Job with a unique component. It aims at zipping files and recording them in the selected
directory.

1. Drop the tFileArchive component from the Palette onto the workspace.

2. Double-click it to display its Component view.

Scenario: Zip files using a tFileArchive

1196 Talend Open Studio Components Reference Guide

3. In the Directory field, click the [...] button, browse your directory and select the directory or the file you
want to compress.

4. Select the Subdirectories check box if you want to include the subfolders and their files in the archive.

5. Then, set the Archive file field, by filling the destination path and the name of your archive file.

6. Select the Create directory if not exists check box if you do not have a destination directory yet and you
want to create it.

7. In the Compress level list, select the compression level you want to apply to your archive. In this example,
we use the normal level.

8. Clear the All Files check box if you only want to zip specific files.

9. Add a row in the table by clicking the [+] button and click the name which appears. Between two star symbols
(ie. *RG*), type part of the name of the file that you want to compress.

10. Press F6 to execute your Job.

The tFileArchive has compressed the selected file(s) and created the folder in the selected directory.

tFileCompare

Talend Open Studio Components Reference Guide 1197

tFileCompare

tFileCompare properties

Component family File/Management

Function Compares two files and provides comparison data (based on a read-only schema)

Purpose Helps at controlling the data quality of files being processed.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

File to compare Filepath to the file to be checked.

Reference file Filepath to the file, the comparison is based on.

If differences are
detected, display If
no difference detected,
display

Type in a message to be displayed in the Run console
based on the result of the comparison.

Print to console Select this check box to display the message.

Advanced settings Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component can be used as standalone component but it is usually linked to
an output component to gather the log data.

Global Variables Difference: Checks whether two files are identical or
not. This is available as a Flow variable.

Returns a boolean value:

- true if the two files are identical.

- false if there is a difference between them.

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Row: Main.

Trigger: On Subjob Ok; On Subjob Error; Run if; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Scenario: Comparing unzipped files

1198 Talend Open Studio Components Reference Guide

Row: Main; Reject; Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error;
On component Ok; On Component Error; Synchronize;
Parallelize.

For further information regarding connections, see
Talend Open Studio User Guide.

Limitation n/a

Scenario: Comparing unzipped files

This scenario describes a Job unarchiving a file and comparing it to a reference file to make sure it did not change.
The output of the comparison is stored into a delimited file and a message displays in the console.

1. Drag and drop the following components: tFileUnarchive, tFileCompare, and tFileOutputDelimited.

2. Link the tFileUnarchive to the tFileCompare with Iterate connection.

3. Connect the tFileCompare to the output component, using a Main row link.

4. In the tFileUnarchive component Basic settings, fill in the path to the archive to unzip.

5. In the Extraction Directory field, fill in the destination folder for the unarchived file.

6. In the tFileCompare Basic settings, set the File to compare. Press Ctrl+Space bar to
display the list of global variables. Select $_globals{tFileUnarchive_1}{CURRENT_FILEPATH} or
"((String)globalMap.get("tFileUnarchive_1_CURRENT_FILEPATH"))" according to the language you
work with, to fetch the file path from the tFileUnarchive component.

7. And set the Reference file to base the comparison on it.

8. In the messages fields, set the messages you want to see if the files differ or if the files are identical, for
example: "[job " + JobName + "] Files differ".

9. Select the Print to Console check box, for the message defined to display at the end of the execution.

Scenario: Comparing unzipped files

Talend Open Studio Components Reference Guide 1199

10. The schema is read-only and contains standard information data. Click Edit schema to have a look to it.

11. Then set the output component as usual with semi-colon as data separators.

12. Save your Job and press F6 to run it.

The message set is displayed to the console and the output shows the schema information data.

tFileCopy

1200 Talend Open Studio Components Reference Guide

tFileCopy

tFileCopy Properties

Component family File/Management

Function Copies a source file into a target directory and can remove the source file if
required.

Purpose Helps to streamline processes by automating recurrent and tedious tasks such as
copy.

Basic settings File Name Path to the file to be copied or moved

Destination Path to the directory where the file is copied/moved to.

Remove source file Select this check box to move the file to the destination.

Replace existing file Select this check box to overwrite any existing file with
the newly copied file.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component can be used as standalone component.

Global Variables Destination File Name: Retrieves the name of the
destination file. This is available as an After variable.

Returns a string.

Destination File Path: Retrieves the path to the
destination file. This is available as an After variable.

Returns a string.

Source Directory:.Retrieves the path to the source
directory. This is available as an After variable.

Returns a string.

Destination Directory: Retrieves the path to the
destination directory. This is available as an After
variable.

Returns a stirng.

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Row: Main.

Scenario: Restoring files from bin

Talend Open Studio Components Reference Guide 1201

Trigger: On Subjob Ok; On Subjob Error; Run if; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Main; Reject; Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error;
On component Ok; On Component Error; Synchronize;
Parallelize.

For further information regarding connections, see
Talend Open Studio User Guide.

Limitation n/a

Scenario: Restoring files from bin

This scenario describes a Job that iterates on a list of files, copies each file from the defined source directory to a
target directory. It then removes the copied files from the source directory.

1. Drop a tFileList and a tFileCopy from the Palette to the design workspace.

2. Link both components using an Iterate link.

3. In the tFileList Basic settings, set the directory for the iteration loop.

4. Set the Filemask to “*.txt” to catch all files with this extension. For this use case, the case is not sensitive.

5. Then select the tFileCopy to set its Basic settings.

6. In the File Name field, press Ctrl+Space bar to access the list of variables.

7. Select the global variable ((String)globalMap.get("tFileList_1_CURRENT_FILEPATH")). All files from the
source directory can be processed.

8. Select the Remove Source file check box to get rid of the file that have been copied.

Scenario: Restoring files from bin

1202 Talend Open Studio Components Reference Guide

9. Select the Replace existing file check box to overwrite any file possibly present in the destination directory.

10. Save your Job and press F6.

The files are copied onto the destination folder and are removed from the source folder.

tFileDelete

Talend Open Studio Components Reference Guide 1203

tFileDelete

tFileDelete Properties

Component family File/Management

Function Suppresses a file from a defined directory.

Purpose Helps to streamline processes by automating recurrent and tedious tasks such as
delete.

Basic settings File Name Path to the file to be deleted.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component can be used as standalone component.

Global Variables Delete path: Returns the path to the location from which
the item was deleted. This is available as an After
variable.

Returns a string.

Current Status: Indicates whether an item has been
deleted or not. This is available as a Flow variable.

Returns a string and the delete command label.

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Row: Main.

Trigger: On Subjob Ok; On Subjob Error; Run if; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Main; Reject; Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error;
On component Ok; On Component Error; Synchronize;
Parallelize.

For further information regarding connections, see
Talend Open Studio User Guide.

Limitation n/a

Scenario: Deleting files

1204 Talend Open Studio Components Reference Guide

Scenario: Deleting files

This very simple scenario describes a Job deleting files from a given directory.

1. Drop the following components: tFileList, tFileDelete, tJava from the Palette to the design workspace.

2. In the tFileList Basic settings, set the directory to loop on in the Directory field.

3. The filemask is “*.txt” and no case check is to carry out.

4. In the tFileDelete Basic settings panel, set the File Name field in order for the current file in selection in the
tFileList component be deleted. This delete all files contained in the directory, as specified earlier.

5. press Ctrl+Space bar to access the list of global variables. In Java, the relevant variable to collect the current
file is: ((String)globalMap.get("tFileList_1_CURRENT_FILEPATH")).

6. Then in the tJava component, define the message to be displayed in the standard output
(Run console). In this Java use case, type in the Code field, the following script:
System.out.println(((String)globalMap.get("tFileList_1_CURRENT_FILE"))

+ " has been deleted!");

7. Then save your Job and press F6 to run it.

The message set in the tJava component displays in the log, for each file that has been deleted through the
tFileDelete component.

tFileExist

Talend Open Studio Components Reference Guide 1205

tFileExist

tFileExist Properties

Component family File/Management

Function tFileExist checks if a file exists or not.

Purpose tFileExists helps to streamline processes by automating recurrent and tedious
tasks such as checking if a file exists.

Basic settings File Name Path to the file you want to check if it exists or not.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component can be used as standalone component.

Global Variables Exists: Indicates whether a specified file exists or not.
This is available as a Flow variable

Returns a boolean value:

- true if the file exists.

- false if the file does not exist.

File Name: Retrieves the name and path to a file. This
is available as an After variable.

Returns a string.

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Trigger: On Subjob Ok; On Subjob Error; Run if; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error;
On component Ok; On Component Error; Synchronize;
Parallelize.

For further information regarding connections, see
Talend Open Studio User Guide.

Limitation n/a

Scenario: Checking for the presence of a file and creating it if it does not exist

1206 Talend Open Studio Components Reference Guide

Scenario: Checking for the presence of a file and
creating it if it does not exist

This scenario describes a simple Job that: checks if a given file exists, displays a graphical message to confirm
that the file does not exist, reads the input data in another given file and writes it in an output delimited file.

Dropping and linking the components

1. Drop the following components from the Palette onto the design workspace: tFileExist,
tFileInputDelimited, tFileOutputDelimited, and tMsgBox.

2. Connect tFileExist to tFile InputDelimited using an OnSubjobOk and to tMsgBox using a Run If link.

3. Connect tFileInputDelimited to tFileOutputDelimite using a Row Main link.

Configuring the components

1. In the design workspace, select tFileExist and click the Component tab to define its basic settings.

2. In the File name field, enter the file path or browse to the file you want to check if it exists or not.

3. In the design workspace, select tFileInputDelimited and click the Component tab to define its basic settings.

4. Browse to the input file you want to read to fill out the File Name field.

If the path of the file contains some accented characters, you will get an error message when
executing your Job. For more information regarding the procedures to follow when the support of
accented characters is missing, see Talend Open Studio Installation Guide.

Scenario: Checking for the presence of a file and creating it if it does not exist

Talend Open Studio Components Reference Guide 1207

5. Set the row and field separators in their corresponding fields.

6. Set the header, footer and number of processed rows as needed. In this scenario, there is one header in our
table.

7. Set Schema to Built-in and click the Edit schema button to define the data to pass on to the
tFileOutputDelimited component. Define the data present in the file to read, file2 in this scenario.

For more information about schema types, see Talend Open Studio User Guide.

The schema in file2 consists of five columns: Num, Ref, Price, Quant, and tax.

8. In the design workspace, select the tFileOutputDelimited component.

9. Click the Component tab to define the basic settings of tFileOutputDelimited.

10. Set property type to Built-in.

11. In the File name field, press Ctrl+Space to access the variable list and select the global variable FILENAME.

12. Set the row and field separators in their corresponding fields.

13. Select the Include Header check box as file2 in this scenario includes a header.

14. Set Schema to Built-in and click Sync columns to synchronize the output file schema (file1) with the input
file schema (file2).

Scenario: Checking for the presence of a file and creating it if it does not exist

1208 Talend Open Studio Components Reference Guide

15. In the design workspace, select the tMsgBox component.

16. Click the Component tab to define the basic settings of tMsgBox.

17. Click the If link to display its properties in the Basic settings view.

18. In the Condition panel, press Ctrl+Space to access the variable list and select the global variable EXISTS.
Type an exclamation mark before the variable to negate the meaning of the variable.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click the Run button in the Run tab to execute it.

Scenario: Checking for the presence of a file and creating it if it does not exist

Talend Open Studio Components Reference Guide 1209

A dialog box appears to confirm that the file does not exists.

Click OK to close the dialog box and continue the Job execution process. The missing file, file1 in this scenario,
got written in a delimited file in the defined place.

tFileInputARFF

1210 Talend Open Studio Components Reference Guide

tFileInputARFF

tFileInputARFF properties

Component Family File/Input

Function tFileInputARFF reads a ARFF file row by row, with simple separated fields.

Purpose This component opens a file and reads it row by row, in order to divide it in fields and
to send these fields to the next component, as defined in the schema, through a Row
connection.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties
are stored. The fields that follow are completed automatically
using the data retrieved.

Click this icon to open a connection wizard and store the Excel
file connection parameters you set in the component’s Basic
settings view.

For more information about setting up and storing file
connection parameters, see Talend Open Studio User Guide.

File Name Name and path of the ARFF file and/or variable to be
processed.

Related topic: see Talend Open Studio User Guide.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either Built-in or stored remotely
in the Repository.

Click Edit Schema to make changes to the schema. Note
that if you make changes, the schema automatically becomes
built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: The schema will be created and stored locally for
this component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and
Job flowcharts. Related topic: see Talend Open Studio User
Guide.

Advanced settings Encoding Select the encoding type from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

tStatCatcher Statistics Select this check box to gather the processing metadata at the
Job level as well as at each component level.

Scenario: Display the content of a ARFF file

Talend Open Studio Components Reference Guide 1211

Usage Use this component to read a file and separate the fields with the specified separator.

Limitation n/a

Scenario: Display the content of a ARFF file

This scenario describes a two-component Job in which the rows of an ARFF file are read, the delimited data is
selected and the output is displayed in the Run view.

An ARFF file looks like the following:

It is generally made of two parts. The first part describes the data structure, that is to say the rows which begin by
@attribute and the second part comprises the raw data, which follows the expression @data.

Dropping and linking components

1. Drop the tFileInputARFF component from the Palette onto the workspace.

2. In the same way, drop the tLogRow component.

3. Right-click the tFileInputARFF and select Row > Main in the menu. Then, drag the link to the tLogRow,
and click it. The link is created and appears.

Scenario: Display the content of a ARFF file

1212 Talend Open Studio Components Reference Guide

Configuring the components

1. Double-click the tFileInputARFF.

2. In the Component view, in the File Name field, browse your directory in order to select your .arff file.

3. In the Schema field, select Built-In.

4. Click the [...] button next to Edit schema to add column descriptions corresponding to the file to be read.

5.
Click on the button as many times as required to create the number of columns required, according to
the source file. Name the columns as follows.

6. For every column, the Nullable check box is selected by default. Leave the check boxes selected, for all of
the columns.

7. Click OK.

8. In the workspace, double-click the tLogRow to display its Component view.

Scenario: Display the content of a ARFF file

Talend Open Studio Components Reference Guide 1213

9. Click the [...] button next to Edit schema to check that the schema has been propagated. If not, click the
Sync columns button.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 to execute your Job.

The console displays the data contained in the ARFF file, delimited using a vertical line (the default separator).

tFileInputDelimited

1214 Talend Open Studio Components Reference Guide

tFileInputDelimited

tFileInputDelimited properties

Component family File/Input

Function

Purpose

tFileInputDelimited reads a given file row by row with simple separated fields.

Opens a file and reads it row by row to split them up into fields then sends fields as defined
in the Schema to the next Job component, via a Row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties are
stored. The fields that follow are completed automatically using
the data retrieved.

File Name/Stream File name: Name and path of the file to be processed.

Stream: The data flow to be processed. The data must be added
to the flow in order for tFileInputDelimited to fetch these data
via the corresponding representative variable.

This variable could be already pre-defined in your Studio or
provided by the context or the components you are using along
with this component; otherwise, you could define it manually
and use it according to the design of your Job, for example,
using tJava or tJavaFlex.

In order to avoid the inconvenience of hand writing, you could
select the variable of interest from the auto-completion list (Ctrl
+Space) to fill the current field on condition that this variable
has been properly defined.

Related topic to the available variables: see Talend Open Studio
User Guide

Row separator String (ex: “\n”on Unix) to distinguish rows.

Field separator Character, string or regular expression to separate fields.

CSV options Select this check box to include CSV specific parameters such
as Escape char and Text enclosure.

Header Number of rows to be skipped in the beginning of file.

Footer Number of rows to be skipped at the end of the file.

Limit Maximum number of rows to be processed. If Limit = 0, no row
is read or processed.

Schema and Edit Schema A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either Built-in or stored remotely in
the Repository.

tFileInputDelimited properties

Talend Open Studio Components Reference Guide 1215

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Skip empty rows Select this check box to skip empty rows.

Uncompress as zip file Select this check box to uncompress the input file.

Die on error Select this check box to stop the execution of the Job when an
error occurs. Clear the check box to skip the row on error and
complete the process for error-free rows. If needed, you can
collect the rows on error using a Row > Reject link.

To catch the FileNotFoundException, you also need to
select this check box.

Advanced settings Advanced separator (for
numbers)

Select this check box to modify the separators used for numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

Extract lines at random Select this check box to set the number of lines to be extracted
randomly.

Encoding Select the encoding type from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Trim all column Select this check box to remove leading and trailing whitespace
from all columns.

Check each row
structure against schema

Select this check box to synchronize every row against the input
schema.

Check date Select this check box to check the date format strictly against
the input schema.

Check columns to trim Select the check box next to the column name you want to
remove leading and trailing whitespace from.

Split row before field Select this check box to split rows before splitting fields.

tStatCatcher Statistics Select this check box to gather the processing metadata at the
Job level as well as at each component level.

Usage Use this component to read a file and separate fields contained in this file using a defined
separator. It allows you to create a data flow using a Row > Main link or via a Row
> Reject link in which case the data is filtered by data that does not correspond to the
type defined. For further information, please see the section called “Scenario 2: Extracting
correct and erroneous data from an XML field in a delimited file”.

Limitation n/a

Scenario: Delimited file content display

1216 Talend Open Studio Components Reference Guide

Scenario: Delimited file content display
The following scenario creates a two-component Job, which aims at reading each row of a file, selecting delimited
data and displaying the output in the Run log console.

Dropping and linking components

1. Drop a tFileInputDelimited component and a tLogRow component from the Palette to the design
workspace.

2. Right-click on the tFileInputDelimited component and select Row > Main. Then drag it onto the tLogRow
component and release when the plug symbol shows up.

Configuring the components

1. Select the tFileInputDelimited component again, and define its Basic settings:

2. Fill in a path to the file in the File Name field. This field is mandatory.

If the path of the file contains some accented characters, you will get an error message when
executing your Job. For more information regarding the procedures to follow when the support of
accented characters is missing, see Talend Open Studio Installation Guide.

3. Define the Row separator allowing to identify the end of a row. Then define the Field separator used to
delimit fields in a row.

4. In this scenario, the header and footer limits are not set. And the Limit number of processed rows is set on 50.

5. Set the Schema as either a local (Built-in) or a remotely managed (Repository) to define the data to pass
on to the tLogRow component.

6. You can load and/or edit the schema via the Edit Schema function.

Related topics: see Talend Open Studio User Guide.

7. Enter the encoding standard the input file is encoded in. This setting is meant to ensure encoding consistency
throughout all input and output files.

Scenario 2: Reading data from a remote file in streaming mode

Talend Open Studio Components Reference Guide 1217

8. Select the tLogRow and define the Field separator to use for the output display. Related topic: the section
called “tLogRow”.

9. Select the Print schema column name in front of each value check box to retrieve the column labels in
the output displayed.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Go to Run tab, and click on Run to execute the Job.

The file is read row by row and the extracted fields are displayed on the Run log as defined in both components
Basic settings.

The Log sums up all parameters in a header followed by the result of the Job.

Scenario 2: Reading data from a remote file in
streaming mode

This scenario describes a four component Job used to fetch data from a voluminous file almost as soon as it has
been read. The data is displayed in the Run view. The advantage of this technique is that you do not have to wait
for the entire file to be downloaded, before viewing the data.

Dropping and linking components

1. Drop the following components onto the workspace: tFileFetch, tSleep, tFileInputDelimited, and
tLogRow.

2. Connect tSleep and tFileInputDelimited using a Trigger > OnComponentOk link and connect
tFileInputDelimited to tLogRow using a Row > Main link.

Scenario 2: Reading data from a remote file in streaming mode

1218 Talend Open Studio Components Reference Guide

Configuring the components

1. Double-click tFileFetch to display the Basic settings tab in the Component view and set the properties.

2. From the Protocol list, select the appropriate protocol to access the server on which your data is stored.

3. In the URI field, enter the URI required to access the server on which your file is stored.

4. Select the Use cache to save the resource check box to add your file data to the cache memory. This option
allows you to use the streaming mode to transfer the data.

5. In the workspace, click tSleep to display the Basic settings tab in the Component view and set the properties.

By default, tSleep’s Pause field is set to 1 second. Do not change this setting. It pauses the second Job in
order to give the first Job, containing tFileFetch, the time to read the file data.

6. In the workspace, double-click tFileInputDelimited to display its Basic settings tab in the Component view
and set the properties.

7. In the File name/Stream field:

- Delete the default content.

- Press Ctrl+Space to view the variables available for this component.

- Select tFileFetch_1_INPUT_STREAM from the auto-completion list, to add the following variable to the
Filename field:
((java.io.InputStream)globalMap.get("tFileFetch_1_INPUT_STREAM")).

Scenario 2: Reading data from a remote file in streaming mode

Talend Open Studio Components Reference Guide 1219

8. From the Schema list, select Built-in and click [...] next to the Edit schema field to describe the structure
of the file that you want to fetch. The US_Employees file is composed of six columns: ID, Employee, Age,
Address, State, EntryDate.

Click [+] to add the six columns and set them as indicated in the above screenshot. Click OK.

9. In the workspace, double-click tLogRow to display its Basic settings in the Component view and click Sync
Columns to ensure that the schema structure is properly retrieved from the preceding component.

Configuring Job execution and executing the Job

1. Click the Job tab and then on the Extra view.

2. Select the Multi thread execution check box in order to run the two Jobs at the same time. Bear in mind that
the second Job has a one second delay according to the properties set in tSleep. This option allows you to
fetch the data almost as soon as it is read by tFileFetch, thanks to the tFileDelimited component.

3. Save the Job and press F6 to run it.

Scenario 2: Reading data from a remote file in streaming mode

1220 Talend Open Studio Components Reference Guide

The data is displayed in the console as almost as soon as it is read.

tFileInputEBCDIC

Talend Open Studio Components Reference Guide 1221

tFileInputEBCDIC

This component requires an Oracle JDK to be functional.

tFileInputEBCDIC properties

Component family File/Input

Function tFileInputEBCDIC reads an EBCDIC file and extracts data depending on the selected
schema.

Purpose tFileInputEBCDIC opens a file and reads it in order to separate the data, based on the
file structure description (schemas), and to send the file data and metadata to the next
Job component(s), via a Row > Main connection.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties
are stored. The fields that follow are completed automatically
using the data retrieved.

Schema(s) Click [+] to add one or more lines and click [...] in the Schema
column of one selected line to define the schema for the data
to be processed. Editable schema name will be displayed in
the Distinguish field value column of the selected line.

Data file Click [...] to browse to or type in the path to the EBCDIC file
containing the data to be processed.

Edit schema Click [...] to edit the Built-in or Repository schema for the
data to be processed.

This button is enabled when you select the Custom
set Original Length in Schema checkbox.

Built-in: Select this option to edit the Built-in schema for the
data to be processed.

Repository: Select this option to edit the Repository schema
you select. The field that follows is completed automatically
using the schema you select.

Xc2j file Click [...] to browse to or type in the path to the xc2j file to
transform the EBCDIC schema(s) into an intermediary XML
file.

This field will be disabled and xc2j file will not be
needed when you select the Custom set Original
Length in Schema checkbox.

Custom set Original
Length in Schema

Select this check box to improve the speed of reading files.

When you select this check box, the Xc2j file field
will be disabled and xc2j file will not be needed and
you are able to edit the Built-in or Repository schema
for the data to be processed.

Scenario: Extracting data from an EBCDIC file and populating a database

1222 Talend Open Studio Components Reference Guide

 Advanced settings Encoding Select the encoding type from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Trim all column Select this check box to remove leading and trailing
whitespaces from defined columns.

tStatCatcher Statistics Select this check box to gather the processing metadata at the
Job level as well as at each component level.

Enable parallel
execution

Select this check box to perform high-speed data processing,
by treating multiple data flows simultaneously.

In the Number of parallel executions field, either:

- Enter the number of parallel executions desired.

- Press Ctrl + Space and select the appropriate context
variable from the list.

For further information, see Talend Open Studio User Guide.

The Number of parallel executions field is
not available with the parallelization function.
Therefore, you must use a tCreateTable component
if you want to create a table.

When parallel execution is enabled, it is not possible
to use global variables to retrieve return values in a
SubJob.

Usage Use this component to read an EBCDIC file and to output the data separately depending
on the schemas identified in the file.

Scenario: Extracting data from an EBCDIC file and
populating a database

This scenario uses the [Copybook Connection] wizard that guides users through the different steps
necessary to create a Copybook connection and to retrieve the EBCDIC schemas. This wizard is available
only for Talend Enterprise users. If you are using Talend Open Studio or Talend Integration Express
Studio, you need to set the basic settings for the tFileInputEBCDIC component manually.

The following scenario is a four-component Job that aims at: reading an EBCDIC file which contains information
concerning clients and their financial transactions, extracting and transforming this data, and finally creating two
tables in a database, based on the two schemas, clients and transactions, extracted from the original EBCDIC file.

Scenario: Extracting data from an EBCDIC file and populating a database

Talend Open Studio Components Reference Guide 1223

This Java scenario uses the EBCDIC Connection wizard to set up a connection to the Copybook file and to generate
an xc2j file, which allows the retrieval and transformation of the different file schemas.

• Create a connection to the Copybook file, which describes the structure of your EBCDIC file. In this scenario,
the Copybook connection is called EBCDIC. Talend Open Studio User Guide.

• Retrieve the file schemas. Talend Open Studio User Guide.

Once the Copybook connection has been created and the schemas retrieved, using the EBCDIC and Schema
wizards, the new schemas appear under the node Metadata > Copybook. They are called Schema01, Schema04
and Schema05.

In order to retrieve the different file structures and to use them in Talend Open Studio:

• Drop schema 01 from the Repository tree view to the design workspace. This automatically creates the
tFileInputEBCDIC input component.

• Drop the tMysqlOutput component from the Palette to the design workspace.

• Double-click tFileInputEBCDIC to display the Basic settings view, then define the component properties:

The metadata is automatically defined in the Property Type, Schema(s), Data file and Xc2j file fields. The
Property Type field shows which metadata has been used for the component. The Schema field shows which
schema will be transmitted to the following component. The Data file field shows the path to the file that holds
the EBCDIC data. The Xc2j file field shows the path to the file which enables to extract the schema describing
the EBCDIC file structure. If you are in Built-In mode, you have to fill these fields manually.

• In the design workspace, right-click tFileInputEBCDIC, select Row > row_Schema01_1 from the menu, then
click tMysqlOutput to connect the components together.

• Double-click tMysqlOutput to display the Basic settings view, then define the component properties.

Scenario: Extracting data from an EBCDIC file and populating a database

1224 Talend Open Studio Components Reference Guide

• In the Property Type list, select Repository and click the button [...]. Select the database connection you
want to use, which is centralized in the metadata of the Repository. The Host, Port, Database, Username and
Password fields are automatically filled. If you are in Built-In mode, you have to fill these fields manually.

• In the Table field, enter the name of the table to be created, which will contain the data extracted from the
EBCDIC file.

• In the Action on table field, select the option Create table.

At this stage, the Job retrieves the schema Schema01 from the EBCDIC file and transfers it, as well as the
corresponding data, to the database. We now need to retrieve, from the EBCDIC file, the schema 04 and its data,
then transform and transmit the data to the same database. To do this:

• Drop the tMap and tMysqlOutputBulkExec components to the design workspace.

• Double-click the tFileInputEBCDIC to display the Basic settings view, then define the component properties.

• In the Schema(s) field, click the plus button to add a line.

• Click in this line and then click the three-dot button that displays to open a dialog box. Select the Create schema
from repository button to retrieve the schema defined in the EBCDIC metadata, then select Shema04 from
the drop-down list.

Scenario: Extracting data from an EBCDIC file and populating a database

Talend Open Studio Components Reference Guide 1225

• Click OK to close the dialog box.

• If you did not retrieve the schema from the Repository tree view, select Create schema for built-in and
manually enter the name and description of your schema.

The two schemas Shema01 and Schema04 appear in the Schema(s) field of the tFileInputEBCDIC component.

• In order to connect these two components, right-click tFileInputEBCDIC, select Row > row_Schema04_1 in
the menu and click the tMap component. Then right-click tMap, drag a link over to tMysqlOutputBulkExec
and release the right-click button. In the dialog box that opens up, fill in the name of the ebcdic_04 output file.

• Double-click tMap to open up the tMap Editor.

• Select all the columns from the row_Schema04_1 table and drag them towards the ebcdic_04 table.

• In the table ebcdic_04, located in the Schema editor area at the bottom of the editor, click the plus button to
add a column to the schema. Name this column SUM_AG_NUMBER.

• In the table row_Schema04_1, to the left of the editor, press Ctrl and select the CC01404_L_11_MENAG_1_1
and CC01404_AG_CAM_1_1 columns. Drag them to the new column SUM_AG_NUMBER in
table ebcdic_04. Add the sign + between the two concatenated columns so that you have:
row_04_1.CC01404_L_11_MENAG_1_1 + row_04_1.CC01404_AG_CAM_1_1.

• Click OK to validate your changes and close the editor.

• In the design workspace, double-click tMysqlOutputBulkExec to display the Basic settings view, then define
the component properties:

Scenario: Extracting data from an EBCDIC file and populating a database

1226 Talend Open Studio Components Reference Guide

• In the Property Type list, select Repository and click the three-dot button to display a dialog bow where
you can select the database connection you want to use, which is centralized in the Metadata folder of the
Repository tree view. The Host, Port, Database, Username and Password fields are automatically filled. If
you are in Built-In mode, you have to fill these fields manually.

• In the Table field, enter the name of the table to be created, which will contain the data extracted from the
EBCDIC file.

• In the Action on table field, select the option Create table.

• Press Ctrl+S to save your Job and click the Run view. Select the Statistics and Exec time check boxes, then
click Run to execute the Job.

The two tables are created in the database. They contain the structure, as well as the clients and transaction data,
from the original EBCDIC file.

tFileInputExcel

Talend Open Studio Components Reference Guide 1227

tFileInputExcel

tFileInputExcel properties

Component family File/Input

Function tFileInputExcel reads an Excel file (.xls or .xlsx) and extracts data line by line.

Purpose tFileInputExcel opens a file and reads it row by row to split data up into fields
using regular expressions. Then sends fields as defined in the schema to the next
component in the Job via a Row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties
are stored. The fields that follow are completed
automatically using the data retrieved.

Click this icon to open a connection wizard and store the
Excel file connection parameters you set in the component
Basic settings view.

For more information about setting up and storing file
connection parameters, see Talend Open Studio User
Guide.

Read excel2007 file
format (xlsx)

Select this check box to read the .xlsx file of Excel 2007.

File Name/Stream File name: Name of the file and/or the variable to be
processed.

Stream: Data flow to be processed. The data must
be added to the flow in order to be collected by
tFileInputExcel via the INPUT_STREAM variable in the
auto-completion list (Ctrl+Space).

Related topic: see Talend Open Studio User Guide.

All sheets Select this check box to process all sheets of the Excel file.

Sheet list Click the plus button to add as many lines as needed to the
list of the excel sheets to be processed:

Sheet (name or position): enter the name or position of
the excel sheet to be processed.

Use Regex: select this check box if you want to use a
regular expression to filter the sheets to process.

Header Number of records to be skipped in the beginning of the
file.

Footer Number of records to be skipped at the end of the file.

Limit Maximum number of lines to be processed.

tFileInputExcel properties

1228 Talend Open Studio Components Reference Guide

Affect each
sheet(header&footer)

Select this check box if you want to apply the parameters
set in the Header and Footer fields to all excel sheets to
be processed.

Die on error Select this check box to stop the execution of the Job
when an error occurs. Clear the check box to skip the row
on error and complete the process for error-free rows. If
needed, you can collect the rows on error using a Row >
Reject link.

First column and Last
column

Define the range of the columns to be processed through
setting the first and last columns in the First column and
Last column fields respectively.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job flowcharts. Related topic: see Talend Open Studio
User Guide.

Advanced settings Advanced separator Select this check box to change the used data separators.

Trim all columns Select this check box to remove the leading and trailing
whitespaces from all columns. When this check box is
cleared, the Check column to trim table is displayed,
which lets you select particular columns to trim.

Convert date column to
string

Available when Read excel2007 file format (xlsx) is
selected in the Basic settings view.

Select this check box to show the table Check need
convert date column. Here you can parse the string
columns that contain date values based on the given date
pattern.

Column: all the columns availabe in the schema of the
source .xlsx file.

Convert: select this check box to choose all the columns
for conversion (on the condition that they are all of the
string type). You can also select the individual check box
next to each column for conversion.

Date pattern: set the date format here.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Related scenarios

Talend Open Studio Components Reference Guide 1229

Read real values for
numbers

Select this check box to read numbers in real values.

Stop to read on empty
rows

Select this check box to ignore empty lines.

Don’t validate the cells Select this check box to in order not to validate data.

Ignore the warning Select this check box to ignore all warnings generated to
indicate errors in the Excel file.

tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage Use this component to read an Excel file and to output the data separately depending
on the schemas identified in the file. You can use a Row > Reject link to filter the
data which doesn’t correspond to the type defined. For an example of how to use
these two links, see the section called “Scenario 2: Extracting correct and erroneous
data from an XML field in a delimited file”.

Limitation n/a

Related scenarios

No scenario is available for this component yet.

tFileInputFullRow

1230 Talend Open Studio Components Reference Guide

tFileInputFullRow

tFileInputFull Row properties

Component family File/Input

Function tFileInputFullRow reads a given file row by row.

Purpose tFileInputFullRow opens a file and reads it row by row and sends complete rows as
defined in the Schema to the next Job component, via a Row link.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of
fields to be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component connected to tFileInputFullRow.

File Name Name of the file and/or the variable to be processed

Related topic: see Talend Open Studio User Guide.

Row separator String (ex: “\n”on Unix) to separate rows.

Header Number of rows to be skipped at the beginning of a file

Footer Number of rows to be skipped at the end of a file.

Limit Maximum number of rows to be processed. If Limit = 0, no row
is read or processed.

Skip empty rows Select this check box to skip empty rows.

Die on error Select this check box to stop the execution of the Job when an
error occurs. Clear the check box to skip the row on error and
complete the process for error-free rows. If needed, you can
collect the rows on error using a Row > Reject link.

Advanced settings Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Extract lines at random Select this check box to set the number of lines to be extracted
randomly.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at
a Job level as well as at each component level.

Usage Use this component to read full rows in delimited files that can get very large. You can
also create a rejection flow using a Row > Reject link to filter the data which does not
correspond to the type defined. For an example of how to use these two links, see the
section called “Scenario 2: Extracting correct and erroneous data from an XML field in
a delimited file”.

Scenario: Reading full rows in a delimited file

Talend Open Studio Components Reference Guide 1231

Scenario: Reading full rows in a delimited file

The following scenario creates a two-component Job that aims at reading complete rows in a file and displaying
the output in the Run log console.

1. Drop a tFileInputFullRow and a tLogRow from the Palette onto the design workspace.

2. Right-click on the tFileInputFullRow component and connect it to tLogRow using a Row Main link.

3. In the design workspace, select tFileInputFullRow.

4. Click the Component tab to define the basic settings for tFileInputFullRow.

5. In the Basic settings view, set Schema to Built-In.

6. Click the three-dot [...] button next to the Edit schema field to see the data to pass on to the tLogRow
component. Note that the schema is read-only and it consists of one column, line.

7. Fill in a path to the file to process in the File Name field, or click the three-dot [...] button. This field is
mandatory. In this scenario, the file to read is test5. It holds three rows where each row consists of tow fields
separated by a semi colon.

8. Define the Row separator used to identify the end of a row.

9. Set the Header to 1, in this scenario the footer and the number of processed rows are not set.

10. From the design workspace, select tLogRow and click the Component tab to define its basic settings. For
more information, see the section called “tLogRow”

11. Save your Job and press F6 to execute it.

Scenario: Reading full rows in a delimited file

1232 Talend Open Studio Components Reference Guide

tFileInputFullRow reads the three rows one by one ignoring field separators, and the complete rows are
displayed on the Run console.

To extract only fields from rows, you must use tExtractDelimitedFields, tExtractPositionalFields,
and tExtractRegexFields. For more information, see the section called “tExtractDelimitedFields”,
the section called “tExtractPositionalFields” and the section called “tExtractRegexFields”.

tFileInputJSON

Talend Open Studio Components Reference Guide 1233

tFileInputJSON

tFileInputJSON properties

Component Family File

Function The tFileInputJSON reads a JSON file and extracts data according to the
selected schema.

Purpose This component opens a file and reads it in order to isolate data according to the
schemas which describe this file structure, and to send the data and schemas to
the next component(s), via a Row connection.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the
properties are stored. The fields that follow are
completed automatically using the data retrieved.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes built-in.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend
Open Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job flowcharts. Related topic: see Talend Open
Studio User Guide.

Use URL Select this check box to retrieve data directly from the
Web.

URL: type in the URL path from which you will
retrieve data.

FIlename Name of the file from which you will retrieve data.

Mapping Column: shows the schema as defined in the Schema
editor.

JSONPath Query: Type in the fields to extract from
the JSON input structure.

Advanced settings Advanced separator
(for numbers)

Select this check box to modify the separators used for
numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

Scenario: Extracting data from the fields of a JSON format file

1234 Talend Open Studio Components Reference Guide

Encoding Select the encoding type from the list or select Custom
and define it manually. This field is compulsory for DB
data handling.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Use this component to read a JSON file and separate data according to the
identified schemas in this file.

Limitation n/a

Scenario: Extracting data from the fields of a JSON
format file

This is a 2 component scenario which involves reading a JSON file, and extracting its data.

Dropping and linking the components

1. Drag and drop a tFileInputJSON component from the File family and a tLogRow from the Logs & Errors
family from the Palette onto the Job designer.

2. Link the components using a Main > Row connection.

3. Double-click the tFileInputJSON component to set its properties in the Basic settings, in the Component
view:

Configuring the compontents

1. If your schema is already stored under the Db Connections node in the Repository, select Repository in the
Schema Type field, and choose the metadata from the list.

2. If you have not defined a schema yet, select the Built-in mode, type in manually the connection details, and
the data structure of a schema.

Scenario: Extracting data from the fields of a JSON format file

Talend Open Studio Components Reference Guide 1235

3. Click the [...] button of the Edit schema field to open a dialog box in which you will define the output schema
to be displayed.

4. Click OK to close the dialog box. In the Mapping table, the items in the Column field are automatically
filled in according to the schema you just defined.In this example, the schema is made of four columns:
FirstName, LastName, Address and City.

5. In the Filename field, fill in the path to the JSON file from which you want to retrieve data. If your data are
stored on the internet, select the Use URL check box, and then, in the same way, fill in the access URL to
the file to be processed. In this example, the processed file is presented as follows:

6. In the Mapping table, the rows in the Column field are already filled in. For each of them, type in the tree
view level in which retrieve data, in the JSONPath query field.

7. In the Job designer, double-click the tLogRow to set its properties in the Basic settings tab, in the Component
view.

8. Click Sync Columns button to retrieve the schema of the previous component.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

Press F6 or click the Run button in the Run tab to execute it.

2.

The Job returns the customer information according to the parameters selected in the schema.

tFileInputLDIF

1236 Talend Open Studio Components Reference Guide

tFileInputLDIF

tFileInputLDIF Properties

Component Family File/Input

Function tFileInputLDIF reads a given LDIF file row by row.

Purpose tFileInputLDIF opens a file, reads it row by row, et gives the full rows to the next
component as defined in the schema, using a Row connection.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties are
stored. The fields that follow are completed automatically using
the data retrieved.

File Name Name of the file and/or variable to be processed.

Related topic: see Talend Open Studio User Guide.

add operation as prefix
when the entry is modify
type

Select this check box to display the operation mode.

Value separator Type in the separator required for parsing data in the given file.
By default, the separator used is “ ,”.

Die on error Select this check box to stop the execution of the Job when an
error occurs. Clear the check box to skip the row on error and
complete the process for error-free rows. If needed, you can
collect the rows on error using a Row > Reject link.

Schema and Edit schema A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either Built-in or stored remotely in
the Repository. Click Edit Schema to modify the schema. Note
that if you make changes, the schema automatically becomes
built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Advanced settings Encoding Select the encoding type from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Use field options (for
Base64 decode checked)

Select this check box to specify the Base64-encoded columns
of the input flow. Once selected, this check box activates the
Decode Base64 encoding values table to enable you to precise
the columns to be decoded from Base64.

The data type of the columns to be handled by this
check box is byte[] that you define in the input schema
editor.

Related scenario

Talend Open Studio Components Reference Guide 1237

tStatCatcher Statistics Select this check box to gather the Job processing metadata at
a Job level as well as at each component level.

Usage Use this component to read full rows in a voluminous LDIF file. This component enables
you to create a data flow, using a Row > Main link, and to create a reject flow with a
Row > Reject link filtering the data which type does not match the defined type. For an
example of usage, see the section called “Scenario 2: Extracting erroneous XML data via
a reject flow” from tFileInputXML.

Limitation n/a

Related scenario

For a related scenario, see the section called “Scenario: Writing DB data into an LDIF-type file”.

tFileInputMail

1238 Talend Open Studio Components Reference Guide

tFileInputMail

tFileInputMail properties

Component family File/Input

Function tFileInputMail reads the header and content parts of defined email file.

Purpose This component helps to extract standard key data from emails.

Basic settings File name Browse to the source email file.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job flowcharts. Related topic: see Talend Open
Studio User Guide.

Attachment export
directory

Enter the path to the directory where you want to export
email attachments.

Mail parts Column: This field is automatically populated with the
columns defined in the schema that you propagated.

Mail part: Type in the label of the header part or body
to be displayed on the output.

Multi value: Select the check box next to the name of
the column that is made up of fields of multiple values.

Field separator: Enter a value separator for the field of
multiple values.

Die on error Select this check box to stop the execution of the Job
when an error occurs. Clear the check box to skip the row
on error and complete the process for error-free rows.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at the Job level as well as at each component
level.

Usage This component handles flow of data therefore it requires output. It is defined as
an intermediary step.

Limitation n/a

Scenario: Extracting key fields from an email

Talend Open Studio Components Reference Guide 1239

Scenario: Extracting key fields from an email

This Java scenario describes a two-component Job that extracts some key standard fields and displays the values
on the Run console.

1. Drop a tFileInputMail and a tLogRow component from the Palette to the design workspace.

2. Connect the two components together using a Main Row link.

3. Double-click tFileInputMail to display its Basic settings view and define the component properties.

4. Click the three-dot button next to the File Name field and browse to the mail file to be processed.

5. Set schema type to Built-in and click the three-dot button next to Edit schema to open a dialog box where
you can define the schema including all columns you want to retrieve on your output.

6. Click the plus button in the dialog box to add as many columns as you want to include in the output flow. In
this example, the schema has four columns: Date, Author, Object and Status.

7. Once the schema is defined, click OK to close the dialog box and propagate the schema into the Mail parts
table.

8. Click the three-dot button next to Attachment export directory and browse to the directory in which you want
to export email attachments, if any.

9. In the Mail part column of the Mail parts table, type in the actual header or body standard keys that will
be used to retrieve the values to be displayed.

10. Select the Multi Value check box next to any of the standard keys if more than one value for the relative
standard key is present in the input file.

11. If needed, define a separator for the different values of the relative standard key in the Separator field.

12. Double-click tLogRow to display its Basic settings view and define the component properties in order for
the values to be separated by a carriage return. On Windows OS, type in \n between double quotes.

13. Save your Job and press F6 to execute it and display the output flow on the console.

Scenario: Extracting key fields from an email

1240 Talend Open Studio Components Reference Guide

The header key values are extracted as defined in the Mail parts table. Mail reception date, author, subject and
status are displayed on the console.

tFileInputMSDelimited

Talend Open Studio Components Reference Guide 1241

tFileInputMSDelimited

tFileInputMSDelimited properties

Component family File/Input

Function tFileInputMSDelimited reads a complex multi-structured delimited file.

Purpose tFileInputMSDelimited opens a complex multi-structured file, reads its data structures
(schemas) and then uses Row links to send fields as defined in the different schemas to
the next Job components.

Basic settings Multi Schema Editor The [Multi Schema Editor] helps to build and configure the
data flow in a multi-structure delimited file to associate one
schema per output.

For more information, see the section called “The Multi Schema
Editor”.

Output Lists all the schemas you define in the [Multi Schema Editor],
along with the related record type and the field separator that
corresponds to every schema, if different field separators are
used.

Die on error Select this check box to stop the execution of the Job when an
error occurs. Clear the check box to skip the row on error and
complete the process for error-free rows.

Advanced settings Trim all column Select this check box to remove leading and trailing
whitespaces from defined columns.

Validate date Select this check box to check the date format strictly against
the input schema.

Advanced separator (for
numbers)

Select this check box to modify the separators used for numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at
a Job level as well as at each component level.

Usage Use this component to read multi-structured delimited files and separate fields contained
in these files using a defined separator.

Limitation n/a

The Multi Schema Editor

The [Multi Schema Editor] enables you to:

• set the path to the source file,

• define the source file properties,

• define data structure for each of the output schemas.

Scenario: Reading a multi structure delimited file

1242 Talend Open Studio Components Reference Guide

When you define data structure for each of the output schemas in the [Multi Schema Editor], column
names in the different data structures automatically appear in the input schema lists of the components that
come after tFileInputMSDelimited. However, you can still define data structures directly in the Basic
settings view of each of these components.

The [Multi Schema Editor] also helps to declare the schema that should act as the source schema (primary key)
from the incoming data to insure its unicity.The editor uses this mapping to associate all schemas processed in the
delimited file to the source schema in the same file.

The editor opens with the first column, that usually holds the record type indicator, selected by default.
However, once the editor is open, you can select the check box of any of the schema columns to define
it as a primary key.

The below figure illustrates an example of the [Multi Schema Editor].

For detailed information about the usage of the Multi Schema Editor, see the section called “Scenario: Reading
a multi structure delimited file”.

Scenario: Reading a multi structure delimited file

The following scenario creates a Java Job which aims at reading three schemas in a delimited file and displaying
their data structure on the Run Job console.

Scenario: Reading a multi structure delimited file

Talend Open Studio Components Reference Guide 1243

The delimited file processed in this example looks like the following:

Dropping and linking components

1. Drop a tFileInputMSDelimited component and three tLogRow components from the Palette onto the
design workspace.

2. In the design workspace, right-click tFileInputMSDelimited and connect it to tLogRow1, tLogRow2, and
tLogRow3 using the row_A_1, row_B_1, and row_C_1 links respectively.

Configuring the components

1. Double-click tFileInputMSDelimited to open the Multi Schema Editor.

Scenario: Reading a multi structure delimited file

1244 Talend Open Studio Components Reference Guide

2. Click Browse... next to the File name field to locate the multi schema delimited file you need to process.

3. In the File Settings area:

-Select from the list the encoding type the source file is encoded in. This setting is meant to ensure encoding
consistency throughout all input and output files.

-Select the field and row separators used in the source file.

Select the Use Multiple Separator check box and define the fields that follow accordingly if
different field separators are used to separate schemas in the source file.

A preview of the source file data displays automatically in the Preview panel.

Scenario: Reading a multi structure delimited file

Talend Open Studio Components Reference Guide 1245

Column 0 that usually holds the record type indicator is selected by default. However, you can select
the check box of any of the other columns to define it as a primary key.

4. Click Fetch Codes to the right of the Preview panel to list the type of schema and records you have in the
source file. In this scenario, the source file has three schema types (A, B, C).

Click each schema type in the Fetch Codes panel to display its data structure below the Preview panel.

5. Click in the name cells and set column names for each of the selected schema.

In this scenario, column names read as the following:

-Schema A: Type, DiscName, Author, Date,

-Schema B: Type, SongName,

-Schema C: Type, LibraryName.

You need now to set the primary key from the incoming data to insure its unicity (DiscName in this scenario).
To do that:

6. In the Fetch Codes panel, select the schema holding the column you want to set as the primary key (schema
A in this scenario) to display its data structure.

7. Click in the Key cell that corresponds to the DiscName column and select the check box that appears.

Scenario: Reading a multi structure delimited file

1246 Talend Open Studio Components Reference Guide

8. Click anywhere in the editor and the false in the Key cell will become true.

You need now to declare the parent schema by which you want to group the other “children” schemas
(DiscName in this scenario). To do that:

9. In the Fetch Codes panel, select schema B and click the right arrow button to move it to the right. Then,
do the same with schema C.

The Cardinality field is not compulsory. It helps you to define the number (or range) of fields in
“children” schemas attached to the parent schema. However, if you set the wrong number or range
and try to execute the Job, an error message will display.

10. In the [Multi Schema Editor], click OK to validate all the changes you did and close the editor.

The three defined schemas along with the corresponding record types and field separators display
automatically in the Basic settings view of tFileInputMSDelimited.

Scenario: Reading a multi structure delimited file

Talend Open Studio Components Reference Guide 1247

The three schemas you defined in the [Multi Schema Editor] are automatically passed to the three tLogRow
components.

11. If needed, click the Edit schema button in the Basic settings view of each of the tLogRow components to
view the input and output data structures you defined in the Multi Schema Editor or to modify them.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

The multi schema delimited file is read row by row and the extracted fields are displayed on the Run Job
console as defined in the [Multi Schema Editor].

Scenario: Reading a multi structure delimited file

1248 Talend Open Studio Components Reference Guide

tFileInputMSPositional

Talend Open Studio Components Reference Guide 1249

tFileInputMSPositional

tFileInputMSPositional properties

Component family File/Input

Function tFileInputMSPositional reads multiple schemas from a positional file.

Purpose tFileInputMSPositional opens a complex multi-structured file, reads its data structures
(schemas) and then uses Row links to send fields as defined in the different schemas
to the next Job components.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties
are stored. The fields that follow are completed
automatically using the data retrieved.

File Name Name of the file and/or the variable to be processed

Related topic: see Talend Open Studio User Guide.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Header Field Position Start-end position of the schema identifier.

Records Schema: define as many schemas as needed.

Header value: value in the row that identifies a schema.

Pattern: string which represents the length of each column
of the schema, separated by commas. Make sure the values
defined in this field are relevant with the defined schema.

Reject incorrect row size: select the check boxes of the
schemas where to reject incorrect row size.

Parent key column: Type in the parent key column name.

Key column: Type in the key column name.

Skip from header Number of rows to be skipped in the beginning of file.

Skip from footer Number of rows to be skipped at the end of the file.

Limit Maximum number of rows to be processed. If Limit = 0, no
row is read or processed.

Die on parse error Let the component die if an parsing error occurs.

Die on unknown header
type

Length values separated by commas, interpreted as a string
between quotes. Make sure the values entered in this fields
are consistent with the schema defined.

Advanced settings Process long rows
(needed for processing
rows longer than 100,000
characters wide)

Select this check box to process long rows (this is necessary
to process rows longer than 100 000 characters).

Scenario: Reading data from a positional file

1250 Talend Open Studio Components Reference Guide

Advanced separator (for
numbers)

Select this check box to modify the separators used for
numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

Trim all column Select this check box to remove leading and trailing
whitespaces from defined columns.

Validate date Select this check box to check the date format strictly against
the input schema.

Encoding Select the encoding type from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage Use this component to read a multi schemas positional file and separate fields using a
position separator value. You can also create a rejection flow using a Row > Reject
link to filter the data which does not correspond to the type defined. For an example of
how to use these two links, see the section called “Scenario 2: Extracting correct and
erroneous data from an XML field in a delimited file”.

Scenario: Reading data from a positional file

The following scenario reads data from a positional file, which contains two schemas. The positional file is shown
below:

schema_1 (car_owner):schema_id;car_make;owner;age
schema_2 (car-insurance):schema_id;car_owner;age;car_insurance
1bmw John 45
1bench Mike 30
2John 45 yes
2Mike 50 No

Dropping the components

1. Drop one tFileInputMSPositional and two tLogRow from the Palette to the design workspace.

2. Rename the two tLogRow components as car_owner and car_insurance.

Scenario: Reading data from a positional file

Talend Open Studio Components Reference Guide 1251

Configuring the components

1. Double-click the tFileInputMSPositional component to show its Basic settings view and define its
properties.

2. In the File name/Stream field, type in the path to the input file. Also, you can click the [...] button to browse
and choose the file.

3. In the Header Field Position field, enter the start-end position for the schema identifier in the input file, 0-1
in this case as the first character in each row is the schema identifier.

4. Click the [+] button twice to added two rows in the Records table.

5. Click the cell under the Schema column to show the [...] button.

Click the [...] button to show the schema naming box.

6. Enter the schema name and click OK.

The schema name appears in the cell and the schema editor opens.

Scenario: Reading data from a positional file

1252 Talend Open Studio Components Reference Guide

7. Define the schema car_owner, which has four columns: schema_id, car_make, owner and age.

8. Repeat the steps to define the schema car_insurance, which has four columns: schema_id, car_owner, age
and car_insurance.

9. Connect tFileInputMSPositional to the car_owner component with the Row > car_owner link, and the
car_insurance component with the Row > car_insurance link.

10. In the Header value column, type in the schema identifier value for the schema, 1 for the schema car_owner
and 2 for the schema car_insurance in this case.

11. In the Pattern column, type in the length of each field in the schema, i.e. the number of characters, number,
etc in each field, 1,8,10,3 for the schema car_owner and 1,10,3,3 for the schema car_insurance in this case.

12. In the Skip from header field, type in the number of beginning rows to skip, 2 in this case as the two rows
in the beginning just describes the two schemas, instead of the values.

13. Choose Table (print values in cells of a table) in the Mode area of the components car_owner and
car_insurance.

Executing the Job

1. Press Ctrl+S to save the Job.

Scenario: Reading data from a positional file

Talend Open Studio Components Reference Guide 1253

2. Press F6 or click Run on the Run tab to execute the Job.

The file is read row by row based on the length values defined in the Pattern field and output in two tables
with different schemas.

tFileInputMSXML

1254 Talend Open Studio Components Reference Guide

tFileInputMSXML

tFileInputMSXML Properties

Component family XML or File/Input

Function tFileInputMSXML reads and outputs multiple schema within an XML
structured file.

Purpose tFileInputMSXML opens a complex multi-structured file, reads its data
structures (schemas) and then uses Row links to send fields as defined in the
different schemas to the next Job components.

Basic settings File Name Name of the file and/or the variable to be processed

Related topic: see Talend Open Studio User Guide.

Root XPath query The root of the XML tree, which the query is based on.

Enable XPath in column
“Schema XPath loop”
But lose the order

Select this check box if you want to define a XPath path
in the Schema XPath loop field of th Outputs array.

This option is only available with the dom4j
generation mode. Make sure this mode is
selected in the Generation mode list, in the
Advanced settings tab of your component.
If you use this option, the data will not be
returned in order.

Outputs Schema: define as many schemas as needed.

Schema XPath loop: node of the XML tree or XPath
path which the loop is based on.

If you want to use a XPath path in the Schema
XPath loop field, you must select the Enable
XPath in column "Schema XPath loop" but
lose the order check box.

XPath Queries: Enter the fields to be extracted from
the structured input.

Create empty row: select the check boxes of the
schemas where you want to create empty rows.

Die on error Select this check box to stop the execution of the Job
when an error occurs. Clear the check box to skip the
row on error and complete the process for error-free
rows.

Advanced settings Trim all column Select this check box to remove leading and trailing
whitespaces from defined columns.

Validate date Select this check box to check the date format strictly
against the input schema.

Scenario: Reading a multi structure XML file

Talend Open Studio Components Reference Guide 1255

Ignore DTD file Select this check box to ignore the DTD file indicated
in the XML file being processed.

Generation mode Select the appropriate generation mode according to
your memory availability. The available modes are:

• Slow and memory-consuming (Dom4j)

This option allows you to use dom4j to
process the XML files of high complexity.

• Fast with low memory consumption (SAX)

Encoding Select the encoding type from the list or select
CUSTOM and define it manually. This field is
compulsory for DB data handling.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Limitation n/a

Scenario: Reading a multi structure XML file

The following scenario creates a Java Job which aims at reading a multi schema XML file and displaying data
structures on the Run Job console.

The XML file processed in this example looks like the following:

1. Drop a tFileInputMSXML and two tLogRow components from the Palette onto the design workspace.

2. Double-click tFileInputMSXML to open the component Basic settings view.

Scenario: Reading a multi structure XML file

1256 Talend Open Studio Components Reference Guide

3. Browse to the XML file you want to process.

4. In the Root XPath query field, enter the root of the XML tree, which the query will be based on.

5. Select the Enable XPath in column “Schema XPath loop” but lose the order check box if you want to
define a XPath path in the Schema XPath loop field, in the Outputs array. In this scenario, we do not use
this option.

6. Click the plus button to add lines in the Outputs table where you can define the output schema, two lines
in this scenario: record and book.

7. In the Outputs table, click in the Schema cell and then click a three-dot button to display a dialog box where
you can define the schema name.

8. Enter a name for the output schema and click OK to close the dialog box.

The tFileInputMSXML schema editor displays.

9. Define the schema you previously defined in the Outputs table.

10. Do the same for all the output schemas you want to define.

11. In the design workspace, right-click tFileInputMSXML and connect it to tLogRow1, and tLogRow2 using
the record and book links respectively.

Scenario: Reading a multi structure XML file

Talend Open Studio Components Reference Guide 1257

12. In the Basic settings view and in the Schema XPath loop cell, enter the node of the XML tree, which the
loop is based on.

13. In the XPath Queries cell, enter the fields to be extracted from the structured XML input.

14. Select the check boxes next to schemas’ names where you want to create empty rows.

15. Save your Job and press F6 to execute it. The defined schemas are extracted from the multi schema XML
structured file and displayed on the console.

The multi schema XML file is read row by row and the extracted fields are displayed on the Run Job console
as defined.

tFileInputPositional

1258 Talend Open Studio Components Reference Guide

tFileInputPositional

tFileInputPositional properties

Component family File/Input

Function tFileInputPositional reads a given file row by row and extracts fields based on a
pattern.

Purpose This component opens a file and reads it row by row to split them up into fields then
sends fields as defined in the schema to the next Job component, via a Row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the
properties are stored. The fields that follow are completed
automatically using the data retrieved.

File Name/Stream File name: Name and path of the file to be processed.

Stream: The data flow to be processed. The data must
be added to the flow in order for tFileInputPositional
to fetch these data via the corresponding representative
variable.

This variable could be already pre-defined in your Studio
or provided by the context or the components you
are using along with this component, for example, the
INPUT_STREAM variable of tFileFetch; otherwise, you
could define it manually and use it according to the design
of your Job, for example, using tJava or tJavaFlex.

In order to avoid the inconvenience of hand writing,
you could select the variable of interest from the auto-
completion list (Ctrl+Space) to fill the current field on
condition that this variable has been properly defined.

Related topic to the available variables: see Talend Open
Studio User GuideRelated scenario to the input stream,
see the section called “Scenario 2: Reading data from a
remote file in streaming mode”.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Use byte length as the
cardinality

Select this check box to enable the support of double-byte
character to this component. JDK 1.6 is required for this
feature.

Customize Select this check box to customize the data format of the
positional file and define the table columns:

Column: Select the column you want to customize.

Size: Enter the column size.

tFileInputPositional properties

Talend Open Studio Components Reference Guide 1259

Padding char: Type in between inverted commas the
padding character used in order for it to be removed from
the field. A space by default.

Alignment: Select the appropriate alignment parameter.

Pattern Length values separated by commas, interpreted as a
string between quotes. Make sure the values entered in
this field are consistent with the schema defined.

Skip empty rows Select this check box to skip empty rows.

Uncompress as zip file Select this check box to uncompress the input file.

Die on error Select this check box to stop the execution of the Job
when an error occurs. Clear the check box to skip the row
on error and complete the process for error-free rows. If
needed, you can collect the rows on error using a Row >
Reject link.

Header Number of rows to be skipped in the beginning of file

Footer Number of rows to be skipped at the end of the file.

Limit Maximum number of rows to be processed. If Limit = 0,
no row is read or processed.

Schema and Edit Schema A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in the
Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job flowcharts. Related topic: see Talend Open Studio
User Guide.

Advanced settings Needed to process rows
longer than 100 000
characters

Select this check box if the rows to be processed in the
input file are longer than 100 000 characters.

Advanced separator (for
numbers)

Select this check box to modify the separators used for
numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

Trim all column Select this check box to remove leading and trailing
whitespaces from defined columns.

Validate date Select this check box to check the date format strictly
against the input schema.

Encoding Select the encoding type from the list or select Custom
and define it manually. This field is compulsory for DB
data handling.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component level.

Usage Use this component to read a file and separate fields using a position separator value.
You can also create a rejection flow using a Row > Reject link to filter the data which
does not correspond to the type defined. For an example of how to use these two links,

Scenario 1: From Positional to XML file

1260 Talend Open Studio Components Reference Guide

see the section called “Scenario 2: Extracting correct and erroneous data from an XML
field in a delimited file”.

Scenario 1: From Positional to XML file

The following scenario describes a two-component Job, which aims at reading data from an input file that contains
contract numbers, customer references, and insurance numbers as shown below, and outputting the selected data
(according to the data position) into an XML file.

Contract CustomerRef InsuranceNr
00001 8200 50330
00001 8201 50331
00002 8202 50332
00002 8203 50333

Dropping and linking components

1. Drop a tFileInputPositional component from the Palette to the design workspace.

2. Drop a tFileOutputXML component as well. This file is meant to receive the references in a structured way.

3. Right-click the tFileInputPositional component and select Row > Main. Then drag it onto the
tFileOutputXML component and release when the plug symbol shows up.

Configuring data input

1. Double-click the tFileInputPositional component to show its Basic settings view and define its properties.

Scenario 1: From Positional to XML file

Talend Open Studio Components Reference Guide 1261

2. Define the Job Property type if needed. For this scenario, we use the built-in Property type.

As opposed to the Repository, this means that the Property type is set for this station only.

3. Fill in a path to the input file in the File Name field. This field is mandatory.

4. Define the Row separator identifying the end of a row if needed, by default, a carriage return.

5. If required, select the Use byte length as the cardinality check box to enable the support of double-byte
character.

6. Define the Pattern to delimit fields in a row. The pattern is a series of length values corresponding to the
values of your input files. The values should be entered between quotes, and separated by a comma. Make
sure the values you enter match the schema defined.

7. Fill in the Header, Footer and Limit fields according to your input file structure and your need. In this
scenario, we only need to skip the first row when reading the input file. To do this, fill the Header field with
1 and leave the other fields as they are.

8. Next to Schema, select Repository if the input schema is stored in the Repository. In this use case, we use
a Built-In input schema to define the data to pass on to the tFileOutputXML component.

9. You can load and/or edit the schema via the Edit Schema function. For this schema, define three columns,
respectively Contract, CustomerRef and InsuranceNr matching the structure of the input file. Then, click OK
to close the [Schema] dialog box and propagate the changes.

Configuring data output

1. Double-click tFileOutputXML to show its Basic settings view.

2. Enter the XML output file path.

Scenario 1: From Positional to XML file

1262 Talend Open Studio Components Reference Guide

3. Define the row tag that will wrap each row of data, in this use case ContractRef.

4. Click the three-dot button next to Edit schema to view the data structure, and click Sync columns to retrieve
the data structure from the input component if needed.

5. Switch to the Advanced settings tab view to define other settings for the XML output.

6. Click the plus button to add a line in the Root tags table, and enter a root tag (or more) to wrap the XML
output structure, in this case ContractsList.

7. Define parameters in the Output format table if needed. For example, select the As attribute check box for
a column if you want to use its name and value as an attribute for the parent XML element, clear the Use
schema column name check box for a column to reuse the column label from the input schema as the tag
label. In this use case, we keep all the default output format settings as they are.

8. To group output rows according to the contract number, select the Use dynamic grouping check box, add
a line in the Group by table, select Contract from the Column list field, and enter an attribute for it in the
Attribute label field.

9. Leave all the other parameters as they are.

Saving and executing the Job

1. Press Ctrl+S to save your Job to ensure that all the configured parameters take effect.

Scenario 2: Handling a positional file based on a dynamic schema

Talend Open Studio Components Reference Guide 1263

2. Press F6 or click Run on the Run tab to execute the Job.

The file is read row by row based on the length values defined in the Pattern field and output as an XML
file as defined in the output settings. You can open it using any standard XML editor.

Scenario 2: Handling a positional file based on a
dynamic schema

This scenario describes a four-component Job that reads data from a positional file, writes the data to another
positional file, and replaces the padding characters with space. The schema column details are not defined in the
positional file components; instead, they leverages a reusable dynamic schema. The input file used in this scenario
is as follows:

id----name--------city--------
1-----Andrews-----Paris-------
2-----Mark--------London------
3-----Marie-------Paris-------
4-----Michael-----Washington--

Dropping and linking components

1. Drop the following components from the Palette onto the design workspace: tFixedFlowInput,
tSetDynamicSchema, tFileInputPositional, and tFileOutputPositional.

2. Connect the tFixedFlowInput component to the tSetDynamicSchema using a Row > Main connection to
form a subjob. This subjob will define a reusable dynamic schema.

3. Connect the tFileInputPositional component to the tFileOutputPositional component using a Row > Main
connection to form another subjob. This subjob will read data from the input positional file and write the data
to another positional file based on the dynamic schema set in the previous subjob.

4. Connect the tFixedFlowInput component to the tFileInputPositional component using a Trigger > On
Subjob Ok connection to link the two subjobs together.

Scenario 2: Handling a positional file based on a dynamic schema

1264 Talend Open Studio Components Reference Guide

Configuring the first subjob: creating a dynamic schema

1. Double-click the tFixedFlowInput component to show its Basic settings view and define its properties.

2. Click the [...] button next to Edit schema to open the [Schema] dialog box.

Scenario 2: Handling a positional file based on a dynamic schema

Talend Open Studio Components Reference Guide 1265

3. Click the [+] button to add three columns: ColumnName, ColumnType, and ColumnLength, and set their types
to String, String, and Integer respectively to define the minimum properties required for a positional file
schema. Then, click OK to close the dialog box.

4. Select the Use Inline Table option, click the [+] button three times to add three lines, give them a name in the
ColumnName field, according to the actual columns of the input file to read: ID, Name, and City, set their
types in the corresponding ColumnType field: id_Interger for column ID, and id_String for columns Name
and City, and set the length values of the columns in the corresponding ColumnLength field. Note that the
column names you give in this table will compose the header of the output file.

5. Double-click the tSetDynamicSchema component to open its Basic settings view.

6. Click Sync columns to ensure that the schema structure is properly retrieved from the preceding component.

7. Under the Parameters table, click the [+] button to add three lines in the table.

8. Click in the Property field for each line, and select ColumnName, Type, and Length respectively.

9. Click in the Value field for each line, and select ColumnName, ColumnType, and ColumnLength
respectively.

Scenario 2: Handling a positional file based on a dynamic schema

1266 Talend Open Studio Components Reference Guide

Now, with the values set in the inline table of the tFixedFlowInput component retrieved, the following data
structure is defined in the dynamic schema:

Column Name Type Length

ID Integer 6

Name String 12

City String 12

Configuring the second subjob: reading and writing positional
data

1. Double-click the tFileInputPositional component to open its Basic settings view.

The dynamic schema feature is only supported in Built-In mode and requires the input file to have
a header row.

2. Select the Use existing dynamic check box, and in from the Component List that appears, select the
tSetDynamicSchema component you use to create the dynamic schema. In this use case, only one
tSetDynamicSchema component is used, so it is automatically selected.

3. In the File name/Stream field, enter the path to the input positional file, or browse to the file path by clicking
the [...] button.

4. Fill in the Header, Footer and Limit fields according to your input file structure and your need. In this
scenario, we only need to skip the first row when reading the input file. To do this, fill the Header field with
1 and leave the other fields as they are.

5. Click the [...] button next to Edit schema to open the Schema dialog box, define only one column, dyn in
this example, and select Dynamic from the Type list. Then, click OK to close the [Schema] dialog box and
propagate the changes.

Scenario 2: Handling a positional file based on a dynamic schema

Talend Open Studio Components Reference Guide 1267

6. Select the Customize check box, enter '-' in the Padding char field, and keep the other settings as they are.

7. Double-click the tFileOutputPositional component to open its Basic settings view.

8. Select the Use existing dynamic check box, specify the output file path, and select the Include header check
box.

9. In the Padding char field, enter ' ' so that the padding characters will be replaced with space in the output
file.

Saving and executing the Job

1. Press Ctrl+S to save your Job to ensure that all the configured parameters take effect.

2. Press F6 or click Run on the Run tab to execute the Job.

Scenario 2: Handling a positional file based on a dynamic schema

1268 Talend Open Studio Components Reference Guide

The data is read from the input positional file and written into the output positional file, with the padding
characters replaced by space.

tFileInputProperties

Talend Open Studio Components Reference Guide 1269

tFileInputProperties

tFileInputProperties properties

Component family File/Input

Function tFileInputProperties reads a text file row by row and extracts the fields.

Purpose tFileInputProperties opens a text file and reads it row by row then separates the fields
according to the model key = value.

Basic settings Schema and Edit
Schema

Either Built-in or Repository.

The schema is either built-in or remotely stored in the Repository
but for this component, the schema is read-only. It is made of two
column, Key and Value, corresponding to the parameter name
and the parameter value to be copied.

File format Select from the list your file format, either: .properties or .ini.

.properties: data in the configuration file is written in two lines
and structured according to the following way: key = value.

.ini: data in the configuration file is written in two lines and
structured according to the following way: key = value and re-
grouped in sections.

Section Name: enter the section name on which the iteration is
based.

File Name Name or path to the file to be processed. Related topic: see
Talend Open Studio User Guide.

Advanced settings Encoding Select the encoding type from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Use this component to read a text file and separate data according to the structure key =
value.

Scenario: Reading and matching the keys and the
values of different .properties files and outputting the
results in a glossary

This four-component Java Job reads two .properties files, one in French and the other in English. The data in the
two input files is mapped to output a glossary matching the English and French terms.

The two input files used in this scenario hold localization strings for the tMysqlInput component in Talend Open
Studio.

Scenario: Reading and matching the keys and the values of different .properties files and outputting the results
in a glossary

1270 Talend Open Studio Components Reference Guide

Dropping and linking the components

1. Drop the following components from the Palette onto the design workspace: tFileInputProperties (x2),
tMap, and tLogRow.

2. Connect the component together using Row > Main links. The second properties file, FR, is used as a lookup
flow.

Configuring the components

1. Double-click the first tFileInputProperties component to open its Basic settings view and define its
properties.

2. In the File Format field, select your file format.

3. In the File Name field, click the three-dot button and browse to the input .properties file you want to use.

4. Do the same with the second tFileInputProperties and browse to the French properties file this time.

Scenario: Reading and matching the keys and the values of different .properties files and outputting the results
in a glossary

Talend Open Studio Components Reference Guide 1271

5. Double-click the tMap component to open the tMap editor.

6. Select all columns from the English_terms table and drop them to the output table.

Select the key column from the English_terms table and drop it to the key column in the French_terms table.

7. In the glossary table in the lower right corner of the tMap editor, rename the value field as EN because it
will hold the values of the English file.

8. Click the plus button to add a line to the glossary table and rename it as FR.

9. In the Length field, set the maximum length to 255.

10. In the upper left corner of the tMap editor, select the value column in the English_terms table and drop it to
the FR column in the French_terms table.

11. Click OK to validate your changes and close the editor.

12. In the design workspace, double-click tLogRow to display its Basic settings and define the component
properties.

13. Click Sync Columns to retrieve the schema from the preceding component.

Scenario: Reading and matching the keys and the values of different .properties files and outputting the results
in a glossary

1272 Talend Open Studio Components Reference Guide

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click the Run button from the Run tab to execute it.

The glossary displays on the console listing three columns holding: the key name in the first column, the English
term in the second, and the corresponding French term in the third.

tFileInputRegex

Talend Open Studio Components Reference Guide 1273

tFileInputRegex

tFileInputRegex properties

Component family File/Input

Function Powerful feature which can replace number of other components of the File
family. Requires some advanced knowledge on regular expression syntax

Purpose Opens a file and reads it row by row to split them up into fields using
regular expressions. Then sends fields as defined in the Schema to the next Job
component, via a Row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the
properties are stored. The fields that follow are
completed automatically using the data retrieved.

File Name/Stream File name: Name of the file and/or the variable to be
processed

Stream: Data flow to be processed. The data must be
added to the flow so that it can be collected by the
tFileInputRegex via the INPUT_STREAM variable in
the autocompletion list (Ctrl+Space)

Related topic: see Talend Open Studio User Guide.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Regex This field can contain multiple lines. Type in your
regular expressions including the subpattern matching
the fields to be extracted.

Note: Antislashes need to be doubled in regexp

Regex syntax requires double quotes.

Header Number of rows to be skipped in the beginning of file

Footer Number of rows to be skipped at the end of the file.

Limit Maximum number of rows to be processed. If Limit = 0,
no row is read or processed.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects

Scenario: Regex to Positional file

1274 Talend Open Studio Components Reference Guide

and Job flowcharts. Related topic: see Talend Open
Studio User Guide.

Skip empty rows Select this check box to skip empty rows.

Die on error Select this check box to stop the execution of the Job
when an error occurs. Clear the check box to skip the row
on error and complete the process for error-free rows. If
needed, you can collect the rows on error using a Row
> Reject link.

Advanced settings Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Use this component to read a file and separate fields contained in this file
according to the defined Regex. You can also create a rejection flow using a Row
> Reject link to filter the data which doesn’t correspond to the type defined. For
an example of how to use these two links, see the section called “Scenario 2:
Extracting correct and erroneous data from an XML field in a delimited file”.

Limitation n/a

Scenario: Regex to Positional file

The following scenario creates a two-component Job, reading data from an Input file using regular expression and
outputting delimited data into an XML file.

Dropping and linking the components

1. Drop a tFileInputRegex component from the Palette to the design workspace.

2. Drop a tFileOutputPositional component the same way.

3. Right-click on the tFileInputRegex component and select Row > Main. Drag this main row link onto the
tFileOutputPositional component and release when the plug symbol displays.

Configuring the components

1. Select the tFileInputRegex again so the Component view shows up, and define the properties:

Scenario: Regex to Positional file

Talend Open Studio Components Reference Guide 1275

2. The Job is built-in for this scenario. Hence, the Properties are set for this station only.

3. Fill in a path to the file in File Name field. This field is mandatory.

4. Define the Row separator identifying the end of a row.

5. Then define the Regular expression in order to delimit fields of a row, which are to be passed on to the next
component. You can type in a regular expression using Java code, and on mutiple lines if needed.

Regex syntax requires double quotes.

6. In this expression, make sure you include all subpatterns matching the fields to be extracted.

7. In this scenario, ignore the header, footer and limit fields.

8. Select a local (Built-in) Schema to define the data to pass on to the tFileOutputPositional component.

9. You can load or create the schema through the Edit Schema function.

10. Then define the second component properties:

11. Enter the Positional file output path.

12. Enter the Encoding standard, the output file is encoded in. Note that, for the time being, the encoding
consistency verification is not supported.

13. Select the Schema type. Click on Sync columns to automatically synchronize the schema with the Input
file schema.

Scenario: Regex to Positional file

1276 Talend Open Studio Components Reference Guide

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Now go to the Run tab, and click on Run to execute the Job.

The file is read row by row and split up into fields based on the Regular Expression definition. You can
open it using any standard file editor.

tFileInputXML

Talend Open Studio Components Reference Guide 1277

tFileInputXML

tFileInputXML belongs to two component families: File and XML. For more information on tFileInputXML,
see the section called “tFileInputXML”.

tFileList

1278 Talend Open Studio Components Reference Guide

tFileList

tFileList properties

Component family File/Management

Function tFileList iterates on files or folders of a set directory.

Purpose tFileList retrieves a set of files or folders based on a filemask pattern and iterates
on each unity.

Basic settings Directory Path to the directory where the files are stored.

FileList Type Select the type of input you want to iterate on from the
list:

Files if the input is a set of files,

Directories if the input is a set of directories,

Both if the input is a set of the above two types.

Include subdirectories Select this check box if the selected input source type
includes sub-directories.

Case Sensitive Set the case mode from the list to either create or not
create case sensitive filter on filenames.

Generate Error if no file
found

Select this check box to generate an error message if no
files or directories are found.

Use Glob Expressions as
Filemask

This check box is selected by default. It filters the results
using a Global Expression (Glob Expressions).

Files Click the plus button to add as many filter lines as
needed:

Filemask: in the added filter lines, type in a filename
or a filemask using special characters or regular
expressions.

Order by The folders are listed first of all, then the files. You can
choose to prioritise the folder and file order either:

By default: alphabetical order, by folder then file;

By file name: alphabetical order or reverese
alphabetical order;

By file size: smallest to largest or largest to smallest;

By modified date: most recent to least recent or least
recent to most recent.

If ordering by file name, in the event of
identical file names then modified date takes
precedence. If ordering by file size, in the event
of identical file sizes then file name takes
precedence. If ordering by modified date, in

tFileList properties

Talend Open Studio Components Reference Guide 1279

the event of identical dates then file name takes
precedence.

Order action Select a sort order by clicking one of the following radio
buttons:

ASC: ascending order;

DESC: descending order;

Advanced settings Use Exclude Filemask Select this check box to enable Exclude Filemask field
to exclude filtering condition based on file type:

Exclude Filemask: Fill in the field with file types to be
excluded from the Filemasks in the Basic settings view.

File types in this field should be quoted
with double quotation marks and seperated by
comma.

Format file path to
slash(/) style(useful on
Windows)

Select this check box to format the file path to slash(/)
style which is useful on Windows.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Enable parallel
execution

Select this check box to perform high-speed
data processing, by treating multiple data flows
simultaneously.

In the Number of parallel executions field, either:

- Enter the number of parallel executions desired.

- Press Ctrl + Space and select the appropriate context
variable from the list.

For further information, see Talend Open Studio User
Guide.

The Action on table field is not available
with the parallelization function. Therefore,
you must use a tCreateTable component if you
want to create a table.

When parallel execution is enabled, it is not
possible to use global variables to retrieve
return values in a SubJob.

Usage tFileList provides a list of files or folders from a defined directory on which it
iterates

Global Variables Current File Name: Indicates the current file name.
This is available as a Flow variable.

Returns a string.

Current File Name with Path: Indicates the current
file name as well as the path to the file. This is available
as a Flow variable.

Scenario: Iterating on a file directory

1280 Talend Open Studio Components Reference Guide

Returns a string.

Current File Extension: Indicates the extension of the
current file. This is available as a Flow variable.

Returns a string.

Current File Directory: Indicates the access path to
the folder or subfolder in which the current file is stored.
This is available as a Flow variable.

Returns a string.

Number of files: Indicates the number of files iterated
upon so far. This is available as a Flow variable.

Returns an integer.

For further information about variables, see Talend
Open Studio User Guide.

Connections Outgoing links (from one component to another):

Row: Iterate

Trigger: On Subjob Ok; On Subjob Error; Run if; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error;
On component Ok; On Component Error; Synchronize;
Parallelize.

For further information regarding connections, see
Talend Open Studio User Guide.

Limitation n/a

Scenario: Iterating on a file directory

The following scenario creates a three-component Job, which aims at listing files from a defined directory, reading
each file by iteration, selecting delimited data and displaying the output in the Run log console.

1. Drop the following components from the Palette to the design workspace: tFileList, tFileInputDelimited,
and tLogRow.

Scenario: Iterating on a file directory

Talend Open Studio Components Reference Guide 1281

2. Right-click on the tFileList component, and pull an Iterate connection to the tFileInputDelimited
component. Then pull a Main row from the tFileInputDelimited to the tLogRow component.

3. Double-click tFileList to display its Basic settings view and define its properties.

4. Browse to the Directory that holds the files you want to process. To display the path on the Job itself, use the
label (__DIRECTORY__) that shows up when you put the pointer anywhere in the Directory field. Type in
this lable in the Label Format field you can find if you click the View tab in the Basic settings view.

5. In the Basic settings view and from the FileList Type list, select the source type you want to process, Files
in this example.

6. In the Case sensitive list, select a case mode, Yes in this example to create case sensitive filter on file names.

7. Keep the Use Glob Expressions as Filemask check box selected if you want to use global expressions to
filter files.

8. In the Filemask field, define a file mask, use special characters if need be.

9. Double-click tFileInputDelimited to display its Basic settings view and set its properties.

10. Enter the File Name field using a variable containing the current filename path, as you filled in the Basic
settings of tFileList. Press Ctrl+Space bar to access the autocomplete list of variables.

11. Select the global variable ((String)globalMap.get("tFileList_1_CURRENT_FILEPATH"))
. This way, all files in the input directory can be processed.

12. Fill in all other fields as detailed in the tFileInputDelimited section. Related topic: the section called
“tMDMInput properties”.

Scenario: Iterating on a file directory

1282 Talend Open Studio Components Reference Guide

13. Select the last component, tLogRow, to display its Basic settings view and fill in the separator to be used to
distinguish field content displayed on the console. Related topic: the section called “tLogRow”.

The Job iterates on the defined directory, and reads all included files. Then delimited data is passed on to the last
component which displays it on the console.

For other scenarios using tFileList, see the section called “tFileCopy”.

tFileOutputARFF

Talend Open Studio Components Reference Guide 1283

tFileOutputARFF

tFileOutputARFF properties

Component family File/Output

Function tFileOutputARFF outputs data to an ARFF file.

Purpose This component writes an ARFF file that holds data organized according to the
defined schema.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the
properties are stored. The fields that follow are
completed automatically using the data retrieved.

Click this icon to open a connection wizard and store
the Excel file connection parameters you set in the
component Basic settings view.

For more information about setting up and storing file
connection parameters, see Talend Open Studio User
Guide.

File name Name or path to the output file and/or the variable to
be used.

Related topic: see Talend Open Studio User Guide.

Attribute Define Displays the schema you defined in the [Edit schema
dialog box.

Column: Name of the column.

Type: Data type.

Pattern: Enter the data model (pattern), if necessary.

Relation Enter the name of the relation.

Append Select this check box to add the new rows at the end of
the file.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Built-in: You can create the schema and store it locally
for this component. Related topic: see Talend Open
Studio User Guide.

Repository: You have already created and stored the
schema in the Repository. You can reuse it in various
projects and Job flowcharts. Related topic: see Talend
Open Studio User Guide.

Related scenarios

1284 Talend Open Studio Components Reference Guide

Create directory if not
exists

This check box is selected by default. It creates a
directory to hold the output table if it does not exist.

Advanced settings Don’t generate empty
file

Select this check box if you do not want to generate
empty files.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Use this component along with a Row link to collect data from another
component and to re-write the data to an ARFF file.

Global Variables The Global variables can be used as parameters in most
of the fields found in the component properties view.
To view these variables, place the cursor in the field
and press Ctrl + Space. Double click the variable to
populate the field. The main global variable associated
with tFileOutputARFF is:

Number of lines: Indicates the number of lines
processed. This is available as an After variable

Connections Outgoing links (from one component to another):

Row: Main.

Trigger: On Subjob Ok; On Subjob Error; Run if.

Incoming links (from one component to another):

Row: Main; Reject; Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On
Component Ok; On Component Error; Synchronize;
Parallelize.

For further information regarding connections, see
Talend Open Studio User Guide.

Limitation n/a

Related scenarios

For tFileOutputARFF related scenario, see the section called “Scenario: Display the content of a ARFF file”.

tFileOutputDelimited

Talend Open Studio Components Reference Guide 1285

tFileOutputDelimited

tFileOutputDelimited properties

Component family File/Output

Function tFileOutputDelimited outputs data to a delimited file.

Purpose This component writes a delimited file that holds data organized according to the
defined schema.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the
properties are stored. The fields that follow are
completed automatically using the data retrieved.

Use Output Stream Select this check box process the data flow of interest.
Once you have selected it, the Output Stream field
displays and you can type in the data flow of interest.

The data flow to be processed must be added to the flow
in order for this component to fetch these data via the
corresponding representattive variable.

This variable could be already pre-defined in your
Studio or provided by the context or the components
you are using along with this component; otherwise,
you could define it manually and use it according to
the design of your Job, for example, using tJava or
tJavaFlex.

In order to avoid the inconvenience of hand writing,
you could select the variable of interest from the auto-
completion list (Ctrl+Space) to fill the current field on
condition that this variable has been properly defined.

For further information about how to use a stream, see
the section called “Scenario 2: Reading data from a
remote file in streaming mode”.

File name Name or path to the output file and/or the variable to
be used.

This field becomes unavailable once you have selected
the Use Output Stream check box.

Related topic: see Talend Open Studio User Guide.

Row Separator String (ex: “\n” on Unix) to distinguish rows in the
output file.

Field Separator Character, string or regular expression to separate fields
of the output file.

tFileOutputDelimited properties

1286 Talend Open Studio Components Reference Guide

Append Select this check box to add the new rows at the end of
the file.

Include Header Select this check box to include the column header to
the file.

Compress as zip file Select this check box to compress the output file in zip
format.

Schema and Edit
schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes Built-in.

Built-in: You can create the schema and store it locally
for this component. Related topic: see Talend Open
Studio User Guide.

Repository: You have already created and stored the
schema in the Repository. You can reuse it in various
projects and Job flowcharts. Related topic: see Talend
Open Studio User Guide.

Sync columns Click to synchronize the output file schema with the
input file schema. The Sync function only displays
once the Row connection is linked with the output
component.

Advanced settings Advanced separator
(for numbers)

Select this check box to modify the separators used for
numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

CSV options Select this check box to take into account all parameters
specific to CSV files, in particular Escape char and
Text enclosure parameters.

Create directory if not
exists

This check box is selected by default. It creates the
directory that holds the output delimited file, if it does
not already exist.

Split output in several
files

In case of very big output files, select this check box to
divide the output delimited file into several files.

Rows in each output file: set the number of lines in
each of the output files.

Custom the flush buffer
size

Select this check box to define the number of lines to
write before emptying the buffer.

Row Number: set the number of lines to write.

Output in row mode Writes in row mode.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Don’t generate empty
file

Select this check box if you do not want to generate
empty files.

Scenario 1: Writing data in a delimited file

Talend Open Studio Components Reference Guide 1287

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Use this component to write a delimited file and separate fields using a field
separator value.

Limitation n/a

Scenario 1: Writing data in a delimited file

This scenario describes a three-component Job that extracts certain data from a file holding information about
clients, customers, and then writes the extracted data in a delimited file.

In the following example, we have already stored the input schema under the Metadata node in the Repository
tree view. For more information about storing schema metadata in the Repository, see Talend Open Studio User
Guide.

Dropping and linking components

1. In the Repository tree view, expand Metadata and File delimited in succession and then browse to your
input schema, customers, and drop it on the design workspace. A dialog box displays where you can select
the component type you want to use.

2. Click tFileInputDelimited and then OK to close the dialog box. A tFileInputDelimited component holding
the name of your input schema appears on the design workspace.

Scenario 1: Writing data in a delimited file

1288 Talend Open Studio Components Reference Guide

3. Drop a tMap component and a tFileOutputDelimited component from the Palette to the design workspace.

4. Link the components together using Row > Main connections.

Configuring the components

Configuring the input component

1. Double-click tFileInputDelimited to open its Basic settings view. All its property fields are automatically
filled in because you defined your input file locally.

2. If you do not define your input file locally in the Repository tree view, fill in the details manually after
selecting Built-in in the Property type list.

3. Click the [...] button next to the File Name field and browse to the input file, customer.csv in this example.

If the path of the file contains some accented characters, you will get an error message when
executing your Job. For more information regarding the procedures to follow when the support of
accented characters is missing, see Talend Open Studio Installation Guide.

4. In the Row Separators and Field Separators fields, enter respectively "\n" and ";" as line and field
separators.

5. If needed, set the number of lines used as header and the number of lines used as footer in the corresponding
fields and then set a limit for the number of processed rows.

In this example, Header is set to 6 while Footer and Limit are not set.

6. In the Schema field, schema is automatically set to Repository and your schema is already defined since
you have stored your input file locally for this example. Otherwise, select Built-in and click the [...] button
next to Edit Schema to open the [Schema] dialog box where you can define the input schema, and then click
OK to close the dialog box.

Scenario 1: Writing data in a delimited file

Talend Open Studio Components Reference Guide 1289

Configuring the mapping component

1. In the design workspace, double-click tMap to open its editor.

2.
In the tMap editor, click on top of the panel to the right to open the [Add a new output table] dialog box.

3. Enter a name for the table you want to create, row2 in this example.

4. Click OK to validate your changes and close the dialog box.

Scenario 1: Writing data in a delimited file

1290 Talend Open Studio Components Reference Guide

5. In the table to the left, row1, select the first three lines (Id, CustomerName and CustomerAddress) and drop
them to the table to the right

6. In the Schema editor view situated in the lower left corner of the tMap editor, change the type of
RegisterTime to String in the table to the right.

7. Click OK to save your changes and close the editor.

Configuring the output component

1. In the design workspace, double-click tFileOutputDelimited to open its Basic settings view and define the
component properties.

2. In the Property Type field, set the type to Built-in and fill in the fields that follow manually.

3. Click the [...] button next to the File Name field and browse to the output file you want to write data in,
customerselection.txt in this example.

4. In the Row Separator and Field Separator fields, set “\n” and “;” respectively as row and field separators.

5. Select the Include Header check box if you want to output columns headers as well.

6. Click Edit schema to open the schema dialog box and verify if the recuperated schema corresponds to the
input schema. If not, click Sync Columns to recuperate the schema from the preceding component.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

Scenario 2: Utilizing Output Stream to save filtered data to a local file

Talend Open Studio Components Reference Guide 1291

The three specified columns Id, CustomerName and CustomerAddress are output in the defined output file.

Scenario 2: Utilizing Output Stream to save filtered
data to a local file

Based on the preceding scenario, this scenario saves the filtered data to a local file using output stream.

Dropping and linking components

1. Drop tJava from the Palette to the design workspace.

2. Connect tJava to tFileInputDelimited using a Trigger > On Subjob OK connection.

Configuring the components

1. Double-click tJava to open its Basic settings view.

Scenario 2: Utilizing Output Stream to save filtered data to a local file

1292 Talend Open Studio Components Reference Guide

2. In the Code area, type in the following command:

new java.io.File("C:/myFolder").mkdirs();
globalMap.put("out_file",new
java.io.FileOutputStream("C:/myFolder/customerselection.txt",false));

In this scenario, the command we use in the Code area of tJava will create a new folder C:/
myFolder where the output file customerselection.txt will be saved. You can customize the command
in accordance with actual practice.

3. Double-click tFileOutputDelimited to open its Basic settings view.

4. Select Use Output Stream check box to enable the Output Stream field in which you can define the output
stream using command.

Fill in the Output Stream field with following command:

(java.io.OutputStream)globalMap.get("out_file")

You can customize the command in the Output Stream field by pressing CTRL+SPACE to select
built-in command from the list or type in the command into the field manually in accordance with
actual practice. In this scenario, the command we use in the Output Stream field will call the
java.io.OutputStream class to output the filtered data stream to a local file which is defined
in the Code area of tJava in this scenario.

5. Click Sync columns to retrieve the schema defined in the preceding component.

6. Leave rest of the components as they were in the previous scenario.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

The three specified columns Id, CustomerName and CustomerAddress are output in the defined output file.

Scenario 2: Utilizing Output Stream to save filtered data to a local file

Talend Open Studio Components Reference Guide 1293

tFileOutputEBCDIC

1294 Talend Open Studio Components Reference Guide

tFileOutputEBCDIC

This component requires an Oracle JDK to be functional.

tFileOutputEBCDIC properties

Component family File/Output

Function The tFileOutputEBCDIC writes an EBCDIC file based on various source data files,
each of them with a different schema.

Purpose This component writes an EBCDIC file with data extracted from files based on their
schemas.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties
are stored. The fields that follow are completed automatically
using the data retrieved.

Schema Select an option from the list to edit either the Built-in or
Repository schema for the data to be processed.

This list is enabled when you select the Custom set
Original Length in Schema checkbox.

Built-in: Select this option to edit the Built-in schema for the
data to be processed.

Repository: Select this option to edit the Repository schema
you select. The field that follows is completed automatically
using the schema you select.

File name Click [...] to browse to or type in the path to the EBCDIC file
containing the data to be generated. For further information,
see Talend Open Studio User Guide.

Edit schema Click [...] to edit the Built-in or Repository schema for the
data to be processed.

This button is enabled when you select the Custom
set Original Length in Schema checkbox.

Xc2j file Click [...] to browse to or type in the path to the xc2j file to
transform the EBCDIC schema(s) into an intermediary XML
file.

This field will be disabled and xc2j file will not be
needed when you select the Custom set Original
Length in Schema checkbox.

Custom set Original
Length in Schema

Select this check box to improve the speed of reading files.

When you select this check box, the Xc2j file field
will be disabled and xc2j file will not be needed and
you are able to edit the Built-in or Repository schema
for the data to be processed.

Scenario: Creating an EBCDIC file using two delimited files

Talend Open Studio Components Reference Guide 1295

Advanced settings Create directory if not
exist

Select this check box to create a directory when the one you
specified does not exist.

tStatCatcher Statistics Select this check box to gather the processing metadata at the
Job level as well as at each component level.

Enable parallel
execution

Select this check box to perform high-speed data processing,
by treating multiple data flows simultaneously.

In the Number of parallel executions field, either:

- Enter the number of parallel executions desired.

- Press Ctrl + Space and select the appropriate context
variable from the list.

For further information, see Talend Open Studio User Guide.

The Number of parallel executions field is
not available with the parallelization function.
Therefore, you must use a tCreateTable component
if you want to create a table.

When parallel execution is enabled, it is not possible
to use global variables to retrieve return values in a
SubJob.

Usage Use this component to write an EBCDIC file and to output the data separately depending
on the schemas identified in the incoming file.

Scenario: Creating an EBCDIC file using two delimited
files

This scenario uses the [Copybook Connection] wizard that guides users through the different steps to
create a Copybook connection and to retrieve the EBCDIC schemas. This wizard is available only for
Talend Enterprise users. If you are using Talend Open Studio or Talend Integration Express Studio, you
need to set the basic settings for the tFileInputEBCDIC component manually.

The following scenario is a three-component Job that aims at writing an EBCDIC-format file using two delimited
files with different schemas.

This Java scenario uses the EBCDIC Connection wizard to set up a connection to the Copybook file and to generate
an xc2j file, which allows the retrieval and transformation of the different file schemas.

Scenario: Creating an EBCDIC file using two delimited files

1296 Talend Open Studio Components Reference Guide

• Create a connection to the Copybook file, which describes the structure of your EBCDIC file. In this scenario,
the Copybook connection is called EBCDIC. Talend Open Studio User Guide.

• Retrieve the file schemas. Talend Open Studio User Guide.

Once the Copybook connection has been created and the schemas retrieved, using the EBCDIC and Schema
wizards, the new schemas appear under the node Metadata > Copybook. They are called 01, 04 and 05.

To create an EBCDIC file based on two delimited files in Talend Open Studio :

• Drop the following components from the Palette to the design workspace: tFileInputDelimited (x2) and
tFileOutputEBCDIC.

• To connect them together, right-click on each tFileInputDelimited component, select Row > Main in the
contextual menu and click on the tFileOutputEBCDIC component.

• Double-click on the first tFileInputDelimited component to display the Basic settings view and set the
component properties.

• In the File Name field, browse to the delimited file via the three-dot button [...].

If the path of the file contains some accented characters, you will get an error message when executing
your Job. For more information regarding the procedures to follow when the support of accented
characters is missing, see Talend Open Studio Installation Guide.

• In the Schema field, select Repository, then click the three-dot button and, when prompted, select the schema
corresponding to your file, under the Copybook node.

• In the Header field, set the number of fields that are used as “headers”, 1 in this example.

• Set the properties for the second tFileInputDelimited component the same way as for the first component.

• Double-click the tFileOutputEBCDIC component to display the Basic settings view and set the component
properties:

Scenario: Creating an EBCDIC file using two delimited files

Talend Open Studio Components Reference Guide 1297

• In the Data file field, enter or browse to the directory path and the EBCDIC file name that is to be created
based on both delimited files.

• In the Xc2j file field, enter or browse to the path to the file allowing to extract the schema that describes the
EBCDIC structure file.

• Save your Job via Ctrl+S and click on the Run view, select the Statistics and Exec time check boxes then
click Run to execute the Job.

tFileOutputExcel

1298 Talend Open Studio Components Reference Guide

tFileOutputExcel

tFileOutputExcel Properties

Component family File/Output

Function tFileOutputExcel outputs data to an MS Excel type of file.

Purpose tFileOutputExcel writes an MS Excel file with separated data value according
to a defined schema.

Basic settings Write excel 2007 file
format (xlsx)

Select this check box to write the processed data into
the .xlsx format of Excel 2007.

Use Output Stream Select this check box process the data flow of interest.
Once you have selected it, the Output Stream field
displays and you can type in the data flow of interest.

The data flow to be processed must be added to the flow
in order for this component to fetch these data via the
corresponding representattive variable.

This variable could be already pre-defined in your
Studio or provided by the context or the components
you are using along with this component; otherwise,
you could define it manually and use it according to
the design of your Job, for example, using tJava or
tJavaFlex.

In order to avoid the inconvenience of writing
manually, you could select the variable of interest from
the auto-completion list (Ctrl+Space) to fill the current
field on condition that this variable has been properly
defined.

For further information about how to use a stream, see
the section called “Scenario 2: Reading data from a
remote file in streaming mode”.

File name Name or path to the output file.

This field becomes unavailable once you have selected
the Use Output Stream check box

Related topic: see Talend Open Studio User Guide.

Sheet name Name of the xsl sheet.

Include header Select this check box to include a header row to the
output file.

Append existing file Select this check box to add the new lines at the end of
the file.

Append existing sheet: Select this check box to add
the new lines at the end of the Excel sheet.

tFileOutputExcel Properties

Talend Open Studio Components Reference Guide 1299

Is absolute Y pos. Select this check box to add information in specified
cells:

First cell X: cell position on the X-axis (X-coordinate
or Abcissa).

First cell Y: cell position on the Y-axis (Y-coordinate).

Keep existing cell format: select this check box to
retain the original layout and format of the cell you want
to write into.

Font Select in the list the font you want to use.

Define all columns auto
size

Select this check box if you want the size of all your
columns to be defined automatically. Otherwise, select
the Auto size check boxes next to the column names
you want their size to be defined automatically.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend
Open Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job designs. Related topic: see Talend Open Studio
User Guide.

Advanced settings Create directory if not
exists

This check box is selected by default. This option
creates the directory that will hold the output files if it
does not already exist.

Custom the flush buffer
size

Available when Write excel2007 file format (xlsx) is
selected in the Basic settings view.

Select this check box to set the maximum number of
rows in the Row number field that are allowed in the
buffer.

Advanced separator
(for numbers)

Select this check box to modify the separators you want
to use for numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

Encoding Select the encoding type from the list or select Custom
and define it manually. This field is compulsory for DB
data handling.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Use this component to write an XML file with data passed on from other
components using a Row link.

Limitation n/a

Related scenario

1300 Talend Open Studio Components Reference Guide

Related scenario

For tFileOutputExcel related scenario, see the section called “tSugarCRMInput”;

For scenario about the usage of Use Output Stream check box, see the section called “Scenario 2: Utilizing
Output Stream to save filtered data to a local file”.

tFileOutputJSON

Talend Open Studio Components Reference Guide 1301

tFileOutputJSON

tFileOutputJSON properties

Component Family File

Function tFileOutputJSON writes data to a JSON structured output file.

Purpose tFileOutputJSON receives data and rewrites it in a JSON structured data block
in an output file.

Basic settings File Name Name and path of the output file.

Name of data block Enter a name for the data block to be written, between
double quotation marks.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes built-in.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend
Open Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job flowcharts. Related topic: see Talend Open
Studio User Guide.

Sync columns Click to synchronize the output file schema with the
input file schema. The Sync function only displays
once the Row connection is linked with the Output
component.

Advanced settings Create directory if not
exists

This check box is selected by default. This option
creates the directory that will hold the output files if it
does not already exist.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Use this component to rewrite received data in a JSON structured output file.

Limitation n/a

Scenario: Writing a JSON structured file

This is a 2 component scenario in which a tRowGenerator component generates random data which a
tFileOutputJSON component then writes to a JSON structured output file.

Scenario: Writing a JSON structured file

1302 Talend Open Studio Components Reference Guide

1. Drop a tRowGenerator and a tFileOutputJSON component onto the workspace from the Palette.

2. Link the components using a Row > Main connection.

3. Double click tRowGenerator to define its Basic Settings properties in the Component view.

4. If the schema you require is already stored under the Db Connections node in the Repository, select
Repository in the Schema field and choose the metadata from the list.

5. Otherwise, click [...] next to Edit Schema to display the corresponding dialog box and define the schema.

6. Click [+] to add the number of columns desired.

7. Under Columns type in the column names.

8. Under Type, select the data type from the list.

9. Click OK to close the dialog box.

10. Click [+] next to RowGenerator Editor to open the corresponding dialog box.

Scenario: Writing a JSON structured file

Talend Open Studio Components Reference Guide 1303

11. Under Functions, select pre-defined functions for the columns, if required, or select [...] to set customized
function parameters in the Function parameters tab.

12. Enter the number of rows to be generated in the corresponding field.

13. Click OK to close the dialog box.

14. Click tFileOutputJSON to set its Basic Settings properties in the Component view.

15. Click [...] to browse to where you want the output JSON file to be generated and enter the file name.

16. Enter a name for the data block to be generated in the corresponding field, between double quotation marks.

17. Select Built-In as the Schema type.

18. Click Sync Columns to retrieve the schema from the preceding component.

19. Press F6 to run the Job.

Scenario: Writing a JSON structured file

1304 Talend Open Studio Components Reference Guide

The data from the input schema is written in a JSON structured data block in the output file.

tFileOutputLDIF

Talend Open Studio Components Reference Guide 1305

tFileOutputLDIF

tFileOutputLDIF Properties

Component family File/Output

Function tFileOutputLDIF outputs data to an LDIF type of file which can then be loaded
into a LDAP directory.

Purpose tFileOutputLDIF writes or modifies a LDIF file with data separated in
respective entries based on the schema defined,.or else deletes content from an
LDIF file.

Basic settings File name Name or path to the output file and/or the variable to
be used.

Related topic: see Talend Open Studio User Guide.

Wrap Wraps the file content, every defined number of
characters.

Change type Select Add, Modify or Delete to respectively create an
LDIF file, modify or remove an existing LDIF file. In
case of modification, set the type of attribute changes
to be made.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend
Open Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job designs. Related topic: see Talend Open Studio
User Guide.

Sync columns Click to synchronize the output file schema with the
input file schema. The Sync function only displays
once the Row connection is linked with the Output
component.

Append Select this check box to add the new rows at the end of
the file.

Advanced settings Create directory if not
exists

This check box is selected by default. It creates the
directory that holds the output delimited file, if it does
not already exist.

Custom the flush buffer
size

Select this check box to define the number of lines to
write before emptying the buffer.

Row Number: set the number of lines to write.

Scenario: Writing DB data into an LDIF-type file

1306 Talend Open Studio Components Reference Guide

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Don’t generate empty
file

Select this check box if you do not want to generate
empty files.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Use this component to write an XML file with data passed on from other
components using a Row link.

Limitation n/a

Scenario: Writing DB data into an LDIF-type file

This scenario describes a two component Job which aims at extracting data from a database table and writing this
data into a new output LDIF file.

Dropping and linking components

1. Drop a tMysqlInput component and a tFileOutputLDIF component from the Palette to the design area.

2. Connect the components together using a Row > Main link.

Configuring the components

1. Select the tMysqlInput component, and go to the Component panel then select the Basic settings tab.

2. If you stored the DB connection details in a Metadata entry in the Repository, set the Property type as
well as the Schema type on Repository and select the relevant metadata entry. All other fields are filled in
automatically, and retrieve the metadata-stored parameters.

Scenario: Writing DB data into an LDIF-type file

Talend Open Studio Components Reference Guide 1307

3. Alternatively select Built-in as the Property type and Schema type and define the DB connection and schema
manually.

4. Then double-click on tFileOutpuLDIF and define the Basic settings.

5. Browse to the folder where you store the Output file. In this use case, a new LDIF file is to be created. Thus
type in the name of this new file.

6. In the Wrap field, enter the number of characters held on one line. The text coming afterwards will get
wrapped onto the next line.

7. Select Add as Change Type as the newly created file is by definition empty. In case of modification type of
Change, you’ll need to define the nature of the modification you want to make to the file.

8. As the Schema type, select Built-in and use the Sync Columns button to retrieve the input schema definition.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

Scenario: Writing DB data into an LDIF-type file

1308 Talend Open Studio Components Reference Guide

The LDIF file created contains the data from the DB table and the type of change made to the file, in this
use case, addition.

tFileOutputMSDelimited

Talend Open Studio Components Reference Guide 1309

tFileOutputMSDelimited

tFileOutputMSDelimited properties

Component family File/ Output

Function tFileOutputMSDelimited writes multiple schema in a delimited file.

Purpose tFileOutputMSDelimited creates a complex multi-structured delimited file, using data
structures (schemas) coming from several incoming Row flows.

Basic settings File Name Name and path to the file to be created and/or the variable
to be used.

Related topic: see Talend Open Studio User Guide.

Row Separator String (ex: “\n”on Unix) to distinguish rows.

Field Separator Character, string or regular expression to separate fields.

Use Multi Field
Separators

Select this check box to set a different field separator for
each of the schemas using the Field separator field in the
Schemas area.

Schemas The table gets automatically populated by schemas
coming from the various incoming rows connected to
tFileOutputMSDelimited. Fill out the dependency between
the various schemas:

Parent row: Type in the parent flow name (based on the
Row name transferring the data).

Parent key column: Type in the key column of the parent
row.

Key column: Type in the key column for the selected row.

Advanced settings Advanced separator (for
numbers)

Select this check box to modify the separators used for
numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

CSV options Select this check box to take into account all parameters
specific to CSV files, in particular Escape char and Text
enclosure parameters.

Create directory if not
exists

This check box is selected by default. It creates the directory
that holds the output delimited file, if it does not already
exist.

Encoding Select the encoding from the list or select Custom and define
it manually. This field is compulsory for DB data handling.

Don’t generate empty file Select this check box if you do not want to generate empty
files.

Related scenarios

1310 Talend Open Studio Components Reference Guide

tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage Use this component to write a multi-schema delimited file and separate fields using a
field separator value.

Limitation n/a

Related scenarios

No scenario is available for this component yet.

tFileOutputMSPositional

Talend Open Studio Components Reference Guide 1311

tFileOutputMSPositional

tFileOutputMSPositional properties

Component family File/Output

Function tFileOutputMSPositional writes multiple schemas in a positional file.

Purpose tFileOutputMSPositional creates a complex multi-structured file, using data structures
(schemas) coming from several incoming Row flows.

Basic settings File Name Name and path to the file to be created and/or variable to be
used.

Related topic: see Talend Open Studio User Guide.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Schemas The table gets automatically populated by schemas
coming from the various incoming rows connected to
tFileOutputMSPositional. Fill out the dependency between
the various schemas:

Parent row: Type in the parent flow name (based on the
Row name transferring the data).

Parent key column: Type in the key column of the parent
row

Key column: Type in the key column for the selected row.

Pattern: Type in the pattern that positions the fields
separator for each incoming row.

Padding char: type in the padding character to be used

Alignment: Select the relevant alignment parameter

Advanced settings Advanced separator (for
numbers)

Select this check box to modify the separators used for
numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

Create directory if not
exists

This check box is selected by default. It creates the directory
that holds the output delimited file, if it does not already
exist.

Encoding Select the encoding from the list or select Custom and define
it manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage Use this component to write a multi-schema positional file and separate fields using a
position separator value.

Related scenario

1312 Talend Open Studio Components Reference Guide

Related scenario

No scenario is available for this component yet.

tFileOutputMSXML

Talend Open Studio Components Reference Guide 1313

tFileOutputMSXML

tFileOutputMSXML Properties

Component family File/Output

Function tFileOutputMSXML writes multiple schema within an XML structured file.

Purpose tFileOutputMSXML creates a complex multi-structured XML file, using data
structures (schemas) coming from several incoming Row flows.

Basic settings File Name Name and path to the file to be created and or the
variable to be used.

Related topic: see Talend Open Studio User Guide.

Configure XML tree Opens the dedicated interface to help you set the XML
mapping. For details about the interface, see the section
called “Defining the MultiSchema XML tree”.

Advanced settings Create directory only if
not exists

This check box is selected by default. It creates the
directory that holds the output delimited file, if it does
not already exist.

Advanced separator
(for numbers)

Select this check box to modify the separators used for
numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Don’t generate empty
file

Select this check box if you do not want to generate
empty files.

Trim the whitespace
characters

Select this check box to remove leading and trailing
whitespace from the columns.

Escape text Select this check box to escape special characters.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Limitation n/a

Defining the MultiSchema XML tree

Double-click on the tFileOutputMSXML component to open the dedicated interface or click on the three-dot
button on the Basic settings vertical tab of the Component tab.

tFileOutputMSXML Properties

1314 Talend Open Studio Components Reference Guide

To the left of the mapping interface, under Linker source, the drop-down list includes all the input schemas that
should be added to the multi-schema output XML file (on the condition that more than one input flow is connected
to the tFileOutputMSXML component).

And under Schema List, are listed all columns retrieved from the input data flow in selection.

To the right of the interface, are expected all XML structures you want to create in the output XML file.

You can create manually or easily import the XML structures. Then map the input schema columns onto each
element of the XML tree, respectively for each of the input schemas in selection under Linker source.

Importing the XML tree

The easiest and most common way to fill out the XML tree panel, is to import a well-formed XML file.

1. Rename the root tag that displays by default on the XML tree panel, by clicking on it once.

2. Right-click on the root tag to display the contextual menu.

3. On the menu, select Import XML tree.

4. Browse to the file to import and click OK.

tFileOutputMSXML Properties

Talend Open Studio Components Reference Guide 1315

The XML Tree column is hence automatically filled out with the correct elements. You can remove and
insert elements or sub-elements from and to the tree:

5. Select the relevant element of the tree.

6. Right-click to display the contextual menu

7. Select Delete to remove the selection from the tree or select the relevant option among: Add sub-element,
Add attribute, Add namespace to enrich the tree.

Creating manually the XML tree

If you don’t have any XML structure already defined, you can manually create it.

1. Rename the root tag that displays by default on the XML tree panel, by clicking on it once.

2. Right-click on the root tag to display the contextual menu.

3. On the menu, select Add sub-element to create the first element of the structure.

You can also add an attribute or a child element to any element of the tree or remove any element from the tree.

4. Select the relevant element on the tree you just created.

5. Right-click to the left of the element name to display the contextual menu.

6. On the menu, select the relevant option among: Add sub-element, Add attribute, Add namespace or Delete.

Mapping XML data from multiple schema sources

Once your XML tree is ready, select the first input schema that you want to map.

You can map each input column with the relevant XML tree element or sub-element to fill out the Related
Column:

1. Click on one of the Schema column name.

tFileOutputMSXML Properties

1316 Talend Open Studio Components Reference Guide

2. Drag it onto the relevant sub-element to the right.

3. Release the mouse button to implement the actual mapping.

A light blue link displays that illustrates this mapping. If available, use the Auto-Map button, located to the
bottom left of the interface, to carry out this operation automatically.

You can disconnect any mapping on any element of the XML tree:

4. Select the element of the XML tree, that should be disconnected from its respective schema column.

5. Right-click to the left of the element name to display the contextual menu.

6. Select Disconnect link.

The light blue link disappears.

Defining the node status

Defining the XML tree and mapping the data is not sufficient. You also need to define the loop elements for each
of the source in selection and if required the group element.

Loop element

The loop element allows you to define the iterating object. Generally the Loop element is also the row generator.

To define an element as loop element:

1. Select the relevant element on the XML tree.

2. Right-click to the left of the element name to display the contextual menu.

3. Select Set as Loop Element.

tFileOutputMSXML Properties

Talend Open Studio Components Reference Guide 1317

The Node Status column shows the newly added status.

There can only be one loop element at a time.

Group element

The group element is optional, it represents a constant element where the Groupby operation can be performed. A
group element can be defined on the condition that a loop element was defined before.

When using a group element, the rows should be sorted, in order to be able to group by the selected node.

To define an element as group element:

1. Select the relevant element on the XML tree.

2. Right-click to the left of the element name to display the contextual menu.

3. Select Set as Group Element.

Related scenario

1318 Talend Open Studio Components Reference Guide

The Node Status column shows the newly added status and any group status required are automatically defined,
if needed.

Click OK once the mapping is complete to validate the definition for this source and perform the same operation
for the other input flow sources.

Related scenario

No scenario is available for this component yet.

tFileOutputPositional

Talend Open Studio Components Reference Guide 1319

tFileOutputPositional

tFileOutputPositional Properties

Component Family File/Output

Function tFileOutputPositional writes a file row by row according to the length and the format
of the f ields or columns in a row.

Purpose It writes a file row by row, according to the data structure (schema) coming from the
input flow.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties
are stored. The fields that follow are completed
automatically using the data retrieved.

Use Output Stream Select this check box process the data flow of interest. Once
you have selected it, the Output Stream field displays and
you can type in the data flow of interest.

The data flow to be processed must be added to the flow
in order for this component to fetch these data via the
corresponding representative variable.

This variable could be already pre-defined in your Studio
or provided by the context or the components you are using
along with this component; otherwise, you could define it
manually and use it according to the design of your Job, for
example, using tJava or tJavaFlex.

In order to avoid the inconvenience of hand writing, you
could select the variable of interest from the auto-completion
list (Ctrl+Space) to fill the current field on condition that
this variable has been properly defined.

For further information about how to use a stream, see the
section called “Scenario 2: Reading data from a remote file
in streaming mode”.

File Name Name or path to the file to be processed and or the variable
to be used.

This field becomes unavailable once you have selected the
Use Output Stream check box.

Related topic: see Talend Open Studio User Guide.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of
fields to be processed and passed on to the next component.
The schema is either Built-in or stored remotely in the
Repository.

tFileOutputPositional Properties

1320 Talend Open Studio Components Reference Guide

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created the schema and stored
it in the Repository. You can reuse it in various projects and
Job designs. Related topic: see Talend Open Studio User
Guide.

Row separator String (ex: “\n”on Unix) to distinguish rows in the output file.

Append Select this check box to add the new rows at the end of the
file.

Include header Select this check box to include the column header to the file.

Compress as zip file Select this check box to compress the output file in zip
format.

Formats Customize the positional file data format and fill in the
columns in the Formats table.

Column: Select the column you want to customize.

Size: Enter the column size.

Padding char: Type in between quotes the padding
characters used. A space by default.

Alignment: Select the appropriate alignment parameter.

Keep: If the data in the column or in the field are too long,
select the part you want to keep.

Advanced settings Advanced separator (for
numbers)

Select this check box to modify the separators used for
numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

Use byte length as the
cardinality

Select this checkbox to add support of double-byte character
to this component. JDK 1.6 is required for this feature.

Create directory if not
exists

This check box is selected by default. It creates a directory
to hold the output table if it does not exist.

Custom the flush buffer
size

Select this check box to define the number of lines to write
before emptying the buffer.

Row Number: set the number of lines to write.

Output in row mode Writes in row mode.

Encoding Select the encoding type from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Don’t generate empty file Select this check box if you do not want to generate empty
files.

tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage Use this component to read a file and separate the fields using the specified separator.

Related scenario

Talend Open Studio Components Reference Guide 1321

Related scenario

For a related scenario, see the section called “Scenario 2: Handling a positional file based on a dynamic schema”.

For scenario about the usage of Use Output Stream check box, see the section called “Scenario 2: Utilizing
Output Stream to save filtered data to a local file”.

tFileOutputProperties

1322 Talend Open Studio Components Reference Guide

tFileOutputProperties

tFileOutputProperties properties

Component family File/Output

Function tFileInputProperties writes a configuration file of the type .ini or .properties.

Purpose tFileInputProperties writes a configuration file containing text data organized
according to the model key = value.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number of
fields to be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

The schema is either built-in or remotely stored in the Repository
but for this component, the schema is read-only. It is made of two
column, Key and Value, corresponding to the parameter name
and the parameter value to be copied.

File format Select from the list file format: either .properties or .ini.

.properties: data in the configuration file is written in two lines
and structured according to the following way: key = value.

.ini: data in the configuration file is written in two lines and
structured according to the following way: key = value and re-
grouped in sections.

Section Name: enter the section name on which the iteration is
based.

File Name Name or path to the file to be processed and/or the variable to
be used.

Related topic: see Talend Open Studio User Guide.

Advanced settings Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStatCatcher
Statistics

Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Use this component to write files where data is organized according to the structure key
= value.

Related scenarios

For a related scenario, see the section called “Scenario: Reading and matching the keys and the values of
different .properties files and outputting the results in a glossary” of the section called “tFileInputProperties”.

tFileOutputXML

Talend Open Studio Components Reference Guide 1323

tFileOutputXML

tFileOtputXML belongs to two component families: File and XML. For more information on tFileOutputXML,
see the section called “tFileOutputXML”.

tFileProperties

1324 Talend Open Studio Components Reference Guide

tFileProperties

tFileProperties Properties

Component family File/Management

Function tFileProperties creates a single row flow that displays the properties of the
processed file.

Purpose tFileProperties obtains information about the main properties of a defined file.

Basic settings Schema A schema is a row description, i.e., it defines the
number of fields to be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: You create and store the schema locally for
this component only. Related topic: see Talend Open
Studio User Guide.

Repository: You have already created the schema and
stored it in the Repository. You can reuse it in various
projects and Job designs. Related topic: see Talend
Open Studio User Guide.

File Name or path to the file to be processed. Related topic:
see Talend Open Studio User Guide.

Calculate MD5 Hash Select this check box to check the MD5 of the
downloaded file.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component can be used as standalone component.

Connections Outgoing links (from one component to another):

Row: Main; Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error;
On component Ok; On Component Error; Synchronize;
Parallelize.

For further information regarding connections, see
Talend Open Studio User Guide.

Limitation n/a

Scenario: Displaying the properties of a processed file

Talend Open Studio Components Reference Guide 1325

Scenario: Displaying the properties of a processed file

This Java scenario describes a very simple Job that displays the properties of the specified file.

1. Drop a tFileProperties component and a tLogRow component from the Palette onto the design workspace.

2. Right-click on tFileProperties and connect it to tLogRow using a Main Row link.

3. In the design workspace, select tFileProperties.

4. Click the Component tab to define the basic settings of tFileProperties.

5. Set Schema type to Built-In.

6. If desired, click the Edit schema button to see the read-only columns.

7. In the File field, enter the file path or browse to the file you want to display the properties for.

8. In the design workspace, select tLogRow and click the Component tab to define its basic settings. For more
information, see the section called “tLogRow”.

9. Press F6 to execute the Job.

The properties of the defined file are displayed on the console.

tFileRowCount

1326 Talend Open Studio Components Reference Guide

tFileRowCount

tFileRowCount properties

Component Family File/Management

Function tFileRowCount counts the number of rows in a file.

Purpose tFileRowCount opens a file and reads it row by row in order to determine the number
of rows inside.

Basic settings File Name Name and path of the file to be processed and/or the variable
to be used.

See also: Talend Open Studio User Guide.

Row separator String (ex: “\n”on Unix) to distinguish rows in the output file.

Ignore empty rows Select this checkbox to ignore the empty rows while the
component is counting the rows in the file.

Encoding Select the encoding type from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the
Job level as well as at each component level.

Usage tFileRowCount is a standalone component, it must be used with a OnSubjobOk
connection to tJava.

Global Variables Number of counted lines: Returns the number of rows in a
file. This is available as a Flow variable.

Returns an integer.

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Row: Main; Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Main; Reject; Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if;
On component Ok; On Component Error; Synchronize;
Parallelize.

For further information regarding connections, see Talend
Open Studio User Guide.

Related scenario

Talend Open Studio Components Reference Guide 1327

Limitation n/a

Related scenario

No scenario is available for this component yet.

tFileTouch

1328 Talend Open Studio Components Reference Guide

tFileTouch

tFileTouch properties

Component Family File/Management

Function tFileTouch creates an empty file.

Purpose This component creates an empty file, and creates the destination directory if it does
not exist.

Basic settings File Name Path and name of the file to be created and/or the variable to
be used.

Related topic: see Talend Open Studio User Guide.

Create directory if not
exists

This check box is selected by default. It creates a directory to
hold the output table if it does not exist.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the
Job level as well as at each component level.

Usage This component can be used as a standalone component.

Connections Outgoing links (from one component to another):

Row: Main.

Trigger: On Subjob Ok; On Subjob Error; Run if; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Main; Reject; Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error;
On component Ok; On Component Error; Synchronize;
Parallelize.

For further information regarding connections, see Talend
Open Studio User Guide.

Related scenario

No scenario is available for this component yet.

tFileUnarchive

Talend Open Studio Components Reference Guide 1329

tFileUnarchive

tFileUnarchive Properties

Component family File/Management

Function Decompresses the archive file provided as parameter and puts it in the extraction
directory.

Purpose Decompresses an archive file for further processing. Such formats are supported:
*.tar.gz , *.tgz, *.tar, *.gz and *.zip.

Basic settings Archive file File path to the archive.

Extraction Directory Folder where the unzipped file(s) will be put.

Use archive name as
root directory

Select this check box to create a folder named as the
archive, if it does not exist, under the specified directory
and extract the zipped file(s) to that folder.

Check the integrity
before unzip

Select this check box to run an integrity check before
unzipping the archive.

Extract file paths Select this check box to reproduce the file path structure
zipped in the archive.

Need a password Select this check box and provide the correct password
if the archive to be unzipped is password protected.
Note that the encrypted archive must be one created
by the tFileArchive component; otherwise you will see
error messages or get nothing extracted even if no error
message is displayed.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata
at the Job level as well as at each component level.

Usage This component can be used as a standalone component but it can also be used
within a Job as a Start component using an Iterate link.

Global Variables Current File: Retrieves the name of the decompressed
archive file. This is available as a Flow variable.

Returns a string.

Current File Path: Retrieves the path to the
decompressed archive file.This is available as a Flow
variable.

Returns a string.

For further information about variables, see Talend
Open Studio User Guide.

Connections Outgoing links (from one component to another):

Row: Iterate.

Related scenario

1330 Talend Open Studio Components Reference Guide

Trigger: On Subjob Ok; On Subjob Error; Run if; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error;
On component Ok; On Component Error; Synchronize;
Parallelize.

For further information regarding connections, see
Talend Open Studio User Guide.

Limitation Such files can be decompressed: *.tar.gz , *.tgz, *.tar, *.gz and *.zip.

Related scenario

For tFileUnarchive related scenario, see the section called “tFileCompare”.

tGPGDecrypt

Talend Open Studio Components Reference Guide 1331

tGPGDecrypt

tGPGDecrypt Properties

Component family File/Management

Function Decrypts a GnuPG-encrypted file and saves the decrypted file in the specified
target directory.

Purpose This component calls the gpg -d command to decrypt a GnuPG-encrypted file
and saves the decrypted file in the specified directory.

Basic settings Input encrypted file File path to the encrypted file.

Output decrypted file File path to the output decrypted file.

GPG binary path File path to the GPG command.

Secret key Enter your secret key.

Passphrase Enter the passphrase used in encrypting the specified
input file.

No TTY Terminal Select this check box to speficy that no TTY terminal is
used by adding the --no-tty option to the decryption
command.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata
at the Job level as well as at each component level.

Usage This component can be used as a standalone component.

Limitation n/a

Scenario: Decrypt a GnuPG-encrypted file and display
its content

The following scenario describes a three-component Job that decrypts a GnuPG-encrypted file and displays the
content of the decrypted file on the Run console.

Scenario: Decrypt a GnuPG-encrypted file and display its content

1332 Talend Open Studio Components Reference Guide

Dragging and linking the components

1. Drop a tGPGDecrypt component, a tFileInputDelimited component, and a tLogRow component from the
Palette to the design workspace.

2. Connect the tGPGDecrypt component to the tFileInputDelimited component using a Trigger >
OnSubjobOk link, and connect the tFileInputDelimited component to the tLogRow component using a
Row > Main link.

Configuring the components

1. Double-click the tGPGDecrypt to open its Component view and set its properties:

2. In the Input encrypted file field, browse to the file to be decrypted.

3. In the Output decrypted file field, enter the path to the decrypted file.

If the file path contains accented characters, you will get an error message when running the Job.
For more information on what to do when the accents are not supported, see Talend Open Studio
Installation Guide.

4. In the GPG binary path field, browse to the GPG command file.

5. In the Passphrase field, enter the passphrase used when encrypting the input file.

6. Double-click the tFileInputDelimited component to open its Component view and set its properties:

7. In the File name/Stream field, define the path to the decrypted file, which is the output path you have defined
in the tGPGDecrypt component.

8. In the Header, Footer and Limit fields, define respectively the number of rows to be skipped in the beginning
of the file, at the end of the file and the number of rows to be processed.

9. Use a Built-In schema. This means that it is available for this Job only.

10. Click Edit schema and edit the schema for the component. Click twice the [+] button to add two columns
that you will call idState and labelState.

Scenario: Decrypt a GnuPG-encrypted file and display its content

Talend Open Studio Components Reference Guide 1333

11. Click OK to validate your changes and close the editor.

12. Double-click the tLogRow component and set its properties:

13. Use a Built-In schema for this scenario.

14. In the Mode area, define the console display mode according to your preference. In this scenario, select Table
(print values in cells of a table).

Saving and executing the Job

1. Press Ctrl+S to save your Job

2. Press F6 or click Run from the Run tab to run it.

The specified file is decrypted and the defined number of rows of the decrypted file are printed on the Run console.

tNamedPipeClose

1334 Talend Open Studio Components Reference Guide

tNamedPipeClose

tNamedPipeClose properties

Component family File/Input

Function tNamedPipeClose closes a named-pipe opened with tNamedPipeOpen at the end of
a process.

Purpose This component is used to close a named-pipe at the end of a process.

Basic settings Pipe Select an existing named-pipe from the list to close.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component level.

Usage This component is usually used to close a named-pipe at the end of a Job.

Limitation n/a

Related scenario

For a related scenario, see the section called “Scenario: Writing and loading data through a named-pipe”.

tNamedPipeOpen

Talend Open Studio Components Reference Guide 1335

tNamedPipeOpen

tNamedPipeOpen properties

Component family File/Input

Function tNamedPipeOpen opens a named-pipe for writing data into it.

Purpose This component is used in inner-process communication, it opens a named-pipe for
writing data into it.

Basic settings Name Fill in the field with the name of the named-pipe.

Delete if already exist Select this checkbox to avoid duplicate named-pipe.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component level.

Usage This component is usually used as the starting component in a inner-process
communication Job.

Limitation n/a

Related scenario

For a related scenario, see the section called “Scenario: Writing and loading data through a named-pipe”.

tNamedPipeOutput

1336 Talend Open Studio Components Reference Guide

tNamedPipeOutput

tNamedPipeOutput properties

Component family File/Input

Function tNamedPipeOutput writes data into an existing open named-pipe.

Purpose This component allows you to write data into an existing open named-pipe.

Basic settings Use existing pipe
connection

Select this check box to use an existing named-pipe in the
Pipe component list, or clear this check box to specify a
named-pipe in Pipe name field.

Pipe component Select an existing named-pipe component from the list.

This check box will display only when you select
Use existing pipe connection.

Pipe name Fill in the field with the name of an existing named-pipe.

This check box will display only when you clear
Use existing pipe connection.

Row separator String (ex: “\n”on Unix) to distinguish rows in the output
file.

Field separator Character, string or regular expression to separate fields
of the output file.

CSV options Select this check box to take into account all parameters
specific to CSV files, in particular Escape char and Text
enclosure parameters.

Schema and Edit Schema A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job flowcharts. Related topic: see Talend Open Studio
User Guide.

Delete pipe if it exists Select this checkbox to avoid duplicate named-pipe.

Advanced settings Boolean type Select a boolean type from the list.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component level.

Scenario: Writing and loading data through a named-pipe

Talend Open Studio Components Reference Guide 1337

Usage This component is usually connected to another component in a subjob that reads data
from a source.

Limitation n/a

Scenario: Writing and loading data through a named-
pipe

The following scenario creates a multi-component Job, which writes data into an open named-pipe and displays
the data onto the console.

Dropping and linking the components

1. Drop the following components from the Palette to the design workspace: tNamedPipeOpen, tParallelize,
tNamedPipeClose, tFileInputDelimited, tSleep, tLogRow, tRowGenerator and tNamedPipeOutput.

2. Connect tNamedPipeOpen to tParallelize using a Trigger > OnSubjobOk connection.

3. Connect tParallelize to tFileInputDelimited using a Trigger > Parallelize connection.

4. Connect tParallelize to tSleep using a Trigger > Parallelize connection.

5. Connect tFileInputDelimited to tLogRow using a Row > Main connection.

6. Connect tParallelize to tNamedPipeClose using a Trigger > Synchronize (Wait for all) connection.

7. Connect tSleep to tRowGenerator using a Trigger > OnComponentOk connection.

8. Connect tRowGenerator to tNamedPipeOutput using a Row > Main connection.

Scenario: Writing and loading data through a named-pipe

1338 Talend Open Studio Components Reference Guide

Configuring the components

Configuring the input component

1. Double-click tNamedPipeOpen to define its propeties in its Basic settings view.

Fill in the Name field with the name of a named-pipe and select Delete if already exist to avoid duplicate
named-pipe.

2. Double-click tParallelize to define its properties in its Basic settings view.

Select end of all subjobs from the Wait for list.

Fill in the Sleep Duration field with 100 to set the sleep duration.

3. Double-click tFileInputDelimited to define its properties in its Basic settings view.

Fill in the File name/Stream field with the following expression to use the name of the existing named-pipe
defined in the Basic settings view of tNamedPipeOpen:

Scenario: Writing and loading data through a named-pipe

Talend Open Studio Components Reference Guide 1339

4. ((String)globalMap.get("tNamedPipeOpen_1_PIPE_NATIVE_NAME"))

5. Click the three-dot button next to Edit schema.

6. Click the plus button to add three columns for tFileInputDelimited. Fill the three Column fields with id,
first_name and last_name and set the Type of id to Integer. Keep the rest of the settings as default.

7. Click OK to save the settings for the schema.

8. Keep the rest of the settings in the Basic settings view of tFileInputDelimited as default.

9. Double-click tSleep and fill the Pause (in seconds) field with 1.

10. Double-click tRowGenerator to define its properties in its Basic settings view.

11. Click RowGenerator Editor to define the schema.

12. Click the plus button to add three columns for tRowGenerator. Fill the three Column fields with id,
first_name and last_name and set the Type of id to Integer. Keep the rest of the settings of Type as default.

13. Select sequence from the list in the Functions field for id.

14. Select getFirstName from the list in the Functions field for Column first_name.

15. Select TalendDataGenerator.getLastName from the list in the Functions field for Column last_name.

Scenario: Writing and loading data through a named-pipe

1340 Talend Open Studio Components Reference Guide

16. Select id, fill the Value field under Function parameters tab with s1 for sequence identifier, 1001 for start
value and 1 for step.

17. Click OK to save the settings.

Configuring the output component

1. Double-click tNamedPipeOutput to define its properties in its Basic settings view.

2. Select the Use existing pipe connection checkbox and select tNamedPipeOpen_1 from the Pipe component
list.

3. Select Delete pipe if it exists to avoid duplicate named-pipe.

4. Click Sync columns to retrieve the schema from the preceding component.

5. Leave the rest of the settings as they are.

6. Double-click tLogRow to define its properties in its Basic settings view.

7. Click Sync columns to retrieve the schema from the preceding component.

8. Select Table in the Mode area.

Scenario: Writing and loading data through a named-pipe

Talend Open Studio Components Reference Guide 1341

9. Double-click tNamedPipeClose to define its properties in its Basic settings view.

10. Select tNamedPipeOpen_1 from the Pipe list.

Saving and executing the Job

• Press F6 to execute the Job.

The data written into the named-pipe is displayed onto the console.

tPivotToColumnsDelimited

1342 Talend Open Studio Components Reference Guide

tPivotToColumnsDelimited

tPivotToColumnsDelimited Properties

Component family File/Output

Function tPivotToColumnsDelimited outputs data based on an aggregation operation
carried out on a pivot column.

Purpose tPivotToColumnsDelimited is used to fine-tune the selection of data to output

Basic settings Pivot column Select the column from the incoming flow that will be
used as pivot for the aggregation operation.

Aggregation column Select the column from the incoming flow that contains
the data to be aggregated.

Aggregation function Select the function to be used in case several values are
available for the pivot column.

Group by Define the aggregation sets, the values of which will be
used for calculations.

Input Column: Match the input column label with
your output columns, in case the output label of the
aggregation set needs to be different.

File Name Name or path to the output file and/or the variable to
be used.

Related topic: see Talend Open Studio User Guide.

Field separator Character, string or regular expression to separate fields
of the output file.

Row separator String (ex: “\n”on Unix) to distinguish rows in the
output file.

Usage This component requires an input flow.

Limitation n/a

Scenario: Using a pivot column to aggregate data

The following scenario describes a Job that aggregates data from a delimited input file, using a defined pivot
column.

Scenario: Using a pivot column to aggregate data

Talend Open Studio Components Reference Guide 1343

Dropping and linking components

1. Drop the following component from the Palette to the design workspace: tFileInputDelimited,
tPivotToColumnsDelimited.

2. Link the two components using a Row > Main connection.

Configuring the components

Set the input component

1. Double-click the tFileInputDelimited component to open its Basic settings view.

2. Browse to the input file to fill out the File Name field.

The file to use as input file is made of 3 columns, including: ID, Question and the corresponding Answer

3. Define the Row and Field separators, in this example, respectively: carriage return and semi-colon

4. As the file contains a header line, define it also.

5. Set the schema describing the three columns: ID, Questions, Answers.

Set the output component

1. Double-click the tPivotToColumnsDelimited component to open its Basic settings view.

Scenario: Using a pivot column to aggregate data

1344 Talend Open Studio Components Reference Guide

2. In the Pivot column field, select the pivot column from the input schema. this is often the column presenting
most duplicates (pivot aggregation values).

3. In the Aggregation column field, select the column from the input schema that should gets aggregated.

4. In the Aggregation function field, select the function to be used in case duplicates are found out.

5. In the Group by table, add an Input column, that will be used to group by the aggregation column.

6. In the File Name field, browse to the output file path. And on the Row and Field separator fields, set the
separators for the aggregated output rows and data.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

The output file shows the newly aggregated data.

Talend Open Studio Components Reference Guide

Internet components
This chapter details the main components which belong to the Internet family in the Talend Open Studio Palette.

The Internet family comprises all of the components which help you to access information via the Internet, through
various means including Web services, RSS flows, SCP, MOM, Emails, FTP etc.

tFileFetch

1346 Talend Open Studio Components Reference Guide

tFileFetch

tFileFetch properties

Component family Internet

Function tFileFetch retrieves a file via a defined protocol

Purpose tFileFetch allows you to retrieve file data according to the protocol which is in
place.

Basic settings Protocol Select the protocol you want to use from the list and fill
in the corresponding fields: http, https, ftp, smb.

The properties differ slightly depending on the
type of protocol selected. The additional fields
are defined in this table, after the basic settings.

URI Type in the URI of the site from which the file is to be
fetched.

Use cache to save
resource

Select this check box to save the data in the cache.

This option allows you to process the file
data flow (in streaming mode) without saving
it on your drive. This is faster and improves
performance.

smb Domain Enter the Microsoft server domain name

smb Username and
Password

Enter the authentication information required to access
the server.

Destination Directory Browse to the destination folder where the file fetched is
to be placed.

Destination Filename Enter a new name for the file fetched.

http, https, ftp Create full path
according to URI

This check box is selected by default. It allows you to
reproduce the URI directory path. To save the file at the
root of your destination directory, clear the check box.

http, https Add header Select this check box if you want to add one or more
HTTP request headers as fetch conditions. In the Headers
table, enter the name(s) of the HTTP header parameter(s)
in the Headers field and the corresponding value(s) in the
Value field.

http, https POST method This check box is selected by default. It allows you to use
the POST method. In the Parameters table, enter the name
of the variable(s) in the Name field and the corresponding
value in the Value field.

Clear the check box if you want to use the GET method.

http, https, ftp Die on error Clear this check box to skip the rows in error and to
complete the process for the error free rows

Scenario 1: Fetching data through HTTP

Talend Open Studio Components Reference Guide 1347

http, https, ftp, smb Read Cookie Select this check box for tFileFetch to load a web
authentication cookie.

http, https, ftp, smb Save Cookie Select this check box to save the web page authentication
cookie. This means you will not have to log on to the
same web site in the future.

http, https, ftp, smb Cookie directory Click [...] and browse to where you want to save the
cookie in your directory, or to where the cookie is already
saved.

http, https, ftp, smb Cookie policy Choose a cookie policy from this drop-
down list. Four options are available,
i.e. BROWSER_COMPATIBILITY, DEFAULT,
NETSCAPE and RFC_2109.

http, https, ftp, smb Single cookie header Check this box to put all cookies into one request header
for maximum compatibility among different servers.

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at each
component level.

http, https Timeout Enter the number of seconds after which the protocol
connection should close.

http, https Print response to
console

Select this check box to print the server response in the
console.

http, https Upload file Select this check box to upload one or more files to the
server. In the Name field, enter the name of the file you
want to upload and in the File field, indicate the path.

http, https, ftp Enable proxy server Select this check box if you are connecting via a proxy
and complete the fields which follow with the relevant
information.

http, https Enable NTLM
Credentials

Select this check box if you are using an NTLM
authentication protocol.

Domain: The client domain name.

Host: The client’s IP address.

http, https Need authentication Select this check box and enter the username and
password in the relevant fields, if they are required to
access the protocol.

http, https Support redirection Select this check box to repeat the redirection request
until redirection is successful and the file can be
retrieved.

Usage This component is generally used as a start component to feed the input flow of a
Job and is often connected to the Job using an OnSubjobOk or OnComponentOk
link, depending on the context.

Limitation n/a

Scenario 1: Fetching data through HTTP

This scenario describes a three-component Job which retrieves data from an HTTP website and select data that
will be stored in a delimited file.

Scenario 1: Fetching data through HTTP

1348 Talend Open Studio Components Reference Guide

Dropping and linking components

1. Drop a tFileFetch, a tFileInputRegex and a tFileOutputDelimited onto your design workspace.

2. Link tFileFetch to tFileInputRegex using a Trigger > On Subjob Ok or On Component Ok connection.

3. Link tFileInputRegex to tFileOutputDelimited using a Row > Main connection.

Configuring the components

1. In the Basic settings view of tFileFetch, select the protocol you want to use from the list. Here, use the
HTTP protocol.

2. Type in the URI where the file to be fetched can be retrieved from.

3. In the Destination directory field, browse to the folder where the fetched file is to be stored.

4. In the Filename field, type in a new name for the file if you want it to be changed. In this example, filefetch.txt.

5. If needed, select the Add header check box and define one or more HTTP request headers as fetch conditions.
For example, to fetch the file only if it has been modified since 19:43:31 GMT, October 29, 1994, fill in the
Name and Value fields with "If-Modified-Since" and "Sat, 29 Oct 1994 19:43:31 GMT" respectively in the
Headers table. For details about HTTP request header definitions, see Header Field Definitions.

6. Select the tFileInputRegex, set the File name so that it corresponds to the file fetched earlier.

7. Using a regular expression, in the Regex field, select the relevant data from the fetched file. In this example:
<td(?: class="leftalign")?> \s* (t\w+) \s* </td>

Regex syntaxe requires double quotation marks.

8. Define the header, footer and limit if need be. In this case, ignore these fields.

9. Define the schema describing the flow to be passed on to the final output.

The schema should be automatically propagated to the final output, but to be sure, check the schema in the
Basic settings panel of the tFileOutputDelimited component.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14

Scenario 2: Reusing stored cookie to fetch files through HTTP

Talend Open Studio Components Reference Guide 1349

2. Then press F6 or click Run on the Run tab to execute the Job.

Scenario 2: Reusing stored cookie to fetch files
through HTTP

This scenario describes a two-component Job which logs in a given HTTP website and then using cookie stored
in a user-defined local directory, fetches data from this website.

Dropping and linking components

1. Drop two tFileFetch components onto your design workspace.

2. Link the two components as subjobs using a Trigger > On Subjob Ok connection.

Configuring the components

Configuring the first subjob

1. Double click tFileFetch_1 to open its component view.

Scenario 2: Reusing stored cookie to fetch files through HTTP

1350 Talend Open Studio Components Reference Guide

2. In the Procotol field, select the protocol you want to use from the list. Here, we use the HTTP protocol.

3. In the URI field, type in the URI through which you can log in
the website and fetch the web page accordingly. In this example, the URI
is http://www.codeproject.com/script/Membership/LogOn.aspx?rp=http%3a%2f
%2fwww.codeproject.com%2fKB%2fcross-platform
%2fjavacsharp.aspx&download=true.

4. In the Destination directory field, browse to the folder where the fetched file is to be stored. This folder will
be created on the fly if it does not exist. In this example, type in C:/Logpage.

5. In the Destination Filename field, type in a new name for the file if you want it to be changed. In this
example, webpage.html.

6. Under the Parameters table, click the plus button to add two rows.

7. In the Name column of the Parameters table, type in a new name respectively for the two rows. In this
example, they are Email and Password, which are required by the website you are logging in.

8. In the Value column, type in the authentication information.

9. Select the Save cookie check box to activate the Cookie directory field.

10. In the Cookie directory field, browse to the folder where you want to store cookie file and type in a name
for the cookie to be saved. This folder must exist already. In this example, the directory is C:/temp/Cookie.

Configuring the second subjob

1. Double click tFileFetch_2 to open its Component view.

Related scenario

Talend Open Studio Components Reference Guide 1351

2. In the Procotol list, select http.

3. In the URI field, type in the address from which you fetch the files of your interest. In this example, the
address is http://www.codeproject.com/KB/java/RemoteShell/RemoteShell.zip.

4. In the Destination directory field, type in the directory or browse to the folder where you want to store the
fetched files. This folder can be automatically created if it does not exist yet during the execution process.
In this example, type in C:/JavaProject.

5. In the Destination Filename field, type in a new name for the file if you want it to be changed. In this
example, RemoteShell.zip.

6. Clear the Post method check box to deactivate the Parameter table.

7. Select the Read cookie check box to activate the Cookie directory field.

8. In the Cookie directory field, type in the directory or browse to the cookie file you have saved and need to
use. In this example, the directory is C:/temp/Cookie.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Then press F6 to run the Job, and check each folder you have used to store the fetched files.

Related scenario

For an example of transferring data in streaming mode, see the section called “Scenario 2: Reading data from a
remote file in streaming mode”

tFileInputJSON

1352 Talend Open Studio Components Reference Guide

tFileInputJSON

tFileInputJSON belongs to two different component families: Internet and File. For further information, see the
section called “tFileInputJSON”.

tFTPConnection

Talend Open Studio Components Reference Guide 1353

tFTPConnection

tFTPConnection properties

Component family Internet/FTP

Function tFTPConnection opens an FTP connection in order that a transaction may be
carried out.

Purpose tFTPConnection allows you to open an FTP connection to transfer files in a single
transaction.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties
are stored. The following fields are pre-filled in using
fetched data.

Host The FTP server IP address.

Port The FTP server listening port number.

Username and
Password

FTP user authentication data.

SFTP Support When you select this check box, the Authentication
method appears.

It offers two means of authentication:

Public key: Enter the access path to the public key.

Password: Enter the password.

FTPS Support Select this check box to connect to an FTP server via an
FTPS connection.

Two fields appear:

Keystore file: Enter the access path to the keystore file
(password protected file containing several keys and
certificates).

Keystore Password: Enter your keystore password.

Connect mode Select the mode: Active or Passive

Usage This component is typically used as a single-component sub-job. It is used along
with other FTP components.

Limitation n/a

Related scenarios

For a related scenario, see the section called “Scenario: Putting files on a remote FTP server”.

Related scenarios

1354 Talend Open Studio Components Reference Guide

For a related scenario, see the section called “Scenario: Iterating on a remote directory”.

For a related scenario using a different protocol, see the section called “Scenario: Getting files from a remote
SCP server”.

tFTPDelete

Talend Open Studio Components Reference Guide 1355

tFTPDelete

tFTPDelete properties

Component family Internet/FTP

Function This component deletes specified files via an FTP connection.

Purpose tFTPDelete deletes files on a remote FTP server.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties
are stored. The following fields are pre-filled in using
fetched data.

Host FTP IP address

Port The FTP server listening port number.

Username and
Password

FTP user authentication data.

Remote directory Source directory where the files to be deleted are located.

SFTPSupport/
Authentication method

Select this check box and then in the Authentication
method list, select the SFTP authentication method:

Password: Type in the password required in the relevant
field.

Public key: Type in the private key or click the three dot
button next to the Private key field to browse to it.

If you select Public Key as the SFTP
authentication method, make sure that the key is
added to the agent or that no passphrase (secret
phrase) is required.

Files File name or path to the files to be deleted.

Usage This component is typically used as a single-component sub-job but can also be
used as an output or end object.

Limitation n/a

Related scenario

For tFTPDelete related scenario, see the section called “Scenario: Putting files on a remote FTP server”.

For tFTPDelete related scenario using a different protocol, see the section called “Scenario: Getting files from
a remote SCP server”.

tFTPFileExist

1356 Talend Open Studio Components Reference Guide

tFTPFileExist

tFTPFileExist properties

Component family Internet/FTP

Function tFTPFileExist checks if a file exists on an FTP server.

Purpose tFTPFileExist allows you to check if a file exists on an FTP server.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties
are stored. The following fields are pre-filled in using
fetched data.

Use an existing
connection/Component
List

Select this check box and in the Component List
click the relevant connection component to reuse the
connection details you already defined.

When a Job contains the parent Job and the
child Job, Component list presents only the
connection components in the same Job level, so
if you need to use an existing connection from
the other level, you can use Dynamic settings
to share the intended connection. In this case,
make sure that the connection name is unique
and distinctive all over through the two Job
levels. For more information about Dynamic
settings, see your studio user guide.

Host FTP IP address.

Port The FTP server listening port number.

Username and
Password (or Private
key)

User authentication information.

Remote directory Path to the remote directory.

File Name Name of the file you want to check exists.

SFTPSupport/
Authentication method

Select this check box and then in the Authentication
method list, select the SFTP authentication method:

Password: Type in the password required in the relevant
field.

Public key: Type in the private key or click the three dot
button next to the Private key field to browse to it.

If you select Public Key as the SFTP
authentication method, make sure that the key is
added to the agent or that no passphrase (secret
phrase) is required.

Related scenario

Talend Open Studio Components Reference Guide 1357

Connection Mode Select the SFTP connection mode you want to use:

Active: You determine the connection port to use to
allow data transfer.

Passive: the FTP server determines the connection port
to use to allow data transfer.

Encoding Type Select an encoding type from the list, or select Custom
and define it manually. This field is compulsory for DB
data handling.

Advanced settings Use Socks Proxy Select this check box if you want to use a proxy. Then,
set the Host, Port, User and Password proxy fields.

Ignore Failure At Quit
(FTP)

Select this check box to ignore library closing errors or
FTP closing errors.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is typically used as a single-component sub-job but can also be
used with other components.

Limitation n/a

Related scenario

For tFTPFileExist related scenario, see the section called “Scenario: Putting files on a remote FTP server”.

For tFTPFileExist related scenario using a different protocol, see the section called “Scenario: Getting files from
a remote SCP server”.

tFTPFileList

1358 Talend Open Studio Components Reference Guide

tFTPFileList

tFTPFileList properties

Component family Internet/FTP

Function tFTPFileList iterates on files and/or folders of a given directory on a remote host.

Objective tFTPFileList retrieves files and /or folders based on a defined filemask pattern
and iterates on each of them by connecting to a remote directory via an FTP
protocol.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties
are stored. The following fields are pre-filled in using
fetched data.

Use an existing
connection/Component
List

Select this check box and in the Component List
click the relevant connection component to reuse the
connection details you already defined.

When a Job contains the parent Job and the
child Job, Component list presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, you can use Dynamic
settings to share the intended connection. For
more information about Dynamic settings, see
your studio user guide.

Host FTP IP address.

Port Listening port number of the FTP server.

Username and
Password (or Private
key)

User authentication information.

Remote directory Path to the remote directory.

File detail Select this check box if you want to display the details
of each of the files or folders on the remote host. These
informative details include:

type of rights on the file/folder, name of the author, name
of the group of users that have a read-write rights, file
size and date of last modification.

SFTPSupport/
Authentication method

Select this check box and then in the Authentication
method list, select the SFTP authentication method:

Password: Type in the password required in the relevant
field.

Public key: Type in the private key or click the three dot
button next to the Private key field to browse to it.

Scenario: Iterating on a remote directory

Talend Open Studio Components Reference Guide 1359

If you select Public Key as the SFTP
authentication method, make sure that the key is
added to the agent or that no passphrase (secret
phrase) is required.

Files Click the plus button to add the lines you want to use as
filters:

Filemask: enter the filename or filemask using
wildcharacters (*) or regular expressions.

Connect Mode Select the SFTP connection mode you want to use:

Active: You determine the connection port to be used to
allow data transfer.

Passive: the FTP server determines the connection port
to use to allow data transfer.

Usage This component is typically used as a single-component sub-job but can also be
used with other components.

Limitation n/a

Scenario: Iterating on a remote directory

The following scenario describes a three-component Job that connects to an FTP server, lists files held in a remote
directory based on a filemask and finally recuperates and saves the files in a defined local directory.

Dropping and linking components

1. Drop the following components from the Palette to the design workspace: tFTPConnection, tFTPFileList
and tFTPGet.

2. Link tFTPConnection to tFTPFileList using an OnSubjobOk connection and then tFTPFileList to
tFTPGet using an Iterate connection.

Configuring the components

Configuring a connection to the FTP server

1. Double-click tFTPConnection to display its Basic settings view and define the component properties.

Scenario: Iterating on a remote directory

1360 Talend Open Studio Components Reference Guide

2. In the Host field, enter the IP address of the FTP server.

3. In the Port field, enter the listening port number.

4. In the Username and Password fields, enter your authentication information for the FTP server.

5. In the Connect Mode list, select the FTP connection mode you want to use, Passive in this example.

Configuring an FTP download list

1. Double-click tFTPFileList to open its Basic settings view and define the component properties.

2. Select the Use an existing connection check box and in the Component list, click the relevant FTP
connection component, tFTPConnection_1 in this scenario. Connection information are automatically filled
in.

3. In the Remote directory field, enter the relative path of the directory that holds the files to be listed.

4. In the Filemask field, click the plus button to add one line and then define a file mask to filter the data to be
retrieved. You can use special characters if need be. In this example, we want only to recuperate delimited
files (*csv).

5. In the Connect Mode list, select the FTP server connection mode you want to use, Active in this example.

Configuring file download

1. Double-click tFTPGet to display its Basic settings view and define the components properties.

Scenario: Iterating on a remote directory

Talend Open Studio Components Reference Guide 1361

2. Select the Use an existing connection check box and in the Component list, click the relevant FTP
connection component, tFTPConnection_1 in this scenario. Connection information are automatically filled
in.

3. In the Local directory field, enter the relative path for the output local directory where you want to write
the recuperated files.

4. In the Remote directory field, enter the relative path of the remote directory that holds the file to be
recuperated.

5. In the Transfer Mode list, select the FTP transfer mode you want to use, ascii in this example.

6. In the Overwrite file field, select an option for you want to use for the transferred files.

7. In the Files area, click the plus button to add a line in the Filemask list, then click in the
added line and pressCtrl+Space to access the variable list. In the list, select the global variable
((String)globalMap.get("tFTPFileList_1_CURRENT_FILEPATH")) to process all files in
the remote directory.

8. In the Connect Mode list, select the connection mode to the FTP server you want to use.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

Scenario: Iterating on a remote directory

1362 Talend Open Studio Components Reference Guide

All .csv files held in the remote directory on the FTP server are listed in the defined directory, as defined in
the filemask. Then the files are retrieved and saved in the defined local output directory.

tFTPFileProperties

Talend Open Studio Components Reference Guide 1363

tFTPFileProperties

tFTPFileProperties Properties

Component family Internet

Function tFTPFileProperties iterates on files and/or folders of a given directory on a
remote host.

Purpose tFTPFileProperties retrieves files and /or folders based on a defined filemask
pattern and iterates on each of them by connecting to a remote directory via an
FTP protocol.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties
are stored. The following fields are pre-filled in using
fetched data.

Schema and Edit
schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in
(local) or stored remotely in the Repository.

Built-in: You create and store the schema locally for
this component only. Related topic: see Talend Open
Studio User Guide.

Repository: You have already created the schema and
stored it in the Repository. You can reuse it in various
projects and Job designs. Related topic: see Talend
Open Studio User Guide.

Host FTP IP address

Port Listening port number of the FTP server.

Username FTP user name.

Password FTP password.

Remote directory Path to the source directory where the files can be
fetched.

File Name or path to the file to be processed. Related topic:
see Talend Open Studio User Guide.

SFTP Support and
Authentication method

Select this check box and then in the Authentication
method list, select the SFTP authentication method:

Password: Type in the password required in the
relevant field.

Public key: Type in the private key or click the three
dot button next to the Private key field to browse to it.

If you select Public Key as the SFTP
authentication method, ensure that the key is

Related scenario

1364 Talend Open Studio Components Reference Guide

added to the agent or that no passphrase (secret
phrase) is required.

If you do not select the check box, choose the
connection mode you want to use:

Active: You determine the connection port to use to
allow data transfer.

Passive: the FTP server determines the connection port
to use to allow data transfer.

Encoding Select an encoding type from the list, or select Custom
and define it manually. This field is compulsory for DB
data handling.

Calculate MD5 Hash Select this check box to check the of the downloaded
file’s MD5.

Advanced settings Use Socks Proxy Select this check box if you want to use a proxy. Then,
set the Host, Port, User and Password proxy fields.

Ignore Failure At Quit
(FTP)

Select this check box to ignore library closing errors or
FTP closing errors.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component can be used as standalone component.

Limitation n/a

Related scenario

For a related scenario, see the section called “Scenario: Displaying the properties of a processed file”

tFTPGet

Talend Open Studio Components Reference Guide 1365

tFTPGet

tFTPGet properties

Component family Internet/FTP

Function This component retrieves specified files via an FTP connection.

Purpose tFTPGet retrieves selected files from a defined remote FTP directory and cop
them to a local directory.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties
are stored. The following fields are pre-filled in using
fetched data.

Use an existing
connection/Component
List

Select this check box and then choose the appropriate
connection component from the Component list to reuse
its connection parameters.

Host FTP IP address.

Port Listening port number of the FTP server.

Username FTP user name.

Password FTP password.

Local directory Path to where the file is to be saved locally.

Remote directory Path to source directory where the files can be fetched.

Transfer mode Different FTP transfer modes.

Overwrite file List of file transfer options.

Append: Select this check box to append the data at the
end of the file in order to avoid overwriting data.

SFTP Support When you select this check box, the Overwrite file and
Authentication method appear.

Overwrite file: Offers three options:

Overwrite: Overwrite the existing file.

Resume: Resume downloading the file from the point of
interruption.

Append: Add data to the end of the file without
overwriting data.

Authentication Offers two means of authentication:

Public key: Enter the access path to the public key.

Password: Enter the password.

FTPS Support Select this check box to connect to an FTP server via an
FTPS connection.

Related scenario

1366 Talend Open Studio Components Reference Guide

Two fields appear:

Keystore file: Enter the access path to the keystore file
(password protected file containing several keys and
certificates).

Keystore Password: Enter your keystore password.

Files File names or paths to the files to be transferred.

Die on error This check box is selected by default. Clear the check
box to skip the row on error and complete the process
for error-free rows.

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing
metadata at a Job level as well as at each component
level.

Print message Select this check box to display in the Console the list of
files downloaded.

Usage This component is typically used as a single-component sub-job but can also be
used as output or end object.

Limitation n/a

Related scenario

For an tFTPGet related scenario, see the section called “Scenario: Putting files on a remote FTP server”.

For an tFTPGet related scenario, see the section called “Scenario: Iterating on a remote directory”.

For an tFTPGet related scenario using a different protocol, see the section called “Scenario: Getting files from
a remote SCP server”.

tFTPPut

Talend Open Studio Components Reference Guide 1367

tFTPPut

tFTPPut properties

Component family Internet/FTP

Function This component copies selected files via an FTP connection.

Purpose tFTPPut copies selected files from a defined local directory to a destination
remote FTP directory.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties
are stored. The following fields are pre-filled in using
fetched data.

Use an existing
connection/Component
List

A connection needs to be open to allow the loop to check
for FTP data on the defined DB.

When a Job contains the parent Job and the
child Job, Component list presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, you can use Dynamic
settings to share the intended connection. For
more information about Dynamic settings, see
your studio user guide.

Host FTP IP address.

Port FTP server listening port number.

Username FTP user name.

Password FTP password.

Local directory Path to the source location of the file(s).

Remote directory Path to the destination directory of the file(s).

Transfer mode Different FTP transfer modes.

Overwrite file or
Append

List of available options for the transferred file

SFTPSupport/
Authentication method

Select this check box and then in the Authentication
method list, select the SFTP authentication method:

Password: Type in the password required in the relevant
field.

Public key: Type in the private key or click the three dot
button next to the Private key field to browse to it.

If you select Public Key as the SFTP
authentication method, make sure that the key is

Scenario: Putting files on a remote FTP server

1368 Talend Open Studio Components Reference Guide

added to the agent or that no passphrase (secret
phrase) is required.

Files Click the [+] button to add a new line, then fill in the
columns.

Filemask: file names or path to the files to be transferred.

New name: name to give the FTP file after the transfer.

Die on error This check box is selected by default. Clear the check
box to skip the row on error and complete the process
for error-free rows.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is typically used as a single-component sub-job but can also be
used as output component.

Limitation n/a

Scenario: Putting files on a remote FTP server
This two-component Job allows you to open a connection to a remote FTP server in order to put specific files on
the remote server in one transaction.

Dropping and linking components

1. Drop tFTPConnection and tFTPPut from the Palette onto the design workspace. tFTPConnection allows
you to perform all operations in one transaction.

2. Connect the two components together using an OnSubJobOK link.

Configuring the components

Configuring a connection to the FTP server

1. Double-click tFTPConnection to display its Basic settings view and define its properties.

Scenario: Putting files on a remote FTP server

Talend Open Studio Components Reference Guide 1369

2. In the Host field, enter the server IP address.

3. In the Port field, enter the listening port number.

4. In the Username and Password fields, enter your login and password for the remote server.

5. From the Connect Mode list, select the FTP connection mode you want to use, Active in this example.

Configuring file upload to the FTP server

1. In the design workspace, double-click tFTPPut to display its Basic settings view and define its properties.

2. Select the Use an existing connection check box and then select tFTPConnection_1 from the Component
List. The connection information is automatically filled in.

3. In the Local directory field, enter the path to the local directory containing the files, if all your files are in
the same directory. If the files are in different directories, enter the path for each file in the Filemask column
of the Files table.

4. In the Remote directory field, enter the path to the destination directory on the remote server.

5. From the Transfer mode list, select the transfer mode to be used.

6. From the Overwrite file list, select an option for the transferred file.

Scenario: Putting files on a remote FTP server

1370 Talend Open Studio Components Reference Guide

7. In the Files table, click twice the plus button to add two lines to the Filemask column and then fill in the
filemasks of all files to be copied onto the remote directory.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

The files specified in the Filemask column are copied to the remote server.

tFTPRename

Talend Open Studio Components Reference Guide 1371

tFTPRename

tFTPRename Properties

Component Family Internet/FTP

Function tFTPRename renames the selected files via an FTP connection.

Purpose tFTPRename renames files selected from a local directory towards a distant FTP
directory.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties
are stored. The following fields are pre-filled in using
fetched data.

Use an existing
connection/Component
List

Select this check box and in the Component List
click the relevant connection component to reuse the
connection details you already defined.

When a Job contains the parent Job and the
child Job, Component list presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, you can use Dynamic
settings to share the intended connection. For
more information about Dynamic settings, see
your studio user guide.

Host FTP IP address.

Port FTP server listening port number.

Username Connection login to the FTP server.

Password Connection password to the FTP server.

Remote directory Path to the remote directory.

Overwrite file List of available options for the transferred file.

Append: Select this check box to write the data at the
end of the record, to not delete it.

SFTPSupport/
Authentication method

Select this check box and then in the Authentication
method list, select the SFTP authentication method:

Password: Type in the password required in the relevant
field.

Public key: Type in the private key or click the three dot
button next to the Private key field to browse to it.

If you select Public Key as the SFTP
authentication method, make sure that the key is

Related scenario

1372 Talend Open Studio Components Reference Guide

added to the agent or that no passphrase (secret
phrase) is required.

Files Click the [+] button to add the lines you want to use as
filters:

Filemask: enter the filename or filemask using
wildcharacters (*) or regular expressions.

New name: name to give to the FTP file after the
transfer.

Connection Mode Select the SFTP connection mode you want to use:

Active: You determine the connection port to use to
allow data transfer.

Passive: the FTP server determines the connection port
to use to allow data transfer.

Encoding type Select an encoding type from the list, or select Custom
and define it manually. This field is compulsory for DB
data handling.

Die on error This check box is selected by default. Clear the check
box to skip the row in error and complete the process for
error-free rows.

Advanced settings Use Socks Proxy Select this check box if you want to use a proxy. Then,
set the Host, Port, User and Password proxy fields.

Ignore Failure At Quit
(FTP)

Select this check box to ignore library closing errors or
FTP closing errors.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is generally used as a subjob with one component, but it can also
be used as an output or end component..

Limitation n/a

Related scenario

For a related scenario, see the section called “Scenario: Putting files on a remote FTP server” .

tFTPTruncate

Talend Open Studio Components Reference Guide 1373

tFTPTruncate

tFTPTruncate properties

Component family Internet/FTP

Function tFTPTruncate truncates the selected files via an FTP connection.

Objective tFTPTruncate truncates the selected files of a defined local directory via a distant
FTP directory.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties
are stored. The following fields are pre-filled in using
fetched data.

Use an existing
connection/Component
List

Select this check box and in the Component List
click the relevant connection component to reuse the
connection details you already defined.

When a Job contains the parent Job and the
child Job, Component list presents only the
connection components in the same Job level,
so if you need to use an existing connection
from the other level, you can use Dynamic
settings to share the intended connection. For
more information about Dynamic settings, see
your studio user guide.

Host FTP IP address.

Port Listening port number of the FTP server.

Username and
Password (or Private
key)

User authentication information.

Remote directory Path to the remote directory.

SFTPSupport/
Authentication method

Select this check box and then in the Authentication
method list, select the SFTP authentication method:

Password: Type in the password required in the relevant
field.

Public key: Type in the private key or click the three dot
button next to the Private key field to browse to it.

If you select Public Key as the SFTP
authentication method, make sure that the key is
added to the agent or that no passphrase (secret
phrase) is required.

Files Click the plus button to add the lines you want to use as
filters:

Related scenario

1374 Talend Open Studio Components Reference Guide

Filemask: enter the filename or filemask using
wildcharacters (*) or regular expressions.

Connection Mode Select the SFTP connection mode you want to use:

Active: You determine the connection port to use to
allow data transfer.

Passive: the FTP server determines the connection port
to use to allow data transfer.

Encoding type Select an encoding type from the list, or select Custom
and define it manually. This field is compulsory for DB
data handling.

Advanced settings Use Socks Proxy Select this check box if you want to use a proxy. Then,
set the Host, Port, User and Password proxy fields.

Ignore Failure At Quit
(FTP)

Select this check box to ignore library closing errors or
FTP closing errors.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is typically used as a single-component sub-job but can also be
used with other components.

Limitation n/a

Related scenario

For a related scenario, see the section called “Scenario: Putting files on a remote FTP server”.

tHttpRequest

Talend Open Studio Components Reference Guide 1375

tHttpRequest

tHttpRequest properties

Component family Internet

Function This component sends an HTTP request to the server end and gets the
corresponding response information from the server end.

Purpose The tHttpRequest component allows you to send an HTTP request to the server
and output the response information locally.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository

Built-in: You create and store the schema locally for
this component only. Related topic: see Talend Open
Studio User Guide.

Repository: You have already created the schema and
stored it in the Repository. You can reuse it in various
projects and Job designs. Related topic: see Talend
Open Studio User Guide.

Sync columns Click this button to retrieve the schema from the
preceding component.

URI Type in the Uniform Resource Identifier (URI) that
identifies the data resource on the server. A URI is
similar to a URL, but more general.

Method Select an HTTP method to define the action to be
performed:

Post: Sends data (e.g. HTML form data) to the server
end.

Get: Retrieves data from the server end.

Write response content
to file

Select this check box to save the HTTP response to a
local file. You can either type in the file path in the input
field or click the three-dot button to browse to the file
path.

Headers Type in the name-value pair(s) for HTTP headers to
define the parameters of the requested HTTP operation.

Key: Fill in the name of the header field of an HTTP
header.

Value: Fill in the content of the header field of an HTTP
header.

For more information about definition of HTTP
headers, please refer to:

Scenario: Sending a HTTP request to the server and saving the response information to a local file

1376 Talend Open Studio Components Reference Guide

en.wikipedia.org/wiki/List_of_HTTP_headers.

Need authentication Select this check box to fill in a user name and a
password in the corresponding fields if authentication
is needed:

user: Fill in the user name for the authentication.

password: Fill in the password for the authentication.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level and at each component level.

Usage This component can be used in sending HTTP requests to server and saving the
response information. This component can be used as a standalone component.

Limitation N/A

Scenario: Sending a HTTP request to the server and
saving the response information to a local file

This java scenario describes a two-component Job that uses the GET method to retrieve information from the
server end and writes the response to a local file as well as to the console.

• Drop the following components from the Palette onto the design workspace: tHttpRequest and tLogRow.

• Connect the tHttpRequest component to the tLogRow component using a Row > Main connection.

• Double-click the tHttpRequest component to open its Basic settings view and define the component properties.

• Fill in the URI field with “http://192.168.0.63:8081/testHttpRequest/build.xml”. Note that this URI is for
demonstration purpose only and it is not a live address.

http://en.wikipedia.org/wiki/List_of_HTTP_headers

Scenario: Sending a HTTP request to the server and saving the response information to a local file

Talend Open Studio Components Reference Guide 1377

• Select GET from the Method list.

• Select the Write response content to file check box and fill in the input field on the right with the file path
by manual entry, D:/test.txt for this use case.

• Select the Need authentication check box and fill in the user and password, both tomcat in this use case.

• Double-click the tLogRow component to open its Basic settings view and select Table in the Mode area.

• Save your Job and press F6 to execute it.

Then the response information from the server is saved and displayed.

tJMSInput

1378 Talend Open Studio Components Reference Guide

tJMSInput

tJMSInput properties

Component Family Internet

Function tJMSInput creates an interface between a Java application and a Message-
Oriented middle ware system.

Purpose Using a JMS server, tJMSInput makes it possible to have loosely coupled,
reliable, and asynchronous communication between different components in a
distributed application.

Basic settings Module List Select the library to be used from the list.

Context Provider Type in the context URL, for example
"com.tibco.tibjms.naming.TibjmsInitialContext
Factory". However, be careful, the syntax can vary
according to the JMS server used.

Server URL Type in the server URL, respecting the syntax, for
example "tibjmsnaming://localhost:7222".

Connection Factory
JDNI Name

Type in the JDNI name.

Use Specified User
Identity

If you have to log in, select the check box and type in
your login and password.

Message Type Select the message type, either: Topic or Queue.

Message From Type in the message source, exactly as expected by
the server; this must include the type and name of the
source. e.g.: queue/A or topic/testtopic

Note that the field is case-sensitive.

Timeout for Next
Message (in sec)

Type in the number of seconds before passing to the
next message.

Maximum Messages Type in the maximum number of messages to be
processed.

Message Selector
Expression

Set your filter.

Processing Mode Select the processing mode for the messages.

Raw Message or Message Content

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component.

The tJMSInput schema is read-only. It is made of only
one column: Message

Advanced settings Properties Click the plus button underneath the table to add lines
that contains username and password required for user
authentication.

Related scenarios

Talend Open Studio Components Reference Guide 1379

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is generally used as an input component. It must be linked to
an output component.

Limitation Make sure the JMS server is launched.

Related scenarios

For related scenarios, see the section called “Scenario 1: Asynchronous communication via a MOM server” and
the section called “Scenario 2: Transmitting XML files via a MOM server”.

tJMSOutput

1380 Talend Open Studio Components Reference Guide

tJMSOutput

tJMSOutput properties

Component Family Internet

Function tJMSOutput creates an interface between a Java application and a Message-
Oriented middle ware system.

Purpose Using a JMS server, tJMSOutput makes it possible to have loosely coupled,
reliable, and asynchronous communication between different components in a
distributed application.

Basic settings Module List Select the library to be used from the list.

Context Provider Type in the context URL, for example
"com.tibco.tibjms.naming.TibjmsInitialContext
Factory". However, be careful, the syntax can vary
according to the JMS server used.

Server URL Type in the server URL, respecting the syntax, for
example "tibjmsnaming://localhost:7222".

Connection Factory
JDNI Name

Type in the JDNI name.

Use Specified User
Identity

If you have to log in, select the check box and type in
your login and password.

Message Type Select the message type, either: Topic or Queue.

To Type in the message target, as expected by the server.

Processing Mode Select the processing mode for the messages.

Raw Message or Message Content

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component.

The tJMSOutput schema is read-only. It is made of
one column: Message

Advanced settings Delivery Mode Select a delivery mode from this list to ensure the
quality of data delivery:

Not Persistent: This mode allows data loss during the
data exchange.

Persistent: This mode ensures the integrity of message
delivery.

Properties Click the plus button underneath the table to add lines
that contains username and password required for user
authentication.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Related scenarios

Talend Open Studio Components Reference Guide 1381

Usage This component is generally used as an output component. It must be linked to
an input component.

Limitation Make sure the JMS server is launched.

Related scenarios

For related scenarios, see the section called “Scenario 1: Asynchronous communication via a MOM server” and
the section called “Scenario 2: Transmitting XML files via a MOM server”.

tMicrosoftMQInput

1382 Talend Open Studio Components Reference Guide

tMicrosoftMQInput

tMicrosoftMQInput Properties

Component family Internet/MOM and JMS

Function This component retrieves the first message in a given Microsoft message queue
(only support String).

Purpose This component allows you to fetch messages one by one in the ID sequence
of these messages from the Microsoft message queue. Each execution retrieves
only one message.

Basic settings PROPERTY Either Built-in or Repository.

Built-in: No property data stored centrally. Enter
properties manually

Repository: Select the repository file where properties
are stored. The fields that come after are pre-filled in
using the fetched data.

Host Type in the Host name or IP address of the host server.

Queue Enter the queue name you want to retrieve messages
from.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is generally used as a start component of a Job or Subjob. It must
be linked to an output component.

Connections Outgoing links (from one component to another):

Row: Main, Iterate

Trigger: Run if; On Subjob Ok, On Component Ok; On
Component Error.

Incoming links (from one component to another):

Row: Iterate;

Trigger: Run if, On Subjob Ok, On Component Ok, On
Component Error.

For further information regarding connections, see
Talend Open Studio User Guide.

Limitation This component supports only String type. Also, it only works with the Windows
systems.

Scenario: Writing and fetching queuing messages from Microsoft message queue

Talend Open Studio Components Reference Guide 1383

Scenario: Writing and fetching queuing messages
from Microsoft message queue
This scenario is made of two Jobs. The first Job posts messages on a Microsoft message queue and the second
Job fetches the message from the server.

Posting messages on a Microsoft message queue

In the first Job, a string message is created using a tRowGenerator and put on a Microsoft message queue using
a tMicrosoftMQOutput. An intermediary tLogRow component displays the flow being passed.

Dropping and linking components

1. Drop the three components required for the first Job from the Palette onto the design workspace.

2. Connect the components using a Row > Main link.

Configuring the components

1. Double-click tRowGenerator to open its editor.

2. Click the plus button to add three rows into the schema table.

3. In the Column column, type in a new name for each row to rename it. Here, we type in ID, Name and Address.

4. In the Type column, select Integer for the ID row from the drop-down list and leave the other rows as String.

5. In the Functions column, select random for the ID row, getFirstName for the Name row and
getUsCity for the Address row.

6. In the Number of Rows for RowGenerator field on the right end of the toolbar, type in 12 to limit the
number of rows to be generated. Then, Click Ok to validate this editing.

In real case, you may use an input component to load the data of your interest, instead of the
tRowGenerator component.

Scenario: Writing and fetching queuing messages from Microsoft message queue

1384 Talend Open Studio Components Reference Guide

7. Double click the tMicrosoftMQOutput component to open its Component view.

8. In the Host field, type in the host address. In this example, it is localhost.

9. In the Queue field, type in the queue name you want to write message in. In this example, name it
AddressQueue.

10. In Message column (String Type) field, select Address from the drop-down list to determine the message
body to be written.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

You can see that this queue has been created automatically and that the messages have been written.

Fetching the first queuing message from the message queue

Now set the second Job in order to fetch the first queuing message from the message queue.

Scenario: Writing and fetching queuing messages from Microsoft message queue

Talend Open Studio Components Reference Guide 1385

Dropping and linking components

1. Drop tMicrosoftMQInput and tLogRow from the Palette to the design workspace.

2. Connect these two components using a Row > Main link.

Configuring the components

1. Double-click the tMicrosoftMQInput to open its Component view.

2. In the Host field, type in the host name or address. Here, we type in localhost.

3. In the Queue field, type in the queue name from which you want to fetch the message. In this example, it
is AddressQueue.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

The message body Atlanta fetched from the queue is displayed on the console.

Scenario: Writing and fetching queuing messages from Microsoft message queue

1386 Talend Open Studio Components Reference Guide

tMicrosoftMQOutput

Talend Open Studio Components Reference Guide 1387

tMicrosoftMQOutput

tMicrosoftMQOutput Properties

Component family Internet/MOM and JMS

Function This component writes a defined column of given inflow data to Microsoft
message queue (only support String type).

Purpose This component makes it possible to write messages to Microsoft message queue.

Basic settings PROPERTY Either Built-in or Repository.

Built-in: No property data stored centrally. Enter
properties manually

Repository: Select the repository file where properties
are stored. The fields that come after are pre-filled in
using the fetched data.

Host Type in the Host name or the IP address of the host
server.

Queue Type in the name of the queue which you want
write a given message in. This queue can be created
automatically on the fly if it does not exist then.

Message column Select the column as message to be written to Microsoft
message queue. The selected column must be of String
type.

Usage This component must be linked to an input or intermediary component.

Connections Outgoing links (from one component to another):

Row: Main, Iterate

Trigger: Run if, On Component Ok; On Component
Error.

Incoming links (from one component to another):

Row: Main; Reject; Iterate;

Trigger: Run if, On Subjob Ok, On Subjob Error; On
Component Ok, On Component Error.

For further information regarding connections, see
Talend Open Studio User Guide.

Limitation The message to be output cannot be null.

Related scenario

1388 Talend Open Studio Components Reference Guide

Related scenario

For a related scenario, see the section called “Scenario: Writing and fetching queuing messages from Microsoft
message queue”

tMomCommit

Talend Open Studio Components Reference Guide 1389

tMomCommit

tMomCommit Properties

This component is closely related to tMomRollback. It usually doesn’t make much sense to use these components
independently in a transaction.

Component family Internet

Function The tMomCommit commits data in the MQ Server.

Purpose Using a unique connection, this component commits in one go a global transaction
instead of doing that on every row or every batch and thus provides gain in
performance.

Basic settings Component list Select the Connection component used in your Job.

MQ Server Select the MOM server to be used from the list.

Close Connection This check box is selected by default. It allows you to close
the database connection once the commit is done. Clear
this check box to continue to use the selected connection
once the component has performed its task.

If you want to use a Row > Main connection to
link tMomCommit to your Job, your data will
be commited row by row. In this case, do not
select the Close connection check box or your
connection will be closed before the end of your
first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Mom components, especially with
tMomRollback component.

Limitation n/a

Related scenario

For tMomCommit related scenario, see the section called “tMysqlConnection”

tMomInput

1390 Talend Open Studio Components Reference Guide

tMomInput

tMomInput Properties

Component family Internet

Function Fetches a message from a queue on a Message-Oriented middle ware system and passes
it on to the next component.

Purpose tMomInput makes it possible to set up asynchronous communications via a MOM server.

Basic settings Keep listening Select this check box to keep the MOM server listening for and
fetching new messages.

-For JBoss Messaging server, with this check box selected, the
Sleeping time (in sec) field will appear.

-For Active MQ server, with this check box selected, the
Sleeping time (in sec) field will disappear.

Sleeping time (in sec) Set the frequency by typing in numbers.

This field is not available if the MQ Server you selected
is WebSphere MQ.

MQ Server Select the MOM server to be used from the list. According to the
server selected, the parameters required differ slightly.

Host/Port Fill in the Host name or IP address of the MOM server and Port.

Username Connection login to the server you select in the MQ Server list.

Password Connection password to the server you select in the MQ Server
list.

Message From Type in the message source, exactly as expected by the server;
this must include the type and name of the source. e.g.: queue/
A or topic/testtopic

Note that the field is case-sensitive.

This field is not available if the MQ Server you selected
is WebSphere MQ.

Message Type Select the message type, either: Topic or Queue.

This list is not available if the MQ Server you selected
is WebSphere MQ.

Message Body Type Select the message body type, either: Text , Bytes or Map

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component.

In the context of tMomInput usage, the schema is comprised
of two columns: From and Message, and the column names are
read only.

Websphere
MQ only

Channel Fill this field with the name of the channel through which the data
connection is established. The default value is DC.SVRCONN.

tMomInput Properties

Talend Open Studio Components Reference Guide 1391

Queue Manager A system program that provides a logical container for the
message queue and is responsible for transferring data to other
queue managers via message channels. Fill this field with the
name of the queue manager to which the data connection is made.

Message Queue A queue from which message queueing applications can put
messages on, and get messages. Fill this field with the name of
the message queue.

Is using message id to
fetch

Select this check box to fetch messages according to their IDs.

Commit (delete
message after reading
from the queue)

Select this check box to force a commit after reading each
message from the queue.

Backout removed
messages

Select this check box to indicate to the queue manager that all
the messages read from the server will not be deleted when the
connection to server is cut off.

This check box and the Browse message check box
in the Advanced settings view enable you to read
messages non-destructively from the queue. It is visible
only when the MQ server is WebSphere MQ with
the Keep listening check box cleared. For further
information, see https://publib.boulder.ibm.com/iseries/
v5r2/ic2924/books/csqzaw07.pdf .

ActiveMQ
only

Receive number of
messages

Select this check box to set the number of messages that you will
receive on the console.

When you want to limit the number of messages to
receive, the time limit becomes inactive and the Keep
listening/Sleeping time (in sec) fields disappear.

Advanced settings Acknowledgement
Mode

Select an acknowledgement mode from the list to indicate that
the client will acknowledge any messages it receives:

Auto Acknowledge: With this acknowledgement mode, the
client automatically acknowledges a message when it has either
successfully returned from a call to receive,or the message
listener it has called to process the message successfully returns.

Client Acknowledge: With this acknowledgement mode,
the client acknowledges a message by calling a message’s
acknowledge method.

Dups OK Acknowledge: This acknowledgement mode instructs
the session to lazily acknowledge the delivery of messages.

For further information about the usage of Jms headers,
see https://publib.boulder.ibm.com/iseries/v5r2/ic2924/books/
csqzaw07.pdf.

If the check box Set Transacted is selected
in the Advanced settings view of tMomOutput,
Acknowledgement Mode will be ignored. This check
box is enabled when the MQ server is ActiveMQ or
JBoss Messaging.

Get Jms Header Select this check box to receive the Jms headers through
the mapping from Jms fields onto MQ Series fields.
When this checkbox is checked, you can specify the Jms

tMomInput Properties

1392 Talend Open Studio Components Reference Guide

header and the corresponding reference column name in
the line(s) you added by clicking the plus button in the
Parameters table. For further information about the usage
of Jms headers, see https://publib.boulder.ibm.com/iseries/v5r2/
ic2924/books/csqzaw07.pdf.

This check box is enabled when the MQ server is
ActiveMQ or JBoss Messaging.

Get Jms Properties Select this check box to receive the Jms properties mapped to
MQMD fields. When this checkbox is checked, you can specify
the property name, the property type and the reference column
name in the line(s) you added by clicking the plus button in the
Parameters table. For further information about the usage of
Jms properties, see https://publib.boulder.ibm.com/iseries/v5r2/
ic2924/books/csqzaw07.pdf.

This check box is enabled when the MQ server is
ActiveMQ or JBoss Messaging.

Browse message Select this check box to disable Commit(delete message after
reading from the queue) check box and Backout removed
messages check box in the Basic settings view and open the
queue to browse messages.

This check box and the Backout removed messages
check box in the Basic settings view enable you to read
messages non-destructively from the queue. Browse
message check box is visible only when the MQ
server is WebSphere MQ with the Backout removed
messages check box cleared. For further information,
see http://publib.boulder.ibm.com/infocenter/wmqv7/
v7r0m0/index.jsp?topic=%2Fcom.ibm.mq.java.doc
%2Fcom%2Fibm%2Fmq%2FMQC.html/.

Get MQMD Fields Select this check box to set one or more message descriptors
by adding new fields for MQMD(message queuing message
descriptor) in the Parameters table:

Field Name: Select one or more message descriptors from the
list to retrieve header information of the message.

Reference Column Name: The header and properties
information of the message.

For further information, see http://publib.boulder.ibm.com/
infocenter/wmqv7/v7r0m0/index.jsp?topic=
%2Fcom.ibm.mq.csqzak.doc%2Ffr13040_.htm/.

This check box is available only when the MQ server is
WebSphere MQ.

Include Header Select this check box to enable the check box for:

MQRFH2 fixed Portion: Select this check box and click the
plus button to add one or more lines to specify the fields and
the reference column names for the fixed portion of MQRFH2
header.

and the check boxes for the variable portion which contains the
following three folders:

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0m0/index.jsp?topic=%2Fcom.ibm.mq.java.doc%2Fcom%2Fibm%2Fmq%2FMQC.html/
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0m0/index.jsp?topic=%2Fcom.ibm.mq.java.doc%2Fcom%2Fibm%2Fmq%2FMQC.html/
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0m0/index.jsp?topic=%2Fcom.ibm.mq.java.doc%2Fcom%2Fibm%2Fmq%2FMQC.html/
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0m0/index.jsp?topic=%2Fcom.ibm.mq.csqzak.doc%2Ffr13040_.htm/
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0m0/index.jsp?topic=%2Fcom.ibm.mq.csqzak.doc%2Ffr13040_.htm/
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0m0/index.jsp?topic=%2Fcom.ibm.mq.csqzak.doc%2Ffr13040_.htm/

tMomInput Properties

Talend Open Studio Components Reference Guide 1393

MCD folder: Select this check box and click the plus button
to add one or more lines to specify the fields and the reference
column names for the properties that describe the format of the
message.

JMS folder: Select this check box and click the plus button to
add one or more lines to specify the fields and the reference
column names for the transportation of JMS header fields and
JMSX properties.

USR folder: Select this check box and click the plus button to
add one or more lines to specify the fields and the reference
column names for the transportation of application-defined
properties associated with the message.

For further information about MQRFH2 header,
see https://publib.boulder.ibm.com/iseries/v5r2/ic2924/books/
csqzaw07.pdf.

This check box is available only when the MQ server is
WebSphere MQ.

Set CipherSpec Select this check box to enable the CipherSpec list from which
you can specify the CipherSpec to be used with WebSphere MQ
SSL.

For further information about CipherSpec,
see http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/
index.jsp?topic=%2Fcom.ibm.mq.csqzas.doc
%2Fsy12870_.htm.

This check box is available only when the MQ server is
WebSphere MQ.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Enable parallel
execution

Select this check box to perform high-speed data processing, by
treating multiple data flows simultaneously.

In the Number of parallel executions field, either:

- Enter the number of parallel executions desired.

- Press Ctrl + Space and select the appropriate context variable
from the list.

For further information, see Talend Open Studio User Guide.

The Action on table field is not available with the
parallelization function. Therefore, you must use a
tCreateTable component if you want to create a table.

When parallel execution is enabled, it is not possible
to use global variables to retrieve return values in a
SubJob.

Usage This component is generally used as a start component. It must be linked to an output
component.

Limitation Make sure the relevant ActiveMQ, JBoss Messaging or Websphere MQ server is
launched.

http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=%2Fcom.ibm.mq.csqzas.doc%2Fsy12870_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=%2Fcom.ibm.mq.csqzas.doc%2Fsy12870_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=%2Fcom.ibm.mq.csqzas.doc%2Fsy12870_.htm

Scenario 1: Asynchronous communication via a MOM server

1394 Talend Open Studio Components Reference Guide

Scenario 1: Asynchronous communication via a MOM
server

This scenario is made of two Jobs. The first Job posts messages on a JBoss server queue and the second Job fetches
the message from the server.

In the first Job, a string message is created using a tRowGenerator and put on a JBoss server using a
tMomOutput. An intermediary tLogRow component displays the flow being passed.

• Drop the three components required for the first Job from the Palette onto the design workspace and right-click
to connect them using a Main row link.

• Double-click on tRowGenerator to set the schema to be randomly generated.

• Set just one column called message. This is the message to be put on the MOM queue.

• This column is of String type and is nullable. To produce the data, use a preset function which concatenates
randomly chosen ascii characters to form a 6-char string. This function is getAsciiRandomString. (Java
version). Click the Preview button to view a random sample of data generated.

• Set the Number of rows to be generated to 10.

• Click OK to validate.

• The tLogRow is only used to display a intermediary state of the data to be handled. In this example, it doesn’t
require any specific configuration.

• Then select the tMomOutput component.

• In this case, the MQ server to be used is JBoss.

• In the Host and Port fields, fill in the relevant connection information.

• Select the Message type from the list. The message can be of Queue or Topic type. In this example, select
the Queue type from the list.

Scenario 1: Asynchronous communication via a MOM server

Talend Open Studio Components Reference Guide 1395

• In the To field, type in the message source information strictly respecting the syntax expected by the server.
This should match the Message Type you selected, such as: queue/A.

The message name is case-sensitive, therefore queue/A and Queue/A are different.

• Then click Sync Columns to pass on the schema from the preceding component. The schema being read-only,
it cannot be changed. The data posted onto the MQ comes from the first schema column encountered.

• Press F6 to execute the Job and view the data flow being passed on in the console, thanks to the tLogRow
component.

Then set the second Job in order to fetch the queuing messages from the MOM server.

• Drop the tMomInput component and a tLogRow from the Palette to the design workspace.

• Select the tMomInput to set the parameters.

• Select the MQ server from the list. In this example, a JBoss messaging server is used.

• Set the server Host and Port information.

• Set the Message From and the Message Type to match the source and type expected by the messaging server.

• The Schema is read-only and is made of two columns: From and Message.

• Select the Keep listening check box and set the verification frequency to 5 seconds.

When using the Keep Listening option, you’ll need to kill the Job to end it.

• No need to change any default setting from the tLogRow.

• Save the Job and run it (when launching for the first time or if you killed it on a previous run).

Scenario 2: Transmitting XML files via a MOM server

1396 Talend Open Studio Components Reference Guide

The messages fetched on the server are displayed on the console.

Scenario 2: Transmitting XML files via a MOM server

This scenario describes a five-component Job composed of two subjobs that sends XML files from a local folder to
a MOM queue, and then fetches the files from the MOM queue and displays the contents of the files on the console.

Dropping and links the components

1. From the Palette, drop the following components one after another onto the design workspace: tFileList,
tFileInputXML, tMomOutput, tMomInput, and tLogRow.

2. Connect tFileList to tFileInputXML using a Row > Iterate link, and connect tFileInputXML to
tMomOutput using a Row > Main link to form the first subjob. This subjob will read each XML file in a
given folder and send it to a MOM queue.

3. Connect tMomInput to tLogRow using a Row > Main link to form the second subjob. This subjob will
fetch the XML files from MOM queue and display the file contents on the console.

4. Connect tFileInputXML to tMomInput using a Trigger > On Component Ok connection to link the two
subjobs.

Scenario 2: Transmitting XML files via a MOM server

Talend Open Studio Components Reference Guide 1397

Configuring the first subjob

Configuring the input components

1. Double-click the tFileList component to open its Basic settings view.

2. In the Directory field, enter the path to the directory to read XML files from, or browse to the path by clicking
the [...] button next to the field.

3. Select Use Glob Expressions as Filemask check box, add a new line in the Files field by clicking the [+]
button, and enter "*.xml" as the file mask so that all XML files in the directory will be used. Keep all the
other settings as they are.

4. Double-click the tFileInputXML component to open its Basic settings view.

5. Click the [...] button next to Edit schema to open the [Schema] dialog box.

Scenario 2: Transmitting XML files via a MOM server

1398 Talend Open Studio Components Reference Guide

6. Click the [+] button to add a column, give it a name, message in this example, and select Document from
the Type list to handle XML format files. Then, click OK to close the dialog box.

7. In the File name/Stream field, press Ctrl+Space to access the global variable list, and select
tFileList_1.CURRENT_FILEPATH to loop on the context files’ directory.

8. In in the Loop XPath query fields, enter “/” to define the root as the loop node of the input files' structure;
in the Mapping table, fill the XPath query column with “.” to extract all data from context node of the
source files, and select the Get Nodes check box to build a Document type data flow.

Configuring the tMomOutput component

1. Double-click the tMomOutput component to open its Basic settings view.

2. Select WebSphere MQ from the MQ server list, and enter the host name or IP address of the MQ server
and the port number.

3. Enter the login authentication information in the Username and Password fields, and enter the channel name
of the transmission queue in the Channel field.

4. As we are handling file messages, select Text Message from the Message Body Type list.

5. Click Sync columns to retrieve the schema structure from the preceding component.

Scenario 2: Transmitting XML files via a MOM server

Talend Open Studio Components Reference Guide 1399

6. Fill in the queue manager and message queue details in the corresponding fields, and leave the other settings
as they are.

Configuring the second subjob

1. Double-click the tMomInput component to open its Basic settings view.

2. Set the basic parameters of the component using the same settings you have done in the tMomOutput
component, including the MQ server details, login authentication details, channel, message body type, queue
manager and message queue.

3. Click the [...] button next to Edit schema to open the [Schema] dialog box.

4. From the Type list for the message column, select Document to handle XML format files, and then click
OK to close the dialog box.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

Scenario 2: Transmitting XML files via a MOM server

1400 Talend Open Studio Components Reference Guide

2. Press F6 or click Run on the Run tab to execute the Job.

The XML files in the specified folder are written to the message queue and then retrieved from the queue.
The contents of the files are displayed on the console.

tMomMessageIdList

Talend Open Studio Components Reference Guide 1401

tMomMessageIdList

tMomMessageIdList Properties

Component family Internet

Function tMomMessageIdList fetches a message ID list from a queue on a Message-
Oriented middleware system and passes it to the next component.

Purpose tMomMessageIdList makes it possible to iterate on certain message IDs. It
is usually used with tMomInput, for more information, see the section called
“tMomInput Properties”.

Basic settings MQ Server Select the MOM server to be used from the list.
According to the server selected, the parameters
required differ slightly.

Host/Port Fill in the Host name or IP address of the MOM server
and Port.

Websphere Channel Channel on the queue.

Queue Manager Fill in the server driver details.

Message Queue Source of the message.

Usage This component is generally used as an input component.

Limitation Make sure the relevant Websphere server is launched.

Related scenario

For a related scenario, see the section called “tMomInput”.

tMomOutput

1402 Talend Open Studio Components Reference Guide

tMomOutput

tMomOutput Properties

Component family Internet

Function Adds a message to a Message-Oriented middleware system queue in order for it
to be fetched asynchronously.

Purpose tMomOutput makes it possible to set up asynchronous communications via a
MOM server.

Basic settings MQ Server Select the MOM server to be used from the list.
According to the server selected, the parameters
required differ slightly.

Host/Port Fill in the MOM server and Port Host name or IP
address.

Username Connection login to the server.

Password Connection password to the server.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component.

In the context of tMomOutput usage, the schema is
read-only but will change according to the incoming
schema. Only one-column schema is expected by the
server to contain the Messages.

Websphere Channel Fill this field with the name of the channel through
which the data connection is established. The default
value is DC.SVRCONN.

Message Body Type Select the message body type, either: Text, Bytes or
Map.

Queue Manager A system program that provides a logical container for
the message queue and is responsible for transferring
data to other queue managers via message channels. Fill
this field with the name of the queue manager to which
the data connection is made.

Message Queue A queue from which message queueing applications
can put messages on, and get messages. Fill this field
with the name of the message queue.

Is using message id to
set

Select this check box to set messages according to their
ids.

JBoss Messaging To Type in the message destination, respecting the syntax
required by the server; this must include the type
and name of the target folder. e.g.: queue/A or topic/
testtopic

Note that the field is case-sensitive.

Message Type Select the message type, either: topic or queue.

tMomOutput Properties

Talend Open Studio Components Reference Guide 1403

Message Body Type Select the message body type, either: Text, Bytes or
Map.

ActiveMQ To Type in the message destination, respecting the syntax
required by the server; this must include the type
and name of the target folder. e.g.: queue/A or topic/
testtopic

Note that the field is case-sensitive.

Message Type Select the message type, either: topic or queue.

Message Body Type Select the message body type, either: Text, Bytes or
Map.

Advanced settings Delivery Mode Select a delivery mode supported by JMS:

Not Persistent: This delivery mode does not require
that the message be logged to stable storage.

Persistent: This delivery mode requires that the
message be logged to stable storage as part of the
client's send operation.

For further information about the delivery
modes, see https://publib.boulder.ibm.com/iseries/
v5r2/ic2924/books/csqzaw07.pdf.

This check box is enabled when the MQ server
is ActiveMQ or JBoss Messaging.

Set Transacted Select this check box to transact the
session. For further information about this
paramater, see https://publib.boulder.ibm.com/iseries/
v5r2/ic2924/books/csqzaw07.pdf.

Selecting this check box will ignore the
settings in the Acknowledgement Mode list
in the Advanced settings view of tMomInput.
This check box is enabled when the MQ server
is ActiveMQ or JBoss Messaging.

Set Jms Header Select this check box to send the Jms headers
through the mapping from Jms fields onto MQ
Series fields on the MQ server. When this checkbox
is checked, you can specify the header name
and the header value in the line(s) you added
by clicking the plus button in the Parameters
table. For further information about the usage
of Jms headers, see https://publib.boulder.ibm.com/
iseries/v5r2/ic2924/books/csqzaw07.pdf.

This check box is enabled when the MQ server
is ActiveMQ or JBoss Messaging.

Set Jms Properties Select this check box to send the Jms properties
mapped onto MQMD fields on the MQ server.
When this checkbox is checked, you can specify
the property name, the property type and the
property value in the line(s) you added by
clicking the plus button in the Parameters table.
For further information about the usage of Jms

tMomOutput Properties

1404 Talend Open Studio Components Reference Guide

properties, see https://publib.boulder.ibm.com/iseries/
v5r2/ic2924/books/csqzaw07.pdf.

This check box is enabled when the MQ server
is ActiveMQ or JBoss Messaging.

Use format Select this check box to specify the WebSphere
message format in the WebSphere Message Format
field. The default format is MQSTR.

For further information about WebSphere message
format, see http://publib.boulder.ibm.com/infocenter/
wtxdoc/v8r2m0/index.jsp?topic=/
com.ibm.websphere.dtx.adapibmmq.doc/references/
r_ibmmq_Message_Format_FORMAT.htm.

This check box is available only when the MQ
server is WebSphere MQ.

Include Header Select this check box to enable the check box for:

MQRFH2 fixed Portion: Select this check box and
click the plus button to add one or more lines to specify
the field name and the value for the fixed portion of
MQRFH2 header.

and the check boxes for the variable portion which
contains the following three folders:

MCD folder: Select this check box and click the plus
button to add one or more lines to specify the field name
and the value for the properties that describe the format
of the message.

JMS folder: Select this check box and click the plus
button to add one or more lines to specify the field name
and the value for the transportation of JMS header fields
and JMSX properties.

USR folder: Select this check box and click the plus
button to add one or more lines to specify the field name
and the value for the transportation of application-
defined properties associated with the message.

For further information about MQRFH2
header, see https://publib.boulder.ibm.com/iseries/
v5r2/ic2924/books/csqzaw07.pdf.

This check box is available only when the MQ
server is WebSphere MQ.

Set CipherSpec Select this check box to enable the CipherSpec list from
which you can specify the CipherSpec to be used with
WebSphere MQ SSL.

For further information about CipherSpec,
see http://publib.boulder.ibm.com/infocenter/wmqv6/
v6r0/index.jsp?topic=%2Fcom.ibm.mq.csqzas.doc
%2Fsy12870_.htm.

http://publib.boulder.ibm.com/infocenter/wtxdoc/v8r2m0/index.jsp?topic=/com.ibm.websphere.dtx.adapibmmq.doc/references/r_ibmmq_Message_Format_FORMAT.htm
http://publib.boulder.ibm.com/infocenter/wtxdoc/v8r2m0/index.jsp?topic=/com.ibm.websphere.dtx.adapibmmq.doc/references/r_ibmmq_Message_Format_FORMAT.htm
http://publib.boulder.ibm.com/infocenter/wtxdoc/v8r2m0/index.jsp?topic=/com.ibm.websphere.dtx.adapibmmq.doc/references/r_ibmmq_Message_Format_FORMAT.htm
http://publib.boulder.ibm.com/infocenter/wtxdoc/v8r2m0/index.jsp?topic=/com.ibm.websphere.dtx.adapibmmq.doc/references/r_ibmmq_Message_Format_FORMAT.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=%2Fcom.ibm.mq.csqzas.doc%2Fsy12870_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=%2Fcom.ibm.mq.csqzas.doc%2Fsy12870_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=%2Fcom.ibm.mq.csqzas.doc%2Fsy12870_.htm

Related scenario

Talend Open Studio Components Reference Guide 1405

This check box is available only when the MQ
server is WebSphere MQ.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Enable parallel
execution

Select this check box to perform high-speed
data processing, by treating multiple data flows
simultaneously.

In the Number of parallel executions field, either:

- Enter the number of parallel executions desired.

- Press Ctrl + Space and select the appropriate context
variable from the list.

For further information, see Talend Open Studio User
Guide.

The Action on table field is not available
with the parallelization function. Therefore,
you must use a tCreateTable component if you
want to create a table.

When parallel execution is enabled, it is not
possible to use global variables to retrieve
return values in a Subjob.

Usage This component must be linked to an input or intermediary component.

Limitation Make sure the relevant Websphere MQ, JBoss Messaging or ActiveMQ server
is launched.

Related scenario

For a related scenario, see the section called “tMomInput”

tMomRollback

1406 Talend Open Studio Components Reference Guide

tMomRollback

tMolRollback properties

This component is closely related to tMomCommit component. It usually does not make much sense to use these
components independently in a transaction.

Component family Internet

Function tMomRollback rollbacks data from the MQ Server..

Purpose Avoids involuntary commitment of part of a transaction.

Basic settings Component list Select the Connection component Used in your Job.

Close Connection Clear this check box to continue to use the selected
connection once the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is to be used along with Mom components, especially with
tMomCommit.

Limitation n/a

Related scenario

For tMomRollback related scenario, see the section called “Scenario: Rollback from inserting data in mother/
daughter tables”.

tPOP

Talend Open Studio Components Reference Guide 1407

tPOP

tPOP properties

Component family Internet

Function The tPOP component fetches one or more email messages from a server using
the POP3 or IMAP protocol.

Purpose The tPOP component uses the POP or IMAP protocol to connect to a specific
email server. Then it fetches one or more email messages and writes the recovered
information in specified files. Parameters in the Advanced settings view allows
you to use filters on your selection.

Basic settings Host IP address of the email server you want to connect to.

Port Port number of the email server.

Username and
Password

User authentication data for the email server.

Username: enter the username you use to access your
email box.

Password: enter the password you use to access your
email box.

Output directory Enter the path to the file in which you want to store the
email messages you retrieve from the email server, or
click the three-dot button next to the field to browse to
the file.

Filename pattern Define the syntax of the names of the files that will
hold each of the email messages retrieved from the
email server, or press Ctrl+Space to display the list of
predefined patterns.

Retrieve all emails? By default, all email messages present on the specified
server are retrieved.

To retrieve only a limited number of these email
messages, clear this check box and in the Number of
emails to retrieve.field, enter the number of messages
you want to retrieve. email messages are retrieved
starting from the most recent.

Delete emails from
server

Select this check box if you do not want to keep the
retrieved email messages on the server.

For Gmail servers, this option does not
work for the pop3 protocol. Select the imap
protocol and ensure that the Gmail account is
configured to use imap.

Choose the protocol From the list, select the protocol to be used to retrieve
the email messages from the server. This protocol is
the one used by the email server. If you choose the
imap protocol, you will be able to select the folder from
which you want to retrieve your emails.

Scenario: Retrieving a selection of email messages from an email server

1408 Talend Open Studio Components Reference Guide

Use SSL Select this check box if your email server uses
this protocol for authentication and communication
confidentiality.

This option is obligatory for users of Gmail.

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing
metadata at a job level as well as at each component
level.

Filter Click the plus button to add as many lines as needed
to filter email messages and retrieve only a specific
selection:

Filter item: select one of the following filter types from
the list:

From: email messages are filtered according to the
sender email address.

To: email messages are filtered according to the
recipient email address.

Subject: email messages are filtered according to the
message subject matter.

Before date: email messages are filtered by the sending
or receiving date. All messages before the set date are
retrieved.

After date: email messages are filtered by the sending
or receiving date. All messages after the set date are
retrieved.

Pattern: press Ctrl+Space to display the list of
available values. Select the value to use for each filter.

Filter condition relation Select the type of logical relation you want to use to
combine the specified filters:

and: the conditions set by the filters are combined
together, the research is more restrictive.

or: the conditions set by the filters are independent, the
research is large.

Usage This component does not handle data flow, it can be used alone.

Limitation n/a

Scenario: Retrieving a selection of email messages
from an email server

This Java scenario is a one-component Job that retrieves a predefined number of email messages from an email
server.

• Drop the tPOP component from the Palette to the design workspace.

• Double click tPOP to display the Basic settings view and define the component properties.

Scenario: Retrieving a selection of email messages from an email server

Talend Open Studio Components Reference Guide 1409

• Enter the email server IP address and port number in the corresponding fields.

• Enter the username and password for your email account in the corresponding fields. In this example, the email
server is called Free.

• In the Output directory field, enter the path to the output directory manually, or click the three-dot button
next to the field and browse to the output directory where the email messages retrieved from the email server
are to be stored.

• In the Filename pattern field, define the syntax you want to use to name the output files that will hold the
messages retrieved from the email server, or press Ctrl+Space to display a list of predefined patterns. The
syntax used in this example is the following: TalendDate.getDate("yyyyMMdd-hhmmss") + "_"
+ (counter_tPOP_1 + 1) + ".txt".

The output files will be stored as .txt files and are defined by date, time and arrival chronological order.

• Clear the Retrieve all emails? field and in the Number of emails to retrieve field, enter the number of email
messages you want to retrieve, 10 in this example.

• Select the Delete emails from server check box to delete the email messages from the email server once they
are retrieved and stored locally.

• In the Choose the protocol field, select the protocol type you want to use. This depends on the protocol used
by the email server. Certain email suppliers, like Gmail, use both protocols. In this example, the protocol used
is pop3.

• Save your Job and press F6 to execute it.

Scenario: Retrieving a selection of email messages from an email server

1410 Talend Open Studio Components Reference Guide

The tPOP component retrieves the 10 recent messages from the specified email server.

In the tPOP directory stored locally, a .txt file is created for each retrieved message. Each file holds the metadata
of the email message headings (sender’s address, recipient’s address, subject matter) in addition to the message
content.

tREST

Talend Open Studio Components Reference Guide 1411

tREST

tREST properties

Component family Internet

Function The tREST component sends HTTP requests to a REpresentational State
Transfer (REST) Web service provider and gets responses correspondingly.

Purpose The tREST component serves as a REST Web service client that sends HTTP
requests to a REST Web service provider and gets the responses.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component.

This component always uses a built-in, read-only
schema that contains two columns:

- Body: stores the result from the server end.

- ERROR_CODE: stores the HTTP status code
from the server end when an error occurs during
the invocation process. The specific meanings of
the errors codes are subject to definitions of your
Web service provider. For reference information, visit
en.wikipedia.org/wiki/List_of_HTTP_status_codes.

Click Edit Schema to view the schema structure.

Changing the schema type may result in loss of
the schema structure and therefore failure of
the component.

URL Type in the URL address of the REST Web server to
be invoked.

HTTP Method From this list, select an HTTP method that describes
the desired action. The specific meanings of the HTTP
methods are subject to definitions of your Web service
provider. Listed below are the generally accepted
HTTP method definitions:

- GET: retrieves data from the server end based on the
given parameters.

- POST: creates and uploads data based on the given
parameters.

- PUT: updates data based on the given parameters, or
if the data does not exist, creates it.

- DELETE: removes data based on the given
parameters.

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes

Scenario: Creating and retrieving data by invoking REST Web service

1412 Talend Open Studio Components Reference Guide

HTTP Headers Type in the name-value pair(s) for HTTP headers to
define the parameters of the requested HTTP operation.

For the specific definitions of HTTP headers,
consult your REST Web service provider. For
reference information, visit en.wikipedia.org/wiki/
List_of_HTTP_headers.

HTTP Body Type in the payload to be uploaded to the server end
when the POST or PUT action is selected.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at the Job level as well as at each component
level.

Usage Use this component as a REST Web service client to communicate with a REST
Web service provider. It must be linked to an output component.

Limitation JRE 1.6 must be running for this component to work properly.

Scenario: Creating and retrieving data by invoking
REST Web service

This scenario describes a simple Job that invokes a REST Web service to create a new customer record on the
server end and then retrieve the customer information. When executed, the Job displays relevant information on
the Run console.

• Drop the following components from the Palette onto the design workspace: two tREST components and two
tLogRow components, and label the two tREST components to best describe the actions to perform.

• Connect each tREST to one tLogRow using a Row > Main connection.

• Connect the first tREST to the second tREST using a Trigger > OnSubjobOK connection.

• Double click the first tREST component to open its Basic settings view.

http://en.wikipedia.org/wiki/List_of_HTTP_headers
http://en.wikipedia.org/wiki/List_of_HTTP_headers

Scenario: Creating and retrieving data by invoking REST Web service

Talend Open Studio Components Reference Guide 1413

• Fill the URL field with the URL of the Web service you are going to invoke. Note that the URL provided in
this use case is for demonstration purpose only and is not a live address.

• From the HTTP Method list, select POST to send an HTTP request for creating a new record.

• Click the plus button to add a line in the HTTP Headers table, and type in the appropriate name-value key pair,
which is subject to definition of your service provider, to indicate the media type of the payload to send to the
server end. In this use case, type in Content-Type and application/xml. For reference information about Internet
media types, visit www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.7.

• Fill the HTTP Body field with the payload to be uploaded to the server end. In this use case, type in
<Customer><name>Steven</name></Customer> to create a record for a new customer named Steven.

If you want to include double quotation marks in your payload, be sure to use a backslash escape character
before each of the quotation marks. In this use case, for example, type in <Customer><name>\"Steven
\"</name></Customer> if you want to enclose the name Steven in a pair of double quotation marks.

• Double click the second tREST component to open its Basic settings view.

• Fill the URL field with the same URL.

• From the HTTP Method list, select GET to send an HTTP request for retrieving the existing records.

• In the Basic settings view of each tLogRow, select the Print component unique name in front of each output
row and Print schema column name in front of each value check boxes for better identification of the output
flows.

• Save your Job and press F6 to launch it.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.7

Scenario: Creating and retrieving data by invoking REST Web service

1414 Talend Open Studio Components Reference Guide

The console shows that the first tREST component sends an HTTP request to the server end to create a new
customer named Steven, and the second tREST component successfully reads data from the server end, which
includes the information of the new customer you just created.

tRSSInput

Talend Open Studio Components Reference Guide 1415

tRSSInput

tRSSInput Properties

Component family Internet

Function tRSSInput reads RSS-Feeds using URLs.

Purpose tRSSInput makes it possible to keep track of blog entries on websites to gather
and organize information for quick and easy access.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

The tRSSInput component has a read-only schema that
is made of four columns: TITLE, DESCRIPTION,
PUBDATE, and Link.

RSS URL Enter the URL for the RSS_Feed to read.

Read articles from If selected, tRSSInput reads articles on the RSS_Feed
from the date set through the three-dot [...] button next
to the date time field.

Max number of articles If selected, tRSSInput reads as many articles as the
number entered in the max amount field.

Die on error This check box is selected by default. Clear the check
box to skip the row on error and complete the process
for error-free rows.

Usage This component is generally used as an input component. It requires an output
component.

Limitation n/a

Scenario: Fetching frequently updated blog entries.

This two-component scenario aims at retrieving frequently updated blog entries from a Talend local news RSS
feed using the tRSSInput component.

1. Drop the following components from the Palette onto the design workspace: tRSSInput and tLogRow.

2. Right-click to connect them using a Row > Main link.

Scenario: Fetching frequently updated blog entries.

1416 Talend Open Studio Components Reference Guide

3. In the design workspace, select tRSSInput, and click the Component tab to define the basic settings for
tRSSInput.

4. Enter the URL for the RSS_Feed to access. In this scenario, tRSSInput links to the Talend RSS_Feed: http://
feeds.feedburner.com/Talend.

5. Select/clear the other check boxes as required. In this scenario, we want to display the information about two
articles dated from July 20, 2008.

6. In the design workspace, select tLogRow and click the Component tab to define its basic settings. For more
information about tLogRow properties, see the section called “tLogRow properties”.

7. Save the Job and press F6 to execute it.

The tRSSInput component accessed the RSS feed of Talend website on your behalf and organized the
information for you.

Two blog entries are displayed on the console. Each entry has its own title, description, publication date,
and the corresponding RSS feed URL address. Blogs show the last entry first, and you can scroll down to
read earlier entries.

tRSSOutput

Talend Open Studio Components Reference Guide 1417

tRSSOutput

tRSSOutput Properties

Component family Internet

Function tRSSOutput writes RSS_Feed or Atom_Feed XML files.

Purpose tRSSOutput makes it possible to create XML files that hold RSS or Atom feeds.

Basic settings File name Name or path to the output XML file. Related topic: see
Talend Open Studio User Guide.

Encoding Select an encoding type from the list, or select Custom
and define it manually. This field is compulsory for DB
data handling.

Append Select this check box to add the new rows to the end
of the file.

Mode Select between RSS or ATOM according to the feed
you want to generate.

Channel (in RSS mode) The information to be typed in here concerns
your entire input data, site etc, rather than a
particular item.

Title: Enter a meaningful title.

Description: Enter a description that you think will
describe your content.

Publication date: Enter the relevant date.

Link: Enter the relevant URL.

Feed (in ATOM mode) Title: Enter a meaningful title.

Link: Enter the relevant URL.

Id: Enter the valid URL corresponding to the Link.

Update date: Enter the relevant date .

Author name: Enter the relevant name.

Optionnal Channel
Elements

Click the [+] button below the table to add new lines and
enter the information relative to the RSS flow metadata:

Element Name: name of the metadata.

Element Value: content of the metadata.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Scenario 1: Creating an RSS flow and storing files on an FTP server

1418 Talend Open Studio Components Reference Guide

By default, the schema of tRSSOutput is made of
five read-only columns: id, title, link, updated, and
summary. You can add new columns or click Syn
columns to retrieve the schema structure from the
preceding component.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component must be linked to an input or intermediary component.

Limitation n/a

Scenario 1: Creating an RSS flow and storing files on
an FTP server
In this scenario we:

• create an RSS flow for files that you would like to share with other people, and

• store the complete files on an FTP server.

This scenario writes an RSS feed XML file about a Mysql table holding information about books. It adds links to
the files stored on an FTP server in case users want to have access to the complete files.

Dropping and linking components

1. Drop the following components from the Palette onto the design workspace: tMysqlInput, tRSSOutput,
and tFTPPut.

2. Right-click tMysqlInput and connect it to tRSSOutput using a Row > Main link.

3. Right-click tMysqlInput and connect it to tFTPPut using a Trigger > OnSubjobOk link.

Defining the data source

1. In the design workspace, select tMysqlInput, and click the Component tab to define the basic settings for
tMysqlInput.

Scenario 1: Creating an RSS flow and storing files on an FTP server

Talend Open Studio Components Reference Guide 1419

2. Set the Property type to Repository and click the three-dots button [...] to select the relevant DB entry from
the list. The connection details along with the schema get filled in automatically.

3. In the Table Name field, either type your table name or click the three dots button [...] and select your table
name from the list. In this scenario, the Mysql input table is called “rss_talend” and the schema is made up
of four columns, TITLE, Description, PUBDATE, and LINK.

4. In the Query field, enter your DB query paying particular attention to properly sequence the fields in order
to match the schema definition, or click Guess Query.

Creating an RSS flow

1. In the design workspace, select tRSSOutput, and click the Component view to define the basic settings
for tRSSOutput.

Scenario 1: Creating an RSS flow and storing files on an FTP server

1420 Talend Open Studio Components Reference Guide

2. In the File name field, use the by default file name and path, or browse to set your own for the output XML
file.

3. Select the encoding type on the Encoding Type list.

4. In the Mode area, select RSS.

5. In the Channel panel, enter a title, a description, a publication date, and a link to define your input data as
a whole.

6. Click Edit Schema to modify the schema if necessary.

You can click Sync columns to retrieve the generated schema from the preceding component.

7. Save your Job and press F6 to execute this first part.

Scenario 1: Creating an RSS flow and storing files on an FTP server

Talend Open Studio Components Reference Guide 1421

The tRSSOutput component created an output RSS flow in an XML format for the defined files.

Writing the complete files to an FTP server

To store the complete files on an FTP server:

1. In the design workspace, select FTPPut, and click the Component tab to define the basic settings for
tFTPPut.

Scenario 2: Creating an RSS flow that contains metadata

1422 Talend Open Studio Components Reference Guide

2. Enter the host name and the port number in their corresponding fields.

3. Enter your connection details in the corresponding Username and Password fields.

4. Browse to the local directory, or enter it manually in the Local directory field.

5. Enter the details of the remote server directory.

6. Select the transfer mode from the Transfer mode list.

7. On the Files panel, click on the plus button to add new lines and fill in the filemasks of all files to be copied
onto the remote directory. In this scenario, the files to be saved on the FTP server are all text files.

8. Save your Job and press F6 to execute it.

Files defined in the Filemask are copied on the remote server.

Scenario 2: Creating an RSS flow that contains
metadata

This scenario describes a two-component Job that creates an RSS flow that holds metadata and then redirects the
obtained information in an XML file of the output RSS flow.

Dropping and linking components

1. Drop tRSSInput and tRSSOutput from the Palette to the design workspace.

2. Connect the two components together using a Row > Main link.

Configuring the components

1. Double-click tRSSInput to open its Basic settings view and define the component properties.

Scenario 2: Creating an RSS flow that contains metadata

Talend Open Studio Components Reference Guide 1423

2. Enter the URL for the RSS_Feed to access. In this scenario, tRSSInput links to the Talend RSS_Feed: http://
feeds.feedburner.com/Talend.

3. In the design workspace, double-click tRSSOutput to display its Basic settings view and define the
component properties.

4. In the File name field, use the by default file name and path, or browse to set your own for the output XML
file.

5. Select the encoding type on the Encoding Type list.

6. In the Mode area, select RSS.

7. In the Channel panel, enter a title, a description, a publication date and a link to define your input data as
a whole.

8. In the Optional Channel Element, define the RSS flow metadata. In this example, the flow has two metadata:
copyright, which value is tos, and language which value is en_us.

9. Click Edit Schema to modify the schema if necessary.

You can click Sync Column to retrieve the generated schema from the preceding component.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

Scenario 3: Creating an ATOM feed XML file

1424 Talend Open Studio Components Reference Guide

The defined files are copied in the output XML file and the metadata display under the <channel> node
above the information about the RSS flow.

Scenario 3: Creating an ATOM feed XML file
This scenario describes a two component Job that generates data and writes them in an ATOM feed XML file.

Dropping and linking components

1. Drop the following components from the Palette onto the deisgn workspace: tFixedFlowInput of the Misc
component group and tRSSOutput of the Internet component group.

2. Right-click tFixedFlowInput and connect it to tRSSOutput using a Row Main link.

3. When asked whether you want to pass on the schema of tRSSOutput to tFixedFlowInput, click Yes.

Scenario 3: Creating an ATOM feed XML file

Talend Open Studio Components Reference Guide 1425

Configuring the components

1. In the design workspace, double-click tFixedFlowInput to display its corresponding Component view and
define its basic settings.

2. In the Number of rows field, leave the default setting to 1 to only generate one line of data.

3. In the Mode area, leave the Use Single Table option selected and fill in the Values table. Note that the
Column field of the Values table is filled in by the columns of the schema defined in the component.

4. In the Value field of the Values table, type in the data you want to be sent to the following component.

5. In the design workspace, double-click tRSSOutput to display its corresponding Component view and define
its basic settings.

Scenario 3: Creating an ATOM feed XML file

1426 Talend Open Studio Components Reference Guide

6. Click the [...] button next to the File Name field to set the output XML file directory and name.

7. In the Mode area, select ATOM to generate an ATOM feed XML file.

As the ATOM feed format is strict, some default information is required to create the XML file.
So, the schema tRSSOutput contains default columns that will contain those information. Those
default columns are greyed out to indicate that they must not be modified. If you choose to modify
the schema of the component, the ATOM XML file created will not be valid.

8. In the Feed area, enter a title, link, id, update date, author name to define your input data as a whole.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

Scenario 3: Creating an ATOM feed XML file

Talend Open Studio Components Reference Guide 1427

The tRSSOutput component creates an output ATOM flow in an XML format.

tSCPClose

1428 Talend Open Studio Components Reference Guide

tSCPClose

tSCPClose Properties

Componant family Internet/SCP

Function tSCPClose closes a connection to a fully encrypted channel.

Purpose This component closes a connection to an SCP protocol.

Basic settings Component list If there is more than one connection in the current Job,
select tSCPConnection from the list.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level

Usage tSCPClose is generally used as a start component. It requires an output component.

Limitation n/a

Related scenario

This component is closely related to tSCPConnection and tSCPRollback. It is generally used with
SCPConnection as it allows you to close a connection for the transaction which is underway.

For a related scenario see the section called “tMysqlConnection”.

tSCPConnection

Talend Open Studio Components Reference Guide 1429

tSCPConnection

tSCPConnection properties

Component family Internet/SCP

Function tSCPConnection opens an SCP connection for the current transaction.

Purpose tSCPConnection allows you to open an SCP connection to transfer files in one
transaction.

Host IP address of the SCP server.

Port Number of listening port of the SCP server.

Username User name for the SCP server.

Authentication method SCP authentication method.

Basic settings

Password User password for the SCP server.

Usage This component is typically used as a single-component sub-job. It is used along
with other SCP components.

Limitation n/a

Related scenarios

For a related scenario, see the section called “Scenario: Putting files on a remote FTP server”.

For a related scenario using a different protocol, see the section called “Scenario: Getting files from a remote
SCP server”.

tSCPDelete

1430 Talend Open Studio Components Reference Guide

tSCPDelete

tSCPDelete properties

Component family Internet/SCP

Function This component deletes files from remote hosts over a fully encrypted channel.

Purpose tSCPDelete allows you to remove a file from the defined SCP server.

Basic settings Host SCP IP address.

Port Listening port number of the SCP server.

Username SCP user name.

Authentication method SCP authentication method.

Password SCP password.

Filelist File name or path to the files to be deleted.

Usage This component is typically used as a single-component sub-job but can also be
used with other components.

Limitation n/a

Related scenario

For tSCPDelete related scenario, see the section called “Scenario: Getting files from a remote SCP server”.

For tSCPDelete related scenario using a different protocol, see the section called “Scenario: Putting files on a
remote FTP server”.

tSCPFileExists

Talend Open Studio Components Reference Guide 1431

tSCPFileExists

tSCPFileExists properties

Component family Internet/SCP

Function This component checks, over a fully encrypted channel, if a file exists on a remote
host.

Purpose tSCPFileExists allows you to verify the existence of a file on the defined SCP
server.

Host SCP IP address.

Port Listening port number of the SCP server.

Username SCP user name.

Authentication method SCP authentication method.

Password SCP password.

Remote directory File path on the remote directory.

Basic settings

Filename Name of the file to check.

Usage This component is typically used as a single-component sub-job but can also be
used with other components.

Limitation n/a

Related scenario

For tSCPFileExists related scenario, see the section called “Scenario: Getting files from a remote SCP server”.

For tSCPFileExists related scenario using a different protocol, see the section called “Scenario: Putting files on
a remote FTP server”.

tSCPFileList

1432 Talend Open Studio Components Reference Guide

tSCPFileList

tSCPFileList properties

Component family Internet/SCP

Function This component iterates, over a fully encrypted channel, on files of a given
directory on a remote host.

Purpose tSCPFileList allows you to list files from the defined SCP server.

Host SCP IP address.

Port Listening port number of the SCP server.

Username SCP user name.

Authentication method SCP authentication method.

Password SCP password.

Command separator The character used to separate multiple commands.

Basic settings

Filelist Directory name or path to the directory holding the files
to list.

Usage This component is typically used as a single-component sub-job but can also be
used with other components.

Limitation n/a

Related scenario

For tSCPFileList related scenario, see the section called “Scenario: Getting files from a remote SCP server”.

For tSCPFileList related scenario using a different protocol, see the section called “Scenario: Putting files on a
remote FTP server”.

tSCPGet

Talend Open Studio Components Reference Guide 1433

tSCPGet

tSCPGet properties

Component family Internet/SCP

Function This component transfers defined files via an SCP connection over a fully
encrypted channel.

Purpose tSCPGet allows you to copy files from the defined SCP server.

Basic settings Host SCP IP address.

Port Listening port number of the SCP server.

Username SCP user name.

Authentication method SCP authentication method.

Password SCP password.

Local directory Path to the destination folder.

Overwrite or Append List of available options for the transferred files.

Filelist File name or path to the file(s) to copy.

Usage This component is typically used as a single-component sub-job but can also be
used with other components.

Limitation n/a

Scenario: Getting files from a remote SCP server

This scenario creates a single-component Job which gets the defined file from a remote SCP server.

• Drop a tSCPGet component from the Palette onto the design workspace.

• In the design workspace, select tSCPGet and click the Component tab to define its basic settings.

Scenario: Getting files from a remote SCP server

1434 Talend Open Studio Components Reference Guide

• Fill in the Host IP address, the listening Port number, and the user name in the corresponding fields.

• On the Authentication method list, select the appropriate authentication method.

Note that the field to follow changes according to the selected authentication method. The authentication form
used in this scenario is password.

• Fill in the local directory details where you want to copy the fetched file.

• On the Overwrite or Append list, select the action to be carried out.

• In the Filelist area, click the plus button to add a line in the Source list and fill in the path to the given file
on the remote SCP server.

In this scenario, the file to copy from the remote SCP server to the local disk is backport.

• Save the Job and press F6 to execute it.

The given file on the remote server is copied on the local disk.

tSCPPut

Talend Open Studio Components Reference Guide 1435

tSCPPut

tSCPPut properties

Component family Internet/SCP

Function This component copies defined files to a remote SCP server over a fully encrypted
channel.

Purpose tSCPPut allows you to copy files to the defined SCP server.

Basic settings Host SCP IP address.

Port Listening port number of the SCP server.

Username SCP user name.

Authentication method SCP authentication method.

Password SCP password.

Remote directory Path. to the destination folder.

Filelist File name or path to the file(s) to copy.

Usage This component is typically used as a single-component sub-job but can also be
used with other components.

Limitation n/a

Related scenario

For tSCPPut related scenario, see the section called “Scenario: Getting files from a remote SCP server”.

For tSCPut related scenario using a different protocol, see the section called “Scenario: Putting files on a remote
FTP server”.

tSCPRename

1436 Talend Open Studio Components Reference Guide

tSCPRename

tSCPRename properties

Component family Internet/SCP

Function This component renames files on a remote SCP server.

Purpose tSCPRename allows you to rename file(s) on the defined SCP server.

Host SCP IP address.

Port Listening port number of the SCP server.

Username SCP user name.

Authentication method SCP authentication method.

Password SCP password.

File to rename Enter the name or path to the file you want to rename.

Basic settings

Rename to Enter the file new name.

Usage This component is typically used as a single-component sub-job but can also be
used with other components.

Limitation n/a

Related scenario

For tSCPRename related scenario, see the section called “Scenario: Getting files from a remote SCP server”.

tSCPTruncate

Talend Open Studio Components Reference Guide 1437

tSCPTruncate

tSCPRename properties

Component family Internet/SCP

Function This component removes all the data from a file via an SCP connection.

Purpose tSCPTruncate allows you to remove data from file(s) on the defined SCP server.

Basic settings Host SCP IP address.

Port Listening port number of the SCP server.

Username SCP user name.

Authentication method SCP authentication method.

Password SCP password.

Remote directory Path. to the destination file.

Filelist File name or path to the file(s) to truncate.

Usage This component is typically used as a single-component sub-job but can also be
used with other components.

Limitation n/a

Related scenario

For tSCPTruncate related scenario, see the section called “Scenario: Getting files from a remote SCP server”.

tSendMail

1438 Talend Open Studio Components Reference Guide

tSendMail

tSendMail Properties

Component family Internet

Function tSendMail sends emails and attachments to defined recipients.

Purpose tSendMail purpose is to notify recipients about a particular state of a Job or
possible errors.

Basic settings To Main recipient email address.

From Sending server email address.

Show sender’s name Select this check box if you want the sender name to
show in the messages.

Cc Email addresses of secondary recipients of the email
message directed to another.

Bcc Email addresses of secondary recipients of the email
message. Recipients listed in the Bcc field receive a copy
of the message but are not shown on any other recipient's
copy.

Subject Heading of the mail.

Message Body message of the email. Press Ctrl+Space to display
the list of available variables.

Die if the attachment
file doesn’t exist

This check box is selected by default. Clear this check
box if you want the message to be sent even if there are
no attachments.

Attachments / File
and Content Transfer
Encoding

Click the plus button to add as many lines as needed
where you can put filemask or path to the file to be sent
along with the mail, if any. Two options are available for
content transfer encoding, i.e. Default and Base64.

Other Headers Click the plus button to add as many lines as needed
where you can type the Key and the corresponding
Value of any header information that does not belong to
the standard header.

SMTP Host and Port IP address of SMTP server used to send emails.

SSL Support Select this check box to authenticate the server at the
client side via an SSL protocol.

STARTTLS Support Select this check box to authenticate the server at the
client side via a STARTTLS protocol.

Importance Select in the list the priority level of your messages.

Need authentication /
Username and
Password

Select this check box and enter a username and a
password in the corresponding fields if this is necessary
to access the service.

Die on error This check box is selected by default. Clear the check
box to skip the row on error and complete the process
for error-free rows.

Scenario: Email on error

Talend Open Studio Components Reference Guide 1439

Advanced settings MIME subtype from the
‘text’ MIME type

Select in the list the structural form for the text of the
message.

Encoding type Select the encoding from the list or select Custom and
define it manually.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is typically used as one sub-job but can also be used as output or
end object. It can be connected to other components with either Row or Iterate
links.

Limitation n/a

Scenario: Email on error

This scenario creates a three-component Job which sends an email to defined recipients when an error occurs.

• Drop the following components from your Palette to the design workspace: tFileInputDelimited,
tFileOutputXML, tSendMail.

• Define tFileInputdelimited properties. Related topic: the section called “tFileInputDelimited”.

• Right-click on the tFileInputDelimited component and select Row > Main. Then drag it onto the
tFileOutputXML component and release when the plug symbol shows up.

• Define tFileOutputXML properties.

• Drag a Run on Error link from tFileDelimited to tSendMail component.

• Define the tSendMail component properties:

Scenario: Email on error

1440 Talend Open Studio Components Reference Guide

• Enter the recipient and sender email addresses, as well as the email subject.

• Enter a message containing the error code produced using the corresponding global variable. Access the list of
variables by pressing Ctrl+Space.

• Add attachments and extra header information if any. Type in the SMTP information.

In this scenario, the file containing data to be transferred to XML output cannot be found. tSendmail runs on this
error and sends a notification email to the defined recipient.

tSetKerberosConfiguration

Talend Open Studio Components Reference Guide 1441

tSetKerberosConfiguration

tSetKerberosConfiguration properties

Component family Internet

Function tSetKerberosConfiguration is designed to configure Kerberos authentication for
enhanced security of network communications.

For more information on the Kerberos protocol, go to http://www.kerberos.org.

Purpose tSetKerberosConfiguration allows you to enter the relevant information for
Kerberos authentication.

Basic settings KDC Server Address of the Key Distribution Center (KDC) server.

Realm Name of the Kerberos realm.

Username and
Password

Kerberos authentication credentials.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is typically used as a sub-job by itself and is used along with
tSoap.

Limitation n/a

Related scenarios

No scenario is available for this component.

http://www.kerberos.org

tSetKeystore

1442 Talend Open Studio Components Reference Guide

tSetKeystore

tSetKeystore properties

Component family Internet

Function tSetKeystore submits authentication data of a truststore with or without keystore
to validation for the SSL connection.

Purpose This component allows you to set the authentication data type between PKCS
12 and JKS.

Basic settings TrustStore type Select the type of the TrustStore to be used. It may be
PKCS 12 or JKS.

TrustStore file Type in the path, or browse to the certificate TrustStore
file (including filename) that contains the list of
certificates that the client trusts.

TrustStore password Type in the password used to check the integrity of the
TrustStore data.

Need Client
authentication

Select this check box to validate the keystore data. Once
doing so, you need complete three fields:

- KeyStore type: select the type of the keystore to be
used. It may be PKCS 12 or JKS.

- KeyStore file: type in the path, or browse to the file
(including filename) containing the keystore data.

- KeyStore password: type in the password for this
keystore.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is used standalone.

Connections Outgoing links (from one component to another):

Trigger: Run if; On Subjob Ok, On Subjob Error, On
Component Ok; On Component Error.

Incoming links (from one component to another):

Trigger: Run if, On Subjob Ok, On Component Ok, On
Component Error.

For further information regarding connections, see
Talend Open Studio User Guide.

Limitation n/a.

Scenario: Extracting customer information from a private WSDL file

Talend Open Studio Components Reference Guide 1443

Scenario: Extracting customer information from a
private WSDL file

This scenario describes a three-component Job that connects to a private WSDL file in order to extract customer
information.

The WSDL file used in this Job accesses the corresponding web service under the SSL protocol. For this purpose,
the most relative code in this file reads as follows :

<wsdl:port name="CustomerServiceHttpSoap11Endpoint"
binding="ns:CustomerServiceSoap11Binding">
 <soap:address location="https://192.168.0.22:8443/axis2/
services/CustomerService.CustomerServiceHttpSoap11Endpoint/"/>
 </wsdl:port>

Accordingly, we enter the following code in the server.xml file of Tomcat:

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
 maxThreads="150" scheme="https" secure="true"
 clientAuth="true" sslProtocol="TLS"
 keystoreFile="D:/server.keystore" keystorePass="password"
 keystoreType="JKS"
 truststoreFile="D:/server.p12" truststorePass="password"
 truststoreType="PKCS12"
 />

So we need keystore files to connect to this WSDL file. To replicate this Job, proceed as follows:

• Drop the following components from the Palette onto the design workspace: tSetKeystore, tWebService, and
tLogRow.

• Right-click tSetKeystore to open its contextual menu.

• In this menu, select Trigger > On Subjob Ok to connect this component to tWebService.

• Right-click tWebService to open its contextual menu.

• In this menu, select Row > Main to connect this component to tLogRow.

• Double-click tSetKeystore to open its Basic settings view and define the component properties.

Scenario: Extracting customer information from a private WSDL file

1444 Talend Open Studio Components Reference Guide

• In the TrustStore type field, select PKCS12 from the drop-down list.

• In the TrustStore file field, browse to the corresponding truststore file. Here, it is server.p12.

• In the TrustStore password field, type in the password for this truststore file. In this example, it is password.

• Select the Need Client authentication check box to activate the keystore configuration fields.

• In the KeyStore type field, select JKS from the drop-down list.

• In the KeyStore file field, browse to the corresponding keystore file. Here, it is server.keystore.

• Double-click tWebService to open the component editor, or select the component in the design workspace and
in the Basic settings view, click the three-dot button next to Service configuration.

• In the WSDL field, browse to the private WSDL file to be used. In this example, it is CustomerService.wsdl.

• Click the refresh button next to the WSDL field to retrieve the WSDL description and display it in the fields
that follow.

• In the Port Name list, select the port you want to use, CustomerServiceHttpSoap11Endpoint in this example.

• In the Operation list, select the service you want to use. In this example the selected service is
getCustomer(parameters):Customer.

Scenario: Extracting customer information from a private WSDL file

Talend Open Studio Components Reference Guide 1445

• Click Next to open a new view in the editor.

In the panel to the right of the Input mapping view, the input parameter of the service displays automatically.
However, you can add other parameters if you select [+] parameters and then click the plus button on top to
display the [Parameter Tree] dialog box where you can select any of the listed parameters.

The Web service in this example has only one input parameter, ID.

• In the Expression column of the parameters.ID row, type in the customer ID of your interest between quotation
marks. In this example, it is A00001.

• Click Next to open a new view in the editor.

In the Element list to the left of the view, the output parameter of the web service displays automatically. However,
you can add other parameters if you select [+] parameters and then click the plus button on top to display the
[Parameter Tree] dialog box where you can select any of the parameters listed.

The Web service in this example has four output parameter: return.address, return.email, return.name and
return.phone.

You now need to create a connection between the output parameter of the defined Web service and the schema
of the output component. To do so:

• In the panel to the right of the view, click the three-dot button next to Edit Schema to open a dialog box in
which you can define the output schema.

Scenario: Extracting customer information from a private WSDL file

1446 Talend Open Studio Components Reference Guide

• In the schema editing dialog box, click the plus button to add four columns to the output schema.

• Click in each column and type in the new names, Name, Phone, Email and Address in this example. This will
retrieve the customer information of your interest.

• Click OK to validate your changes and to close the schema editing dialog box.

• In the Element list to the right of the editor, drag each parameter to the field that corresponds to the column
you have defined in the schema editing dialog box.

If available, use the Auto map! button, located at the bottom left of the interface, to carry out the mapping
operation automatically.

• Click OK to validate your changes and to close the editor.

• In the design workspace, double-click tLogRow to open its Basic settings view and define its properties.

• Click Sync columns to retrieve the schema from the preceding component.

• Save your Job and press F6 to execute it.

The information of the customer with ID A00001 is returned and displayed in the console of Talend Open Studio.

tSocketInput

Talend Open Studio Components Reference Guide 1447

tSocketInput

tSocketInput properties

Component family Internet

Function tSocketInput component opens the socket port and listens for the incoming data.

Purpose tSocketInput component is a listening component, allowing to pass data via a
defined port

JAVA Basic settings Host name Name or IP address of the Host server

Port Listening port to open

Timeout Number of seconds for the port to listen before closing.

Uncompress Select this check box to unzip the data if relevant

Die on error This check box is selected by default. Clear the check
box to skip the row on error and complete the process for
error-free rows. If needed, you can retrieve the rows on
error via a Row > Rejects link.

Field separator Character, string or regular expression to separate fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Escape Char Character of the row to be escaped

Text enclosure Character used to enclose text.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and job flowcharts. Related topic: see Talend Open
Studio User Guide.

Encoding type Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

JAVA Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component opens a point of access to a workstation or server. This component
starts a Job and only stops after the time goes out.

Limitation n/a

Scenario: Passing on data to the listening port

1448 Talend Open Studio Components Reference Guide

Scenario: Passing on data to the listening port

The following scenario describes two Jobs aiming at passing data via a listening port. The first Job (SocketInput)
opens the listening port and waits for the data to be sent over. The second Job (SocketOutput) passes delimited
data from a file to a defined port number corresponding to the listening port.

Another application for the Socket components would be to allow controlled communication between servers
which cannot communicate directly.

Dropping and linking components

1. For the first Job, drop a tSocketInput component and a tLogRow component from the Palette to the design
workspace, and link them using a Row > Main connection.

2. For the second Job, drop a tFileInputDelimited component and a tSocketOutput component from the
Palette to the design workspace, and link them using a Row > Main connection.

Configuring the Jobs

1. On the second Job, select the tFileInputDelimited and on the Basic Settings tab of the Component view,
set the access parameters to the input file.

2. In File Name, browse to the file, and fill the Row, Field separators, and Header fields according to the
input file used.

Scenario: Passing on data to the listening port

Talend Open Studio Components Reference Guide 1449

3. Describe the Schema of the data to be passed on to the tSocketOutput component.

The schema should be propagated automatically to the output component.

4. Select the tSocketOutput component and set the parameters on the Basic Settings tab of the Component
view.

5. Define the Host IP address and the Port number where the data will be passed on to.

6. Set the number of retries in the Retry field and the amount of time (in seconds) after which the Job will
time out.

7. Now on the other Job (SocketInput) design, define the parameters of the tSocketInput component.

8. Define the Host IP address and the listening Port number where the data are passed on to.

9. Set the amount of time (in seconds) after which the Job will time out.

10. Edit the schema and set it to reflect the whole or part of the other Job’s schema.

Executing the Jobs

1. Press F6 to execute this Job (SocketInput) first, in order to open the listening port and prepare it to receive
the passed data.

2. Before the time-out, launch the other Job (SocketOutput) to pass on the data.

Scenario: Passing on data to the listening port

1450 Talend Open Studio Components Reference Guide

The result displays on the Run view, along with the opening socket information.

tSocketOutput

Talend Open Studio Components Reference Guide 1451

tSocketOutput

tSocketOutput properties

Component family Internet

Function tSocketOutput component writes data to a listening port.

Purpose tSocketOutput sends out the data from the incoming flow to listening socket port.

Basic settings Host name Name or IP address of the Host server

Port Listening port to open

Compress Select this check box to zip the data if relevant.

Retry times Number of retries before the Job fails.

Timeout Number of seconds for the port to listen before closing.

Die on error Clear this check box to skip the row on error and
complete the process for error-free rows.

Field separator Character, string or regular expression to separate fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Escape Char Character of the row to be escaped

Text enclosure Character used to enclose text.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and job flowcharts. Related topic: see Talend Open
Studio User Guide.

Encoding type Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Usage This component opens a point of access to a workstation or server. This component
starts a Job and only stops after the time goes out.

Limitation n/a

Related Scenario

1452 Talend Open Studio Components Reference Guide

Related Scenario

For use cases in relation with tSocketOutput, see the section called “Scenario: Passing on data to the listening
port”

tSOAP

Talend Open Studio Components Reference Guide 1453

tSOAP

tSOAP properties

Component family Internet

Function tSOAP sends the defined SOAP message with the given parameters to the invoked
Web service and returns the value as defined, based on the given parameters.

Purpose This component calls a method via a Web service in order to retrieve the values of
the parameters defined in the component editor.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component.

This component always uses a built-in, read-only
schema.

By default, the schema contains three String type
columns:

- Header: stores the SOAP message header of the
response from the server end.

- Body: stores the SOAP message body of the response
from the server end.

- Fault: stores the error information when an error occurs
during the SOAP message processing.

If the Output in Document check box is selected, the
schema then contains only one Document type column
named Soap, which stores the whole response SOAP
message in the XML format.

Click Edit schema to view the schema structure.

Changing the schema type may result in loss of
the schema structure and therefore failure of the
component.

Use NTLM Select this check box if you want to use the NTLM
authentication protocol.

Domain: Name of the client domain.

Need authentication Select this check box and enter a user name and a
password in the corresponding fields if this is necessary
to access the service.

Use http proxy Select this check box if you are using a proxy server and
fill in the necessary information.

tSOAP properties

1454 Talend Open Studio Components Reference Guide

Trust server with SSL Select this check box to validate the server certificate
to the client via an SSL protocol and fill in the
corresponding fields:

TrustStore file: enter the path (including filename) to
the certificate TrustStore file that contains the list of
certificates that the client trusts.

TrustStore password: enter the password used to check
the integrity of the TrustStore data.

ENDPOINT Type in the URL address of the invoked Web server.

SOAP Action Type in the URL address of the SOAPAction HTTP
header field to be used to identify the intent of the SOAP
HTTP request.

SOAP version Select the version of the SOAP system you are using.

The required SOAP Envelope varies among
versions.

Use a message from the
input schema

Select this check box to read a SOAP message from
the preceding component to send to the invoked Web
service.

When this check box is selected, the SOAP message
field becomes a drop-down list allowing you to select a
Document type column to read an input XML file.

This option makes sense only when the
tSOAP component is connected with an input
component the schema of which contains a
Document type column to read a valid SOAP
message.

Output in Document Select this check box to output the response message in
XML format.

SOAP message Type in the SOAP message to be sent to the invoked Web
service. The global and context variables can be used
when you write a SOAP message.

For further information about the context variables, see
Talend Open Studio User Guide.

Advanced settings Use Kerberos Select this check box to choose a
tSetKerberosConfiguration component from the
Kerberos configuration list.

The OnSubjobOk trigger of
tSetKerberosConfiguration should be used
for connection with tSoap.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component can be used as an input or as an intermediate component.

Connections Outgoing links (from one component to another):

Row: Main; Iterate

Scenario 1: Extracting the weather information using a Web service

Talend Open Studio Components Reference Guide 1455

Trigger: Run if; On Component Ok; On Component
Error.

Incoming links (from one component to another):

Row: Main; Iterate

Trigger: Run if; On Component Ok; On Component
Error.

For further information regarding connections, see
Talend Open Studio User Guide.

Limitation N/A

Scenario 1: Extracting the weather information using a
Web service

This scenario describes a two-component Job that uses a Web service to retrieve the weather information of a
given American city.

The Web service to be used is http://www.deeptraining.com/webservices/weather.asmx.

1. Drop the following components from the Palette onto the design workspace: tSOAP and tLogRow.

2. Right click tSOAP, select Row > Main from the contextual menu, and click tLogRow to connect the
components together using a Main Row link.

3. Double-click tSOAP to open its Basic settings view and define the component properties.

http://www.deeptraining.com/webservices/weather.asmx

Scenario 1: Extracting the weather information using a Web service

1456 Talend Open Studio Components Reference Guide

4. In ENDPOINT field, type in or copy-paste the URL address of the Web service to be used between the
quotation marks: “http://www.deeptraining.com/webservices/weather.asmx”.

5. In the SOAP Action field, type in or copy-paste the URL address of the SOAPAction HTTP header field
that indicates that you want to retrieve the weather information: http://litwinconsulting.com/webservices/
GetWeather.

You can see this address by looking at the WSDL for the Web service you are calling. For the Web
service of this example, in a web browser, append ?wsdl on the end of the URL of the Web service
used in the ENDPOINT field, open the corresponding web page, and then see the SOAPAction
defined under the operation node:

<wsdl:operation name="GetWeather">
<soap:operation soapAction="http://litwinconsulting.com/
webservices/GetWeather"
style="document"/>

6. In the SOAP version field, select the version of the SOAP system being used. In this scenario, the version
is SOAP 1.1.

7. In the SOAP message field, enter the XML-format message used to retrieve the weather information from
the invoked Web service. In this example, the weather information of Chicago is needed, so the message is:

"<soapenv:Envelope xmlns:soapenv=\"http://schemas.xmlsoap.org/soap/
envelope/\"
xmlns:web=\"http://litwinconsulting.com/webservices/\">
 <soapenv:Header/>
 <soapenv:Body>
 <web:GetWeather>
 <web:City>Chicago</web:City>
 </web:GetWeather>
 </soapenv:Body>

Scenario 2: Using a SOAP message from an XML file to get weather information and saving the information
to an XML file

Talend Open Studio Components Reference Guide 1457

 </soapenv:Envelope>"

8. Save your Job and press F6 to execute it.

The weather of Chicago is returned and displayed in the console of the Run view.

Scenario 2: Using a SOAP message from an XML file
to get weather information and saving the information
to an XML file

This scenario describes a three-component Job that uses a SOAP message from an input XML file to invoke a
Web service for weather information of Paris, and writes the response to an XML file.

As in the previous scenario, the Web service to be used is http://www.deeptraining.com/webservices/
weather.asmx.

Dropping and linking the components

1. Drop the following components from the Palette onto the design workspace: tFileInputXML, tSOAP, and
tFileOutputXML.

2. Connect the components using Main > Row links.

Configuring the input component

1. Double-click the tFileInputXML component to open its Basic settings view and define the component
properties.

http://www.deeptraining.com/webservices/weather.asmx
http://www.deeptraining.com/webservices/weather.asmx

Scenario 2: Using a SOAP message from an XML file to get weather information and saving the information
to an XML file

1458 Talend Open Studio Components Reference Guide

2. Click the [...] button next to Edit schema to open the [Schema] dialog box.

3. Click the [+] button to add a column, give it a name, getWeather in this example, and select Document from
the Type list. Then, click OK to close the dialog box.

4. In the File name/Stream field, enter the path to the input XML file that contains the SOAP message to be
used, or browse to the path by clicking the [...] button.

The input file contains the following SOAP message:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/
envelope/"
 xmlns:web="http://litwinconsulting.com/webservices/">
 <soapenv:Header/>
 <soapenv:Body>
 <web:GetWeather>
 <web:City>Paris</web:City>
 </web:GetWeather>
 </soapenv:Body>
</soapenv:Envelope>

5. In the Loop XPath query field, enter “/” to define the root as the loop node of the input file structure.

6. In the Mapping table, fill the XPath query column with “.” to extract all data from context node of the
source, and select the Get Nodes check box to build a Document type data flow.

Scenario 2: Using a SOAP message from an XML file to get weather information and saving the information
to an XML file

Talend Open Studio Components Reference Guide 1459

Configuring the Web service via the tSOAP component

1. Double-click the tSOAP component to open its Basic settings view and define the component properties.

2. In ENDPOINT field, enter or copy-paste the URL address of the Web service to be used between the
quotation marks: “http://www.deeptraining.com/webservices/weather.asmx”.

3. In the SOAP Action field, enter or copy-paste the URL address of the SOAPAction HTTP header field
that indicates that you want to retrieve the weather information: http://litwinconsulting.com/webservices/
GetWeather.

4. Select the Use a message from the input schema check box, and select a Document type column from the
SOAP Message list to read the SOAP message from the input file to send to the Web service. In this example,
the input schema has only one column, getWeather.

Configuring the output component

1. Double-click the tFileOutputXML component to open its Basic settings view.

2. In the File Name field, enter the path to the output XML file.

3. Select the Incoming record is a document check box to retrieve the incoming data flow as an XML
document. Note that a Column list appears allowing you choose a column to retrieve data from. In this
example, the schema contains only one column.

Scenario 2: Using a SOAP message from an XML file to get weather information and saving the information
to an XML file

1460 Talend Open Studio Components Reference Guide

Executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6, or click Run on the Run tab to execute the Job.

The weather of Paris is returned and the information is saved in the defined XML file.

tWebServiceInput

Talend Open Studio Components Reference Guide 1461

tWebServiceInput

tWebServiceInput Properties

Component family Internet

Function Calls the defined method from the invoked Web service, and returns the class as
defined, based on the given parameters.

Purpose Invokes a Method through a Web service.

To handle complex hierarchical data, use the advanced features of
tWebServiceInput and provide Java code directly in the Code field of
the Advanced Settings view.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where the
properties are stored. The fields that follow are
completed automatically using the data retrieved.

Click this icon to open a WSDL schema wizard and
store your WSDL connection in the Repository tree
view.

For more information about setting up and storing
database connection parameters, see Talend Open
Studio User Guide.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in or
remote in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes built-in.

Click Sync columns to retrieve the schema from the
previous component in the Job.

Built-in: You create the schema and store it locally for
the relevant component. Related topic: see Talend Open
Studio User Guide.

Repository: You have already created the schema and
stored it in the Repository. You can reuse it in various
projects and job flowcharts. Related topic: see Talend
Open Studio User Guide.

WSDL Description of Web service bindings and configuration.

Need authentication /
Username and
Password

Select this check box and:

-enter a username and a password in the corresponding
fields if this is necessary to access the service. Or,

Scenario 1: Extracting images through a Web service

1462 Talend Open Studio Components Reference Guide

-select the Windows authentication check box and
enter the windows domain in the corresponding field if
this is necessary to access the service.

Use http proxy Select this check box if you are using a proxy server
and fill in the necessary information.

Trust server with SSL Select this check box to validate the server certificate
to the client via an SSL protocol and fill in the
corresponding fields:

TrustStore file: enter the path (including filename) to
the certificate TrustStore file that contains the list of
certificates that the client trusts.

TrustStore password: enter the password used to
check the integrity of the TrustStore data.

Time out (second) Set a value in seconds for Web service connection time
out.

Method Name Enter the exact name of the Method to be invoked.

The Method name MUST match the corresponding
method described in the Web Service. The Method
name is also case-sensitive.

Parameters Enter the parameters expected and the sought values
to be returned. Make sure that the parameters entered
fully match the names and the case of the parameters
described in the method.

Advanced Use Select this check box to display the fields dedicated for
the advanced use of tWebServiceInput:

WSDL2java: click the three-dot button to generate
Talend routines that hold the Java code necessary to
connect and query the Web service.

Code: replace the generated model Java code with the
code necessary to connect and query the specified Web
service using the code in the generated Talend routines.

Match Brackets: select the number of brackets to be
used to close the for loop based on the number of open
brackets.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is generally used as a Start component. It must be linked to an
output component.

Limitation n/a

Scenario 1: Extracting images through a Web service

This scenario describes a two-component Job which uses a Web service method and displays the output on the
Run console view.

The method retrieves a full URL as an input string and returns a string array of images from a given Web page.

Scenario 1: Extracting images through a Web service

Talend Open Studio Components Reference Guide 1463

• Drop a tWebServiceInput component and a tLogRow component from the Palette onto the design workspace.

• On the Component view of the tWebServiceInput component, define the WSDL specifications, such as End
Point URI, WSDL and SOAPAction URI where required.

• If the Web service you invoke requires authentication details, select the Need authentication check box and
provide the relevant authentication information.

• If you are using a proxy server, select the Use http proxy check box and enter the necessary connection
information.

• In the Method Name field, enter the method name as defined in the Web Service description. The name and
the case of the method entered must match the corresponding Web service method exactly.

• In the Parameters area, click the plus [+] button to add a row to the table, then enter the exact name of the
parameters which correspond to the method.

• In the Value column, type in the URL of the Website that the images are to be extracted from.

• Link the tWebServiceInput component to the standard output component, tLogRow.

• Then save your Job and press F6 to execute it.

Scenario 2: Reading the data published on a Web service using the tWebServiceInput advanced features

1464 Talend Open Studio Components Reference Guide

All of the images extracted from the Web site are returned as a list of URLs on the Run view.

Scenario 2: Reading the data published on a Web
service using the tWebServiceInput advanced features

This scenario describes a two-component Job that retrieves a list of funds published by a financial Web service
(distributed by www.xignite.com) and displays the output on the standard console (the Run view).

This scenario is designed for advanced users with basic knowledge of Java. Since the aim of this Job is to retrieve
complex hierarchical data, you need to code the necessary functions in Java.

• Drop the following components from the Palette onto the design workspace: tWebServiceInput and tLogRow.

• Link the two components together using a Row Main connection.

• Double-click tWebServiceInput to show the Component view and set the component properties:

In the Basic settings view:

• In the Property Type list, select Built-in and complete the fields that follow manually.

• In the Schema Type list, select Built-in and click the [...] button to configure the data structure (schema)
manually, as shown in the figure below:

Scenario 2: Reading the data published on a Web service using the tWebServiceInput advanced features

Talend Open Studio Components Reference Guide 1465

• Click OK to validate the schema and close the window.

A dialog box opens and asks you if you want to propagate the modifications.

• Click Yes.

• In the WSDL field, enter the URL from which to get the WSDL.

• In the Time out field, enter the desired duration of the Web Service connection.

• Click the Advanced settings tab to display the corresponding view where you can set the tWebServiceInput
advanced features:

• Select the check box next to Advanced Use to display the advanced configuration fields.

• Click the [...] button next to the WSDL2Java field in order to generate routines from the WSDL Web service.

Scenario 2: Reading the data published on a Web service using the tWebServiceInput advanced features

1466 Talend Open Studio Components Reference Guide

The routines generated display automatically under Code > Routines in the Repository tree view. These routines
can thus easily be called in the code to build the function required to fetch complex hierarchical data from the
Web Service.

• Enter the relevant function in the Code field. By default, two examples of code are provided in the Code field.
The first example returns one piece of data, and the second example returns several.

• In this scenario, several data are to be returned. Therefore, remove the first example of code and use the second
example of code to build the function.

• Replace the pieces of code provided as examples with the relevant routines that have been automatically
generated from the WSDL.

• Change TalendJob_PortType to the routine name ending with _Port_Type, such as:
XigniteFundHoldingsSoap_PortType.

• Replace the various instances of TalendJob with a more relevant name such as the name of the method in
use. In this use case: fundHolding

• Replace TalendJobServiceLocator with the name of the routine ending with Locator, such as:
XigniteFundHoldingLocator.

• Replace both instances of TalendJobSoapBindingStub with the routine name ending with BindingStub,
such as: XigniteFundHoldingsSoap_BindingStub.

• Within the brackets corresponding to the pieces of code: stub.setUsername and stub.setPassword, enter your
username and password respectively, between quotes.

For the sake of confidentiality or maintenance, you can store your username and password in context variables.

Scenario 2: Reading the data published on a Web service using the tWebServiceInput advanced features

Talend Open Studio Components Reference Guide 1467

• The list of funds provided by the Xignite Web service is identified using so-called “symbols”, which are of string
type. In this example, we intend to fetch the list of funds of which the symbol is between “I” and “J”. To do so,
define the following statements: string startSymbol=“I” and string endSymbol=“J”.

• Then enter the piece of code to create the result table showing the list of funds (listFunds)
of funds holdings using the statements defined earlier on: routines.Fund[] result =
fundHoldings.listFunds(startSymbol, endSymbol);

• Run a loop on the fund list to fetch the funds ranging from “I” to “J”: for(int i = 0; i <
result.length; i++) {.

• Define the results to return, for example: fetch the CIK data from the Security schema using the code
getSecurity().getCIK(), then pass them on to the CIK output schema.

The function that operates the Web service should read as follows:

routines.XigniteFundHoldingsSoap_PortType
fundHoldings = new
 routines.XigniteFundHoldingsLocator().getXigniteFundHoldingsSoap(
);

routines.XigniteFundHoldingsSoap_BindingStub
stub = (routines.XigniteFundHoldingsSoap_BindingStub)fundHoldings;

stub.setUsername(“identifiant”);
Stub.setPassword(“mot de passe”);

String startSymbol="I";
String endSymbol="J";

routines.Fund[] result = fundHoldings.listFunds(startSymbol,
endSymbol); for(int i = 0; i < result.length; i++) {

output_row.CIK = (result[i]).getSecurity().getCIK();
output_row.cusip = (result[i]).getSecurity().getCusip();
output_row.symbol = (result[i]).getSecurity().getSymbol();
output_row.ISIN = (result[i]).getSecurity().getISIN();
output_row.valoren = (result[i]).getSecurity().getValoren();
output_row.name = (result[i]).getSecurity().getName();
output_row.market = (result[i]).getSecurity().getMarket();
output_row.category =
(result[i]).getSecurity().getCategoryOrIndustry();
output_row.asOfDate = (result[i]).getAsOfDate();

The outputs defined in the Java function output_row.output must match the columns defined in the
component schema exactly. The case used must also be matched in order for the data to be retrieved.

• In the Match Brackets field, select the number of brackets to use to end the For loop, based on the number of
open brackets. For this scenario, select one bracket only as only one bracket has been opened in the function.

• Double-click the tLogRow component to display the Component view and set its parameters.

• Click the [...] button next to the Edit Schema field in order to check that the preceding component schema was
properly propagated to the output component. If needed, click the Sync Columns button to retrieve the schema.

• Save your Job and press F6 to run it.

Scenario 2: Reading the data published on a Web service using the tWebServiceInput advanced features

1468 Talend Open Studio Components Reference Guide

The funds comprised between “I” and “J” are returned and displayed in the Talend Open Studio console.

tXMLRPCInput

Talend Open Studio Components Reference Guide 1469

tXMLRPCInput

tXMLRPCInput Properties

Component family Internet

Function Calls the defined method from the invoked RPC service, and returns the class as
defined, based on the given parameters.

Purpose Invokes a Method through a Web service and for the described purpose

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in or
remote in the Repository.

Click Edit Schema to make changes to the
schema. Note that if you make changes, the schema
automatically becomes built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

In the RPC context, the schema corresponds to the
output parameters. If two parameters are meant to be
returned, then the schema should contain two columns.

Server URL URL of the RPC service to be accessed

Need authentication
/ Username and
Password

Select this check box and fill in a username and
password if required to access the service.

Method Name Enter the exact name of the Method to be invoked.

The Method name MUST match the corresponding
method described in the RPC Service. The Method
name is also case-sensitive.

Return class Select the type of data to be returned by the method.
Make sure it fully matches the one defined in the
method.

Parameters Enter the parameters expected by the method as input
parameters.

Usage This component is generally used as a Start component. It requires to be linked
to an output component.

Limitation n/a

Scenario: Guessing the State name from an XMLRPC

This scenario describes a two-component Job aiming at using a RPC method and displaying the output on the
console view.

Scenario: Guessing the State name from an XMLRPC

1470 Talend Open Studio Components Reference Guide

• Drop the tXMLRPCInput and a tLogRow components from the Palette to the design workspac.

• Set the tXMLRPCInput basic settings.

• Define the Schema type as Built-in for this use case.

• Set a single-column schema as the expected output for the called method is only one parameter: StateName.

• Then set the Server url. For this demo, use: http://phpxmlrpc.sourceforge.net/server.php

• No authentication details are required in this use case.

• The Method to be called is: examples.getStateName

• The return class is not compulsory for this method but might be strictly required for another. Leave the default
setting for this use case.

• Then set the input Parameters required by the method called. The Name field is not used in the code but the
value should follow the syntax expected by the method. In this example, the Name used is State Nr and the
value randomly chosen is 42.

• The class has not much impact using this demo method but could have with another method, so leave the default
setting.

• On the tLogRow component Component view, check the box: Print schema column name in front of each
value.

• Then save the Job and press F6 to execute it.

Scenario: Guessing the State name from an XMLRPC

Talend Open Studio Components Reference Guide 1471

South Dakota is the state name found using the GetStateName RPC method and corresponds the 42nd State
of the United States as defined as input parameter.

Talend Open Studio Components Reference Guide

Talend Open Studio Components Reference Guide

Logs & Errors components
This chapter details the main components that you can find in the Logs & Errors family of the Talend Open
Studio Palette.

The Logs & Errors family groups together the components which are dedicated to log information catching and
Job error handling.

tAssert

1474 Talend Open Studio Components Reference Guide

tAssert

tAssert Properties

The tAssert component works alongside tAssertCatcher to evaluate the status of a Job execution. It concludes
with the boolean result based on an assertive statement related to the execution and feed the result to
tAssertCatcher for proper Job status presentation.

Component family Logs & Errors

Function Provides the Job status messages to tAssertCatcher.

Purpose Generates the boolean evaluation on the concern for the Job execution status.
The status includes:

- Ok: the Job execution succeeds.

- Fail: the Job execution fails. The tested Job's result does not match the
expectation or an execution error occured at runtime.

Basic settings Description Type in your descriptive message to help identify the
assertion of a tAssert.

Expression Type in the assertive statement you base the evaluation
on.

Usage This component follows the action the assertive condition is directly related
to. It can be the intermediate or end component of the main Job, or the start,
intermediate or end component of the secondary Job.

Limitation The evaluation of tAssert is captured only by tAssertCatcher.

Scenario: Setting up the assertive condition for a Job
execution

This scenario describes how to set up an assertive condition in tAssert in order to evaluate that a Job execution
succeeds or not. Moreover, you can also find out how the two different evaluation results display and the way to
read them. Apart from tAssert, the scenario uses the following components as well:

• tFileInputDelimited and tFileOutputDelimited. The two components compose the main Job of which the
execution status is evaluated. For the detailed information on the two components, see the section called
“tFileInputDelimited” and the section called “tFileOutputDelimited”.

• tFileCompare. It realizes the comparison between the output file of the main Job and a standard reference file.
The comparative result is evaluated by tAssert against the assertive condition set up in its settings. For more
detailed information on tFileCompare, see the section called “tFileCompare”.

• tAssertCatcher. It captures the evaluation generated by tAssert. For more information on tAssertCatcher, see
the section called “tAssertCatcher”.

• tLogRow. It allows you to read the captured evaluation. For more information on tLogRow, see the section
called “tLogRow”.

First proceed as follows to design the main Job:

Scenario: Setting up the assertive condition for a Job execution

Talend Open Studio Components Reference Guide 1475

• Prepare a delimited .csv file as the source file read by your main Job.

• Edit two rows in the delimited file. The contents you edit are not important, so feel free to simplify them.

• Name it source.csv.

• In Talend Open Studio, create a new job JobAssertion.

• Place tFileInputDelimited and tFileOutputDelimited on the workspace.

• Connect them with a Row Main link to create the main Job.

• Double-click tFileInputDelimited to open its Component view.

• In the File Name field of the Component view, fill in the path or browse to source.csv.

• Still in the Component view, set Property Type to Built-In and click next to Edit schema to define the
data to pass on to tFileOutputDelimited. In the scenario, define the data presented in source.csv you created.

For more information about schema types, see Talend Open Studio User Guide.

• Define the other parameters in the corresponding fields according to source.csv you created.

• Double-click tFileOutputDelimited to open its Component view.

• In the File Name field of the Component view, fill in or browse to specify the path to the output file, leaving
the other fields as they are by default.

• Press F6 to execute the main Job. It reads source.csv, pass the data to tFileOutputDelimited and output an
delimited file, out.csv.

Scenario: Setting up the assertive condition for a Job execution

1476 Talend Open Studio Components Reference Guide

Then contine to edit the Job to see how tAssert evaluates the execution status of the main Job.

• Rename out.csv as reference.csv.This file is used as the expected result the main Job should output.

• Place tFileCompare, tAssert and tLogRow on the workspace.

• Connect them with Row Main link.

• Connect tFileInputDelimited to tFileCompare with OnSubjobOk link.

• Double-click tFileCompare to open its Component view.

• In the Component view, fill in the corresponding file paths in the File to compare field and the Reference
file field, leaving the other fields as default.

For more information on the tFileCompare component, see the section called “tFileCompare”.

• Then click tAssert and click the Component tab on the lower side of the workspace.

Scenario: Setting up the assertive condition for a Job execution

Talend Open Studio Components Reference Guide 1477

• In the Component view, edit the assertion row2.differ==0 in the expression field and the descriptive
message of the assertion in description field.

In the expression field, row2 is the data flow transmissing from tFileCompare to tAssert, differ is one of
the columns of the tFileCompare schema and presents whether the compared files are identical, and 0 means no
difference is detected between the out.csv and reference.csv by tFileCompare. Hence when the compared files
are identical, the assertive condition is thus fulfilled, tAssert concludes that the main Job succeeds; otherwise,
it concludes failure.

The differ column is in the read-only tFileCompare schema. For more information on its schema, see
the section called “tFileCompare”.

• Press F6 to execute the Job.

• Check the result presented in the Run view

The console shows the comparison result of tFileCompare: Files are identical. But you find nowhere
the evaluation result of tAssert.

So you need tAssertCatcher to capture the evaluation.

• Place tAssertCatcher and tLogRow on the workspace.

• Connect them with Row Main link.

• Use the default configuration in the Component view of tAssertCatcher.

Scenario: Setting up the assertive condition for a Job execution

1478 Talend Open Studio Components Reference Guide

• Press F6 to execute the Job.

• Check the result presented in the Run view. You will see the Job status information is added in:

2010-01-29 15:37:33|fAvAzH|TASSERT|JobAssertion|java|tAssert_1|Ok|--|
The output file should be identical with the reference file

.

The descriptive information on JobAssertion in the console is organized according to the tAssertCatcher schema.
This schema includes, in the following order, the execution time, the process ID, the project name, the Job
name, the code language, the evaluation origin, the evaluation result, detailed information of the evaluation,
descriptive message of the assertion. For more information on the schema of tAssertCatcher, see the section
called “tAssertCatcher”.

The console indicates that the execution status of Job JobAssertion is Ok. In addition to the evalution, you can
still see other descriptive information about JobAssertion including the descriptive message you have edited in
the Basic settings of tAssert.

Then you will perform operations to make the main Job fail to generate the expected file. To do so, proceed as
follows in the same Job you have executed:

• Delete a row in reference.csv.

• Press F6 to execute the Job again.

• Check the result presented in Run view.

2010-02-01 19:47:43|GeHJNO|TASSERT|JobAssertion|tAssert_1|Failed|Test
logically failed|The output file should be identical with the reference
file

.

Scenario: Setting up the assertive condition for a Job execution

Talend Open Studio Components Reference Guide 1479

The console shows that the execution status of the main Job is Failed. The detailed explanation for this status is
closely behind it, reading Test logically failed.

You can thus get a basic idea about your present Job status: it fails to generate the expected file because of a logical
failure. This logical failure could come from a logical mistake during the Job design.

The status and its explanatory information are presented respectively in the status and the substatus columns of
the tAssertCatcher schema. For more information on the columns, see the section called “tAssertCatcher”.

tAssertCatcher

1480 Talend Open Studio Components Reference Guide

tAssertCatcher

tAssertCatcher Properties

Component family Logs & Errors

Function Based on its pre-defined schema, fetches the execution status information from
repository, Job execution and tAssert.

Purpose Generates a data flow consolidating the status information of a job execution and
transfer the data into defined output files.

Basic settings Schema type A schema is a row description, i.e., it defines the fields
to be processed and passed on to the next component.
In this particular case, the schema is read-only, as this
component gathers standard log information including:

Moment: Processing time and date.

Pid: Process ID.

Project: Project which the job belongs to.

Job: Job name.

Language: Language used by the Job (Java)

Origin: Status evaluation origin. The origin may be
different tAssert components.

Status: Evaluation fetched from tAssert. They may be

- Ok: if the assertive statement of tAssert is evaluated
as true at runtime.

- Failed: if the assertive statement of tAssert is
evaluated as false or an execution error occurs at
runtime. The tested Job's result does not match the
expectation or an execution error occured at runtime.

Substatus: Detailed explanation for failed execution.
The explanation can be:

- Test logically failed: the investigated Job does not
produce the expected result.

- Execution error: an execution error occured at
runtime.

Description: Descriptive message you typed in in
Basic settings of tAssert.

Catch Java Exception This check box allows to capture Java exception errors,
once checked.

Catch tAssert This check box allows to capture the evaluations of
tAssert.

Usage This component is the start component of a secondary Job which fetches the
execution status information from several sources. It generates a data flow to
transfer the information to the component which proceeds.

Related scenarios

Talend Open Studio Components Reference Guide 1481

Limitation This component must be used with tAssert together.

Related scenarios

For using case in relation with tAssertCatcher, see tAssert scenario:

• the section called “Scenario: Setting up the assertive condition for a Job execution”

tChronometerStart

1482 Talend Open Studio Components Reference Guide

tChronometerStart

tChronometerStart Properties

Component family Logs & Errors

Function Starts measuring the time a subjob takes to be executed.

Purpose Operates as a chronometer device that starts calculating the processing time of
one or more subjobs in the main Job, or that starts calculating the processing time
of part of your subjob.

Usage You can use tChronometerStart as a start or middle component. It can precede
one or more processing tasks in the subjob. It can precede one or more subjobs
in the main Job.

Limitation n/a

Related scenario

For related scenario, see the section called “Scenario: Measuring the processing time of a subjob and part of a
subjob”.

tChronometerStop

Talend Open Studio Components Reference Guide 1483

tChronometerStop

tChronometerStop Properties

Component family Logs & Errors

Function Measures the time a subjob takes to be executed.

Purpose Operates as a chronometer device that stops calculating the processing time of
one or more subjobs in the main Job, or that stops calculating the processing time
of part of your subjob.

tChronometerStop displays the total execution time.

Basic settings Since options Select either check box to select measurement starting
point:

Since the beginning: stops time measurement
launched at the beginning of a subjob.

Since a tChronometerStart: stops time measurement
launched at one of the tChronometerStart
components used on the data flow of the subjob.

Display duration in
console

When selected, it displays subjob execution
information on the console.

Display component
name

When selected, it displays the name of the component
on the console.

Caption Enter desired text, to identify your subjob for example.

Display human
readable duration

When selected, it displays subjob execution
information in readable time unites.

Usage Cannot be used as a start component.

Limitation n/a

Scenario: Measuring the processing time of a subjob
and part of a subjob

This scenario is a subjob that does the following in a sequence:

• generates 1000 000 rows of first and last names,

• gathers first names with their corresponding last names,

• stores the output data in a delimited file,

• measures the duration of the subjob as a whole,

• measures the duration of the name replacement operation,

Scenario: Measuring the processing time of a subjob and part of a subjob

1484 Talend Open Studio Components Reference Guide

• displays the gathered information about the processing time on the Run log console.

To measure the processing time of the subjob:

• Drop the following components from the Palette onto the design workspace: tRowGenerator, tMap,
tFileOutputDelimited, and tChronometerStop.

• Connect the first three components using Main Row links.

When connecting tMap to tFileOutputDelimited, you will be prompted to name the output table. The
name used in this example is “new_order”.

• Connect tFileOutputDelimited to tChronometerStop using an OnComponentOk link.

• Select tRowGenerator and click the Component tab to display the component view.

• In the component view, click Basic settings. The Component tab opens on the Basic settings view by default.

• Click Edit schema to define the schema of the tRowGenerator. For this Job, the schema is composed of two
columns: First_Name and Last_Name, so click twice the [+] button to add two columns and rename them.

• Click the RowGenerator Editor three-dot button to open the editor and define the data to be generated.

• In the RowGenerator Editor, specify the number of rows to be generated in the Number of Rows for
RowGenerator field and click OK. The RowGenerator Editor closes.

• You will be prompted to propagate changes. Click Yes in the popup message.

Scenario: Measuring the processing time of a subjob and part of a subjob

Talend Open Studio Components Reference Guide 1485

• Double-click on the tMap component to open the Map editor. The Map editor opens displaying the input
metadata of the tRowGenerator component.

• In the Schema editor panel of the Map editor, click the plus button of the output table to add two rows and
define them.

• In the Map editor, drag the First_Name row from the input table to the Last_Name row in the output table and
drag the Last_Name row from the input table to the First_Name row in the output table.

• Click Apply to save changes.

• You will be prompted to propagate changes. Click Yes in the popup message.

• Click OK to close the editor.

• Select tFileOutputDelimited and click the Component tab to display the component view.

Scenario: Measuring the processing time of a subjob and part of a subjob

1486 Talend Open Studio Components Reference Guide

• In the Basic settings view, set tFileOutputDelimited properties as needed.

• Select tChronometerStop and click the Component tab to display the component view.

• In the Since options panel of the Basic settings view, select Since the beginning option to measure the duration
of the subjob as a whole.

t

• Select/clear the other check boxes as needed. In this scenario, we want to display the subjob duration on the
console preceded by the component name.

• If needed, enter a text in the Caption field.

• Save your Job and press F6 to execute it.

You can measure the duration of the subjob the same way by placing tChronometerStop below
tRowGenerator, and connecting the latter to tChronometerStop using an OnSubjobOk link.

tDie

Talend Open Studio Components Reference Guide 1487

tDie

tDie properties

Both tDie and tWarn components are closely related to the tLogCatcher component.They generally make sense
when used alongside a tLogCatcher in order for the log data collected to be encapsulated and passed on to the
output defined.

Component family Logs & Errors

Function Kills the current Job. Generally used with a tCatch for log purpose.

Purpose Triggers the tLogCatcher component for exhaustive log before killing the Job.

Basic settings Die message Enter the message to be displayed before the Job is
killed.

Error code Enter the error code if need be, as an integer

Priority Set the level of priority, as an integer

Usage Cannot be used as a start component.

Limitation n/a

Related scenarios

For use cases in relation with tDie, see tLogCatcher scenarios:

• the section called “Scenario 1: warning & log on entries”

• the section called “Scenario 2: Log & kill a Job”

tFlowMeter

1488 Talend Open Studio Components Reference Guide

tFlowMeter

tFlowMeter Properties

Component family Logs & Errors

Function Counts the number of rows processed in the defined flow.

Purpose The number of rows is then meant to be caught by the tFlowMeterCatcher for
logging purpose.

Basic settings Use input connection
name as label

Select this check box to reuse the name given to the
input main row flow as label in the logged data.

Mode Select the type of values for the data measured:
Absolute: the actual number of rows is logged

Relative: a ratio (%) of the number of rows is logged.
When this option is selected, a Connections List shows
to let you select a reference connection.

Thresholds Adds a threshold to watch proportions in volumes
measured. you can decide that the normal flow has to
be between low and top end of a row number range, and
if the flow is under this low end, there is a bottleneck.

Usage Cannot be used as a start component as it requires an input flow to operate.

Limitation n/a

If you have a need of log, statistics and other measurement of your data flows, see Talend Open Studio User Guide.

Related scenario

For related scenario, see the section called “Scenario: Catching flow metrics from a Job”

tFlowMeterCatcher

Talend Open Studio Components Reference Guide 1489

tFlowMeterCatcher

tFlowMeterCatcher Properties

Component family Logs & Errors

Function Based on a defined sch.ema, the tFlowMeterCatcher catches the processing
volumetric from the tFlowMeter component and passes them on to the output
component.

Purpose Operates as a log function triggered by the use of a tFlowMeter component in
the Job.

Basic settings Schema type A schema is a row description, i.e., it defines the fields
to be processed and passed on to the next component.
In this particular case, the schema is read-only, as this
component gathers standard log information including:

Moment: Processing time and date

Pid: Process ID

Father_pid: Process ID of the father Job if applicable.
If not applicable, Pid is duplicated.

Root_pid: Process ID of the root Job if applicable. If
not applicable, pid of current Job is duplicated.

System_pid: Process id generated by the system

Project: Project name, the Job belongs to.

Job: Name of the current Job

Job_repository_id: ID generated by the application.

Job_version: Version number of the current Job

Context: Name of the current context

Origin: Name of the component if any

Label: Label of the row connection preceding the
tFlowMeter component in the Job, and that will be
analyzed for volumetrics.

Count: Actual number of rows being processed

Reference: Number of rows passing the reference link.

Thresholds: Only used when the relative mode is
selected in the tFlowMeter component.

Usage This component is the start component of a secondary Job which triggers
automatically at the end of the main Job.

Limitation The use of this component cannot be separated from the use of the tFlowMeter.
For more information, see the section called “tFlowMeter”

Scenario: Catching flow metrics from a Job

1490 Talend Open Studio Components Reference Guide

Scenario: Catching flow metrics from a Job

The following basic Job aims at catching the number of rows being passed in the flow processed. The measures
are taken twice, once after the input component, that is, before the filtering step and once right after the filtering
step, that is, before the output component.

• Drop the following components from the Palette to the design workspace: tMysqlInput, tFlowMeter (x2),
tMap, tLogRow, tFlowMeterCatcher and tFileOutputDelimited.

• Link components using row main connections and click on the label to give consistent name throughout the
Job, such as US_States from the input component and filtered_states for the output from the tMap component,
for example.

• Link the tFlowMeterCatcher to the tFileOutputDelimited component using a row main link also as data is
passed.

• On the tMysqlInput Component view, configure the connection properties as Repository, if the table metadata
are stored in the Repository. Or else, set the Type as Built-in and configure manually the connection and schema
details if they are built-in for this Job.

• The 50 States of the USA are recorded in the table states. In order for all 50 entries of the table to get selected,
the query to run onto the Mysql database is as follows:

select * from states.

• Select the relevant encoding type on the Advanced settings vertical tab.

• Then select the following component which is a tFlowMeter and set its properties.

Scenario: Catching flow metrics from a Job

Talend Open Studio Components Reference Guide 1491

• Select the check box Use input connection name as label, in order to reuse the label you chose in the log
output file (tFileOutputDelimited).

• The mode is Absolute as there is no reference flow to meter against, also no Threshold is to be set for this
example.

• Then launch the tMap editor to set the filtering properties.

• For this use case, drag and drop the ID and State columns from the Input area of the tMap towards the Output
area. No variable is used in this example.

• On the Output flow area (labelled filtered_states in this example), click the arrow & plus button to activate the
expression filter field.

• Drag the State column from the Input area (row2) towards the expression filter field and type in the rest of
the expression in order to filter the state labels starting with the letter M. The final expression looks like:
row2.State.startsWith("M")

• Click OK to validate the setting.

• Then select the second tFlowMeter component and set its properties.

Scenario: Catching flow metrics from a Job

1492 Talend Open Studio Components Reference Guide

• Select the check box Use input connection name as label.

• Select Relative as Mode and in the Reference connections list, select US_States as reference to be measured
against.

• Once again, no threshold is used for this use case.

• No particular setting is required in the tLogRow.

• Neither does the tFlowMeterCatcher as this component’s properties are limited to a preset schema which
includes typical log information.

• So eventually set the log output component (tFileOutputDelimited).

• Select the Append check box in order to log all tFlowMeter measures.

• Then save your Job and press F6 to execute it.

The Run view shows the filtered state labels as defined in the Job.

In the delimited csv file, the number of rows shown in column count varies between tFlowMeter1 and
tFlowMeter2 as the filtering has then been carried out. The reference column shows also this difference.

tLogCatcher

Talend Open Studio Components Reference Guide 1493

tLogCatcher

tLogCatcher properties

Both tDie and tWarn components are closely related to the tLogCatcher component.They generally make sense
when used alongside a tLogCatcher in order for the log data collected to be encapsulated and passed on to the
output defined.

Component family Logs & Errors

Function Fetches set fields and messages from Java Exception, tDie and/or tWarn and
passes them on to the next component.

Purpose Operates as a log function triggered by one of the three: Java exception, tDie or
tWarn, to collect and transfer log data.

Basic settings Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in or
remote in the Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend
Open Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and job flowcharts. Related topic: see Talend Open
Studio User Guide.

Catch Java Exception Select this check box to trigger the tCatch function
when a Java Exception occurs in the Job

Catch tDie Select this check box to trigger the tCatch function
when a tDie is called in a Job

Catch tWarn Select this check box to trigger the tCatch function
when a tWarn is called in a Job

Usage This component is the start component of a secondary Job which automatically
triggers at the end of the main Job

Limitation n/a

Scenario 1: warning & log on entries

In this basic scenario made of three components, a tRowGenerator creates random entries (id to be incremented).
The input hits a tWarn component which triggers the tLogCatcher subjob. This subjob fetches the warning
message as well as standard predefined information and passes them on to the tLogRow for a quick display of
the log data.

Scenario 1: warning & log on entries

1494 Talend Open Studio Components Reference Guide

• Drop a tRowGenerator, a tWarn, a tLogCatcher and a tLogRow from the Palette, on your design workspace

• Connect the tRowGenerator to the tWarn component.

• Connect separately the tLogCatcher to the tLogRow.

• On the tRowGenerator editor, set the random entries creation using a basic function:

• On the tWarn Component view, set your warning message, the code the priority level. In this case, the message
is “this is a warning’.

• For this scenario, we will concatenate a function to the message above, in order to collect the first value from
the input table.

• On the Basic settings view of tLogCatcher, select the tWarn check box in order for the message from the
latter to be collected by the subjob.

• Click Edit Schema to view the schema used as log output. Notice that the log is comprehensive.

Press F6 to execute the Job. Notice that the Log produced is exhaustive.

Scenario 2: Log & kill a Job

Talend Open Studio Components Reference Guide 1495

Scenario 2: Log & kill a Job

This scenario uses a tLogCatcher and a tDie component. A tRowGenerator is connected to a
tFileOutputDelimited using a Row link. On error, the tDie triggers the catcher subjob which displays the log
data content on the Run console.

• Drop all required components from various folders of the Palette to the design workspace: tRowGenerator,
tFileOutputDelimited, tDie, tLogCatcher, tLogRow.

• On the tRowGenerator Component view, define the setting of the input entries to be handled.

• Edit the schema and define the following columns as random input examples: id, name, quantity, flag and
creation.

• Set the Number of rows onto 0. This will constitute the error which the Die operation is based on.

• On the Values table, define the functions to feed the input flow.

• Define the tFileOutputDelimited to hold the possible output data. The row connection from the
tRowGenerator feeds automatically the output schema. The separator is a simple semi-colon.

• Connect this output component to the tDie using a Trigger > If connection. Double-click on the newly created
connection to define the if:

((Integer)globalMap.get("tRowGenerator_1_NB_LINE")) <=0

• Then double-click to select and define the Basic settings of the tDie component.

Scenario 2: Log & kill a Job

1496 Talend Open Studio Components Reference Guide

• Enter your Die message to be transmitted to the tLogCatcher before the actual kill-job operation happens.

• Next to the Job but not physically connected to it, drop a tLogCatcher from the Palette to the design workspace
and connect it to a tLogRow component.

• Define the tLogCatcher Basic settings. Make sure the tDie box is selected in order to add the Die message to
the Log information transmitted to the final component.

• Press F6 to run the Job and notice that the log contains a black message and a red one.

• The black log data come from the tDie and are transmitted by the tLogCatcher. In addition the normal Java
Exception message in red displays as a Job abnormally died.

tLogRow

Talend Open Studio Components Reference Guide 1497

tLogRow

tLogRow properties

Component family Logs & Errors

Function Displays data or results in the Run console.

Purpose tLogRow is used to monitor data processed.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in the
Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Built-in: You can create the schema and store it locally
for this component. Related topic: see Talend Open Studio
User Guide.

Repository: You have already created and stored the
schema in the Repository. You can reuse it in various
projects and Job flowcharts. Related topic: see Talend
Open Studio User Guide.

Sync columns Click to synchronize the output file schema with the input
file schema. The Sync function is available only when the
component is linked with the preceding component using
a Row connection.

Basic Displays the output flow in basic mode.

Table Displays the output flow in table cells.

Vertical Displays each row of the output flow as a key-value list.

With this mode selected, you can choose to show either
the unique name or the label of component, or both of
them, for each output row.

Separator

(For Basic mode only)

Enter the separator which will delimit data on the Log
display.

Print header

(For Basic mode only)

Select this check box to include the header of the input
flow in the output display.

Print component unique
name in front of each
output row

(For Basic mode only)

Select this check box to show the unique name the
component in front of each output row to differentiate
outputs in case several tLogRow components are used.

Print schema column name
in front of each value

Select this check box to retrieve column labels from
output schema.

Scenario: Delimited file content display

1498 Talend Open Studio Components Reference Guide

(For Basic mode only)

Use fixed length for values

(For Basic mode only)

Select this check box to set a fixed width for the value
display.

Usage This component can be used as intermediate step in a data flow or as a n end object
in the Job flowchart.

Limitation n/a

Scenario: Delimited file content display

For related scenarios, see:

• the section called “Scenario: Reading master data in an MDM hub”.

• the section called “Scenario: Dynamic context use in MySQL DB insert”.

• the section called “Scenario 1: warning & log on entries”.

• the section called “Scenario 2: Log & kill a Job”.

tStatCatcher

Talend Open Studio Components Reference Guide 1499

tStatCatcher

tStatCatcher Properties

Component family Logs & Errors

Function Based on a defined schema, gathers the Job processing metadata at a Job level
as well as at each component level.

Purpose Operates as a log function triggered by the StatsCatcher Statistics check box
of individual components, and collects and transfers this log data to the output
defined.

Basic settings Schema type A schema is a row description, i.e., it defines the fields
to be processed and passed on to the next component.
In this particular case, the schema is read-only, as this
component gathers standard log information including:

Moment: Processing time and date

Pid: Process ID

Father_pid: Process ID of the father Job if applicable.
If not applicable, Pid is duplicated.

Root-pid: Process ID of the root Job if applicable. If
not applicable, pid of current Job is duplicated.

Project: Project name, the Job belongs to.

Job: Name of the current Job

Context: Name of the current context

Origin: Name of the component if any

Message: Begin or End.

Usage This component is the start component of a secondary Job which triggers
automatically at the end of the main Job. The processing time is also displayed
at the end of the log.

Limitation n/a

Scenario: Displaying job stats log

This scenario describes a four-component Job, aiming at displaying on the Run console the statistics log fetched
from the file generation through the tStatCatcher component.

Scenario: Displaying job stats log

1500 Talend Open Studio Components Reference Guide

• Drop the required components: tRowGenerator, tFileOutputDelimited, tStatCatcher and tLogRow from the
Palette to the design workspace.

• In the Basic settings panel of tRowGenerator, define the data to be generated. For this Job, the schema is
composed of three columns: ID_Owners, Name_Customer and ID_Insurance.

• The number of rows can be restricted to 100.

• Click on the Main tab of the Component view.

• And select the tStatCatcher Statistics check box to enable the statistics fetching operation.

• Then, define the output component’s properties. In the tFileOutputDelimited Component view, browse to the
output file or enter a name for the output file to be created. Define the delimiters, such as semi-colon, and the
encoding.

• Click on Edit schema and make sure the schema is recollected from the input schema. If need be, click on
Sync Columns.

• Then click on the Basic settings tab of the Component view, and select here as well the tStatCatcher Statistics
check box to enable the processing data gathering.

• In the secondary Job, double-click on the tStatCatcher component. Note that the Properties are provided for
information only as the schema representing the processing data to be gathered and aggregated in statistics, is
defined and read-only.

Scenario: Displaying job stats log

Talend Open Studio Components Reference Guide 1501

• Define then the tLogRow to set the delimiter to be displayed on the console.

• Eventually, press F6 to run the Job and display the Job result.

The log shows the Begin and End information for the Job itself and for each of the component used in the Job.

tWarn

1502 Talend Open Studio Components Reference Guide

tWarn

tWarn Properties

Both tDie and tWarn components are closely related to the tLogCatcher component.They generally make sense
when used alongside a tLogCatcher in order for the log data collected to be encapsulated and passed on to the
output defined.

Component family Logs & Errors

Function Provides a priority-rated message to the next component.

Purpose Triggers a warning often caught by the tLogCatcher component for exhaustive
log.

Basic settings Warn message Type in your warning message.

Code Define the code level.

Priority Enter the priority level as an integer.

Usage Cannot be used as a start component. If an output component is connected to it,
an input component should be preceding it.

Limitation n/a

Related scenarios

For use cases in relation with tWarn, see tLogCatcher scenarios:

• the section called “Scenario 1: warning & log on entries”

• the section called “Scenario 2: Log & kill a Job”

Talend Open Studio Components Reference Guide

Misc group components
This chapter details the main components that you can find in Misc family of the Talend Open Studio Palette.

The Misc family gathers miscellaneous components covering needs such as the creation of sets of dummy data
rows, buffering data or loading context variables.

tAddLocationFromIP

1504 Talend Open Studio Components Reference Guide

tAddLocationFromIP

tAddLocationFromIP Properties

Component family Misc

Function tAddLocationFromIP replaces IP addresses with geographical locations.

Purpose tAddLocationFromIP helps you to geolocate visitors through their IP
addresses. It identifies visitors’ geographical locations i.e. country, region, city,
latitude, longitude, ZIP code...etc.using an IP address lookup database file.

Basic settings Schema type and
Edit schema

A schema is a row description, i.e., it defines the number of
fields to be processed and passed on to the next component.
The schema is either built-in or remote in the Repository.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: Select the Repository file where Properties are
stored. When selected, the fields that follow are pre-defined
using fetched data.

Database
Filepath

The path to the IP address lookup database file.

Input parameters Input column: Select the input column from which the input
values are to be taken.

input value is a hostname: Check if the input column holds
hostnames.

input value is an IP address: Check if the input column
holds IP addresses.

Location type Country code: Check to replace IP with country code.

Country name: Check to replace IP with country name.

Usage This component is an intermediary step in the data flow allowing to replace IP
with geolocation information. It can not be a start component as it requires an
input flow. It also requires an output component.

Limitation n/a

Scenario: Identifying a real-world geographic location
of an IP

The following scenario creates a three-component Job that associates an IP with a geographical location. It obtains
a site visitor's geographical location based on its IP.

Scenario: Identifying a real-world geographic location of an IP

Talend Open Studio Components Reference Guide 1505

Dropping and linking components

1. Drop the following components from the Palette onto the design workspace: tFixedFlowInput,
tAddLocationFromIP, and tLogRow.

2. Connect the three components using Row Main links.

Configuring the components

1. In the design workspace, select tFixedFlowInput, and click the Component tab to define the basic settings
for tFixedFlowInput.

2. Click the [...] button next to Edit Schema to define the structure of the data you want to use as input. In this
scenario, the schema is made of one column that holds an IP address.

3. Click OK to close the dialog box, and accept propagating the changes when prompted by the system. The
defined column is displayed in the Values panel of the Basic settings view.

4. In the Number of rows field, enter the number of rows to be generated, and click in the Value cell and set
the value for the IP address.

5. In the design workspace, select tAddLocationFromIP and click the Component tab to define the basic
settings for tAddLocationFromIP.

Scenario: Identifying a real-world geographic location of an IP

1506 Talend Open Studio Components Reference Guide

6. Click the Sync columns button to synchronize the schema with the input schema set with tFixedFlowInput.

7. Browse to the GeoIP.dat file to set its path in the Database filepath field.

Ensure to download the latest version of the IP address lookup database file from the relevant site as
indicated in the Basic settings view of tAddLocationFromIp.

8. In the Input parameters panel, set your input parameters as needed. In this scenario, the input column is the
ip column defined earlier that holds an IP address.

9. In the Location type panel, set location type as needed. In this scenario, we want to display the country name.

10. In the design workspace, select tLogRow and click the Component tab and define the basic settings for
tLogRow as needed. In this scenario, we want to display values in cells of a table.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run in the Run tab to execute the Job.

One row is generated to display the country name that is associated with the set IP address.

tBufferInput

Talend Open Studio Components Reference Guide 1507

tBufferInput

tBufferInput properties

Component family Misc

Function This component retrieves bufferized data in order to process it in a second subjob.

Purpose The tBufferInput component retrieves data bufferized via a tBufferOutput
component, for example, to process it in another subjob.

Basic settings Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

In the case of tBufferInput, the column position is more
important than the column label as this will be taken into
account.

Built-in: You create the schema and store it locally for
this component only. Related topic: see Talend Open
Studio User Guide.

Repository: You have already created the schema and
stored it in the Repository, hence can be reused in various
projects and Job designs. Related topic: see Talend Open
Studio User Guide.

Usage This component is the start component of a secondary Job which is triggered
automatically at the end of the main Job.

Scenario: Retrieving bufferized data

This scenario describes a Job that retrieves bufferized data from a subjob and displays it on the console.

• Drop the following components from the Palette onto the design workspace: tFileInputDelimited and
tBufferOutput.

Scenario: Retrieving bufferized data

1508 Talend Open Studio Components Reference Guide

• Select the tFileInputDelimited and on the Basic Settings tab of the Component view, set the access parameters
to the input file.

• In the File Name field, browse to the delimited file holding the data to be bufferized.

• Define the Row and Field separators, as well as the Header.

• Click [...] next to the Schema type field to describe the structure of the file.

• Describe the Schema of the data to be passed on to the tBufferOutput component.

• Select the tBufferOutput component and set the parameters on the Basic Settings tab of the Component view.

Generally speaking, the schema is propagated from the input component and automatically fed into the
tBufferOutput schema. But you can also set part of the schema to be bufferized if you want to.

• Drop the tBufferInput and tLogRow components from the Palette onto the design workspace below the subjob
you just created.

• Connect tFileInputDelimited and tBufferInput via a Trigger > OnSubjobOk link and connect tBufferInput
and tLogRow via a Row > Main link.

• Double-click tBufferInput to set its Basic settings in the Component view.

• In the Basic settings view, click [...] next to the Edit Schema field to describe the structure of the file.

• Use the schema defined for the tFileInputDelimited component and click OK.

• The schema of the tBufferInput component is automatically propagated to the tLogRow. Otherwise, double-
click tLogRow to display the Component view and click Sync column.

• Save your Job and press F6 to execute it.

Scenario: Retrieving bufferized data

Talend Open Studio Components Reference Guide 1509

The standard console returns the data retrieved from the buffer memory.

tBufferOutput

1510 Talend Open Studio Components Reference Guide

tBufferOutput

tBufferOutput properties

Component family Misc

Function This component collects data in a buffer in order to access it later via webservice
for example.

Purpose This component allows a Webservice to access data. Indeed it had been designed
to be exported as Webservice in order to access data on the web application server
directly. For more information, see Talend Open Studio User Guide.

Basic settings Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

In the case of the tBufferOutput, the column position
is more important than the column label as this will be
taken into account.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job designs. Related topic: see Talend Open Studio
User Guide.

Usage This component is not startable (green background) and it requires an output
component.

Scenario 1: Buffering data (Java)

This scenario describes an intentionally basic Job that bufferizes data in a child job while a parent Job simply
displays the bufferized data onto the standard output console. For an example of how to use tBufferOutput to
access output data directly on the Web application server, see the section called “Scenario 2: Buffering output
data on the webapp server”.

Scenario 1: Buffering data (Java)

Talend Open Studio Components Reference Guide 1511

• Create two Jobs: a first Job (BufferFatherJob) runs the second Job and displays its content onto the Run console.
The second Job (BufferChildJob) stores the defined data into a buffer memory.

• On the first Job, drop the following components: tRunJob and tLogRow from the Palette to the design
workspace.

• On the second Job, drop the following components: tFileInputDelimited and tBufferOutput the same way.

Let’s set the parameters of the second Job first:

• Select the tFileInputDelimited and on the Basic Settings tab of the Component view, set the access parameters
to the input file.

• In File Name, browse to the delimited file whose data are to be bufferized.

• Define the Row and Field separators, as well as the Header.

• Describe the Schema of the data to be passed on to the tBufferOutput component.

• Select the tBufferOutput component and set the parameters on the Basic Settings tab of the Component view.

Scenario 2: Buffering output data on the webapp server

1512 Talend Open Studio Components Reference Guide

• Generally the schema is propagated from the input component and automatically fed into the tBufferOutput
schema. But you could also set part of the schema to be bufferized if you want to.

• Now on the other Job (BufferFatherJob) Design, define the parameters of the tRunJob component.

• Edit the Schema if relevant and select the column to be displayed. The schema can be identical to the bufferized
schema or different.

• You could also define context parameters to be used for this particular execution. To keep it simple, the default
context with no particular setting is used for this use case.

Press F6 to execute the parent Job. The tRunJob looks after executing the child Job and returns the data onto
the standard console:

Scenario 2: Buffering output data on the webapp
server

This scenario describes a Job that is called as a Webservice and stores the output data in a buffer directly on the
server of the Web application. This scenario creates first a Webservice oriented Job with context variables, and
next exports the Job as a Webservice.

Creating a Webservice-oriented Job with context variables:

• Drop the following components from the Palette onto the design workspace: tFixedFlowInput and
tBufferOutput.

Scenario 2: Buffering output data on the webapp server

Talend Open Studio Components Reference Guide 1513

• Connect tFixedFlowInput to tBufferOutput using a Row Main link.

• In the design workspace, select tFixedFlowInput.

• Click the Component tab to define the basic settings for tFixedFlowInput.

• Set the Schema Type to Built-In and click the three-dot [...] button next to Edit Schema to describe the data
structure you want to create from internal variables. In this scenario, the schema is made of three columns, now,
firstname, and lastname.

• Click the plus button to add the three parameter lines and define your variables.

• Click OK to close the dialog box and accept propagating the changes when prompted by the system. The three
defined columns display in the Values panel of the Basic settings view of tFixedFlowInput.

• Click in the Value cell of each of the first two defined columns and press Ctrl+Space to access the global
variable list.

• From the global variable list, select TalendDate.getCurrentDate() and talendDatagenerator.getFirstName, for
the now and firstname columns respectively.

For this scenario, we want to define two context variables: nb_lines and lastname. In the first we set the number
of lines to be generated, and in the second we set the last name to display in the output list. The tFixedFlowInput
component will generate the number of lines set in the context variable with the three columns: now, firstname
and lastname. For more information about how to create and use context variables, see Talend Open Studio User
Guide.

Scenario 2: Buffering output data on the webapp server

1514 Talend Open Studio Components Reference Guide

To define the two context variables:

• Select tFixedFlowInput and click the Contexts tab.

• In the Variables view, click the plus button to add two parameter lines and define them.

• Click the Values as table tab and define the first parameter to set the number of lines to be generated and the
second to set the last name to be displayed.

• Click the Component tab to go back to the Basic settings view of tFixedFlowInput.

• Click in the Value cell of lastname column and press Ctrl+Space to access the global variable list.

• From the global variable list, select context.lastname, the context variable you created for the last name column.

Exporting your Job as a Webservice:

Before exporting your Job as a Web service, see Talend Open Studio User Guide for more information.

• In the Repository tree view, right-click on the above created Job and select Export Job Scripts. The [Export
Job Scripts] dialog box displays.

Scenario 3: Calling a Job with context variables from a browser

Talend Open Studio Components Reference Guide 1515

• Click the Browse... button to select a directory to archive your Job in.

• In the Export type panel, select the export type you want to use in the Tomcat webapp directory (WAR in this
example) and click Finish. The [Export Job Scripts] dialog box disappears.

• Copy the War folder and paste it in a Tomcat webapp directory.

Scenario 3: Calling a Job with context variables from a
browser

This scenario describes how to call the Job you created in scenario 2 from your browser with/without modifying
the values of the context variables.

Type the following URL into your browser: http://localhost:8080//export_job/services/export_job3?
method=runJob where “export_job” is the name of the webapp directory deployed in Tomcat and “export_job3”
is the name of the Job.

Click Enter to execute your Job from your browser.

Scenario 3: Calling a Job with context variables from a browser

1516 Talend Open Studio Components Reference Guide

The Job uses the default values of the context variables: nb_lines and lastname, that is it generates three lines with
the current date, first name and Ford as a last name.

You can modify the values of the context variables directly from your browser. To call the Job from your browser
and modify the values of the two context variables, type the following URL:

http://localhost:8080//export_job/services/export_job3?method=runJob&arg1=--context_param
%20lastname=MASSY&arg2=--context_param%20nb_lines=2.

%20 stands for a blank space in the URL language. In the first argument “arg1”, you set the value of the context
variable to display “MASSY” as last name. In the second argument “arg2”, you set the value of the context variable
to “2” to generate only two lines.

Click Enter to execute your Job from your browser.

Scenario 4: Calling a Job exported as Webservice in another Job

Talend Open Studio Components Reference Guide 1517

The Job generates two lines with MASSY as last name.

Scenario 4: Calling a Job exported as Webservice in
another Job

This scenario describes a Job that calls another Job exported as a Webservice using the tWebServiceInput. This
scenario will call the Job created in scenario 2.

• Drop the following components from the Palette onto the design workspace: tWebServiceInput and tLogRow.

• Connect tWebserviceInput to tLogRow using a Row Main link.

• In the design workspace, select tWebServiceInput.

• Click the Component tab to define the basic settings for tWebServiceInput.

• Set the Schema Type to Built-In and click the three-dot [...] button next to Edit Schema to describe the data
structure you want to call from the exported Job. In this scenario, the schema is made of three columns, now,
firstname, and lastname.

• Click the plus button to add the three parameter lines and define your variables.Click OK to close the dialog box.

• In the WSDL field of the Basic settings view of tWebServiceInput, enter the URL http://localhost:8080/
export_job/services/export_job3?WSDL where “export_job” is the name od the webapp directory where the Job
to call is stored and “export_job3” is the name of the Job itself.

Scenario 4: Calling a Job exported as Webservice in another Job

1518 Talend Open Studio Components Reference Guide

• In the Method name field, enter runJob.

• In the Parameters panel, Click the plus button to add two parameter lines to define your context variables.

• Click in the first Value cell to enter the parameter to set the number of generated lines using the following
syntax: --context_param nb_line=3.

• Click in the second Value cell to enter the parameter to set the last name to display using the following syntax:
--context_param lastname=Ford.

• Select tLogRow and click the Component tab to display the component view.

• Set the Basic settings for the tLogRow component to display the output data in a tabular mode. For more
information, see the section called “tLogRow”.

• Save your Job and press F6 to execute it.

The system generates three columns with the current date, first name, and last name and displays them onto the
log console in a tabular mode.

tContextDump

Talend Open Studio Components Reference Guide 1519

tContextDump

tContextDump properties

Component family Misc

Function tContextDump makes a dump copy the values of the active Job context.

Purpose tContextDump can be used to transform the current context parameters into a
flow that can then be used in a tContextLoad. This feature is very convenient in
order to define once only the context and be able to reuse it in numerous Jobs via
the tContextLoad.

Basic settings Schema type and Edit
schema

In the tContextDump use, the schema is read only and
made of two columns, Key and Value, corresponding
to the parameter name and the parameter value to be
copied.

A schema is a row description, i.e., it defines the
fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job flowcharts. Related topic: see Talend Open
Studio User Guide.

Print operations Select this check box to display the context parameters
set in the Run view.

Usage This component creates from the current context values, a data flow, therefore it
requires to be connected to an output component.

Limitation tContextDump does not create any non-defined context variable.

Related Scenario

No scenario is available for this component yet.

tContextLoad

1520 Talend Open Studio Components Reference Guide

tContextLoad

tContextLoad properties

Component family Misc

Function tContextLoad modifies dynamically the values of the active context.

Purpose tContextLoad can be used to load a context from a flow.

This component performs also two controls. It warns when the parameters defined
in the incoming flow are not defined in the context, and the other way around, it
also warns when a context value is not initialized in the incoming flow.

But note that this does not block the processing.

Basic settings Schema type and Edit
schema

In tContextLoad, the schema must be made of
two columns, including the parameter name and the
parameter value to be loaded.

A schema is a row description, i.e., it defines the
fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and job flowcharts. Related topic: see Talend Open
Studio User Guide.

If a variable loaded, but
not in the context

If a variable is loaded but does not appear in the context,
select how the notification must be displayed. In the
shape of an Error, a warning or an information (info).

If a variable in the
context, but not loaded

If a variable appears in the context but is not loaded,
select how the notification must be displayed. In the
shape of an Error, a warning or an information (info)

Print operations Select this check box to display the context parameters
set in the Run view.

Disable errors Select this check box to prevent the error from
displaying.

Disable warnings Select this check box to prevent the warning from
displaying.

Disable infos Select this check box to prevent the information from
displaying.

Scenario: Dynamic context use in MySQL DB insert

Talend Open Studio Components Reference Guide 1521

Die on error This check box is selected by default. Clear the check
box to skip the row on error and complete the process
for error-free rows.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component relies on the data flow to load the context values to be used,
therefore it requires a preceding input component and thus cannot be a start
component.

Limitation tContextLoad does not create any non-defined variable in the default context.

Scenario: Dynamic context use in MySQL DB insert

This scenario is made of two subjobs. The first subjob aims at dynamically load the context parameters, and the
second subjob uses the loaded context to display the content of a DB table.

• For the first subjob, drop a tFilelist, tFileInputDelimited, tContextLoad from the Palette to the design
workspace.

• Drop tMysqlInput and a tLogRow the same way for the second subjob.

• Connect all the components together.

• Create as many delimited files as there are different contexts and store them in a specific directory, named
Contexts. In this scenario, test.txt contains the local database connection details for testing purpose. And prod.txt
holds the actual production db details.

• Each file is made of two fields, contain the parameter name and the corresponding value, according to the
context.

• In the tFileList component Basic settings panel, select the directory where both context files, test and prod,
are held.

Scenario: Dynamic context use in MySQL DB insert

1522 Talend Open Studio Components Reference Guide

• In the tFileInputDelimited component Basic settings panel, press Ctrl+Space bar to access the global variable
list. Select tFileList_1.CURRENT_FILEPATH to loop on the context files’ directory.

• Define the schema manually (Built-in). It contains two columns defined as: Key and Value.

• Accept the defined schema to be propagated to the next component (tContextLoad).

• For this scenario, select the Print operations check box in order for the context parameters in use to be displayed
on the Run panel.

• Then double-click to open the tMySQLInput component Basic settings.

• For each of the field values being stored in a context file, press F5 and define the user-defined context parameter.
For example: The Host field has for value parameter context.host, as the parameter name is host in the
context file. Its actual value being talend-dbms.

• Then fill in the Schema information. If you stored the schema in the Repository Metadata, then you can
retrieve it by selecting Repository and the relevant entry in the list.

• In the Query field, type in the SQL query to be executed on the DB table specified. In this case, a simple
SELECT of the columns of the table, which will be displayed on the Run tab, through the tLogRow component.

• Eventually, press F6 to run the Job.

Scenario: Dynamic context use in MySQL DB insert

Talend Open Studio Components Reference Guide 1523

The context parameters as well as the select values from the DB table are all displayed on the Run view.

tFixedFlowInput

1524 Talend Open Studio Components Reference Guide

tFixedFlowInput

tFixedFlowInput properties

Component family Misc

Function tFixedFlowInput generates as many lines and columns as you want using the
context variables.

Purpose tFixedFlowInput allows you to generate fixed flow from internal variables.

Basic settings Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in the
Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: You have already created the schema and
stored it in the Repository, hence can be reused in various
projects and job designs. Related topic: see Talend Open
Studio User Guide.

Mode From the three options, select the mode that you want to
use.

Use Single Table : Enter the data that you want to generate
in the relevant value field.

Use Inline Table : Add the row(s) that you want to
generate.

Use Inline Content : Enter the data that you want to
generate, separated by the separators that you have already
defined in the Row and Field Separator fields.

Number of rows Enter the number of lines to be generated.

Values Between inverted commas, enter the values corresponding
to the columns you defined in the schema dialog box via
the Edit schema button.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at a Job level as well as at each component level.

Usage This component can be used as a start or intermediate component and thus requires
an output component.

Related scenarios

For related scenarios, see:

• the section called “Scenario 2: Buffering output data on the webapp server”.

Related scenarios

Talend Open Studio Components Reference Guide 1525

• the section called “Scenario: Iterating on a DB table and listing its column names”.

• the section called “Scenario: Filtering and searching a list of names”.

tMemorizeRows

1526 Talend Open Studio Components Reference Guide

tMemorizeRows

tMemorizeRows properties

Component family Misc

Function tMemorizeRows temporarily memorizes an array of incoming data in a row by
row sequence and instantiates this array by indexing each of the memorized rows
from 0. The maximum number of rows to be memorized at any given time is
defined in the Basic settings view.

Purpose tMemorizeRows memorizes a sequence of rows that pass this component and
then allows its following component(s) to perform operations of your interest on
the memorized rows.

Basic settings Schema type and Edit
schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

- Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

- Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: You have already created the schema and
stored it in the Repository, hence can be reused in various
projects and job designs. Related topic: see Talend Open
Studio User Guide.

Row count to memorize Define the row count to be memorized.

Columns to memorize Select the columns to be memorized from the incoming
data schema.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component can be used as intermediate step in a data flow or the last step
before beginning a subjob.

Note: You can use the global variable NB_LINE_ROWS to retrieve the value of
the Row count to memorize field of the tMemorizeRows component.

Connections Outgoing links (from one component to another):

Row: Main

Trigger: Run if; On Component Ok; On Component
Error.

Scenario: Counting the occurrences of different ages

Talend Open Studio Components Reference Guide 1527

Incoming links (from one component to another):

Row: Main;

For further information regarding connections, see
Talend Open Studio User Guide.

Scenario: Counting the occurrences of different ages

This scenario counts how many different ages there are within a group of 12 customers. In this scenario, the
customer data is generated at random.

This Job uses 5 components which are:

• tRowGenerator: it generates 12 rows of customer data containing IDs, names and ages of the 12 customers.

• tSortRow: it sorts the 12 rows according to the age data.

• tMemorizeRows: it temporarily memorizes a specific number of incoming data rows at any give time and
indexes the memorized data rows.

• tJavaFlex: it compares the age values of the data memorized by the preceding component, counts the
occurrences of different ages and displays these ages in the Run view.

• tJava: it displays the number of occurrences of different ages.

To replicate this scenario, proceed as follows:

• Drop tRowGenerator, tSortRow, tMemorizeRows, tJavaFlex and tJava on the design workspace.

• Right-click tRowGenerator In the contextual menu, select the Row > Main link.

• Click tSortRow to link these two components.

• Do the same to link together tSortRow, tMemorizeRows and tJavaFlex using the Row > Main link.

• Right-click tRowGenerator In the contextual menu, select the Trigger > On Subjob Ok link.

• Click tJava to link these two components.

• Double click the tRowGenerator component to open the its editor.

Scenario: Counting the occurrences of different ages

1528 Talend Open Studio Components Reference Guide

• In this editor, click the plus button three times to add three columns and name them as: id, name, age.

• In the Type column, select Integer for id and age.

• In the Length column, enter 50 for name.

• In the Functions column, select random for id and age, then select getFirstName for name.

• In the field of Number of Rows for RowGenerator, type in 12.

• In the Column column, click age to open its corresponding Function parameters view in the lower part of
this editor.

• In the Value column of the Function parameters view, type in the minimum age and maximum age that will
be generated for the 12 customers. In this example, they are 10 and 25.

• Click OK to save the configuration.

• In the dialog box that pops up, click OK to propagate the change to the other components.

Scenario: Counting the occurrences of different ages

Talend Open Studio Components Reference Guide 1529

• Double click tSortRow to open its Component view.

• In the Criteria table, click the plus button to add one row.

• In the Schema column column, select the data column you want to base the sort on. In this example, select age
as it is the ages that should be compared and counted.

• In the Sort num or alpha column, select the type of the sort. In this example, as age is integer, select num,
that is numerical, for this sort.

• In the Order asc or desc column, select desc as the sort order for this scenario.

• Double click tMemorizeRows to open its Component view.

• In the Row count to memorize field, type in the maximum number of rows to be memorized at any given time.
As you need to compare ages of two customers for each time, enter 2. Thus this component memorizes two
rows at maximum at any given moment and always indexes the newly incoming row as 0 and the previously
incoming row as 1.

• In the Memorize column of the Columns to memorize table, select the check box(es) to determine the
column(s) to be memorized. In this example, select the check box corresponding to age.

• Double click tJavaFlex to open its Component view.

Scenario: Counting the occurrences of different ages

1530 Talend Open Studio Components Reference Guide

• In the Start code area, enter the Java code that will be called during the initialization phase. In this example,
type in int count=0; in order to declare a variable count and assign the value 0 to it.

• In the Main code area, enter the Java code to be applied for each row in the data flow. In this scenario, type in

if(age_tMemorizeRows_1[1]!=age_tMemorizeRows_1[0])
{
 count++;
}
System.out.println(age_tMemorizeRows_1[0]);

This code compares two ages memorized by tMemorizeRows each time and count one change every time when
the ages are found different. Then this code displays the ages that have been indexed as 0 by tMemorizeRows.

• In the End code area, enter the Java code that will be called during the closing phase. In this example, type in
globalMap.put("count", count); to output the count result.

• Double click tJava to open its Component view.

• In the Code area, type in the code System.out.println("Different ages :
"+globalMap.get("count")); to retrieve the count result.

• Press F6 to run the Job. Then the result displays in the console of the Run view.

Scenario: Counting the occurrences of different ages

Talend Open Studio Components Reference Guide 1531

In the console, you can read that there are 10 different ages within the group of 12 customers.

tMsgBox

1532 Talend Open Studio Components Reference Guide

tMsgBox

tMsgBox properties

Component family Misc

Function Opens a dialog box with an OK button requiring action from the user.

Purpose tMsgBox is a graphical break in the job execution progress.

Basic settings Title Text entered shows on the title bar of the dialog box
created.

Buttons Listbox of buttons you want to include in the dialog box.
The button combinations are restricted and cannot be
changed.

The Question button displays theMask Answer check
box. Select this check box if you want to mask the answer
you type in the pop-up window that opens when you run
the Job.

Icon Icon shows on the title bar of the dialog box.

Message Free text to display as message on the dialog box. Text
can be dynamic (for example: retrieve and show a file
name).

Usage This component can be used as intermediate step in a data flow or as a start or an
end object in the Job flowchart.

It can be connected to the next/previous component using either a Row or Iterate
link.

Limitation n/a

Scenario: ‘Hello world!’ type test
The following scenario creates a single-component Job, where tMsgBox is used to display the pid (process id) in
place of the traditional “Hello World!” message.

• Drop a tMsgBox component from the Palette to the design workspace.

• Define the dialog box display properties:

Scenario: ‘Hello world!’ type test

Talend Open Studio Components Reference Guide 1533

• ‘Title’ is the message box title, it can be any variable.

• In the Message field, enter "Current date is: " between double quotation marks.
Then click CTRL+Space to display the autocompletion list and select the following system routine,
TalendDate.getCurrentDate. Put brackets around this routine.

• Switch to the Run tab to execute the Job defined.

The Message box displays the message and requires the user to click OK to go to the next component or end the Job.

After the user clicked OK, the Run log is updated accordingly.

Related topic: see Talend Open Studio User Guide.

tRowGenerator

1534 Talend Open Studio Components Reference Guide

tRowGenerator

tRowGenerator properties

Component family Misc

Function tRowGenerator generates as many rows and fields as are required using random
values taken from a list.

Purpose Can be used to create an input flow in a Job for testing purposes, in particular
for boundary test sets

Basic settings Schema type and
Edit schema

A schema is a row description, i.e., it defines the number of
fields to be processed and passed on to the next component.
The schema is either built-in or stored remotely in the
Repository.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: Select the Repository file where the properties
are stored. When selected, the fields that follow are filled in
automatically using fetched data.

RowGenerator
editor

The editor allows you to define the columns and the nature
of data to be generated. You can use predefined routines or
type in the function to be used to generate the data specified

Usage The tRowGenerator Editor’s ease of use allows users without any Java
knowledge to generate random data for test purposes.

Limitation n/a

The tRowGenerator Editor opens up on a separate window made of two parts:

• a Schema definition panel at the top of the window

• and a Function definition and preview panel at the bottom.

Defining the schema

First you need to define the structure of data to be generated.

• Add as many columns to your schema as needed, using the plus (+) button.

• Type in the names of the columns to be created in the Columns area and select the Key check box if required

• Make sure you define then the nature of the data contained in the column, by selecting the Type in the
list. According to the type you select, the list of Functions offered will differ. This information is therefore
compulsory.

Scenario: Generating random java data

Talend Open Studio Components Reference Guide 1535

• Some extra information, although not required, might be useful such as Length, Precision or Comment. You
can also hide these columns, by clicking on the Columns drop-down button next to the toolbar, and unchecking
the relevant entries on the list.

• In the Function area, you can select the predefined routine/function if one of them corresponds to your
needs.You can also add to this list any routine you stored in the Routine area of the Repository. Or you can
type in the function you want to use in the Function definition panel. Related topic: see Talend Open Studio
User Guide.

• Click Refresh to have a preview of the data generated.

• Type in a number of rows to be generated. The more rows to be generated, the longer it’ll take to carry out
the generation operation.

Defining the function

Select the [...] under Function in the Schema definition panel in order to customize the function parameters.

• Select the Function parameters tab

• The Parameter area displays Customized parameter as function name (read-only)

• In the Value area, type in the Java function to be used to generate the data specified.

• Click on the Preview tab and click Preview to check out a sample of the data generated.

Scenario: Generating random java data

The following scenario creates a two-component Job, generating 50 rows structured as follows: a randomly picked-
up ID in a 1-to-3 range, a random ascii First Name and Last Name generation and a random date taken in a defined
range.

Scenario: Generating random java data

1536 Talend Open Studio Components Reference Guide

• Drop a tRowGenerator and a tLogRow component from the Palette to the design workspace.

• Right-click tRowGenerator and select Row > Main. Drag this main row link onto the tLogRow component
and release when the plug symbol displays.

• Double click tRowGenerator to open the Editor.

• Define the fields to be generated.

• The random ID column is of integer type, the First and Last names are of string type and the Date is of date type.

• In the Function list, select the relevant function or set on the three dots for custom function.

• On the Function parameters tab, define the Values to be randomly picked up.

• First_Name and Last_Name columns are to be generated using the getAsciiRandomString function that is
predefined in the system routines. By default the length defined is 6 characters long. You can change this if
need be.

• The Date column calls the predefined getRandomDate function. You can edit the parameter values in the
Function parameters tab.

• Set the Number of Rows to be generated to 50.

• Click OK to validate the setting.

• Double click tLogRow to view the Basic settings. The default setting is retained for this Job.

• Press F6 to run the Job.

Scenario: Generating random java data

Talend Open Studio Components Reference Guide 1537

The 50 rows are generated following the setting defined in the tRowGenerator editor and the output is displayed
in the Run console.

Talend Open Studio Components Reference Guide

Talend Open Studio Components Reference Guide

Orchestration components
This chapter details the main components that you can find in Orchestration family of the Talend Open Studio
Palette.

The Orchestration family groups together components that help you to sequence or orchestrate tasks or processing
in your Jobs or subjobs and so on.

tFileList

1540 Talend Open Studio Components Reference Guide

tFileList

tFileList belongs to two component families: File and Orchestration. For more information on tFileList, see the
section called “tFileList”.

tFlowToIterate

Talend Open Studio Components Reference Guide 1541

tFlowToIterate

tFlowToIterate Properties

Component family Orchestration

Function tFlowToIterate transforms a data flow into a list.

Purpose Allows you to transform a processable flow into non processable data.

Basic settings Use the default (key,
value) in global
variables

When selected, the system uses the default value of the
global variable in the current Job.

Customize key: Type in a name for the new global variable.
Press Ctrl+Space to access all available variables either
global or user-defined.

value: Click in the cell to access a list of the columns
attached to the defined global variable.

Usage You cannot use this component as a start component. tFlowToIterate requires an
output component.

Global Variables Number of Lines: Indicates the number of lines
processed. This is available as an After variable.

Returns an integer.

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Row: Iterate

Trigger: Run if; On Component Ok; On Component
Error.

Incoming links (from one component to another):

Row: Main;

For further information regarding connections, see
Talend Open Studio User Guide.

Limitation n/a

Scenario: Transforming data flow to a list

The following scenario describes a Job that reads a list of files from a defined input file, iterates on each of the
files, selects input data and displays the output on the Run log console.

Scenario: Transforming data flow to a list

1542 Talend Open Studio Components Reference Guide

• Drop the following components from the Palette onto the design workspace: tFileInputDelimited (x2),
tFlowToIterate, and tLogRow.

• Via a right-click on each of the components, connect the first tFileInputdelimited to tFlowToIterate using
a Row Main link, tFlowToIterate to the second tFileInputdelimited using an Iterate link, and the second
tFileInputdelimited to tLogRow using a Row Main link.

• In the design workspace, select the first tFileInputDelimited.

• Click the Component tab to display the relevant view where you can define the basic settings for
tFileInputDelimited.

• In the Basic settings view, click the three-dot [...] button next to the File Name field to select the path to the
input file.

The File Name field is mandatory.

The input file used in this scenario is called Customers. It is a text file that holds three other simple text files: Name,
E-mail and Address. The first text file, Name, is made of one column holding customers’ names. The second text
file, E-mail, is made of one column holding customers’ e-mail addresses. The third text file, Address, is made of
one column holding customers’ postal addresses.

• Fill in all other fields as needed. For more information, see the section called “tMDMInput properties”. In this
scenario, the header and the footer are not set and there is no limit for the number of processed rows

• Click Edit schema to describe the data structure of this input file. In this scenario, the schema is made of one
column, FileName.

Scenario: Transforming data flow to a list

Talend Open Studio Components Reference Guide 1543

• In the design workspace, select tFlowToIterate.

• Click the Component tab to define the basic settings for tFlowToIterate.

• If needed, select the Use the default (key, value) in global variables check box to use the default value of
the global variable.

• Click the plus button to add new parameter lines and define your variables.

• Click in the key cell to modify the variable name as desired.

You can press Ctrl+Space in the key cell to access the list of global and user-specific variables.

• In the design workspace, select the second tFileInputDelimited.

• Click the Component tab to define the basic settings for the second tFileInputDelimited.

• In the File Name field, enter the file name using the variable containing the name of the file. The relevant syntax
is +globalMap.get(“file”).

• Fill in all other fields as needed. For more information, see the section called “tMDMInput properties”.

• In the design workspace, select the last component, tLogRow.

Scenario: Transforming data flow to a list

1544 Talend Open Studio Components Reference Guide

• Click the Component tab to define the basic settings for tLogRow.

• Define your settings as needed. For more information, see the section called “tLogRow properties”.

• Save your Job and press F6 to execute it

Customers’ names, customers’ e-mails, and customers’ postal addresses display on the console preceded by the
schema column name.

tForeach

Talend Open Studio Components Reference Guide 1545

tForeach

tForeach Properties

Component Family Orchestration

Function tForeach creates a loop on a list for an iterate link.

Purpose tForeach allows you to to create a loop on a list for an iterate link.

Basic settings Values Use the [+] button to add rows to the Values table. Then click
on the fields to enter the list values to be iterated upon, between
double quotation marks.

Advanced settings tStatCatcher
Statistics

Select this check box to collect the log data at a component
level.

Usage tForeach is an input component and requires an Iterate link to connect it to another
component.

Limitation n/a

Scenario: Iterating on a list and retrieving the values
This scenario describes a two component Job in which a list is created and iterated upon in a tForEach component.
The values are then retrieved in a tJava component.

• rop a tForeach and a tJava component onto the design workspace:

• Link tForeach to tJava using a Row > Iterate connection.

• Double-click tForEach to open its Basic settings view:

Scenario: Iterating on a list and retrieving the values

1546 Talend Open Studio Components Reference Guide

• Click the [+] button to add as many rows to the Values list as required.

• Click on the Value fields to enter the list values, between double quotation marks.

• Double-click tJava to open its Basic settings view:

• Enter the following Java code in the Code area:
System.out.println(globalMap.get("tForeach_1_CURRENT_VALUE")+"_out");

• Save the Job and press F6 to run it

The tJava run view displays the list values retrieved from tForeach, each one suffixed with _out:

tInfiniteLoop

Talend Open Studio Components Reference Guide 1547

tInfiniteLoop

tInfiniteLoop Properties

Component Family Orchestration

Function tInfiniteLoop runs an infiite loop on a task.

Purpose tInfiniteLoop allows you to to execute a task or a Job automatically, based on a
loop.

Basic settings Wait at each
iteration (in
milliseconds)

Enter the time delay between iterations.

Advanced settings tStatCatcher
Statistics

Select this check box to collect the log data at a component
level.

Usage tInifniteLoop is an input component and requires an Iterate link to connect it to
the following component.

Global Variables Current iteration: Indicates the current iteration number. This
is available as a Flow variable.

Returns an integer.

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Row: Iterate

Trigger: On Subjob Ok; On Subjob Error; Run if; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate;

Trigger: On Subjob Ok; On Subjob Error; Run if;
On Component Ok; On Component Error; Synchronize;
Parallelize.

For further information regarding connections, see Talend
Open Studio User Guide.

Limitation n/a

Related scenario
For an example of the kind of scenario in which tInifniteLoop might be used, see the section called “Scenario:
Job execution in a loop”, regarding the tLoop component.

tIterateToFlow

1548 Talend Open Studio Components Reference Guide

tIterateToFlow

tIterateToFlow Properties

Component family Orchestration

Function tIterateToFlow transforms a list into a data flow that can be processed.

Purpose Allows you to transform non processable data into a processable flow.

Basic settings Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

In the case of tIterateToFlow, the schema is to be
defined

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job designs. Related topic: see Talend Open Studio
User Guide.

Mapping Column: Enter a name for the column to be created

Value: Press Ctrl+Space to access all of the available
variables, be they global or user-defined.

Advanced Settings tStatCatcher Statistics Select this check box to collect the log data at a
component level.

Usage This component is not startable (green background) and it requires an output
component.

Connections Outgoing links (from one component to another):

Row: Main.

Trigger: Run if; On Component Ok; On Component
Error.

Incoming links (from one component to another):

Row: Iterate;

For further information regarding connections, see
Talend Open Studio User Guide.

Scenario: Transforming a list of files as data flow

Talend Open Studio Components Reference Guide 1549

Scenario: Transforming a list of files as data flow

The following scenario describes a Job that iterates on a list of files, picks up the filename and current date and
transforms this into a flow, that gets displayed on the console.

• Drop the following components: tFileList, tIterateToFlow and tLogRow from the Palette to the design
workspace.

• Connect the tFileList to the tIterateToFlow using an iterate link and connect the Job to the tLogRow using
a Row main connection.

• In the tFileList Component view, set the directory where the list of files is stored.

• In this example, the files are three simple .txt files held in one directory: Countries.

• No need to care about the case, hence clear the Case sensitive check box.

• Leave the Include Subdirectories check box unchecked.

• Then select the tIterateToFlow component et click Edit Schema to set the new schema

• Add two new columns: Filename of String type and Date of date type. Make sure you define the correct pattern
in Java.

• Click OK to validate.

• Notice that the newly created schema shows on the Mapping table.

Scenario: Transforming a list of files as data flow

1550 Talend Open Studio Components Reference Guide

• In each cell of the Value field, press Ctrl+Space bar to access the list of global and user-specific variables.

• For the Filename column, use the global variable: tFileList_1CURRENT_FILEPATH. It retrieves the
current filepath in order to catch the name of each file, the Job iterates on.

• For the Date column, use the Talend routine:TalendDate.getCurrentDate() (in Java)

• Then on the tLogRow component view, select the Print values in cells of a table check box.

• Save your Job and press F6 to execute it.

The filepath displays on the Filename column and the current date displays on the Date column.

tLoop

Talend Open Studio Components Reference Guide 1551

tLoop

tLoop Properties

Component family Orchestration

Function tLoop iterates on a task execution.

Purpose tLoop allows you to execute a task or a Job automatically, based on a loop

Basic settings Loop Type Select a type of loop to be carried out: either For or While.

For: The task or Job is carried out for the defined number of
iteration

While: The task or Job is carried until the condition is met.

For From Type in the first instance number which the loop should start
from. A start instance number of 2 with a step of 2 means the
loop takes on every even number instance.

To Type in the last instance number which the loop should finish
with.

Step Type in the step the loop should be incremented of. A step of
2 means every second instance.

While Declaration Type in an expression initiating the loop.

Condition Type in the condition that should be met for the loop to end.

Iteration Type in the expression showing the operation to be performed
at each loop.

Values are
increasing

Select this check box to only allow an increasing sequence.
Deselect this check box to only allow a decreasing sequence.

Usage tLoop is to be used as a start component and can only be used with an iterate
connection to the next component.

Global Variables Current value: Indicates the current value. This is available as
a Flow variable.

Returns an integer.

Current iteration: Indicates the number of the current
iteration. This is available as a Flow variable

Returns an integer.

The CURRENT_VALUE variable is available only in case of
a For type loop.

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Row: Iterate.

Scenario: Job execution in a loop

1552 Talend Open Studio Components Reference Guide

Trigger: On Subjob Ok; On Subjob Error; Run if; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate;

Trigger: On Subjob Ok; On Subjob Error; Run if;
On Component Ok; On Component Error; Synchronize;
Parallelize.

For further information regarding connections, see Talend
Open Studio User Guide.

Limitation n/a

Scenario: Job execution in a loop

This scenario describes a Job composed of a parent Job and a child Job. The parent Job implements a loop which
executes n times a child Job, with a pause between each execution.

• In the parent Job, drop a tLoop, a tRunJob and a tSleep component from the Palette to the design workspace.

• Connect the tLoop to the tRunJob using an Iterate connection.

• Then connect the tRunJob to a tSleep component using a Row connection.

• On the child Job, drop the following components: tPOP, tFileInputMail and tLogRow the same way.

• On the Basic settings panel of the tLoop component, type in the instance number to start from (1), the instance
number to finish with (5) and the step (1)

• On the Basic settings panel of the tRunJob component, select the child Job in the list of stored Jobs offered.
In this example: popinputmail

• Select the context if relevant. In this use case, the context is default with no variables stored.

Scenario: Job execution in a loop

Talend Open Studio Components Reference Guide 1553

• In the tSleep Basic settings panel, type in the time-off value in second. In this example, type in 3 seconds in
the Pause field.

• Then in the child Job, define the connection parameters to the pop server, on the Basic settings panel.

• In the tFileInputMail Basic settings panel, select a global variable as File Name, to collect the current file in
the directory defined in the tPOP component. Press Ctrl+Space bar to access the variable list. In this example,
the variable to be used is: ((String)globalMap.get("tPOP_1_CURRENT_FILEPATH"))

• Define the Schema, for it to include the mail element to be processed, such as author, topic, delivery date and
number of lines.

• In the Mail Parts table, type in the corresponding Mail part for each column defined in the schema. ex: author
comes from the From part of the email file.

• Then connect the tFileInputMail to a tLogRow to check out the execution result on the Run view.

• Press F6 to run the Job.

tPostjob

1554 Talend Open Studio Components Reference Guide

tPostjob

tPostjob Properties

Component family Orchestration

Function tPostjob starts the execution of a postjob.

Purpose tPostjob triggers a task required after the execution of a Job

Usage tPostjob is a start component and can only be used with an iterate connection to
the next component.

Connections Outgoing links (from one component to another):

Trigger: On Component Ok.

Incoming links (from one component to another):

Trigger: Synchronize; Parallelize.

For further information regarding connections, see Talend
Open Studio User Guide.

Limitation n/a

For more information about the tPostjob component, see Talend Open Studio User Guide.

Related scenario

No scenario is available for this component yet.

tPrejob

Talend Open Studio Components Reference Guide 1555

tPrejob

tPrejob Properties

Component family Orchestration

Function tPrejob starts the execution of a prejob.

Purpose tPrejob triggers a task required for the execution of a Job

Usage tPrejob is a start component and can only be used with an iterate connection to
the next component.

Connections Outgoing links (from one component to another):

Trigger: On Component Ok..

Incoming links (from one component to another):

Trigger: Synchronize; Parallelize.

For further information regarding connections, see Talend
Open Studio User Guide.

Limitation n/a

For more information about the tPrejob component, see Talend Open Studio User Guide.

Related scenario

No scenario is available for this component yet.

tReplicate

1556 Talend Open Studio Components Reference Guide

tReplicate

tReplicate Properties

Component family Orchestration

Function Duplicate the incoming schema into two identical output flows.

Purpose Allows you to perform different operations on the same schema.

Basic settings Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Click Edit schema to make changes to the schema. Note
that if you make changes to a remote schema, the schema
automatically becomes built-in.

Click Sync columns to retrieve the schema from the
previous component in the Job.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job designs. Related topic: see Talend Open Studio
User Guide.

Usage This component is not startable (green background), it requires an Input
component and an output component.

Connections Outgoing links (from one component to another):

Row: Main.

Trigger: Run if; On Component Ok; On Component
Error.

Incoming links (from one component to another):

Row: Main; Reject;

For further information regarding connections, see
Talend Open Studio User Guide.

Related scenario

For a use case showing this component in use, see the section called “tReplaceList”.

tRunJob

Talend Open Studio Components Reference Guide 1557

tRunJob

tRunJob belongs to two component families: System and Orchestration. For more information on tRunJob, see
the section called “tRunJob”.

tSleep

1558 Talend Open Studio Components Reference Guide

tSleep

tSleep Properties

Component family Orchestration

Function tSleep implements a time off in a Job execution.

Purpose Allows you to identify possible bottlenecks using a time break in the Job for testing
or tracking purpose. In production, it can be used for any needed pause in the Job
to feed input flow for example.

Basic settings Pause (in second) Time in second the Job execution is stopped for.

Usage tSleep component is generally used as a middle component to make a break/pause
in the Job, before resuming the Job.

Connections Outgoing links (from one component to another):

Row: Main; Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On
Component Ok; On Component Error

Incoming links (from one component to another):

Row: Main; Reject; Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On
Component Ok; On Component Error; Synchronize;
Parallelize.

For further information regarding connections, see
Talend Open Studio User Guide.

Limitation n/a

Related scenarios

For use cases in relation with tSleep, see the section called “Scenario: Job execution in a loop”.

tUnite

Talend Open Studio Components Reference Guide 1559

tUnite

tUnite Properties

Component family Orchestration

Function Merges data from various sources, based on a common schema.

Purpose Centralize data from various and heterogeneous sources.

Basic settings Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Click Edit schema to make changes to the schema. Note
that if you make changes to a remote schema, the schema
automatically becomes built-in.

Click Sync columns to retrieve the schema from the
previous component in the Job.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job designs. Related topic: see Talend Open Studio
User Guide.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is not startable and requires one or several input components and
an output component.

Global Variables Number of lines: Indicates the number of lines
processed. This is available as an After variable.

Returns an integer.

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Row: Main.

Trigger: Run if; On Component Ok; On Component
Error

Incoming links (from one component to another):

Row: Main; Reject.

Scenario: Iterate on files and merge the content

1560 Talend Open Studio Components Reference Guide

For further information regarding connections, see
Talend Open Studio User Guide.

Limitation n/a

Scenario: Iterate on files and merge the content

The following Job iterates on a list of files then merges their content and displays the final 2-column content on
the console.

Dropping and linking the components

1. Drop the following components onto the design workspace: tFileList, tFileInputDelimited, tUnite and
tLogRow.

2. Connect the tFileList to the tFileInputDelimited using an Iterate connection and connect the other
component using a row main link.

Configuring the components

1. In the tFileList Basic settings view, browse to the directory, where the files to merge are stored.

The files are pretty basic and contain a list of countries and their respective score.

Scenario: Iterate on files and merge the content

Talend Open Studio Components Reference Guide 1561

2. In the Case Sensitive field, select Yes to consider the letter case.

3. Select the tFileInputDelimited component, and display this component’s Basic settings view.

4. Fill in the File Name/Stream field by using the Ctrl+Space bar combination to access the variable
completion list, and selecting tFileList.CURRENT_FILEPATH from the global variable list to process
all files from the directory defined in the tFileList.

5. Click the Edit Schema button and set manually the 2-column schema to reflect the input files’ content.

For this example, the 2 columns are Country and Points. They are both nullable. The Country column is of
String type and the Points column is of Integer type.

6. Click OK to validate the setting and accept to propagate the schema throughout the Job.

7. Then select the tUnite component and display the Component view. Notice that the output schema strictly
reflects the input schema and is read-only.

8. In the Basic settings view of tLogRow, select the Table option to display properly the output values.

Scenario: Iterate on files and merge the content

1562 Talend Open Studio Components Reference Guide

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6, or click Run on the Run console to execute the Job.

The console shows the data from the various files, merged into one single table.

tWaitForFile

Talend Open Studio Components Reference Guide 1563

tWaitForFile

tWaitForFile properties

Component family Orchestration

Function tWaitForFile component iterates on a given folder for file insertion or deletion
then triggers a subjob to be executed when the condition is met.

Purpose This component allows a subjob to be triggered given a condition linked to file
presence or removal.

Basic settings Time (in seconds)
between iterations

Set the time interval in seconds between each check for
the file.

Max. number of
iterations (infinite loop
if empty)

Number of checks for file before the jobs times out.

Directory to scan Name of the folder to be checked for insert or removal

File mask Mask of the file to be searched for insertion or removal.

Include subdirectories Select this check box to include the sub-folders.

Case sensitive Select this check box to activate case sensitivity.

Include present file Select this check box to include the file in use.

Trigger action when Select the condition to be met for the action to be carried
out:

A file is created A file is deleted A file is updated A
file is created or updated or deleted.

Then Select the action to be carried out: either stop the
iterations when the condition is met (exit loop) or
continue the loop until the end of the max iteration
number (continue loop).

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository. .

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job designs. Related topic: see Talend Open Studio
User Guide.

Advanced Settings Wait for file to be
released

Select this check box so that the subjob only triggers after
the file insertion/update/removal operation is complete.
In case the operation is incomplete, the subjob will not
trigger.

tWaitForFile properties

1564 Talend Open Studio Components Reference Guide

Usage This component plays the role of the start (or trigger) component of the subjob
which gets executed under the condition described. Therefore this component
requires a subjob to be connected to via an Iterate link.

Global Variables Current iteration: Indicates the number of the current
iteration. This is available as a Flow variable.

Returns an integer.

Present File: Indicates the name of the current file in the
iteration which activated the trigger. This is available as
a Flow variable.

Returns a string.

Deleted File: Indicates the path and name of the deleted
file, which activated the trigger. This is available as a
Flow variable

Returns a string.

Created File Name: Indicates the name and path to a
newly created file which activated the trigger. This is
available as a Flow variable.

Returns a string.

Updated File: Indicates the name and path to a file
which has been updated, thereby activating the trigger.
This is available as a Flow variable.

Returns a string.

File Name: Indicates the name of a file which has
been created, deleted or updated, thereby activating the
trigger. This is available as a Flow variable.

Returns a string.

Not Updated File Name: Indicates the names of files
which have not been updated, thereby activating the
trigger. This is available as a Flow variable.

Returns a string.

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Row: Main; Iterate.

Trigger: On Subjob Ok; Run if; On Component Ok; On
Component Error

Scenario: Waiting for a file to be removed

Talend Open Studio Components Reference Guide 1565

Incoming links (from one component to another):

Row:Iterate.

Trigger: On Subjob Ok; Run if; On Component Ok; On
Component Error; Synchronize; Parallelize.

For further information regarding connections, see
Talend Open Studio User Guide.

Limitation n/a

Scenario: Waiting for a file to be removed

This scenario describes a Job scanning a directory and waiting for a file to be removed from this directory, in
order for a subjob to be executed. When the condition of file removal is met, then the subjob simply displays a
message box showing the file being removed.

• This use case only requires two components from the Palette: tWaitForFile and tMsgbox

• Click and place these components on the design workspace and connect them using an Iterate link to implement
the loop.

• Then select the tWaitForFile component, and on the Basic Settings view of the Component tab, set the
condition and loop properties:

• In the Time (in seconds) between iteration field, set the time in seconds you want to wait before the next
iteration starts. In this example, the directory will be scanned every 5 seconds.

• In the Max. number of iterations (infinite loop if empty) field, fill out the number of iterations max you want to
have before the whole Job is forced to end. In this example, the directory will be scanned a maximum of 5 times.

• In the Directory to scan field, type in the path to the folder to scan.

• In the Trigger action when field, select the condition to be met, for the subjob to be triggered. In this use case,
the condition is a file is deleted (or moved) from the directory.

Scenario: Waiting for a file to be removed

1566 Talend Open Studio Components Reference Guide

• In the Then field, select the action to be carried out when the condition is met before the number of iteration
defined is reached. In this use case, as soon as the condition is met, the loop should be ended.

• Then set the subjob to be executed when the condition set is met. In this use case, the subjob simply displays
a message box.

• Select the tMsgBox component, and on the Basic Setting view of the Component tab, set the message to be
displayed.

• Fill out the Title and Message fields.

• Select the type of Buttons and the Icon

• In the Message field, you can write any type of message you want to display and use global variables available
in the auto-completion list via Ctrl+Space combination.

• The message is:

"Deleted file: "+((String)globalMap.get("tWaitForFile_1_DELETED_FILE"))+"
on iteration
 Nr:"+((Integer)globalMap.get("tWaitForFile_1_CURRENT_ITERATION"))

Then execute the Job via the F6 key. While the loop is executing, remove a file from the location defined. The
message pops up and shows the defined message.

tWaitForSocket

Talend Open Studio Components Reference Guide 1567

tWaitForSocket

tWaitForSocket properties

Component Family Orchestration

Function tWaitForSocket component makes a loop on a defined port, to look for data, and
triggers a subjob when the condition is met.

Purpose This component triggers a Job based on a defined condition.

Basic settings Port DB server listening port.

End of line separator Enter the end of line separator to be used..

Then Select the action to be carried out:

keep on listening

or

close socket

Print client/server data Select this check box to display the client or server data.

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at a
component level.

Usage This is an input, trigger component for the subjob executed depending on the
condition set. Hence, it needs to be connected to a subjob via an Iterate link.

Global Variables Client input data: Returns the data transmitted by the
client. This is available as a Flow variable.

Returns a string.

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Row: Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On
Component Ok; On Component Error.

Incoming links (from one component to another):

Row:Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On
Component Ok; On Component Error; Synchronize;
Parallelize.

For further information regarding connections, see
Talend Open Studio User Guide.

Related scenario

1568 Talend Open Studio Components Reference Guide

Limitation n/a

Related scenario

No scenario is available for this component yet.

tWaitForSqlData

Talend Open Studio Components Reference Guide 1569

tWaitForSqlData

tWaitForSqlData properties

Component family Orchestration

Function tWaitForSqlData component iterates on a given connection for insertion or
deletion of rows and triggers a subjob to be executed when the condition is met.

Purpose This component allows a subjob to be triggered given a condition linked to sql
data presence.

Basic settings Wait at each iteration
(in seconds)

Set the time interval in seconds between each check for
the sql data.

Max. iterations (infinite
if empty)

Number of checks for sql data before the Jobs times out.

Use an existing
connection/Component
List

A connection needs to be open to allow the loop to check
for sql data on the defined DB.

When a Job contains the parent Job and the
child Job, Component list presents only the
connection components in the same Job level, so
if you need to use an existing connection from
the other level, you can

From the available database connection
component in the level where the current
component is, select the Use or register
a shared DB connection check box. For
more information about this check box, see
Databases - traditional components, Databases
- appliance/datawarehouse components, or
Databases - other components for the
connection components according to the
database you are using.

Otherwise, still in the level of the
current component, deactivate the connection
components and use Dynamic settings of the
component to specify the intended connection
manually. In this case, make sure the connection
name is unique and distinctive all over through
the two Job levels. For more information about
Dynamic settings, see your studio user guide.

Table to scan Name of the table to be checked for insert or deletion

Trigger action when
rowcount is

Select the condition to be met for the action to be carried
out:

Equal to Not Equal to Greater than Lower than
Greater or equal to Lower or equal to

Value Define the value to take into account.

Scenario: Waiting for insertion of rows in a table

1570 Talend Open Studio Components Reference Guide

Then Select the action to be carried out: either stop the
iterations when the condition is met (exit loop) or
continue the loop until the end of the max iteration
number (continue loop).

Usage Although this component requires a Connection component to open the DB access,
it plays also the role of the start (or trigger) component of the subjob which
gets executed under the condition described. Therefore this component requires a
subjob to be connected to via an Iterate link.

Global Variables Current iteration: Returns the number of the current
iteration. This is available as a Flow variable.

Returns an integer.

Row count: Indicates the number of records detected in
the table. This is available as a Flow variable.

Returns an integer.

For further information about variables, see Talend Open
Studio User Guide.

Limitation n/a

Scenario: Waiting for insertion of rows in a table

This scenario describes a Job reading a DB table and waiting for data to be put in this table in order for a subjob
to be executed. When the condition of the data insertion in the table is met, then the subjob performs a Select* on
the table and simply displays the content of the inserted data onto the standard console.

• Drop the following components from the Palette onto the design workspace: tMySqlConnection,
tWaitForSqlData, tMysqlInput, tLogRow.

• Connect the tMysqlConnection component to the tWaitforSqlData using an OnSubjobOK link, available
on the right-click menu.

• Then connect the tWaitForSqlData component to the subjob using an Iterate link as no actual data is
transferred in this part. Indeed, simply a loop is implemented by the tWaitForSqlData until the condition is met.

• On the subjob to be executed if the condition is met, a tMysqlInput is connected to the standard console
component, tLogRow. As the connection passes on data, use a Row main link.

• Now, set the connection to the table to check at regular intervals. On the Basic Settings view of the
tMySqlConnection Component tab, set the DB connection properties.

Scenario: Waiting for insertion of rows in a table

Talend Open Studio Components Reference Guide 1571

• Fill out the Host, Port, Database, Username, Password fields to open the connection to the Database table.

• Select the relevant Encoding if needed.

• Then select the tWaitForSqlData component, and on the Basic Setting view of the Component tab, set its
properties.

• In the Wait at each iteration field, set the time in seconds you want to wait before the next iteration starts.

• In the Max iterations field, fill out the number of iterations max you want to have before the whole Job is
forced to end.

• The tWaitForSqlData component requires a connection to be open in order to loop on the defined number of
iteration. Select the relevant connection (if several) in the Component List combo box.

• In the Table to scan field, type in the name of the table in the DB to scan.In this example: test_datatypes.

• In the Trigger action when rowcount is and Value fields, select the condition to be met, for the subjob to be
triggered. In this use case, the number of rows in the scanned table should be greater or equal to 1.

• In the Then field, select the action to be carried out when the condition is met before the number of iteration
defined is reached. In this use case, as soon as the condition is met, the loop should be ended.

• Then set the subjob to be executed when the condition set is met. In this use case, the subjob simply selects the
data from the scanned table and displays it on the console.

• Select the tMySqlInput component, and on the Basic Setting view of the Component tab, set the connection
to the table.

Scenario: Waiting for insertion of rows in a table

1572 Talend Open Studio Components Reference Guide

• If the connection is set in the Repository, select the relevant entry on the list. Or alternatively, select the Use an
existing connection check box and select the relevant connection component on the list.

• In this use case, the schema corresponding to the table structure is stored in the Repository.

• Fill out the Table Name field with the table the data is extracted from, Test_datatypes.

• Then in the Query field, type in the Select statement to extract the content from the table.

• No particular setting is required in the tLogRow component for this use case.

Then before executing the Job, make sure the table to scan (test_datatypes) is empty, in order for the condition
(greater or equal to 1) to be met. Then execute the Job by pressing the F6 key on your keyboard. Before the end
of the iterating loop, feed the test_datatypes table with one or more rows in order to meet the condition.

The Job ends when this table insert is detected during the loop, and the table content is thus displayed on the
console.

Talend Open Studio Components Reference Guide

Processing components
This chapter details the main components that you can find in Processing family of the Talend Open Studio Palette.

The Processing family gathers together components that help you to perform all types of processing tasks on data
flows, including aggregation, mapping, transformation, denormalizing, filtering and so on.

tAggregateRow

1574 Talend Open Studio Components Reference Guide

tAggregateRow

tAggregateRow properties

Component family Processing

Function tAggregateRow receives a flow and aggregates it based on one or more columns.
For each output line, are provided the aggregation key and the relevant result of
set operations (min, max, sum...).

Purpose Helps to provide a set of metrics based on values or calculations.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job flowcharts. Related topic: see Talend Open
Studio User Guide.

Group by Define the aggregation sets, the values of which will be
used for calculations.

Output Column: Select the column label in the list
offered based on the schema structure you defined. You
can add as many output columns as you wish to make
more precise aggregations.

Ex: Select Country to calculate an average of values for
each country of a list or select Country and Region if
you want to compare one country’s regions with another
country’ regions.

Input Column: Match the input column label with
your output columns, in case the output label of the
aggregation set needs to be different.

Operations Select the type of operation along with the value to use
for the calculation and the output field.

Output Column: Select the destination field in the list.

Function: Select the operator among: count, min, max,
avg, sum, first, last, list, list(objects), count(distinct),
standard deviation.

Input column: Select the input column from which the
values are taken to be aggregated.

Scenario 1: Aggregating values and sorting data

Talend Open Studio Components Reference Guide 1575

Ignore null values: Select the check boxes
corresponding to the names of the columns for which you
want the NULL value to be ignored.

Advanced settings Delimiter(only for list
operation)

Enter the delimiter you want to use to separate the
different operations.

Use financial precision,
this is the max
precision for “sum”
and “avg” operations,
checked option heaps
more memory and
slower than unchecked.

Select this check box to use a financial precision. This is
a max precision but consumes more memory and slows
the processing.

We advise you to use the BigDecimal type for
the output in order to obtain precise results.

Check type overflow
(slower)

Checks the type of data to ensure that the Job doesn’t
crash.

Check ULP (Unit in
the Last Place), ensure
that a value will
be incremented or
decremented correctly,
only float and double
types. (slower)

Select this check box to ensure the most precise results
possible for the Float and Double types.

tStatCatcher Statistics Check this box to collect the log data at component level.

Usage This component handles flow of data therefore it requires input and output, hence
is defined as an intermediary step. Usually the use of tAggregateRow is combined
with the tSortRow component

Limitation n/a

Scenario 1: Aggregating values and sorting data

The following scenario describes a four-component Job. As input component, a CSV file contains countries and
notation values to be sorted by best average value. This component is connected to a tAggregateRow operator,
in charge of the average calculation then to a tSortRow component for the ascending sort. The output flow goes
to the new csv file.

• From the File folder in the Palette, drop a tFileInputDelimited component to the design workspace.

• Click the label and rename it as Countries. Or rename it from the View tab panel

• In the Basic settings tab panel of this component, define the filepath and the delimitation criteria. Or select the
metadata file in the repository if it exists.

• Click Edit schema... and set the columns: Countries and Points to match the file structure. If your file
description is stored in the Metadata area of the Repository, the schema is automatically uploaded when you
click Repository in Schema type field.

Scenario 1: Aggregating values and sorting data

1576 Talend Open Studio Components Reference Guide

• Then from the Processing folder in the Palette, drop a tAggregateRow component to the design workspace.
Rename it as Calculation.

• Connect Countries to Calculation via a right-click and select Row > Main.

• Double-click Calculation (tAggregateRow component) to set the properties. Click Edit schema and define the
output schema. You can add as many columns as you need to hold the set operations results in the output flow.

• In this example, we’ll calculate the average notation value per country and we will display the max and the
min notation for each country, given that each country holds several notations. Click OK when the schema is
complete.

• To carry out the various set operations, back in the Basic settings panel, define the sets holding the operations
in the Group By area. In this example, select Country as group by column. Note that the output column needs
to be defined a key field in the schema. The first column mentioned as output column in the Group By table is
the main set of calculation. All other output sets will be secondary by order of display.

• Select the input column which the values will be taken from.

• Then fill in the various operations to be carried out. The functions are average, min, max for this use case.
Select the input columns, where the values are taken from and select the check boxes in the Ignore null values
list as needed.

• Drop a tSortRow component from the Palette onto the design workspace. For more information regarding this
component, see the section called “tSortRow properties”.

• Connect the tAggregateRow to this new component using a row main link.

• On the Component view of the tSortRow component, define the column the sorting is based on, the sorting
type and order.

Scenario 1: Aggregating values and sorting data

Talend Open Studio Components Reference Guide 1577

• In this case, the column to be sorted by is Country, the sort type is alphabetical and the order is ascending.

• Drop a tFileOutputDelimited from the Palette to the design workspace and define it to set the output flow.

• Connect the tSortRow component to this output component.

• In the Component view, enter the output filepath. Edit the schema if need be. In this case the delimited file is
of csv type. And select the Include Header check box to reuse the schema column labels in your output flow.

• Press F6 to execute the Job. The csv file thus created contains the aggregating result.

tAggregateSortedRow

1578 Talend Open Studio Components Reference Guide

tAggregateSortedRow

tAggregateSortedRow properties

Component family Processing

Function tAggregateSortedRow receives a sorted flow and aggregates it based on one or more
columns. For each output line, are provided the aggregation key and the relevant result
of set operations (min, max, sum...).

Purpose Helps to provide a set of metrics based on values or calculations. As the input flow is
meant to be sorted already, the performance are hence greatly optimized.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Built-in: The schema will be created and stored locally for
this component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and
Job flowcharts. Related topic: see Talend Open Studio User
Guide.

Input rows count Specify the number of rows that are sent to the
tAggregateSortedRow component.

If you specified a Limit for the number of rows to
be processed in the input component, you will have
to use that same limit in the Input rows count field.

Group by Define the aggregation sets, the values of which will be used
for calculations.

Output Column: Select the column label in the list offered
based on the schema structure you defined. You can add
as many output columns as you wish to make more precise
aggregations.

Ex: Select Country to calculate an average of values for each
country of a list or select Country and Region if you want
to compare one country’s regions with another country’
regions.

Input Column: Match the input column label with your
output columns, in case the output label of the aggregation
set needs to be different.

Related scenario

Talend Open Studio Components Reference Guide 1579

Operations Select the type of operation along with the value to use for
the calculation and the output field.

Output Column: Select the destination field in the list.

Function: Select the operator among: count, min, max, avg,
first, last.

Input column: Select the input column from which the
values are taken to be aggregated.

Ignore null values: Select the check boxes corresponding
to the names of the columns for which you want the NULL
value to be ignored.

Usage This component handles flow of data therefore it requires input and output, hence is
defined as an intermediary step.

Limitation n/a

Related scenario

For related use case, see the section called “Scenario 1: Aggregating values and sorting data”.

tConvertType

1580 Talend Open Studio Components Reference Guide

tConvertType

tConvertType properties

Component family Processing

Function tConvertType allows specific conversions at run time from one Talend java type
to another.

Purpose Helps to automatically convert one Talend java type to another and thus.avoid
compiling errors.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Built-in: You create and store the schema locally for
only the current component. Related topic: see Talend
Open Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job flowcharts. Related topic: see Talend Open
Studio User Guide.

Auto Cast This check box is selected by default. It performs an
automatic java type conversion.

Manual Cast This mode is not visible if the Auto Cast check box is
selected. It allows you to precise manually the columns
where a java type conversion is needed.

Set empty values to Null
before converting

This check box is selected to set the empty values of
String or Object type to null for the input data.

Die on error This check box is selected to kill the Job when an error
occurs.

Usage This component cannot be used as a start component as it requires an input flow
to operate.

Limitation n/a

Scenario: Converting java types

This Java scenario describes a four-component Job where the tConvertType component is used to convert Java
types in three columns, and a tMap is used to adapt the schema and have as an output the first of the three columns
and the sum of the two others after conversion.

In this scenario, the input schemas for the input delimited file are stored in the repository, you can simply
drag and drop the relevant file node from Repository - Metadata - File delimited onto the design

Scenario: Converting java types

Talend Open Studio Components Reference Guide 1581

workspace to automatically retrieve the tFileInputDelimited component’s setting. For more information,
see Talend Open Studio User Guide.

Dropping the components

1. Drop the following components from the Palette onto the design workspace: tConvertType, tMap, and
tLogRow.

2. In the Repository tree view, expand Metadata and from File delimited drag the relevant node, JavaTypes
in this scenario, to the design workspace.

The [Components] dialog box displays.

3. From the component list, select tFileInputDelimited and click Ok.

A tFileInputComponent called Java types displays in the design workspace.

4. Connect the components using Row > Main links.

Configuring the components

1. Double-click tFileInputDelimited to enter its Basic settings view.

2. Set Property Type to Repository since the file details are stored in the repository. The fields to follow are
pre-defined using the fetched data.

The input file used in this scenario is called input. It is a text file that holds string, integer, and float java types.

Scenario: Converting java types

1582 Talend Open Studio Components Reference Guide

Fill in all other fields as needed. For more information, see the section called “tMDMInput properties”. In
this scenario, the header and the footer are not set and there is no limit for the number of processed rows.

3. Click Edit schema to describe the data structure of this input file. In this scenario, the schema is made of
three columns, StringtoInteger, IntegerField, and FloatToInteger.

4. Click Ok to close the dialog box.

5. Double-click tConvertType to enter its Basic settings view.

6. Set Schema Type to Built in, and click Sync columns to automatically retrieve the columns from the
tFileInputDelimited component.

7. Click Edit schema to describe manually the data structure of this processing component.

Scenario: Converting java types

Talend Open Studio Components Reference Guide 1583

In this scenario, we want to convert a string type data into an integer type and a float type data into an integer
type.

Click OK to close the [Schema of tConvertType] dialog box.

8. Double-click tMap to open the Map editor.

The Map editor displays the input metadata of the tFileInputDelimited component

9. In the Schema editor panel of the Map editor, click the plus button of the output table to add two rows and
name them as StringToInteger and Sum.

10. In the Map editor, drag the StringToInteger row from the input table to the StringToInteger row in the output
table.

11. In the Map editor, drag each of the IntegerField and the FloatToInteger rows from the input table to the Sum
row in the output table and click OK to close the Map editor.

Scenario: Converting java types

1584 Talend Open Studio Components Reference Guide

12. In the design workspace, select tLogRow and click the Component tab to define its basic settings. For more
information, see the section called “tLogRow”.

Executing the Job

1. Press Ctrl+S to save the Job.

2. Press F6 to execute it.

The string type data is converted into an integer type and displayed in the StringToInteger column on the
console. The float type data is converted into an integer and added to the IntegerField value to give the
addition result in the Sum column on the console.

tDenormalize

Talend Open Studio Components Reference Guide 1585

tDenormalize

tDenormalize Properties

Component family Processing/Fields

Function Denormalizes the input flow based on one column.

Purpose tDenormalize helps synthesize the input flow.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository. In this component, the
schema is read-only.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

To denormalize In this table, define the parameters used to denormalize
your columns.

Column: Select the column to denormalize.

Delimiter: Type in the separator you want to use to
denormalize your data between double quotes.

Merge same value: Select this check box to merge
identical values.

Advanced settings

tStatCatcher Statistics Select this ckeck box to collect the log data at component
level.

Usage This component can be used as intermediate step in a data flow.

Limitation n/a

Scenario 1: Denormalizing on one column

This scenario illustrates a Job denormalizing one column in a delimited file.

• Drop the following components: tFileInputDelimited, tDenormalize, tLogRow from the Palette to the design
workspace.

• Connect the components using Row main connections.

• On the tFileInputDelimited Component view, set the filepath to the file to be denormalized.

Scenario 1: Denormalizing on one column

1586 Talend Open Studio Components Reference Guide

• Define the Header, Row Separator and Field Separator parameters.

• The input file schema is made of two columns, Fathers and Children.

• In the Basic settings of tDenormalize, define the column that contains multiple values to be grouped.

• In this use case, the column to denormalize is Children.

• Set the Delimiter to separate the grouped values. Beware as only one column can be denormalized.

• Select the Merge same value check box, if you know that some values to be grouped are strictly identical.

• Save your Job and press F6 to execute it.

Scenario 2: Denormalizing on multiple columns

Talend Open Studio Components Reference Guide 1587

All values from the column Children (set as column to denormalize) are grouped by their Fathers column. Values
are separated by a comma.

Scenario 2: Denormalizing on multiple columns
This scenario illustrates a Job denormalizing two columns from a delimited file.

• Drop the following components: tFileInputDelimited, tDenormalize, tLogRow from the Palette to the design
workspace.

• Connect all components using a Row main connection.

• On the tFileInputDelimited Basic settings panel, set the filepath to the file to be denormalized.

• Define the Row and Field separators, the Header and other information if required.

• The file schema is made of four columns including: Name, FirstName, HomeTown, WorkTown.

Scenario 2: Denormalizing on multiple columns

1588 Talend Open Studio Components Reference Guide

• In the tDenormalize component Basic settings, select the columns that contain the repetition. These are the
column which are meant to occur multiple times in the document. In this use case, FirstName, HomeCity and
WorkCity are the columns against which the denormalization is performed.

• Add as many line to the table as you need using the plus button. Then select the relevant columns in the drop-
down list.

• In the Delimiter column, define the separator between double quotes, to split concanated values. For FirstName
column, type in “#”, for HomeCity, type in “§”, ans for WorkCity, type in “¤”.

• Save your Job and press F6 to execute it.

• The result shows the denormalized values concatenated using a comma.

• Back to the tDenormalize components Basic settings, in the To denormalize table, select the Merge same
value check box to remove the duplicate occurrences.

• Save your Job again and press F6 to execute it.

This time, the console shows the results with no duplicate instances.

tDenormalizeSortedRow

Talend Open Studio Components Reference Guide 1589

tDenormalizeSortedRow

tDenormalizeSortedRow properties

Component family Processing/Fields

Function tDenormalizeSortedRow combines in a group all input sorted rows. Distinct
values of the denormalized sorted row are joined with item separators.

Purpose tDenormalizeSortedRow helps synthesizing sorted input flow to save memory.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Click Sync columns to retrieve the schema from the
previous component in the Job.

Built-in: You create the schema and store it locally for
the relevant component. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job flowcharts. Related topic: see Talend Open
Studio User Guide.

Input rows count Enter the number of input rows.

To denormalize Enter the name of the column to denormalize.

Usage This component handles flows of data therefore it requires input and output
components.

Limitation n/a

Scenario: Regrouping sorted rows

This Java scenario describes a four-component Job. It aims at reading a given delimited file row by row, sorting
input data by sort type and order, denormalizing all input sorted rows and displaying the output on the Run log
console.

• Drop the following components from the Palette onto the design workspace: tFileInputDelimited, tSortRow,
tDenormalizeSortedRow, and tLogRow.

• Connect the four components using Row Main links.

Scenario: Regrouping sorted rows

1590 Talend Open Studio Components Reference Guide

• In the design workspace, select tFileInputDelimited.

• Click the Component tab to define the basic settings for tFileInputDelimited.

• Set Property Type to Built-In.

• Fill in a path to the processed file in the File Name field. The name_list file used in this example holds two
columns, id and first name.

• If needed, define row and field separators, header and footer, and the number of processed rows.

• Set Schema to Built in and click the three-dot button next to Edit Schema to define the data to pass on to the
next component. The schema in this example consists of two columns, id and name.

Scenario: Regrouping sorted rows

Talend Open Studio Components Reference Guide 1591

• In the design workspace, select tSortRow.

• Click the Component tab to define the basic settings for tSortRow.

• Set the Schema Type to Built-In and click Sync columns to retrieve the schema from the tFileInputDelimited
component.

• In the Criteria panel, use the plus button to add a line and set the sorting parameters for the schema column to
be processed. In this example we want to sort the id columns in ascending order.

• In the design workspace, select tDenormalizeSortedRow.

• Click the Component tab to define the basic settings for tDenormalizeSortedRow.

• Set the Schema Type to Built-In and click Sync columns to retrieve the schema from the tSortRow component.

• In the Input rows countfield, enter the number of the input rows to be processed or press Ctrl+Space to access
the context variable list and select the variable: tFileInputDelimited_1_NB_LINE.

Scenario: Regrouping sorted rows

1592 Talend Open Studio Components Reference Guide

• In the To denormalize panel, use the plus button to add a line and set the parameters to the column to be
denormalize. In this example we want to denormalize the name column.

• In the design workspace, select tLogRow and click the Component tab to define its basic settings. For more
information about tLogRow, see the section called “tLogRow”.

• Save your Job and press F6 to execute it.

The result displayed on the console shows how the name column was denormalize.

tExternalSortRow

Talend Open Studio Components Reference Guide 1593

tExternalSortRow

tExternalSortRow properties

Component family Processing

Function Uses an external sort application to sort input data based on one or several
columns, by sort type and order

Purpose Helps create metrics and classification table.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job flowcharts. Related topic: see Talend Open
Studio User Guide.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio. User Guide.

Field separator Character, string or regular expression to separate fields.

External command
“sort” path

Enter the path to the external file containing the sorting
algorithm to use.

Criteria Click the plus button to add as many lines as required
for the sort to be complete. By default the first column
defined in your schema is selected.

Schema column: Select the column label from your
schema, which the sort will be based on. Note that the
order is essential as it determines the sorting priority.

Sort type: Numerical and Alphabetical order are
proposed. More sorting types to come.

Order: Ascending or descending order.

Advanced settings Maximum memory Type in the size of physical memory you want to allocate
to sort processing.

Temporary directory Specify the temporary directory to process the sorting
command.

Related scenario

1594 Talend Open Studio Components Reference Guide

Set temporary input file
directory

Select the check box to activate the field in which you
can specify the directory to handle your temporary input
file.

Add a dummy EOF line Select this check box when using the
tAggregateSortedRow component.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at the Job level as well as at each component
level.

Usage This component handles flow of data therefore it requires input and output, hence
is defined as an intermediary step.

Limitation n/a

Related scenario

For related use case, see the section called “tSortRow”.

tExtractDelimitedFields

Talend Open Studio Components Reference Guide 1595

tExtractDelimitedFields

tExtractDelimitedFields properties

Component family Processing/Fields

Function tExtractDelimitedFields generates multiple columns from a given column in a
delimited file.

Purpose tExtractDelimitedFields helps to extract ‘fields’ from within a string to write
them elsewhere for example.

Basic settings Field to split Select an incoming field from the Field to split list to
split.

Field separator Set field separator.

Since this component uses regex to split a filed
and the regex syntax uses special characters
as operators, make sure to precede the regex
operator you use as a field separator by a double
backslash. For example, you have to use "\\|"
instead of "|".

Die on error This check box is selected by default. Clear the check
box to skip the row on error and complete the process for
error-free rows. If needed, you can retrieve the rows on
error via a Row > Reject link.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Click Sync columns to retrieve the schema
from the previous component connected to
tExtractDelimitedFields.

Built-in: You create the schema and store it locally for
the component. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job flowcharts. Related topic: see Talend Open
Studio User Guide.

Advanced settings Advanced separator
(for number)

Select this check box to modify the separators used for
numbers.

Trim column Select this check box to remove leading and trailing
whitespace from all columns.

Scenario: Extracting fields from a comma-delimited file

1596 Talend Open Studio Components Reference Guide

Check each row
structure against
schema

Select this check box to synchronize every row against
the input schema.

Validate date Select this check box to check the date format strictly
against the input schema.

tStatCatcher Statistics Select this check box to gather the processing metadata
at the Job level as well as at each component level.

Usage This component handles flow of data therefore it requires input and output
components. It allows you to extract data from a delimited field, using a Row >
Main link, and enables you to create a reject flow filtering data which type does
not match the defined type.

Limitation n/a

Scenario: Extracting fields from a comma-delimited
file

This scenario describes a three-component Job where the tExtractdelimitedFields component is used to extract
two columns from a comma-delimited file.

• Drop the following components from the Palette onto the design workspace: tFileInputDelimited,
tExtractDelimitedFields, and tLogRow.

• Via a right-click each of the three components, connect them using Row Main links.

• In the design workspace, select tFileInputDelimited.

• Click the Component tab to define the basic settings for tFileInputDelimited.

• In the Basic settings view, set Property Type to Built-In.

• Click the three-dot [...] button next to the File Name field to select the path to the input file.

The File Name field is mandatory.

Scenario: Extracting fields from a comma-delimited file

Talend Open Studio Components Reference Guide 1597

The input file used in this scenario is called test5. It is a text file that holds comma-delimited data.

• In the Basic settings view, fill in all other fields as needed. For more information, see the section called
“tMDMInput properties”. In this scenario, the header and the footer are not set and there is no limit for the
number of processed rows

• Click Edit schema to describe the data structure of this input file. In this scenario, the schema is made of one
column, name.

• In the design workspace, select tExtractDelimitedFields.

• Click the Component tab to define the basic settings for tExtractDelimitedFields.

• From the Field to split list, select the column to split, name in this scenario.

• In the Field separator field, enter the corresponding separator.

• Click Edit schema to describe the data structure of this processing component.

• In the output panel of the [Schema of tExtractDelimitedFields] dialog box, click the plus button to add two
columns for the output schema, firstname and lastname.

Scenario: Extracting fields from a comma-delimited file

1598 Talend Open Studio Components Reference Guide

In this scenario, we want to split the name column into two columns in the output flow, firstname and lastname.

• Click OK to close the [Schema of tExtractDelimitedFields] dialog box.

• In the design workspace, select tLogRow and click the Component tab to define its basic settings. For more
information, see the section called “tLogRow”.

• Save your Job and press F6 to execute it.

First names and last names are extracted and displayed in the corresponding defined columns on the console.

tExtractEBCDICFields

Talend Open Studio Components Reference Guide 1599

tExtractEBCDICFields

tExtractEBCDICFields properties

Component family Processing/Fields

Function tExtractEBCDICFields generates multiple columns from a given column using
regex matching.

Purpose tExtractEBCDICFields allows you to use regular expressions to extract data
from a formatted string.

Basic settings Field Select an incoming field from the Field list to extract.

Die on error This check box is selected by default. Clear the check
box to skip the row on error and complete the process for
error-free rows. If needed, you can retrieve the rows on
error via a Row > Reject connection.

Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: Select this option to edit the Built-in schema
for the data to be processed.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job flowcharts. Related topic: see Talend Open
Studio User Guide.

Edit schema Click [...] to edit the Built-in or Repository schema for
the data to be processed.

Sync columns Click this button to retrieve the schema defined in the
input component.

This button is available only when an input
component is connected to this component via
a Row > Main connection.

 Advanced settings Encoding Select the encoding type from the list or select Custom
and define it manually. This field is compulsory for DB
data handling.

Trim all column Select this check box to remove leading and trailing
whitespaces from defined columns.

tStatCatcher Statistics Select this check box to gather the processing metadata
at the Job level as well as at each component level.

Enable parallel
execution

Select this check box to perform high-speed
data processing, by treating multiple data flows
simultaneously.

In the Number of parallel executions field, either:

- Enter the number of parallel executions desired.

Related scenario

1600 Talend Open Studio Components Reference Guide

- Press Ctrl + Space and select the appropriate context
variable from the list.

For further information, see Talend Open Studio User
Guide.

The Number of parallel executions field is
not available with the parallelization function.
Therefore, you must use a tCreateTable
component if you want to create a table.

When parallel execution is enabled, it is not
possible to use global variables to retrieve
return values in a SubJob.

Usage This component handles flow of data therefore it requires input and output
components. It allows you to extract data from a delimited field, using a Row >
Main link, and enables you to create a reject flow filtering data which type does
not match the defined type.

Limitation n/a

Related scenario

For a related scenario, see the section called “Scenario: Extracting name, domain and TLD from e-mail addresses”.

tExtractPositionalFields

Talend Open Studio Components Reference Guide 1601

tExtractPositionalFields

tExtractPositionalFields properties

Component family Processing/Fields

Function tExtractPositionalFields generates multiple columns from one column using
positional fields.

Purpose tExtractPositionalFields allows you to use a positional pattern to extract data
from a formatted string.

Basic settings Field Select an incoming field from the Field list to extract.

Customize Select this check box to customize the data format of the
positional file and define the table columns:

Column: Select the column you want to customize.

Size: Enter the column size.

Padding char: Type in between inverted commas the
padding character used, in order for it to be removed
from the field. A space by default.

Alignment: Select the appropriate alignment parameter.

Pattern Enter the pattern to use as basis for the extraction.

A pattern is length values separated by commas,
interpreted as a string between quotes. Make sure the
values entered in this fields are consistent with the
schema defined.

Die on error This check box is selected by default. Clear the check
box to skip the row on error and complete the process for
error-free rows. If needed, you can retrieve the rows on
error via a Row > Reject link.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Click Sync columns to retrieve the schema from the
previous component connected to tPositionalFields.

Built-in: You create the schema and store it locally for
the component. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects

Related scenario

1602 Talend Open Studio Components Reference Guide

and Job flowcharts. Related topic: see Talend Open
Studio User Guide.

Advanced settings Advanced separator
(for number)

Select this check box to modify the separators used for
numbers.

Trim Column Select this check box to remove leading and trailing
whitespace from all columns.

Check each row
structure against
schema

Select this check box to synchronize every row against
the input schema.

tStatCatcher Statistics Select this check box to gather the processing metadata
at the Job level as well as at each component level.

Usage This component handles flow of data therefore it requires input and output
components. It allows you to extract data from a delimited field, using a Row >
Main link, and enables you to create a reject flow filtering data which type does
not match the defined type.

Limitation n/a

Related scenario

For a related scenario, see the section called “Scenario: Extracting name, domain and TLD from e-mail addresses”.

tExtractRegexFields

Talend Open Studio Components Reference Guide 1603

tExtractRegexFields

tExtractRegexFields properties

Component family Processing/Fields

Function tExtractRegexFields generates multiple columns from a given column using
regex matching.

Purpose tExtractRegexFields allows you to use regular expressions to extract data from
a formatted string.

Basic settings Field to split Select an incoming field from the Field to split list to
split.

Regex Enter a regular expression according to the programming
language you are using.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Click Sync columns to retrieve the schema
from the previous component connected to
tExtractRegexFields.

Built-in: You create and store the schema locally for the
component. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job flowcharts. Related topic: see Talend Open
Studio User Guide.

Advanced settings Die on error This check box is selected by default. Clear the check
box to skip the row on error and complete the process for
error-free rows. If needed, you can retrieve the rows on
error via a Row > Reject link.

Check each row
structure against
schema

Select this check box to synchronize every row against
the input schema.

tStatCatcher Statistics Select this check box to gather the processing metadata
at the Job level as well as at each component level.

Usage This component handles flow of data therefore it requires input and output
components. It allows you to extract data from a delimited field, using a Row >
Main link, and enables you to create a reject flow filtering data which type does
not match the defined type.

Limitation n/a

Scenario: Extracting name, domain and TLD from e-mail addresses

1604 Talend Open Studio Components Reference Guide

Scenario: Extracting name, domain and TLD from e-
mail addresses

This Java scenario describes a three-component Job where tExtractRegexFields is used to specify a regular
expression that corresponds to one column in the input data, email. The tExtractRegexFields component is used
to perform the actual regular expression matching. This regular expression includes field identifiers for user name,
domain name and Top-Level Domain name portions in each e-mail address. If the given e-mail address is valid,
the name, domain and TLD are extracted and displayed on the console in three separate columns. Data in the other
two input columns, id and age is extracted and routed to destination as well.

• Drop the following components from the Palette onto the design workspace: tFileInputDelimited,
tExtractRegexFields, and tLogRow.

• Connect the three components using Row Main links.

• In the design workspace, select tFileInputDelimited.

• Click the Component tab to define the basic settings for tFileInputDelimited.

• In the Basic settings view, set Property Type to Built-In.

• Click the three-dot [...] button next to the File Name field to select the path to the input file.

The File Name field is mandatory.

The input file used in this scenario is called test4. It is a text file that holds three columns: id, email, and age.

• Fill in all other fields as needed. For more information, see the section called “tMDMInput properties”. In this
scenario, the header and the footer are not set and there is no limit for the number of processed rows

• Click Edit schema to describe the data structure of this input file. In this scenario, the schema is made of the
three columns, id, email and age.

• In the design workspace, select tExtractRegexFields.

• Click the Component tab to define the basic settings for tExtractRegexFields.

Scenario: Extracting name, domain and TLD from e-mail addresses

Talend Open Studio Components Reference Guide 1605

• From the Field to split list, select the column to split, email in this scenario.

• In the Regex panel, enter the regular expression you want to use to perform data matching, java regular
expression in this scenario.

• Click Edit schema to describe the data structure of this processing component.

• In the output panel of the [Schema of tExtractRegexFields] dialog box, click the plus button to add five
columns for the output schema.

In this scenario, we want to split the input email column into three columns in the output flow, name, domain, and
tld. The two other input columns will be extracted as they are.

• Click OK to close the [Schema of tExtractRegexFields] dialog box.

• In the design workspace, select tLogRow and click the Component tab to define its basic settings. For more
information, see the section called “tLogRow”.

• Save your Job and press F6 to execute it.

Scenario: Extracting name, domain and TLD from e-mail addresses

1606 Talend Open Studio Components Reference Guide

The tExtractRegexFields component matches all given e-mail addresses with the defined regular expression and
extracts the name, domain, and TLD names and displays them on the console in three separate columns. The two
other columns, id and age, are extracted as they are.

tExtractXMLField

Talend Open Studio Components Reference Guide 1607

tExtractXMLField

tExtractXMLFieldbelongs to two component families: Processing and XML. For more information on
tExtractXMLField, see the section called “tExtractXMLField”.

tFilterColumns

1608 Talend Open Studio Components Reference Guide

tFilterColumns

tFilterColumns Properties

Component family Processing

Function Makes specified changes to the schema defined, based on column name mapping.

Purpose Helps homogenize schemas either on the columns order or by removing unwanted
columns or adding new columns.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Click Sync columns to retrieve the schema from the
previous component in the Job.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job flowcharts. Related topic: see Talend Open
Studio User Guide.

Usage This component is not startable (green background) and it requires an output
component.

Related Scenario

For more information regarding the tFilterColumns component in use, see the section called “Scenario: multiple
replacements and column filtering”.

tFilterRow

Talend Open Studio Components Reference Guide 1609

tFilterRow

tFilterRow Properties

Component family Processing

Function tFilterRow filters input rows by setting conditions on the selected columns.

Purpose tFilterRow helps parametrizing filters on the source data.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

The schema is read-only.

Built-in: The schema will be created and stored locally for
this component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and
Job flowcharts. Related topic: see Talend Open Studio User
Guide.

Logical operator used to
combine conditions

In the case you want to combine simple filtering and
advanced mode, select the operator to combine both modes.

Conditions Click the plus button to add as many conditions as needed.
The conditions are performed one after the other for each
row.

Input column: Select the column of the schema the
function is to be operated on

Function: Select the function on the list

Operator: Select the operator to bind the input column with
the value

Value: Type in the filtered value, between quotes if need
be.

Use advanced mode Select this check box when the operation you want
to perform cannot be carried out through the standard
functions offered. In the text field, type in the regular
expression as required.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata
at the Job level as well as at each component level.

Usage This component is not startable (green background) and it requires an output
component.

Scenario: Filtering and searching a list of names

1610 Talend Open Studio Components Reference Guide

Scenario: Filtering and searching a list of names

The following scenario is a Java Job that uses a simple condition and a regular expression to filter a list of records.
This scenario will output two tables: the first will list all Italian records where first names are shorter than six
characters; the second will list all rejected records. An error message for each rejected record will display in the
same table to explain why such a record has been rejected.

• Drop tFixedFlowInput, tFilterRow and tLogRow from the Palette onto the design workspace.

• Connect the tFixedFlowInput to the tFilterRow, using a Row > Main link. Then, connect the tFilterRow to
the tLogRow, using a Row > Filter link.

• Drop tLogRow from the Palette onto the design workspace and rename it as reject. Then, connect the
tFilterRow to the reject, using a Row > Reject link.

• Double-click tFixedFlowInput to display its Basic settings view and define its properties.

• Select the Use Inline Content(delimited file) option in the Mode area to define the input mode.

• Set the row and field separators in the corresponding fields. The row separator is a carriage return and the field
separator is a semi-colon.

• From the Schema list, select Built-in. The properties and schema are Built-in for this Job. This means, the
schema is not stored in the Repository.

• Click the three-dot button next to Edit schema to define the schema for the input file. In this example, the
schema is made of the following four columns: firstname, gender, language and frequency. In the Type column,
select String for the first three rows and select Integer for frequency.

Scenario: Filtering and searching a list of names

Talend Open Studio Components Reference Guide 1611

• Click OK to validate and close the editor. A dialog box opens and asks you if you want to propagate the schema.
Click Yes.

• Type in content in the Content multiline textframe according to the setting in the schema.

• Double-click tFilterRow to display its Basic settings view and define its properties.

• In the Conditions table, fill in the filtering parameters based on the firstname column.

• In InputColumn, select firstname, in Function, select Length, in Operator, select Lower than.

• In the Value column, type in 6 to filter only first names of which length is lower than six characters.

In the Value column, you must type in your values between double quotes for all data types, except for
the Integer type, which does not need quotes.

• Then to implement the search on names whose language is italian, select the Use advanced mode check
box and type in the following regular expression that includes the name of the column to be searched:
input_row.language.equals("italian")

• To combine both conditions (simple and advanced), select And as logical operator for this example.

• In the Basic settings of tLogRow components, select Table (print values in cells of a table) in the Mode area.

• Save your Job and press F6 to execute it.

Scenario: Filtering and searching a list of names

1612 Talend Open Studio Components Reference Guide

Thus, the first table lists records that have Italian names made up of less than six characters and the second table
lists all records that do not match the filter condition “rejected record”. Each rejected record has a corresponding
error message that explains the reason of rejection.

tJoin

Talend Open Studio Components Reference Guide 1613

tJoin

tJoin properties

Component family Processing

Function tJoin joins two tables by doing an exact match on several columns. It compares
columns from the main flow with reference columns from the lookup flow and
outputs the main flow data and/or the rejected data.

Purpose This component helps you ensure the data quality of any source data against a
reference data source.

Basic settings Schema and Edit
schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit schema to make changes to the schema. Note
that if you make changes to a remote schema, the schema
automatically becomes built-in.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job flowcharts. Related topic: see Talend Open
Studio User Guide.

Include lookup columns
in output

Select this check box to include the lookup columns you
define in the output flow.

Key definition Input key attribute Select the column(s) from the main flow that needs to be
checked against the reference (lookup) key column.

Lookup key attribute Select the lookup key columns that you will use as a
reference against which to compare the columns from
the input flow.

Inner join (with reject
output)

Select this check box to join the two tables first and
gather the rejected data from the main flow.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is not startable and it requires two input components and one or
more output components.

Limitation/prerequisite n/a

Scenario 1: Doing an exact match on two columns and outputting the main and rejected data

1614 Talend Open Studio Components Reference Guide

Scenario 1: Doing an exact match on two columns and
outputting the main and rejected data

This scenario describes a five-component Job aiming at carrying out an exact match between the firstnameClient
column of an input file against the data of the reference input file, and the lastnameClient column against the data
of the reference input file. The outputs of this exact match are written in two separate files: exact data are written
in an Excel file, and inaccurate data are written in a delimited file.

In this scenario, we have already stored the input schemas of the input and reference files in the Repository. For
more information about storing schema metadata in the Repository tree view, see Talend Open Studio User Guide.

Dropping and linking the components

1. In the Repository tree view, expand Metadata and the file node where you have stored the input schemas
and drop the relevant file onto the design workspace.

The [Components] dialog box appears.

2. Select tFileInputDelimited from the list and click OK to close the dialog box.

The tFileInputDelimited component displays in the workspace. The input file used in this scenario is called
ClientSample. It holds four columns including the two columns firstnameClient and lastnameClient we want
to do the exact match on.

3. Do the same for the second input file you want to use as a reference, ClientSample_Update in this scenario.

4. Drop the following components from the Palette onto the design workspace: tJoin, tFileOutputExcel, and
tFileOutputDelimited.

Scenario 1: Doing an exact match on two columns and outputting the main and rejected data

Talend Open Studio Components Reference Guide 1615

5. Connect the main and reference input files to tJoin using Main links. The link between the reference input
file and tJoin appears as a lookup link on the design workspace.

6. Connect tJoin to tFileOutputExcel using the Main link and tJoin to tFileOutputDelimited using the Inner
join reject link.

Configuring the components

1. If needed, double-click the main and reference input files to display their Basic settings views. All their
property fields are automatically filled in. If you do not define your input files in the Repository, fill in the
details manually after selecting Built-in in the Property Type field.

2. Double click tJoin to display its Basic settings view and define its properties.

3. Click the Edit schema button to open a dialog box that displays the data structure of the input files, define
the data you want to pass to the output components, three columns in this scenario, idClient, firstnameClient
and lastnameClient, and then click OK to validate the schema and close the dialog box.

Scenario 1: Doing an exact match on two columns and outputting the main and rejected data

1616 Talend Open Studio Components Reference Guide

4. In the Key definition area of the Basic settings view of tJoin, click the plus button to add two columns to
the list and then select the input columns and the output columns you want to do the exact matching on from
the Input key attribute and Lookup key attribute lists respectively, firstnameClient and lastnameClient
in this example.

5. Select the Inner join (with reject output) check box to define one of the outputs as inner join reject table.

6. Double click tFileOutputExcel to display its Basic settings view and define its properties.

7. Set the destination file name and the sheet name, and select the Include header check box.

8. Double click tFileOutputDelimited to display its Basic settings view and define its properties.

Scenario 1: Doing an exact match on two columns and outputting the main and rejected data

Talend Open Studio Components Reference Guide 1617

9. Set the destination file name, and select the Include header check box.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6, or click Run on the Run tab to execute the Job.

The output of the exact match on the firstnameClient and lastnameClient columns is written to the defined
Excel file.

The rejected data is written to the defined delimited file.

Scenario 1: Doing an exact match on two columns and outputting the main and rejected data

1618 Talend Open Studio Components Reference Guide

tMap

Talend Open Studio Components Reference Guide 1619

tMap

tMap properties

Component family Processing

Function tMap is an advanced component, which integrates itself as plugin to Talend
Open Studio.

Purpose tMap transforms and routes data from single or multiple sources to single or
multiple destinations.

Basic settings Preview The preview is an instant shot of the Mapper data. It becomes
available when Mapper properties have been filled in with
data. The preview synchronization takes effect only after
saving changes.

Mapping links
display as

Auto: the default setting is curves links

Curves: the mapping display as curves

Lines: the mapping displays as straight lines. This last option
allows to slightly enhance performance.

Map editor It allows you to define the tMap routing and transformation
properties.

If you do not want to handle execution errors, you
can click the Property Settings button at the top
of the input area and select the Die on error check
box (selected by default) in the [Property Settings]
dialog box. It will kill the Job if there is an error.

Usage Possible uses are from a simple reorganization of fields to the most complex Jobs
of data multiplexing or demultiplexing transformation, concatenation, inversion,
filtering and more...

Limitation The use of tMap supposes minimum Java knowledge in order to fully exploit
its functionalities.

This component is a junction step, and for this reason cannot be a start nor end
component in the Job.

For further information, see Talend Open Studio User Guide.

Scenario 1: Mapping data using a filter and a simple
explicit join

The Job described below aims at reading data from a csv file with its schema stored in the Repository, looking up
at a reference file, the schema of which is also stored in the Repository, then extracting data from these two files
based on a defined filter to an output file and reject files.

Scenario 1: Mapping data using a filter and a simple explicit join

1620 Talend Open Studio Components Reference Guide

• Click File in the Palette of components, select tFileInputDelimited and drop it onto the design workspace.
Rename the component Cars, either by double-clicking the label in the design workspace or via the View tab
of the Component view.

• Repeat this operation, and rename this second input component Owners.

• Click Processing in the Palette of components, select tMap and drop it onto the design workspace.

• Connect the two input components to the mapping component using Row > Main connections and label the
connections Cars_data and Owners_data respectively.

• Double-click the tFileInputDelimited component labelled Cars to display its Basic settings view.

• Select Repository from the Property type list and select the component’s schema, cars in this scenario, from
the [Repository Content] dialog box. The rest fields are automatically filled.

• Double-click the component labelled Owners and repeat the setting operation. Select the appropriate metadata
entry, owners in this scenario.

In this scenario, the input schemas are stored in the Metadata node of the Repository tree view for easy
retrieval. For further information regarding metadata creation in the Repository, see Talend Open Studio
User Guide.

• Double-click the tMap component to open the Map Editor.

Note that the input area is already filled with the defined input tables and that the top table is the main input
table, and the respective row connection labels are displayed on the top bar of the table.

• Create a join between the two tables on the ID_Owner column by simply dropping the ID_Owner column from
the Cars_data table onto the ID_Owner column in the Owners_data table.

• Define this join as an inner join by clicking the tMap settings button, clicking in the Value field for Join Model,
clicking the small button that appears in the field, and selecting Inner Join from the [Options] dialog box.

Scenario 1: Mapping data using a filter and a simple explicit join

Talend Open Studio Components Reference Guide 1621

• Click the [+] button on the output area of the Map Editor to add three output tables: Insured, Reject_NoInsur,
Reject_OwnerID.

• Drag all the columns of the Cars_data table to the Insured table.

• Drag the ID_Owner, Registration, and ID_Reseller columns of the Cars_data table and the Name column of
the Owners_data table to the Reject_NoInsur table.

• Drag all the columns of the Cars_data table to the Reject_OwnerID table.

For more information regarding data mapping, see Talend Open Studio User Guide.

• Click the plus arrow button at the top of the Insured table to add a filter row.

• Drag the ID_Insurance column of the Owners_data table to the filter condition area and enter the formula
meaning ‘not undefined’: Owners_data.ID_Insurance != null.

With this filter, the Insured table will gather all the records that include an insurance ID.

Scenario 1: Mapping data using a filter and a simple explicit join

1622 Talend Open Studio Components Reference Guide

• Click the tMap settings button at the top of the Reject_NoInsur table and set Catch output reject to true to
define the table as a standard reject output flow to gather the records that do not include an insurance ID.

• Click the tMap settings button at the top of the Reject_OwnerID table and set Catch lookup inner join reject
to true so that this output table will gather the records from the Cars_data flow with missing or unmatched
owner IDs.

• Click OK to validate the mappings and close the Map Editor.

• Add three tFileOutputDelimited components to the design workspace and connect the tMap component to the
three output components using the relevant Row connections.

• Relabel the three output components accordingly.

• Double-click each of the output components, one after the other, to define their properties. If you want a new
file to be created, browse to the destination output folder, and type in a file name including the extension.

• Select the Include header check box to reuse the column labels from the schema as header row in the output file.

Scenario 2: Mapping data using inner join rejections

Talend Open Studio Components Reference Guide 1623

• Save your Job and press F6 to run it.

The output files are created, which contain the relevant data as defined.

Scenario 2: Mapping data using inner join rejections

This scenario, based on scenario 1, adds one input file containing details about resellers and extra fields in the
main output table. Two filters on inner joins are added to gather specific rejections.

• Click File in the Palette of Components, and drop a tFileInputDelimited component to the design workspace,
and label the component Resellers.

• Connect it to the Mapper using a Row > Main connection, and label the connection Resellers_data.

• Double-click the Resellers component to display its Basic settings view.

Scenario 2: Mapping data using inner join rejections

1624 Talend Open Studio Components Reference Guide

• Select Repository from the Property type list and select the component’s schema, resellers in this scenario,
from the [Repository Content] dialog box. The rest fields are automatically filled.

In this scenario, the input schemas are stored in the Metadata node of the Repository tree view for easy
retrieval. For further information regarding metadata creation in the Repository, see Talend Open Studio
User Guide.

• Double-click the tMap component to open the Map Editor.

Note that the schema of the new input component is already added in the Input area.

• Create a join between the main input flow and the new input flow by dropping the ID_Reseller column of the
Cars_data table to the ID_Reseller column of the Resellers_data table.

• Click the tMap settings button at the top of the Resellers_data table and set Join Model to Inner Join.

• Drag all the columns except ID_Reseller of the Resellers_data table to the main output table, Insured.

Scenario 2: Mapping data using inner join rejections

Talend Open Studio Components Reference Guide 1625

When two inner joins are defined, you either need to define two different inner join reject tables to
differentiate the two rejections or, if there is only one inner join reject output, both inner join rejections
will be stored in the same output.

• Click the [+] button at the top of the output area to add a new output table, and name this new output table
Reject_ResellerID.

• Drag all the columns of the Cars_data table to the Reject_ResellerID table.

• Click the tMap settings button and select Catch lookup inner join reject to true to define this new output
table as an inner join reject output.

If the defined inner join cannot be established, the information about the relevant cars will be gathered through
this output flow.

• Now apply filters on the two Inner Join reject outputs, in order for to distinguish the two types of rejection.

• In the first Inner Join output table, Reject_OwnerID, click the plus arrow button to add a filter line and fill it
with the following formula to gather only owner ID related rejection: Owners_data.ID_Owner==null

Scenario 2: Mapping data using inner join rejections

1626 Talend Open Studio Components Reference Guide

• In the second Inner Join output table, Reject_ResellerID, repeat the same operation using the following formula:
Resellers_data.ID_Reseller==null

• Click OK to validate the map settings and close the Mapper Editor.

• Drop a new tFileOutputDelimited component from the Palette to the design workspace, and label the
component No_Reseller_ID.

• Define the properties of the new tFileOutputDelimited component, as shown below.

In this use case, simple specify the output file path and select the Include Header check box, and leave the
other parameters as they are.

• Connect the tMap component to the new tFileOutputDelimited component by using the Row connection
named Reject_ResellerID.

• To demonstrate the work of the Mapper, in this example, remove reseller IDs 5 and 8 from the input file
Resellers.csv.

• Save your Job and press F6 to run it.

The four output files are all created in the specified folder, containing information as defined. The output file
No_Reseller_ID.csv contains the cars information related to reseller IDs 5 and 8, which are missing in the input
file Resellers.csv.

Scenario 3: Cascading join mapping

Talend Open Studio Components Reference Guide 1627

Scenario 3: Cascading join mapping

As third advanced use scenario, based on the scenario 2, add a new Input table containing Insurance details for
example.

Set up an Inner Join between two lookup input tables (Owners and Insurance) in the Mapper to create a cascade
lookup and hence retrieve Insurance details via the Owners table data.

Scenario 4: Advanced mapping using filters, explicit
joins and rejections

This scenario introduces a Job that allows you to find BMW owners who have two to six children (inclusive), for
sales promotion purpose for example.

• Drop three tFileInputDelimited components, a tMap component, and two tFileOutputDelimited components
from the Palette onto the design workspace, and label them to best describe their functions.

• Connect the input components to the tMap using Row > Main connections.

Pay attention to the file you connect first as it will automatically be set as Main flow, and all the other
connections will be Lookup flows. In this example, the connection for the input component Owners is the
Main flow.

Scenario 4: Advanced mapping using filters, explicit joins and rejections

1628 Talend Open Studio Components Reference Guide

• Define the properties of each input components in the respective Basic settings view. Define the properties
of Owners.

• Select Repository from the Property type list and select the component’s schema, owners in this scenario,
from the [Repository Content] dialog box. The rest fields are automatically filled.

In this scenario, the input schemas are stored in the Metadata node of the Repository tree view for easy
retrieval. For further information regarding metadata creation in the Repository, see Talend Open Studio
User Guide.

• In the same way, set the properties of the other input components: Cars and Resellers. These two Lookup flows
will fill in secondary (lookup) tables in the input area of the Map Editor.

• Then double-click the tMap component to launch the Map Editor and define the mappings and filters.

• Set an explicit join between the Main flow Owner and the Lookup flow Cars by dropping the ID_Owner
column of the Owners table to the ID_Owner column of the Cars table.

The explicit join is displayed along with a hash key.

• In the Expr. Key field of the Make column, type in a filter. In this use case, simply type in “BMW” as the search
is focused on the owners of this particular make.

Scenario 4: Advanced mapping using filters, explicit joins and rejections

Talend Open Studio Components Reference Guide 1629

• Implement a cascading join between the two lookup tables Cars and Resellers on the ID_Reseller column in
order to retrieve resellers information.

• As you want to reject the null values into a separate table and exclude them from the standard output, click the
tMap settings button and set Join Model to Inner Join in each of the Lookup tables.

• In the tMap settings, you can set Match Model to Unique match, First match, or All matches. In this use
case, the All matches option is selected. Thus if several matches are found in the Inner Join, i.e. rows matching
the explicit join as well as the filter, all of them will be added to the output flow (either in rejection or the
regular output).

Scenario 4: Advanced mapping using filters, explicit joins and rejections

1630 Talend Open Studio Components Reference Guide

The Unique match option functions as a Last match. The First match and All matches options function
as named.

• On the output area of the Map Editor, click the plus button to add two tables, one for the full matches and
the other for the rejections.

• Drag all the columns of the Owners table, the Registration, Make and Color columns of the Cars table, and the
ID_Reseller and Name_Reseller columns of the Resellers table to the main output table.

• Drag all the columns of the Owners table to the reject output table.

• Click the Filter button at the top of the main output table to display the Filter expression area.

• Type in a filter statement to narrow down the number of rows loaded in the main output flow. In this use case,
the statement reads: Owners.Children_Nr >= 2 && Owners.Children_Nr <= 6.

• In the reject output table, click the tMap settings button and set the reject types.

• Set Catch output reject to true to collect data about BMW car owners who have less than two or more than
six children.

• Set Catch lookup inner join reject to true to collect data about owners of other car makes and owners for
whom the reseller information is not found.

Scenario 5: Advanced mapping with filters and different rejections

Talend Open Studio Components Reference Guide 1631

• Click OK to validate the mappings and close the Map Editor.

• On the design workspace, right-click the tMap and pull the respective output link to the relevant output
components.

• Define the properties of the output components in their respective Basic settings view.

In this use case, simple specify the output file paths and select the Include Header check box, and leave the
other parameters as they are.

• Save you Job and press F6 to run it.

The main output file contains the information related to BMW owners who have two to six children, and the
reject output file contains the information about the rest of the car owners.

Scenario 5: Advanced mapping with filters and
different rejections

This scenario is a modified version of the preceding scenario. It describes a Job that applies filters to limit the
search to BMW and Mercedes owners who have two to six children and divides unmatched data into different
reject output flows.

Scenario 5: Advanced mapping with filters and different rejections

1632 Talend Open Studio Components Reference Guide

• Take the same Job as in the section called “Scenario 4: Advanced mapping using filters, explicit joins and
rejections”.

• Drop a new tFileOutputDelimited component from the Palette on the design workspace, and name it
Rejects_BMW_Mercedes to present its functionality.

• Connect the tMap component to the new output component using a Row connection and label the connection
according to the functionality of the output component.

This connection label will appear as the name of the new output table in the Map Editor.

• Relabel the existing output connections and output components to reflect their functionality.

The existing output tables in the Map Editor will be automatically renamed according to the connection
labels. In this example, relabel the existing output connections BMW_Mercedes_withChildren and
Owners_Other_Makes respectively.

• Double-click the tMap component to launch the Map Editor to change the mappings and the filters.

Note that the output area contains a new, empty output table named Rejects_BMW_Mercedes. You can adjust
the position of the table by selecting it and clicking the Up or Down arrow button at the top of the output area.

• Remove the Expr. key filter (“BMW”) from the Cars table in the input area.

• Click the Filters button to display the Filter field, and type in a new filter to limit the search to
BMW or Mercedes car makes. The statement reads as follows: Cars.Make.equals("BMW") ||
Cars.Make.equals("Mercedes")

Scenario 5: Advanced mapping with filters and different rejections

Talend Open Studio Components Reference Guide 1633

• Select all the columns of the main output table and drop them down to the new output table.

Alternatively, you can also drag the corresponding columns from the relevant input tables to the new output
table.

• Click the tMap settings button at the top of the new output table and set Catch output reject to true to collect
data about BMW and Mercedes owners who have less than two or more than six children.

• In the Owners_Other_Makes table, set Catch lookup inner join reject to true to collect data about owners of
other car makes and owners for whom the reseller information is not found.

Scenario 5: Advanced mapping with filters and different rejections

1634 Talend Open Studio Components Reference Guide

• Click OK to validate the mappings and close the Map Editor.

• Define the properties of the output components in their respective Basic settings view.

In this use case, simple specify the output file paths and select the Include Header check box, and leave the
other parameters as they are.

Scenario 6: Advanced mapping with lookup reload at each row

Talend Open Studio Components Reference Guide 1635

• Save the Job and press F6 to run it.

The output files contain content of the main output flow shows that the filtered rows have correctly been passed
on.

Scenario 6: Advanced mapping with lookup reload at
each row

The following scenario describes a Job that retrieves people details from a lookup database, based on a join on
the age. The main flow source data is read from a MySQL database table called people_age that contains people
details such as numeric id, alphanumeric first name and last name and numeric age. The people age is either 40
or 60. The number of records in this table is intentionally restricted.

The reference or lookup information is also stored in a MySQL database table called large_data_volume. This
lookup table contains a number of records including the city where people from the main flow have been to. For
the sake of clarity, the number of records is restricted but, in a normal use, the usefulness of the feature described
in the example below is more obvious for very large reference data volume.

To optimize performance, a database connection component is used in the beginning of the Job to open the
connection to the lookup database table in order not to do that every time we want to load a row from the lookup
table.

An Expression Filter is applied to this lookup source flow, in order to select only data from people whose age is
equal to 60 or 40. This way only the relevant rows from the lookup database table are loaded for each row from
the main flow.

Therefore this Job shows how, from a limited number of main flow rows, the lookup join can be optimized to load
only results matching the expression key.

Generally speaking, as the lookup loading is performed for each main flow row, this option is mainly
interesting when a limited number of rows is processed in the main flow while a large number of reference
rows are to be looked up to.

The join is solved on the age field. Then, using the relevant loading option in the tMap component editor, the
lookup database information is loaded for each main flow incoming row.

Scenario 6: Advanced mapping with lookup reload at each row

1636 Talend Open Studio Components Reference Guide

For this Job, the metadata has been prepared for the source and connection components. For more information on
how to set up the DB connection schema metadata, see the relevant section in the Talend Open Studio User Guide.

This Job is formed with five components, four database components and a mapping component.

• Drop the DB Connection under the Metadata node of the Repository to the design workspace. In this example,
the source table is called people_age.

• Select tMysqlInput from the list that pops up when dropping the component.

• Drop the lookup DB connection table from the Metadata node to the design workspace selecting tMysqlInput
from the list that pops up. In this Job, the lookup is called large_data_volume.

• The same way, drop the DB connection from the Metadata node to the design workspace selecting
tMysqlConnection from the list that pops up. This component creates a permanent connection to the lookup
database table in order not to do that every time we want to load a row from the lookup table.

Scenario 6: Advanced mapping with lookup reload at each row

Talend Open Studio Components Reference Guide 1637

• Then pick the tMap component from the Processing family, and the tMysqlOutput and tMysqlCommit
components from the Database family in the Palette to the right hand side of the editor.

• Now connect all the components together. To do so, right-click the tMysqlInput component corresponding to
the people table and drag the link towards tMap.

• Release the link over the tMap component, the main row flow is automatically set up.

• Rename the Main row link to people, to identify more easily the main flow data.

• Perform the same operation to connect the lookup table (large_data_volume) to the tMap component and the
tMap to the tMysqlOutput component.

• A dialog box prompts for a name to the output link. In this example, the output flow is named:
people_mixandmatch.

• Rename also the lookup row connection link to large_volume, to help identify the reference data flow.

• Connect tMysqlConnection to tMysqlInput using the trigger link OnSubjobOk.

• Connect the tMysqlInput component to the tMysqlCommit component using the trigger link OnSubjobOk.

• Then double-click the tMap component to open the graphical mapping editor.

• The Output table (that was created automatically when you linked the tMap to the tMySQLOutput will be
formed by the matching rows from the lookup flow (large_data_volume) and the main flow (people_age).

• Select the main flow rows that are to be passed on to the output and drag them over to paste them in the Output
table (to the right hand side of the mapping editor).

• In this example, the selection from the main flow include the following fields: id, first_name, last_Name and age.

Scenario 6: Advanced mapping with lookup reload at each row

1638 Talend Open Studio Components Reference Guide

• From the lookup table, the following column is selected: city.

• Drop the selected columns from the input tables (people and large_volume) to the output table.

• Now set up the join between the main and lookup flows.

• Select the age column of the main flow table (on top) and drag it towards the age column of the lookup flow
table (large_volume in this example).

• A key icon appears next to the linked expression on the lookup table. The join is now established.

• Click the tMap settings button, click the three-dot button corresponding to Lookup Model, and select the
Reload at each row option from the [Options] dialog box in order to reload the lookup for each row being
processed.

• In the same way, set Match Model to All matches in the Lookup table, in order to gather all instances of age
matches in the output flow.

• Now implement the filtering, based on the age column, in the Lookup table. The GlobalMapKey field is
automatically created when you selected the Reload at each row option. Indeed you can use this expression
to dynamically filter the reference data in order to load only the relevant information when joining with the
main flow.

As mentioned in the introduction of the scenario, the main flow data contains only people whose age is either 40
or 60. To avoid the pain of loading all lookup rows, including ages that are different from 40 and 60, you can use
the main flow age as global variable to feed the lookup filtering.

Scenario 6: Advanced mapping with lookup reload at each row

Talend Open Studio Components Reference Guide 1639

• Drop the Age column from the main flow table to the Expr. field of the lookup table.

• Then in the globalMap Key field, put in the variable name, using the expression. In this example, it reads:
“people.Age”

• Click OK to save the mapping setting and go back to the design workspace.

• To finalize the implementation of the dynamic filtering of the lookup flow, you need now to add a WHERE
clause in the query of the database input.

• At the end of the Query field, following the Select statement, type in the following WHERE clause: WHERE
AGE ='"+((Integer)globalMap.get("people.Age"))+"'"

• Make sure that the type corresponds to the column used as variable. In this use case, Age is of Integer type. And
use the variable the way you set in the globalMap key field of the map editor.

• Double-click the tMysqloutput component to define its properties.

Scenario 6: Advanced mapping with lookup reload at each row

1640 Talend Open Studio Components Reference Guide

• Select the Use an existing connection check box to leverage the created DB connection.

• Define the target table name and relevant DB actions.

• Click the Run tab at the bottom of the design workspace, to display the Job execution tab.

• From the Debug Run view, click the Traces Debug button to view the data processing progress.

For more comfort, you can maximize the Job design view while executing by simply double-clicking on the Job
name tab.

The lookup data is reloaded for each of the main flow’s rows, corresponding to the age constraint. All age matches
are retrieved in the lookup rows and grouped together in the output flow.

Therefore if you check out the data contained in the newly created people_mixandmatch table, you will find all
the age duplicates corresponding to different individuals whose age equals to 60 or 40 and the city where they
have been to.

Scenario 7: Mapping with join output tables

Talend Open Studio Components Reference Guide 1641

Scenario 7: Mapping with join output tables

The following scenario describes a Job that processes reject flows without separating them from the main flow.

• In the Repository tree view, click Metadata > File delimited. Drag and drop the customers metadata onto
the workspace.

The customers metadata contains information about customers, such as their ID, their name or their address, etc.

For more information about centralizing metadata, see Talend Open Studio User Guide.

• In the dialog box that asks you to choose which component type you want to use, select tFileInputDelimited
and click OK.

• Drop the states metadata onto the design workspace. Select the same component in the dialog box and click OK.

The states metadata contains the ID of the state, and its name.

Scenario 7: Mapping with join output tables

1642 Talend Open Studio Components Reference Guide

• Drop a tMap and two tLogRow components from the Palette onto the design workspace.

• Connect the customers component to the tMap, using a Row > Main connection.

• Connect the states component to the tMap, using a Row > Main connection. This flow will automatically be
defined as Lookup.

• Double-click the tMap component to open the Map Editor.

• Drop the idState column from the main input table to the idState column of the lookup table to create a join.

• Click the tMap settings button and set Join Model to Inner Join.

• Click the Property Settings button at the top of the input area to open the [Property Settings] dialog box, and
clear the Die on error check box in order to handle the execution errors.

The ErrorReject table is automatically created.

• Select the id, idState, RegTime and RegisterTime in the input table and drag them to the ErrorReject table.

• Click the [+] button at the top right of the editor to add an output table. In the dialog box that opens, select New
output. In the field next to it, type in the name of the table, out1. Click OK.

• Drag the following columns from the input tables to the out1 table: id, CustomerName, idState, and LabelState.

• Add two columns, RegTime and RegisterTime, to the end of the out1 table and set their date formats: "dd/MM/
yyyy HH:mm" and "yyyy-MM-dd HH:mm:ss.SSS" respectively.

Scenario 7: Mapping with join output tables

Talend Open Studio Components Reference Guide 1643

• Click in the Expression field for the RegTime column, and press Ctrl+Space to display the auto-
completion list. Find and double-click TalendDate.parseDate. Change the pattern to ("dd/MM/yyyy
HH:mm",row1.RegTime).

• Do the same thing for the RegisterTime column, but change the pattern to ("yyyy-MM-dd
HH:mm:ss.SSS",row1.RegisterTime).

• Click the [+] button at the top of the output area to add an output table. In the dialog box that opens, select
Create join table from, choose Out1, and name it rejectInner. Click OK.

• Click the tMap settings button and set Catch lookup inner join reject to true in order to handle rejects.

• Drag the id, CustomerName, and idState columns from the input tables to the corresponding columns of the
rejectInner table.

• Click in the Expression field for the LabelState column, and type in “UNKNOWN”.

• Click in the Expression field for the RegTime column, press Ctrl+Space, and select
TalendDate.parseDate. Change the pattern to ("dd/MM/yyyy HH:mm",row1.RegTime).

• Click in the Expression field for the RegisterTime column, press Ctrl+Space,
and select TalendDate.parseDate, but change the pattern to ("yyyy-MM-dd
HH:mm:ss.SSS",row1.RegisterTime).

If the data from row1 has a wrong pattern, it will be returned by the ErrorReject flow.

Scenario 7: Mapping with join output tables

1644 Talend Open Studio Components Reference Guide

• Click OK to validate the changes and close the editor.

• Double-click the first tLogRow component to display its Component view.

• Click Sync columns to retrieve the schema structure from the mapper if needed.

• In the Mode area, select Table.

• Do the same thing with the second tLogRow.

• Save your Job and press F6 to execute it.

The Run console displays the main out flow and the ErrorReject flow. The main output flow unites both
valid data and inner join rejects, while the ErrorReject flow contains the error information about rows with
unparseable date formats.

tNormalize

Talend Open Studio Components Reference Guide 1645

tNormalize

tNormalize Properties

Component family Processing/Fields

Function Normalizes the input flow following SQL standard.

Purpose tNormalize helps improve data quality and thus eases the data update.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository. .

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job designs. Related topic: see Talend Open Studio
User Guide.

Get rid of duplicated
rows from output

Select this check box to deduplicate rows in the data of
the output flow.

Use CSVparameters Select this check box to include CSV specific parameters
such as escape mode and enclosure character.

Column to normalize Select the column from the input flow which the
normalization is based on

Item separator Enter the separator which will delimits data in the input
flow.

Usage This component can be used as intermediate step in a data flow.

Limitation n/a

Scenario: Normalizing data

This simple scenario illustrates a Job that normalizes a list of tags for Web forum topics and outputs them into a
table in the standard output console (Run tab).

1. Drop the following components from the Palette to the design workspace: tFileInputDelimited, tNormalize,
tLogRow.

2. Double-click the tFileInputDelimited component to open its Basic settings view.

Scenario: Normalizing data

1646 Talend Open Studio Components Reference Guide

3. In the File Name field, specify the path to the input file to be normalized.

4. The file schema is stored in the repository for ease of use; otherwise define the input schema manually. It is
made of one column, called Tags, containing rows with one or more keywords.

5. Set the Row Separator and the Field Separator.

6. On the Basic settings view of tNormalize, define the column the normalization operation is based on.

7. In this use case, the column to normalize is Tags.

8. The Item separator is the comma, surrounded by double quotes (requiered in Java).

9. In the tLogRow component, select the Print values in the cells of table check box.

10. Save the Job and press F6 to execute it.

Scenario: Normalizing data

Talend Open Studio Components Reference Guide 1647

The values are normalized and displayed in a table cell on the console.

tReplace

1648 Talend Open Studio Components Reference Guide

tReplace

tReplace Properties

Component family Processing

Function Carries out a Search & Replace operation in the input columns defined.

Purpose Helps to cleanse all files before further processing.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Two read-only columns, Value and Match are added to
the output schema automatically.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job flowcharts. Related topic: see Talend Open
Studio User Guide.

Simple Mode Search /
Replace

Click Plus to add as many conditions as needed. The
conditions are performed one after the other for each
row.

Input column: Select the column of the schema the
search & replace is to be operated on

Search: Type in the value to search in the input column

Replace with: Type in the substitution value.

Whole word: Select this check box if the searched value
is to be considered as whole.

Case sensitive: Select this check box to care about the
case.

Note that you cannot use regular expression in these
columns.

Use advanced mode Select this check box when the operation you want
to perform cannot be carried out through the simple
mode. In the text field, type in the regular expression as
required.

Usage This component is not startable as it requires an input flow. And it requires an
output component.

Scenario: multiple replacements and column filtering

Talend Open Studio Components Reference Guide 1649

Scenario: multiple replacements and column filtering

This following Job searches and replaces various typos and defects in a csv file then operates a column filtering
before producing a new csv file with the final output.

• Drop the following components from the Palette onto the design workspace: tFileInputDelimited, tReplace,
tFilterColumn and tFileOutputDelimited.

• Connect the components using Main Row connections via a right-click each component.

• Select the tFileInputDelimited component and set the input flow parameters.

• The Property type for this scenario is Built-in. Therefore the following fields are to be set manually unlike the
Properties stored centrally in the repository, that are retrieved automatically.

• The File is a simple csv file stored locally. The Row Separator is a carriage return and the Field Separator is
a semi-colon. In the Header is the name of the column, and no Footer nor Limit are to be set.

• The file contains characters such as: *t, . or Nikson which we want to turn into Nixon, and streat,
which we want to turn into Street.

• The schema for this file is built in also and made of four columns of various types (string or int).

Scenario: multiple replacements and column filtering

1650 Talend Open Studio Components Reference Guide

• Now select the tReplace component to set the search & replace parameters.

• The schema can be synchronized with the incoming flow.

• Select the Simple mode check box as the search parameters can be easily set without requiring the use of regexp.

• Click the plus sign to add some lines to the parameters table.

• On the first parameter line, select Amount as InputColumn. Type "." in the Search field, and "," in the Replace
field.

• On the second parameter line, select Street as InputColumn. Type "streat" in the Search field, and "Street"
in the Replace field.

• On the third parameter line, select again Amount as InputColumn. Type "$" in the Search field, and "£" in
the Replace field.

• On the fourth paramater line, select Name as InputColumn. Type "Nikson" in the Search field, and "Nixon"
in the Replace field.

• On the fifth parameter line, select Firstname as InputColumn. Type "*t" in the Search field, and replace them
with nothing between double quotes.

• The advanced mode isn’t used in this scenario.

• Select the next component in the Job, tFilterColumn.

• The tFilterColumn component holds a schema editor allowing to build the output schema based on the column
names of the input schema. In this use case, add one new column named empty_field and change the order of
the input schema columns to obtain a schema as follows: empty_field, Firstname, Name, Street, Amount.

• Click OK to validate.

Scenario: multiple replacements and column filtering

Talend Open Studio Components Reference Guide 1651

• Set the tFileOutputDelimited properties manually.

• The schema is built-in for this scenario, and comes from the preceding component in the Job.

• Save the Job and press F6 to execute it.

The first column is empty, the rest of the columns have been cleaned up from the parasitical characters, and Nikson
was replaced with Nixon. The street column was moved and the decimal delimiter has been changed from a dot
to a comma, along with the currency sign.

tSampleRow

1652 Talend Open Studio Components Reference Guide

tSampleRow

tSampleRow properties

Component family Processing

Function tSampleRow filters rows according to line numbers.

Purpose tSampleRow helps to select rows according to a list of single lines and/or a list
of groups of lines.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Click Sync columns to retrieve the schema from the
previous component in the Job.

Built-in: You create the schema and store it locally for
the relevant component. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job flowcharts. Related topic: see Talend Open
Studio User Guide.

Range Enter a range using the relevant syntax to choose a list
of single lines and/or a list of groups of lines.

Usage This component handles flows of data therefore it requires input and output
components.

Limitation n/a

Scenario: Filtering rows and groups of rows

This scenario describes a three-component Job. A tRowGenerator is used to create random entries which are
directly sent to a tSampleRow where they will be filtered according to a defined range. In this scenario, we suppose
the input flow contains names of salespersons along with their respective number of sold products and their years
of presence in the enterprise. The result of the filtering operation is displayed on the Run console.

Dropping and linking the components

1. Drop the following components from the Palette onto the design workspace: tRowGenerator, tSampleRow,
and tLogRow.

Scenario: Filtering rows and groups of rows

Talend Open Studio Components Reference Guide 1653

2. Connect the three components using Row > Main links.

Configuring the components

1. In the design workspace, select tRowgenerator, and click the Component tab to define the basic settings
for tRowGenerator.

2. Click the [...] button next to Edit Schema to define the data you want to use as input. In this scenario, the
schema is made of five columns.

3. In the Basic settings view, click RowGenerator Editor to define the data to be generated.

4. In the RowGenerator Editor, specify the number of rows to be generated in the Number of Rows for
RowGenerator field and click OK. The RowGenerator Editor closes.

5. In the design workspace, select tSampleRow and click the Component tab to define the basic settings for
tSampleRow.

Scenario: Filtering rows and groups of rows

1654 Talend Open Studio Components Reference Guide

6. In the Basic settings view, set the Schema to Built-In and click Sync columns to retrieve the schema from
the tRowGenerator component.

7. In the Range panel, set the filter to select your rows using the correct syntax as explained. In this scenario,
we want to select the first and fifth lines along with the group of lines between 9 and 12.

8. In the design workspace, select tLogRow and click the Component tab to define its basic settings. For more
information about tLogRow, see the section called “tLogRow”.

Saving and execting the Job

1. Press Ctrl+S to save your Job.

2. Press F6, or click Run on the Run tab to execute the Job.

The filtering result displayed on the console shows the first and fifth rows and the group of rows between
9 and 12.

tSortRow

Talend Open Studio Components Reference Guide 1655

tSortRow

tSortRow properties

Component family Processing

Function Sorts input data based on one or several columns, by sort type and order

Purpose Helps creating metrics and classification table.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either Built-in or stored remotely in
the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Criteria Click + to add as many lines as required for the sort to be
complete. By default the first column defined in your schema
is selected.

Schema column: Select the column label from your schema,
which the sort will be based on. Note that the order is essential
as it determines the sorting priority.

Sort type: Numerical and Alphabetical order are proposed.
More sorting types to come.

Order: Ascending or descending order.

Advanced settings Sort on disk Customize the memory used to temporarily store output data.

Temp data directory path: Set the location where the
temporary files should be stored.

Create temp data directory if not exists: Select this checkbox
to create the directory if it does not exist.

Buffer size of external sort: Type in the size of physical
memory you want to allocate to sort processing.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at
the Job level as well as at each component level.

Usage This component handles flow of data therefore it requires input and output, hence is defined
as an intermediary step.

Limitation n/a

Scenario 1: Sorting entries

1656 Talend Open Studio Components Reference Guide

Scenario 1: Sorting entries

This scenario describes a three-component Job. A tRowGenerator is used to create random entries which are
directly sent to a tSortRow to be ordered following a defined value entry. In this scenario, we suppose the input
flow contains names of salespersons along with their respective sales and their years of presence in the company.
The result of the sorting operation is displayed on the Run console.

• Drop the three components required for this use case: tRowGenerator, tSortRow and tLogRow from the
Palette to the design workspace.

• Connect them together using Row main links.

• On the tRowGenerator editor, define the values to be randomly used in the Sort component. For more
information regarding the use of this particular component, see the section called “tRowGenerator”

• In this scenario, we want to rank each salesperson according to its Sales value and to its number of years in
the company.

• Double-click tSortRow to display the Basic settings tab panel. Set the sort priority on the Sales value and as
secondary criteria, set the number of years in the company.

• Use the plus button to add the number of rows required. Set the type of sorting, in this case, both criteria being
integer, the sort is numerical. At last, given that the output wanted is a rank classification, set the order as
descending.

• Display the Advanced Settings tab and select the Sort on disk check box to modify the temporary memory
parameters. In the Temp data directory path field, type the path to the directory where you want to store the
temporary data. In the Buffer size of external sort field, set the maximum buffer value you want to allocate
to the processing.

Scenario 1: Sorting entries

Talend Open Studio Components Reference Guide 1657

The default buffer value is 1000000 but the more rows and/or columns you process, the higher the value
needs to be to prevent the Job from automatically stopping. In that event, an “out of memory” error
message displays.

• Make sure you connected this flow to the output component, tLogRow, to display the result in the Job console.

• Press F6 to run the Job. The ranking is based first on the Sales value and then on the number of years of
experience.

tSplitRow

1658 Talend Open Studio Components Reference Guide

tSplitRow

tSplitRow properties

Component family Processing/Fields

Function tSplitRow splits one row into several rows.

Purpose This component helps splitting one input row into several output rows.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the
next component. The schema is either Built-in or stored
remotely in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job flowcharts. Related topic: see Talend Open
Studio User Guide.

Columns mapping Click the plus button to add as many lines as needed by
mappings from input columns onto output columns.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at the Job level as well as at each component
level.

Usage This component splits one input row into multiple output rows by mapping input
columns onto output columns.

Limitation n/a

Scenario 1: Splitting one row into two rows

This scenario describes a three-component Job. A row of data containing information of two companies will be
split up into two rows.

Scenario 1: Splitting one row into two rows

Talend Open Studio Components Reference Guide 1659

1. Drop the following components required for this use case: tFixedFlowInput, tSplitRow and tLogRow from
the Palette to the design workspace.

2. Connect them together using Row Main connections.

3. Double-click tFixedFlowInput to open its Basic settings view.

4. Select Use Inline Content(delimited file) in the Mode area.

5. Fill the Content area with the following scripts:

Talend;LA;California;537;5thAvenue;IT;Lionbridge;Memphis;Tennessee;537;Lincoln Road;IT Service;

6. Click Edit schema to open a dialog box to edit the schema for the input data.

7. Click the plus button to add twelve lines for the input columns: Company, City, State, CountryCode, Street,
Industry, Company2, City2, State2, CountryCode2, Street2 and Industry2.

8. Click OK to close the dialog box.

9. Double-click tSplitRow to open its Basic settings view.

Scenario 1: Splitting one row into two rows

1660 Talend Open Studio Components Reference Guide

10.Click Edit schema to set the schema for the output data.

11.Click the plus button beneath the tSplitRow_1(Output) table to add four lines for the output columns: Company,
CountryCode, Address and Industry.

12.Click OK to close the dialog box. Then an empty table with column names defined in the preceding step will
appear in the Columns mapping area:

13.Click the plus button beneath the empty table in the Columns mapping area to add two lines for the output rows.

14.Fill the table in the Columns mapping area by columns with the following values:

Company: row1.Company, row1.Company2;

Country: row1.CountryCode, row1.CountryCode2;

Scenario 1: Splitting one row into two rows

Talend Open Studio Components Reference Guide 1661

Address: row1.Street+","+row1.City+","+row1.State, row1.Street2+","+row1.City2+","+row1.State2;

Industry: row1.Industry, row1.Industry2;

The value in Address column, for example, row1.Street+","+row1.City+","+row1.State, will display
an absolute address by combining values in Street column, City column and State column together.
The "row1" used in the values of each column refers to the input row from tFixedFlowInput.

15.Double-click tLogRow to open its Basic settings view.

16.Click Sync columns to retrieve the schema defined in the preceding component.

17.Select Table in the Mode area.

18.Save the Job and press F6 to run it.

The input data in one row is split into two rows of data containing the same company information.

tWriteJSONField

1662 Talend Open Studio Components Reference Guide

tWriteJSONField

tWriteJSONField properties

Component family Processing/Fields

Function tWriteJSONField outputs JSON objects to the defined field of an output file.

Purpose tWriteJSONField reads data from an input file, assembles it into JSON objects
and outputs them to the defined field of an output file.

Basic settings Output Column Select the destination field in the output component
where you want to write the JSON objects.

Configure JSON Tree Opens the interface that supports the creation of the
JSON data structure you want to write to a field. For
more information about the interface, see the section
called “Defining the XML tree”.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either Built-in or
stored remotely in the Repository.

Built-in: You create the schema and store it locally for
this component only. Related topic: see Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and Job flowcharts. Related topic: see Talend Open
Studio User Guide.

Sync columns Click to synchronize the output file schema with the
input file schema. The Sync function only displays
once the Row connection is linked with the output
component.

Group by Define the aggregation set, the columns you want to use
to regroup the data.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component can be used as intermediate step in a data flow.

Limitation n/a

Related Scenario

For a related scenario, see the section called “Scenario: Extracting the structure of an XML file and inserting it
into the fields of a database table”.

tXMLMap

Talend Open Studio Components Reference Guide 1663

tXMLMap

tXMLMap properties

Component family Processing/XML

Function tXMLMap is an advanced component fine-tuned for transforming and routing
XML data flow (data of the Document type), especially when processing
numerous XML data sources, with or without joining flat data.

Purpose tXMLMap transforms and routes data from single or multiple sources to single
or multiple destinations.

Basic settings Map editor It allows you to define the tXMLMap routing and
transformation properties.

Advanced settings tStatCatcher
Statistics

Select this check box to gather the Job processing metadata
at the Job level as well as at each component level.

Usage Possible uses are from a simple reorganization of fields to the most complex jobs
of data multiplexing or demultiplexing transformation, concatenation, inversion,
filtering and so on.

When needs be, you can define sophisticated outputting strategy for the output
XML flows using group element, aggregate element, empty element and many
other features such as All in one. For further information about these features,
see Talend Open Studio User Guide.

It is used as an intermediate component and fits perfectly the process requiring
many XML data sources, such as, the ESB request-response processes.

Limitation The limitations to be kept in mind are:

- The use of this component supposes minimum Java and XML knowledge in
order to fully exploit its functionalities.

- This component is a junction step, and for this reason cannot be a start nor end
component in the Job.

- At least one loop element is required for each XML data flow involved.

The following sections present several generic use cases about how to use the tXMLMap component, while if
you need some specific examples using this component along with the ESB components to build data services,
see the user guide for the Talend ESB Studio.

If you need further information about the principles of mapping multiple input and output flows, see Talend Open
Studio User Guide.

Scenario 1: Mapping and transforming XML data

In this scenario, a three-component Job is run to map and transform data from one XML source, customer.xml and
generate a XML output flow which could be reused for various purposes in the future, such as, for a ESB request.

Scenario 1: Mapping and transforming XML data

1664 Talend Open Studio Components Reference Guide

These three components are:

• tFileInputXML: this component is used to provide input data to tXMLMap.

• tXMLMap: this component maps and transforms the received XML data flows into one single XML data flow.

• tLogRow: this component is used to display the output data.

To replicate this scenario, proceed as the following sections illustrate.

Dropping and linking the components

To do this, proceed as follows:

1. From the Palette, drop tFileInputXML, tXMLMap and tLogRow into the Design workspace.

A component used in the workspace can be labelled the way you need. In this scenario, this input
component is labelled Customers for tFileInputXML. For further information about how label a
component, see Talend Open Studio User Guide

2. Double click the tFileInputXML component labelled Customers to open its contextual menu.

3. From this menu, select Row > Main link to connect this component to tXMLMap..

4. Repeat this operation to connect tXMLMap to tLogRow using Row > *New output* (Main) link. A dialog
box pops up to prompt you to name this output link. In this scenario, name it as Customer_States.

Then you can continue to configure each component.

Configuring the input flow

To do this, proceed as follows:

1. Double-click the tFileInputXML component labelled Customers to display its Basic settings view.

Scenario 1: Mapping and transforming XML data

Talend Open Studio Components Reference Guide 1665

2. Next to Edit schema, click the three-dot button to open the schema editor.

3. In the schema editor, click the plus button to add one row.

4. In the Column column, type in a new name for this row. In this scenario, it is Customer.

5. In the Type column, select the data type of this row. In this scenario, it is Document. The document data type
is essential for making full use of tXMLMap. For further information about this data type, see Talend Open
Studio User Guide.

6. Click OK to validate this editing and accept the propagation prompted by the popup dialog box. One row is
added automatically to the Mapping table.

7. In the File name / Stream field, browse to, or type in the path to the XML source that provides the customer
data.

8. In the Loop XPath query field, type in “/” to replace the default one. This means the source data is queried
from the root.

9. In the XPath query column of the Mapping table, type in the XPath. In this scenario, type in “.”, meaning
that all of the data from source are queried.

10.In the Get Nodes column of the Mapping table, select the check box.

In order to build the Document type data flow, it is necessary to get the nodes from this component.

Scenario 1: Mapping and transforming XML data

1666 Talend Open Studio Components Reference Guide

Configuring tXMLMap for transformation

To do this, proceed as follows:

1. Double-click the tXMLMap component to open the Map Editor.

Note that the input area is already filled with the defined input tables and that the top table is the main input table.

2. In the left table, right-click Customer to open the contextual menu.

3. From this contextual menu, select Import From File and in the pop-up dialog box, browse to the corresponding
source file in order to import therefrom the XML structure used by the data to be received by tXMLMap. In
this scenario, the source file is Customer.xml, which is the data input to tFileInputXML (Customers).

You can also import an XML tree from an XSD file. When importing either an input or an output XML
tree structure from an XSD file, you can choose an element as the root of your XML tree. For more
information on importing an XML tree from an XSD file, see Talend Open Studio User Guide.

4. In the imported XML tree, right click the Customer node and select As loop element to set it as the loop element.

5. On the lower part of this map editor, click the schema editor tab to display the corresponding view.

6. On the right side of this view, click the plus button to add one row to the Customer table and rename this row
as Customer_States.

7. In the Type column of this Customer_States row, select Document as the data type. The corresponding XML
root is added automatically to the top table on the right side which represents the output flow.

8. On the right side in the top table labelled Customer_States, import the XML data structure that you need to use
from the corresponding XML source file. In this scenario, it is Customer_State.xml.

Scenario 1: Mapping and transforming XML data

Talend Open Studio Components Reference Guide 1667

9. Right click the customer node and select As loop element from the contextual menu.

Then you can begin to map the input flow to the output flow.

10.In the top table on the input side (left) of the map editor, click the id node and drop it to the Expression column
in the row corresponding to the output row you need map. In this scenario, it is the @id node.

11.Do the same to map CustomerName to CustomerName, CustomerAddress to CustomerAddress and idState to
idState from the left side to the right side.

In the real project, you may have to keep empty elements in your output XML tree. If so, you can
use tXMLMap to manage them. For further information about how to manage empty elements using
tXMLMap, see Talend Open Studio User Guide.

12.If required to generate single XML flow, click the wrench icon on top of the output side to open the setting
panel and set the All in one feature as true. In this example, this option is set as true. For further information
about the All in one feature, see Talend Open Studio User Guide.

Scenario 2: Launching a lookup in a second XML flow to join complementary data

1668 Talend Open Studio Components Reference Guide

13.Click OK to validate the mappings and close the Map Editor.

If you close the Map Editor without having set the required loop elements as described earlier in this
scenario, the root element will be automatically set as loop element.

Then you can run this Job.

Executing the Job

To execute this Job, Press F6.

Scenario 2: Launching a lookup in a second XML flow
to join complementary data

Based on the previous scenario, this scenario shows how to use lookup in an XML flow to join the data of interest
to a given XML flow. The XML data for lookup is held in the USstates.xml file.

To do this, a tFileInputXML component is added to the previous Job in order to load and send the complementary
data to tXMLMap. Thus this Job looks like as follows:

Scenario 2: Launching a lookup in a second XML flow to join complementary data

Talend Open Studio Components Reference Guide 1669

To replicate this scenario, proceed as the following sections illustrate.

Configuring the data flow for lookup

To do this, proceed as follows:

1. From the Palette, drop tFileInputXML into the Design workspace.

A component used in the workspace can be labelled the way you need. In this scenario, the newly
added tFileInputXML is labelled USstates. For further information about how to label a component,
see Talend Open Studio User Guide

2. Double click the tFileInputXML component labelled USstates to open its contextual menu and select Row >
Main connection to connect this component to tXMLMap. As you create this connection in the second place,
this connection is of type Lookup.

3. Double click the tFileInputXML component labelled USstates to open its Component view.

4. Next to Edit schema, click the three-dot buttons to open the schema editor.

5. Click the plus button to add one rows and rename it, for example, as USState.

6. In the Type column, select the Document option from the drop-down list.

Scenario 2: Launching a lookup in a second XML flow to join complementary data

1670 Talend Open Studio Components Reference Guide

7. Click OK to validate this editing and accept the propagation prompted by the pop-up dialog box.

8. In the File name/Stream field, browse to or type in the path to the USStates.xml file.

The input schemas could be stored in the Metadata node of the Repository tree view for easy retrieval.
For further information regarding metadata creation in the Repository, see Talend Open Studio User
Guide.

9. In the Loop XPath query field, type in "/" to replace the default value. This means the loop is based on
the root.

10.In the Mapping table, where one row is already added automatically, enter "." in the XPath query column
to retrieve US States data from the source file.

11.In the Get Nodes column, select the check box. This retrieves the XML structure for the Document type data.

Configuring the transformation

To do this, proceed as follows

1. Double-click the tXMLMap component to open the Map Editor.

Note that the input area is already filled with the defined input tables and that the top table is the main input table.

2. In the top table, click the idState node and drop it, in the lower table, to the Exp.key column in the row
corresponding to the idState row. This creates a join between the two tables on the idState data, among which
the idState node from the main flow provides the lookup key.

Scenario 2: Launching a lookup in a second XML flow to join complementary data

Talend Open Studio Components Reference Guide 1671

Then you can begin to modify the mapping you have done in the previous scenario to join the complementary
data into the input flow. This mapping then should look like as follows:

Scenario 2: Launching a lookup in a second XML flow to join complementary data

1672 Talend Open Studio Components Reference Guide

3. In the lookup table on the input side (left) of the map editor, click the LabelState row and drop it on the customer
node on the output side. A dialog box pops up.

4. In this dialog box, select Create as sub-element of target node and click OK. This operation adds a new sub-
element to the output XML tree and maps it with LabelState on the input inside at the same time.

5. If required to generate single XML flow, click the wrench icon on top of the output side to open the setting
panel and set the All in one feature as true. In this example, this option is set as true. For further information
about the All in one feature, see Talend Open Studio User Guide.

6. Click OK to validate the mappings and close the Map Editor.

7. Press F6 to run this Job.

The Run view presents the execution result which may read as follows:

Scenario 3: Mapping data using a filter

Talend Open Studio Components Reference Guide 1673

The US state labels that correspond to the state IDs provided as the lookup key by the main data flow are selected
and outputted.

A step-by-step tutorial related to this Join topic is available on the Talend Technical Community Site. For further
information, see http://talendforge.org/tutorials/tutorial.php?language=english&idTuto=101.

Scenario 3: Mapping data using a filter

Based on the section called “Scenario 2: Launching a lookup in a second XML flow to join complementary data”,
this scenario presents how to apply filter condition(s) to select the data of interest using tXMLMap.

For example, you need to select the customer data where the state id is 9.

To replicate this scenario, proceed as follows:

1. In your Studio, open the Job used in the previous scenario to display it in the Design workspace.

2. Double click tXMLMap to open its editor. In this editor, the input and output data flows have been mapped
since the replication of the previous scenario.

http://talendforge.org/tutorials/tutorial.php?language=english&idTuto=101

Scenario 3: Mapping data using a filter

1674 Talend Open Studio Components Reference Guide

3.
On the output side (right), click the button to open the filter area.

4. In this filter area, drop the idState node from the tree view of the input data flow. The Xpath of idState is added
automatically to this filter area.

Scenario 4: Catching the data rejected by lookup and filter

Talend Open Studio Components Reference Guide 1675

5. Still in this area, write down the filter condition of interest in Java. In this scenario, this condition reads:
"9".equals([row1.Customer:/Customers/Customer/Address/idState])

6. If required to generate single XML flow, click the wrench icon on top of the output side to open the setting
panel and set the All in one feature as true. In this example, this option is set as true. For further information
about the All in one feature, see Talend Open Studio User Guide.

7. Click OK to validate this editing and close this editor.

8. Press F6 to run this Job.

The execution result is displayed in the Run view as follows:

The result says that the customer Pivot Point College is selected as its state ID is 9, representing the Florida state
in this scenario.

Scenario 4: Catching the data rejected by lookup and
filter

The data rejected by the lookup and filter conditions you set in tXMLMap can be caught and outputted by this
component itself.

Based on the section called “Scenario 3: Mapping data using a filter”, this scenario presents how to catch the data
rejected by the lookup and the filter set up in the previous sections.

In this scenario, another tLogRow component is added to the Job used in the previous scenario and thus the Job
displays as follows:

Scenario 4: Catching the data rejected by lookup and filter

1676 Talend Open Studio Components Reference Guide

To replicate this scenario, proceed as follows:

1. In your Studio, open the Job used in the previous scenario to display it in the Design workspace.

2. From the Palette, drop the tLogRow component on the workspace.

3. Right-click tXMLMap to open its contextual menu and select Row > *New Output* (Main) to connect this
component to the newly added tLogRow component. A dialog box pops up to prompt you to name this output
link. In this scenario, name it as Reject.

4. Click OK to validate this creation.

5. Double click the tXMLMap component to open its editor. An empty Reject table has been added to the output
side to represent the output data flow carrying the rejected data. You need to complete this table to make this
editor look like as follows:

Scenario 4: Catching the data rejected by lookup and filter

Talend Open Studio Components Reference Guide 1677

6. Select this empty Reject table.

7. In the lower part of this editor, click the Schema editor tab to open the corresponding view.

8. On the right part of this Schema editor view, click the plus button to add the rows you need to use. In this
scenario, click four times to add four rows to the Reject table.

9. In the Reject table presented on the right part of this Schema editor view, rename each of the four newly added
rows. They are: ID, Customer, idState, LabelState.

In this scenario, the Reject output flow uses flat data type. However, you can create an XML tree view
for this flow using the Document data type. For further information about how to use this Document
type, see the section called “Scenario 1: Mapping and transforming XML data”.

Scenario 5: Mapping data using a group element

1678 Talend Open Studio Components Reference Guide

The Reject table is completed and thus you have defined the schema of the output flow used to carry the captured
rejected data. Then you need to set up the condition(s) to catch the rejected data of interest.

10.On the upper part of the output side in this Map editor, select the Reject table.

11.
At the top of this table, click the button to open the setting area.

12.In the Catch Output Reject row of the setting area, select true from the drop-down list. Thus tXMLMap
outputs the data rejected by the filter set up in the previous scenario for the Customer output flow.

13.Do the same thing to switch the Catch Lookup Inner Join Reject row to the true option.

14.Click OK to validate this editing and close this editor.

15.Press F6 to run this Job.

The captured data rejected by the filter and the lookup reads as follows in the Run view:

None of the State IDs of these customers is 9. The customer BBQ Smith’s Tex Mex is marked with the state ID 60.
This number does not exist in the idState column of USState.txt where the defined lookup was done, so the data
of this customer is rejected by the lookup and the other data rejected by the filter.

The data selected by the filter you set up in the previous scenario reads as follows in XML format.

Scenario 5: Mapping data using a group element

Based on the Job used in the section called “Scenario 2: Launching a lookup in a second XML flow to join
complementary data”, this scenario presents how to set up an element as group element in the Map editor of
tXMLMap to group the output data.

Scenario 5: Mapping data using a group element

Talend Open Studio Components Reference Guide 1679

To replicate this scenario, you can reuse the Job in the section called “Scenario 2: Launching a lookup in a second
XML flow to join complementary data”.

In this Job, double click tXMLMap to open the Map editor.

The objective of this scenario is to group the customer id and the customer name information according to the States
the customers come from. To do this, you need to adjust the XML structure with considering the following factors:

• The elements tagging the customer id and the customer name information should be located under the loop
element. Thus they are the sub-elements of the loop element.

• The loop element and its sub-elements should be dependent directly on the group element.

• The element tagging the States used as grouping condition should be dependent directly on the group element.

Scenario 5: Mapping data using a group element

1680 Talend Open Studio Components Reference Guide

• The group element cannot be the root element.

To put a group element into effect, the XML data to be processed should have been sorted, for example
via your XML tools, around the element you need to use as the grouping condition. The figure below
presents part of the sorted source data used in this scenario. The customers possessing the same State id
is already put together.

Based on this analysis, the structure of the output data should read as follows:

Scenario 5: Mapping data using a group element

Talend Open Studio Components Reference Guide 1681

In this figure, the customers node is the root, the Customer element is set as group element and the output data
is grouped according to the LabelState element.

To set a group element, two restrictions must be respected:

• the root node cannot be set as group element;

• the group element must be the parent of the loop element.

Once the group element is set, the first element except the loop one is used as condition to group the
output data.

To perform the adjustment according to this analysis, proceed as follows:

1. In the XML tree view of the output side, right-click the customer (loop:true) node to open the contextual menu
and select Delete. Thus all of the elements under the root customers are removed. Then you can reconstruct the
XML tree view to have the best structure used to group the output data of interest.

2. Again in the XML tree view of the output side, right-click the root node customers to open the contextual menu
and select Create sub-element. Then a dialog box pops up.

Scenario 5: Mapping data using a group element

1682 Talend Open Studio Components Reference Guide

3. Type in the name of the new sub-element. In this scenario, it is Customer.

4. Repeat the previous operations to create two more sub-elements under this Customer node. They are: LabelState
and Name.

5. Do these operations again to create two more sub-elements under this newly created Name node. They are:
id and CustomerName.

6. Right-click the Name node to open the contextual menu and select As loop element to set this element as loop.

7. Right-click the Customer node to open its contextual menu and select As group element. This means that the
output data is grouped according to the LabelState element.

8. From the lookup data flow on the input side, click and drop the LabelState row to the row of the LabelState
node in the Expression column on the output side. Thus the corresponding data is mapped.

9. Do the same to map the id element and the CustomerName elements between both sides. Then this modification
is done.

10.If required to generate single XML flow, click the wrench icon on top of the output side to open the setting
panel and set the All in one feature as true. In this example, this option is set as true. For further information
about the All in one feature, see Talend Open Studio User Guide.

11.Click OK to validate this modification and close this editor.

If you close the Map Editor without having set the required loop elements as described earlier in this
scenario, the root element will be automatically set as loop element.

12.Press F6 to run this Job.

The execution result reads as follows in the Run view.

Scenario 6: classing the output data with aggregate element

Talend Open Studio Components Reference Guide 1683

The id element and the CustomerName element contained in the loop are grouped according to the LabelState
element. The group element Customer tags the start and the end of each group.

tXMLMap provides group element and aggregate element to classify data in the XML tree structure.
When handling one row of data (one complete XML flow), the behavioral difference between them is:

• The group element processes the data always within one single flow.

• The aggregate element splits this flow into separate and complete XML flows.

Scenario 6: classing the output data with aggregate
element

Based on the Job used in the section called “Scenario 5: Mapping data using a group element”, this scenario
presents how to set up an element as aggregate element in the Map editor of tXMLMap in order to class the
output data into separate XML flows.

On the Design workspace, double-click the tXMLMap component to open its Map editor. There the output side
reads as follows:

Scenario 6: classing the output data with aggregate element

1684 Talend Open Studio Components Reference Guide

The objective of this scenario is to class the customer information using aggregate element in accordance with
the States they come from and then to send these classes separately in different XML flows to the component
that follows.

To put an aggregate element into effect, the XML data to be processed should have been sorted, for
example via your XML tools, around the element you need to use as the aggregating condition. The figure
below presents part of the sorted source data used in this scenario. The customers possessing the same
State id is already put together.

Scenario 6: classing the output data with aggregate element

Talend Open Studio Components Reference Guide 1685

To do this, adjust the output XML tree as follows:

1. Right-click the Customer element to open its contextual menu and from this menu, select Remove group
element.

2. Click the wrench icon on top of the output side to open the setting panel and set the All in one feature as false.

3. Right-click the LabelState element to open its context menu and from this menu, select As aggregate element.
This element tags the State information of each customer and the customer information will be classed under
the State information.

To make the aggregate element available, ensure that the All in one feature is set as false. For further
information about the All in one feature, see Talend Open Studio User Guide

4. Click OK to validate these changes and close the Map editor.

5. Press F6 to run this Job.

Once done, the Run view is opened automatically, where you can check the execution result.

Scenario 7: Restructuring products data using multiple loop elements

1686 Talend Open Studio Components Reference Guide

tXMLMap outputs three separate XML flows, each of which carries the information of one State and the
customers from that State.

tXMLMap provides group element and aggregate element to classify data in the XML tree structure.
When handling one row of data (one complete XML flow), the behavioral difference between them is:

• The group element processes the data always within one single flow.

• The aggregate element splits this flow into separate and complete XML flows.

Scenario 7: Restructuring products data using
multiple loop elements

This scenario uses a four-component Job to restructure the products data given by a document flow using multiple
loop elements.

The components used are:

• tFileInputXML: it reads the source product data and pass them to the tXMLMap component.

• tXMLMap: it transforms the input flows with the expected structure streamlined.

• tLogRow: it presents the execution result in the console.

• tFileOutputDelimited: it generates the output flow into an XML file.

The input flow reads as follows:

Scenario 7: Restructuring products data using multiple loop elements

Talend Open Studio Components Reference Guide 1687

The objective of this restructuring is to streamline the presentation of the products information to serve the
manufacturing operations.

The output flow is expected to read as follows:

Scenario 7: Restructuring products data using multiple loop elements

1688 Talend Open Studio Components Reference Guide

In the output flow, the root element is changed to manufactures, the sales information is selected and consolidated
into the sale element and the manufacture element is reduced to one single level.

To replicate this scenario, proceed as follows:

Dropping and linking the components

To do this, perform the following operations:

Scenario 7: Restructuring products data using multiple loop elements

Talend Open Studio Components Reference Guide 1689

1. On the workspace, drop tFileInputXML, tXMLMap, tLogRow and tFileOutputDelimited from the
Palette.

2. Right-click tFileInputXML to open its contextual menu and select the Row > Main link from this menu to
connect this component to the tXMLMap component.

3. Repeat this operation to connect tXMLMap to tLogRow using Row > *New output* (Main) link. A dialog
box pops up to prompt you to name this output link. In this scenario, name it as outDoc.

4. Do the same to connect tLogRow to tFileOutputDelimited using the Row > Main link.

Configuring the input flow

To do this, do the following:

1. Double-click tFileInputXML to open its Component view.

2. Click the [...] button next to Edit schema to open the schema editor.

3. Click the [+] button to add one row to the editor and rename it as doc.

4. In the Type column, select Document from the drop-down list as the type of the input flow.

5. In the File name / Stream field, browse to, or type in the path to the XML source that provides the customer
data.

Scenario 7: Restructuring products data using multiple loop elements

1690 Talend Open Studio Components Reference Guide

6. In the Loop XPath query field, type in “/” to replace the default one. This means the source data is queried
from the root.

7. In the XPath query column of the Mapping table, type in the XPath. In this scenario, type in “.”, meaning
that all of the data from source are queried.

8. In the Get Nodes column of the Mapping table, select the check box.

Configuring tXMLMap with multiple loops

To do this, proceed as follows:

1. Double-click the tXMLMap component to open the Map Editor.

Note that the input area is already filled with the default basic XML structure and that the top table is the
main input table.

2. In the left table, right-click doc to open the contextual menu.

3. From this contextual menu, select Import From File and in the pop-up dialog box, browse to the
corresponding source file in order to import therefrom the XML structure used by the data to be received
by tXMLMap. In this scenario, the source file is input2.xml, which provides the data read and loaded by
tFileInputXML.

4. In the imported XML tree, right-click the manufacture node and select As loop element to set it as the loop
element. Then do the same to set the types node and the sale node as loop element, respectively.

5. On the lower part of this map editor, click the schema editor tab to display the corresponding view.

6. On the right side of this view, click the [+] button to add one row to the outDoc table and rename this row
as outDoc.

7. In the Type column of this outDoc row, select Document as the data type. The corresponding XML root is
added automatically to the top table on the right side which represents the output flow.

Scenario 7: Restructuring products data using multiple loop elements

Talend Open Studio Components Reference Guide 1691

8. On the right side in the top table labelled outDoc, import the XML data structure that you need to use from the
corresponding XML source file. In this scenario, it is ref.xml. This file provides the expected XML structure
mentioned earlier.

9. Right-click the manufacture node and select As loop element from the contextual menu. Then do the same
to set the types node and the sale node as loop element, respectively.

Then you can begin to map the input flow to the output flow.

10. In the top table on the input side (left) of the map editor, click the @category node and drop it to the
Expression column in the row corresponding to the output row you need to map. In this scenario, it is the
@category node.

Scenario 7: Restructuring products data using multiple loop elements

1692 Talend Open Studio Components Reference Guide

11. Do the same to map:

• @name to @name

• @unit under the summary node to @unit

• @id to @id and to manufacture id, respectively

• @date to @date

• name to @name

• type to type

• @type to @sales_type

• income to sale (loop)

12. If required to generate single XML flow, click the wrench icon on top of the output side to open the setting
panel and set the All in one feature as true. In this example, this option is set as true. For further information
about the All in one feature, see Talend Open Studio User Guide.

13. Click the [...] button next to the types loop element to open the loop sequence table. In this table, ensure that
the types input loop is the primary loop, meaning that its sequence number is 1. This way, the relative part of
the output flow will be sorted with regards to the values of the type element.

Scenario 7: Restructuring products data using multiple loop elements

Talend Open Studio Components Reference Guide 1693

When a loop element receives mappings from more than one loop element of the input flow, a [...]
button appears next to this receiving loop element and allows you to set the sequence of the input
loops. For example, in this scenario the types loop element of the output flow is mapped with @id
and type which belong to the manufacture loop element and the types loop element, respectively, so
the [...] button appears beside this types loop element.

If the receiving flow is flat data, once it receives mappings from more than one loop element, this
[...] button appears as well, on the head of the table representing the flat data flow, though.

14. Click OK to validate the mappings and close the Map Editor.

If you close the Map Editor without having set the required loop elements as described earlier in
this scenario, the root element will be automatically set as loop element.

Configuring the output flow

To do this, proceed as follows:

1. Double-click tLogRow to open its Component view.

2. If this component does not have the same schema of the preceding component, a warning icon appears. In
this case, click the Sync columns button to retrieve the schema from the preceding one and once done, the
warning icon disappears.

3. Click OK to validate these changes and accept the propagation prompted by the pop-up dialog box.

4. Double-click tFileOutputDelimited to open its Component view.

5. In the File Name field, browse to, or enter the path to the file you need to generate the output flow in.

Executing the Job

To execute this Job, press F6.

Once done, the Run view is opened automatically, where you can check the execution result.

Scenario 7: Restructuring products data using multiple loop elements

1694 Talend Open Studio Components Reference Guide

Open the file generated, and you will see the expected products data restructured for manufacturing.

Talend Open Studio Components Reference Guide

System components
This chapter details the main components that you can find in the System family of the Talend Open Studio Palette.

The System family groups together components that help you to interact with the operating system.

tRunJob

1696 Talend Open Studio Components Reference Guide

tRunJob

tRunJob Properties

Component family System

Function tRunJob executes the Job called in the component’s properties, in the frame of
the context defined.

Purpose tRunJob helps mastering complex Job systems which need to execute one Job
after another.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: You have already created the schema and
stored it in the Repository. You can reuse it in various
projects and job flowcharts. Related topic: see Talend
Open Studio User Guide

Use dynamic job Select this check box to allow multiple Jobs to be called
and processed. When this option is enabled, only the
latest version of the Jobs can be called and processed.
An independent process will be used to run the subjob.
The Context and the Use an independent process to
run subjob options disappear.

The options Use dynamic job and Use
an independent process to run subjob are
not compatible with the Jobserver cache.
Therefore, the execution may fail if you run a
job that contains tRunjob in .

Context job This field is visible only when the Use dynamic job
option is selected. Enter the name of the Job that you
want to call from the list of Jobs selected.

CopyChild Job Schema Click to fetch the child Job schema.

Job Select the Job to be called in and processed. Make sure
you already executed once the Job called, beforehand, in
order to ensure a smooth run through tRunJob.

Version Select the child Job version that you want to use.

Context If you defined contexts and variables for the Job to be
run by the tRunJob, select the applicable context entry
on the list.

tRunJob Properties

Talend Open Studio Components Reference Guide 1697

Use an independent
process to run subjob

Select this check box to use an independent process to
run the subjob. This helps in solving issues related to
memory limits.

Die on child error Clear this check box to execute the parent Job even
though there is an error when executing the child Job.

Transmit whole context Select this check box to get all the context variables from
the parent Job. Deselect it to get all the context variables
from the child Job.

Context Param You can change the selected context parameters. Click
the plus button to add the parameters as defined in
the Context of the child Job. For more information
on context parameters, see Talend Open Studio User
Guide.

Advanced settings Print Parameters Select this check box to display the internal and external
parameters in the Console.

tStatCatcher Statistics Select this check box to gather the processing metadata
at the Job level as well as at each component level.

Usage This component can be used as a standalone Job or can help clarifying complex
Job by avoiding having too many sub-jobs all together in one Job.

Global Variables Child return code: Indicates the Java return code of the
child Job. This is available as an After variable.

Returns an integer:

- if no errors > the code value is 0.

- if errors > an exception message shows.

Child exception stack trace: Returns a Java stack trace
from a child Job. This is available as an After variable.

Returns a string.

For further information about variables, see Talend Open
Studio User Guide.

Outgoing links (from one component to another):

Row: Main.

Trigger: On Subjob Ok; On Subjob Error; Run if; On
Component Ok; On Component Error

Incoming links (from one component to another):

Row: Main; Reject; Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On
Component Ok; On Component Error; Synchronize;
Parallelize.

For further information regarding connections, see
Talend Open Studio User Guide.

Limitation n/a

Scenario: Executing a child Job

1698 Talend Open Studio Components Reference Guide

Scenario: Executing a child Job

This scenario describes a single-component Job calling in and executing another Job. The Job to be executed reads
a basic delimited file and simply displays its content on the Run log console. The particularity of this Job lies
in the fact that this latter Job is executed from a separate Job and uses a context variable to prompt for the input
file to be processed.

Create the first Job reading the delimited file.

• Drop a tFileInputDelimited and a tLogRow from the Palette to the design workspace.

• Connect the two components together using a Row Main link.

• Double-click tFileInputDelimited to open its Basic settings view and define its properties.

• Set the Property type to Built-In for this Job.

• Click in the File Name field and then press F5 to open the [New Context Parameter] dialog box and configure
the context variable.

Scenario: Executing a child Job

Talend Open Studio Components Reference Guide 1699

• In the Name field, enter a name for this new context variable, File in this example.

In this example, there is no need to either select the Prompt for value check box or to set a prompt message, as
the default parameter value can be used.

• Click Finish to validate the modification and press Enter on your keyboard to make sure the new context
variable is stored the File Name field.

• In the Basic settings view, type in the field and row separators used in the input file.

• If needed, set Header, Footer, and Limit. In this example, no header or footer are used and no limit for the
number of processed rows is set.

• Set Schema type to Built-in for this example. Click the three-dot button next to the field name to open the
schema dialog box where you can configure the schema manually.

• In the dialog box, click the plus button to add two columns and name them following the first and second column
names of your input file, username and age in this example.

If you store your schema in the Repository tree view, you only need to select the relevant metadata entry
corresponding to your input file structure.

• Double-click tLogRow to display its Basic settings view and define its properties.

• Click Sync columns to retrieve the schema of the input component and then set other options according to
your needs.

• Save your Job and press F6 to make sure that it executes without error.

Create the second Job that will be the parent Job.

• Drop a tFileList and a tRunJob from the Palette to the design workspace.

• Connect the two components together using an Iterate link.

Scenario: Executing a child Job

1700 Talend Open Studio Components Reference Guide

• Double-click tFileList to open its Basic settings view and define its properties.

• In the Directory field, set the path to the directory that holds the files to be processed, or click the three-dot
button next to the field to browse to the directory. In this example, the directory is called tRunJob and it holds
three delimited files.

• In the FileList Type list, select Files.

• Select the Use Glob Expressions as Filemask check box to be able to use regular expressions in your file masks.

• In the Files area, click the plus button to add a line where you can set the filter to apply. In this example, we
want only to retrieve delimited files “*.csv”.

• Double-click tRunJob to display its Basic settings view and define its properties.

• Click the three-dot button next to the Job field to open the [Find a Job] dialog box.

Scenario: Executing a child Job

Talend Open Studio Components Reference Guide 1701

• Select the child Job you want to execute and click OK to close the dialog box. The name of the selected Job
displays in the Job field in the Basic settings view of tRunJob.

• Click Copy Child Job Schema to retrieve the schema from the child Job.

• In the Context Param area, click the plus button to add a line and define the context parameter.

• Click in the Values cell and then press Ctrl+Espace on your keyboard to access the list of context variables.

• In the list, select tFileList-1.CURRENT_FILEPATH. The corresponding context variable displays in the Values
cell: ((String)globalMap.get(“tFileList-1.CURRENT_FILEPATH”)).

For more information on context variables, see Talend Open Studio User Guide.

• Save your Job and press F6 to execute it.

The called-in Job reads the data contained in the input file, as defined by the input schema, and the result of this
Job is displayed directly in the Run console.

Related topic: the section called “tLoop”, and the section called “Scenario 1: Buffering data (Java)” of the
tBufferOutput component.

tSetEnv

1702 Talend Open Studio Components Reference Guide

tSetEnv

tSetEnv Properties

Component family System

Function tSetEnv adds variables temporarily to system environment during the execution
of a Job.

Purpose tSetEnv allows to create variables and execute a Job script through
communicating the information about the newly created variables between
subjobs. After job execution, the newly created variables are deleted.

Basic settings Parameters Click the plus button to add the variables needed for
the job. name: Enter the syntax for the new variable.

value: Enter a parameter value according to the context.

append: Select this check box to add the new variable
at the end.

Usage tSetEnv can be used as a start or an intermediate component.

Limitation n/a

Scenario: Modifying a variable during a Job execution

The following scenario is made of two Jobs parent and child. With the tSetEnv component, you can transfer and
modify in a child Job a value created in a parent Job. As part of this Job, the tMsgBox components allow you to
display, for information purposes only, that a variable is properly set, via an info-box.

To modify the value of the parent Job by using a variable set in the tSetEnv component, do as described in the
following sections:

Drop and link components

1. Create a first Job named parentJob: right-click on the Job Design node of the Repository, and choose Create
a Job.

2. From the Palette, drop a tSetEnv component, two tMsgBox components, and one tRunJob component onto
the design workspace.

3. Connect the tSetEnv component to a first tMsgBox component with a OnSubjobOk link : right-click on the
start component, select Trigger, then OnSubjobOk. Then click on the end component you want to connect.

4. Connect the first tMsgBox component to the tRunJob with a OnSubjobOk link.

5. Then connect the tRunJob component to the second tMsgbox with a OnSubjobOk link.

Scenario: Modifying a variable during a Job execution

Talend Open Studio Components Reference Guide 1703

6. Now create a child Job named ChildJob.

7. From the Palette, drop a tSetEnv component onto the design workspace.

8. Connect the tSetEnv component to the tMsgBox with a OnSubjobOk link : right click on the start component,
select Trigger, then OnSubjobOk. Then click on the end component you want to connect.

Set the components

In this example, the value set in the parent Job is transferred to the child Job. There, it is modified and adopts the
value of the child Job, and then transferred to the parent Job again.

1. In parentJob, select the tSetEnv component and click the Component tab. Add a variable row by clicking
the [+] button to set the initial value of the variable. Type Variable_1 in the Name field, and Parent job value
in the Value field.

2. Select the first tMsgBox component, and click the Component tab. In the Message field, type the
message displayed in the info-box which confirms that your variable has properly been taken into account.
For example: "Parent:"+System.getProperty("Variable_1") displays the variable set in the
tSetEnv component (here Parent job value).

Scenario: Modifying a variable during a Job execution

1704 Talend Open Studio Components Reference Guide

3. Select the second tMsgBox component, and click the Component tab. In the Message field, type the
"Parent:"+System.getProperty("Variable_1") line again. It makes the variable set in the child
Job appear.

4. Select the tRunJob component and click the Component tab. In the Job field, type the name of your child
Job, here ChildJob. This will run the child Job when you run the parent Job.

5. Now double-click the tRunJob component to open the child Job ChildJob.

6. Select the tSetEnv component, and click the Component tab. Add a variable row by clicking the [+] button to
set the initial value of the variable. Type Variable_1 in the Name field, and Child job value in the Value field.

7. Select the tMsgBox component and click the Component tab. In the Message field, type the message
displayed in the info-box which confirms that your variable has properly been taken into account.
For example: "Parent:"+System.getProperty("Variable_1") displays the variable set in the
tSetEnv component (here Child job value).

8. Save your Job, go back to parentJob, then run the Job by pressing F6.

Run the Job

Three info-boxes are displayed one after the other:

• Parent: Parent job value: parent Job's value is Parent job value.

• Child: Child job value: Child Job's value is Child job value.

• Parent: Parent job value: parent Job's value was modified by the variable set in the tSetEnv of the child Job,
then transferred again to the parent Job. parent Job's value is now the one set in the child Job.

tSSH

Talend Open Studio Components Reference Guide 1705

tSSH

tSSH Properties

Component family System

Function Returns data from a remote computer, based on the secure shell command defined.

Purpose Allows to establish a communication with distant server and return securely
sensible information.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in
the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Click Sync columns to retrieve the schema from the
preceding component in the Job.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: You have already created the schema and
stored it in the Repository. You can reuse it in various
projects and job flowcharts. Related topic: see Talend
Open Studio User Guide

Host IP address

Port Listening port number

User User authentication information

Authentication method Public Key/Key
Passphrase/Private Key

Select the relevant option.

In case of Public Key, type in the passphrase, if required,
in the Key Passphrase field and then in the Private key
field, type in the private key or click the three dot button
next to the Private key field to browse to it.

Authentication method Password/Password Select the relevant option.

In case of Password,type in the required password in the
Password field.

Authentication method Keyboard Interactive/
Password

Select the relevant option.

In case of Keyboard Interactive, type in the required
password in the Password field.

Pseudo terminal Select this check box to call the interactive shell that
performs the terminal operations.

tSSH Properties

1706 Talend Open Studio Components Reference Guide

Command separator Type in the command separator required. Once the
Pseudo terminal check box is selected, this field
becomes unavailable.

Commands Type in the command for the relevant information to
be returned from the remote computer. When you select
the Pseudo terminal check box, this table becomes a
terminal emulator and each row in this table is a single
command.

Use timeout/timeout in
seconds

Define the timeout time period. A timeout message will
be generated if the actual response time exceeds this
expected processing time.

Standard Output Select the destination to which the standard output is
returned. The output may be returned to:

- to console: the output is displayed in the console of the
Run view.

- to global variable: the output is indicated by the
corresponding global variable.

- both to console and global variable: the output is
indicated both of the two means.

- normal: the output is a standard ssh output.

Error Output Select the destination to which the error output is
returned. The output may be returned to:

- to console: the output is displayed in the console of the
Run view.

- to global variable: the output is indicated by the
corresponding global variable.

- both to console and global variable: the output is
indicated both of the two means.

- normal: the output is a standard ssh output.

Usage This component can be used as standalone component.

Global variables Standard Output: Indicates the standard execution
output of the remote command. It is available as an After
variable.

Returns a String.

Error output: Indicates the error execution output of the
remote command. It is available as an After variable.

Returns a String.

Exit value: Indicates the exit status of the remote
command. It is available as an After variable.

Returns an Integer.

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Scenario: Remote system information display via SSH

Talend Open Studio Components Reference Guide 1707

Row: Main

Trigger: Run if; On Component Ok; On Component
Error; On Subjob Ok; On Subjob Error.

Incoming links (from one component to another):

Row: Main; Iterate

Trigger: Run if; On Component Ok; On Component
Error; On Subjob Ok; On Subjob Error.

For further information regarding connections, see
Talend Open Studio User Guide.

Limitation The component use is optimized for Unix-like systems.

Scenario: Remote system information display via SSH

The following use case describes a basic Job that uses SSH command to display the hostname of the distant server
being connected to, and the current date on this remote system.

The tSSH component is sufficient for this Job. Drop it from the Palette to the design workspace.

Double-click on the tSSH component and select the Basic settings view tab.

• Type in the name of the Host to be accessed through SSH as well as the Port number.

Scenario: Remote system information display via SSH

1708 Talend Open Studio Components Reference Guide

• Fill in the User identification name on the remote machine.

• Select the Authentication method on the list. For this use case, the authentication method used is the public key.

• Thus fill in the corresponding Private key.

• On the Command field, type in the following command. For this use case, type in hostname; date between
double quotes.

• Select the Use timeout check box and set the time before falling in error to 5 seconds.

The remote machine returns the host name and the current date and time as defined on its system.

tSystem

Talend Open Studio Components Reference Guide 1709

tSystem

tSystem Properties

Component family System

Function tSystem executes one or more system commands.

Purpose tSystem can call other processing commands, already up and running in a larger
Job.

Basic settings Use home directory Select this check box to change the name and path of a
dedicated directory.

Use Single Command When the required command is very simple, to the degree
that, for example, only one parameter is used and without
space, select this option to activate its Command field.
In this field, enter the simple system command. Note that
the syntax is not checked.

In Windows, the MS-DOS commands do not
allow you to pass directly from the current
folder to the folder containing the file to be
launched. To launch a file, you must therefore
use an initial command to change the current
folder, then a second one to launch the file

Use Array Command Select this option to activate its Command field. In this
field, enter the system command in array, one parameter
per line.

For example, enter the following command with
consecutive spaces in array for Linux:

"cp"
"/temp/source.txt"
"/temp/copy to/"

Standard Output and
Error Output

Select the type of output for the processed data to be
transferred to.

to console: data is passed on to be viewed in the Run
view.

to global variable: data is passed on to an output variable
linked to the tSystem component.

to console and to global variable: data is passed on to
the Run view and to an output variable linked to the
tSystem component.

normal: data is passed on to the component that comes
next.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in the
Repository.

tSystem Properties

1710 Talend Open Studio Components Reference Guide

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Click Sync columns to retrieve the schema from the
preceding component in the Job.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: You have already created the schema and
stored it in the Repository. You can reuse it in various
projects and job flowcharts. Related topic: see Talend
Open Studio User Guide

Environment variables Click the [+] button to add as many global variables as
needed.

name: Enter the syntax of the new variable.

value: Enter a value for this variable according to the
context.

Usage This component can typically used for companies which already implemented
other applications that they want to integrate into their processing flow through
Talend.

Global Variables Standard Output: Returns the standard output from a
process. This is available as an After variable

Returns a string.

Error Output: Returns the erroneous output from a
process. This is available as an After variable.

Returns a string.

Exit Value: Returns an exit code. This is available as an
After variable.

Returns an integer:

- if there are no errors > the exit code is 0.

- if there are errors > the exit code is 1.

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Row: Main.

Trigger: On Subjob Ok; On Subjob Error; Run if.

Incoming links (from one component to another):

Row: Main; Reject; Iterate.

Scenario: Echo ‘Hello World!’

Talend Open Studio Components Reference Guide 1711

Trigger: On Subjob Ok; On Subjob Error; Run if;
On Component Ok; On Component Error; Synchronize;
Parallelize.

For further information regarding connections, see
Talend Open Studio User Guide.

Limitation n/a

Scenario: Echo ‘Hello World!’

This scenario is one single component tSystem to execute a system command and shows the results in the Run
view “console”.

To replicate this scenario, proceed as follows:

1. Drop a tSystem component from the Palette to the design workspace.

2. Double-click tSystem to open its Component view.

3. Select the Use Single Command option to activate its Command field and type in "cmd /c echo Hello
World!".

4. In the Standard Output drop-down list, select to both console and global variable.

5. Press F6 to run this Job.

Scenario: Echo ‘Hello World!’

1712 Talend Open Studio Components Reference Guide

The Job executes an echo command and shows the output in the Console of the Run view.

Talend Open Studio Components Reference Guide

Talend MDM components
This chapter details the main components that you can find in the Talend MDM family of the Talend Open Studio
Palette.

The Talend MDM family groups together connectors that read and write master data in the MDM Hub.

tMDMBulkLoad

1714 Talend Open Studio Components Reference Guide

tMDMBulkLoad

tMDMBulkLoad properties

Component family Talend MDM

Function tMDMBulkLoad writes XML structured master data into the MDM hub in bulk mode.

Purpose This component uses bulk mode to write data so that big batches of data or data of high
complexity can be fast uploaded onto the MDM server.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in the
Repository.

Click Edit Schema to modify the schema.

If you modify the schema, it automatically becomes
built-in.

Click Sync columns to collect the schema from the previous
component.

Built-in: You create the schema and store it locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created the schema and stored
it in the Repository. You can reuse it in various projects
and Job designs. Related topic: see Talend Open Studio User
Guide.

XML field Select the name of the column in which you want to write the
XML data.

URL Type in the URL required to access the MDM server.

Username and
Password

Type in the user authentication data for the MDM server.

Version Type in the name of the Version of master data you want to
connect to, for which you have the required user rights.

Leave this field empty if you want to display the default
Version of master data.

Data model Type in the name of the data model against which the data to
be written is validated.

Data Container Type in the name of the data container where you want to
write the master data.

Entity Type in the name of the entity that holds the data record(s)
you want to write.

Validate Select this checkbox to validate the data you want to write
onto the MDM server against validation rules defined for the
current data model.

tMDMBulkLoad properties

Talend Open Studio Components Reference Guide 1715

For more information on how to set the validation rules, see
Talend Open Studio for MDM Administrator Guide.

If you need faster loading performance, do not select
this checkbox.

Generate ID Select this check box to generate an ID number for all of the
data written.

If you need faster loading performance, do not select
this checkbox.

Commit size Type in the row count of each batch to be written onto the
MDM server.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the
Job level as well as at each component level.

Connections Outgoing links (from one component to another):

Row: Main,

Trigger: Run if; On Component Ok; On Component Error,
On Subjob Ok, On Subjob Error.

Incoming links (from one component to another):

Row: Main

Trigger: Run if, On Component Ok, On Component Error,
On Subjob Ok, On Subjob Error

For further information regarding connections, see Talend
Open Studio User Guide.

Usage This component needs always an incoming link to offer XML structured data. If
your data offered is not yet in the XML structure, you need use components like
tWriteXMLField to transform this data into the XML structure. For further information
about tWriteXMLField, see the section called “tWriteXMLField”.

Enhancing the MDM bulk data load

The information below concerns only MDM used with eXist.

As XML parsing is a CPU and memory consuming process, it is not really compatible with large datasets. The
following Scenario: the section called “Scenario: Loading records into a business entity”, which shows how to
use the tMDMBulkLoad component, has some limitations because it cannot work with large dataset, for the time
being at least.

An alternative scenario in which you process the dataset file per bulk load iterations can be designed as the
following:

tMDMBulkLoad properties

1716 Talend Open Studio Components Reference Guide

In such a scenario, the tMDMBulkLoad component waits for XML data as an input. You must manually format
this incoming data to match the entity schema defined in the MDM Studio. Most of the time, the data you want
to import is in a flat “format”, and you have to transform it into XML.

As XML parsing is memory consuming, you can workaround this problem by splitting your source file into several
files using the tAdvancedFileOutputXML component. To do this, you select the Split output in several files
option in the Advaced settings view of the component and then set the rows in each output file through a context
variable (context.chunkSize), for example.

The XML schema you must define in the XML editor of this component should be an exact match of the business
entity defined in the MDM Studio. The XML schema in the editor must represent a single <root> element which
contains all the other elements, so that you can loop on each of the element. The path of the file should be defined
in a temporary folder.

Use a tFileList component to read all the XML files that have just been created. This component enables you to
parallelize the process. Connect it to a tFileInputXML component using the Iterate link.

Scenario: Loading records into a business entity

Talend Open Studio Components Reference Guide 1717

For the Iterate link, it is recommended that you set as many threads as the number of the physical cores of
the computer. You can achieve that using Runtime.getRuntime().availableProcessors()

The tFileInputXML component will read the data from the XML files you have created, by defining a loop on
the elements, and getting all the nodes that are already formatted as XML. You must then select the Get Nodes
check box.

Finally, you must setup the tMDMBulkLoad component as the following:

Ensure that you set the commit size to the same value you defined in the tAdvancedfileOutputXML,
the context.chunkSize context variable.

The tFiledelete component in such a scenario will delete all the temporary data at the end of the Job.

Scenario: Loading records into a business entity

This scenario describes a Job that loads records into the ProductFamily business entity defined by a specific data
model in the MDM hub.

Prerequisites of this Job:

• The Product data container: this data container is used to separate the product master data domain from the
other master data domains.

• The Product data model: this data model is used to define the attributes, validation rules, user access rights and
relationships of the entities of interest. Thus it defines the attributes of the ProductFamily business entity.

Scenario: Loading records into a business entity

1718 Talend Open Studio Components Reference Guide

• The ProductFamily business entity: this business entity contains Id, Name, both defined by the Product data
model.

For further information about how to create a data container, a data model, and a business entity along with its
attributes, see Talend Open Studio for MDM Administrator Guide.

The Job in this scenario uses three components.

• tFixedFlowInput: this component generates the records to be loaded into the ProductFamily business entity.
In the real case, your records to be loaded are often voluminous and stored in a specific file, while in order to
simplify the replication of this scenario, this Job uses tFixedFlowInput to generate four sample records.

• tWriteXMLField: this component transforms the incoming data into XML structure.

• tMDMBulkLoad: this component writes the incoming data into the ProductFamily business entity in bulk
mode, generating ID value for each of the record data.

For the time being, tWriteXMLField has some limitations when used with very large datasets. Another
scenario is possible to enhance the MDM bulk data load. For further information, see the section called
“Enhancing the MDM bulk data load”.

To replicate this scenario, proceed as follows:

• Drop tFixedFlowInput, tWriteXMLField and tMDMBulkLoad onto the design workspace.

• Right click tFixedFlowInput to open its contextual menu.

• Select Row > Main to connect tFixedFlowInput to the following component using Main link.

• Do the same to link the other components.

• Double click tFixedFlowInput to open its Basic settings view.

• Click the three-dot button next to Edit schema to open the schema editor.

Scenario: Loading records into a business entity

Talend Open Studio Components Reference Guide 1719

• In the schema editor, click the plus button to add one row.

• In the schema editor, click the new row and type in the new name: family.

• Click OK.

• In the Mode area of the Basic settings view, select the Use inline table option.

• Under the inline table, click the plus button four times to add four rows in the table.

• In the inline table, click each of the added rows and type in their names between the quotation marks: Shirts,
Hats, Pets, Mugs.

• Double click tWriteXMLField to open its Basic settings view.

• Click the three-dot button next to the Edit schema field to open the schema editor where you can add a row
by clicking the plus button.

Scenario: Loading records into a business entity

1720 Talend Open Studio Components Reference Guide

• Click the newly added row to the right view of the schema editor and type in the name of the output column
where you want to write the XML content. In this example, type in xmlRecord.

• Click OK to validate this output schema and close the schema editor.

• In the popped up dialog box, click OK to propagate this schema to the following component.

• On the Basic settings view, click the three-dot button next to Configure Xml Tree to open the interface that
helps to create the XML structure.

• In the Link Target area, click rootTag and rename it as ProductFamily, which is the name of the business
entity used in this scenario.

• In the Linker source area, drop family to ProductFamily in the Link target area.

A dialog box displays asking what type of operation you want to do.

• Select Create as sub-element of target node to create a sub-element of the ProductFamily node. Then the
family element appears under the ProductFamily node.

• In the Link target area, click the family node and rename it as Name, which is one of the attributes of the
ProductFamily business entity.

• Right-click the Name node and select from the contextual menu Set As Loop Element.

• Click OK to validate the XML structure you defined.

• Double-click tMDMBulkLoad to open its Basic settings view.

• In XML Field, click this field and select xmlRecord from the drop-down list.

• In the URL field, enter the MDM server URL, between quotes: for example, http://localhost:8080/talend/
TalendPort.

Scenario: Loading records into a business entity

Talend Open Studio Components Reference Guide 1721

• In the Username and Password fields, enter your login and password to connect to the MDM server.

• In the Data Model and the Data Container fields, enter the names corresponding to the data model and the
data container you need to use. Both are Product for this scenario.

• In the Entity field, enter the name of the business entity which the records are to be loaded in. In this example,
type in ProductFamily.

• Select the Generate ID check box in order to generate ID values for the records to be loaded.

• In the Commit size field, type in the batch size to be written into the MDM hub in bulk mode.

• Press F6 to run the Job.

• Log into your Talend MDM Web User Interface to check the newly added records for the ProductFamily
business entity.

tMDMClose

1722 Talend Open Studio Components Reference Guide

tMDMClose

tMDMClose properties

Component family Talend MDM

Function tMDMClose closes an opened MDM server connection.

Purpose This component is used to terminate an opened MDM server connection after the
execution of the proceeding subjob.

Basic settings Component List Select the tMDMConnection component from the list if more
than one connection is planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the
Job level as well as at each component level.

Usage This component is to be used along with the tMDMConnection component.

Related scenario

For a related use case, see the section called “Scenario: Deleting master data from an MDM Hub”.

tMDMConnection

Talend Open Studio Components Reference Guide 1723

tMDMConnection

tMDMConnection properties

Component family Talend MDM

Function tMDMConnection opens an MDM server connection for convenient reuse in the
current transaction.

Purpose This component is used to open a connection to an MDM server for convenient reuse
in the subsequent subjob or subjobs.

Basic settings URL Type in the URL required to access the MDM server.

Username and
Password

Type in the user authentication data for the MDM server.

Version Type in the name of the Version of master data you want to
connect to.

Leave this field empty if you want to display the default
Version of master data.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the
Job level as well as at each component level.

Usage This component is to be used along with the tMDMSP, tMDMViewSearch,
tMDMInput, tMDMDelete, tMDMRouteRecord, tMDMOutput, and tMDMClose
components.

Related scenario

For a related use case, see the section called “Scenario: Deleting master data from an MDM Hub”.

tMDMDelete

1724 Talend Open Studio Components Reference Guide

tMDMDelete

tMDMDelete properties

Component family Talend MDM

Function tMDMDelete deletes data records from specific entities in the MDM Hub.

Purpose This component deletes master data in an MDM hub.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in the
Repository.

Click Edit Schema to modify the schema.

If you modify the schema, it automatically becomes
built-in.

Click Sync columns to collect the schema from the previous
component.

Built-in: You create the schema and store it locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created the schema and stored
it in the Repository. You can reuse it in various projects
and job designs. Related topic: see Talend Open Studio User
Guide.

Use an existing
connection

Select this check box if you want to use a configured
tMDMConnection component.

URL Type in the URL required to access the MDM server.

Username and
Password

Type in the user authentication data for the MDM server.

Version Type in the name of the Version of master data you want to
connect to, for which you have the required user rights.

Leave this field empty if you want to display the default
Version of master data.

Entity Type in the name of the entity that holds the data record(s)
you want to delete.

Data Container Type in the name of the data container that holds the data
record(s) you want to delete.

Keys Specify the field(s) (in sequence order) composing the key
when the entity have a multiple key.

Logical delete Select this check box to send the master data to the Recycle
bin and fill in the Recycle bin path. Once in the Recycle bin,
the master data can be definitely deleted or restored. If you
leave this check box clear, the master data will be permanently
deleted.

Scenario: Deleting master data from an MDM Hub

Talend Open Studio Components Reference Guide 1725

Die on error Select this check box to skip the row in error and complete
the process for error-free rows. If needed, you can retrieve the
rows in error via a Row > Rejects link.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the
Job level as well as at each component level.

Usage Use this component to write a file and separate the fields using a specific separator.

Scenario: Deleting master data from an MDM Hub

This scenario describes a four-component Job that deletes the specified data record from the MDM Hub.

Dropping and linking the components

1. Drop tMDMConnection, tMDMInput, tMDMDelete, and tMDMClose of the Talend MDM family from
the Palette onto the design workspace.

2. Connect tMDMInput to tMDMDelete using a Row > Main link.

3. Connect tMDMConnection to tMDMInput, and tMDMInput to tMDMClose using Trigger >
OnSubjobOK links.

Configuring the MDM server connection

In this scenario, a tMDMConnection component is used to open an MDM server connection for convenient reuse
in the subsequent subjob that performs the data record deletion task.

Scenario: Deleting master data from an MDM Hub

1726 Talend Open Studio Components Reference Guide

1. Double-click tMDMConnection to display its Basic settings view and define the component properties.

2. In the URL field, enter the MDM server URL, between quotation marks: for example, "http://localhost:8180/
talend/TalendPort".

3. In the Username and Password fields, enter your login user name and password to connect to the MDM server.

4. In the Version field, enter the name of the master data Version you want to access, between quotation marks.
Leave this field empty to access the default master data Version.

5. Double-click tMDMClose to display its Basic settings view and define the component properties.

This component closes the opened MDM server connection after the successful execution of the proceeding
subjob.

6. From the Component List list, select the component for the server connection you want to close if you have
configured more than one MDM server connection. In this use case, there is only one MDM server connection
opened, so simply use the default setting.

Configuring data retrieval

1. Double-click tMDMInput to display its Basic settings view and define the component properties.

Scenario: Deleting master data from an MDM Hub

Talend Open Studio Components Reference Guide 1727

2. From the Property Type list, select Built-in to complete the fields manually.

If you have stored the MDM connection information in the repository metadata, select Repository from the
list and the fields will be completed automatically.

3. From the Schema list, select Built-in and click [...] next to Edit schema to open a dialog box.

Here you can define the structure of the master data you want to read in the MDM hub.

4. The master data is collected in a four column schema of the type String: Id, Name, City and State. Click OK
to close the dialog box and proceed to the next step.

5. Select the Use an existing connection check box, and from the Component List list that appears, select the
component you have configured to open your MDM server connection.

In this scenario, only one MDM server connection exists, so simply use the default selection.

6. In the Entity field, enter the name of the business entity that holds the data record(s) you want to read, between
quotation marks. Here, we want to access the Agency entity.

Scenario: Deleting master data from an MDM Hub

1728 Talend Open Studio Components Reference Guide

7. In the Data Container field, enter the name of the data container that holds the master data you want to read,
between quotation marks. In this example, we use the DStar container.

The Use multiple conditions check box is selected by default.

8. In the Operations table, define the conditions to filter the master data you want to delete as follows:

• Click the plus button to add a new line.

• In the Xpath column, enter the Xpath and the tag of the XML node on which you want to apply the filter,
between quotation marks. In this example, we work with the Agency entity, so enter “Agency/Id”.

• In the Function column, select the function you want to use. In this scenario, we use the Starts With function.

• In the Value column, enter the value of your filter. Here, we want to filter the master data which Id starts
with TA.

9. In the Component view, click Advanced settings to set the advanced parameters.

10.In the Loop XPath query field, enter the structure and the name of the XML node on which the loop is to be
carried out, between quotation marks.

11.In the Mapping table and in the XPath query column, enter the name of the XML tag in which you want to
collect the master data, next to the corresponding output column name, between quotation marks.

Configuring data record deletion

1. In the design workspace, double-click the tMDMDelete component to display the Basic settings view and set
the component properties.

Scenario: Deleting master data from an MDM Hub

Talend Open Studio Components Reference Guide 1729

2. From the Schema list, select Built-in and click the three-dot button next to the Edit Schema field to describe
the structure of the master data in the MDM hub.

3. Click the plus button to the right to add one column of the type String. In this example, name this column
outputXML. Click OK to close the dialog box and proceed to the next step.

4. Select the Use an existing connection check box, and from the Component List list that appears, select the
component you have configured to open your MDM server connection.

In this scenario, only one MDM server connection exists, so simply use the default selection.

5. In the Entity field, enter the name of the business entity that holds the master data you want to delete, the
Agency entity in this example.

Scenario: Deleting master data from an MDM Hub

1730 Talend Open Studio Components Reference Guide

6. In the Data Container, enter the name of the data container that holds the data to be deleted, DStar in this
example.

7. In the Keys table, click the plus button to add a new line. In the Keys column, select the column that holds the
key of the Agency entity. Here, the key of the Agency entity is set on the Id field.

If the entity has multiple keys, add as many line as required for the keys and select them in sequential
order.

8. Select the Logical delete check box if you do not want to delete the master data permanently. This will send
the deleted data to the Recycle bin. Once in the Recycle bin, the master data can be restored or permanently
deleted. If you leave this check box clear, the master data will be permanently deleted.

9. Fill in the Recycle bin path field. Here, we left the default path but if your recycle bin is in a path different
from the default, specify the path.

Saving and executing the Job

1. Press Ctrl+S to save your Job to ensure that all the parameters you have configured take effect.

2. Press F6 to execute your Job.

The master data with the Id starting with “TA” have been deleted and sent to MDM Recycle bin.

tMDMInput

Talend Open Studio Components Reference Guide 1731

tMDMInput

tMDMInput properties

Component family Talend MDM

Function tMDMInput reads master data in the MDM Hub.

Purpose This component reads master data in an MDM Hub and thus makes it possible to process
this data.

Basic Settings Property Type Either Built in or Repository.

Built-in: No property data stored centrally

Repository: Select the repository file where properties are
stored. The fields that follow are completed automatically
using the fetched data

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in the
Repository.

Click Edit Schema to modify the schema.

If you modify the schema, it automatically becomes
built-in.

Built-in: The schema will be created and stored for this
component only. Related Topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
repository. You can reuse it in various projects and jobs.
Related Topic: see Talend Open Studio User Guide.

Use an existing
connection

Select this check box if you want to use a configured
tMDMConnection component.

URL Type in the URL to access the MDM server.

Username and
Password

Type in user authentication data for the MDM server.

Version Type in the name of the master data Version you want to
connect to and to which you have access rights.

Leave this field empty if you want to display the default
Version.

Entity Type in the name of the business entity that holds the master
data you want to read.

Data Container Type in the name of the data container that holds the master
data you want to read.

Use multiple conditions Select this check box to filter the master data using certain
conditions.

Scenario: Reading master data in an MDM hub

1732 Talend Open Studio Components Reference Guide

Xpath: Enter between quotes the path and the XML node to
which you want to apply the condition.

Function: Select the condition to be used from the list.

Value: Enter between inverted commas the value you want
to use.

Predicate: Select a predicate if you use more than one
condition.

If you clear this check box, you have the option of selecting
particular IDs to be displayed in the ID value column of the
IDS table.

If you clear the Use multiple conditions check box,
the Batch Size option in the Advanced Settings tab
will no longer be available

Skip rows Enter the number of lines to be ignored.

Limit Maximum number of rows to be processed. If Limit = 0, no
row is read or processed.

Die on error Select this check box to skip the row in error and complete
the process for error-free rows. If needed, you can retrieve the
rows in error via a Row > Rejects link.

Advanced settings Batch Size Number of lines in each processed batch.

This option is not displayed if you have cleared the
Use multiple conditions check box in the Basic
settings view.

Loop XPath query The XML structure node on which the loop is based.

Mapping Column: reflects the schema as defined in the Edit schema
editor.

XPath query: Type in the name of the fields to extract from
the input XML structure.

Get Nodes: Select this check box to retrieve the Xml node
together with the data.

tStatCatcher Statistics Select this check box to gather the processing metadata at the
Job level as well as at each component level.

Usage Use this component as a start component. It needs an output flow.

Scenario: Reading master data in an MDM hub

This scenario describes a two-component Job that reads master data on an MDM server. The master data is fetched
and displayed in the log console.

Scenario: Reading master data in an MDM hub

Talend Open Studio Components Reference Guide 1733

• From the Palette, drop tMDMInput and tLogRow onto the design workspace.

• Connect the two components together using a Row Main link.

• Double-click tMDMInput to open the Basic settings view and define the component properties.

• In the Property Type list, select Built-In to complete the fields manually. If you have stored the MDM
connection information in the repository metadata, select Repository from the list and the fields will be
completed automatically.

• In the Schema list, select Built-In and click the three-dot button next to Edit schema to open a dialog box.
Here you can define the structure of the master data you want to read on the MDM server.

• The master data is collected in a three column schema of the type String: ISO2Code, Name and Currency. Click
OK to close the dialog box and proceed to the next step.

• In the URL field, enter between inverted commas the URL of the MDM server.

• In the Username and Password fields, enter your login and password to connect to the MDM server.

• In the Version field, enter between inverted commas the name of the master data Version you want to access.
Leave this field empty to display the default Version.

• In the Entity field, enter between inverted commas the name of the business entity that holds the master data
you want to read.

• In the Data Container field, enter between inverted commas the name of the data container that holds the
master data you want to read.

Scenario: Reading master data in an MDM hub

1734 Talend Open Studio Components Reference Guide

• In the Component view, click Advanced settings to set the advanced parameters.

• In the Loop XPath query field, enter between inverted commas the structure and the name of the XML node
on which the loop is to be carried out.

• In the Mapping table and in the XPath query column, enter between inverted commas the name of the XML
tag in which you want to collect the master data, next to the corresponding output column name.

• In the design workspace, click on the tLogRow component to display the Basic settings in the Component
view and set the properties.

• Click on Edit Schema and ensure that the schema has been collected from the previous component. If not, click
Sync Columns to fetch the schema from the previous component.

• Save the Job and press F6 to run it.

The list of different countries along with their codes and currencies is displayed on the console of the Run view.

tMDMOutput

Talend Open Studio Components Reference Guide 1735

tMDMOutput

tMDMOutput properties

Component family Talend MDM

Function tMDMOutput writes master data in an MDM Hub.

Purpose This component writes master data on the MDM server.

Basic settings Property Type Either Built-in or Repository.

Built-in: No property data stored centrally

Repository: Select the repository file where the properties
are stored. The fields which follow are filled in automatically
using the fetched data.

Schema and Edit
schema

An input schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in the
Repository.

Click Edit Schema to modify the schema. Note that if you
modify the schema, it automatically becomes built-in.

Click Sync columns to collect the schema from the previous
component.

Built-in: You create the schema and store it locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created the schema and stored it
in the Repository. You can reuse it in various projects and job
designs. Related topic: see Talend Open Studio User Guide.

XML Field Lists the name of the xml output column that will hold the
XML data.

Use an existing
connection

Select this check box if you want to use a configured
tMDMConnection component.

URL Type in the URL of the MDM server.

Username and
Password

Type in the user authentication data for the MDM server.

This user should have the right role in MDM, i.e. can
connect through a Job or any other web service call.
For further information, see Talend Open Studio for
MDM Administrator Guide.

Version Type in the name of the master data management Version you
want to connect to, for which you have the user rights required.

Leave this field empty if you want to display the default
perspective.

Data Model Type in the name of the data model against which the data to
be written is validated.

tMDMOutput properties

1736 Talend Open Studio Components Reference Guide

Data Container Type in the name of the data container where you want to write
the master data.

This data container must already exist.

Return Keys Columns corresponding to IDs in order: in sequential order,
set the output columns that will store the return key values
(primary keys) of the item(s) that will be created.

Is Update Select this check box to update the modified fields.

If you leave this check box unchecked, all fields will be
replaced by the modified ones.

Fire Create/Update
event

Select this check box to add the actions carried out to a
modification report.

Source Name: Between quotes, enter the name of the
application to be used to carry out the modifications.

Enable verification by “before saving” process: Select this
check box to verify the commit that has been just added; prior
to saving.

Use partial update Select this check box if you need to update multi-occurrences
elements (attributes) of an existing item (entity) from the
content of a source XML stream.

Once selected, you need to set the parameters presented below:

- Pivot: type in the xpath to the multi-occurrences sub-element
where data need to be added or replaced in the item of interest.

For example, if you need to add a child sub-element to the
below existing item:

<Person>
 <Id>1</Id> <!-- record key is
 mandatory -->
 <Children>
 <Child>[1234]</Child>
 <!-- FK to a Person Entity -->
 </Children>
</Person>

then the Xpath you enter in this Pivot field must read as
the following: Person/Children/Child where the
Overwrite check box is set to false.

And, if you need to replace a child sub-element in an existing
item:

<Person>
 <Id>1</Id>
 <Addresses>
 <Address>
 <Type>office</Type>
 (...address elements
 are here....)
 </Address>
 <Address>

tMDMOutput properties

Talend Open Studio Components Reference Guide 1737

 <Type>home</Type>
 (...address elements
 are here....)
 </Address>
 <Addresses>
</Person>

then the Xpath you enter in this Pivot field must read as
the following: Person/Addresses/Adress where the
Overwrites check box is set to true, and the Key field is set to
Person/Addresses/Address/Type .

In such example, assuming the item in MDM only has an
office address, the office address will be replaced, and the home
address will be added.

- Overwrite: select this check box if you need to replace or
update the original sub-elements with the input sub-elements.
Leave unselected if you want to add a sub-element.

- Key: type in the xpath relative to the pivot that will help
matching a sub-element of the source XML with a sub-element
of the item. If a key is not supplied, all sub-elements of an item
with an XPath matching that of the sub-element of the source
XML will be replaced.

-Position: type in a number to indicate the position after which
the new elements (those that do not match the key) will be
added. If you do not provide a value in this field, the new
element will be added at the end.

Die on error Select this check box to skip the row in error and complete
the process for error-free rows. If needed, you can retrieve the
rows in error via a Row > Rejects link.

Advanced settings Extended Output Select this check box to commit master data in batches. You
can specify the number of lines per batch in the Rows to
commit field.

Configure Xml Tree Opens the interface which helps create the XML structure of
the master data you want to write.

Group by Select the column to be used to regroup the master data.

Create empty element if
needed

This check box is selected by default. If the content of the
interface's Related Column which enables creation of the
XML structure is null, or if no column is associated with the
XML node, this option creates an opening and closing tag at
the required places.

Advanced separator
(for number)

Select this check box to modify the number of separators used
by default.

- Thousands separator: enter between inverted commas the
separator for thousands.

- Decimal separator: enter between inverted commas the
decimal separator.

Generation mode Select the appropriate generation mode according to your
memory availability. The available modes are:

Scenario: Writing master data in an MDM hub

1738 Talend Open Studio Components Reference Guide

• Slow and memory-consuming (Dom4j)

This option allows you to use dom4j to process the
XML files of high complexity.

• Fast with low memory consumption

Encoding Select the encoding type from the list or else select Custom
and define it manually. This is an obligatory field for the
manipulation of data on the server.

tStatCatcher Statistics Select this check box to gather the processing metadata at the
Job level as well as at each component level.

Usage Use this component to write a data record and separate the fields using a specific
separator.

Scenario: Writing master data in an MDM hub

This scenario describes a two-component Job that generates a data record, transforms it into XML and loads it
into the defined business entity in the MDM server.

In this example, we want to load a new agency in the Agency business entity. This new agency should have an
id, a name and a city.

• From the Palette, drop tFixedFlowInput and tMDMOutput onto the design workspace.

• Connect the components using a Row Main link.

• Double-click tFixedFlowInput to view its Basic settings, in the Component tab and set the component
properties.

Scenario: Writing master data in an MDM hub

Talend Open Studio Components Reference Guide 1739

• In the Schema list, select Built-In and click the three-dot button next to Edit schema to open a dialog box in
which you can define the structure of the master data you want to write on the MDM server.

• Click the plus button and add three columns of the type String. Name the columns: Id, Name and City.

• Click OK to validate your changes and proceed to the next step.

• In the Number of rows field, enter the number of rows you want to generate.

• In the Mode area, select the Use Single Table option to generate just one table.

• In the Value fields, enter between inverted commas the values which correspond to each of the schema columns.

• In the design workspace, click tMDMOutput to open its Basic settings view and set the component properties.

• In the Property Type list, select Built-In and complete the fields manually.

If you have saved the MDM connection information under Metadata in the repository, select Repository from
the list and the fields which follow will be completed automatically.

Scenario: Writing master data in an MDM hub

1740 Talend Open Studio Components Reference Guide

• In the Schema list, select Built-In and, if required, click on the three dot button next to the Edit Schema field
to see the structure of the master data you want to load on the MDM server.

The tMDMOutput component basically generates an XML document, writes it in an output field, and then sends
it to the MDM server, so the output schema always has a read-only xml column.

• Click OK to proceed to the next step.

The XML Field list in the Basic settings view is automatically filled in with the output xml column.

• In the URL field, enter the URL of the MDM server.

• In the Username and Password fields, enter the authentication information required to connect to the MDM
server.

• In the Version field, enter between inverted commas the name of the master data Version you want to access,
if more than one exists on the server. Leave the field blank to access the default Version.

• In the Data Model field, enter between inverted commas the name of the data model against which you want
to validate the master data you want to write.

• In the Data Container, enter between inverted commas the name of the data container into which you want
to write the master data.

• In the Component view, click Advanced settings to set the advanced parameters for the tMDMOutput
component.

Scenario: Writing master data in an MDM hub

Talend Open Studio Components Reference Guide 1741

• Select the Extended Output check box if you want to commit master data in batches. You can specify the
number of lines per batch in the Rows to commit field.

• Click the three-dot button next to Configure Xml Tree to open the tMDMOutput editor.

• In the Link target area to the right, click in the Xml Tree field and then replace rootTag with the name of the
business entity in which you want to insert the data record, Agency in this example.

• In the Linker source area, select your three schema columns and drop them on the Agency node.

The [Selection] dialog box displays.

Scenario: Writing master data in an MDM hub

1742 Talend Open Studio Components Reference Guide

• Select the Create as sub-element of target node option so that the three columns are linked to the three XML
sub-elements of the Agency node and then click OK to close the dialog box.

• Right-click the element in the Link Target area you want to set as a loop element and select Set as Loop
Element from the contextual menu. In this example, we want City to be the iterating object.

• Click OK to validate your changes and close the dialog box.

• Save your Job and press F6 to run it.

The new data record is inserted in the Agency business entity in the DStar data container on the MDM server. This
data records holds, as you defined in the schema, the agency id, the agency name and the agency city.

tMDMReceive

Talend Open Studio Components Reference Guide 1743

tMDMReceive

tMDMReceive properties

Component family Talend MDM

Function tMDMReceive receives an MDM record in XML from MDM triggers or MDM
processes.

Purpose This component decodes a context parameter holding MDM XML data and transforms
it into a flat schema.

Basic Settings Property Type Either Built in or Repository.

Built-in: No property data stored centrally

Repository: Select the repository file where properties are
stored. The fields that follow are completed automatically
using the fetched data

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in the
Repository.

Click Edit Schema to modify the schema.

If you modify the schema, it automatically becomes
built-in.

Built-in: The schema will be created and stored for this
component only. Related Topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
repository. You can reuse it in various projects and jobs.
Related Topic: see Talend Open Studio User Guide.

XML Record Enter the context parameter allowing to retrieve the last
changes made to the MDM server. For more information
about creating and using a context parameter, see Talend Open
Studio User Guide.

XPath Prefix If required, select from the list the looping xpath expression
which is a concatenation of the prefix + looping xpath.

/item: select this xpath prefix when the component receives
the record from a process because processes encapsulate the
record within an item element only.

/exchange/item: select this xpath prefix when the component
receives the record from a trigger because triggers encapsulate
the record within an item element which is within an exchange
element.

Loop XPath query Set the XML structure node on which the loop is based.

Mapping Column: reflects the schema as defined in the Edit schema
editor.

Related scenario

1744 Talend Open Studio Components Reference Guide

XPath query: Type in the name of the fields to extract from
the input XML structure.

Get Nodes: Select this check box to retrieve the XML node
together with the data.

Limit Maximum number of rows to be processed. If Limit = 0, no
row is read or processed.

Die on error This check box is selected by default. Clear the check box
to skip the row on error and complete the process for error-
free rows. If needed, you can retrieve the rows on error via a
Row > Reject link.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the
Job level as well as at each component level.

Usage Use this component as a start component. It needs an output flow.

Related scenario

No scenario is available for this component yet.

tMDMRouteRecord

Talend Open Studio Components Reference Guide 1745

tMDMRouteRecord

tMDMRouteRecord properties

Component family Talend MDM

Function tMDMRouteRecord submits the primary key of a record stored in your MDM Hub
to Event Manager in order for Event Manager to trigger the due process(es) against
some specific conditions that you can define in the process or trigger pages of the MDM
Studio.

For more information on Event Manager and on a MDM process, see Talend Open
Studio for MDM Administrator Guide.

Purpose This component helps Event Manager identify the changes which you have made on
your data so that correlative actions can be triggered.

Basic Settings Use an existing
connection

Select this check box if you want to use a configured
tMDMConnection component.

URL Type in the URL of the MDM server.

Username and
Password

Type in the user authentication data for the MDM server.

Version Type in the name of the master data management Version
you want to connect to, for which you have the user rights
required.

Leave this field empty if you want to display the default
perspective.

Data Container Type in the name of the data container that holds the record
you want Event Manager to read.

Entity Name Type in the name of the business entity that holds the record
you want Event Manager to read.

IDS Specify the primary key(s) of the record(s) you want Event
Manager to read.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the
Job level as well as at each component level.

Global Variables Number of Lines: Indicates the number of lines processed.
This is available as an After variable.

Returns an integer.

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Row: Iterate

Trigger: Run if; On Component Ok; On Component Error,
On Subjob Ok, On Subjob Error.

Scenario: Routing a record to Event Manager

1746 Talend Open Studio Components Reference Guide

Incoming links (from one component to another):

Row: Iterate;

Trigger: Run if, On Component Ok, On Component Error,
On Subjob Ok, On Subjob Error

For further information regarding connections, see Talend
Open Studio User Guide.

Usage Use this component as a start component. It needs an output flow.

Scenario: Routing a record to Event Manager

In this scenario, the tMDMRouteRecord component is used to submit the primary key of a record noting an
update to Event Manager in order for this element to trigger a process that informs the user of this update.

Talend MDM is case-sensitive, so respect the differences of uppercase and lowercase when realizing
the scenario.

Scenario prerequisites

The following prerequisites must be met in order to replicate this scenario:

• A data container stores several records using a specific model. In this scenario, the container is named Product,
and a record in the container is entered against the model named Product:

This figure shows one of the stored product records with all of its viewable attributes.

For further information about how to create a data container, a data model, see your Talend Open Studio for MDM
Administrator Guide.

Scenario: Routing a record to Event Manager

Talend Open Studio Components Reference Guide 1747

For further information about how to create a record and access its viewable attributes, see Talend MDM Web
User Interface User Guide.

• A Job used to inform the user of the update and already deployed on the MDM server. In this scenario, the Job
is called message, using only the tMsgBox component.

• Double-click the component to display and configure its Basic settings :

• In the Title field, type in “Talend MDM”.

• In the Message field to be popped up, type in “A record is updated”.

For further information about the tMsgBox component, see the section called “tMsgBox”.

For further information about how to deploy a Job onto the MDM server, see Talend Open Studio for MDM
Administrator Guide.

Routing a record to trigger the corresponding process

This section shows you how to replicate the whole scenario using tMDMRouteRecord to trigger a process.

• Log onto your Talend MDM Web UI and click Browse Records.

For further details about how to log onto the Talend MDM Web UI and open the Browse Records view, see
Talend MDM Web User Interface User Guide.

• In the upper right corner of the web page, click on the button to show the Actions panel.

• On the Actions panel on the right, select the required data container and data model in which is the record to
be updated. In this scenario, the data container and the data model are both Product.

• Click Save to save the selected data container and data model.

• In the Browse Records view, select the entity of your interest. In this example, it is Product.

Scenario: Routing a record to Event Manager

1748 Talend Open Studio Components Reference Guide

• Click Search to open the record list on the lower part of the Web page.

• Double-click one of the product records to display its viewable attributes in a new view dedicated to this product.
For example, open the product Talend Mug with unique Id 231035938.

• In this view, modify one of the attribute values. You can, for example, update this product and make it available
by selecting the Availability check box.

• Click Save to validate this update.

• Open your Talend MDM studio and access the MDM Hub. For further information about how to launch the
Talend MDM studio and connect it to the MDM hub, see Talend Open Studio for MDM Administrator Guide.

Scenario: Routing a record to Event Manager

Talend Open Studio Components Reference Guide 1749

• Under the Job Repository node of the MDM Server tree view, right click the message Job.

• In the contextual menu, select Generate Talend Job Caller Process.The process used to call this Job is
generated and displays in the directory Event Management > Process.

• Under the Event Management node, right click Trigger.

• In the contextual menu, select New.

• In the pop-up New Trigger wizard, name the trigger as, for example, TriggerMessage.

Scenario: Routing a record to Event Manager

1750 Talend Open Studio Components Reference Guide

• Click OK to open the new trigger’s view in the workspace of your studio.

• In the trigger’s view, configure the trigger to make it launch the process that calls the message Job once an
update is done.

• In the Description field, enter, for example, Trigger that calls the Talend Job: message_0.1.war to describe
the trigger being created.

• In the Entity field, select or type in the business entity you want to trigger the process on. In this example, it
is exactly Update.

• In the Service JNDI Name field, select callprocess from the drop-down list.

• In the Service Parameters field, complete the parameter definition by giving the value:
CallJob_message_0.1.war. This value is the name of the process to be called that you can find in the directory
Event Management > Process in the MDM server tree view.

•
In the Trigger xPath Expressions area, click the button under the table to add a new XPath line.

• In the newly added line, click the three-dot button to open a dialog box where you can select the entity or element
on which you want to define conditions. In this example, it is Update/OperationType.

Scenario: Routing a record to Event Manager

Talend Open Studio Components Reference Guide 1751

• In the Value column, enter a value for this line. In this example, it is exactly UPDATE.

• In the Condition Id column, enter a unique identifier for the condition you want to set, for example, C1.

• In the Conditions area, enter the query you want to undertake on the data record using the condition ID C1
you set earlier.

• Press Ctrl+S to save the trigger.

• In the MDM server tree view, double click Data container > system > UpdateReport to open the Data
Container Browser UpdateReport view. An Update Report is a complete track of all create, update or delete
actions on any master data

•
Next to the Entity field of this view, click the button to search all the action records in the UpdateReport.
Note that the Update entity does not necessarily mean that the corresponding action recorded is the update, as it
is just the entity name defined by the data model of UpdateReport and may record different actions including
create, delete, update.

Scenario: Routing a record to Event Manager

1752 Talend Open Studio Components Reference Guide

• The last record corresponds to what is done on the product record at the beginning of the scenario. The primary
key of this record is genericUI.1283244014172 and this is the record that will be routed to Event trigger.

• On the menu bar of the studio, click Window > Perspective > Integration to design the Job routing a record.

• On the Integration perspective, create a Job and name it RouteRecord.

• To do so, right-click Job Designs, in the Repository tree view. In the contextual menu, select Create Job.

• A wizard opens. In the Name field, type in RouteRecord, and click Finish.

• Drop the tMDMRouteRecord component from the Palette onto the design workspace.

• Double click this component to open its Component view.

• In the URL field, enter the address of your MDM server. This example uses http://localhost:8080/talend/
TalendPort.

• In the Username and the Password fields, type in the connection parameters.

• In the Data Container field, enter the data container name that stores the record you want to route. It is
UpdateReport in this example.

• In the Entity Name field, enter the entity name that the record you want to route belongs to. In this example,
the entity name is Update.

• In the IDS area, click the plus button under the table to add a new line.

• In the newly added line, fill in the primary key of the record to be routed to Event Manager, that is,
genericUI.1283244014172, as was read earlier from the Data Container Browser UpdateReport.

• Press F6 to run this Job. Event Manager calls the process to execute the message Job and generate the dialog
box informing the user that this recorded has been updated.

Scenario: Routing a record to Event Manager

Talend Open Studio Components Reference Guide 1753

This component submits the primary key of the record noting the update to Event Manager. When Event
Manager checks this record and finds that this record meets the conditions you have defined on the trigger
TriggerMessage’s configuration view, it calls the process that launches the message Job to pop up the dialog box
informing the user of this update.

tMDMSP

1754 Talend Open Studio Components Reference Guide

tMDMSP

tMDMSP Properties

Component family Talend MDM

Function tMDMSP calls the MDM Hub stored procedure.

Purpose tMDMSP offers a convenient way to centralize multiple or complex queries in a
MDM Hub and call them easily.

Basic settings Schema and Edit
Schema

In SP principle, the schema is an input parameter.

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either built-in or remotely
stored in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio
User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend
Open Studio User Guide.

Use an existing
connection

Select this check box if you want to use a configured
tMDMConnection component.

URL Type in the URL of the MDM server.

Username and
Password

Type in the user authentication data for the MDM server.

Version Type in the name of the master data management Version
you want to connect to, for which you have the user rights
required.

Leave this field empty if you want to display the default
perspective.

Data Container Type in the name of the data container that stores the
procedure you want to call.

SP Name Type in the exact name of the Stored Procedure

Parameters (in order) Click the Plus button and select the various Input
Columns that will be required by the procedures.

The SP schema can hold more columns than there
are parameters used in the procedure.

Connections Outgoing links (from one component to another):

Row: Main

Trigger: Run if; On Component Ok; On Component
Error, On Subjob Ok, On Subjob Error.

Incoming links (from one component to another):

Scenario: Executing a stored procedure in the MDM Hub

Talend Open Studio Components Reference Guide 1755

Row: Main, Iterate;

Trigger: Run if, On Component Ok, On Component Error,
On Subjob Ok, On Subjob Error

For further information regarding connections, see Talend
Open Studio User Guide.

Usage This component is used as intermediary component. It can be used as start
component but only no input parameters are thus needed for the procedure to be
called. An output link is required.

Limitation N/A

Scenario: Executing a stored procedure in the MDM
Hub

The following job is intended for calculating the total price of each kind of products recorded on your MDM
Web UI.

This Job will generate parameters used to execute a stored procedure in the MDM Hub, then extract the desired
data from the returned XML-format result and present the extracted data in the studio.

The products of which the prices are to be treated are listed on your MDM Web UI.

The stored procedure to be executed can be found in Stored Procedure node of the MDM server’s tree view and
reads as follows:

Scenario: Executing a stored procedure in the MDM Hub

1756 Talend Open Studio Components Reference Guide

For more information on a stored procedure in the MDM server, see Talend Open Studio for MDM Administrator
Guide.

To realize this Job, proceed as follows:

• Drag and drop the following components used in this example: tFixedFlowInput, tMDMSP,
tExtractXMLField, tLogRow.

• Connect the components using the Row Main link.

• The tFixedFlowInput is used to generate the price range of your interest for this calculation. In this example,
define 10 as the minimum and 17 as the maximum in order to cover all of the products.

• Double-click on tFixedFlowInput to open its Component view.

• On the Component view, click the [...] button next to Edit schema to open the schema editor of this component.

• In the schema editor, add the two parameters min and max that are used to define the price range.

• Click OK to validate this editing.

• On the Values table in the Mode area of the Component view, the two parameters min and max that you have
defined in the schema editor of this component display.

• In the Value column of the Values table, enter 10 for the min parameter and 17 for the max parameter.

Scenario: Executing a stored procedure in the MDM Hub

Talend Open Studio Components Reference Guide 1757

• Double-click on tMDMSP to open its Component view.

• In the URL field of the Component view, type in the MDM server address, in this example, http://
localhost:8080/talend/TalendPort.

• In Username and Password, enter the authentication information, in this example, admin and talend.

• In Data Container and Procedure Name, enter the exact names of the data container Product and of the stored
procedure PriceAddition.

• Under the Parameters (in order) table, click the plus button two times to add two rows in this table.

• In the Parameters (in order) table, click each of both rows you have added and from the drop-down list, select
the min parameter for one and the max parameter for the other.

• Double-click on tExtractXMLField to open its Component view.

Scenario: Executing a stored procedure in the MDM Hub

1758 Talend Open Studio Components Reference Guide

• On the Component view, click the [...] button next to Edit schema to open the schema editor of this component.

• In the schema editor, add two columns to define the structure of the outcoming data. These two columns are
name and sum. They represent respectively the name and the total price of each kind of product recorded in
the MDM Web UI.

• Click OK to validate the configuration and the two columns display in the Mapping table of the Component
view.

• In the Loop XPath query field, type in the node of the XML tree, which the loop is based on. In this
example, the node is /result as you can read in the procedure code: return <result><Name>{$d}</
Name><Sum>{sum($product/Price)}</Sum></result>.

• In XPath query of the Mapping table, enter the exact node name on which the loop is applied. They are /result/
Name used to extract the product names and /result/Sum used to extract the total prices.

• Eventually, double-click tLogRow to open its Component view.

Scenario: Executing a stored procedure in the MDM Hub

Talend Open Studio Components Reference Guide 1759

• Synchronize the schema with the preceding component.

• And select the Print values in cells of a table check box for reading convenience.

• Then press F6 to execute the Job.

• See the outcoming data in the console of the Run view.

The output lists the four kinds of products recorded in the MDM Web UI and the total price for each of them.

tMDMTriggerInput

1760 Talend Open Studio Components Reference Guide

tMDMTriggerInput

tMDMTriggerInput properties

Component family Talend MDM

Function Once executed, tMDMTriggerInput reads the XML message (Document type) sent
by MDM and passes them to the component that follows.

This component works alongside the new trigger service and process plug-
in in MDM version 5.0 and higher. The MDM Jobs, triggers and processes
developed in previous MDM versions remain supported. However, we
recommend using this component when designing new MDM Jobs.

Purpose Every time when you save a change in your MDM, the corresponding change record is
generated in XML format. At runtime, this component reads this record and sends the
relative information to the following component.

With this component, you do not need to configure your Job any more in order to
communicate the data changes from MDM to your Job.

Basic settings Property Type Either Built-in or Repository.

Built-in: No property data stored centrally.

tMDMTriggerInput is expected to use this option in order
to apply the default read-only schema. MDM_message is the
only column of this schema.

Repository: Select the repository file where properties are
stored. The fields that follow are completed automatically
using the fetched data.

As tMDMTriggerInput provides a fixed read-only schema,
you are expected to use the Built-in option.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in the
Repository.

Click Edit Schema to modify the schema.

If you modify the schema, it automatically becomes
built-in.

Built-in: The schema will be created and stored for this
component only. Related Topic: see Talend Open Studio User
Guide.

This is the default option for tMDMTriggerInput. With this
option, the read-only schema is used to deal with the XML-
format MDM message.

Repository: The schema already exists and is stored in the
repository. You can reuse it in various projects and jobs.
Related Topic: see Talend Open Studio User Guide.

Scenario: Exchanging the event information about an MDM record

Talend Open Studio Components Reference Guide 1761

As tMDMTriggerInput provides a fixed read-only schema,
you are expected to use the Built-in option.

 Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the
Job level as well as at each component level.

Usage Use this component as a start component. It needs an output flow.

To receive the message from MDM, you need to deploy the Job using this component
on your MDM server and generate the corresponding trigger and process in MDM to
invoke this Job.

For further information about how to deploy a Job onto MDM server and how to
generate a trigger or a process, see Talend Open Studio for MDM Administrator
Guide.

For further information about how to change a record in MDM, see Talend MDM Web
User Interface User Guide.

Limitation During the deployment of this component on the MDM server, you need to select the
Hosted (Zip) type as the format of the deployed Job. If you deploy it in the Distributed
(War) type, the relative Job cannot be invoked. For further information about the
available types, see Talend Open Studio for MDM Administrator Guide.

Scenario: Exchanging the event information about an
MDM record

In this scenario, a four-component Job is used to exchange the event information about a product record. Using an
established MDM connection from the Repository, this Job is triggered by Talend Open Studio for MDM once
you have updated a product record.

To replicate this scenario, accomplish the following tasks sequentially:

1. Create an MDM connection of the Receive type in the Repository of the Studio. This connection is to the
MDM hub holding the record you want to update.

2. Create the Job receiving and sending the MDM update message.

3. Generate the process invoking this Job created.

4. Update a specific MDM record.

To create the MDM records, model and container used in this scenario, you can execute the Jobs in the MDM
demo project in the integration Studio and then update the MDM server to deploy the objects thus created for them
to be taken into account at runtime. You will use this server all through this scenario.

For further information about how to import a demo project, see Talend Open Studio User Guide.

For further information about how to update the server for deploying objects, see Talend Open Studio for MDM
Administrator Guide.

For further information about an MDM event and the event management, see Talend Open Studio for MDM
Administrator Guide.

Scenario: Exchanging the event information about an MDM record

1762 Talend Open Studio Components Reference Guide

Creating an MDM connection

Establishing the connection

1. Launch the MDM server with which you need to communicate the update message.

2. In the Integration perspective of the Studio, expand the Metadata node in the Repository.

3. Right-click the Talend MDM item and select Create MDM connection.

4. Enter the Name you want to use for this connection and if required, added the Purpose and the Description
in the corresponding fields. For example, we name this connection as receive_update.

5. In the Next step, enter the authentication information used to connect to the MDM web service through which
you manage the record to be updated.

Once you click the Check button and the connection is shown successful, the Next button becomes clickable.

Scenario: Exchanging the event information about an MDM record

Talend Open Studio Components Reference Guide 1763

6. In the Next step, select the Version, the Data model and the Data Container used by the record to be
updated. In this scenario, the model and the container are both Product.

7. Click Finish to validate the creation. The connection created appears under the Metadata node in the
Repository.

Retrieving entities

1. Right-click the connection created and from the contextual menu, select Retrieve entities. Then the wizard
appears.

2. Select Receive MDM and click Next to continue.

Scenario: Exchanging the event information about an MDM record

1764 Talend Open Studio Components Reference Guide

3. Select the entity to be retrieved. In this scenario, it is Product. Then the name field is entered automatically.

4. In the Next step, drop the elements you need to retrieve from the Source Schema area to the Target Schema
area. In this scenario, the Features element is the loop and the Id, the Name and the Description elements
are the fields to extract.

Scenario: Exchanging the event information about an MDM record

Talend Open Studio Components Reference Guide 1765

5. In the Next step, if required, change the description of the schema retrieved; otherwise, click Finish to finalize
retrieving this entity. In this scenario, we keep the default schema description and click Finish.

Scenario: Exchanging the event information about an MDM record

1766 Talend Open Studio Components Reference Guide

The schema of the product entity is retrieved. For further information about the container and the data model
used by the MDM, see Talend Open Studio for MDM Administrator Guide.

Creating the Job communicating the MDM message

Linking the components

1. In the Integration perspective of the Studio, select Create Job from the Job Design node in the Repository
tree view. Then the New Job wizard appears.

2. Name this new Job and click Finish to close the wizard and validate the creation. An empty Job is opened
on the workspace of the Studio.

3. Drop tMDMTriggerInput, tXMLMap, tMDMTriggerOutput and tLogRow from Palette onto the
workspace.

4. Right-click tMDMTriggerInput and from the contextual menu, select the Row > Main link to connect it
to tXMLMap.

5. Do the same to connect tXMLMap to tMDMTriggerOutput. When doing so, a dialog box appears to prompt
you to name this link created.

6. Double-click tMDMTriggerOutput to open its Component view.

7. Click Edit schema to open the editor.

Scenario: Exchanging the event information about an MDM record

Talend Open Studio Components Reference Guide 1767

8.
Select the single pre-defined column of tMDMTriggerOutput, then, click to reproduce this column
on the input side (left).

Configuring the transformation of the MDM message

1. Double-click tXMLMap to open its editor.

2. In the table representing the input flow (up-left of the editor), right-click the column name MDM_Message
on the top of the XML tree and select Import from repository. The [Metadata] wizard appears.

3. Select the entity schema retrieved earlier using the Receive MDM model, then click OK. In this scenario,
the entity schema is ProductReceive.

4. A dialog box appears prompting you to add the schema of the Update Report to the input XML tree. Click OK
to accept it. This builds a complete input document for an MDM event. In the input XML tree, the Features
element is set as loop element automatically.

5. In the table representing the output flow (up-right of the editor), develop the output XML tree as presented in
the figure below. This tree is constructed depending on the required static model of the MDM output report.

Scenario: Exchanging the event information about an MDM record

1768 Talend Open Studio Components Reference Guide

6. Map the OperationType element on the input side with the message element on the output side. This will
output the information about the type of the event occurring on the MDM record.

To get more information, you can build the concatenation of the input elements you need to extract in the
Expression column of this message element. Both tMap and tXMLMap allow you to edit expressions using
the expression editor. For further information about how to edit an expression, see Talend Open Studio User
Guide.

7. In the Expression column, enter "info" in the row corresponding to @type.

8. Click the pincer icon to display the output settings panel, then set the All in one option as true.

9. Click OK to close the editor and validate these changes.

10. Double click tLogRow to open its Component view, then, click Sync columns.

This Job is finalized. For further information about the input document and the output report of an MDM event,
see Talend Open Studio for MDM Administrator Guide.

Generating the process invoking the Job created

Deploying the Job to be called onto the MDM server

1. Switch to the MDM perspective by clicking the corresponding button in the up-right corner of the Studio.

2. In MDM Repository, click the refresh button so that the Job created appears under the Job Designs node
of this Repository's tree view.

3. Right-click this Job created, update_product in this scenario, and from the contextual menu, select Deploy
to in order to deploy it to the MDM server.

Scenario: Exchanging the event information about an MDM record

Talend Open Studio Components Reference Guide 1769

4. The deployment wizard appears. From the server list, select the MDM server you are using, then click OK.

5. In the [Deploy to Talend MDM] window that pops up, select the Export type and the Context scripts for
the Job to be deployed. In this scenario, keep the default settings: Export type is Hosted (zip) and Context
scripts is Default.

For further information about these settings, see Talend Open Studio for MDM Administrator Guide.

6. Click Finish to validate these settings and start the deployment. When the deployment is done, a message
box pops up to indicate that the deployment is successful.

Scenario: Exchanging the event information about an MDM record

1770 Talend Open Studio Components Reference Guide

7. Click OK to close this message box, then a window pops up to list the objects deployed. In this scenario,
it is the Job, update_product.

8. Click OK to terminate the deployment procedure.

Generating the process used to call the Job

1. Right-click the Job update_product again and select Generate Talend Job Caller Process from the
contextual menu.

2. In the pop-up window, keep the default settings for this scenario: Integrated and Embedded. For further
information about the available options in this window, see Talend Open Studio for MDM Administrator
Guide.

Scenario: Exchanging the event information about an MDM record

Talend Open Studio Components Reference Guide 1771

3. Click Generate to start the generation. Once done, a process named CallJob_update_product appears under
the Process node in MDM Repository.

4. Right-click this process, then select Deploy to from the contextual menu to deploy it onto the MDM server.

5. In the pop-up wizard, select the server you are using, then , click OK to open the window listing the objects
deployed.

6. Click OK to close this window and finalize the deployment. The question mark disappears from the icon
of this process.

Scenario: Exchanging the event information about an MDM record

1772 Talend Open Studio Components Reference Guide

7. In MDM Repository, right-click the CallJob_update_prodcut process, then select Rename from the
contextual menu.

8. In the pop-up window, rename this process as beforeSaving_update_product depending on the required
process naming pattern. Then click OK to validate it.

9. Deploy this process again as described earlier.

Updating a product record

1. Log in the web service of the MDM hub you are using.

2. In the Actions panel on the right side, verify the Data Container and the Data Model you are using are
both Product.

3. In the Data Browser page, launch the search in the product entities so as to list all the available product
records

4. Select the product record you need to update from the list, for example, Talend Trucker Hat. The details of
this record appears in the Product tab view.

5. Update one of its attributes. For example, update the price to 11.00, then click Save.

The message about the operation type of this event has been sent to the MDM server and thanks to tLogRow,
this message is displayed on the window of this MDM server.

For further information about how to use the MDM web service, see Talend MDM Web User Interface User Guide

tMDMTriggerOutput

Talend Open Studio Components Reference Guide 1773

tMDMTriggerOutput

tMDMTriggerOutput properties

Component family Talend MDM

Function tMDMTriggerOutput receives an XML flow (Document type) from its preceding
component.

This component works alongside the new trigger service and process plug-
in in MDM version 5.0 and higher. The MDM Jobs, triggers and processes
developed in previous MDM versions remain supported. However, we
recommend using this component when designing new MDM Jobs.

Purpose This component receives an XML flow to set the MDM message so that MDM retrieves
this message at runtime. With this component, you do not need to configure your Job
any more in order to communicate the data changes from MDM to your Job.

Basic settings Property Type Either Built-in or Repository.

Built-in: No property data stored centrally.

tMDMTriggerOutput is expected to use this option in order
to apply the default read-only schema. MDM_message is the
only column of this schema.

Repository: Select the repository file where properties are
stored. The fields that follow are completed automatically
using the fetched data.

As tMDMTriggerOutput provides a fixed read-only
schema, you are expected to use the Built-in option.

Schema and Edit Schema A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either built-in or remote in the
Repository.

Click Edit Schema to modify the schema.

If you modify the schema, it automatically becomes
built-in.

Built-in: The schema will be created and stored for this
component only. Related Topic: see Talend Open Studio
User Guide.

This is the default option for tMDMTriggerOutput. With
this option, the read-only schema is used to deal with the
XML-format MDM message.

Repository: The schema already exists and is stored in the
repository. You can reuse it in various projects and jobs.
Related Topic: see Talend Open Studio User Guide.

As tMDMTriggerOutput provides a fixed read-only
schema, you are expected to use the Built-in option.

Related scenario

1774 Talend Open Studio Components Reference Guide

 Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the
Job level as well as at each component level.

Usage Use this component as an end component. It needs an input flow.

To send message to MDM, you need to deploy the Job using this component on your
MDM server and generate the corresponding trigger and process to invoke this Job in
MDM.

For further information about how to deploy a Job onto MDM server and how to
generate a trigger or a process, see Talend Open Studio for MDM Administrator Guide.

Limitation During the deployment of this component on the MDM server, you need to select the
Hosted (Zip) type as the format of the deployed Job. If you deploy it in the Distributed
(War) type, the relative Job cannot be invoked. For further information about the
available types, see Talend Open Studio for MDM Administrator Guide.

Related scenario

For a related scenario, see the section called “Scenario: Exchanging the event information about an MDM record”

tMDMViewSearch

Talend Open Studio Components Reference Guide 1775

tMDMViewSearch

tMDMViewSearch properties

Component family Talend MDM

Function tMDMViewSearch selects records from an MDM Hub by applying filtering criteria
you have created in a specific view. The resulting data is in XML structure.

For more information on a view on which you can define filtering criteria, see Talend
Open Studio for MDM Administrator Guide.

Purpose This component allows you to retrieve the MDM records from an MDM hub.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either Built-in or remote in the
Repository.

Click Edit Schema to modify the schema. Note that if you
modify the schema, it automatically becomes built-in.

Click Sync columns to collect the schema from the previous
component.

Built-in: You create the schema and store it locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created the schema and stored
it in the Repository. You can reuse it in various projects
and job designs. Related topic: see Talend Open Studio User
Guide.

XML Field Select the name of the column in which you want to write the
XML data.

Use an existing
connection

Select this check box if you want to use a configured
tMDMConnection component.

URL Type in the URL of the MDM server.

Username and
Password

Type in the user authentication data for the MDM server.

Version Type in the name of the master data management Version
you want to connect to, for which you have the user rights
required.

Leave this field empty if you want to display the default
perspective.

Data Container Type in the name of the data container that holds the master
data you want to read.

View Name Type in the name of the view whose filters will be applied to
process the records.

Operations Complete this table to create the WHERE clause. The
parameters to be set are:

tMDMViewSearch properties

1776 Talend Open Studio Components Reference Guide

- XPath: define the path expression to select the XML node
at which point the filtering is operated.

- Functions: select an operator from the drop-down list, like
Contains, Starts with, Equals, etc.

- Value: type in the value you want to retrieve.

- Predicate: select the predicate to combine the filtering
conditions in different manners. The predicate may be none,
or, and, exactly, etc.

The parameters are case sensitive.

Order (One Row) Complete this table to decide the presentation order of the
retrieved records. The parameters to be set are:

- XPath: define the path expression to select the XML node
at which point the sorting operation is performed.

- Order: select the presentation order that may be asc
(ascending) or desc (descending).

The parameters are case sensitive.

For the time being, only the first row created in the
Order table is valid.

Spell Threshold Set it to -1 to deactivate this threshold. This threshold is used
to decide the spell checking level.

Skip Rows Type in the count of rows to be ignored to specify from which
row the process should begin. For example, if you type 8 in
the field, the process will begin from the 9th row.

Max Rows Type in the maximum number of rows to be processed. If
Limit = 0, no row is read or processed. By default, the limit
is -1, meaning that no limit is set.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the
Job level as well as at each component level.

Usage Use this component to retrieve specific records.

Global Variables Number of Lines: Indicates the number of lines processed.
This is available as an After variable.

Returns an integer.

For further information about variables, see Talend Open
Studio User Guide.

Connections Outgoing links (from one component to another):

Row: Iterate

Trigger: Run if; On Component Ok; On Component Error,
On Subjob Ok, On Subjob Error.

Incoming links (from one component to another):

Row: Iterate;

Scenario: Retrieving records from an MDM hub via an existing view

Talend Open Studio Components Reference Guide 1777

Trigger: Run if, On Component Ok, On Component Error,
On Subjob Ok, On Subjob Error

For further information regarding connections, see Talend
Open Studio User Guide.

Limitation n/a

Scenario: Retrieving records from an MDM hub via an
existing view

This scenario describes a two-component Job that retrieves a data record in XML structure.

In this example, you will select the T-shirt information from the Product entity via the Browse_items_Product
view created from Talend Open Studio. Each record in the entity contains the details defined as filtering criteria:
Id, Name, Description and Price.

• From the Palette, drop tMDMViewSearch and tLogRow onto the design workspace.

• Connect the components using a Row Main link.

• Double-click tMDMViewSearch to view its Basic settings, in the Component tab and set the component
properties.

Scenario: Retrieving records from an MDM hub via an existing view

1778 Talend Open Studio Components Reference Guide

• In the Schema list, select Built-In and click the three-dot button next to Edit schema to open a dialog box in
which you can define the structure of the XML data you want to write in.

• Click the plus button and add one column of the type String. Name the column as Tshirt.

• Click OK to validate your creation and proceed to the next step.

• In the XML Field field, select Tshirt as the column you will write the retrieved data in.

• Use your MDM server address in the URL field and type in the corresponding connection data in the Username
and the Password fields. In this example, use the default url, then enter admin as username as well as password.

• In the Data Container field, type in the container name: Product.

• In the View Name field, type in the view name: Browse_item_Product.

• Below the Operations table, click the plus button to add one row in this table.

• In the Operations table, define the XPath as Product/Name, meaning that the filtering operation will be
performed at the Name node, then select Contains in the Function column and type in Tshirt in the Value
column.

• Below the Order (One Row) table, click the plus button to add one row in this table.

• In the Order (One Row) table, define the XPath as Product/Id and select the asc order for the Order column.

• In the design workspace, click tLogRow to open its Basic settings view and set the properties.

Scenario: Retrieving records from an MDM hub via an existing view

Talend Open Studio Components Reference Guide 1779

• Next to the three-dot button used for editing schema, click Sync columns to acquire the schema from the
preceding component.

• Press F6 to execute the Job.

In the console docked in the Run view, you can read the retrieved Tshirt records in XML structure, which are
sorted in the ascending order.

Talend Open Studio Components Reference Guide

Talend Open Studio Components Reference Guide

Technical components
This chapter details the components you can find in the Technical group of the Talend Open Studio Palette.

The Technical components are Java-oriented components that perform very technical actions such as loading data
in memory (in small subset of information) and keep it to allow its reuse at various stage of the processing.

tHashInput

1782 Talend Open Studio Components Reference Guide

tHashInput

tHashInput Properties

This component is used along with tHashOutput. It reads from the cache memory data loaded by tHashOutput.
Together, these twin components offer high-speed data access to facilitate transactions involving a massive amount
of data.

Component family Technical

Function tHashInput reads from the cache memory data loaded by tHashOutput to offer
high-speed data stream.

Purpose This component reads from the cache memory data loaded by tHashOutput to offer
high-speed data feed, facilitating transactions involving a large amount of data.

Basic settings Schema and Edit
schema

A schema is a row description, i.e. it defines the number
of fields to be processed and passed on to the next
component. The schema is either built-in or remotely
stored in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Built-in: The schema is created and stored locally for
this component only. Related topic: see the Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused. Related topic: see the
Talend Open Studio User Guide.

Link with a tHashOutput Select this check box to connect to a tHashOutput
component. It is always selected by default.

Component list Drop-down list of available tHashOutput components.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Usage This component is used along with tHashOutput. It reads from the cache memory
data loaded by tHashOutput. Together, these twin components offer high-speed
data access to facilitate transactions involving a massive amount of data.

Limitation n/a

Scenario 1: Reading data from the cache memory for
high-speed data access

The following Job reads from the cache memory a huge amount of data loaded by two tHashOutput components
and pass it to a tFileOutputDelimited. The goal of this scenario is to show the speed at which mass data is read

Scenario 1: Reading data from the cache memory for high-speed data access

Talend Open Studio Components Reference Guide 1783

and written. In practice, data feed generated in this way can be used as lookup table input for some use cases where
a big amount of data needs to be referenced.

Dropping and linking the components

1. Drag and drop the following components from the Palette to the workspace: tFixedFlowInput (X2),
tHashOutput (X2), tHashInput and tFileOutputDelimited.

2. Connect the first tFixedFlowInput to the first tHashOutput using a Row > Main link.

3. Connect the second tFixedFlowInput to the second tHashOutput using a Row > Main link.

4. Connect the first subjob (from tFixedFlowInput_1) to the second subjob (to tFixedFlowInput_2) using an
OnSubjobOk link.

5. Connect tHashInput to tFileOutputDelimited using a Row > Main link.

6. Connect the second subjob to the last subjob using an OnSubjobOk link.

Configuring the components

Configuring data inputs and hash cache

1. Double-click the first tFixedFlowInput component to display its Basic settings view.

Scenario 1: Reading data from the cache memory for high-speed data access

1784 Talend Open Studio Components Reference Guide

2. Select Built-In from the Schema drop-down list.

You can select Repository from the Schema drop-down list to fill in the relevant fields automatically
if the relevant metadata has been stored in the Repository. For more information about Metadata,
see the Talend Open Studio User Guide.

3. Click Edit schema to define the data structure of the input flow. In this case, the input has two columns: ID
and ID_Insurance, and then click OK to close the dialog box.

4. Fill in the Number of rows field to specify the entries to output, e.g. 50000.

5. Select the Use Single Table check box. In the Values table and in the Value column, assign values to the
columns, e.g. 1 for ID and 3 for ID_Insurance.

6. Perform the same operations for the second tFixedFlowInput component, with the only difference in the
values. That is, 2 for ID and 4 for ID_Insurance in this case.

7. Double-click the first tHashOutput to display its Basic settings view.

Scenario 1: Reading data from the cache memory for high-speed data access

Talend Open Studio Components Reference Guide 1785

8. Select Built-In from the Schema drop-down list and click Sync columns to retrieve the schema from the
previous component. Select Keep all from the Keys management drop-down list and keep the Append
check box selected.

9. Perform the same operations for the second tHashOutput component, and select the Link with a
tHashOutput check box.

Configuring data retrieval from hash cache and data output

1. Double-click tHashInput to display its Basic settings view.

2. Select Built-In from the Schema drop-down list. Click Edit schema to define the data structure, which is
the same as that of tHashOutput.

3. Select tHashOutput_1 from the Component list drop down list.

4. Double-click tFileOutputDelimited to display its Basic settings view.

5. Select Built-In from the Property Type drop-down list. In the File Name field, enter the full path and name
of the file, e.g. "E:/Allr70207V5.0/Talend-All-r70207-V5.0.0NB/workspace/out.csv".

6. Select the Include Header check box and click Sync columns to retrieve the schema from the previous
component.

Scenario 2: Clearing the memory before loading data to it in case an iterator exists in the same subjob

1786 Talend Open Studio Components Reference Guide

Saving and executing the Job

1. Press Ctrl+S to save the Job.

2. Press F6, or click Run on the Run tab to execute the Job.

You can find that mass entries are written and read very rapidly.

Scenario 2: Clearing the memory before loading data
to it in case an iterator exists in the same subjob

In this scenario, the usage of the Append option of tHashOutput is demonstrated as it helps remove repetitive or
unwanted data in case an iterator exists in the same subjob as tHashOutput.

To build the Job, do the following:

Dropping and linking the components

1. Drag and drop the following components from the Palette to the workspace: tLoop, tFixedFlowInput,
tHashOutput, tHashInput and tLogRow.

2. Connect tLoop to tFixedFlowInput using a Row > Iterate link.

3. Connect tFixedFlowInput to tHashOutput using a Row > Main link.

4. Connect tHashInput to tLogRow using a Row > Main link.

5. Connect tLoop to tHashInput using an OnSubjobOk link.

Scenario 2: Clearing the memory before loading data to it in case an iterator exists in the same subjob

Talend Open Studio Components Reference Guide 1787

Configuring the components

Configuring data input and hash cache

1. Double-click the tLoop component to display its Basic settings view.

2. Select For as the loop type. Type in 1, 2 1 in the From, To and Step fields respectively. Keep the Values
are increasing check box selected.

3. Double-click the tFixedFlowInput component to display its Basic settings view.

Scenario 2: Clearing the memory before loading data to it in case an iterator exists in the same subjob

1788 Talend Open Studio Components Reference Guide

4. Select Built-In from the Schema drop-down list.

You can select Repository from the Schema drop-down list to fill in the relevant fields automatically
if the relevant metadata has been stored in the Repository. For more information about Metadata,
see the Talend Open Studio User Guide.

5. Click Edit schema to define the data structure of the input flow. In this case, the input has one column: Name.

6. Click OK to close the dialog box.

7. Fill in the Number of rows field to specify the entries to output, for example 1.

8. Select the Use Single Table check box. In the Values table, assign a value to the Name field, e.g. Marx.

9. Double-click tHashOutput to display its Basic settings view.

Scenario 2: Clearing the memory before loading data to it in case an iterator exists in the same subjob

Talend Open Studio Components Reference Guide 1789

10. Select Built-In from the Schema drop-down list and click Sync columns to retrieve the schema from the
previous component. Select Keep all from the Keys management drop-down list and deselect the Append
check box.

Configuring data retrieval from hash cache and data output

1. Double-click tHashInput to display its Basic settings view.

2. Select Built-In from the Schema drop-down list. Click Edit schema to define the data structure, which is
the same as that of tHashOutput.

3. Select tHashOutput_2 from the Component list drop-down list.

4. Double-click tLogRow to display its Basic settings view.

5. Select Built-In from the Schema drop-down list and click Sync columns to retrieve the schema from the
previous component. In the Mode area, select Table (print values in cells of a table).

Saving and executing the Job

1. Press Ctrl+S to save the Job.

2. Press F6, or click Run on the Run tab to execute the Job.

You can find that only one row was output although two rows were generated by tFixedFlowInput.

Scenario 2: Clearing the memory before loading data to it in case an iterator exists in the same subjob

1790 Talend Open Studio Components Reference Guide

tHashOutput

Talend Open Studio Components Reference Guide 1791

tHashOutput

tHashOutput Properties

This component writes data to the cache memory and is closely related to tHashInput. Together, these twin
components offer high-speed data access to facilitate transactions involving a massive amount of data.

Component family Technical

Function tHashOutput writes data to the cache memory for high-speed access.

Purpose This component loads data to the cache memory to offer high-speed access,
facilitating transactions involving a large amount of data.

Basic settings Schema and Edit
schema

A schema is a row description, i.e. it defines the number
of fields to be processed and passed on to the next
component. The schema is either built-in or remotely
stored in the Repository.

Click Edit Schema to make changes to the schema.
Note that if you make changes, the schema automatically
becomes built-in.

Click Sync columns to retrieve the schema from the
previous component connected in the Job.

Built-in: The schema is created and stored locally for
this component only. Related topic: see the Talend Open
Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused. Related topic: see the
Talend Open Studio User Guide.

Link with a tHashOutput Select this check box to connect to a tHashOutput
component.

If multiple tHashOutput components are linked
in this way, the data loaded to the cache by all
of them can be read by a tHashInput component
that is linked with any of them.

Component list Drop-down list of available tHashOutput components.

Data write model Drop-down list of available data write modes.

Keys management Drop-down list of available keys management modes.

Append Selected by default, this option is designed to append data
to the memory in case an iterator exists in the same subjob.
If it is unchecked, tHashOutput will clear the memory
before loading data to it.

If Link with a tHashOutput is selected, this
check box will be hidden but is always enabled.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component
level.

Related scenarios

1792 Talend Open Studio Components Reference Guide

Usage This component writes data to the cache memory and is closely related to
tHashInput. Together, these twin components offer high-speed data access to
facilitate transactions involving a massive amount of data.

Limitation n/a

Related scenarios

For related scenarios, see:

• the section called “Scenario 1: Reading data from the cache memory for high-speed data access”.

• the section called “Scenario 2: Clearing the memory before loading data to it in case an iterator exists in the
same subjob”.

Talend Open Studio Components Reference Guide

XML components
This chapter details the main components that you can find in the XML family of the Talend Open Studio Palette.

The XML family groups together the components dedicated to XML related tasks such as parsing, validation,
XML structure creation and so on.

tAdvancedFileOutputXML

1794 Talend Open Studio Components Reference Guide

tAdvancedFileOutputXML

tAdvancedFileOutputXML properties

Component family XML or File/Output

Function tAdvancedFileOutputXML outputs data to an XML type of file and offers an
interface to deal with loop and group by elements if needed.

Purpose tAdvancedFileOutputXML writes an XML file with separated data values
according to an XML tree structure.

Basic settings Use Output Stream Select this check box process the data flow of interest.
Once you have selected it, the Output Stream field
displays and you can type in the data flow of interest.

The data flow to be processed must be added to the flow
in order for this component to fetch these data via the
corresponding representative variable.

This variable could be already pre-defined in your
Studio or provided by the context or the components
you are using along with this component; otherwise,
you could define it manually and use it according to
the design of your Job, for example, using tJava or
tJavaFlex.

In order to avoid the inconvenience of hand writing,
you could select the variable of interest from the auto-
completion list (Ctrl+Space) to fill the current field on
condition that this variable has been properly defined.

For further information about how to use a stream, see
the section called “Scenario 2: Reading data from a
remote file in streaming mode”.

File name Name or path to the output file and/or the variable to
be used.

This field becomes unavailable once you have selected
the Use Output Stream check box.

Related topic: see Talend Open Studio User Guide

Configure XML tree Opens the dedicated interface to help you set the XML
mapping. For details about the interface, see the section
called “Defining the XML tree”.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in or
remote in the Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend
Open Studio User Guide.

tAdvancedFileOutputXML properties

Talend Open Studio Components Reference Guide 1795

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and job designs. Related topic: see Talend Open Studio
User Guide.

Sync columns Click to synchronize the output file schema with the
input file schema. The Sync function only displays
once the Row connection is linked with the Output
component.

Append the source xml
file

Select this check box to add the new lines at the end of
your source XML file.

Generate compact file Select this check box to generate a file that does not
have any empty space or line separators. All elements
then are presented in a unique line and this will reduce
considerably file size.

Include DTD or XSL Select this check box to to add the DOCTYPE
declaration, indicating the root element, the access path
and the DTD file, or to add the processing instruction,
indicating the type of stylesheet used (such as XSL
types), along with the access path and file name.

Advanced settings Split output in several
files

If the XML file output is big, you can split the file every
certain number of rows.

Trim data This check box is activated when you are using the
dom4j generation mode. Select this check box to trim
the leading or trailing whitespace from the value of a
XML element.

Create directory only if
not exists

This check box is selected by default. It creates a
directory to hold the output XML files if required.

Create empty element if
needed

This box is selected by default. If no column is
associated to an XML node, this option will create an
open/close tag in place of the expected tag.

Create attribute even if
its value is NULL

Select this check box to generate XML tag attribute for
the associated input column whose value is null.

Create attribute even if
it is unmapped

Select this check box to generate XML tag attribute for
the associated input column that is unmapped.

Create associated XSD
file

If one of the XML elements is defined as a Namespace
element, this option will create the corresponding XSD
file.

To use this option, you must select Dom4J as
the generation mode.

Advanced separator
(for number)

Select this check box to change the expected data
separator.

Thousands separator: define the thousands separator,
between inverted commas

Decimal separator: define the decimals separator
between inverted commas

Generation mode Select the appropriate generation mode according to
your memory availability. The available modes are:

• Slow and memory-consuming (Dom4j)

tAdvancedFileOutputXML properties

1796 Talend Open Studio Components Reference Guide

This option allows you to use dom4j to
process the XML files of high complexity.

• Fast with low memory consumption

Once you select Append the source xml file in the
Basic settings view, this field disappears because in
this situation, your generation mode is set automatically
as dom4j.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Don’t generate empty
file

Select the check box to avoid the generation of an
empty file.

tStatCatcher Statistics Select the check box to collect the log data at a Job level
as well as at each component level.

Usage Use this component to write an XML file with data passed on from other
components using a Row link.

Limitation n/a

Defining the XML tree

Double-click on the tAdvancedFileOutputXML component to open the dedicated interface or click on the three-
dot button on the Basic settings vertical tab of the Component Settings tab.

To the left of the mapping interface, under Schema List, all of the columns retrieved from the incoming data flow
are listed (on the condition that an input flow is connected to the tAdvancedFileOutputXML component).

To the right of the interface, define the XML structure you want to obtain as output.

You can easily import the XML structure or create it manually, then map the input schema columns onto each
corresponding element of the XML tree.

tAdvancedFileOutputXML properties

Talend Open Studio Components Reference Guide 1797

Importing the XML tree

The easiest and most common way to fill out the XML tree panel, is to import a well-formed XML file.

1. Rename the root tag that displays by default on the XML tree panel, by clicking on it once.

2. Right-click on the root tag to display the contextual menu.

3. On the menu, select Import XML tree.

4. Browse to the file to import and click OK.

• You can import an XML tree from files in XML, XSD and DTD formats.

• When importing an XML tree structure from an XSD file, you can choose an element as the root
of your XML tree.

The XML Tree column is hence automatically filled out with the correct elements. You can remove and insert
elements or sub-elements from and to the tree:

1. Select the relevant element of the tree.

2. Right-click to display the contextual menu

3. Select Delete to remove the selection from the tree or select the relevant option among: Add sub-element,
Add attribute, Add namespace to enrich the tree.

Creating the XML tree manually

If you don’t have any XML structure defined as yet, you can create it manually.

1. Rename the root tag that displays by default on the XML tree panel, by clicking on it once.

2. Right-click on the root tag to display the contextual menu.

3. On the menu, select Add sub-element to create the first element of the structure.

You can also add an attribute or a child element to any element of the tree or remove any element from the tree.

1. Select the relevant element on the tree you just created.

2. Right-click to the left of the element name to display the contextual menu.

3. On the menu, select the relevant option among: Add sub-element, Add attribute, Add namespace or Delete.

tAdvancedFileOutputXML properties

1798 Talend Open Studio Components Reference Guide

Mapping XML data

Once your XML tree is ready, you can map each input column with the relevant XML tree element or sub-element
to fill out the Related Column:

1. Click on one of the Schema column name.

2. Drag it onto the relevant sub-element to the right.

3. Release to implement the actual mapping.

A light blue link displays that illustrates this mapping. If available, use the Auto-Map button, located to the bottom
left of the interface, to carry out this operation automatically.

You can disconnect any mapping on any element of the XML tree:

1. Select the element of the XML tree, that should be disconnected from its respective schema column.

2. Right-click to the left of the element name to display the contextual menu.

3. Select Disconnect linker.

The light blue link disappears.

Defining the node status

Defining the XML tree and mapping the data is not sufficient. You also need to define the loop element and if
required the group element.

Loop element

The loop element allows you to define the iterating object. Generally the Loop element is also the row generator.

To define an element as loop element:

1. Select the relevant element on the XML tree.

2. Right-click to the left of the element name to display the contextual menu.

3. Select Set as Loop Element.

tAdvancedFileOutputXML properties

Talend Open Studio Components Reference Guide 1799

The Node Status column shows the newly added status.

There can only be one loop element at a time.

Group element

The group element is optional, it represents a constant element where the groupby operation can be performed. A
group element can be defined on the condition that a loop element was defined before.

When using a group element, the rows should sorted, in order to be able to group by the selected node.

To define an element as group element:

1. Select the relevant element on the XML tree.

2. Right-click to the left of the element name to display the contextual menu.

3. Select Set as Group Element.

Scenario: Creating an XML file using a loop

1800 Talend Open Studio Components Reference Guide

The Node Status column shows the newly added status and any group status required are automatically defined,
if needed.

Click OK once the mapping is complete to validate the definition and continue the job configuration where needed.

Scenario: Creating an XML file using a loop

The following scenario describes the creation of an XML file from a sorted flat file gathering a video collection.

Configuring the source file

1. Drop a tFileInputDelimited and a tAdvancedFileOutputXML from the Palette onto the design workspace.

2. Alternatively, if you configured a description for the input delimited file in the Metadata area of the
Repository, then you can directly drag & drop the metadata entry onto the editor, to set up automatically
the input flow.

3. Right-click on the input component and drag a row main link towards the tAdvancedFileOutputXML
component to implement a connection.

4. Select the tFileInputDelimited component and display the Component settings tab located in the tab system
at the bottom of the Studio.

Scenario: Creating an XML file using a loop

Talend Open Studio Components Reference Guide 1801

5. Select the Property type, according to whether you stored the file description in the Repository or not. If you
dragged & dropped the component directly from the Metadata, no changes to the setting should be needed.

6. If you didn’t setup the file description in the Repository, then select Built-in and manually fill out the fields
displayed on the Basic settings vertical tab.

The input file contains the following type of columns separated by semi-colons: id, name, category, year,
language, director and cast.

In this simple use case, the Cast field gathers different values and the id increments when changing movie.

7. If needed, define the tFileDelimitedInput schema according to the file structure.

Scenario: Creating an XML file using a loop

1802 Talend Open Studio Components Reference Guide

8. Once you checked that the schema of the input file meets your expectation, click on OK to validate.

Configuring the XML output and mapping

1. Then select the tAdvancedFileOutputXML component and click on the Component settings tab to
configure the basic settings as well as the mapping. Note that a double-click on the component will open
directly the mapping interface.

2. In the File Name field, browse to the file to be written if it exists or type in the path and file name that needs
to be created for the output.

By default, the schema (file description) is automatically propagated from the input flow. But you can edit
it if you need.

3. Then click on the three-dot button or double-click on the tAdvancedFileOutputXML component on the
design workspace to open the dedicated mapping editor.

To the left of the interface, are listed the columns from the input file description.

4. To the right of the interface, set the XML tree panel to reflect the expected XML structure output.

You can create the structure node by node. For more information about the manual creation of an XML tree,
see the section called “Defining the XML tree”.

In this example, an XML template is used to populate the XML tree automatically.

5. Right-click on the root tag displaying by default and select Import XML tree at the end of the contextual
menu options.

6. Browse to the XML file to be imported and click OK to validate the import operation.

You can import the XML structure from XSML, XSD and STS files.

7. Then drag & drop each column name from the Schema List to the matching (or relevant) XML tree elements
as described in the section called “Mapping XML data”.

The mapping is shown as blue links between the left and right panels.

Scenario: Creating an XML file using a loop

Talend Open Studio Components Reference Guide 1803

Finally, define the node status where the loop should take place. In this use case, the Cast being the changing
element on which the iteration should operate, this element will be the loop element.

Right-click on the Cast element on the XML tree, and select Set as loop element.

8. To group by movie, this use case needs also a group element to be defined.

Right-click on the Movie parent node of the XML tree, and select Set as group element.

The newly defined node status show on the corresponding element lines.

9. Click OK to validate the configuration.

10. Press F6 to execute the Job.

Scenario: Creating an XML file using a loop

1804 Talend Open Studio Components Reference Guide

The output XML file shows the structure as defined.

tDTDValidator

Talend Open Studio Components Reference Guide 1805

tDTDValidator

tDTDValidator Properties

Component family XML

Function Validates the XML input file against a DTD file and sends the validation log to
the defined output.

Purpose Helps at controlling data and structure quality of the file to be processed

Basic settings Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either built-in or remotely
stored in the Repository but in this case, the schema is
read-only. It contains standard information regarding the
file validation.

DTD file Filepath to the reference DTD file.

XML file Filepath to the XML file to be validated.

If XML is valid, display
If XML is not valid
detected, display

Type in a message to be displayed in the Run console
based on the result of the comparison.

Print to console Select this check box to display the validation message.

Usage This component can be used as standalone component but it is usually linked to
an output component to gather the log data.

Limitation n/a

Scenario: Validating XML files

This scenario describes a Job that validates the specified type of files from a folder, displays the validation result
on the Run tab console, and outputs the log information for the invalid files into a delimited file.

1. Drop the following components from the Palette to the design workspace: tFileList, tDTDValidator, tMap,
tFileOutputDelimited.

2. Connect the tFileList to the tDTDValidator with an Iterate link and the remaining component using a main
row.

3. Set the tFileList component properties, to fetch an XML file from a folder.

Scenario: Validating XML files

1806 Talend Open Studio Components Reference Guide

Click the plus button to add a filemask line and enter the filemask: *.xml. Remember Java code requires
double quotes.

Set the path of the XML files to be verified.

Select No from the Case Sensitive drop-down list.

4. In the tDTDValidate Component view, the schema is read-only as it contains standard log information
related to the validation process.

In the Dtd file field, browse to the DTD file to be used as reference.

5. Click in the XML file field, press Ctrl+Space bar to access the variable list, and double-click the current
filepath global variable: tFileList.CURRENT_FILEPATH.

6. In the various messages to display in the Run tab console, use the jobName variable
to recall the job name tag. Recall the filename using the relevant global variable:
((String)globalMap.get("tFileList_1_CURRENT_FILE")). Remember Java code requires
double quotes.

Select the Print to Console check box.

7. In the tMap component, drag and drop the information data from the standard schema that you want to pass
on to the output file.

Scenario: Validating XML files

Talend Open Studio Components Reference Guide 1807

8. Once the Output schema is defined as required, add a filter condition to only select the log information data
when the XML file is invalid.

Follow the best practice by typing first the wanted value for the variable, then the operator based on the type
of data filtered then the variable that should meet the requirement. In this case: 0 == row1.validate.

9. Then connect (if not already done) the tMap to the tFileOutputDelimited component using a Row > Main
connection. Name it as relevant, in this example: log_errorsOnly.

10. In the tFileOutputDelimited Basic settings, Define the destination filepath, the field delimiters and the
encoding.

11. Save your Job and press F6 to run it.

On the Run console the messages defined display for each of the files. At the same time the output file is
filled with the log data for invalid files.

tEDIFACTtoXML

1808 Talend Open Studio Components Reference Guide

tEDIFACTtoXML

tEDIFACTtoXML Properties

Component family XML/Unstructured >
EDIFACT

Function This component reads a United Nations/Electronic Data Interchange For
Administration, Commerce and Transport (UN/EDIFACT) message and
transforms it into the XML format according to the EDIFACT version and the
EDIFACT family.

Purpose This component is used to transform an EDIFACT message file into the XML
format for better readability to users and compatibility with processing tools.

Basic settings Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component.

The schema of this component is fixed and read-only,
with only one column: document.

EDI filename Filepath to the EDIFACT message file to be
transformed.

EDI version Select the EDIFACT version of the input file.

Ignore new line Select this check box to skip carriage returns in the input
file.

Die on error Select this check box to stop Job execution when an error
is encountered. By default, this check box is cleared,
and therefore illegal rows are skipped and the process is
completed for the error free rows.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is usually linked to an output component to gather the
transformation result.

Limitation n/a

Scenario: From EDIFACT to XML

This scenario describes a simple Job that reads a UN/EDIFACT Customs Cargo (CUSCAR) message file and
saves it as an XML file.

Scenario: From EDIFACT to XML

Talend Open Studio Components Reference Guide 1809

1. Drop the tEDIFACTtoXML component and the tFileOutputXML component from the Palette to the design
workspace.

2. Connect the tEDIFACTtoXML component and the tFileOutputXML component using a Row > Main
connection.

3. Double-click the tEDIFACTtoXML component to show its Basic settings view.

4. Fill the EDI filename field with the full path to the input EDIFACT message file.

In this use case, the input file is 99a_cuscar.edi.

5. From EDI version list, select the EDIFACT version of the input file, D99A in this use case.

6. Select the Ignore new line check box to skip the carriage return characters in the input file during the
transformation.

7. Leave the other parameters as they are.

8. Double-click the tFileOutputXML component to show its Basic settings view.

9. Fill the File Name field with the full path to the output XML file you want to generate.

In this use case, the output XML is 99a_cuscar.xml.

10. Leave the other parameters as they are.

11. Save your Job and press F6 to run it.

The input EDIFACT CUSCAR message file is transformed into the XML format and the output XML file
is generated as defined.

Scenario: From EDIFACT to XML

1810 Talend Open Studio Components Reference Guide

tExtractXMLField

Talend Open Studio Components Reference Guide 1811

tExtractXMLField

tExtractXMLField properties

Component family XML

Function tExtractXMLField reads an input XML field of a file or a database table and
extracts desired data.

Purpose tExtractXMLField opens an input XML field, reads the XML structured data
directly without having first to write it out to a temporary file, and finally sends
data as defined in the schema to the following component via a Row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data is stored centrally.

Repository: Properties are stored in a repository file.
When this file is selected, the fields that follow are pre-
filled in using fetched data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in or
remote in the Repository.

Built-in: You create the schema and store it locally for
this component only. Related topic: see Talend Open
Studio User Guide

Repository: You already created the schema and stored
it in the Repository, hence can be reused in various
projects and job flowcharts. Related topic: see Talend
Open Studio User Guide.

XML field Name of the XML field to be processed.

Related topic: see Talend Open Studio User Guide

Loop XPath query Node of the XML tree, which the loop is based on.

Mapping Column: reflects the schema as defined by the Schema
type field.

XPath Query: Enter the fields to be extracted from the
structured input.

Get nodes: Select this check box to recuperate the
XML content of all current nodes specified in the
Xpath query list or select the check box next to
specific XML nodes to recuperate only the content of
the selected nodes.

Limit Maximum number of rows to be processed. If Limit is
0, no rows are read or processed.

Die on error This check box is selected by default. Clear the check
box to skip the row on error and complete the process
for error-free rows. If needed, you can retrieve the rows
on error via a Row > Reject link.

Scenario 1: Extracting XML data from a field in a database table

1812 Talend Open Studio Components Reference Guide

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component is an intermediate component. It needs an input and an output
components.

Limitation n/a

Scenario 1: Extracting XML data from a field in a
database table

This three-component Java scenario allows to read the XML structure included in the fields of a database table
and then extracts the data.

1. Drop the following components from the Palette onto the design workspace: tMysqlInput,
tExtractXMLField, and tFileOutputDelimited.

Connect the three components using Main links.

2. Double-click tMysqlInput to display its Basic settings view and define its properties.

3. If you have already stored the input schema in the Repository tree view, select Repository first from the
Property Type list and then from the Schema list to display the [Repository Content] dialog box where
you can select the relevant metadata.

For more information about storing schema metadata in the Repository tree view, see Talend Open Studio
User Guide.

4. If you have not stored the input schema locally, select Built-in in the Property Type and Schema fields
and enter the database connection and the data structure information manually. For more information about
tMysqlInput properties, see the section called “tMysqlInput”.

5. In the Table Name field, enter the name of the table holding the XML data, customerdetails in this example.

Scenario 1: Extracting XML data from a field in a database table

Talend Open Studio Components Reference Guide 1813

Click Guess Query to display the query corresponding to your schema.

6. Double-click tExtractXMLField to display its Basic settings view and define its properties.

7. In the Property type list, select Repository if you have already stored the description of your file in the
Repository tree view. The fields that follow are filled in automatically with the stored data.

If not, select Built-in and fill in the fields that follow manually.

8. Click Sync columns to retrieve the schema from the preceding component. You can click the three-dot button
next to Edit schema to view/modify the schema.

Column in the Mapping table will be automatically populated with the defined schema.

9. In the Xml field list, select the column from which you want to extract the XML data. In this example, the
filed holding the XML data is called CustomerDetails.

In the Loop XPath query field, enter the node of the XML tree on which to loop to retrieve data.

In the Xpath query column, enter between inverted commas the node of the XML field holding the data you
want to extract, CustomerName in this example.

10. Double-click tFileOutputDelimited to display its Basic settings view and define its properties.

11. In the File Name field, define or browse to the path of the output file you want to write the extracted data in.

Click Sync columns to retrieve the schema from the preceding component. If needed, click the three-dot
button next to Edit schema to view the schema.

12. Save your Job and click F6 to execute it.

Scenario 2: Extracting correct and erroneous data from an XML field in a delimited file

1814 Talend Open Studio Components Reference Guide

tExtractXMLField read and extracted the clients names under the node CustomerName of the CustomerDetails
field of the defined database table.

Scenario 2: Extracting correct and erroneous data
from an XML field in a delimited file

This Java scenario describes a four-component Job that reads an XML structure from a delimited file, outputs the
main data and rejects the erroneous data.

1. Drop the following components from the Palette to the design workspace: tFileInputDelimited,
tExtractXMLField, tFileOutputDelimited and tLogRow.

Connect the first three components using Row Main links.

Connect tExtractXMLField to tLogRow using a Row Reject link.

2. Double-click tFileInputDelimited to open its Basic settings view and define the component properties.

Scenario 2: Extracting correct and erroneous data from an XML field in a delimited file

Talend Open Studio Components Reference Guide 1815

3. Select Built-in in the Schema list and fill in the file metadata manually in the corresponding fields.

Click the three-dot button next to Edit schema to display a dialog box where you can define the structure
of your data.

Click the plus button to add as many columns as needed to your data structure. In this example, we have one
column in the schema: xmlStr.

Click OK to validate your changes and close the dialog box.

If you have already stored the schema in the Metadata folder under File delimited, select
Repository from the Schema list and click the three-dot button next to the field to display the
[Repository Content] dialog box where you can select the relevant schema from the list. Click Ok
to close the dialog box and have the fields automatically filled in with the schema metadata.

For more information about storing schema metadata in the Repository tree view, see Talend Open
Studio User Guide.

4. In the Property type list, select:

-Repository if you have already stored the metadata of your input file in the Repository, the fields that follow
are automatically filled in with the stored information, or

-select Built-in and fill in the fields that follow manually.

For this example, we use the Built-in mode.

5. In the File Name field, click the three-dot button and browse to the input delimited file you want to process,
CustomerDetails_Error in this example.

This delimited file holds a number of simple XML lines separated by double carriage return.

Set the row and field separators used in the input file in the corresponding fields, double carriage return for
the first and nothing for the second in this example.

If needed, set Header, Footer and Limit. None is used in this example.

6. In the design workspace, double-click tExtractXMLField to display its Basic settings view and define the
component properties.

Scenario 2: Extracting correct and erroneous data from an XML field in a delimited file

1816 Talend Open Studio Components Reference Guide

7. In the Property type list, select:

-Repository if you have already stored the metadata of your file in the Repository, the fields that follow are
automatically filled in with the stored information, or

-select Built-in and fill in the fields that follow manually.

For this example, we use the Built-in mode.

8. Click Sync columns to retrieve the schema from the preceding component. You can click the three-dot button
next to Edit schema to view/modify the schema.

Column in the Mapping table will be automatically populated with the defined schema.

9. In the Xml field list, select the column from which you want to extract the XML data. In this example, the
filed holding the XML data is called xmlStr.

In the Loop XPath query field, enter the node of the XML tree on which to loop to retrieve data.

10. In the design workspace, double-click tFileOutputDelimited to open its Basic settings view and display the
component properties.

11. Set Property Type to Built-in.

In the File Name field, define or browse to the output file you want to write the correct data in,
CustomerNames_right.csv in this example.

Click Sync columns to retrieve the schema of the preceding component. You can click the three-dot button
next to Edit schema to view/modify the schema.

12. In the design workspace, double-click tLogRow to display its Basic settings view and define the component
properties.

Scenario 2: Extracting correct and erroneous data from an XML field in a delimited file

Talend Open Studio Components Reference Guide 1817

Click Sync Columns to retrieve the schema of the preceding component. For more information on this
component, see the section called “tLogRow”.

13. Save your Job and press F6 to execute it.

tExtractXMLField reads and extracts in the output delimited file, CustomerNames_right, the client information
for which the XML structure is correct, and displays as well erroneous data on the console of the Run view.

tFileInputXML

1818 Talend Open Studio Components Reference Guide

tFileInputXML

tFileInputXML Properties

Component family XML or File/Input

Function tFileInputXML reads an XML structured file and extracts data row by row.

Purpose Opens an XML structured file and reads it row by row to split them up into fields
then sends fields as defined in the Schema to the next component, via a Row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties
are stored. The following fields are pre-filled in using
fetched data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in or
remote in the Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend
Open Studio User Guide

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and job flowcharts. Related topic: see Talend Open
Studio User Guide.

File Name/Stream File name: Name and path of the file to be processed.

Stream: The data flow to be processed. The data must
be added to the flow in order for tFileInputXML to
fetch these data via the corresponding representative
variable.

This variable could be already pre-defined in your
Studio or provided by the context or the components
you are using along with this component, for
example, the INPUT_STREAM variable of tFileFetch;
otherwise, you could define it manually and use it
according to the design of your Job, for example, using
tJava or tJavaFlex.

In order to avoid the inconvenience of hand writing,
you could select the variable of interest from the auto-
completion list (Ctrl+Space) to fill the current field on
condition that this variable has been properly defined.

Related topic to the available variables: see Talend
Open Studio User Guide. Related scenario to the input
stream, see the section called “Scenario 2: Reading data
from a remote file in streaming mode”.

tFileInputXML Properties

Talend Open Studio Components Reference Guide 1819

Loop XPath query Node of the tree, which the loop is based on.

Mapping Column: Columns to map. They reflect the schema as
defined in the Schema type field.

XPath Query: Enter the fields to be extracted from the
structured input.

Get nodes: Select this check box to recuperate the
XML content of all current nodes specified in the
Xpath query list, or select the check box next to
specific XML nodes to recuperate only the content of
the selected nodes. These nodes are important when the
output flow from this component needs to use the XML
structure, for example, the Document data type.

For further information about the Document type, see
Talend Open Studio User Guide.

The Get Nodes option functions in the DOM4j
and SAX modes, although in SAX mode
namespaces are not supported. For further
information concerning the DOM4j and SAX
modes, please see the properties noted in
the Generation mode list of the Advanced
Settings tab..

Limit Maximum number of rows to be processed. If Limit =
0, no row is read nor processed. If -1, all rows are read
or processed.

Die on error This check box is selected by default and stops the
job in the event of error. Clear the check box to skip
erroneous rows. The process will still be completed
for error-free rows. If needed, you can retrieve the
erroneous rows using a Row > Reject link.

Advanced settings Ignore DTD file Select this check box to ignore the DTD file indicated
in the XML file being processed.

Advanced separator
(for number)

Select this check box to change data separator for
numbers:

Thousands separator: define the separators to use for
thousands.

Decimal separator: define the separators to use for
decimals.

Ignore the namespaces Select this check box to ignore name spaces.

Generate a temporary file: click the three-dot button
to browse to the XML temporary file and set its path
in the field.

Use Separator for mode
Xerces

Select this check box if you want to separate
concatenated children node values.

This field can only be used if the selected
Generation mode is Xerces.

The following field displays:

Scenario 1: Reading and extracting data from an XML structure

1820 Talend Open Studio Components Reference Guide

Field separator: Define the delimiter to be used to
separate the children node values.

Encoding Type Select the encoding type from the list or select Custom
and define it manually. This field is compulsory for DB
data handling.

Generation mode From the drop-down list select the generation mode for
the XML file, according to the memory available and
the desired speed:

• Slow and memory-consuming (Dom4j)

This option allows you to use dom4j to
process the XML files of high complexity.

• Memory-consuming (Xerces).

• Fast with low memory consumption (SAX)

Validate date Select this check box to check the date format strictly
against the input schema.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage tFileInputXML is for use as an entry componant. It allows you to create a flow of
XML data using a Row > Main link. You can also create a rejection flow using a
Row > Reject link to filter the data which doesn’t correspond to the type defined.
For an example of how to use these two links, see the section called “Scenario 2:
Extracting correct and erroneous data from an XML field in a delimited file”.

Limitation n/a

Scenario 1: Reading and extracting data from an XML
structure

This scenario describes a basic Job that reads a defined XML directory and extracts specific information and
outputs it on the Run console via a tLogRow component.

1. Drop tFileInputXML and tLogRow from the Palette to the design workspace.

2. Connect both components together using a Main Row link.

3. Double-click tFileInputXML to open its Basic settings view and define the component properties.

Scenario 2: Extracting erroneous XML data via a reject flow

Talend Open Studio Components Reference Guide 1821

4. As the street dir file used as input file has been previously defined in the Metadata area, select Repository
as Property type. This way, the properties are automatically leveraged and the rest of the properties fields
are filled in (apart from Schema). For more information regarding the metadata creation wizards, see Talend
Open Studio User Guide.

5. Select the same way the relevant schema in the Repository metadata list. Edit schema if you want to make
any change to the schema loaded.

6. The Filename shows the structured file to be used as input

7. In Loop XPath query, change if needed the node of the structure where the loop is based.

8. On the Mapping table, fill the fields to be extracted and displayed in the output.

9. If the file size is consequent, fill in a Limit of rows to be read.

10. Enter the encoding if needed then double-click on tLogRow to define the separator character.

11. Save your Job and press F6 to execute it.

The fields defined in the input properties are extracted from the XML structure and displayed on the console.

Scenario 2: Extracting erroneous XML data via a reject
flow

This Java scenario describes a three-component Job that reads an XML file and:

1. first, returns correct XML data in an output XML file,

2. and second, displays on the console erroneous XML data which type does not correspond to the defined one
in the schema.

Scenario 2: Extracting erroneous XML data via a reject flow

1822 Talend Open Studio Components Reference Guide

1. Drop the following components from the Palette to the design workspace: tFileInputXML,
tFileOutputXML and tLogRow.

Right-click tFileInputXML and select Row > Main in the contextual menu and then click tFileOutputXML
to connect the components together.

Right-click tFileInputXML and select Row > Reject in the contextual menu and then click tLogRow to
connect the components together using a reject link.

2. Double-click tFileInputXML to display the Basic settings view and define the component properties.

3. In the Property Type list, select Repository and click the three-dot button next to the field to display the
[Repository Content] dialog box where you can select the metadata relative to the input file if you have
already stored it in the File xml node under the Metadata folder of the Repository tree view. The fields that
follow are automatically filled with the fetched data. If not, select Built-in and fill in the fields that follow
manually.

For more information about storing schema metadat in the Repository tree view, see Talend Open Studio
User Guide.

4. In the Schema Type list, select Repository and click the three-dot button to open the dialog box where you
can select the schema that describe the structure of the input file if you have already stored it in the Repository
tree view. If not, select Built-in and click the three-dot button next to Edit schema to open a dialog box
where you can define the schema manually.

Scenario 2: Extracting erroneous XML data via a reject flow

Talend Open Studio Components Reference Guide 1823

The schema in this example consists of five columns: id, CustomerName, CustomerAddress, idState and id2.

5. Click the three-dot button next to the Filename field and browse to the XML file you want to process.

6. In the Loop XPath query, enter between inverted commas the path of the XML node on which to loop in
order to retrieve data.

In the Mapping table, Column is automatically populated with the defined schema.

In the XPath query column, enter between inverted commas the node of the XML file that holds the data
you want to extract from the corresponding column.

7. In the Limit field, enter the number of lines to be processed, the first 10 lines in this example.

8. Double-click tFileOutputXML to display its Basic settings view and define the component properties.

9. Click the three-dot button next to the File Name field and browse to the output XML file you want to collect
data in, customer_data.xml in this example.

In the Row tag field, enter between inverted commas the name you want to give to the tag that will hold
the recuperated data.

Click Edit schema to display the schema dialog box and make sure that the schema matches that of the
preceding component. If not, click Sync columns to retrieve the schema from the preceding component.

10. Double-click tLogRow to display its Basic settings view and define the component properties.

Click Edit schema to open the schema dialog box and make sure that the schema matches that of the preceding
component. If not, click Sync columns to retrieve the schema of the preceding component.

In the Mode area, select the Vertical option.

11. Save your Job and press F6 to execute it.

Scenario 2: Extracting erroneous XML data via a reject flow

1824 Talend Open Studio Components Reference Guide

The output file customer_data.xml holding the correct XML data is created in the defined path and erroneous
XML data is displayed on the console of the Run view.

tFileOutputXML

Talend Open Studio Components Reference Guide 1825

tFileOutputXML

tFileOutputXML properties

Component family XML or File/Output

Function tFileOutputXML outputs data to an XML type of file.

Purpose tFileOutputXML writes an XML file with separated data value according to a
defined schema.

Basic settings File name Name or path to the output file and/or the variable to
be used.

Related topic: see Defining variables from the
Component view section in Talend Open Studio User
Guide

Incoming record is a
document

Select this check box if the data from the preceding
component is in XML format.

When this check box is selected, a Column list appears
allowing you to select a Document type column of
the schema that holds the data, and the Row tag field
disappears.

Row tag Specify the tag that will wrap data and structure per
row.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in or
remote in the Repository.

Built-in: The schema will be created and stored locally
for this component only. Related topic: see Talend
Open Studio User Guide.

Repository: The schema already exists and is stored in
the Repository, hence can be reused in various projects
and job designs. Related topic: see Talend Open Studio.

Sync columns Click to synchronize the output file schema with the
input file schema. The Sync function only displays
once the Row connection is linked with the Output
component.

Advanced settings Split output in several
files

If the output is big, you can split the output into several
files, each containing the specified number of rows.

Rows in each output file: Specify the number of rows
in each output file.

Create directory if not
exists

This check box is selected by default. It creates a
directory to hold the output XML files if required.

Root tags Specify one or more root tags to wrap the whole output
file structure and data. The default root tag is root.

tFileOutputXML properties

1826 Talend Open Studio Components Reference Guide

Output format Define the output format.

Column: The columns retrieved from the input schema.

As attribute: select check box for the column(s) you
want to use as attribute(s) of the parent element in the
XML output.

If the same column is selected in both the
Output format table as an attribute and in the
Use dynamic grouping setting as the criterion
for dynamic grouping, only the dynamic group
setting will take effect for that column.

Use schema column name: By default, this check box
is selected for all columns so that the column labels
from the input schema are used as data wrapping tags.
If you want to use a different tag than from the input
schema for any column, clear this check box for that
column and specify a tag label between quotation marks
in the Label field.

Use dynamic grouping Select this check box if you want to dynamically group
the output columns. Click the plus button to add one ore
more grouping criteria in the Group by table.

Column: Select a column you want to use as a
wrapping element for the grouped output rows.

Attribute label: Enter an attribute label for the group
wrapping element, between quotation marks.

Custom the flush buffer
size

Select this check box to define the number of rows to
buffer before the data is written into the target file and
the buffer is emptied.

Row Number: Specify the number of rows to buffer.

Advanced separator
(for numbers)

Select this check box to modify the separators used for
numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

Encoding Select the encoding from the list or select Custom and
define it manually. This field is compulsory for DB data
handling.

Don't generate empty
file

Select the check box to avoid the generation of an
empty file.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage Use this component to write an XML file with data passed on from other
components using a Row link.

Limitation n/a

Related scenarios

Talend Open Studio Components Reference Guide 1827

Related scenarios

For related scenarios using tFileOutputXML, see the section called “Scenario 1: From Positional to XML file”
and the section called “Scenario 2: Using a SOAP message from an XML file to get weather information and
saving the information to an XML file”.

tWriteXMLField

1828 Talend Open Studio Components Reference Guide

tWriteXMLField

tWriteXMLField properties

Component family XML

Function tWriteXMLField outputs data to defined fields of the output XML file.

Purpose tWriteXMLField reads an input XML file and extracts the structure to insert it
in defined fields of the output file.

Basic settings Output Column Select the destination field in the output component
where you want to write the XML structure.

Configure Xml Tree Opens the interface that supports the creation of the
XML structure you want to write in a field. For more
information about the interface, see the section called
“Defining the XML tree”.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the
number of fields that will be processed and passed on
to the next component. The schema is either built-in or
remote in the Repository.

Built-in: You create the schema and store it locally for
this component only. Related topic: see Talend Open
Studio User Guide.

Repository: You already created the schema and stored
it in the Repository, hence can be reused in various
projects and job flowcharts. Related topic: see Talend
Open Studio User Guide.

Sync columns Click to synchronize the output file schema with the
input file schema. The Sync function only displays
once the Row connection is linked with the output
component.

Group by Define the aggregation set, the columns you want to use
to regroup the data.

Advanced settings Remove the xml
declaration

Select this check box if you do not want to include the
XML header.

Create empty element if
needed

This check box is selected by default. If the Related
Column in the interface that supports the creation of
the XML structure has null values, or if no column is
associated with the XML node, this option creates an
open/close tag in the expected place.

Create associated XSD
file

If one of the XML elements is defined as a Namespace
element, this option will create the corresponding XSD
file.

To use this option, you must select the Dom4J
generation mode.

Advanced separator
(for number)

Select this check box if you want to modify the
separators used by default for numbers.

Scenario: Extracting the structure of an XML file and inserting it into the fields of a database table

Talend Open Studio Components Reference Guide 1829

Thousands separator: enter between brackets the
separators to use for thousands.

Decimal separator: enter between brackets the
separators to use for decimals.

Generation mode Select the appropriate generation mode according to
your memory availability. The available modes are:

• Slow and memory-consuming (Dom4j)

This option allows you to use dom4j to
process the XML files of high complexity.

• Fast with low memory consumption

Encoding Type Select the encoding type in the list or select Custom
and define it manually. This field is compulsory when
working with databases.

tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage This component can be used as intermediate step in a data flow.

Limitation n/a

Scenario: Extracting the structure of an XML file and
inserting it into the fields of a database table

This three-component scenario allows to read an XML file, extract the XML structure, and finally outputs the
structure to the fields of a database table.

1. Drop the following components from the Palette onto the design workspace: tFileInputXml,
tWriteXMLField, and tMysqlOutput.

Connect the three components using Main links.

2. Double-click tFileInputXml to open its Basic settings view and define its properties.

Scenario: Extracting the structure of an XML file and inserting it into the fields of a database table

1830 Talend Open Studio Components Reference Guide

3. If you have already stored the input schema in the Repository tree view, select Repository first from the
Property Type list and then from the Schema list to display the [Repository Content] dialog box where
you can select the relevant metadata.

For more information about storing schema metadata in the Repository tree view, see Talend Open Studio
User Guide.

4. If you have not stored the input schema locally, select Built-in in the Property Type and Schema fields
and fill in the fields that follow manually. For more information about tFileInputXML properties, see the
section called “tFileInputXML”.

If you have selected Built-in, click the three-dot button next to the Edit schema field to open a dialog box
where you can manually define the structure of your file.

5. In the Look Xpath query field, enter the node of the structure where the loop is based. In this example, the
loop is based on the customer node. Column in the Mapping table will be automatically populated with the
defined file content.

In the Xpath query column, enter between inverted commas the node of the XML file that holds the data
corresponding to each of the Column fields.

6. In the design workspace, click tWriteXMLField and then in the Component view, click Basic settings to
open the relevant view where you can define the component properties.

7. Click the three-dot button next to the Edit schema field to open a dialog box where you can add a line by
clicking the plus button.

8. Click in the line and enter the name of the output column where you want to write the XML content,
CustomerDetails in this example.

Define the type and length in the corresponding fields, String and 255in this example.

Click Ok to validate your output schema and close the dialog box.

Scenario: Extracting the structure of an XML file and inserting it into the fields of a database table

Talend Open Studio Components Reference Guide 1831

In the Basic settings view and from the Output Column list, select the column you already defined where
you want to write the XML content.

9. Click the three-dot button next to Configure Xml Tree to open the interface that helps to create the XML
structure.

10. In the Link Target area, click rootTag and rename it as CustomerDetails.

In the Linker source area, drop CustomerName and CustomerAddress to CustomerDetails. A dialog box
displays asking what type of operation you want to do.

Select Create as sub-element of target node to create a sub-element of the CustomerDetails node.

Right-click CustomerName and select from the contextual menu Set As Loop Element.

Click OK to validate the XML structure you defined.

11. Double-click tMysqlOutput to open its Basic settings view and define its properties.

12. If you have already stored the schema in the DB Connection node in the Repository tree view, select
Repository from the Schema list to display the [Repository Content] dialog box where you can select the
relevant metadata.

For more information about storing schema metadata in the Repository tree view, see Talend Open Studio
User Guide.

If you have not stored the schema locally, select Built-in in the Property Type and Schema fields and enter
the database connection and data structure information manually. For more information about tMysqlOutput
properties, see the section called “tMysqlOutput”.

In the Table field, enter the name of the database table to be created, where you want to write the extracted
XML data.

Scenario: Extracting the structure of an XML file and inserting it into the fields of a database table

1832 Talend Open Studio Components Reference Guide

From the Action on table list, select Create table to create the defined table.

From the Action on data list, select Insert to write the data.

Click Sync columns to retrieve the schema from the preceding component. You can click the three-dot button
next to Edit schema to view the schema.

13. Save your Job and click F6 to execute it.

tWriteXMLField fills every field of the CustomerDetails column with the XML structure of the input
file: the XML processing instruction <?xml version=""1.0"" encoding=""ISO-8859-15""?
>, the first node that separates each client <CustomerDetails> and finally customer information
<CustomerAddress> and <CustomerName>.

tXMLMap

Talend Open Studio Components Reference Guide 1833

tXMLMap

tXMLMap belongs to two component families: Processing and XML. For more information on it, see the section
called “tXMLMap”.

tXSDValidator

1834 Talend Open Studio Components Reference Guide

tXSDValidator

tXSDValidator Properties

Component family XML

Function Validates an input XML file or an input XML flow against an XSD file and sends
the validation log to the defined output.

Purpose Helps at controlling data and structure quality of the file or flow to be processed

Basic settings Mode From this dropdown list, select:

- File, to validate an input file

- Flow, to validate an input flow

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number
of fields to be processed and passed on to the next
component. The schema is either built-in or remotely
stored in the Repository but in this case, the schema is
read-only. It contains standard information regarding the
file validation.

File mode only XSD file Filepath to the reference XSD file. HTTP URL also
supported, e.g. http://localhost:8080/book.xsd.

File mode only XML file Filepath to the XML file to be validated.

File mode only If XML is valid, display
If XML is invalid,
display

Type in a message to be displayed in the Run console
based on the result of the comparison.

File mode only Print to console Select this check box to display the validation message.

Flow mode only Allocate Specify the column or columns to be validated and the
path to the reference XSD file.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing
metadata at a Job level as well as at each component
level.

Usage When used in File mode, this component can be used as standalone component
but it is usually linked to an output component to gather the log data.

Limitation n/a

Scenario: Validating data flows against an XSD file

This scenario describes a Job that validates an XML column in an input file against a reference XSD file and
outputs the log information for the invalid rows of the column into a delimited file. For the tXSDValidator use
case that validates an XML file, see the section called “Scenario: Validating XML files”.

1. Drop a tFileInputDelimited component, a tXSDValidator component, and two FileOutputDelimited
components from the Palette to the design workspace.

Scenario: Validating data flows against an XSD file

Talend Open Studio Components Reference Guide 1835

2. Double-click the tFileInputDelimited to open its Component view and set its properties:

3. Use the Built-In property type for this scenario.

Browse to the input file, and define the number of rows to be skipped in the beginning of the file.

Use a Built-In schema for this scenario. This means that it is available for this Job only.

Click Edit schema and edit the schema according to the input file. In this scenario, the input file has only two
columns: ID and ShipmentInfo. The ShipmentInfo column is an XML column and needs to be validated.

4. On your design workspace, connect the tFileInputDelimited component to the tXSDValidator component
using a Row > Main link.

5. Double-click the tXSDValidator component, and set its properties:

Scenario: Validating data flows against an XSD file

1836 Talend Open Studio Components Reference Guide

6. From the Mode dropdown list, select Flow Mode.

Use a Built-In schema for this scenario. Click Sync columns to retrieve the schema from the preceding
component. To view or modify the schema, click the three-dot button next to Edit schema.

Add a line in the Allocate table by clicking the plus button. The name of the first column of the input file
automatically appears in the Input Column field. Click in the field and select the column you want to validate.

In the XSD File field, fill in the path to your reference XSD file.

7. On your design workspace, connect the tXSDValidator component to one tFileOutputDelimited
component using a Row > Main link to output the information about valid XML rows.

8. Connect the tXSDValidator component to the other tFileOutputDelimited component using a Row >
Rejects link to output the information about invalid XML rows.

9. Double-click each of the two tFileOutputDelimited components and configure the component properties.

In the Property Type field, select Built-In.

In the File Name field, enter or, if you want to use an existing output file, browse to the output file path.

10. Select Built-In from the Schema list and click Sync columns to retrieve the schema from the preceding
component.

11. Save your Job and press F6 to run it.

Scenario: Validating data flows against an XSD file

Talend Open Studio Components Reference Guide 1837

The output files contain the validation information about the valid and invalid XML rows of the specified column
respectively.

tXSLT

1838 Talend Open Studio Components Reference Guide

tXSLT

tXSLT Properties

Component family XML

Function Refers to an XSL stylesheet, to transform an XML source file into a defined output
file.

Purpose Helps to transform data structure to another structure.

Basic settings XML file File path to the XML file to be validated.

XSL file File path to the reference XSL transformation file.

Output file File path to the output file. If the file does not exist, it
will be created. The output file can be any structured or
unstructured file such as html, xml, txt or even pdf or
edifact depending on your xsl.

Parameters Click the plus button to add new lines in the Parameters
list and define the transformation parameters of the
XSLT file. Click in each line and enter the key in the
name list and its associated value in the value list.

Usage This component can be used as standalone component.

Limitation n/a

Scenario: Transforming XML to html using an XSL
stylesheet

This scenario describes a two-component Job that converts xml data into an html document using an xsl stylesheet.
It as well defines a transformation parameter of the xsl stylesheet to change the background color of the header
of the created html document.

1. Drop the tXSLT and tMsBox components from the Palette to the design workspace.

2. Double-click tXSLT to open its Basic settings view where you can define the component properties.

Scenario: Transforming XML to html using an XSL stylesheet

Talend Open Studio Components Reference Guide 1839

3. In the XML file field, set the path or browse to the xml file to be transformed. In this example, the xml file
holds a list of MP3 song titles and related information including artist names, company etc.

4. In the XSL file field in the Basic settings view, set the path or browse to the relevant xsl file.

5. In the Output file field, set the path or browse to the output html file.

In this example, we want to convert the xml data into an html file holding a table heading followed by a table
listing artists’ names next to song titles.

Scenario: Transforming XML to html using an XSL stylesheet

1840 Talend Open Studio Components Reference Guide

6. In the Parameters area of the Basic settings view, click the plus button to add a line where you can define the
name and value of the transformation parameter of the xsl file. In this example, the name of the transformation
parameter we want to use is bgcolor and the value is green.

7. Double-click the tMsgBox to display its Basic settings view and define its display properties as needed.

8. Save the Job and press F6 to execute it. The message box displays confirming that the output html file is
created and stored in the defined path.

Scenario: Transforming XML to html using an XSL stylesheet

Talend Open Studio Components Reference Guide 1841

9. Click OK to close the message box.

You can now open the output html file to check the transformation of the xml data and that of the background
color of the table heading.

Talend Open Studio Components Reference Guide

	Talend Open Studio
	Table of Contents
	Preface
	General information
	Purpose
	Audience
	Typographical conventions

	History of changes
	Feedback and Support

	Big Data components
	tHiveClose
	tHiveClose properties
	Related scenario

	tHiveConnection
	tHiveConnection properties
	Related scenario

	tHiveRow
	tHiveRow properties
	Related scenarios

	Business components
	tAlfrescoOutput
	tAlfrescoOutput Properties
	Installation procedure
	Prerequisites
	Installing the Talend Alfresco module
	Useful information for advanced use

	Dematerialization, tAlfrescoOutput, and Enterprise Content Management

	Scenario: Creating documents on an Alfresco server
	Setting up your Job
	Setting up the schema
	Setting up the connection to the Alfresco server
	Defining the document
	Executing your Job

	tBonitaDeploy
	tBonitaDeploy Properties
	Related Scenario

	tBonitaInstantiateProcess
	tBonitaInstantiateProcess Properties
	Scenario: Executing a Bonita process via a Talend Job
	Setting up the Job
	Configuring the Basic settings of tBonitaDeploy
	Configuring the Basic settings of tFixedFlowInput
	Configuring the Basic settings of tBonitaInstantiateProcess
	Job Execution

	tCentricCRMInput
	tCentricCRMInput Properties
	Related Scenario

	tCentricCRMOutput
	tCentricCRMOutput Properties
	Related Scenario

	tHL7Input
	tHL7Input Properties
	Scenario: Retrieving information about patients and events from an HL7 file
	Configuring the editor of tHL7Input
	Job Execution

	tHL7Output
	tHL7Output Properties
	Related scenario

	tMarketoInput
	tMarketoInput Properties
	Related Scenario

	tMarketoListOperation
	tMarketoListOperation Properties
	Scenario: Adding a lead record to a list in the Marketo DB
	Setting up the Job
	Configuring the input component
	Configuring tMarketoListOperation
	Job Execution

	tMarketoOutput
	tMarketoOutput Properties
	Scenario: Data transmission between Marketo DB and an external system
	Setting up the Job
	Configuring tFileInputDelimited
	Configuring tMarketoOutput
	Configuring tMarketoInput
	Configuring tFileOutputDelimited
	Using Java scripts to count API calls
	Job execution

	tMicrosoftCrmInput
	tMicrosoftCrmInput Properties
	Scenario: Writing data in a Microsoft CRM database and putting conditions on columns to extract specified rows
	Setting up the Job
	Configuring tFileInputDelimited
	Configuring tMicrosoftCrmOutput
	Configuring tMicrosoftCrmInput
	Configuring tFileOutputDelimited
	Job execution

	tMicrosoftCrmOutput
	tMicrosoftCrmOutput Properties
	Related Scenario

	tMSAXInput
	tMSAXInput properties
	Related scenarios

	tMSAXOutput
	tMSAXOutput properties
	Scenario 1: Inserting data in a defined table in a MicrosoftAX server
	Setting up the Job
	Configuring tFixedFlowInput
	Configuring tMSAXOutput
	Job execution

	Scenario 2: Deleting data from a defined table in a MicrosoftAX server
	Setting up the Job
	Configuring tFixedFlowInput
	Setting up the connection to the MicrosoftAX server
	Defining the action on data
	Job execution

	tOpenbravoERPInput
	tOpenbravoERPInput properties
	Related Scenario

	tOpenbravoERPOutput
	tOpenbravoERPOutput properties
	Related scenario

	tSageX3Input
	tSageX3Input Properties
	Scenario: Using query key to extract data from a given Sage X3 system
	Setting up the Job
	Configuring the schema of tSageX3Input
	Configuring the connection to the Sage X3 Web server
	Setting up the mapping and configuring the query condition
	Job execution

	tSageX3Output
	tSageX3Output Properties
	Scenario: Using a Sage X3 Web service to insert data into a given Sage X3 system
	Setting up the Job
	Configuring the schema for the input data
	Setting up the connection to the Sage X3 Web server
	Setting up the mapping
	Job execution

	tSalesforceBulkExec
	tSalesforceBulkExec Properties
	Related Scenario:

	tSalesforceConnection
	tSalesforceConnection properties
	Related scenario

	tSalesforceGetDeleted
	tSalesforceGetDeleted properties
	Scenario: Recovering deleted data from the Salesforce server
	Setting up the Job
	Setting up the connection to the Salesforce server
	Setting the search condition
	Job execution

	tSalesforceGetServerTimestamp
	tSalesforceGetServerTimestamp properties
	Related scenarios

	tSalesforceGetUpdated
	tSalesforceGetUpdated properties
	Related scenarios

	tSalesforceInput
	tSalesforceInput Properties
	Scenario: Using queries to extract data from a Salesforce database
	Setting up the Job
	Setting up the connection to the Salesforce server for the parent object
	Setting the query and the schema for the parent object
	Setting up the connection to the Salesforce server for the child object
	Setting the query and the schema for the child object
	Job execution

	tSalesforceOutput
	tSalesforceOutput Properties
	Scenario 1: Deleting data from the Account object
	Dragging and dropping as well as connecting the components
	Configuring the components
	Executing the Job

	Scenario 2: Gathering erroneous data while inserting data to a module at Salesforce.com
	Dragging and dropping components and linking them together
	Configuring the components
	Executing the Job

	tSalesforceOutputBulk
	tSalesforceOutputBulk Properties
	Scenario: Inserting transformed bulk data into your Salesforce.com
	Setting up the Job
	Configuring the input component
	Setting up the mapping
	Defining the output path
	Setting up the connection to the Salesforce server
	Configuring the output component
	Job execution

	tSalesforceOutputBulkExec
	tSalesforceOutputBulkExec Properties
	Scenario: Inserting bulk data into your Salesforce.com
	Setting up the Job
	Setting the input data
	Setting up the connection to the Salesforce server
	Job execution

	tSAPBWInput
	tSAPBWInput Properties
	Scenario: Reading data from SAP BW database
	Set up the Job
	Set up the jdbc connection to the SAP BW server
	Set up a query
	Display the fetched data on the console

	tSAPCommit
	tSAPCommit Properties
	Related scenario

	tSAPConnection
	tSAPConnection properties
	Related scenarios

	tSAPInput
	tSAPInput Properties
	Scenario 1: Retrieving metadata from the SAP system
	Setting and configuring the SAP connection using wizard
	Retrieving different schemas of the SAP functions
	Retrieving the company metadata

	Scenario 2: Reading data in the different schemas of the RFC_READ_TABLE function
	Setting and configuring the SAP connection using wizard
	Retrieving the data column names of the SFLIGHT table

	tSAPOutput
	tSAPOutput Properties
	Related scenario

	tSAPRollback
	tSAPRollback properties
	Related scenarios

	tSugarCRMInput
	tSugarCRMInput Properties
	Scenario: Extracting account data from SugarCRM
	Setting up the Job
	Configuring the input component
	Job execution

	tSugarCRMOutput
	tSugarCRMOutput Properties
	Related Scenario

	tVtigerCRMInput
	tVtigerCRMInput Properties
	Related Scenario

	tVtigerCRMOutput
	tVtigerCRMOutput Properties
	Related Scenario

	Business Intelligence components
	tBarChart
	tBarChart properties
	Scenario: Creating a bar chart from the input data
	Setting the input data
	Setting the mapping
	Setting the output data
	Setting the input data for tBarChart
	Configuring the tBarChart component
	Job execution

	tDB2SCD
	tDB2SCD properties
	Related scenarios

	tDB2SCDELT
	tDB2SCDELT Properties
	Related Scenario

	tGreenplumSCD
	tGreenplumSCD Properties
	Related scenario

	tInformixSCD
	tInformixSCD properties
	Related scenario

	tIngresSCD
	tIngresSCD Properties
	Related scenario

	tJasperOutput
	tJasperOutput Properties
	Scenario: Generating a report against a .jrxml template
	Setting up the Job
	Configuring the input component
	Configuring the output component
	Job execution

	tJasperOutputExec
	tJasperOutputExec Properties
	Related Scenario

	tLineChart
	tLineChart properties
	Scenario: Creating a line chart to ease trend analysis
	Configuring the input component
	Configuration in the tMap editor
	Setting up the mapping
	Configuring the input component for tLineChart
	Configuring tLineChart
	Job execution

	tMondrianInput
	tMondrianInput Properties
	Scenario: Cross-join tables
	Setting up the Job
	Setting up the DB connection
	Configuring the DB query
	Job execution

	tMSSqlSCD
	tMSSqlSCD Properties
	Related scenario

	tMysqlSCD
	tMysqlSCD Properties
	SCD management methodologies
	SCD keys
	Combining SCD types

	Scenario: Tracking changes using Slowly Changing Dimensions (type 0 through type 3)
	Defining the main flow of the Job
	Configuring the DB connection and the input component
	Configuring tMysqlSCD and tMysqlCommit
	Setting up the SCD editor
	Creating the SCD table
	Job execution

	tMysqlSCDELT
	tMysqlSCDELT Properties
	Related Scenario

	tOracleSCD
	tOracleSCD Properties
	Related scenario

	tOracleSCDELT
	tOracleSCDELT Properties
	Related Scenario

	tPaloCheckElements
	tPaloCheckElements Properties
	Related scenario

	tPaloConnection
	tPaloConnection Properties
	Related scenario

	tPaloCube
	tPaloCube Properties
	Scenario: Creating a cube in an existing database
	Configuring the tPaloCube component
	Job execution

	tPaloCubeList
	tPaloCubeList Properties
	Discovering the read-only output schema of tPaloCubeList
	Scenario: Retrieving detailed cube information from a given database
	Setting up the Job
	Configuring the tPaloCube component
	Job execution

	tPaloDatabase
	tPaloDatabase Properties
	Scenario: Creating a database

	tPaloDatabaseList
	tPaloDatabaseList Properties
	Discovering the read-only output schema of tPaloDatabaseList
	Scenario: Retrieving detailed database information from a given Palo server
	Setting up the Job
	Configuring the tPaloDatabaseList component
	Job execution

	tPaloDimension
	tPaloDimension Properties
	Scenario: Creating a dimension with elements
	Setting up the Job
	Setting up the DB connection
	Configuring the input component
	Configuration in the tMap editor
	Configuring the tPaloDimension component
	Job execution

	tPaloDimensionList
	tPaloDimensionList Properties
	Discovering the read-only output schema of tPaloDimensionList
	Scenario: Retrieving detailed dimension information from a given database
	Setting up the Job
	Configuring the tPaloDimensionList component
	Job execution

	tPaloInputMulti
	tPaloInputMulti Properties
	Scenario: Retrieving dimension elements from a given cube
	Setting up the Job
	Setting up the DB connection
	Configuring the Cube Query
	Job execution

	tPaloOutput
	tPaloOutput Properties
	Related scenario

	tPaloOutputMulti
	tPaloOutputMulti Properties
	Scenario 1: Writing data into a given cube
	Setting up the Job
	Configuring the input component
	Configuring the output component
	Job execution

	Scenario 2: Rejecting inflow data when the elements to be written do not exist in a given cube
	Setting up the Job
	Configuring the input component
	Configuring the tPaloCheckElements component
	Configuring the output component
	Job execution

	tPaloRule
	tPaloRule Properties
	Scenario: Creating a rule in a given cube
	Setting up the DB connection
	Setting the Cube rules
	Job execution

	tPaloRuleList
	tPaloRuleList Properties
	Discovering the read-only output schema of tPaloRuleList
	Scenario: Retrieving detailed rule information from a given cube
	Setting up the Job
	Configuring the tPaloRuleList component
	Job execution

	tParAccelSCD
	tParAccelSCD Properties
	Related scenario

	tPostgresPlusSCD
	tPostgresPlusSCD Properties
	Related scenario

	tPostgresPlusSCDELT
	tPostgresPlusSCDELT Properties
	Related Scenario

	tPostgresqlSCD
	tPostgresqlSCD Properties
	Related scenario

	tPostgresqlSCDELT
	tPostgresqlSCDELT Properties
	Related Scenario

	tSPSSInput
	tSPSSInput properties
	Scenario: Displaying the content of an SPSS .sav file
	Setting up the Job
	Configuring the input component
	Job execution
	Translating the stored values

	tSPSSOutput
	tSPSSOutput properties
	Scenario: Writing data in an .sav file
	Setting up the Job
	Configuring the input component
	Configuring the output component
	Job execution

	tSPSSProperties
	tSPSSProperties properties
	Related scenarios

	tSPSSStructure
	tSPSSStructure properties
	Related scenarios

	tSybaseSCD
	tSybaseSCD properties
	Related scenarios

	tSybaseSCDELT
	tSybaseSCDELT Properties
	Related Scenario

	Cloud components
	tAmazonMysqlClose
	tAmazonMysqlClose properties
	Related scenario

	tAmazonMysqlCommit
	tAmazonMysqlCommit Properties
	Related scenario

	tAmazonMysqlConnection
	tAmazonMysqlConnection Properties
	Scenario: Inserting data in mother/daughter tables
	Setting up the Job
	Setting up the DB connection
	Configuring the input component
	Configuring the tMap component
	Configuring the output component
	Configuring the tAmazonMysqlCommit component
	Job execution

	tAmazonMysqlInput
	tAmazonMysqlInput properties
	Scenario1: Writing columns from a MySQL database to an output file
	Setting up the Job
	Configuring the input component
	Configuring the output component
	Job execution

	tAmazonMysqlOutput
	tAmazonMysqlOutput properties
	Scenario 1: Adding a new column and altering data in a DB table
	Setting up the Job
	Configuring the input component
	Configuring the tMap component
	Configuring the output component
	Job execution

	Scenario 2: Updating data in a database table
	Setting up the Job
	Configuring the input component
	Configuring the output component
	Job execution

	Scenario 3: Retrieve data in error with a Reject link
	Setting up the Job
	Configuring the input component
	Configuring the tMap component
	Configuring the output component
	Job execution

	tAmazonMysqlRollback
	tAmazonMysqlRollback properties
	Scenario: Rollback from inserting data in mother/daughter tables

	tAmazonMysqlRow
	tAmazonMysqlRow properties
	Scenario 1: Removing and regenerating a MySQL table index
	Setting up the Job
	Configuring the tAmazonMysqlRow component
	Configuring the output component
	Job execution

	Scenario 2: Using PreparedStatement objects to query data
	Configuring the input component
	Setting up the DB connection
	Configuring the Advanced settings of tAmazonMysqlRow
	Configuring the tParseRecordSet component
	Configuring the output component
	Job execution

	tAmazonOracleClose
	tAmazonOracleClose properties
	Related scenario

	tAmazonOracleCommit
	tAmazonOracleCommit Properties
	Related scenario

	tAmazonOracleConnection
	tAmazonOracleConnection Properties
	Related scenario

	tAmazonOracleInput
	tAmazonOracleInput properties
	Related scenarios

	tAmazonOracleOutput
	tAmazonOracleOutput properties
	Related scenarios

	tAmazonOracleRollback
	tAmazonOracleRollback properties
	Related scenario

	tAmazonOracleRow
	tAmazonOracleRow properties
	Related scenarios

	tMarketoInput
	tMarketoListOperation
	tMarketoOutput
	tSalesforceBulkExec
	tSalesforceConnection
	tSalesforceGetDeleted
	tSalesforceGetServerTimestamp
	tSalesforceGetUpdated
	tSalesforceInput
	tSalesforceOutput
	tSalesforceOutputBulk
	tSalesforceOutputBulkExec
	tSugarCRMInput
	tSugarCRMOutput

	Custom Code components
	tGroovy
	tGroovy properties
	Related Scenarios

	tGroovyFile
	tGroovyFile properties
	Scenario: Calling a file which contains Groovy code
	Setting up the Job
	Configuring the tGroovyFile component
	Job execution

	tJava
	tJava properties
	Scenario: Printing out a variable content
	Setting up the Job
	Configuring the input component
	Configuring the output component
	Configuring the tJava component
	Job execution

	tJavaFlex
	tJavaFlex properties
	Scenario 1: Generating data flow
	Setting up the Job
	Configuring the tJavaFlex component
	Saving and executing the Job

	Scenario 2: Processing rows of data with tJavaFlex
	Setting up the Job
	Configuring the input component
	Configuring the tJavaFlex component
	Saving and executing the Job

	tJavaRow
	tJavaRow properties
	Scenario: Transforming data line by line using tJavaRow
	Setting up the Job
	Configuring the components
	Saving and executing the Job

	tLibraryLoad
	tLibraryLoad properties
	Scenario: Checking the format of an e-mail addressl
	Setting up the Job
	Configuring the tLibraryLoad component
	Configuring the tJava component
	Job execution

	tSetGlobalVar
	tSetGlobalVar properties
	Scenario: Printing out the content of a global variable
	Setting up the Job
	Configuring the tSetGlobalVar component
	Job execution

	Data Quality components
	tAddCRCRow
	tAddCRCRow properties
	Scenario: Adding a surrogate key to a file
	Setting up the Job
	Configuring the input component
	Configuring the tAddCRCRow component
	Job execution

	tChangeFileEncoding
	tExtractRegexFields
	tFuzzyMatch
	tFuzzyMatch properties
	Scenario 1: Levenshtein distance of 0 in first names
	Scenario 2: Levenshtein distance of 1 or 2 in first names
	Scenario 3: Metaphonic distance in first name

	tIntervalMatch
	tIntervalMatch properties
	Scenario: Identifying Ip country

	tReplaceList
	tReplaceList Properties
	Scenario: Replacement from a reference file

	tSchemaComplianceCheck
	tSchemaComplianceCheck Properties
	Scenario: Validating data against schema

	tUniqRow
	tUniqRow Properties
	Scenario 1: Deduplicating entries
	Setting up the Job
	Configuring the components
	Saving and executing the Job

	tUniservBTGeneric
	tUniservBTGeneric properties
	Scenario: Execution of a Job in the

	tUniservRTConvertName
	tUniservRTConvertName properties
	Scenario: Analysis of a name line and assignment of the salutation

	tUniservRTMailBulk
	tUniservRTMailBulk properties
	Scenario: Creating an index pool

	tUniservRTMailOutput
	tUniservRTMailOutput properties
	Related scenarios

	tUniservRTMailSearch
	tUniservRTMailSearch properties
	Scenario: Adding contacts to the mailRetrieval index pool

	tUniservRTPost
	tUniservRTPost properties
	Scenario 1: Checking and correcting the postal code, city and street
	Scenario 2: Checking and correcting the postal code, city and street, as well as rejecting the unfeasible

	Databases - traditional components
	tAccessBulkExec
	tAccessBulkExec properties
	Related scenarios

	tAccessCommit
	tAccessCommit Properties
	Related scenario

	tAccessConnection
	tAccessConnection Properties
	Scenario: Inserting data in parent/child tables

	tAccessInput
	tAccessInput properties
	Related scenarios

	tAccessOutput
	tAccessOutput properties
	Related scenarios

	tAccessOutputBulk
	tAccessOutputBulk properties
	Related scenarios

	tAccessOutputBulkExec
	tAccessOutputBulkExec properties
	Related scenarios

	tAccessRollback
	tAccessRollback properties
	Related scenarios

	tAccessRow
	tAccessRow properties
	Related scenarios

	tAS400Close
	tAS400Close properties
	Related scenario

	tAS400Commit
	tAS400Commit Properties
	Related scenario

	tAS400Connection
	tAS400Connection Properties
	Related scenario

	tAS400Input
	tAS400Input properties
	Related scenarios

	tAS400LastInsertId
	tAS400LastInsertId properties
	Related scenario

	tAS400Output
	tAS400Output properties
	Related scenarios

	tAS400Rollback
	tAS400Rollback properties
	Related scenarios

	tAS400Row
	tAS400Row properties
	Related scenarios

	tDB2BulkExec
	tDB2BulkExec properties
	Related scenarios

	tDB2Close
	tDB2Close properties
	Related scenario

	tDB2Commit
	tDB2Commit Properties
	Related scenario

	tDB2Connection
	tDB2Connection properties
	Related scenarios

	tDB2Input
	tDB2Input properties
	Related scenarios

	tDB2Output
	tDB2Output properties
	Related scenarios

	tDB2Rollback
	tDB2Rollback properties
	Related scenarios

	tDB2Row
	tDB2Row properties
	Related scenarios

	tDB2SCD
	tDB2SCDELT
	tDB2SP
	tDB2SP properties
	Related scenarios

	tInformixBulkExec
	tInformixBulkExec Properties
	Related scenario

	tInformixClose
	tInformixClose properties
	Related scenario

	tInformixCommit
	tInformixCommit properties
	Related Scenario

	tInformixConnection
	tInformixConnection properties
	Related scenario

	tInformixInput
	tInformixInput properties
	Related scenarios

	tInformixOutput
	tInformixOutput properties
	Related scenarios

	tInformixOutputBulk
	tInformixOutputBulk properties
	Related scenario

	tInformixOutputBulkExec
	tInformixOutputBulkExec properties
	Related scenario

	tInformixRollback
	tInformixRollback properties
	Related Scenario

	tInformixRow
	tInformixRow properties
	Related scenarios

	tInformixSCD
	tInformixSP
	tInformixSP properties
	Related scenario

	tMSSqlBulkExec
	tMSSqlBulkExec properties
	Related scenarios

	tMSSqlColumnList
	tMSSqlColumnList Properties
	Related scenario

	tMSSqlClose
	tMSSqlClose properties
	Related scenario

	tMSSqlCommit
	tMSSqlCommit properties
	Related scenarios

	tMSSqlConnection
	tMSSqlConnection properties
	Related scenarios

	tMSSqlInput
	tMSSqlInput properties
	Related scenarios

	tMSSqlLastInsertId
	tMSSqlLastInsertId properties
	Related scenario

	tMSSqlOutput
	tMSSqlOutput properties
	Related scenarios

	tMSSqlOutputBulk
	tMSSqlOutputBulk properties
	Related scenarios

	tMSSqlOutputBulkExec
	tMSSqlOutputBulkExec properties
	Related scenarios

	tMSSqlRollback
	tMSSqlRollback properties
	Related scenario

	tMSSqlRow
	tMSSqlRow properties
	Related scenarios

	tMSSqlSCD
	tMSSqlSP
	tMSSqlSP Properties
	Related scenario

	tMSSqlTableList
	tMSSqlTableList Properties
	Related scenario

	tMysqlBulkExec
	tMysqlBulkExec properties
	Related scenarios

	tMysqlClose
	tMysqlClose properties
	Related scenario

	tMysqlColumnList
	tMysqlColumnList Properties
	Scenario: Iterating on a DB table and listing its column names

	tMysqlCommit
	tMysqlCommit Properties
	Related scenario

	tMysqlConnection
	tMysqlConnection Properties
	Scenario: Inserting data in mother/daughter tables

	tMysqlInput
	tMysqlInput properties
	Scenario 1: Writing columns from a MySQL database to an output file
	Dragging and dropping components and linking them together
	Configuring the components
	Executing the Job

	Scenario 2: Using context parameters when reading a table from a MySQL database
	Dragging and dropping components and linking them together
	Configuring the components
	Executing the Job

	tMysqlLastInsertId
	tMysqlLastInsertId properties
	Scenario: Get the ID for the last inserted record

	tMysqlOutput
	tMysqlOutput properties
	Scenario 1: Adding a new column and altering data in a DB table
	Scenario 2: Updating data in a database table
	Scenario 3: Retrieve data in error with a Reject link

	tMysqlOutputBulk
	tMysqlOutputBulk properties
	Scenario: Inserting transformed data in MySQL database
	Dropping and linking components
	Configuring the components
	Saving and executing the Job

	tMysqlOutputBulkExec
	tMysqlOutputBulkExec properties
	Scenario: Inserting data in MySQL database

	tMysqlRollback
	tMysqlRollback properties
	Scenario: Rollback from inserting data in mother/daughter tables

	tMysqlRow
	tMysqlRow properties
	Scenario 1: Removing and regenerating a MySQL table index
	Scenario 2: Using PreparedStatement objects to query data

	tMysqlSCD
	tMysqlSCDELT
	tMysqlSP
	tMysqlSP Properties
	Scenario: Finding a State Label using a stored procedure

	tMysqlTableList
	tMysqlTableList Properties
	Scenario: Iterating on DB tables and deleting their content using a user-defined SQL template
	Related scenario

	tOracleBulkExec
	tOracleBulkExec properties
	Scenario: Truncating and inserting file data into Oracle DB

	tOracleClose
	tOracleClose properties
	Related scenario

	tOracleCommit
	tOracleCommit Properties
	Related scenario

	tOracleConnection
	tOracleConnection Properties
	Related scenario

	tOracleInput
	tOracleInput properties
	Scenario 1: Using context parameters when reading a table from an Oracle database
	Dragging and dropping components and linking them together
	Configuring the components
	Executing the Job

	Related scenarios

	tOracleOutput
	tOracleOutput properties
	Related scenarios

	tOracleOutputBulk
	tOracleOutputBulk properties
	Related scenarios

	tOracleOutputBulkExec
	tOracleOutputBulkExec properties
	Related scenarios

	tOracleRollback
	tOracleRollback properties
	Related scenario

	tOracleRow
	tOracleRow properties
	Related scenarios

	tOracleSCD
	tOracleSCDELT
	tOracleSP
	tOracleSP Properties
	Scenario: Checking number format using a stored procedure

	tOracleTableList
	tOracleTableList properties
	Related scenarios

	tPostgresqlBulkExec
	tPostgresqlBulkExec properties
	Related scenarios

	tPostgresqlCommit
	tPostgresqlCommit Properties
	Related scenario

	tPostgresqlClose
	tPostgresqlClose properties
	Related scenario

	tPostgresqlConnection
	tPostgresqlConnection Properties
	Related scenario

	tPostgresqlInput
	tPostgresqlInput properties
	Related scenarios

	tPostgresqlOutput
	tPostgresqlOutput properties
	Related scenarios

	tPostgresqlOutputBulk
	tPostgresqlOutputBulk properties
	Related scenarios

	tPostgresqlOutputBulkExec
	tPostgresqlOutputBulkExec properties
	Related scenarios

	tPostgresqlRollback
	tPostgresqlRollback properties
	Related scenario

	tPostgresqlRow
	tPostgresqlRow properties
	Related scenarios

	tPostgresqlSCD
	tPostgresqlSCDELT
	tSybaseBulkExec
	tSybaseBulkExec Properties
	Related scenarios

	tSybaseClose
	tSybaseClose properties
	Related scenario

	tSybaseCommit
	tSybaseCommit Properties
	Related scenario

	tSybaseConnection
	tSybaseConnection Properties
	Related scenarios

	tSybaseInput
	tSybaseInput Properties
	Related scenarios

	tSybaseIQBulkExec
	tSybaseIQBulkExec Properties
	Related scenarios

	tSybaseIQOutputBulkExec
	tSybaseIQOutputBulkExec properties
	Related scenarios

	tSybaseOutput
	tSybaseOutput Properties
	Related scenarios

	tSybaseOutputBulk
	tSybaseOutputBulk properties
	Related scenarios

	tSybaseOutputBulkExec
	tSybaseOutputBulkExec properties
	Related scenarios

	tSybaseRollback
	tSybaseRollback properties
	Related scenarios

	tSybaseRow
	tSybaseRow Properties
	Related scenarios

	tSybaseSCD
	tSybaseSCDELT
	tSybaseSP
	tSybaseSP properties
	Related scenarios

	Databases - appliance/datawarehouse components
	tGreenplumBulkExec
	tGreenplumBulkExec Properties
	Related scenarios

	tGreenplumClose
	tGreenplumClose properties
	Related scenario

	tGreenplumCommit
	tGreenplumCommit Properties
	Related scenario

	tGreenplumConnection
	tGreenplumConnection properties
	Related scenarios

	tGreenplumGPLoad
	tGreenplumGPLoad properties
	Related scenario

	tGreenplumInput
	tGreenplumInput properties
	Related scenarios

	tGreenplumOutput
	tGreenplumOutput Properties
	Related scenarios

	tGreenplumOutputBulk
	tGreenplumOutputBulk properties
	Related scenarios

	tGreenplumOutputBulkExec
	tGreenplumOutputBulkExec properties
	Related scenarios

	tGreenplumRollback
	tGreenplumRollback properties
	Related scenarios

	tGreenplumRow
	tGreenplumRow Properties
	Related scenarios

	tGreenplumSCD
	tIngresClose
	tIngresClose properties
	Related scenario

	tIngresCommit
	tIngresCommit Properties
	Related scenario

	tIngresConnection
	tIngresConnection Properties
	Related scenarios

	tIngresInput
	tIngresInput properties
	Related scenarios

	tIngresOutput
	tIngresOutput properties
	Related scenarios

	tIngresRollback
	tIngresRollback properties
	Related scenarios

	tIngresRow
	tIngresRow properties
	Related scenarios

	tIngresSCD
	tNetezzaBulkExec
	tNetezzaBulkExec properties
	Related scenarios

	tNetezzaClose
	tNetezzaClose properties
	Related scenario

	tNetezzaCommit
	tNetezzaCommit Properties
	Related scenario

	tNetezzaConnection
	tNetezzaConnection Properties
	Related scenarios

	tNetezzaInput
	tNetezzaInput properties
	Related scenarios

	tNetezzaNzLoad
	tNetezzaNzLoad properties
	Loading DATE, TIME and TIMESTAMP columns

	Related scenario

	tNetezzaOutput
	tNetezzaOutput properties
	Related scenarios

	tNetezzaRollback
	tNetezzaRollback properties
	Related scenarios

	tNetezzaRow
	tNetezzaRow properties
	Related scenarios

	tParAccelBulkExec
	tParAccelBulkExec Properties
	Related scenarios

	tParAccelClose
	tParAccelClose properties
	Related scenario

	tParAccelCommit
	tParAccelCommit Properties
	Related scenario

	tParAccelConnection
	tParAccelConnection Properties
	Related scenario

	tParAccelInput
	tParAccelInput properties
	Related scenarios

	tParAccelOutput
	tParAccelOutput Properties
	Related scenarios

	tParAccelOutputBulk
	tParAccelOutputBulk properties
	Related scenarios

	tParAccelOutputBulkExec
	tParAccelOutputBulkExec Properties
	Related scenarios

	tParAccelRollback
	tParAccelRollback properties
	Related scenario

	tParAccelRow
	tParAccelRow Properties
	Related scenarios

	tParAccelSCD
	tTeradataClose
	tTeradataClose properties
	Related scenario

	tTeradataCommit
	tTeradataCommit Properties
	Related scenario

	tTeradataConnection
	tTeradataConnection Properties
	Related scenario

	tTeradataFastExport
	tTeradataFastExport Properties
	Related scenario

	tTeradataFastLoad
	tTeradataFastLoad Properties
	Related scenario

	tTeradataFastLoadUtility
	tTeradataFastLoadUtility Properties
	Related scenario

	tTeradataInput
	tTeradataInput Properties
	Related scenarios

	tTeradataMultiLoad
	tTeradataMultiLoad Properties
	Related scenario

	tTeradataOutput
	tTeradataOutput Properties
	Related scenarios

	tTeradataRollback
	tTeradataRollback Properties
	Related scenario

	tTeradataRow
	tTeradataRow Properties
	Related scenarios

	tTeradataTPTUtility
	tTeradataTPTUtility Properties
	Related scenario

	tTeradataTPump
	tTeradataTPump Properties
	Scenario: Inserting data into a Teradata database table
	Dropping components
	Configuring the components
	Executing the Job

	tVectorWiseCommit
	tVectorWiseCommit Properties
	Related scenario

	tVectorWiseConnection
	tVectorWiseConnection Properties
	Related scenario

	tVectorWiseInput
	tVectorWiseInput Properties
	Related scenario

	tVectorWiseOutput
	tVectorWiseOutput Properties
	Related scenario

	tVectorWiseRollback
	tVectorWiseRollback Properties
	Related scenario

	tVectorWiseRow
	tVectorWiseRow Properties
	Related scenario

	tVerticaBulkExec
	tVerticaBulkExec Properties
	Related scenarios

	tVerticaClose
	tVerticaClose properties
	Related scenario

	tVerticaCommit
	tVerticaCommit Properties
	Related scenario

	tVerticaConnection
	tVerticaConnection Properties
	Related scenario

	tVerticaInput
	tVerticaInput Properties
	Related scenarios

	tVerticaOutput
	tVerticaOutput Properties
	Related scenarios

	tVerticaOutputBulk
	tVerticaOutputBulk Properties
	Related scenarios

	tVerticaOutputBulkExec
	tVerticaOutputBulkExec Properties
	Related scenarios

	tVerticaRollback
	tVerticaRollback Properties
	Related scenario

	tVerticaRow
	tVerticaRow Properties
	Related scenario

	Databases - other components
	tCreateTable
	tCreateTable Properties
	Scenario: Creating new table in a Mysql Database

	tDBInput
	tDBInput properties
	Scenario 1: Displaying selected data from DB table
	Scenario 2: Using StoreSQLQuery variable

	tDBOutput
	tDBOutput properties
	Scenario: Writing a row to a table in the MySql database via an ODBC connection

	tDBSQLRow
	tDBSQLRow properties
	Scenario: Resetting a DB auto-increment

	tEXAInput
	tEXAInput properties
	Related scenarios

	tEXAOutput
	tEXAOutput properties
	Related scenario

	tEXARow
	tEXARow properties
	Related scenarios

	tEXistConnection
	tEXistConnection properties
	Related scenarios

	tEXistDelete
	tEXistDelete properties
	Related scenario

	tEXistGet
	tEXistGet properties
	Scenario: Retrieve resources from a remote eXist DB server

	tEXistList
	tEXistList properties
	Related scenario

	tEXistPut
	tEXistPut properties
	Related scenario

	tEXistXQuery
	tEXistXQuery properties
	Related scenario

	tEXistXUpdate
	tEXistXUpdate properties
	Related scenario

	tFirebirdClose
	tFirebirdClose properties
	Related scenario

	tFirebirdCommit
	tFirebirdCommit Properties
	Related scenario

	tFirebirdConnection
	tFirebirdConnection properties
	Related scenarios

	tFirebirdInput
	tFirebirdInput properties
	Related scenarios

	tFirebirdOutput
	tFirebirdOutput properties
	Related scenarios

	tFirebirdRollback
	tFirebirdRollback properties
	Related scenario

	tFirebirdRow
	tFirebirdRow properties
	Related scenarios

	tHiveClose
	tHiveConnection
	tHiveRow
	tHSQLDbInput
	tHSQLDbInput properties
	Related scenarios

	tHSQLDbOutput
	tHSQLDbOutput properties
	Related scenarios

	tHSQLDbRow
	tHSQLDbRow properties
	Related scenarios

	tInterbaseClose
	tInterbaseClose properties
	Related scenario

	tInterbaseCommit
	tInterbaseCommit Properties
	Related scenario

	tInterbaseConnection
	tInterbaseConnection properties
	Related scenarios

	tInterbaseInput
	tInterbaseInput properties
	Related scenarios

	tInterbaseOutput
	tInterbaseOutput properties
	Related scenarios

	tInterbaseRollback
	tInterbaseRollback properties
	Related scenarios

	tInterbaseRow
	tInterbaseRow properties
	Related scenarios

	tJavaDBInput
	tJavaDBInput properties
	Related scenarios

	tJavaDBOutput
	tJavaDBOutput properties
	Related scenarios

	tJavaDBRow
	tJavaDBRow properties
	Related scenarios

	tJDBCColumnList
	tJDBCColumnList Properties
	Related scenario

	tJDBCClose
	tJDBCClose properties
	Related scenario

	tJDBCCommit
	tJDBCCommit Properties
	Related scenario

	tJDBCConnection
	tJDBCConnection Properties
	Related scenario

	tJDBCInput
	tJDBCInput properties
	Related scenarios

	tJDBCOutput
	tJDBCOutput properties
	Related scenarios

	tJDBCRollback
	tJDBCRollback properties
	Related scenario

	tJDBCRow
	tJDBCRow properties
	Related scenarios

	tJDBCSP
	tJDBCSP Properties
	Related scenario

	tJDBCTableList
	tJDBCTableList Properties
	Related scenario

	tLDAPAttributesInput
	tLDAPAttributesInput Properties
	Related scenario

	tLDAPConnection
	tLDAPConnection Properties
	Related scenarios

	tLDAPInput
	tLDAPInput Properties
	Scenario: Displaying LDAP directory’s filtered content

	tLDAPOutput
	tLDAPOutput Properties
	Scenario: Editing data in a LDAP directory

	tLDAPRenameEntry
	tLDAPRenameEntry properties
	Related scenarios

	tMaxDBInput
	tMaxDBInput properties
	Related scenario

	tMaxDBOutput
	tMaxDBOutput properties
	Related scenario

	tMaxDBRow
	tMaxDBRow properties
	Related scenario

	tParseRecordSet
	tParseRecordSet properties
	Related Scenario

	tPostgresPlusBulkExec
	tPostgresPlusBulkExec properties
	Related scenarios

	tPostgresPlusClose
	tPostgresPlusClose properties
	Related scenario

	tPostgresPlusCommit
	tPostgresPlusCommit Properties
	Related scenario

	tPostgresPlusConnection
	tPostgresPlusConnection Properties
	Related scenario

	tPostgresPlusInput
	tPostgresPlusInput properties
	Related scenarios

	tPostgresPlusOutput
	tPostgresPlusOutput properties
	Related scenarios

	tPostgresPlusOutputBulk
	tPostgresPlusOutputBulk properties
	Related scenarios

	tPostgresPlusOutputBulkExec
	tPostgresPlusOutputBulkExec properties
	Related scenarios

	tPostgresPlusRollback
	tPostgresPlusRollback properties
	Related scenarios

	tPostgresPlusRow
	tPostgresPlusRow properties
	Related scenarios

	tPostgresPlusSCD
	tPostgresPlusSCDELT
	tSasInput
	tSasInput properties
	Related scenarios

	tSasOutput
	tSasOutput properties
	Related scenarios

	tSQLiteClose
	tSQLiteClose properties
	Related scenario

	tSQLiteCommit
	tSQLiteCommit Properties
	Related scenario

	tSQLiteConnection
	SQLiteConnection properties
	Related scenarios

	tSQLiteInput
	tSQLiteInput Properties
	Scenario: Filtering SQlite data

	tSQLiteOutput
	tSQLiteOutput Properties
	Related Scenario

	tSQLiteRollback
	tSQLiteRollback properties
	Related scenarios

	tSQLiteRow
	tSQLiteRow Properties
	Scenario: Updating SQLite rows

	DotNET components
	tDotNETInstantiate
	tDotNETInstantiate properties
	Related scenario

	tDotNETRow
	tDotNETRow properties
	Scenario: Utilizing .NET in Talend
	Prerequisites
	Connecting components
	Configuring tDotNETInstantiate
	Configuring tDotNETRow
	Configuring tLogRow

	ELT components
	tCombinedSQLAggregate
	tCombinedSQLAggregate properties
	Scenario: Filtering and aggregating table columns directly on the DBMS

	tCombinedSQLFilter
	tCombinedSQLFilter Properties
	Related Scenario

	tCombinedSQLInput
	tCombinedSQLInput properties
	Related scenario

	tCombinedSQLOutput
	tCombinedSQLOutput properties
	Related scenario

	tELTJDBCInput
	tELTJDBCInput properties
	Related scenarios

	tELTJDBCMap
	tELTJDBCMap properties
	Related scenario:

	tELTJDBCOutput
	tELTJDBCOutput properties
	Related scenarios

	tELTMSSqlInput
	tELTMSSqlInput properties
	Related scenarios

	tELTMSSqlMap
	tELTMSSqlMap properties
	Related scenario:

	tELTMSSqlOutput
	tELTMSSqlOutput properties
	Related scenarios

	tELTMysqlInput
	tELTMysqlInput properties
	Related scenarios

	tELTMysqlMap
	tELTMysqlMap properties
	Connecting ELT components
	Mapping and joining tables
	Adding where clauses
	Generating the SQL statement

	Scenario 1: Aggregating table columns and filtering
	Scenario 2: ELT using an Alias table

	tELTMysqlOutput
	tELTMysqlOutput properties
	Related scenarios

	tELTOracleInput
	tELTOracleInput properties
	Related scenarios

	tELTOracleMap
	tELTOracleMap properties
	Connecting ELT components
	Mapping and joining tables
	Adding where clauses
	Generating the SQL statement

	Scenario: Updating Oracle DB entries

	tELTOracleOutput
	tELTOracleOutput properties
	Scenario: Using the Oracle MERGE function to update and add data simultaneously

	tELTPostgresqlInput
	tELTPostgresqlInput properties
	Related scenarios

	tELTPostgresqlMap
	tELTPostgresqlMap properties
	Related scenario:

	tELTPostgresqlOutput
	tELTPostgresqlOutput properties
	Related scenarios

	tELTSybaseInput
	tELTSybaseInput properties
	Related scenarios

	tELTSybaseMap
	tELTSybaseMap properties
	Related scenarios

	tELTSybaseOutput
	tELTSybaseOutput properties
	Related scenarios

	tELTTeradataInput
	tELTTeradataInput properties
	Related scenarios

	tELTTeradataMap
	tELTTeradataMap properties
	Connecting ELT components
	Mapping and joining tables
	Adding WHERE clauses
	Generating the SQL statement

	Related scenarios

	tELTTeradataOutput
	tELTTeradataOutput properties
	Related scenarios

	tSQLTemplateAggregate
	tSQLTemplateAggregate properties
	Scenario: Filtering and aggregating table columns directly on the DBMS

	tSQLTemplateCommit
	tSQLTemplateCommit properties
	Related scenario

	tSQLTemplateFilterColumns
	tSQLTemplateFilterColumns Properties
	Related Scenario

	tSQLTemplateFilterRows
	tSQLTemplateFilterRows Properties
	Related Scenario

	tSQLTemplateMerge
	tSQLTemplateMerge properties
	Scenario: Merging data directly on the DBMS

	tSQLTemplateRollback
	tSQLTemplateRollback properties
	Related scenarios

	ESB components
	tESBConsumer
	tESBConsumer properties
	Scenario: Returning valid email
	Dropping and linking the components
	Configuring the components
	Executing the Job

	tESBProviderFault
	tESBProviderFault properties
	Scenario: Returning Fault message

	tESBProviderRequest
	tESBProviderRequest properties
	Scenario: Service sending a message without expecting a response

	tESBProviderResponse
	tESBProviderResponse properties
	Scenario: Returning Hello world response

	tRESTRequest
	tRESTRequest properties
	Scenario 1: REST service accepting a HTTP request and sending a response
	Configuring the tRESTRequest component
	Configuring the tXMLMap component
	Configuring the tRESTResponse component
	Saving and executing the Job

	Scenario 2: Using URI Query parameters to explore the data of a database
	Creating the first subjob
	Creating the second subjob
	Configuring the tRESTRequest component
	Configuring the tMysqlInput component
	Configuring the tXMLMap component
	Configuring the tRESTResponse component

	Connecting the two subjobs
	Saving and executing the Job

	tRESTResponse
	tRESTResponse properties
	Related scenario

	File components
	tAdvancedFileOutputXML
	tApacheLogInput
	tApacheLogInput properties
	Scenario: Reading an Apache access-log file

	tCreateTemporaryFile
	tCreateTemporaryFile properties
	Scenario: Creating a temporary file and writing data in it

	tChangeFileEncoding
	tChangeFileEncoding Properties
	Scenario: Transforming the character encoding of a file.

	tFileArchive
	tFileArchive properties
	Scenario: Zip files using a tFileArchive

	tFileCompare
	tFileCompare properties
	Scenario: Comparing unzipped files

	tFileCopy
	tFileCopy Properties
	Scenario: Restoring files from bin

	tFileDelete
	tFileDelete Properties
	Scenario: Deleting files

	tFileExist
	tFileExist Properties
	Scenario: Checking for the presence of a file and creating it if it does not exist

	tFileInputARFF
	tFileInputARFF properties
	Scenario: Display the content of a ARFF file
	Dropping and linking components
	Configuring the components
	Saving and executing the Job

	tFileInputDelimited
	tFileInputDelimited properties
	Scenario: Delimited file content display
	Dropping and linking components
	Configuring the components
	Saving and executing the Job

	Scenario 2: Reading data from a remote file in streaming mode
	Dropping and linking components
	Configuring the components
	Configuring Job execution and executing the Job

	tFileInputEBCDIC
	tFileInputEBCDIC properties
	Scenario: Extracting data from an EBCDIC file and populating a database

	tFileInputExcel
	tFileInputExcel properties
	Related scenarios

	tFileInputFullRow
	tFileInputFull Row properties
	Scenario: Reading full rows in a delimited file

	tFileInputJSON
	tFileInputJSON properties
	Scenario: Extracting data from the fields of a JSON format file

	tFileInputLDIF
	tFileInputLDIF Properties
	Related scenario

	tFileInputMail
	tFileInputMail properties
	Scenario: Extracting key fields from an email

	tFileInputMSDelimited
	tFileInputMSDelimited properties
	The Multi Schema Editor

	Scenario: Reading a multi structure delimited file
	Dropping and linking components
	Configuring the components
	Saving and executing the Job

	tFileInputMSPositional
	tFileInputMSPositional properties
	Scenario: Reading data from a positional file
	Dropping the components
	Configuring the components
	Executing the Job

	tFileInputMSXML
	tFileInputMSXML Properties
	Scenario: Reading a multi structure XML file

	tFileInputPositional
	tFileInputPositional properties
	Scenario 1: From Positional to XML file
	Dropping and linking components
	Configuring data input
	Configuring data output
	Saving and executing the Job

	Scenario 2: Handling a positional file based on a dynamic schema
	Dropping and linking components
	Configuring the first subjob: creating a dynamic schema
	Configuring the second subjob: reading and writing positional data
	Saving and executing the Job

	tFileInputProperties
	tFileInputProperties properties
	Scenario: Reading and matching the keys and the values of different .properties files and outputting the results in a glossary

	tFileInputRegex
	tFileInputRegex properties
	Scenario: Regex to Positional file

	tFileInputXML
	tFileList
	tFileList properties
	Scenario: Iterating on a file directory

	tFileOutputARFF
	tFileOutputARFF properties
	Related scenarios

	tFileOutputDelimited
	tFileOutputDelimited properties
	Scenario 1: Writing data in a delimited file
	Dropping and linking components
	Configuring the components
	Saving and executing the Job

	Scenario 2: Utilizing Output Stream to save filtered data to a local file
	Dropping and linking components
	Configuring the components
	Saving and executing the Job

	tFileOutputEBCDIC
	tFileOutputEBCDIC properties
	Scenario: Creating an EBCDIC file using two delimited files

	tFileOutputExcel
	tFileOutputExcel Properties
	Related scenario

	tFileOutputJSON
	tFileOutputJSON properties
	Scenario: Writing a JSON structured file

	tFileOutputLDIF
	tFileOutputLDIF Properties
	Scenario: Writing DB data into an LDIF-type file
	Dropping and linking components
	Configuring the components
	Saving and executing the Job

	tFileOutputMSDelimited
	tFileOutputMSDelimited properties
	Related scenarios

	tFileOutputMSPositional
	tFileOutputMSPositional properties
	Related scenario

	tFileOutputMSXML
	tFileOutputMSXML Properties
	Defining the MultiSchema XML tree
	Importing the XML tree
	Creating manually the XML tree

	Mapping XML data from multiple schema sources
	Defining the node status
	Loop element
	Group element

	Related scenario

	tFileOutputPositional
	tFileOutputPositional Properties
	Related scenario

	tFileOutputProperties
	tFileOutputProperties properties
	Related scenarios

	tFileOutputXML
	tFileProperties
	tFileProperties Properties
	Scenario: Displaying the properties of a processed file

	tFileRowCount
	tFileRowCount properties
	Related scenario

	tFileTouch
	tFileTouch properties
	Related scenario

	tFileUnarchive
	tFileUnarchive Properties
	Related scenario

	tGPGDecrypt
	tGPGDecrypt Properties
	Scenario: Decrypt a GnuPG-encrypted file and display its content
	Dragging and linking the components
	Configuring the components
	Saving and executing the Job

	tNamedPipeClose
	tNamedPipeClose properties
	Related scenario

	tNamedPipeOpen
	tNamedPipeOpen properties
	Related scenario

	tNamedPipeOutput
	tNamedPipeOutput properties
	Scenario: Writing and loading data through a named-pipe
	Dropping and linking the components
	Configuring the components
	Saving and executing the Job

	tPivotToColumnsDelimited
	tPivotToColumnsDelimited Properties
	Scenario: Using a pivot column to aggregate data
	Dropping and linking components
	Configuring the components
	Saving and executing the Job

	Internet components
	tFileFetch
	tFileFetch properties
	Scenario 1: Fetching data through HTTP
	Dropping and linking components
	Configuring the components
	Saving and executing the Job

	Scenario 2: Reusing stored cookie to fetch files through HTTP
	Dropping and linking components
	Configuring the components
	Saving and executing the Job

	Related scenario

	tFileInputJSON
	tFTPConnection
	tFTPConnection properties
	Related scenarios

	tFTPDelete
	tFTPDelete properties
	Related scenario

	tFTPFileExist
	tFTPFileExist properties
	Related scenario

	tFTPFileList
	tFTPFileList properties
	Scenario: Iterating on a remote directory
	Dropping and linking components
	Configuring the components
	Saving and executing the Job

	tFTPFileProperties
	tFTPFileProperties Properties
	Related scenario

	tFTPGet
	tFTPGet properties
	Related scenario

	tFTPPut
	tFTPPut properties
	Scenario: Putting files on a remote FTP server
	Dropping and linking components
	Configuring the components
	Saving and executing the Job

	tFTPRename
	tFTPRename Properties
	Related scenario

	tFTPTruncate
	tFTPTruncate properties
	Related scenario

	tHttpRequest
	tHttpRequest properties
	Scenario: Sending a HTTP request to the server and saving the response information to a local file

	tJMSInput
	tJMSInput properties
	Related scenarios

	tJMSOutput
	tJMSOutput properties
	Related scenarios

	tMicrosoftMQInput
	tMicrosoftMQInput Properties
	Scenario: Writing and fetching queuing messages from Microsoft message queue
	Posting messages on a Microsoft message queue
	Fetching the first queuing message from the message queue

	tMicrosoftMQOutput
	tMicrosoftMQOutput Properties
	Related scenario

	tMomCommit
	tMomCommit Properties
	Related scenario

	tMomInput
	tMomInput Properties
	Scenario 1: Asynchronous communication via a MOM server
	Scenario 2: Transmitting XML files via a MOM server
	Dropping and links the components
	Configuring the first subjob
	Configuring the input components
	Configuring the tMomOutput component

	Configuring the second subjob
	Saving and executing the Job

	tMomMessageIdList
	tMomMessageIdList Properties
	Related scenario

	tMomOutput
	tMomOutput Properties
	Related scenario

	tMomRollback
	tMolRollback properties
	Related scenario

	tPOP
	tPOP properties
	Scenario: Retrieving a selection of email messages from an email server

	tREST
	tREST properties
	Scenario: Creating and retrieving data by invoking REST Web service

	tRSSInput
	tRSSInput Properties
	Scenario: Fetching frequently updated blog entries.

	tRSSOutput
	tRSSOutput Properties
	Scenario 1: Creating an RSS flow and storing files on an FTP server
	Dropping and linking components
	Defining the data source
	Creating an RSS flow
	Writing the complete files to an FTP server

	Scenario 2: Creating an RSS flow that contains metadata
	Dropping and linking components
	Configuring the components
	Saving and executing the Job

	Scenario 3: Creating an ATOM feed XML file
	Dropping and linking components
	Configuring the components
	Saving and executing the Job

	tSCPClose
	tSCPClose Properties
	Related scenario

	tSCPConnection
	tSCPConnection properties
	Related scenarios

	tSCPDelete
	tSCPDelete properties
	Related scenario

	tSCPFileExists
	tSCPFileExists properties
	Related scenario

	tSCPFileList
	tSCPFileList properties
	Related scenario

	tSCPGet
	tSCPGet properties
	Scenario: Getting files from a remote SCP server

	tSCPPut
	tSCPPut properties
	Related scenario

	tSCPRename
	tSCPRename properties
	Related scenario

	tSCPTruncate
	tSCPRename properties
	Related scenario

	tSendMail
	tSendMail Properties
	Scenario: Email on error

	tSetKerberosConfiguration
	tSetKerberosConfiguration properties
	Related scenarios

	tSetKeystore
	tSetKeystore properties
	Scenario: Extracting customer information from a private WSDL file

	tSocketInput
	tSocketInput properties
	Scenario: Passing on data to the listening port
	Dropping and linking components
	Configuring the Jobs
	Executing the Jobs

	tSocketOutput
	tSocketOutput properties
	Related Scenario

	tSOAP
	tSOAP properties
	Scenario 1: Extracting the weather information using a Web service
	Scenario 2: Using a SOAP message from an XML file to get weather information and saving the information to an XML file
	Dropping and linking the components
	Configuring the input component
	Configuring the Web service via the tSOAP component
	Configuring the output component
	Executing the Job

	tWebServiceInput
	tWebServiceInput Properties
	Scenario 1: Extracting images through a Web service
	Scenario 2: Reading the data published on a Web service using the tWebServiceInput advanced features

	tXMLRPCInput
	tXMLRPCInput Properties
	Scenario: Guessing the State name from an XMLRPC

	Logs & Errors components
	tAssert
	tAssert Properties
	Scenario: Setting up the assertive condition for a Job execution

	tAssertCatcher
	tAssertCatcher Properties
	Related scenarios

	tChronometerStart
	tChronometerStart Properties
	Related scenario

	tChronometerStop
	tChronometerStop Properties
	Scenario: Measuring the processing time of a subjob and part of a subjob

	tDie
	tDie properties
	Related scenarios

	tFlowMeter
	tFlowMeter Properties
	Related scenario

	tFlowMeterCatcher
	tFlowMeterCatcher Properties
	Scenario: Catching flow metrics from a Job

	tLogCatcher
	tLogCatcher properties
	Scenario 1: warning & log on entries
	Scenario 2: Log & kill a Job

	tLogRow
	tLogRow properties
	Scenario: Delimited file content display

	tStatCatcher
	tStatCatcher Properties
	Scenario: Displaying job stats log

	tWarn
	tWarn Properties
	Related scenarios

	Misc group components
	tAddLocationFromIP
	tAddLocationFromIP Properties
	Scenario: Identifying a real-world geographic location of an IP
	Dropping and linking components
	Configuring the components
	Saving and executing the Job

	tBufferInput
	tBufferInput properties
	Scenario: Retrieving bufferized data

	tBufferOutput
	tBufferOutput properties
	Scenario 1: Buffering data (Java)
	Scenario 2: Buffering output data on the webapp server
	Scenario 3: Calling a Job with context variables from a browser
	Scenario 4: Calling a Job exported as Webservice in another Job

	tContextDump
	tContextDump properties
	Related Scenario

	tContextLoad
	tContextLoad properties
	Scenario: Dynamic context use in MySQL DB insert

	tFixedFlowInput
	tFixedFlowInput properties
	Related scenarios

	tMemorizeRows
	tMemorizeRows properties
	Scenario: Counting the occurrences of different ages

	tMsgBox
	tMsgBox properties
	Scenario: ‘Hello world!’ type test

	tRowGenerator
	tRowGenerator properties
	Defining the schema
	Defining the function

	Scenario: Generating random java data

	Orchestration components
	tFileList
	tFlowToIterate
	tFlowToIterate Properties
	Scenario: Transforming data flow to a list

	tForeach
	tForeach Properties
	Scenario: Iterating on a list and retrieving the values

	tInfiniteLoop
	tInfiniteLoop Properties
	Related scenario

	tIterateToFlow
	tIterateToFlow Properties
	Scenario: Transforming a list of files as data flow

	tLoop
	tLoop Properties
	Scenario: Job execution in a loop

	tPostjob
	tPostjob Properties
	Related scenario

	tPrejob
	tPrejob Properties
	Related scenario

	tReplicate
	tReplicate Properties
	Related scenario

	tRunJob
	tSleep
	tSleep Properties
	Related scenarios

	tUnite
	tUnite Properties
	Scenario: Iterate on files and merge the content
	Dropping and linking the components
	Configuring the components
	Saving and executing the Job

	tWaitForFile
	tWaitForFile properties
	Scenario: Waiting for a file to be removed

	tWaitForSocket
	tWaitForSocket properties
	Related scenario

	tWaitForSqlData
	tWaitForSqlData properties
	Scenario: Waiting for insertion of rows in a table

	Processing components
	tAggregateRow
	tAggregateRow properties
	Scenario 1: Aggregating values and sorting data

	tAggregateSortedRow
	tAggregateSortedRow properties
	Related scenario

	tConvertType
	tConvertType properties
	Scenario: Converting java types
	Dropping the components
	Configuring the components
	Executing the Job

	tDenormalize
	tDenormalize Properties
	Scenario 1: Denormalizing on one column
	Scenario 2: Denormalizing on multiple columns

	tDenormalizeSortedRow
	tDenormalizeSortedRow properties
	Scenario: Regrouping sorted rows

	tExternalSortRow
	tExternalSortRow properties
	Related scenario

	tExtractDelimitedFields
	tExtractDelimitedFields properties
	Scenario: Extracting fields from a comma-delimited file

	tExtractEBCDICFields
	tExtractEBCDICFields properties
	Related scenario

	tExtractPositionalFields
	tExtractPositionalFields properties
	Related scenario

	tExtractRegexFields
	tExtractRegexFields properties
	Scenario: Extracting name, domain and TLD from e-mail addresses

	tExtractXMLField
	tFilterColumns
	tFilterColumns Properties
	Related Scenario

	tFilterRow
	tFilterRow Properties
	Scenario: Filtering and searching a list of names

	tJoin
	tJoin properties
	Scenario 1: Doing an exact match on two columns and outputting the main and rejected data
	Dropping and linking the components
	Configuring the components
	Saving and executing the Job

	tMap
	tMap properties
	Scenario 1: Mapping data using a filter and a simple explicit join
	Scenario 2: Mapping data using inner join rejections
	Scenario 3: Cascading join mapping
	Scenario 4: Advanced mapping using filters, explicit joins and rejections
	Scenario 5: Advanced mapping with filters and different rejections
	Scenario 6: Advanced mapping with lookup reload at each row
	Scenario 7: Mapping with join output tables

	tNormalize
	tNormalize Properties
	Scenario: Normalizing data

	tReplace
	tReplace Properties
	Scenario: multiple replacements and column filtering

	tSampleRow
	tSampleRow properties
	Scenario: Filtering rows and groups of rows
	Dropping and linking the components
	Configuring the components
	Saving and execting the Job

	tSortRow
	tSortRow properties
	Scenario 1: Sorting entries

	tSplitRow
	tSplitRow properties
	Scenario 1: Splitting one row into two rows

	tWriteJSONField
	tWriteJSONField properties
	Related Scenario

	tXMLMap
	tXMLMap properties
	Scenario 1: Mapping and transforming XML data
	Dropping and linking the components
	Configuring the input flow
	Configuring tXMLMap for transformation
	Executing the Job

	Scenario 2: Launching a lookup in a second XML flow to join complementary data
	Configuring the data flow for lookup
	Configuring the transformation

	Scenario 3: Mapping data using a filter
	Scenario 4: Catching the data rejected by lookup and filter
	Scenario 5: Mapping data using a group element
	Scenario 6: classing the output data with aggregate element
	Scenario 7: Restructuring products data using multiple loop elements
	Dropping and linking the components
	Configuring the input flow
	Configuring tXMLMap with multiple loops
	Configuring the output flow
	Executing the Job

	System components
	tRunJob
	tRunJob Properties
	Scenario: Executing a child Job

	tSetEnv
	tSetEnv Properties
	Scenario: Modifying a variable during a Job execution
	Drop and link components
	Set the components
	Run the Job

	tSSH
	tSSH Properties
	Scenario: Remote system information display via SSH

	tSystem
	tSystem Properties
	Scenario: Echo ‘Hello World!’

	Talend MDM components
	tMDMBulkLoad
	tMDMBulkLoad properties
	Enhancing the MDM bulk data load

	Scenario: Loading records into a business entity

	tMDMClose
	tMDMClose properties
	Related scenario

	tMDMConnection
	tMDMConnection properties
	Related scenario

	tMDMDelete
	tMDMDelete properties
	Scenario: Deleting master data from an MDM Hub
	Dropping and linking the components
	Configuring the MDM server connection
	Configuring data retrieval
	Configuring data record deletion
	Saving and executing the Job

	tMDMInput
	tMDMInput properties
	Scenario: Reading master data in an MDM hub

	tMDMOutput
	tMDMOutput properties
	Scenario: Writing master data in an MDM hub

	tMDMReceive
	tMDMReceive properties
	Related scenario

	tMDMRouteRecord
	tMDMRouteRecord properties
	Scenario: Routing a record to Event Manager
	Scenario prerequisites
	Routing a record to trigger the corresponding process

	tMDMSP
	tMDMSP Properties
	Scenario: Executing a stored procedure in the MDM Hub

	tMDMTriggerInput
	tMDMTriggerInput properties
	Scenario: Exchanging the event information about an MDM record
	Creating an MDM connection
	Creating the Job communicating the MDM message
	Generating the process invoking the Job created
	Updating a product record

	tMDMTriggerOutput
	tMDMTriggerOutput properties
	Related scenario

	tMDMViewSearch
	tMDMViewSearch properties
	Scenario: Retrieving records from an MDM hub via an existing view

	Technical components
	tHashInput
	tHashInput Properties
	Scenario 1: Reading data from the cache memory for high-speed data access
	Dropping and linking the components
	Configuring the components
	Configuring data inputs and hash cache
	Configuring data retrieval from hash cache and data output

	Saving and executing the Job

	Scenario 2: Clearing the memory before loading data to it in case an iterator exists in the same subjob
	Dropping and linking the components
	Configuring the components
	Configuring data input and hash cache
	Configuring data retrieval from hash cache and data output

	Saving and executing the Job

	tHashOutput
	tHashOutput Properties
	Related scenarios

	XML components
	tAdvancedFileOutputXML
	tAdvancedFileOutputXML properties
	Defining the XML tree
	Importing the XML tree
	Creating the XML tree manually

	Mapping XML data
	Defining the node status
	Loop element
	Group element

	Scenario: Creating an XML file using a loop

	tDTDValidator
	tDTDValidator Properties
	Scenario: Validating XML files

	tEDIFACTtoXML
	tEDIFACTtoXML Properties
	Scenario: From EDIFACT to XML

	tExtractXMLField
	tExtractXMLField properties
	Scenario 1: Extracting XML data from a field in a database table
	Scenario 2: Extracting correct and erroneous data from an XML field in a delimited file

	tFileInputXML
	tFileInputXML Properties
	Scenario 1: Reading and extracting data from an XML structure
	Scenario 2: Extracting erroneous XML data via a reject flow

	tFileOutputXML
	tFileOutputXML properties
	Related scenarios

	tWriteXMLField
	tWriteXMLField properties
	Scenario: Extracting the structure of an XML file and inserting it into the fields of a database table

	tXMLMap
	tXSDValidator
	tXSDValidator Properties
	Scenario: Validating data flows against an XSD file

	tXSLT
	tXSLT Properties
	Scenario: Transforming XML to html using an XSL stylesheet

