talend

*open IHLEUIHUE]H solutions

Talend Mediation
Developer Guide

5.1 b (Apache Camel 2.9.x series)

Talend Mediation: Developer Guide

Publication date 5 July 2012
Copyright © 2011-2012 Talend Inc.

Copyleft

This documentation is provided under the terms of the Creative Commons Public License (CCPL). For more information about what you can
and cannot do with this documentation in accordance with the CCPL, please read: http://creativecommons.org/licenses/by-nc-sa/2.0/

This document may include documentation produced at The Apache Software Foundation which is licensed under The Apache License 2.0.

Notices
Talend and Talend ESB are trademarks of Talend, Inc.

Apache CXF, CXF, Apache Karaf, Karaf, Apache Cellar, Cellar, Apache Camel, Camel, Apache Maven, Maven, Apache Archiva, Archiva
are trademarks of The Apache Foundation.

Eclipse Equinox is a trademark of the Eclipse Foundation, Inc. SoapUl is a trademark of SmartBear Software. Hyperic is a trademark of
VMware, Inc. Nagios is atrademark of Nagios Enterprises, LLC.

All other brands, product names, company names, trademarks and service marks are the properties of their respective owners.

Document includes Enterprise Integration Patterns graphics licensed under the Creative Commons Attribution License. Book: Enterprise
Integration Patterns by Gregor Hohpe and Bobby Woolf; Website: http://www.eai patterns.com/eai patterns.html.

Table of Contents

O [gL oo (8 1o o TSRS PR 1
2. Enterprise INtegration PalternSoiuuiiiiiei e 3
2.0 LISt OF EIPS .ot 3
A e o o (o] S PP PPUPPUPTPN 8
2.3. Claim CRECK ... e 12
2.4. COMPELING CONSUMEY'S ...cunieti ettt et e et e et et et e e et e e et e et e eaa e eat e eeanaaeanas 13
2.5. ComMPOSEd MESSAGE PrOCESSONuiieieitiieiet et e et et e e e et e e e e et eeaaeeaaeaes 14
2.6. Content Based ROULEYiiiiiriieiieii e e 15
2.7, CoNENt ENMCNENeeeiei e 16
2.8, CONENt FilTEr «ooeeeeeeet e 20
2.9. Correlation TeNtifiErcuuiiiiii e 21
2.10. Dead Letter Channelioiieiiioieei e 22
200 DAY et 27
P B L (o | PSPPI 29
2.13. Durable SUDSCIIDEYoveieiie e 30
2.14. DYNAMIC ROULEY ...ttt et e e e e ean s 31
2.15. EVENt DIiVEN CONSUIMETciiitieeeitieeeett e eest e e eest e e e et eeeent e e eent e e e ennaeeees 33
2.06. EVENE MBSSAOE .. vttt et 33
2.17. GUAraNtEEd DEIIVEIYeee e 35
2.18. 1deMPOLENt CONSUIMESceiiiit ettt e et e e e et e et e et e e e e e et e e eba e eenaeeees 35
2.19. L0BO BAIANCESvviiiiiiii ettt 37
2,20, L0 ettt 41
A4 W o o o B PP PP PPPRPI 42
2,22, IMIBSSAGE ... ettt ettt e a e ea e 43
2.23. MESSAOE BUS ..o 44
2.24. MeSsage Channelooueiiii e 44
2.25. MeSSA0E DISPAICNES ...t 45
2.26. MeSSA0E ENAPOINTccuuiiiiiit et e 45
2.27. MESSAGE FlLEN .o 46
2.28. MESSAOE ROULET ...eieiiee ettt et et e et e e e et e en e enns 47
2.29. MESSATE TraNGIBIONuieei ittt e e e e e e e et e e e e ean s 48
2.30. MESSAGING GALEWEYeevneiii ettt ettt e e et e e e et e e e e eanas 50
2.31. MESSAOING MBPPES ... ettt ettt et e et et e e e e e ea e 50
2,32, IMIUITICBSE ...ttt ettt 51
2.33 NOMMAIIZEN ..ottt e e e 53
2.34. PIPES and FlLErS ... 54
2.35. Point to POiNt Channelcoouiiiiiiiii e 56
2.36. POHING CONSUMEYceuiiiieiii ettt e e e e e et e e e e e e eeanns 56
2.37. Publish Subscribe Channelcooouiiiiiii e 59
2.38. RECIPIENT LISt ..ottt e e et e e e e ean s 60
2.39. REQUESE REDIY .ot 63
2.40. RESEQUENCESituiiteet ettt ettt e e e ettt e et e et e e e e e e ea e e e e aaas 64
241, REUIMN AGUIESSveieieeiie ettt e e e e e e 68
242, ROULING SHIP ettt ettt et et ettt e e e e e e e e eaa e eees 69
243 SAMPIING L.ttt et e a e e et 71
244, SCAEr-GaENEYvviieiiii e 72
2.45. SEIECHIVE CONSUMETiiiiiiieeeeii ettt ettt ettt e e e e e e e ennens 75
2.46. SEIVICE ACHIVELONiiieii et e e e r s 76
24T, SONT ettt 76
248, SPIITEEN et e e e 78
e R I 01 (011 = PP PPPPTIN 84
2.50. Transactional ClIENTiiieiiii e 85
251 VAIIGAE ...t 90
Ay T (S - o RSP UPTR 91
IR 0011 070] 1 o T PP UPT PPN 93
3L ACHVEMOQ oo 97

Talend Mediation Developer Guide

Talend Mediation

32 N (0] PR 101
1T =T o O STPPIN 102
3 B O o = PP 104
ST O -SSP 111
G T O 11 = PP 112
3.7. Crypto (Digital SIgNAUIES)ceveeiiiieiii e e e e e e 114
G 09 SRR 116
3.9. CXF Bean COmMPONENT ...uiuiiiiiiiiiee e e s e e et e e e e e e e e e ae e anas 134
B.L0. CXFRS ..ottt a e aen 137
G35 T T 1= o S PT 138
TN B Y o | PSPPI 139
30 G T = o PSP 140
30 7 T = TP 142
3L, FIAIPACK vt 159
I L o (== 0= (= PP 163
30 2 e I PP 165
B L8, HI7 e e 176
30 R TR o N I I P 180
3L N - LSV o S PRT 188
320, JCR ittt et 191
322, IDBC ..ttt et a e aae 192
I/ TN < 1 Y PP 195
B2, IMIS o 202
132 TN 1V PSP 216
B2, TP A e eaaan 217
327, JSCN et 221
13022 T I oo SO 222
320, LUCENE .ttt ettt ea e 225
B30, M e aaa 229
T o I 1Y o PSP 234
332, IMYBALIS vttt 240
GGG T (0 o= 1 (1= 243
I 7 O 1= P 251
G LY o PRSPPI 254
B30, RMI i 255
337 RS e 256
338, SE D A o 258
B39, SEIVIEL ..ttt 260
3.40. SNITO SECUNTY ..ivvuiiiii e e e e e e e e e e e aaeeeens 262
B L, SMIPP e e 266
342, SNIMP e 273
TGS o) 11 0o I N a1 (=0 = (o] o NP 275
344, SPIING SECUNMLY ovvuiiiiee it e e e e et e e e e e e e e e e e e e e et e e et e e e eeaens 279
3.45. SQL COMPONENT ...vuitiiieieeee et e et e e e et et et n e e e anaans 283
BB, SSH .ot 290
BT, SHUD e 291
I I PSSP 292
I T 2= SRRSO 292
350, VEIOCILY oevtiieeiiii et 294
B 0L, VM i 297
3.52. XQUENY ENAPOINTovtniiiiiei e e e e e e e e e e e e e e aans 297
G35 € R S PRT 298
Y A o) (= = o SN 301
4, Talend ESB Mediation EXaMPIESiiiiiiiii e e e e e e e e e e e e e eaaas 305

Talend Mediation Developer Guide

Chapter 1. Introduction

Talend ESB provides afully supported, stable, production ready distribution of the industry leading open source
integration framework Apache Camel. Apache Camel uses well known Enterprise Integration Patterns to make
message based system integration simpler yet powerful and scalable.

The Apache Camel uses alightweight, component based architecture which allows great flexibility in deployment
scenarios. as stand-alone VM applications or embedded in a servlet container such as Tomcat, or within a JEE
server, or in an OSGi container such as Equinox.

Apache Came and Talend ESB come out of the box with an impressive set of available components for all
commonly used protocolslike http, https, ftp, xmpp, rssand many more. A large number of dataformatslike EDI,
JSON, CSV, HL7 and languages like JS, Python, Scala, are supported out of the box. Its extensible architecture
allows developers to easily add support for proprietary protocols and data formats.

The Talend ESB distribution supplements Apache Camel with support for OSGi deployment, support for
integrating Talend jobs on Camel routes and a number of advanced examples. Its OSGi container uses Apache
Karaf, alightweight container providing advanced features such as provisioning, hot deployment, logger system,
dynamic configuration, complete shell environment, and other features.

Talend Mediation Developer Guide

Talend Mediation Developer Guide

Chapter 2. Enterprise Integration Patterns

Camel supports most of the Enterprise Integration Patterns from the excellent book by Gregor Hohpe and Bobby
Woolf.

2.1. List of EIPs

2.1.1. Messaging Systems

Section 2.24, “Message Channel” |How does one application

_." communicate with another using
Section 2.22, “Message” How can two applications connected

by a message channel exchange a
piece of information?

Section 2.34, “Pipes and Filters’ How can we perform complex

processing on a message while
-FD'DD maintaining independence and
flexibility?

Talend Mediation Developer Guide

http://www.enterpriseintegrationpatterns.com/toc.html

Messaging Channels

)

Section 2.28, “Message Router”

How can you decouple individual
processing steps so that messages
can be passed to different filters
depending on a set of conditions?

A\t
A
LA

Section 2.29, “Message Trandator”

How can systems using different
data formats communicate with each
other using messaging?

H

Section 2.26, “ Message Endpoint”

How does an application connect to
a messaging channel to send and
receive messages?

2.1.2. Messaging Channels

Section 2.35,
Channel”

“Point to Point

How can the caler be sure that
exactly one receiver will receive the
document or perform the call?

Section 2.37, “Publish Subscribe
Channel”

How can the sender broadcast an
event to all interested receivers?

Section 2.10, “Dead L etter Channel”

What will the messaging system do
with amessage it cannot deliver?

o o] 7 |

Section 2.17, “ Guaranteed Delivery”

How can the sender make sure that
amessage will be delivered, even if
the messaging system fails?

Section 2.23, “Message Bus’

What is an architecture that
enables separate applications to
work together, but in a de-coupled
fashion such that applications can
be easily added or removed without
affecting the others?

2.1.3. Message Construction

Section 2.16, “Event Message”

How can messaging be used to
transmit events from one application
to another?

Talend Mediation Developer Guide

Message Routing

Section 2.39, “Request Reply”

When an application sends a
message, how can it get a response
from the receiver?

Section 2.9, “Correlation Identifier”

How does a requestor that has
received areply know which request
thisisthe reply for?

Section 2.41, “Return Address’

How does a replier know where to
send the reply?

2.1.4. Message Routing

Section 2.6, “ Content Based Router”

How do we handle a situation
where theimplementation of asingle
logical function (e.g., inventory
check) is spread across multiple
physical systems?

Section 2.27, “Message Filter”

How can a component avoid
receiving uninteresting messages?

Section 2.14, “Dynamic Router”

How can you avoid the dependency
of the router on al possible
destinations while maintaining its
efficiency?

Section 2.38, “Recipient List”

How do we route a message to alist
of (static or dynamically) specified
recipients?

Section 2.48, “ Splitter”

How can we process a message if it
contains multiple elements, each of
which may have to be processed in a
different way?

Aggregator

How do we combine the results of
individual, but related messages so
that they can be processed as a
whole?

Section 2.40, “ Resequencer”

How can we get a stream of related
but out-of-sequence messages back
into the correct order?

Talend Mediation Developer Guide

Message Transformation

Section 2.5, “Composed Message
Processor”

How can you maintain the overall
message flow when processing
a message consisting of multiple
elements, each of which may require
different processing?

Section 2.44, “ Scatter-Gather”

How do you maintain the overal
message flow when a message needs
to be sent to multiplerecipients, each
of which may send areply?

Section 2.42, “Routing Slip”

How do we route a message
consecutively through a series of
processing steps when the sequence
of stepsis not known at design-time
and may vary for each message?

Section 2.49, “Throttler”

How can | throttle messages to
ensure that a specific endpoint does
not get overloaded, or we don't
exceed an agreed SLA with some
external service?

Section 2.43, “ Sampling”

How can | sample one message
out of many in a given period to
avoid downstream route does not get
overloaded?

Section 2.11, “Delayer”

How can | delay the sending of a
message?

Section 2.19, “Load Balancer”

How can | balance load across a
number of endpoints?

Section 2.32, “Multicast”

How can | route a message to a
number of endpoints at the same
time?

Section 2.21, “Loop”

How can | repeat processing a
message in aloop?

2.1.5. Message Transformation

I:I—I-|:|

Section 2.7, “Content Enricher”

How do we communicate with
another system if the message
originator does not have al the
required data items available?

Section 2.8, “ Content Filter”

How do you simplify dealing with
a large message, when you are
interested only in afew dataitems?

Section 2.3, “Claim Check”

How can we reduce the data
volume of message sent across
the system without sacrificing
information content?

Talend Mediation Developer Guide

Messaging Endpoints

> 0
¥
O

Section 2.33, “Normalizer”

How do you process messages
that are semantically equivalent, but
arrive in adifferent format?

Section 2.47, “ Sort”

How can | sort the body of a
message?

Section 2.51, “Validate’

How can | validate a message?

2.1.6. Messaging Endpoints

Section 2.31, “Messaging Mapper”

How do you move data between
domain objects and the messaging
infrastructure while keeping the two
independent of each other?

Section 2.15,
Consumer”

“Event Driven

How can an application
automatically consume messages as
they become available?

Section 2.36, “Polling Consumer”

How can an application consume
a message when the application is
ready?

Section 2.4,
Consumers’

“Competing

How can a messaging client process
multiple messages concurrently?

Section 2.25, “ Message Dispatcher”

How can multiple consumers on
a single channel coordinate their
message processing?

FEEEE

Section 2.45, “ Selective Consumer”

How can a message consumer select
which messagesit wishesto receive?

E

Section 2.13, “Durable Subscriber”

How can a subscriber avoid missing
messages while it's not listening for
them?

Section 2.18,
Consumer”

“ldempotent

How can a message receiver deal
with duplicate messages?

@

Section 2.50, “ Transactional Client”

How can a client control its
transactions with the messaging
system?

Talend Mediation Developer Guide

System Management

Section 2.30, “Messaging Gateway” |How do you encapsulate access to
the messaging system from the rest
= 'h" of the application?

Section 2.46, “ Service Activator” |How can an application design a
service to be invoked both via
— various messaging technologies and
via non-messaging techniques?

2.1.7. System Management

Section 2.12, “Detour” How can you route a message
through intermediate steps to
perform validation, testing or
debugging functions?

Section 2.52, “Wire Tap” How do you inspect messages that

travel on a point-to-point channel ?

Log How can | log processing amessage?

2.2. Aggregator

2.2.1. Aggregator Pattern

The Aggregator from the EIP patterns allows you to combine anumber of messagestogether into a single message.

% %]

Inventory Inventory Inwentory
ltern 1 ltern 2 ltern 3 Aggregatar lnventory
Crder

A correlation Expression is used to determine the messages which should be aggregated together. If you want to
aggregate all messages into a single message, just use a constant expression. An AggregationStrategy is used to
combine all the message exchanges for a single correlation key into a single message exchange.

The aggregator provides a pluggable repository which you can implement your own
or g. apache. canel . spi . Aggr egat i onReposi t ory. If you need a persistent repository then you can
use either Camel HawtDB or SQL Component.

8 Talend Mediation Developer Guide

http://www.enterpriseintegrationpatterns.com/Aggregator.html
http://camel.apache.org/expression.html
http://camel.apache.org/hawtdb.html
http://camel.apache.org/sql-component.html

Aggregator options

You can manualy complete all current aggregated exchanges by sending in a message containing the header
Exchange. AGGREGATION_COMPLETE_ALL_GROUPS set to true. The message is considered a signal
message only, the message headers/contents will not be processed otherwise.

The Apache Camel website maintains several examples of thisEIP in use.

2.2.2. Aggregator options

The aggregator supports the following options:

Option

Default

Description

correlationExpression

Mandatory Expression which evaluates the correlation key
to use for aggregation. The Exchange which has the same
correlation key is aggregated together. If the correlation key
could not be evaluated an Exception is thrown. You can
disable this by using the i gnor eBadCor r el ati onKeys
option.

aggregationStrategy

Mandatory Aggr egati onStrat egy which is used to
merge the incoming Exchange with the existing already
merged exchanges. At first call theol dExchange parameter
is nul I . On subsequent invocations the ol dExchange
contains the merged exchanges and newkxchange is
of course the new incoming Exchange. The strategy can
also bea TimeoutAwareAggregationStrategy implementation,
supporting the timeout callback. Here, Camel will invoke the
ti meout method when the timeout occurs. Notice that the
values for index and total parameters will be -1, and the
timeout parameter will only be provided if configured as a
fixed value.

strategyRef

A reference to lookup the Aggr egat i onSt r at egy inthe
Registry.

completionSize

number of messages aggregated before the aggregation is
complete. This option can be set as either a fixed value or
using an Expression which allows you to evaluate a size
dynamicaly; it will use | nt eger as result. If both are set,
Camel will fallback to use the fixed value if the Expression
result wasnul | or 0.

completionTimeout

Time in milliseconds that an aggregated exchange should be
inactive before it is complete. This option can be set as either
a fixed value or using an Expression which allows you to
evaluate a timeout dynamically; it will use Long as result. If
both are set Camel will fallback to use the fixed value if the
Expression result was nul | or 0. You cannot use this option
together with completionlnterval, only one of the two can be
used.

completioninterval

A repeating period in milliseconds by which the aggregator
will complete all current aggregated exchanges. Camel has a
background task which is triggered every period. Y ou cannot
use this option together with completionTimeout, only one of
them can be used.

completionPredicate

A Predicate to indicate when an aggregated exchange is
complete.

Talend Mediation Developer Guide 9

http://camel.apache.org/aggregator2.html#Aggregator2-Examples
http://camel.apache.org/expression.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/registry.html
http://camel.apache.org/expression.html
http://camel.apache.org/expression.html
http://camel.apache.org/expression.html
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html

Aggregator options

Option

Default

Description

completionFromBatchConsumer

fal se

This option is if the exchanges are coming from a Batch
Consumer. Then when enabled the Section 2.2, “ Aggregator”
will use the batch size determined by the Batch Consumer
in the message header Canrel Bat chSi ze. See more details
at Batch Consumer. This can be used to aggregate all files
consumed from a File endpoint in that given poll.

forceCompletionOnStop

fal se

Indicates completing all current aggregated exchanges when
the context is stopped.

eagerCheckCompletion

fal se

Whether or not to eager check for completion when a new
incoming Exchange has been received. This option influences
the behavior of the conpl eti onPredi cat e option as
the Exchange being passed in changes accordingly. When
f al se the Exchange passed inthe Predicateisthe aggregated
Exchange which means any information you may store on the
aggregated Exchangefromthe Aggr egat i onSt r at egy is
available for the Predicate. When't r ue the Exchange passed
in the Predicate is the incoming Exchange, which means you
can access data from the incoming Exchange.

groupExchanges

fal se

If enabled then Camel will group al
agoregated Exchanges into a single combined
or g. apache. canel . i mpl . G oupedExchange
holder class that holds all the aggregated Exchanges. And
as a result only one Exchange is being sent out from
the aggregator. Can be used to combine many incoming
Exchanges into a single output Exchange without coding a
customAggr egat i onSt r at egy yourself. Notethisoption
does not support persistant aggregator repositories.

ignorelnvalidCorrelationK eys

fal se

Whether or not to ignore correlation keys which could not
be evaluated to a value. By default Camel will throw an
Exception, but you can enable this option and ignore the
situation instead.

closeCorrel ationK eyOnCompl etion

Whether or not too late Exchanges should be accepted or
not. You can enable this to indicate that if a correlation key
has already been completed, then any new exchanges with
the same correlation key be denied. Camel will then throw a
cl osedCorrel ati onKeyExcepti on exception. When
using this option you passin ai nt eger which is a number
for a LRUCache which keeps that last X number of closed
correlation keys. You can pass in O or a negative value to
indicate a unbounded cache. By passing in a number you are
ensured that cache won't grow too big if you use a log of
different correlation keys.

discardOnCompletionTimeout

fal se

Whether or not exchanges which complete due to a timeout
should be discarded. If enabled then when a timeout occurs
the aggregated message will not be sent out but dropped
(discarded).

aggregationRepository Allows you to plugin you own implementation of Camel's
Aggr egat i onReposi t ory classwhich keepstrack of the
current inflight aggregated exchanges. Camel uses by default
amemory based implementation.

aggregationRepositoryRef Reference to lookup a aggr egat i onReposi t ory in the
Registry.

10 Talend Mediation Developer Guide

http://camel.apache.org/batch-consumer.html
http://camel.apache.org/batch-consumer.html
http://camel.apache.org/batch-consumer.html
http://camel.apache.org/batch-consumer.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/predicate.html
http://camel.apache.org/predicate.html
http://camel.apache.org/exchange.html
http://camel.apache.org/predicate.html
http://camel.apache.org/exchange.html
http://camel.apache.org/registry.html

Exchange Properties

Option Default Description

parallelProcessing fal se When aggregated are completed they are being send out of the
aggregator. This option indicateswhether or not Camel should
use athread pool with multiple threads for concurrency. If no
custom thread pool has been specified then Camel creates a
default pool with 10 concurrent threads.

executorService If using par al | el Processi ng you can specify a custom
thread pool to be used. In fact also if you are not using
par al | el Processi ng this custom thread pool is used to
send out aggregated exchanges as well.

executorServiceRef Reference to lookup aexecut or Ser vi ce in the Registry

timeoutCheckerExecutorService If using either of the completionTimeout,
completionTimeoutExpression, or compl etionl nterval options
abackground thread is created to check for the completion for
every aggregator. Set this option to provide a custom thread
pool to be used rather than creating a new thread for every
aggregator.

timeoutCheckerExecutorServiceRef Reference to lookup a timeoutCheckerExecutorService in the
Registry.

2.2.3. Exchange Properties

The following properties are set on each aggregated Exchange:

header type description

Canel Aggr egat edSi ze int The total number of Exchanges aggregated into this
combined Exchange.

Camel Aggr egat edConpl et edBy |String Indicator how the aggregation was completed asavalue
of either: pr edi cat e, si ze, consuner ,ti neout
orinterval .

2.2.4. About AggregationStrategy

The Aggr egati onStrat egy is used for aggregating the old (lookup by its correlation id) and the new
exchanges together into a single exchange. Possible implementations include performing some kind of combining
or delta processing, such as adding line items together into an invoice or just using the newest exchange and
removing old exchanges such as for state tracking or market data prices; where old values are of little use.

Notice the aggregation strategy is a mandatory option and must be provided to the aggregator.

2.2.5. About completion

When aggregation Exchanges at some point you need to indicate that the aggregated exchanges is complete, so
they can be send out of the aggregator. Camel allows you to indicate completion in various ways as follows:

» completionTimeout - Is an inactivity timeout in which istriggered if no new exchanges have been aggregated
for that particular correlation key within the period.

Talend Mediation Developer Guide 11

http://camel.apache.org/registry.html
http://camel.apache.org/exchange.html

Claim Check

completioninterval - Once every X period all the current aggregated exchanges are completed.
completionSize - Isanumber indicating that after X aggregated exchanges it's compl ete.

completionPredicate - Runs a Predicate when a new exchange is aggregated to determine if we are complete
or not

completionFromBatchConsumer - Special option for Batch Consumer which allows you to complete when all
the messages from the batch has been aggregated. |

forceCompletionOnStop - Indicatesto complete all current aggregated exchanges when the context is stopped.

Notice that al the completion ways are per correlation key. And you can combine them in any way you like. It's
basicaly the first which triggers that wins. So you can use a completion size together with a completion timeout.
Only completionTimeout and completioninterval cannot be used at the same time.

Notice the completion is a mandatory option and must be provided to the aggregator. If not provided Camel will
throw an Exception on startup.

2.3. Claim Check

The Claim Check from the EIP patterns allows you to replace message content with a claim check (aunique key),
which can be used to retrieve the message content at a later time. The message content is stored temporarily in a
persistent store like adatabase or file system. This pattern is very useful when message content isvery large (thus
it would be expensive to send around) and not all components require all information.

It can aso be useful in situations where you cannot trust the information with an outside party; in this case, you
can use the Claim Check to hide the sensitive portions of data.

Check Luggage Data Enricher
v [T —[=a]—
[
Message Message Message
W Data wif Claim Check W Data
Data Stare

In the below example we'll replace a message body with a claim check, and restore the body at a later step.

Using the Fluent Builders

from("direct:start").to("bean: checkLuggage", "nock:test Checkpoint",

bean: dat aEnricher", "nock:result");

Using the Spring XML Extensions

<rout e>

<fromuri="direct:start"/>

<pi pel i ne>
<to uri="bean: checkLuggage"/ >
<to uri="nock:test Checkpoint"/>

12 Talend Mediation Developer Guide

http://camel.apache.org/predicate.html
http://camel.apache.org/batch-consumer.html
http://www.enterpriseintegrationpatterns.com/StoreInLibrary.html

Competing Consumers

<t o uri="bean: dataEnricher"/>
<to uri="nock:result"/>
</ pi pel i ne>
</rout e>

The example route is pretty smple - it's a Pipeline. In area application you would have some other steps where
thenock: t est Checkpoi nt endpoint isin the example.

The message isfirst sent to the checkLuggage bean which looks like

public static final class CheckLuggageBean {
public void checkLuggage(Exchange exchange, @Body String body,
@XPat h("/order/ @ustld") String custld) {
/1 store the nessage body into the data store,
/1 using the custld as the claimcheck
dat aSt ore. put (custld, body);
/1 add the claimcheck as a header
exchange. get I n(). set Header (" cl ai mCheck", custld);
/1 renove the body fromthe nessage
exchange. getIn().setBody(null);

}

This bean stores the message body into the data store, using the cust | d as the claim check. In this example,
we're just using a HashMap to store the message body; in a real application you would use a database or file
system, etc. Next the claim check is added as a message header for use later. Finally we remove the body from
the message and pass it down the pipeline.

The next step in the pipeline is the nock: t est Checkpoi nt endpoint which is just used to check that the
message body is removed, claim check added, etc.

To add the message body back into the message, we use the dat aEnr i cher bean which looks like

public static final class DataEnricherBean {
public void addDat aBackl n(Exchange exchange, @eader ("cl ai nCheck")
String clai nCheck) {
/1 query the data store using the claimcheck as the key and add the
/1 data back into the nmessage body
exchange. get I n(). set Body(dat aSt ore. get (cl ai nCheck));
/1 renove the nessage data fromthe data store
dat aSt or e. r enpve(cl ai nCheck) ;
/1 renove the claimcheck header
exchange. get I n().renmoveHeader (" cl ai nCheck") ;

}

This bean queries the data store using the claim check as the key and then adds the data back into the message.
The message body is then removed from the data store and finally the claim check is removed. Now the message
is back to what we started with!

For full details, check the example source here:

camel-core/src/test/javalorg/apache/camel/processor/ClaimCheck Test.java

2.4. Competing Consumers

Camd supports the Competing Consumers from the EIP patterns using a few different components.

Talend Mediation Developer Guide 13

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ClaimCheckTest.java
http://www.enterpriseintegrationpatterns.com/CompetingConsumers.html

Composed Message Processor

Consumer

| 3] H2 tﬂ

=ender hMessages Consumer
Receiver

,

Consumer

Feceiver
Y ou can use the following components to implement competing consumers:-
» Section 3.38, “SEDA” for SEDA based concurrent processing using a thread pool

e Section 3.24,“IMS’ for distributed SEDA based concurrent processing with queues which support reliableload
balancing, failover and clustering.

To enable Competing Consumers with JMS you just need to set the concurrentConsumers property on the
Section 3.24, “JM S’ endpoint.

For example
from("j ms: MyQueue?concurrent Consuner s=5") . bean(SoneBean. cl ass) ;
Or in Spring DSL:

<r out e>
<fromuri="jns: MyQueue?concur r ent Consuner s=5"/ >
<to uri="bean: soneBean"/ >

</ rout e>

Or just run multiple VMs of any Section 3.1, “ActiveMQ” or Section 3.24, “JMS’ route.

2.5. Composed Message Processor

The Composed Message Processor from the EIP patterns allows you to process a composite message by splitting
it up, routing the sub-messages to appropriate destinations and the re-aggregating the responses back into asingle
message.

14 Talend Mediation Developer Guide

http://www.enterpriseintegrationpatterns.com/DistributionAggregate.html

Content Based Router

Widget Inventary

O O
— O-=0 |-+ e OO0 f——
O — O
[S
New Order | Splitter Router Aggregatar alidated

Qrder

Gadget Inventary
Composite Message Processar
Camd provides two solutions for implementing this EIP -- using both the Splitter and Aggregator EIPs or just
the Splitter alone. With the Splitter-only option, all split messages are aggregated back into the same aggregation

group (like afork/join pattern), whereas using an Aggregator provides more flexibility by allowing for grouping
into multiple groups.

See the Camel Website for the latest examples of thisEIP in use.

2.6. Content Based Router

The Content Based Router from the EIP patterns allows you to route messages to the correct destination based
on the contents of the message exchanges.

» Widget
Inventary
— | =
—
Gadget
Mew Order »
Router 41]1[0’ ‘1111[[b dl]I[[b Inventory

The following example shows how to route a request from an input seda:a endpoint to either seda:b, seda:c or
seda:d depending on the evaluation of various Predicate expressions

Using the Fluent Builders

Rout eBui | der buil der = new Rout eBui l der () {
public void configure() {
error Handl er (deadLet t er Channel (" nock: error"));

from("seda: a")
. choi ce()
.when(header ("fo00").isEqual To("bar"))
.to("seda: b")
.when(header ("fo0").isEqual To("cheese"))
.to("seda: c")
.ot herwi se()
.to("seda: d");

Talend Mediation Developer Guide 15

http://camel.apache.org/composed-message-processor.html
http://www.enterpriseintegrationpatterns.com/ContentBasedRouter.html
http://camel.apache.org/predicate.html
http://camel.apache.org/fluent-builders.html

Content Enricher

Using the Spring XML Extensions

<canel Cont ext errorHandl er Ref =" errorHandl er”
xm ns="http://canel.apache. org/ schena/ spring">

<r out e>
<fromuri="seda: a"/>
<choi ce>
<when>
<xpat h>$f oo = ' bar' </ xpat h>
<to uri="seda:b"/>
</ when>
<when>
<xpat h>$f oo = ' cheese' </ xpat h>
<to uri="seda:c"/>
</ when>

<ot herwi se>
<to uri="seda:d"/>
</ ot herw se>
</ choi ce>
</ rout e>
</ canel Cont ext >

For further examples of this pattern in use you could look at the junit test case

2.7. Content Enricher

Camdl supportsthe Content Enricher fromthe EI P patternsusing aSection 2.29, “Message Tranglator”, an arbitrary
Processor in the routing logic or using the enrich [17] DSL element to enrich the message.

Enricher
154’@—"?%
Basic Message Enriched Message
Fesource

2.7.1. Content enrichment using a Message Translator
or a Processor

Using the Fluent Builders

16 Talend Mediation Developer Guide

http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ChoiceTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/DataEnricher.html
http://camel.apache.org/processor.html
http://camel.apache.org/fluent-builders.html

Content enrichment using the enrich DSL element

Y ou can use Templ ating to consume amessage from one destination, transform it with something like Section 3.50,
“Velocity” or XQuery and then send it on to another destination. For example using InOnly (one way messaging)

from "activenqg: My. Queue") .
to("velocity: com acne/ MyResponse. vii') .
to("activenq: Anot her. Queue");

If you want to use InOut (request-reply) semantics to process requests on the My.Queue queue on Section 3.1,
“ActiveMQ” with a template generated response, then sending responses back to the JIM SReplyTo Destination
you could use this:

from"activenqg: My. Queue") .
to("vel ocity: comf acne/ MyResponse. vii') ;

We can also use Bean Integration to use any Java method on any bean to act as the transformer

from("activenqg: My. Queue") .
beanRef (" myBeanNane", "nyMet hodNane").
to("activenq: Anot her. Queue");
For further examples of this pattern in use you could look at one of the JUnit tests
e TransformTest
e TransformViaDSL Test
Using Spring XML
<r out e>
<fromuri="activenqg: | nput"/>
<bean ref ="nmyBeanNanme" net hod="doTransforni/>

<to uri="activeny: Qut put"/>
</route>

2.7.2. Content enrichment using the enrich DSL
element

Camel comes with two flavors of content enricher in the DSL
e enrich
e pol |l Enrich

enri chisusingaPr oducer to obtain the additional data. It isusually used for Section 2.39, “Request Reply”
messaging, for instanceto invoke an external web service. pol | Enr i ch onthe other hand isusing a Section 2.36,
“Polling Consumer” to obtain the additional data. It isusually used for Section 2.16, “Event Message” messaging,
for instance to read afile or download a FTP file. Enrich options:

Name Default Value Description

uri The endpoint uri for the external serviceto enrich from.
Y ou must use either uri or ref.

r ef Refers to the endpoint for the external service to enrich
from. Y ou must use either uri or ref.

Talend Mediation Developer Guide 17

http://camel.apache.org/templating.html
http://camel.apache.org/xquery.html
http://camel.apache.org/bean-integration.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup

Content enrichment using the enrich DSL element

Name Default Value Description

strat egyRef Refers to an AggregationStrategy to be used to merge
the reply from the external service, into a single
outgoing message. By default Camel will use the reply
from the external service as outgoing message.

Using the Fluent Builders

Aggregati onStrategy aggregationStrategy = ...

from("direct:start")
.enrich("direct:resource", aggregationStrategy)
.to("direct:result");

from("direct:resource")

The content enricher (enr i ch) retrieves additional datafrom aresource endpoint in order to enrich anincoming
message (contained in the original exchange). An aggregation strategy is used to combine the original exchange
and the resource exchange. The first parameter of the Aggr egat i onSt r at egy. aggr egat e(Exchange,
Exchange) method corresponds to the the original exchange, the second parameter the resource exchange. The
results from the resource endpoint are stored in the resource exchange's out-message. Here's an example template
for implementing an aggregation strategy.

public class Exanpl eAggregati onStrategy i nplenments AggregationStrategy {

publ i c Exchange aggregat e(Exchange ori gi nal, Exchange resource) {

oj ect original Body = original.getln().getBody();

hj ect resourceResponse = resource. get Qut (). get Body();

oj ect nergeResult = ... // conbine original body and resourceResponse

if (original.getPattern().isQutCapable()) {
original.getQut().setBody(nmergeResult);

} else {
original.getln().setBody(nergeResult);

}

return original;

}

Using this template the original exchange can be of any pattern. The resource exchange created by the enricher
isaways an in-out exchange.

Using Spring XML
The same example in the Spring DSL

<canel Context id="canel" xm ns="http://canel.apache. org/schena/spring">
<r out e>
<fromuri="direct:start"/>
<enrich uri="direct:resource" strategyRef="aggregationStrategy"/>
<to uri="direct:result"/>
</route>
<r out e>
<fromuri="direct:resource"/>
</route>
</ camel Cont ext >

18 Talend Mediation Developer Guide

http://camel.apache.org/fluent-builders.html

Aggregation strategy is optional

<bean i d="aggregati onStrategy" class="..." [>

2.7.3. Aggregation strategy is optional

The aggregation strategy is optional. If you do not provide it Camel will by default just use the body obtained
from the resource.

from"direct:start")
.enrich("direct:resource")
.to("direct:result");

In the route above the message send to the di rect: resul t endpoint will contain the output from the
di rect: resour ce aswe do not use any custom aggregation.

Andin Spring DSL just omit the st r at egyRef attribute:

<rout e>
<fromuri="direct:start"/>
<enrich uri="direct:resource"/>
<to uri="direct:result"/>
</ rout e>

2.7.4. Content enrichment using pollEnrich

Thepol | Enri ch worksjust asthe enr i ch option however asit uses a Section 2.36, “Polling Consumer” we
have 3 methods when polling

* receive
» receiveNoWait
* receive(timeout)

By default Camel will usether ecei veNoWai t . If thereis no datathen the newExchange in the aggregation
strategy isnul | .

The same configuration options above for enrich also hold for pollEnrich, but thereisalso at i meout value(in
milliseconds) that determines which method will be used:

* timeout is-1 or other negative number thenr ecei ve isselected
 timeoutisOthenr ecei veNoWi t is selected

» otherwiser ecei ve(ti neout) isselected

Data from current Exchange not used

pol | Enri ch doesnot access any data from the current Exchange which means when polling it cannot
use any of the existing headers you may have set on the Exchange. For example you cannot set afilename
in the Exchange. FI LE_NANME header and use pol | Enri ch to consume only that file. For that you
must set the filename in the endpoint URI.

In this example we enrich the message by loading the content from the file named inbox/data.txt.

from"direct:start")
.poll Enrich("file:inbox?fil eName=data.txt")

Talend Mediation Developer Guide 19

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

Content Filter

.to("direct:result");

Andin XML DSL you do:

<rout e>

<fromuri="direct:start"/>

<pol | Enrich uri="file:inbox?fil eNanme=data.txt"/>
<to uri="direct:result"/>

</ rout e>

If thereis no file then the message is empty. We can use atimeout to either wait (potentially forever) until afile
exists, or use atimeout to wait a certain period. For example to wait up to 5 seconds you can do:

<rout e>

<fromuri="direct:start"/>

<pol I Enrich uri="file:inbox?fil eNane=data.txt" timeout="5000"/>
<to uri="direct:result"/>

</ route>

2.8. Content Filter

Camel supports the Content Filter from the EIP patterns using one of the following mechanisms in the routing
logic to transform content from the inbound message.

» Section 2.29, “Message Trand ator”
* invoking a Java bean

* Processor abject

Content Filter

— o] —"a

hessage hMessage

A common way to filter messages isto use an Expression in the DSL like XQuery, SQL or one of the supported
Scripting Languages.

Using the Fluent Builders

Here isa simple example using the DSL directly

from"direct:start"). set Body(body().append(" World!")).to("nock:result");
In this example we add our own Processor

from("direct:start"). process(new Processor() {
public void process(Exchange exchange) ({
Message in = exchange.getln();
i n.setBody(in.getBody(String.class) + " World!");

20 Talend Mediation Developer Guide

http://www.enterpriseintegrationpatterns.com/ContentFilter.html
http://camel.apache.org/processor.html
http://camel.apache.org/expression.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/dsl.html
http://camel.apache.org/processor.html

Correlation Identifier

}

}).to("nmock:result");

For further examples of this pattern in use you could look at one of the JUnit tests
» TransformTest

» TransformViaDSL Test

Using Spring XML

<r out e>
<fromuri="activenqg: | nput"/>
<bean ref="nmyBeanNanme" net hod="doTransforni/>
<to uri="activeny: Qut put"/>

</route>

Y ou can also use XPath to filter out part of the message you are interested in:

<rout e>
<fromuri="activenqg: I nput"/>
<set Body>
<xpat h result Type="org. w3c. dom Docunent ">/ /f oo: bar </ xpat h>
</ set Body>
<to uri="activeny: Qut put"/>
</rout e>

2.9. Correlation Identifier

Camel supports the Correlation Identifier from the EIP patterns by getting or setting a header on a Section 2.22,
“Message”.

When working with the Section 3.1, “ActiveMQ” or Section 3.24, “JM S’ components the correlation identifier
header is called JM SCorrelationID. You can add your own correlation identifier to any message exchange to
help correlate messages together to a single conversation (or business process).

Gu:ilrrefaif.fﬂn Message [0
— —
Zalll
Fequests

I Eg

L]
Requestor Replies . Replier

GII:I."."E'J'Ei’."DH i

Theuse of aCorrelation Identifier is key to working with the Camel Business Activity Monitoring Framework and
can also be highly useful when testing with ssmulation or canned data such as with the Mock testing framework

Talend Mediation Developer Guide 21

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformTest.java?view=markup
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/TransformViaDSLTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/CorrelationIdentifier.html
http://camel.apache.org/bam.html

Dead L etter Channel

2.10. Dead Letter Channel

Camel supports the Dead L etter Channel from the EIP patterns using the DeadL etterChannel processor which is
an Error Handler.

Delivery Falla
- Ty —am=— X
sencer Message Channel Intended
Heceiver
Reroute Delivery -~
- — il

Dead Dead Letter
hMessage Channel

i Difference between Dead L etter Channel and Default Error Handler

The major difference is that Section 2.10, “Dead Letter Channel” has a dead letter queue that whenever
an Exchange could not be processed is moved to. It will always moved failed exchanges to this queue.

Unlike the Default Error Handler that does not have adead letter queue. So whenever an Exchange could
not be processed the error is propagated back to the client.

Notice: You can adjust this behavior of whether the client should be notified or not with the handled
option.

2.10.1. Redelivery

It is common for atemporary outage or database deadlock to cause a message to fail to process; but the chances
areif it istried a few more times with some time delay then it will complete fine. So we typically wish to use
some kind of redelivery policy to decide how many times to try redeliver a message and how long to wait before
redelivery attempts.

The RedeliveryPolicy defines how the message is to be redelivered. Y ou can customize things like

» how many times a message is attempted to be redelivered before it is considered a failure and sent to the dead
letter channel

« theinitial redelivery timeout
» whether or not exponential backoff isused (i.e. the time between retries increases using a backoff multiplier)

» whether to use collision avoidance to add some randomness to the timings

22 Talend Mediation Developer Guide

http://www.enterpriseintegrationpatterns.com/DeadLetterChannel.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/exchange.html
http://camel.apache.org/defaulterrorhandler.html
http://camel.apache.org/exchange.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html

About moving Exchange to dead letter queue and using handled

* delay pattern, see below for details.

Once all attempts at redelivering the message fails then the message is forwarded to the dead | etter queue.

2.10.2. About moving Exchange to dead letter queue
and using handled

When all attempts of redelivery have failed the Exchange is moved to the dead letter queue (the dead letter
endpoint). The exchange is then complete and from the client point of view it was processed. With this process
the Dead L etter Channel has handled the Exchange.

For instance configuring the dead letter channel, using the fluent builders:

error Handl er (deadLet t er Channel ("] ns: queue: dead")
. maxi munRedel i veri es(3).redeliverDel ay(5000));

Using Spring XML Extensions:

<rout e errorHandl er Ref =" myDeadLet t er Err or Handl er" >
</route>
<bean i d="myDeadLetter ErrorHandl er"
cl ass="or g. apache. canel . bui | der. DeadLet t er Channel Bui | der" >
<property nane="deadLetterUri" val ue="j ns: queue: dead"/ >

<property nane="redeliveryPolicy" ref="nyRedeliveryPolicyConfig"/>
</ bean>

<bean i d="myRedel i veryPol i cyConfi g"

cl ass="org. apache. canel . processor. Redel i veryPol i cy" >
<property nane="nmaxi nunRedel i veri es" val ue="3"/>
<property nane="redeliveryDel ay" val ue="5000"/>
</ bean>

The Section 2.10, “Dead Letter Channel” above will clear the caused exception set Excepti on(nul |), by
moving the caused exception to a property on the Exchange, with the key Exchange.EXCEPTION_CAUGHT.
Then the exchangeis moved to thej ns: queue: dead destination and the client will not notice the failure.

2.10.3. About moving Exchange to dead letter queue
and using the original message

The option useOriginalM essageis used for routing the original input message instead of the current message that
potentially is modified during routing.

For instance if you have this route:

from("j ms: queue: order:input")
.to("bean: validateOrder")
.to("bean: transformder")
.to("bean: handl eOrder");

The route listen for IMS messages and validates, transforms and handle it. During this the Exchange payload
is transformed/modified. So in case something goes wrong and we want to move the message to another IMS

Talend Mediation Developer Guide 23

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

OnReddlivery

destination, then we can configure our Section 2.10, “Dead Letter Channel” with the useOriginalBody option.
But when we move the Exchange to this destination we do not know in which state the message is in. Did the
error happen in before the transformOrder or after? So to be sure we want to move the original input message
wereceived fromj ns: queue: or der : i nput . Sowe can do this by enabling the useOriginal M essage option
as shown below:

/1 will use original body
error Handl er (deadLet t er Channel ("j ns: queue: dead")
.useOri gi nal Message() . mani nunRedel i veri es(5).redeliverDel ay(5000);

Then the messages routed to the j ms: queue: dead isthe original input. If we want to manually retry we can
move the IMS message from the failed to the input queue, with no problem as the message is the same as the
original we received.

2.10.4. OnRedelivery

When Section 2.10, “Dead Letter Channel” is doing redelivery it is possible to configure a Processor that is
executed just before every redelivery attempt. This can be used for the situations where you need to ater the
message before it isredelivered. See below for sample.

We also have support for per onException to set a onRedeliver. That means you can do special on redelivery
for different exceptions, as opposed to onRedelivery set on Section 2.10, “Dead Letter Channel” can be viewed
asaglobal scope.

2.10.5. Redelivery default values

Redelivery is disabled by default. The default redeliver policy uses the following values:
* maximumRedeliveries=0
* redeliverDelay=1000L (1 second)
 useinitiadRedeliveryDelay for previous versions
» maximumRedeliveryDelay = 60 * 1000L (60 seconds)
» And the exponentia backoff and collision avoidance is turned off.
» TheretriesExhaustedLoglL evel are set to LoggingLevel. ERROR
* TheretryAttemptedLogL evel are set to LoggingLevel . DEBUG
 Stack tracesislogged for exhausted messages.
» Handled exceptionsis not logged

Themaximum redeliver delay ensuresthat adelay isnever longer than the value, default 1 minute. Thiscan happen
if you turn on the exponentia backoff.

Themaximum redeliveriesisthe number of redelivery attempts. By default Camel will try to processthe exchange
1+ 5times. 1 time for the normal attempt and then 5 attempts as redeliveries. Setting the maximumRedeliveries
to anegative value such as -1 will then always redelivery (unlimited). Setting the maximumRedeliveriesto O will
disable any re delivery attempt.

Camel will log delivery failures a the DEBUG logging level by default. You
can change this by specifying retriesExhaustedLoglevel and/or retryAttemptedLoglevel. See
ExceptionBuilderWithRetryL oggingL evel SetTest for an example.

24 Talend Mediation Developer Guide

http://camel.apache.org/exchange.html
http://camel.apache.org/processor.html
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/builder/ExceptionBuilderWithRetryLoggingLevelSetTest.java

Redeliver Delay Pattern

You can turn logging of stack traces on/off. If turned off Camel will still log the redelivery attempt; but it's much
less verbose.

2.10.6. Redeliver Delay Pattern

Delay patternisused asasingle option to set arange pattern for delays. If used then the following options does not
apply: (delay, backOffMultiplier, useExponential Back Off, useCollisionAvoidance, maximumRedeliveryDelay).

Theideaisto set groups of ranges using the following syntax: | i mit: del ay; limt 2:delay 2;linmt
3:delay 3;...;limt Ndelay N

Each group has two values separated with colon
o limit = upper limit

 delay = delay in milliseconds And the groups is again separated with semi colon. The rule of thumb is that the
next groups should have a higher limit than the previous group.

Let's clarify thiswith an example: del ayPat t er n=5: 1000; 10: 5000; 20: 20000
That gives us 3 groups:

+ 5:1000

* 10:5000

¢ 20:20000

Resulting in these delays for redelivery attempt:

* Redelivery attempt number 1..4 = 0 ms (as the first group start with 5)

* Redelivery attempt number 5..9 = 1000 ms (the first group)

» Reddlivery attempt number 10..19 = 5000 ms (the second group)

» Redelivery attempt number 20.. = 20000 ms (the last group)

Note: Thefirst redelivery attempt is 1, so the first group should start with 1 or higher.
You can start agroup with limit 1 to eg have a starting delay: del ayPat t er n=1: 1000; 5: 5000
* Redelivery attempt number 1..4 = 1000 ms (the first group)

* Reddlivery attempt number 5.. = 5000 ms (the last group)

There is no requirement that the next delay should be higher than the previous. Y ou can use any delay value you
like. For examplewith del ayPat t er n=1: 5000; 3: 1000 we start with 5 sec delay and then later reduce that
to 1 second.

2.10.7. Redelivery header

When a message is redelivered the DeadL etterChannel will append a customizable header to the message to
indicate how many times it has been redelivered. The header CamelRedeliveryMaxCounter, which is also
defined on the Exchange. REDELI VERY_ MAX COUNTER, contains the maximum redelivery setting. This
header is absent if you user et r yWhi | e or have unlimited maximum redelivery configured.

Talend Mediation Developer Guide 25

http://camel.apache.org/maven/camel-core/apidocs/org/apache/camel/processor/DeadLetterChannel.html

Determining location of endpoint failures

And aboolean flag whether it is being redelivered or not (first attempt). The header CamelRedelivered contains
aboolean if the message is redelivered or not, which is also defined on the Exchange. REDELI VERED.

There's an additional header, Canel Redel i ver yDel ay, to show any dynamically calculated delay from
the exchange. This is also defined on the Exchange.REDELIVERY _DELAY. If this header is absent, normal
redelivery rules will apply.

2.10.8. Determining location of endpoint failures

When Camel routes messages it will decorate the Exchange with a property that contains the last endpoint Camel
send the Exchange to:

String | ast Endpoi nt Uri = exchange. get Property(Exchange. TO ENDPO NT,
String.cl ass);

The Exchange. TO_ENDPQO NT have the constant value Canel ToEndpoi nt .

This information is updated when Camel sends a message to any endpoint. So if it exists it's the last endpoint
which Camel send the Exchange to.

When for example processing the Exchange at a given Endpoint and the message is to be moved into the dead
letter queue, then Camel also decorates the Exchange with another property that contains that last endpoint:

String fail edEndpoi nt Uri = exchange. get Property(Exchange. FAI LURE_ENDPQO NT,
String.class);

The Exchange. FAI LURE_ENDPQO NT have the constant value Canel Fai | ur eEndpoi nt .

This alows for example you to fetch this information in your dead letter queue and use that for error reporting.
This is useable if the Camel route is a bit dynamic such as the dynamic Section 2.38, “Recipient List” so you
know which endpoints failed.

Notice: These information is kept on the Exchange even if the message was successfully processed by a given
endpoint, and then later fails for example in alocal Section 3.3, “Bean” processing instead. So beware that this
isahint that helps pinpoint errors.

from("activenq: queue: f oo")
.to("http://soneserver/somepath")
. beanRef ("fo00");

Now suppose the route above and afailure happensin thef oo bean. Then the Exchange. TO_ENDPO NT and
Exchange. FAI LURE_ENDPO NT will still containthevalueof http://soneserver/sonepath .

2.10.9. Samples

The following example shows how to configure the Dead L etter Channel configuration using the DSL

Rout eBui | der buil der = new Rout eBui l der () {
public void configure() {
/1 using dead |l etter channel with a seda queue for errors
error Handl er (deadLet t er Channel ("seda: errors"));

/1 here is our route
from("seda:a").to("seda: b");

26 Talend Mediation Developer Guide

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/dsl.html

Delayer

b
Y ou can a'so configure the RedeliveryPalicy as this example shows

Rout eBui | der buil der = new Rout eBuil der () {
public void configure() {
/1 configures dead |l etter channel to use seda queue for errors and
/] uses at nost 2 redeliveries
/1 and exponential backoff
error Handl er (deadLet t er Channel ("seda: errors"). maxi nunmRedel i veri es(2).
useExponenti al BackOf f ());

/1 here is our route
from("seda:a").to("seda: b");

2.11. Delayer

The Delayer Pattern alows you to delay the delivery of messages to some destination. Note: the specified
expression is a value in milliseconds to wait from the current time, so if you want to wait 3 sec from now, the
expression should be 3000. Y ou can also use along value for afixed value to indicate the delay in milliseconds.
See the Spring DSL samples below for Delayer.

Name Default Value |Description

asyncDel ayed fase If enabled then delayed messages happens
asynchronously using a scheduled thread pool.

execut or Ser vi ceRef Refersto acustom Thread Pool to be used if asyncDelay
has been enabled.

cal I er RunsWhenRej ect ed true Isusedif asyncDelayed was enabled. Thiscontrolsif the
caller thread should execute the task if the thread pool
rejected the task.

Using the Fluent Builders
from "seda: b").del ay(1000).to("nock:result");
So the above example will delay all messages received on seda:b 1 second before sending them to mock:result.

You can of course use many different Expression languages such as XPath, XQuery, SQL or various Scripting
Languages. You can just delay things a fixed amount of time from the point at which the delayer receives the
message. For example to delay things 2 seconds:

del ayer (2000)

The above assumes that the delivery order is maintained and that the messages are delivered in delay order. If
you want to reorder the messages based on delivery time, you can use the Section 2.40, “ Resequencer” with this
pattern. For example:

from"activenq: soneQueue”) . resequencer (header (" MyDel i veryTinme")).
del ay("MyRedel i veryTi me").to("activeny: aDel ayedQueue") ;

The sample below demonstrates the delay in Spring DSL:

<canel Cont ext xm ns="http://canel.apache. org/ schena/ spri ng">

Talend Mediation Developer Guide 27

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/RedeliveryPolicy.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/expression.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/scripting-languages.html

Asynchronous delaying

<r out e>
<fromuri="seda:a"/>
<del ay>
<header >MyDel ay</ header >
</ del ay>
<to uri="nock:result"/>
</rout e>
<r out e>
<fromuri="seda: b"/>
<del ay>
<const ant >1000</ const ant >
</ del ay>
<to uri="nock:result"/>
</rout e>

</ canel Cont ext >

2.11.1. Asynchronous delaying

You can let the Section 2.11, “Delayer” use non blocking asynchronous delaying, which means Camel will use
a scheduler to schedule a task to be executed in the future. The task will then continue routing. This allows the
caller thread to not block and be able to service other messages etc.

2.11.1.1. From Java DSL

You usetheasyncDel ayed() to enablethe async behavior.

from("activeny: queue: f0o"). del ay(1000) . asyncDel ayed().
to("activenq: aDel ayedQueue");

2.11.1.2. From Spring XML

You usetheasyncDel ayed="t r ue" attribute to enable the async behavior.

<r out e>
<fromuri="activeny: queue: f 00"/ >
<del ay asyncDel ayed="true">
<const ant >1000</ const ant >
</ del ay>
<to uri="activeny: aDeal yedQueue"/ >
</route>

2.11.2. Creating a custom delay

Y ou can use an expression to determine when to send a message using something like this

from("activeny: foo").
del ay() . net hod("sonmeBean", "conputeDel ay").

28 Talend Mediation Developer Guide

Detour

to("activenq: bar");
then the bean would look like this:

public class SoneBean {
public |l ong conmputeDel ay() {
| ong del ay = O;
/1 use Java code to compute a delay value in nilliseconds
return del ay;

2.12. Detour

The Detour from the EIP patterns allows you to send messages through additional stepsif a control condition is
met. It can be useful for turning on extra validation, testing, debugging code when needed.

¥

Source

| Destination

Control

In the below example we essentially have aroute likefrom("direct:start").to("nock:result")
with a conditional detour to the nock: det our endpoint in the middle of the route:

from"direct:start"). choice()
.when(). net hod("control Bean", "isDetour").to("nock:detour").end()
.to("nock:result");

Using the Spring XML Extensions

<rout e>
<fromuri="direct:start"/>
<choi ce>
<when>
<net hod bean="control Bean" net hod="isDetour"/>
<to uri="nock:detour"/>
</ when>
</ choi ce>
<to uri="nock:result"/>
</split>
</ route>

whether the detour is turned on or off is decided by the Cont r ol Bean. So, when the detour is on the
message is routed to nock: det our and then nock: r esul t . When the detour is off, the message is routed
tomock: resul t.

For full details, check the example source here:

Talend Mediation Developer Guide 29

http://www.enterpriseintegrationpatterns.com/Detour.html

Durable Subscriber

camel-core/src/test/javalorg/apache/camel/processor/Detour Test.java

2.13. Durable Subscriber

Camel supports the Durable Subscriber from the EIP patterns using the Section 3.24, “JMS’ component which
supports publish & subscribe using Topics with support for non-durable and durable subscribers.

&

Durable
I subscrber
I Heceiver

Fublisher

Publish-Subscribe Mon-Durable
Channel subscriber

Hecelver

Another aternative isto combine the Section 2.25, “Message Dispatcher” or Section 2.6, “ Content Based Router”
with Section 3.14, “File” or Section 3.26, “JPA” components for durable subscribers then Seda for non-durable.

Here are some examples of creating durable subscribers to a IMStopic. Using the Fluent Builders:

from("direct:start").to("activenqg:topic:foo");

from("activeny:topic:foo?clientld=1&durabl eSubscri pti onNane=bar 1").
to("nock:result1");

from("activeny:topic:foo?clientld=2&durabl eSubscri pti onNane=bar 2").
to("nock: result2");

Using the Spring XML Extensions:

<rout e>
<fromuri="direct:start"/>
<to uri="activeny:topic:foo"/>
</rout e>

<r out e>
<fromuri="activeny:topic:foo?clientld=1& ...
dur abl eSubscri pti onNane=bar 1"/ >
<to uri="nock:resultl"/>
</route>

<r out e>
<fromuri="activeny:topic:foo?clientld=2& ...

30 Talend Mediation Developer Guide

http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/DetourTest.java
http://www.enterpriseintegrationpatterns.com/DurableSubscription.html
http://camel.apache.org/seda.html

Dynamic Router

dur abl eSubscri pt i onName=bar 2"/ >
<to uri="nock:result2"/>
</route>

2.14. Dynamic Router

The Dynamic Router from the EIP patterns allows you to route messages while avoiding the dependency of the
router on all possible destinations while maintaining its efficiency.

Dynamic Router Dutput Channel

g T g B

Meszage Router

nput Channel Cutput Channel
—- G | B
Cutput Channel

—@— c

Dynamic Fule Base

Control Channel

In Camel 2.5 we introduced a dynani cRout er in the DSL which is like a dynamic Section 2.42, “Routing
Slip” which evaluates the slip on-the-fly.

/\ Beware

You must ensure the expression used for the dynam cRout er such as a bean, will return nul | to
indicate the end. Otherwise the dynamni cRout er will keep repeating endlessly.

Option Default Description

uriDelimiter , Delimiter used if the Expression returned multiple
endpoints.

ignorel nvalidEndpoints fal se If an endpoint URI could not be resolved, whether it should

it be ignored. Otherwise Camel will throw an exception
stating that the endpoint URI is not valid.

The Dynamic Router will set a property (Exchange.SLIP_ENDPOINT) on the Exchange which contains the
current endpoint as it advanced though the dlip. This allows you to know how far we have processed in the slip.
(It'sadip because the Section 2.14, “ Dynamic Router” implementation is based on top of Section 2.42, “Routing
Slip”).

2.14.1. Java DSL

InJavaDSL you can usether out i ngSl i p as shown below:

Talend Mediation Developer Guide 31

http://www.enterpriseintegrationpatterns.com/DynamicRouter.html
http://camel.apache.org/exchange.html

Spring XML

from"direct:start")
/1 use a bean as the dynam c router
. dynam cRout er (bean(Dynani cRout er Test . cl ass, "slip"));

Which will leverage a Section 3.3, “Bean” to compute the slip on-the-fly, which could be implemented as follows:

/**
* Use this nethod to conpute dynami c where we shoul d route next.
* @aram body t he nessage body
* @eturn endpoints to go, or null to indicate the end
*/
public String slip(String body) {
bodi es. add(body) ;
i nvoked++;

if (invoked == 1) {
return "nock:a";

} else if (invoked == 2) {
return "nock: b, nock:c";

} else if (invoked == 3) {
return "direct:foo";

} else if (invoked == 4) {
return "nock:result";

}

// no nobre so return null
return null;

Mind that this example is only for show and tell. The current implementation is not thread safe. Y ou would have
to store the state on the Exchange, to ensure thread safety.

2.14.2. Spring XML

The same example in Spring XML would be:

<bean id="nySlip" class="org.apache. canel . processor. Dynam cRout er Test"/ >

<canel Cont ext xm ns="http://canel.apache. org/ schena/ spri ng">
<r out e>
<fromuri="direct:start"/>
<dynam cRout er >
<l-- use a method call on a bean as dynamic router -->
<net hod ref="nySlip" nethod="slip"/>
</ dynam cRout er >
</route>

<r out e>
<fromuri="direct:foo0"/>
<t ransf or nk<const ant >Bye Wbr | d</ const ant ></ tr ansf or n»
<to uri="nock:foo"/>

</route>

</ canel Cont ext >

32 Talend Mediation Developer Guide

@DynamicRouter annotation

2.14.3. @DynamicRouter annotation

Y ou can also usethe @ynam cRout er annotation, for example the example below could be written asfollows.
The r out e method would then be invoked repeatedly as the message is processed dynamically. The ideais to
return the next endpoint uri where to go. Return nul | to indicate the end. Y ou can return multiple endpoints if
you like, just as the Section 2.42, “Routing Slip”, where each endpoint is separated by adelimiter.

public class MyDynam cRouter ({

@onsume(uri = "activenqg: foo")

@ynani cRout er

public String route(@XPath("/custoner/id") String custonerld,

@Header ("Location") String location, Docunent body) ({
/1 query a database to find the best match of the endpoint based on
/1 the input paraneters
/1 return the next endpoint uri, where to go. Return null to indicate
/1 the end.

2.15. Event Driven Consumer

Camel supports the Event Driven Consumer from the EIP patterns. The default consumer model is event based
(i.e. asynchronous) as this means that the Camel container can then manage pooling, threading and concurrency

for you in a declarative manner.

Event-Driven
Sendear Message Consum er

Hecelver

The Event Driven Consumer isimplemented by consumersimplementing the Processor interface whichisinvoked
by the Section 2.26, “Message Endpoint” when a Section 2.22, “Message” is available for processing.

For more details see
» Section 2.22, “Message”

 Section 2.26, “Message Endpoint”

2.16. Event Message

Camd supports the Event Message from the EIP patterns by supporting the Exchange Pattern on a Section 2.22,
“Message” which can be set to InOnly to indicate a oneway event message. Camel Components then implement
this pattern using the underlying transport or protocols.

Talend Mediation Developer Guide 33

http://www.enterpriseintegrationpatterns.com/EventDrivenConsumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Processor.html
http://www.enterpriseintegrationpatterns.com/EventMessage.html
http://camel.apache.org/exchange-pattern.html

Event Message

See also the related Section 2.39, “ Request Reply” EIP.

[E]

Dhserver

9 %

=ubject Event
hessage

E = aPriceChangedEvent

The default behavior of many Componentsis InOnly such asfor Section 3.24, “JMS” or Section 3.38, “SEDA”

If you are using a component which defaults to InOut but wish to use InOnly you can override the Exchange

Pattern for an endpoint using the pattern property.

f oo: bar ?exchangePat t er n=I nOnl y

From 2.0 onwards on Camel you can specify the Exchange Pattern using the dsl. Using the Fluent Builders:

from(" ng: soneQueue") .
inOnly().
bean(Foo. cl ass);

or you can invoke an endpoint with an explicit pattern

<rout e>

<fromuri="ng: someQueue"/ >
<inOnly uri="bean: foo"/>
</route>

<rout e>

<fromuri="ng: someQueue"/ >
<inOnly uri="nqg: anot her Queue"/ >
</route>

Using the Spring XML Extensions:

from(" ng: soneQueue") .
inOnly().
bean(Foo. cl ass);

[E]

Dhserver

[E]

Obzerver

34 Talend Mediation Developer Guide

http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/exchange-pattern.html

Guaranteed Delivery

2.17. Guaranteed Delivery

Camel supports the Guaranteed Delivery from the EIP patterns using the following components
» Section 3.14, “File” for using file systems as a persistent store of messages

» Section 3.24, “IMS’ when using persistent delivery (the default) for working with IMS Queues and Topics for
high performance, clustering and load balancing

» Section 3.26, “JPA” for using a database as a persistence layer, or use any of the many other database
components such as SQL, JDBC, iBatisyMyBatis, Hibernate

» HawtDB for alightweight key-value persistent store

sender Recerver

Disk Disk

Computer 1 Computer 2

2.18. Idempotent Consumer

The Idempotent Consumer from the EIP patternsis used to filter out duplicate messages.

This pattern is implemented using the |dempotentConsumer class. This uses an Expression to calculate a unique
message ID string for a given message exchange; this ID can then be looked up in the |dempotentRepository to
see if it has been seen before; if it has the message is consumed; if it is not then the message is processed and
the ID is added to the repository.

The Idempotent Consumer essentially acts like a Section 2.27, “Message Filter” to filter out duplicates.

Camd will add the message id eagerly to the repository to detect duplication also for Exchanges currently in
progress. On completion Camel will remove the message id from the repository if the Exchange failed, otherwise
it stays there.

Camel provides the following |dempotent Consumer implementations:

» MemoryldempotentRepository

* FileldempotentRepository

» JdbcMessageldRepository (Available as of Camel 2.7)

» JpaMessagel dRepository

Talend Mediation Developer Guide 35

http://www.enterpriseintegrationpatterns.com/GuaranteedMessaging.html
http://camel.apache.org/hawtdb.html
http://www.enterpriseintegrationpatterns.com/IdempotentReceiver.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/IdempotentConsumer.html
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/IdempotentRepository.html

Options

2.18.1. Options

The Idempotent Consumer has the following options:

Option

Default

Description

eager

true

Eager controls whether Camel adds the message to the
repository before or after the exchange has been processed.
If enabled before then Camel will be able to detect duplicate
messages even when messages are currently in progress. By
disabling Camel will only detect duplicates when a message
has successfully been processed.

messagel dRepositoryRef

nul |

A referencetoal denpot ent Reposi t ory tolookupinthe
registry. This option is mandatory when using XML DSL.

removeOnFailure

true

Sets whether to remove the id of an Exchange that failed.

2.18.2. Using the Fluent Builders

The following example will use the header myM essagel d to filter out duplicates

Rout eBui | der buil der =

public void configure() {
error Handl er (deadLet t er Channel (" nock: error™));

from"seda: a")

new Rout eBui | der () {

. i dempot ent Consuner (header (" myMessagel d"),
Menor yl denpot ent Reposi t ory. menor yl denpot ent Reposi t ory(200))
.to("seda: b");

}s

The above example will use an in-memory based Messagel dRepository which can easily run out of memory and
doesn't work in a clustered environment. So you might prefer to use the JPA based implementation which uses a
database to store the message 1Ds which have been processed

from"direct:start").idenpotent Consumner (
header (" nmessagel d"),
j paMessagel dReposi t ory(| ookup(JpaTenpl at e. cl ass), PROCESSOR_NANE)

).to("nock:result");

In the above example we are using the header messageld to filter out duplicates and using the collection
myPr ocessor Name to indicate the Message ID Repository to use. This name is important as you could process
the same message by many different processors; so each may requireits own logical Message ID Repository.

For further examples of this pattern in use you could look at the junit test case

2.18.3. Spring XML example

The following example will use the header myM essagel d to filter out duplicates

<l-- repository for the idenpotent consumer -->

<bean i d="nmyRepo"

cl ass="org. apache. canel . processor. i denpot ent . Menor yl denpot ent Reposi tory"/>

36

Talend Mediation Developer Guide

https://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/builder/RouteBuilderTest.java
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
https://svn.apache.org/repos/asf/camel/trunk/components/camel-jpa/src/test/java/org/apache/camel/processor/jpa/JpaIdempotentConsumerTest.java
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/IdempotentConsumerTest.java?view=markup

Load Balancer

<canel Cont ext xm ns="http://canel.apache. org/ schema/ spri ng">

<rout e>

<fromuri="direct:start"/>
<i denpot ent Consuner nessagel dReposit or yRef =" nmyRepo" >

<l --

use the nmessageld header as key for identifying duplicate

nessages -->
<header >nmessagel d</ header >

<l--

if not a duplicate send it to this nock endpoint -->

<to uri="nock:result"/>
</ i denmpot ent Consuner >

</ rout e>
</ canel Cont ext >

2.19. Load Balancer

The Load Balancer Pattern allows you to delegate to one of a number of endpoints using a variety of different

load balancing policies.

2.19.1. Built-in load balancing policies

Camel provides the following policies out-of-the-box:

Policy Description

Round Robin The exchanges are selected from in a round robin fashion. Thisis a well
known and classic policy, which spreads the load evenly.

Random A random endpoint is selected for each exchange.

Sticky Sticky load balancing using an Expression to calculate a correlation key
to perform the sticky load balancing; rather like jsessionid in the web or
IJMSXGrouplD in IMS.

Topic Topic which sends to al destinations (rather like IMS Topics).

Failover In case of failures the exchange is tried on the next endpoint.

Weighted Round Robin

The weighted load balancing policy allows you to specify a processing
load distribution ratio for each server with respect to others.In addition to
the weight, endpoint selection is then further refined using round-robin
distribution based on weight.

Weighted Random

The weighted load balancing policy allows you to specify a processing
load distribution ratio for each server with respect to others.In addition
to the weight, endpoint selection is then further refined using random
distribution based on weight.

Custom

The weighted load balancing policy allows you to specify a processing
load distribution ratio for each server with respect to others.In addition
to the weight, endpoint selection is then further refined using random
distribution based on weight.

2.19.2. Round Robin

The round robin load balancer is not meant to work with failover, for that you should use the dedicated failover
load balancer. The round robin load balancer will only change to next endpoint per message.

Talend Mediation Developer Guide 37

http://camel.apache.org/load-balancer.html#LoadBalancer-RoundRobin
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/RandomLoadBalancer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/StickyLoadBalancer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/loadbalancer/TopicLoadBalancer.html
camel.apache.org/load-balancer.html#LoadBalancer-Failover
http://camel.apache.org/load-balancer.html#LoadBalancer-WeightedRoundRobinandRandomLoadBalancing
http://camel.apache.org/load-balancer.html#LoadBalancer-WeightedRoundRobinandRandomLoadBalancing
http://camel.apache.org/load-balancer.html#LoadBalancer-CustomLoadBalancer

Failover

Theround robin load balancer is stateful as it keeps state which endpoint to use next time.
Using the Fluent Builders

from"direct:start").| oadBal ance().
roundRobi n().to("mock: x", "nock:y", "nock:z");

Using the Spring configuration

<canel Context id="camel" xm ns="http://canel.apache. org/schema/spring">
<rout e>
<fromuri="direct:start"/>
<| oadBal ance>
<r oundRobi n/ >
<to uri="nock: x"/>
<to uri="nock:y"/>
<to uri="nock:z"/>
</ | oadBal ance>
</ route>
</ carrel Cont ext >

So the above example will load balance requests from direct:start to one of the available mock endpoint
instances, in this case using a round robbin policy. For further examples of this pattern in use you could look at
the junit test case

2.19.3. Failover

The f ai | over load balancer is capable of trying the next processor in case an Exchange failed with an
excepti on during processing. You can configure the f ai | over with a list of specific exception to only
failover. If you do not specify any exceptions it will failover over any exceptions. It uses the same strategy for
matching exceptions as the Exception Clause does for the onException.

1) Enablestream caching if using streams

If you use streaming then you should enable Stream Caching when using the failover load balancer. This
is needed so the stream can be re-read when failing over.

It has the following options:

Option Type Default Description

inheritErrorHandler boolean true Whether or not the Error Handler configured on the
route should be used or not. You can disable it if you
want the failover to trigger immediately and failover
to the next endpoint. On the other hand if you have
this option enabled, then Camel will first let the Error
Handler try to process the message. The Error Handler
may have been configured to redelivery and use delays
between attempts. If you have enabled a number of
redeliveriesthen Camel will try to redeliver to the same
endpoint, and only failover to the next endpoint, when
the Error Handler is exhausted.

maximumFailover- int -1 A value to indicate after X failver attempts we should
Attempts exhaust (give up). Use -1 to indicate newer give up and
awaystry to failover. Use 0 to newer failover. And use
e.g. 3tofailover at most 3 times before giving up. This
option can be used whether or not round robinisenabled
or not.

38 Talend Mediation Developer Guide

http://camel.apache.org/fluent-builders.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/LoadBalanceTest.java?view=markup
http://camel.apache.org/exchange.html
http://camel.apache.org/exception-clause.html
http://camel.apache.org/stream-caching.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/error-handler.html

Failover

Option Type Default Description

roundRobin boolean false Whether or not the f ai | over load balancer should
operate in round robin mode or not. If not, then it will
alwaysstart from thefirst endpoint when anew message
is to be processed. In other words it restart from the
top for every message. If round robin is enabled, then it
keeps state and will continue with the next endpoint in a
round robin fashion. When using round robin it will not
stick to last known good endpoint, it will always pick
the next endpoint to use.

Thef ai | over load balancer supports round robin mode, which allows you to failover in around robin fashion.
See ther oundRobi n option.

Hereisasampleto failover only if al OExcept i on related exception was thrown:

from("direct:start")
/1 here we will |oad balance if |CException was thrown
/1 any other kind of exception will result in the Exchange as failed
/1 to failover over any kind of exception we can just onit the exception
/1 in the fail Over DSL
.| oadBal ance().fail over (1 CExcepti on. cl ass)
.to("direct:x", "direct:y", "direct:z");

Y ou can specify multiple exceptions to failover as the option is varargs, for instance:

/1 enable redelivery so fail over can react
error Handl er (def aul t Error Handl er () . maxi munRedel i veri es(5));

from"direct:foo").
| oadBal ance().fail over (I OException. class, MyQt her Excepti on. cl ass)
.to("direct:a", "direct:b");

2.19.3.1. Using failover in Spring DSL

Failover can also be used from Spring DSL and you configureit as:

<rout e errorHandl er Ref =" nyError Handl er" >
<fromuri="direct:foo"/>
<l oadBal ance>
<fail over>
<exception>java.i o. | OExcepti on</ exception>
<excepti on>com nyconmpany. MyQt her Except i on</ excepti on>
</fail over>
<to uri="direct:a"/>
<to uri="direct:b"/>
</ | oadBal ance>
</rout e>

2.19.3.2. Using failover in round robin mode

An example using JavaDSL:

from("direct:start")

Talend Mediation Developer Guide 39

Weighted Round-Robin and Random L oad Balancing

/1 Use failover |oad bal ancer in stateful round robin node

/1 which mean it will failover immediately in case of an exception
/[l as it does NOT inherit error handler. It will also keep retrying as

/1 it is configured to newer exhaust.
.| oadBal ance().failover(-1, false, true).

to("direct:bad", "direct:bad2", "direct:good", "direct:good2");

And the same example using Spring XML:

<rout e>
<fromuri="direct:start"/>
<l oadBal ance>
<l-- failover using stateful round robin
which will keep retrying forever those
4 endpoints until success. You can set
t he maxi munfail over Attenpt to break out after
X attenpts -->
<fail over roundRobi n="true"/>
<to uri="direct:bad"/>
<to uri="direct:bad2"/>
<to uri="direct:good"/>

<to uri="direct:good2"/>

</ | oadBal
</ rout e>

ance>

2.19.4. Weighted Round-Robin and Random Load
Balancing

In many enterprise environments where server nodes of unequal processing power & performance characteristics
are utilized to host services and processing endpoints, it isfrequently necessary to distribute processing load based
on their individual server capabilities so that some endpoints are not unfairly burdened with requests. Obviously
simple round-robin or random load balancing do not alleviate problems of this nature. A Weighted Round-Robin
and/or Weighted Random load balancer can be used to address this problem.

The weighted load balancing policy allows you to specify a processing load distribution ratio for each server with
respect to others. Y ou can specify this as a positive processing weight for each server. A larger number indicates
that the server can handlealarger load. Theweight is utilized to determinethe payl oad distribution ratio to different
processing endpoints with respect to others.

The parameters that can be used are

Option

Type

Default Description

roundRobin

boolean

false The default value for round-robinisfalse. In
the absence of this setting or parameter the
load balancing algorithm used is random.

distributionRatio

String

none The distributionRatio is a delimited String
consisting on integer weights separated
by delimiters for example "2,3,5". The
distributionRatio must match the number of
endpoints and/or processors specified in the
load balancer list.

distributionRatio-
Delimiter

String

, The distributionRatioDelimiter is the
delimiter used to specify the
distributionRatio. If this attribute is not
specified a default delimiter "," is expected

40

Talend Mediation Developer Guide

Log

Option Type Default Description

as the delimiter used for specifying the
distributionRatio.

See the Camel website for examples on using this load balancer.

2.20. Log

How can | log processing a Section 2.22, “Message” ?

Camel provides many waysto log processing a message. Here is just some examples:
* You can use the Section 3.28, “Log” component which logs the Message content.
* You can use the Tracer which trace logs message flow.

* You can also use a Processor or Section 3.3, “Bean” and log from Java code.

» Youcanusethel og DSL, covered below.

Thel og DSL alowsyou to use Simplelanguage to construct a dynamic message which getslogged. For example
you can do

from("direct:start").log("Processing ${id}").
to("bean: foo");

Which will construct a String message at runtime using the Simple language. The log message will by logged at
I NFOlevel using the routeid asthelog name. By default arouteisnamedr out e- 1, r out e- 2 etc. But you can
usether out el d(" nyCool Rout e") to set aroute name of choice.

1) Difference between log in the DSL and L og component

Thel og DSL is much lighter and meant for logging human logssuchasSt arting to do ... and
so on. It can only log a message based on the Simple language. On the other hand Section 3.28, “Log”
component isafull fledged component which involves using endpoints and etc. The Section 3.28, “Log”
component is meant for logging the Message itself and you have many URI options to control what you
would like to be logged.

Thelog DSL have overloaded methods to set the logging level and/or name as well.
from"direct:start").l og(Loggi ngLevel . DEBUG, "Processing ${id}").to("bean:foo");
For example you can use this to log the file name being processed if you consume files.

from"file://target/files").log(Loggi ngLevel . DEBUG
"Processing file ${file:nane}").to("bean: foo");

2.20.1. Using log DSL from Spring

In Spring DSL it is also easy to uselog DSL as shown below:

<route id="foo0">
<fromuri="direct:foo"/>
<l og nessage="Cot ${body}"/>
<to uri="nock: foo"/>
</route>

Talend Mediation Developer Guide 41

http://camel.apache.org/load-balancer.html#LoadBalancer-WeightedRoundRobinandRandomLoadBalancing
http://camel.apache.org/tracer.html
http://camel.apache.org/processor.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html

Using sif4j Marker

Thelog tag has attributes to set thenmessage, | oggi ngLevel and| ogNane. For example:

<route id="baz">

<fromuri="direct: baz"/>

<l og nmessage="Me Cot ${body}" | oggi ngLevel ="FATAL" | ogNane="cool "/>

<to uri="nock: baz"/>
</ rout e>

2.20.2. Using slf4j Marker

Y ou can specify amarker name in the DSL:

<route id="baz">
<fromuri="direct:baz"/>

<l og nmessage="Recei ved ${body}"

mar ker =" nyMar ker "/ >
<to uri="nock: baz"/>
</ rout e>

2.21. Loop

| oggi ngLevel =" FATAL" | ogNane="cool "

The Loop alowsfor processing amessage a number of times, possibly in adifferent way for each iteration. Useful

mostly during testing. Options:

Name Default Value

Description

copy false

Whether or not copy mode is used. If false then the
same Exchange will be used for each iteration. So the
result from the previous iteration will be visible for the
next iteration. Instead you can enable copy mode, and
then each iteration restarts with afresh copy of theinput
Exchange.

For each iteration two properties are set on the Exchange. These properties can be used by processors down the
pipeline to process the Section 2.22, “Message” in different ways.

Property

Description

Canel LoopSi ze

Total number of loops

Canel Loopl ndex

Index of the current iteration (0 based)

that could be used by processors down the pipeline to process the Section 2.22, “Message” in different ways.

Thefollowing example shows how to take arequest from the dir ect: x endpoint, then send the message repetitively
to mock:result. The number of times the message is sent is either passed as an argument to | oop(), or
determined at runtime by evaluating an expression. The expression must evaluate to an i nt, otherwise a

Runt i meCanel Except i on isthrown.
Using the Fluent Builders

Pass |oop count as an argument

from("direct:a").loop(8).to("nock:result");

Use expression to determine loop count

42 Talend Mediation Developer Guide

http://camel.apache.org/fluent-builders.html

Message

from"direct:b").l oop(header ("l oop")).to("nock:result");

Use expression to determine loop count
from("direct:c").loop().xpath("/hello/@ines").to("nock:result");
Using the Spring XML Extensions

Pass |oop count as an argument

<rout e>
<fromuri="direct:a"/>
<l oop>
<const ant >8</ const ant >
<to uri="nock:result"/>
</l oop>
</ route>

Use expression to determine loop count

<rout e>
<fromuri="direct:b"/>
<l oop>
<header >l oop</ header >
<to uri="nock:result"/>
</ | oop>
</ route>

See the Camel Website for further examples of this patternin use.

2.22. Message

Camd supports the Message from the EIP patterns using the Message interface.

q{g_{

Sendetr Message Receiver

To support various message exchange patterns like one way Section 2.16, “Event Message” and Section 2.39,
“Request Reply” messages Camel uses an Exchange interface which has a pattern property which can be set to
INnOnly for an Section 2.16, “Event Message” which has a single inbound Message, or InOut for a Section 2.39,
“Request Reply” where there is an inbound and outbound message.

Hereis abasic example of sending a Message to aroute in InOnly and InOut modes
Requestor Code

/11 nOnly
get Context (). creat eProducer Tenpl ate().sendBody("direct:startlnOnly",
"Hell o World");

/11 nQut
String result = (String) getContext().createProducerTenpl ate().request Body(

Talend Mediation Developer Guide 43

http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/loop.html
http://www.enterpriseintegrationpatterns.com/Message.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Message.html
http://camel.apache.org/exchange.html

Message Bus

"direct:startlnQut", "Hello World");

Route Using the Fluent Builders

from("direct:startl nOnly").inOnly("bean: process");

from"direct:startlnQut").inQut("bean: process");
Route Using the Spring XML Extensions

<r out e>
<fromuri="direct:startlnOnly"/>
<inOnly uri="bean: process"/ >
</route>

<rout e>
<fromuri="direct:startlnCQut"/>
<i nQut uri="bean: process"/>
</rout e>

2.23. Message Bus

Camel supportsthe Message Busfrom the EIP patterns. Y ou could view Camel asaMessage Busitself asit allows
producers and consumers to be decoupled.

Application
Application +—
Message Application
Bus

Folks often assume that a Message Bus is a JIMS though so you may wish to refer to the Section 3.24, “IMS’
component for traditional MOM support.

Also worthy of note isthe XM PP component for supporting messaging over XM PP (Jabber)

2.24. Message Channel

Camd supports the Message Channel from the EIP patterns. The Message Channel is an internal implementation
detail of the Endpoint interface and all interactions with the Message Channel are viathe Endpoint interfaces. For
more details see Section 2.22, “Message” and Section 2.26, “Message Endpoint”.

44 Talend Mediation Developer Guide

http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://camel.apache.org/xmpp.html
http://www.enterpriseintegrationpatterns.com/MessageChannel.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html

Message Dispatcher

Wessage
Channel -

sender
Application

L

Messaging Receiver
oystem Application

2.25. Message Dispatcher

Camel supports the Message Dispatcher from the EIP patterns using various approaches.

REXY

Sender

Messages

Ferformer

Message Ferformer
Dizpatcher
Ferformer

Feceiver

You can use a component like Section 3.24, “JMS’ with selectors to implement a Section 2.45, “Selective

Consumer” as the Message Dispatcher implementation. Or you can use an Endpoint as the Message Dispatcher
itself and then use a Section 2.6, “Content Based Router” as the Message Dispatcher.

2.26. Message Endpoint

Camd supports the Message Endpoint from the EIP patterns using the Endpoint interface.

Talend Mediation Developer Guide 45

http://www.enterpriseintegrationpatterns.com/MessageDispatcher.html
http://camel.apache.org/endpoint.html
http://www.enterpriseintegrationpatterns.com/MessageEndpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html

Message Filter

EG htﬁ)

Data Data
Message Message
Endpaint Message Channel Endpaint
sender Receiver
Application Application

When using the DSL to create Routes you typically refer to Message Endpoints by their URIs rather than directly
using the Endpoint interface. it is then a responsibility of the CamelContext to create and activate the necessary
Endpoint instances using the available Component implementations.

2.27. Message Filter

The Message Filter from the EIP patterns allows you to filter messages

Widget Gadget Widget Widget

Widget
cluote cluote Quote Cluote Glote

Message
Filter

The following example shows how to create a Message Filter route consuming messages from an endpoint called
queue:awhich if the Predicate is true will be dispatched to queue:b
Using the Fluent Builders

Rout eBui | der bui | der = new Rout eBuil der () {
public void configure() {
error Handl er (deadLet t er Channel (" nock: error"));

from"seda: a")
.filter(header("foo").isEqual To("bar"))
.to("seda: b");

b

You can of course use many different Predicate languages such as XPath, XQuery, SQL or various Scripting
Languages. Here is an X Path example

from"direct:start").
filter().xpath("/person[@ane="'Janes']").
to("nock:result");

Using the Spring XML Extensions

<canel Cont ext errorHandl er Ref ="error Handl er"
xm ns="http://canel.apache. org/ schena/ spri ng">

<rout e>
<fromuri="seda: a"/>
<filter>
<xpat h>$f oo = ' bar' </ xpat h>

46 Talend Mediation Developer Guide

http://camel.apache.org/dsl.html
http://camel.apache.org/routes.html
http://camel.apache.org/uris.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/CamelContext.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Component.html
http://www.enterpriseintegrationpatterns.com/Filter.html
http://camel.apache.org/predicate.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/predicate.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/scripting-languages.html
http://svn.apache.org/repos/asf/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/XPathFilterTest.java
http://camel.apache.org/spring-xml-extensions.html

Using stop

<to uri="seda:b"/>
</filter>
</rout e>
</ canel Cont ext >

For further examples of this pattern in use you could look at the junit test case

2.27.1. Using stop

Stopisahit different than amessagefilter asit will filter out all messages. Stop isconvenient to useinaSection 2.6,
“Content Based Router” when you for example need to stop further processing in one of the predicates.

In the example below we do not want to route messages any further that has the word By e in the message body.
Notice how we prevent thisin the when predicate by using the. st op() .

from("direct:start")

. choi ce()
.when(body().contains("Hello")).to("nock: hello")
.when(body().contains("Bye")).to("nock: bye").stop()
.ot herwi se().to("nock: other")

.end()

.to("nock:result");

2.27.2. Knowing if Exchange was filtered or not

The Message Filter EIP will add a property on the Exchange which statesif it was filtered or not.

The property has the key Exchange.FILTER MATCHED which has the String value of
Canel Fi | t er Mat ched. Its value is a boolean indicating t r ue or f al se. If the value ist r ue then the
Exchange was routed in the filter block.

2.28. Message Router

The Message Router from the EIP patterns allows you to consume from an input destination, evaluate some
predicate then choose the right output destination.

oLtueue 1

— D

inGILeLue

oLtizieus 2

JEEEEEE

Message
Router

The following example shows how to route a request from an input queue: a endpoint to either queue:b, queue:c
or queue:d depending on the evaluation of various Predicate expressions

Using the Fluent Builders

Talend Mediation Developer Guide 47

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/FilterTest.java?view=markup
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://www.enterpriseintegrationpatterns.com/MessageRouter.html
http://camel.apache.org/predicate.html
http://camel.apache.org/fluent-builders.html

Message Trandator

Rout eBui | der buil der = new Rout eBui l der () {
public void configure() {
error Handl er (deadLet t er Channel (" nock: error™));

from"seda: a")
. choi ce()
.when(header ("fo0").isEqual To("bar"))
.to("seda: b")
.when(header ("fo0").i sEqual To("cheese"))
.to("seda: c")
. ot herwi se()
.to("seda:d");

b
Here is another example of using a bean to define the filter behavior

from("direct:start")
.filter(). method(MyBean. cl ass, "isGol dCustoner").to("nock:result").end()
.to("nock: end");

public static class MyBean {
publ i c bool ean i sGol dCust oner (@Header ("l evel ") String level) {
return | evel . equal s("gold");
}
}

Using the Spring XML Extensions

<canel Cont ext errorHandl er Ref ="error Handl er"
xm ns="http://canel.apache. org/ schena/ spri ng">

<rout e>
<fromuri="seda: a"/>
<choi ce>
<when>
<xpat h>$f oo = ' bar' </ xpat h>
<to uri="seda: b"/>
</ when>
<when>
<xpat h>$f oo = ' cheese' </ xpat h>
<to uri="seda:c"/>
</ when>

<ot her wi se>
<to uri="seda:d"/>
</ ot herw se>
</ choi ce>
</ rout e>
</ carel Cont ext >

Noteif youuseachoi ce without adding an ot her wi se, any unmatched exchangeswill be dropped by default.

2.29. Message Translator

Camd supports the Message Transl ator from the EIP patterns by using an arbitrary Processor in the routing logic,
by using abean to perform the transformation, or by using transform() inthe DSL.. Y ou can also use a Data Format
to marshal and unmarshal messages in different encodings.

48 Talend Mediation Developer Guide

http://camel.apache.org/spring-xml-extensions.html
http://www.enterpriseintegrationpatterns.com/MessageTranslator.html
http://camel.apache.org/processor.html
http://camel.apache.org/data-format.html

Message Trandlator

Translator

— || > ||

%

lncaming hMessage Translated Message

Using the Fluent Builders

Y ou can transform a message using Camel's Bean Integration to call any method on a bean in your Registry such
as your Spring XML configuration file as follows

from("activent: SoneQueue") .
beanRef (" myTr ansf or mer Bean", "nyMet hodNane").
to("ngseri es: Anot her Queue") ;

Where the "myTransformerBean" would be defined in a Spring XML file or defined in INDI and so on. Y ou can
omit the method name parameter from beanRef() and the Bean Integration will try to deduce the method to invoke
from the message exchange.

or you can add your own explicit Processor to do the transformation

from"direct:start"). process(new Processor() {
public void process(Exchange exchange) ({
Message in = exchange.getln();
i n.setBody(in.getBody(String.class) + " World!");

}).to("mock:result");

or you can use the DSL to explicitly configure the transformation
from("direct:start").transforn(body().append(" Wrld!'")).to("nock:result");
Use Spring XML

You can aso use Spring XML Extensions to do a transformation. Basically any Expression language can be
substituted inside the transform element as shown below

<canel Cont ext xm ns="http://canel.apache. org/ schema/ spri ng">
<r out e>
<fromuri="direct:start"/>
<transforne
<si mpl e>${i n. body} extra data! </sinple>
</transfornp
<to uri="nock:end"/>
</ rout e>
</ canel Cont ext >

Or you can use the Bean Integration to invoke a bean

<r out e>
<fromuri="activenyg: | nput"/>
<bean ref="nmyBeanNane" net hod="doTransforni/>
<to uri="activeny: Qut put"/>

</route>

Talend Mediation Developer Guide 49

http://camel.apache.org/fluent-builders.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/registry.html
http://camel.apache.org/spring.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/processor.html
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/expression.html
http://camel.apache.org/bean-integration.html

Messaging Gateway

You can also use Templating to consume a message from one destination, transform it with something like
Section 3.50, “Velocity” or XQuery and then send it on to another destination. For example using InOnly (one

way messaging)
from "activeng: My. Queue") .
to("vel ocity: comf acne/ MyResponse. vii') .
to("activenq: Anot her. Queue");
If you want to use InOut (request-reply) semantics to process requests on the My.Queue queue on Section 3.1,

“ActiveMQ” with a template generated response, then sending responses back to the IM SReplyTo Destination
you could use this.

from"activeng: My. Queue") .
to("vel ocity: comf acne/ MyResponse. vii') ;

2.30. Messaging Gateway

Camd has several endpoint components that support the Messaging Gateway from the EIP patterns.

E 5

IRy

Messaging hWMessaging Messaging
Gateway system Sateway
Application Application

Componentslike Section 3.3, “Bean” and Section 3.8, “CXF" provide away to bind aJJavainterfaceto the message
exchange.

However you may want to read the Using CamelProxy documentation as a true Section 2.30, “Messaging

Gateway” EIP solution. Another approach is to use @'r oduce which you can read about in POJO Producing
which aso can be used as a Section 2.30, “Messaging Gateway” EIP solution.

2.31. Messaging Mapper

Camel supports the Messaging Mapper from the EIP patterns by using either Section 2.29, “Message Trand ator”
pattern or the Type Converter module.

50 Talend Mediation Developer Guide

http://camel.apache.org/templating.html
http://camel.apache.org/xquery.html
http://www.enterpriseintegrationpatterns.com/MessagingGateway.html
http://camel.apache.org/using-camelproxy.html
http://camel.apache.org/pojo-producing.html
http://www.enterpriseintegrationpatterns.com/MessagingMapper.html
http://camel.apache.org/type-converter.html

Multicast

Business
O lject

2.32. Multicast

The Multicast allows for routing the same message to a number of endpoints and process them in adifferent way.
The main difference between the Multicast and Splitter is that Splitter will split the message into several pieces
but the Multicast will not modify the request message. Options:

Messadging
Mapper

Messadging
Infrastnucture

Name

Default
Value

Description

strat egyRef

Refersto an AggregationStrategy to be used to assemblethe replies
from the multicasts, into a single outgoing message from the
Multicast. By default Camel will use the last reply as the outgoing

message.

par al | el Processi ng

false

If enabled then sending messages to the multicasts occurs
concurrently. Note the caller thread will still wait until all messages
has been fully processed, before it continues. Its only the sending
and processing the replies from the multicasts which happens
concurrently.

execut or Ser vi ceRef

Refers to a custom Thread Pool to be used for parallel processing.
Notice if you set this option, then parallel processing is automatic
implied, and you do not have to enable that option as well.

st opOnExcepti on

false

Whether or not to stop continue processing immediately when an
exception occurred. If disabled, then Camel will send the message
to al multicastsregardlessif one of them failed. Y ou can deal with
exceptions in the AggregationStrategy class where you have full
control how to handle that.

stream ng

false

If enabled then Camel will process replies out-of-order, eg in the
order they come back. If disabled, Camel will process repliesin the
same order as multicasted.

ti meout

Sets atotal timeout specified in millis. If the Multicast hasn't been
ableto send and process al replieswithin the given timeframe, then
the timeout triggers and the Multicast breaks out and continues.
Notice if you provide a TimeoutAwareAggregationStrategy then
the timeout method is invoked before breaking out.

onPr epar eRef

Refers to a custom Processor to prepare the copy of the Exchange
each multicast will receive. Thisallowsyou to do any custom logic,
such as deep-cloning the message payload if that's needed etc.

shar eUni t OF Wor k

false

Whether the unit of work should be shared. See the same option on
Splitter for more details.

Talend Mediation Developer Guide 51

Example

2.32.1. Example

The following example shows how to take a request from the dir ect:a endpoint, then multicast these request to
direct:x, direct:y, direct:z.

Using the Fluent Builders

from("direct:a").multicast().to("direct:x", "direct:y",
"direct:z");

By default Multicast invokes each endpoint sequentially. If parallel processing is desired, smply use

from"direct:a").multicast().parallelProcessing().to("direct:x", "direct:y",
"direct:z");

In case of using InOut MEP, an AggregationStrategy is used for aggregating all reply messages. The default isto
only use the latest reply message and discard any earlier replies. The aggregation strategy is configurable;

from"direct:start")
.mul ticast(new MyAggregati onStrategy())
.paral |l el Processing().tineout(500).to("direct:a", "direct:b", "direct:c")
.end()
.to("nock:result");

2.32.2. Stop processing in case of exception

The Section 2.32, “Multicast” will by default continue to process the entire Exchange even in case one of the
multi casted messageswill throw an exception during routing. For exampleif you want to multicast to 3 destinations
and the second destination fails by an exception. What Camel does by default is to process the remainder
destinations. Y ou have the chance to remedy or handle thisin the Aggr egat i onSt r at egy.

But sometimes you just want Camel to stop and let the exception be propagated back, and let the Camel error
handler handleit. Y ou can do this by specifying that it should stop in case of an exception occurred. Thisis done
by the st opOnExcept i on option as shown below:

from"direct:start")
.mul ticast()
. stopOnException().to("direct:foo", "direct:bar", "direct:baz")
.end()
.to("nock:result");

from"direct:foo").to("nock:foo");
from"direct:bar").process(new MyProcessor()).to("nmock: bar");

from "direct:baz").to("nock: baz");
And using XML DSL you specify it as follows:

<rout e>
<fromuri="direct:start"/>
<mul ti cast stopOnException="true">
<to uri="direct:foo"/>
<to uri="direct:bar"/>
<to uri="direct:baz"/>
</multicast>
<to uri="nock:result"/>
</ rout e>

52 Talend Mediation Developer Guide

http://camel.apache.org/fluent-builders.html
http://camel.apache.org/exchange.html

Using onPrepare to execute custom logic when preparing messages

<r out e>
<fromuri="direct:foo"/>
<to uri="nock:foo"/>
</rout e>

<r out e>
<fromuri="direct:bar"/>
<process ref="nyProcessor"/>
<to uri="nock: bar"/>
</route>

<r out e>
<fromuri="direct:baz"/>
<to uri="nock:baz"/>
</rout e>

2.32.3. Using onPrepare to execute custom logic when
preparing messages

The Multicast will copy the source Exchange and multicast each copy. However the copy is a shallow copy, so
in case you have mutateable message bodies, then any changes will be visible by the other copied messages. If

you want to use a deep clone copy then you need to use a custom onPrepare which alows you to do this using
the Processor interface.

Note that onPrepare can be used for any kind of custom logic which you would liketo execute before the Exchange
is being multicasted.

The Multicast EIP page on the Camel website hosts a dynamically updated example of using onPrepare to execute
custom logic.

2.33. Normalizer

Camel supports the Normalizer from the EIP patterns by using a Section 2.28, “Message Router” in front of a
number of Section 2.29, “Message Translator” instances.

Mormalizer

%Wt R0

—

-t

Commaon Format

Different Message

Formats Router
- —

Translators

e
[P

sdlEdIEs

The below exampl e shows aMessage Normalizer that convertstwo typesof XML messagesinto acommon format.
Messages in this common format are then filtered.

Talend Mediation Developer Guide 53

http://camel.apache.org/multicast.html#Multicast-UsingonPreparetoexecutecustomlogicwhenpreparingmessages
http://www.enterpriseintegrationpatterns.com/Normalizer.html

Pipes and Filters

Using the Fluent Builders

/1 we need to normalize two types of incom ng nmessages
from"direct:start")
. choi ce()
.when() . xpat h("/enpl oyee") .t o(
"bean: normal i zer ?rmet hod=enpl oyeeToPer son")
.when() . xpat h("/customer").to(
"bean: normal i zer ?met hod=cust orrer ToPer son")
.end()
.to("nock:result");

In this case we're using a Java bean as the normalizer. The class looks like this

public class MyNornalizer {
public void enpl oyeeToPer son(Exchange exchange,
@XPat h("/ enpl oyee/ nane/text ()") String name) {
exchange. get Qut () . set Body(cr eat ePer son(nane)) ;

}

public void custoner ToPer son(Exchange exchange,
@XPat h("/ custonmer/ @ane") String name) {
exchange. get Qut () . set Body(cr eat ePer son(nane)) ;

}

private String createPerson(String nane) {
return "<person nane=\"" + name + "\"/>";

}
}

Using the Spring XML Extensions
The same example in the Spring DSL

<canel Cont ext xm ns="http://canel.apache. org/ schena/ spri ng">
<r out e>
<fromuri="direct:start"/>
<choi ce>
<when>
<xpat h>/ enpl oyee</ xpat h>
<to uri="bean: nornali zer ?net hod=enpl oyeeToPer son"/ >
</ when>
<when>
<xpat h>/ cust oner </ xpat h>
<to uri="bean: nornal i zer ?net hod=cust ormer ToPer son"/ >
</ when>
</ choi ce>
<to uri="nock:result"/>
</rout e>
</ canel Cont ext >

<bean id="nornalizer" class="org.apache. canel.processor. MyNornalizer"/>

2.34. Pipes and Filters

Camd supports Pipes and Filters from the EIP patterns in various ways.

54 Talend Mediation Developer Guide

http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html
http://www.enterpriseintegrationpatterns.com/PipesAndFilters.html

Pipes and Filters

Pipe Pipe Pipe Pipe
t% ——| Decrypt De-Dup t@

Incaming Fitter Fitter Fitter “Clean’
Crroer CQrder

Authenticate

With Camel you can split your processing across multiple independent Endpoint instances which can then be
chained together.

You can create pipelines of logic using multiple Endpoint or Section 2.29, “Message Translator” instances as
follows:

from"direct:a").pipeline("direct:x", "direct:y", "direct:z",
"nmock:result");

Though pipeline is the default mode of operation when you specify multiple outputs in Camel. The opposite to
pipeline is multicast; which fires the same message into each of its outputs. (See the example below).

In Spring XML you can use the <pipeline/> element as of 1.4.0 onwards

<rout e>
<fromuri="acti veny: SoneQueue"/ >
<pi pel i ne>
<bean ref="foo0"/>
<bean ref="bar"/>
<to uri="activeny: Qut put Queue"/ >
</ pi pel i ne>
</rout e>

In the above the pipeline element is actually unnecessary, you could use this:

<rout e>
<fromuri="acti veny: SoneQueue"/ >
<bean ref="foo0"/>
<bean ref="bar"/>
<to uri="activeny: Qut put Queue"/ >
</route>

Which is a bit more explicit. However if you wish to use <multicast/> to avoid a pipeline - to send the same
message into multiple pipelines - then the <pipeline/> element comes into its own.

<r out e>
<fromuri="acti veny: SoneQueue"/ >
<mul ti cast >
<pi pel i ne>
<bean ref="sonet hi ng"/>
<to uri="Iog: Sonet hi ng"/ >
</ pi pel i ne>
<pi pel i ne>
<bean ref="fo0"/>
<bean ref="bar"/>
<to uri="activeny: Qut put Queue"/ >
</ pi pel i ne>
</multicast>
</route>

In the above example we are routing from a single Endpoint to alist of different endpoints specified using URIs.

Talend Mediation Developer Guide 55

http://camel.apache.org/endpoint.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html

Point to Point Channel

2.35. Point to Point Channel

Camel supports the Point to Point Channel from the EIP patterns using the following components

» Section 3.38, “SEDA” for in-VM seda based messaging

» Section 3.24, “IMS’ for working with IM S Queues for high performance, clustering and load balancing
» Section 3.26, “JPA” for using a database as a simple message queue

» XMPP for point-to-point communication over XM PP (Jabber)

~ %%t == %

Sender Crder Order Order Foint-to-Point Crder Order Order Receiver
#3 £ #1 Channel #3 #2 #1

» and others

2.36. Polling Consumer

Camd supports implementing the Polling Consumer from the EIP patterns using the PollingConsumer interface
which can be created via the Endpoint.createPollingConsumer() method.

~% 0] %

Folling
Sender Message Consurm er
Hecelver

So in your Java code you can do

Endpoi nt endpoi nt = context. get Endpoi nt ("activenqg: nmy. queue");
Pol I i ngConsunmer consuner = endpoi nt. creat ePol | i ngConsuner () ;
Exchange exchange = consuner.receive();

Notice in Camel 2.0 we have introduced the Consuner Tenpl at e.

There are 3 main polling methods on PollingConsumer

Method name Description
receive() Waits until amessage is available and then returns it; potentially blocking forever
receive(long) Attempts to receive a message exchange, waiting up to the given timeout and

returning null if no message exchange could be received within the time available

receiveNoWait() Attempts to receive amessage exchange immediately without waiting and returning
null if a message exchange is not available yet

56 Talend Mediation Developer Guide

http://www.enterpriseintegrationpatterns.com/PointToPointChannel.html
http://camel.apache.org/xmpp.html
http://www.enterpriseintegrationpatterns.com/PollingConsumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html#createPollingConsumer()
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive()
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receive(long)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/PollingConsumer.html#receiveNoWait()

ConsumerTemplate

2.36.1. ConsumerTemplate

The Consuner Tenpl at e is a template much like Spring's JmsTemplate or JdbcTemplate supporting the
Section 2.36, “Polling Consumer” EIP. With the template you can consume Exchange s from an Endpoint.

The template supports the three operations above, but also including convenient methods for returning the body:
consumneBody, and so on. The example from above using ConsumerTemplateis:

Exchange exchange = consuner Tenpl at e. recei ve("acti veny: my. queue") ;
Or to extract and get the body you can do:

nj ect body = consumrer Tenpl at e. r ecei veBody("acti venqg: nmy. queue");
And you can provide the body type as a parameter and have it returned as the type:

String body = consumer Tenpl at e. r ecei veBody("acti venq: ny. queue”,
String.class);

You get hold of aConsumer Tenpl at e from the Canel Cont ext with thecr eat eConsuner Tenpl at e
operation:

Consumer Tenpl at e consuner = context. createConsumner Tenpl ate() ;

For using Spring DSL with consumer Template, see the dynamically maintained examples for the most up-to-
date examples.

2.36.2. Scheduled Poll Components

Quite a few inbound Camel endpoints use a scheduled poll pattern to receive messages and push them through
the Camel processing routes. That isto say externally from the client the endpoint appears to use an Section 2.15,
“Event Driven Consumer” but internally a scheduled poll is used to monitor some kind of state or resource
and then fire message exchanges. Since this is such a common pattern, polling components can extend the
Schedul edPoll Consumer base class which makes it simpler to implement this pattern.

The ScheduledPoll Consumer supports the following options:

Option Default Description

poll Strategy A pluggable or g. apache. canel .
Pol | i ngConsuner Pol | Strat egy alowing you to provide your
custom implementation to control error handling usually occurred during
the pol | operation before an Exchange have been created and being
routed in Camel. In other words the error occurred while the polling was
gathering information, for instance accessto afile network failed so Camel
cannot access it to scan for files. The default implementation will log the
caused exception at WARN level and ignore it.

sendEmptyM essageW hefibtie If the polling consumer did not poll any files, you can enable this option to
send an empty message (no body) instead.

2.36.3. About error handling and scheduled polling
consumers

Schedul edPoll Consumer is scheduled based anditsr un method isinvoked periodically based on schedul e settings.
But errors can also occur when apoll is being executed. For instanceif Camel should poll afile network, and this

Talend Mediation Developer Guide 57

http://camel.apache.org/exchange.html
http://camel.apache.org/endpoint.html
http://camel.apache.org/polling-consumer.html#PollingConsumer-UsingConsumerTemplatewithSpringDSL
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html
http://camel.apache.org/exchange.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/impl/ScheduledPollConsumer.html

About error handling and scheduled polling consumers

network resource is not available then aj ava. i 0. | OExcept i on could occur. As this error happens before
any Exchange has been created and prepared for routing, then the regular Error Handling in Camel does not apply.
So what does the consumer do then? Well the exception is propagated back to ther un method whereit is handled.
Camd will by default log the exception at WARN level and then ignore it. At next schedule the error could have
been resolved and thus being able to poll the endpoint successfully.

2.36.3.1. Controlling the error handling using
PollingConsumerPollStrategy

or g. apache. canel . Pol I i ngConsurmer Pol | St r at egy is a pluggable strategy that
you can configure on the Schedul edPol | Consunmer. The default implementation
or g. apache. camel . i nmpl . Def aul t Pol | i ngConsuner Pol | St r at egy will log the caused exception
at WARN level and then ignore thisissue.

The strategy interface provides the following 3 methods
* begin
e voi d begi n(Consuner consuner, Endpoi nt endpoint)
* commit
e void conmit(Consumer consuner, Endpoint endpoint)
e commit (Camel 2.6)
e« void conmit(Consumer consuner, Endpoint endpoint, int polledMessages)
* rollback

e bool ean rol | back(Consumer consuner, Endpoint endpoint, int retryCounter,
Exception e) throws Exception

The begin method returns a boolean which indicates whether or not to skipping polling. So you can implement
your custom logic and return f al se if you do not want to poll thistime.

In Camel 2.6 onwards the commit method has an additional parameter containing the number of message that
was actually polled. For example if there was no messages polled, the value would be zero, and you can react
accordingly.

The most interesting isther ol | back asit alows you do handle the caused exception and decide what to do.

For instance if we want to provide a retry feature to a scheduled consumer we can implement the
Pol I i ngConsuner Pol | St r at egy method and put theretry logicinther ol | back method. Let'sjust retry
up until 3 times:

publ i ¢ bool ean rol | back(Consumer consumer, Endpoint endpoint, int retryCounter,

Exception e) throws Exception {

if (retryCounter < 3) {
/1 return true to tell Canel that it should retry the poll imediately
return true;

}

/1 okay we give up do not retry anynore

return false;

}

Notice that we are given the Consuner as a parameter. We could use this to restart the consumer as we can
invoke stop and start:

58 Talend Mediation Developer Guide

http://camel.apache.org/exchange.html
http://camel.apache.org/error-handling-in-camel.html

Publish Subscribe Channel

/1 error occurred let's restart the consumer,
/1 that could maybe resolve the issue
consumer . st op();

consumer.start();

Notice: If youimplement thebegi n operation make sureto avoid throwing exceptionsasin such acasethepol |
operation is not invoked and Camel will invokether ol | back directly.

2.36.3.2. Configuring an Endpoint to use
PollingConsumerPollStrategy

To configure an Endpoint to use a custom Pol | i ngConsuner Pol | Strat egy you use the option
pol | St rat egy. For example in the file consumer below we want to use our custom strategy defined in the
Registry with the beanid myPol | :

from("file://inbox/?poll Strategy=#nyPoll").to("activeny: queue: i nbox")

2.37. Publish Subscribe Channel

Camél supports the Publish Subscribe Channel from the EIP patterns using the following components

» Section 3.24,“IMS’ for working with IMS Topics for high performance, clustering and load balancing

—%

Address Subscriber
Changed

» XMPP when using rooms for group communication

— 9, —a—m—— 9 —

Fublisher Address Address subscriber
Changed Changed
— T]
Publish-Subscribe Address Subscriber
Channel Changed

Another option is to explicitly list the publish-subscribe relationship using routing logic; this keeps the producer
and consumer decoupled but lets you control the fine grained routing configuration using the DSL or XML
Configuration.

Talend Mediation Developer Guide 59

http://camel.apache.org/endpoint.html
http://camel.apache.org/registry.html
http://www.enterpriseintegrationpatterns.com/PublishSubscribeChannel.html
http://camel.apache.org/xmpp.html
http://camel.apache.org/dsl.html
http://camel.apache.org/xml-configuration.html
http://camel.apache.org/xml-configuration.html

Recipient List

Using the Spring XML Extensions

<canel Cont ext errorHandl er Ref =" error Handl er"
xm ns="http://canel .apache. org/ schema/ spring">
<rout e>
<fromuri="seda: a"/>
<nul ti cast >
<to uri="seda: b"/>
<to uri="seda:c"/>
<to uri="seda:d"/>
</multicast>
</ rout e>
</ carel Cont ext >

2.38. Recipient List

The Recipient List from the EIP patterns allows you to route messages to a number of dynamically specified
recipients.

Recipient Channel

— | G
— |

—
— |y G

The recipients will receive a copy of the same Exchange and Camel will execute them sequentially.

<

Recipient List

L

2.38.1. Options

Name Default Description
Value
delimter , Delimiter used if the Expression returned multiple
endpoints.
strat egyRef An AggregationStrategy that will assemble the replies

from recipientsinto a single outgoing message from the
Recipient List. By default Camel will use the last reply
as the outgoing message.

par al | el Processi ng false If enabled, messages are sent to the recipients
concurrently. Note that the calling thread will still wait

60 Talend Mediation Developer Guide

http://camel.apache.org/spring-xml-extensions.html
http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://camel.apache.org/exchange.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html

Static Recipient List

Name

Default
Value

Description

until all messages have been fully processed before it
continues; it'sthe sending and processing of repliesfrom
recipients which happensin paralldl.

execut or Ser vi ceRef

A custom Thread Pool to use for parallel processing.
Note that enabling this option implies paralel
processing, so you heed not enable that option as well.

st opOnExcepti on

fase

Whether to immediately stop processing when an
exception occurs. If disabled, Camel will send
the message to all recipients regardless of any
individual failures. You can process exceptions in an
AggregationStrategy implementation, which supports
full control of error handling.

i gnor el nval i dEndpoi nts

false

Whether to ignore an endpoint URI that could not be
resolved. If disabled, Camel will throw an exception
identifying the invalid endpoint URI.

streani ng

false

If enabled, Camel will processreplies out-of-order - that
is, in the order received in reply from each recipient. If
disabled, Camel will process replies in the same order
as specified by the Expression.

ti meout

Specifies a processing timeout milliseconds. If the
Recipient List hasn't been able to send and process all
replies within this timeframe, then the timeout triggers
and the Recipient List breaks out, with message flow
continuing to the next element. Note that if you provide
a TimeoutAwareAggregationStrategy, its {{timeout}}
method is invoked before breaking out.

onPr epar eRef

A custom Processor to prepare the copy of the
[Exchange] each recipient will receive. This alows
you to perform arbitrary transformations, such as deep-
cloning the message payload (or any other custom
logic).

shar eUni t O Wor k

false

Whether the unit of work should be shared. Seethe same
option with the Splitter EIP for more details.

2.38.2. Static Recipient List

Thefollowing example shows how to route arequest from an input queue: a endpoint to astatic list of destinations

Using Annotations Y ou can use the RecipientList Annotation on a POJO to create a Dynamic Recipient List. For

more details see the Bean Integration.

Using the Fluent Builders

Rout eBui | der bui |l der =

public void configure() {
error Handl er (deadLet t er Channel ("nock:error"));

from("seda: a")

.multicast().to("seda: b",

new Rout eBui | der () {

"seda: c", "seda:d");

Talend Mediation Developer Guide 61

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/AggregationStrategy.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/aggregate/TimeoutAwareAggregationStrategy.html
http://camel.apache.org/recipientlist-annotation.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/fluent-builders.html

Dynamic Recipient List

b
Using the Spring XML Extensions

<canel Cont ext errorHandl er Ref ="error Handl er "
xm ns="http://canel.apache. org/ schena/ spri ng">
<rout e>
<fromuri="seda: a"/>
<nul ti cast>
<to uri="seda: b"/>

<to uri="seda:c"/>
<to uri="seda:d"/>
</multicast>
</ rout e>

</ canel Cont ext >

2.38.3. Dynamic Recipient List

Usually one of the main reasons for using the Recipient List pattern is that the list of recipients is dynamic
and calculated at runtime. The following example demonstrates how to create a dynamic recipient list using an
Expression (which in this case it extracts a named header value dynamically) to calculate the list of endpoints
which are either of type Endpoint or are converted to a String and then resolved using the endpoint URIs.
Using the Fluent Builders
Rout eBui | der buil der = new Rout eBui l der () {

public void configure() {

error Handl er (deadLet t er Channel (" nmock: error"));

from("seda: a")
. recipi entLi st (header ("foo"));

1
The above assumes that the header contains a list of endpoint URIs. The following takes a single string header
and tokenizesit

from("direct:a").recipientList(
header ("r eci pi ent Li st Header ") . t okeni ze(","));

2.38.3.1. lteratable value

The dynamic list of recipients that are defined in the header must be iteratable such as:
e java.util.Col |l ection

* java.util.lterator

o arrays

e org.w3c. dom NodelLi st

62 Talend Mediation Developer Guide

http://camel.apache.org/spring-xml-extensions.html
http://www.enterpriseintegrationpatterns.com/RecipientList.html
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/fluent-builders.html

Request Reply

 asingle String with values separated with comma
« any other type will be regarded as asingle value
Using the Spring XML Extensions

<canel Cont ext errorHandl er Ref =" error Handl er”
xm ns="http://canel.apache. org/ schena/ spring">
<r out e>
<fromuri="seda: a"/>
<reci pi ent Li st >
<xpat h>$f oo</ xpat h>
</recipientList>
</route>
</ carel Cont ext >

For further examples of this pattern in use you could look at one of the junit test case

2.38.3.2. Using delimiter in Spring XML

In Spring DSL you can set the del i mi t er attribute for setting a delimiter to be used if the header valueis a
single String with multiple separated endpoints. By default Camel uses comma as delimiter, but this option lets
you specify a customer delimiter to use instead.

<rout e>
<fromuri="direct:a" />
<l-- use comm as a delimter for String based val ues -->
<recipientList delimter=",">

<header >myHeader </ header >
</reci pi ent Li st>
</route>

So if myHeader containsa String withthevalue" act i venq: queue: f oo, activenqg:topic:hello ,
| og: bar " then Camel will split the String using the delimiter given in the XML that was comma, resulting into
3 endpoints to send to. Y ou can use spaces between the endpoints as Camel will trim the value when it lookup
the endpoint to send to.

Note: In JavaDSL you usethet okeni zer to archive the same. The route abovein Java DSL.:
from("direct:a").recipientlList(header("myHeader").tokenize(","));

In Camel 2.1 itisabit easier as you can passin the delimiter as second parameter:

from("direct:a").recipientlList(header("nyHeader"), "#");

2.39. Request Reply

Camel supports the Request Reply from the EIP patterns by supporting the Exchange Pattern on a Section 2.22,
“Message” which can be set to InOut to indicate arequest/reply. Camel Components then implement this pattern
using the underlying transport or protocols.

See also the related Section 2.16, “ Event Message” EIP.

Talend Mediation Developer Guide 63

http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/RecipientListTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/RequestReply.html
http://camel.apache.org/exchange-pattern.html

Resequencer

't%':j'
Request Request
Channel

e P, —

Reply Reply
Fequestor Channel Replier

For example when using Section 3.24, “JM S’ with InOut the component will by default perform these actions
* create by default atemporary inbound queue

* set the IMSReplyTo destination on the request message

* set the IMSCorrelationlD on the request message

* send the request message

» consume the response and associate the inbound message to the request using the IMSCorrelationlD (as you
may be performing many concurrent request/responses).

When consuming messages from Section 3.24, “IMS’ a Request-Reply is indicated by the presence of the
JM SReplyTo header. Y ou can explicitly force an endpoint to be in Request Reply mode by setting the exchange
pattern on the URI. e.g.

j ms: MyQueue?exchangePat t er n=I nQut

Y ou can also specify the exchange pattern in DSL rule or Spring configuration, see the Request-Reply EIP page
on the Apache Camdl site for the latest updated example.

2.40. Resequencer

The Resequencer from the EIP patterns allows you to reorgani se messages based on some comparator. By default
in Camel we use an Expression to create the comparator; so that you can compare by a message header or the
body or a piece of a message etc.

.
—p o000

Resequencer

Camd supports two resequencing algorithms:

64 Talend Mediation Developer Guide

http://camel.apache.org/request-reply.html#RequestReply-ExplicitlyspecifyingInOut
http://www.enterpriseintegrationpatterns.com/Resequencer.html
http://camel.apache.org/expression.html

Batch Resequencing

» Batch resequencing collects messages into a batch, sorts the messages and sends them to their output.

e Stream resequencing re-orders (continuous) message streams based on the detection of gaps between
messages.

By default the Section 2.40, “Resequencer” does not support duplicate messages and will only keep the last
message, in case a message arrives with the same message expression. However in the batch mode you can enable
it to allow duplicates. For Batch mode, in Java DSL thereisaal | owDupl i cat es() method and in Spring
XML thereisan al | owDupl i cat es=t r ue attribute on the <bat ch- conf i g/ > you can useto enable it.

2.40.1. Batch Resequencing

The following example shows how to use the batch-processing resequencer so that messages are sorted in order
of the body() expression. That is messages are collected into a batch (either by a maximum number of messages
per batch or using atimeout) then they are sorted in order and then sent out to their output.
Using the Fluent Builders
from("direct:start")

. resequence() . body()

.to("nock:result");
Thisisequivalent to
from"direct:start")

. resequence(body()) . bat ch()

.to("nock:result");
The batch-processing resequencer can be further configured viathesi ze() andti meout () methods.
from"direct:start")

. resequence(body()) . batch().size(300).tineout (4000L)

.to("nock:result")

This sets the batch size to 300 and the batch timeout to 4000 ms (by default, the batch size is 100 and the timeout
is 1000 ms). Alternatively, you can provide a configuration object.

from"direct:start")
. resequence(body()) . bat ch(new Bat chResequencer Confi g(300, 4000L))
.to("nock:result")
So the above example will reorder messages from endpoint direct:a in order of their bodies, to the endpoint
mock:result. Typicaly you'd use a header rather than the body to order things; or maybe a part of the body. So
you could replace this expression with
resequencer (header (" nySegNo"))

for example to reorder messages using a custom sequence number in the header my SeqNo.

You can of course use many different Expression languages such as XPath, XQuery, SQL or various Scripting
Languages.

Using the Spring XML Extensions

<canel Context id="canel" xm ns="http://canel.apache. org/schena/spring">

Talend Mediation Developer Guide 65

http://camel.apache.org/fluent-builders.html
http://camel.apache.org/expression.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/spring-xml-extensions.html

Stream Resequencing

<rout e>
<fromuri="direct:start" />
<r esequence>
<si nmpl e>body</ si npl e>
<to uri="nock:result" />
<l--
bat ch-config can be ommitted for default (batch) resequencer settings
-->
<bat ch-confi g bat chSi ze="300" bat chTi meout ="4000" />
</ resequence>
</route>
</ camnel Cont ext >

In the bat ch mode, you can aso reverse the expression ordering. By default the order is based on 0..9,A..Z,
which would let messages with low numbers be ordered first, and thus also also outgoing first. In some cases you
want to reverse order, which is now possible.

In Java DSL thereisarever se() method and in Spring XML thereisanr ever se=t r ue attribute on the
<bat ch- confi g/ > you can useto enableit.

2.40.2. Stream Resequencing

The next example shows how to use the stream-processing resequencer. Messages are re-ordered based on their
seguence numbersgiven by as eqnumheader using gap detection and timeouts onthelevel of individual messages.

Using the Fluent Builders

from("direct:start").resequence(header("seqnuni)).
stream().to("nmock:result");

The stream-processing resequencer can be further configured viathecapaci t y() andti neout () methods.

from"direct:start")
. resequence(header ("segnunt')). strean(). capaci t y(5000).ti meout (4000L)
.to("nock:result")

This sets the resequencer's capacity to 5000 and the timeout to 4000 ms (by default, the capacity is 1000 and the
timeout is 1000 ms). Alternatively, you can provide a configuration object.

from"direct:start")
. resequence(header ("segnunt')). strean(
new St reanResequencer Confi g(5000, 4000L)).to("nock:result")

The stream-processing resequencer algorithm is based on the detection of gaps in a message stream rather than
on a fixed batch size. Gap detection in combination with timeouts removes the constraint of having to know the
number of messages of a sequence (i.e. the batch size) in advance. Messages must contain a unique sequence
number for which a predecessor and a successor is known. For example a message with the sequence number 3
has a predecessor message with the sequence number 2 and a successor message with the sequence number 4. The
message sequence 2,3,5 has a gap because the sucessor of 3 is missing. The resequencer therefore has to retain
message 5 until message 4 arrives (or atimeout occurs).

If the maximum time difference between messages (with successor/predecessor relationship with respect to the
seguence number) in a message stream is known, then the resequencer's timeout parameter should be set to this
value. Inthiscaseit is guaranteed that all messages of astream are delivered in correct order to the next processor.
The lower the timeout value is compared to the out-of-sequence time difference the higher is the probability for

66 Talend Mediation Developer Guide

http://camel.apache.org/fluent-builders.html

Stream Resequencing

out-of -sequence messages delivered by thisresequencer. Large timeout values should be supported by sufficiently
high capacity values. The capacity parameter is used to prevent the resequencer from running out of memory.

By default, the stream resequencer expects | ong sequence numbers but other sequence numbers types can be
supported as well by providing a custom expression.

public class MFil eNameExpressi on i npl enents Expression {

public String getFil eNane(Exchange exchange) ({
return exchange. getln().getBody(String.class);
}

public Object eval uate(Exchange exchange) ({
/] parse the file nane with YYYYMVDD- DNNN pattern
String fil eName = get Fil eNane(exchange);
String[] files = fileNane.split("-D");
Long answer = Long. parseLong(files[0]) * 1000 +
Long. parseLong(files[1]);
return answer;

public <T> T eval uat e(Exchange exchange, d ass<T> type) {
oj ect result = eval uat e(exchange);
return exchange. get Context (). get TypeConverter().convertTo(type,
result);

}

or custom comparator viathe conpar at or () method

Expr essi onResul t Conpar at or <Exchange> conpar at or = new MyConparat or () ;
from"direct:start")
. resequence(header ("segnuni)) . stream). compar at or (conpar at or)
.to("nmock:result");

orviaa St r eanResequencer Confi g object.

Expr essi onResul t Conpar at or <Exchange> conpar at or = new MyConpar at or () ;
St reanResequencer Config config = new StreanResequencer Confi g(100, 1000L,
conpar ator);

from"direct:start")
. resequence(header ("segnuni')) . strean(config)
.to("nock:result");

Using the Spring XML Extensions

<canel Cont ext id="canel"
xm ns="http://canel.apache. org/ schena/ spri ng">
<r out e>
<fromuri="direct:start"/>
<r esequence>
<si npl e>i n. header . seqgnunx/ si npl e>
<to uri="nock:result" />
<streamconfi g capacity="5000" tineout="4000"/>
</ resequence>
</route>

Talend Mediation Developer Guide 67

http://camel.apache.org/spring-xml-extensions.html

Further Examples

</ canel Cont ext >

2.40.3. Further Examples

See the Camel Website for further examples of this component in use.

2.41. Return Address

Camel supports the Return Address from the EIP patterns by using the JMSRepl yTo header.

ey Rephy
Chaphel 1 Chanpe! 2

Fequest
Channel

Requestor 1 _..:}_,...-...HEF“H

Channel 1 Feeply

Requestor 2

Feply
Channel 2 Feeply

For example when using Section 3.24, “JMS’ with InOut the component will by default return to the address
givenin JMSRepl yTo.

Requestor Code:

get MockEndpoi nt (" nock: bar") . expect edBodi esRecei ved("Bye Wirl d");
t enpl at e. sendBodyAndHeader ("direct:start", "Wrld", "JMSReplyTo",
"queue: bar");

Route Using the Fluent Builders:

from"direct:start").to("activenq: queue: f oo?preser veMessageQos=true");
from"activeny: queue: foo").transforn(body(). prepend("Bye "));
from("activenq: queue: bar ?di sabl eRepl yTo=true").to("nock: bar");

Route Using the Spring XML Extensions:

<r out e>
<fromuri="direct:start"/>
<to uri="activeny: queue: f oo?preserveMessageQos=t rue"/ >

68 Talend Mediation Developer Guide

http://camel.apache.org/resequencer.html
http://www.enterpriseintegrationpatterns.com/ReturnAddress.html

Routing Slip

</ rout e>

<rout e>
<fromuri="activeny: queue: f 00"/ >
<transf ornp

<si npl e>Bye ${i n. body} </ si npl e>
</transforne

</route>

<route> <from uri="activemq:queue:bar?disableReply To=true"/> <to uri="mock:bar"/> </route> { code}

For a complete example of this pattern, see this JUnit test case

2.42. Routing Slip

The Routing Slip from the EIP patterns allows you to route a message consecutively through a series of processing
steps where the sequence of stepsis not known at design time and can vary for each message.

—
Froc A
OO0
Froc B
Attach Routing Slhip
to Meszage —
Froc C

Foute Mezzage
According to Slhip

2.42.1. Example

Thefollowing route will take any messages sent to the Apache ActiveM Q queue SomeQueue and pass them into
the Routing Slip pattern.

from("activenm: SoneQueue").routingSlip("header Nane");

Messages will be checked for the existance of the "headerName" header. The value of this header should be a
comma-delimited list of endpoint URIs you wish the message to be routed to. The Section 2.22, “Message” will
be routed in a pipeline fashion (i.e. one after the other).

From Camel 2.5 the Section 2.42, “Routing Slip” will set a property (Exchange. SLI P_ENDPQO NT) on the
Exchange which contains the current endpoint as it advanced though the slip. This allows you to know how far
we have processed in the dlip.

The Section 2.42, “Routing Slip” will compute the dip befor ehand which means, the slip is only computed once.
If you need to compute the slip on-the-fly then use the Section 2.14, “ Dynamic Router” pattern instead.

For further examples of this pattern in use see the Camel routing slip test cases.

Talend Mediation Developer Guide 69

http://svn.apache.org/viewvc/camel/trunk/components/camel-jms/src/test/java/org/apache/camel/component/jms/JmsInOnlyWithReplyToAsHeaderTest.java?view=markup
http://www.enterpriseintegrationpatterns.com/RoutingTable.html
http://activemq.apache.org
http://www.enterpriseintegrationpatterns.com/RoutingTable.html
http://camel.apache.org/uris.html
http://camel.apache.org/exchange.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/routingslip

Configuration options

2.42.2. Configuration options

Here we set the header name and the URI delimiter to something different.

Using the Fluent Builders
from("direct:c").routingSlip("aRoutingSlipHeader", "#");
Using the Spring XML Extensions

<canel Cont ext id="buil dRoutingSlip"
xm ns="http://activeng. apache. or g/ canmel / schema/ spri ng" >
<r out e>
<fromuri="direct:c"/>
<routingSlip header Name="aRouti ngSl i pHeader" uriDelimter="#"/>
</route>
</ camel Cont ext >

2.42.3. Ignore invalid endpoints

The Section 2.42, “Routing Slip” now supports i gnor el nval i dEndpoi nt s which the Section 2.38,
“Recipient List” also supports. You can useit to skip endpoints which areinvalid.

from"direct:a").routingSlip("nyHeader").ignorel nval i dEndpoi nts();
And in Spring XML it is an attribute on the recipient list tag.

<r out e>

<fromuri="direct:a"/>

<routingSlip header Nane="nyHeader" i gnorel nval i dEndpoi nts="true"/>
</route>

Thenlet'ssay thenyHeader containsthefollowing two endpointsdi r ect : f 0o, xxx: bar . Thefirst endpoint
isvalid and works. However the second is invalid and will just be ignored. Camel logs at INFO level about, so
you can see why the endpoint was invalid.

2.42.4. Expression supporting

The Section 2.42, “Routing Slip” now supports to take the expression parameter as the Section 2.38, “ Recipient
List” does. Y ou can tell Camel the expression that you want to use to get the routing dlip.

from"direct:a").routingSlip(header("nmyHeader")).ignorel nval i dEndpoi nts();
And in Spring XML it isan attribute on the recipient list tag.

<r out e>
<fromuri="direct:a"/>
<l --NOTE you need to specify the expression el ement
inside of the routingSlip element -->
<routingSlip ignorelnval i dEndpoi nts="true">
<header >nyHeader </ header >
</routingSlip>
</route>

70 Talend Mediation Developer Guide

http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

Sampling

2.43. Sampling

A sampling throttler allows you to extract a sample of the exchanges from the traffic through a route. It is
configured with a sampling period during which only a single exchange is allowed to pass through. All other
exchanges will be stopped.

Will by default use a sample period of 1 second. Options:

Name Default Value Description

nmessageFr equency |(none) Samples the message every N'th message. Y ou can use
either frequency or period.

sanpl ePeri od 1 Samples the message every N'th message. Y ou can use
either frequency or period.

units seconds Time unit as an enum of java.util.concurrent. TimeUnit
from the JDK.

Y ou can use this EIP with the sanpl e DSL as shown in the following examples:

Using the Fluent Builders These samples also show how you can use the different syntax to configure the
sampling period:

from("direct:sanple")

. sanpl e()
.to("nock:result");

from("direct:sanpl e-configured")
.sanpl e(1, TineUnit.SECONDS)
.to("nmock:result");

from("direct:sanpl e-configured-via-dsl")
.sanpl e() . sanpl ePeriod(1).tinmeUnits(Ti meUnit.SECONDS)
.to("nock:result");

from("direct:sanpl e- nessageFrequency”)
. sanpl e(10)
.to("nmock:result");

from("direct: sanmpl e- messageFr equency-vi a-dsl ")
. sanpl e() . sanpl eMessageFr equency(5)
.to("nock:result");

Using the Spring XML Extensions And the same examplein Spring XML is:

<r out e>
<fromuri="direct:sanple"/>
<sanpl e sanpl ePeri od="1" units="seconds">
<to uri="nock:result"/>
</ sanpl e>
</route>
<r out e>
<fromuri="direct:sanpl e- nessageFr equency"/ >
<sanpl e nessageFrequency="10">
<to uri="nock:result"/>
</ sanpl e>
</route>
<r out e>

Talend Mediation Developer Guide 71

http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

Scatter-Gather

<fromuri="direct:sanpl e- nessageFr equency-vi a-dsl "/ >
<sanpl e messageFr equency="5">
<to uri="nock:result"/>
</ sanpl e>
</route>

And since it uses adefault of 1 second you can omit this configuration in case you also want to use 1 second

<rout e>
<fromuri="direct:sanple"/>
<l-- will by default use 1 second period -->
<sanpl e>
<to uri="nock:result"/>
</ sanmpl e>
</route>

2.44. Scatter-Gather

The Scatter-Gather from the EIP patterns allows you to route messages to a number of dynamically specified
recipients and re-aggregate the responses back into a single message.

Cluote
— Vendor A —

Broadcast
e Vendor B I—> —
Cluote Reqguest
— Vendor O I—> —
Ty« ot
41— UO-=0O
O

"Best" Quote

Agoregatar

2.44.1. Dynamic Scatter-Gather Example

In this example we want to get the best quote for beer from severa different vendors. We use a dynamic
Section 2.38, “Recipient List” to get the request for a quote to all vendors and an Section 2.2, “ Aggregator” to
pick the best quote out of al the responses. The routes for this are defined as:

<canel Cont ext xm ns="http://canel.apache. org/ schena/ spri ng">
<r out e>
<fromuri="direct:start"/>
<reci pi ent Li st>
<header >l i st O Vendor s</ header >

72 Talend Mediation Developer Guide

http://www.enterpriseintegrationpatterns.com/BroadcastAggregate.html

Dynamic Scatter-Gather Example

</reci pi ent Li st>
</route>
<rout e>
<from uri ="seda: quot eAggr egator"/ >
<aggregat e strategyRef="aggregator Strategy" conpl etionTi neout="1000">
<correl ati onExpr essi on>
<header >quot eRequest | d</ header >
</ correl ati onExpr essi on>
<to uri="nock:result"/>
</ aggr egat e>
</route>
</ camnel Cont ext >

So inthefirst route you see that the Section 2.38, “Recipient List” islooking at thel i st Of Vendor s header for
thelist of recipients. So, we need to send a message like

Map<String, Cbject> headers = new HashMap<String, Object>();

headers. put ("l i st Of Vendors", "bean:vendorl, bean:vendor2, bean:vendor3");
headers. put (" quot eRequest1d”, "quoteRequest-1");

tenpl at e. sendBodyAndHeaders("direct:start", "<quote_request itenr\"beer\"/>",
header s) ;

This message will be distributed to the following Endpoint s. bean: vendor 1, bean: vendor 2, and
bean: vendor 3. These are al beans which look like

public class MyVendor {
private int beerPrice;

@roduce(uri = "seda: quot eAggr egator")
private Producer Tenpl ate quot eAggr egat or;

public MyVendor(int beerPrice) {
this.beerPrice = beerPrice;
}

public void get Quote(@Pat h("/quote request/ @tent') String item
Exchange exchange) throws Exception {
if ("beer".equals(item) {
exchange. get I n(). set Body(beerPrice);
guot eAggr egat or . send(exchange) ;
} else {
t hrow new Exception("No quote available for " + iten);
}

}
and are loaded up in Spring like

<bean i d="aggregatorStrategy" class=
"org. apache. canel . spring. processor. scattergather. \\
Lowest Quot eAggr egati onStr at egy"/ >

<bean id="vendor 1"
cl ass="org. apache. canel . spri ng. processor. scatter gat her. MyVendor" >
<constructor-arg>
<val ue>1</val ue>
</ constructor-arg>
</ bean>

Talend Mediation Developer Guide 73

http://camel.apache.org/endpoint.html

Static Scatter-Gather Example

<bean i d="vendor 2"
cl ass="org. apache. canel . spri ng. processor. scatter gat her. MyVendor " >
<constructor-arg>
<val ue>2</val ue>
</ constructor-arg>
</ bean>

<bean i d="vendor 3"
cl ass="org. apache. canel . spri ng. processor. scatt er gat her. MyVendor " >
<constructor-arg>
<val ue>3</val ue>
</ constructor-arg>
</ bean>

Each bean isloaded with a different price for beer. When the message is sent to each bean endpoint, it will arrive
at the MyVendor . get Quot e method. This method does a simple check whether this quote request is for beer
and then sets the price of beer on the exchange for retrieval at a later step. The message is forwarded on to the
next step using POJO Producing (see the @Produce annotation).

At the next step we want to take the beer quotes from all vendors and find out which one was the best (i.e. the
lowest!). To do this we use an Section 2.2, “Aggregator” with a custom aggregation strategy. The Section 2.2,
“Aggregator” needs to be able to compare only the messages from this particular quote; this is easily done by
specifying a correlationExpression equal to the value of the quoteRequestid header. As shown above in the
message sending snippet, we set this header to quot eRequest - 1. This correlation value should be unique or
you may include responses that are not part of this quote. To pick the lowest quote out of the set, we use a custom
aggregation strategy like

public class Lowest QuoteAggregati onStrategy inplenents Aggregati onStrategy {
publ i c Exchange aggregat e(Exchange ol dExchange, Exchange newExchange) {
/1 the first time we only have the new exchange
if (ol dExchange == null) {
return newkExchange;

}

i f (ol dExchange. getln().getBody(int.cl ass)
< newkExchange. getIn(). getBody(int.class)) {
return ol dExchange;

} else {
return newkExchange;

}

}

Finally, we expect to get the lowest quote of $1 out of $1, $2, and $3.

resul t. expect edBodi esRecei ved(1); // expect the | owest quote
Y ou can find the full example source here:

camel-spring/src/test/javalorg/apache/camel /spring/processor/scattergather/

camel -spring/src/test/resources/org/apache/camel /spring/processor/scattergather/scatter-gather.xml

2.44.2. Static Scatter-Gather Example

Y ou can lock down which recipients are used in the Scatter-Gather by using astatic Section 2.38, “Recipient List”.
It looks something like this

74 Talend Mediation Developer Guide

http://camel.apache.org/pojo-producing.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/scattergather/
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/scattergather/scatter-gather.xml

Selective Consumer

from"direct:start").multicast().to("seda:vendorl”, "seda:vendor2",
"seda: vendor 3");

from"seda: vendor 1").to("bean: vendor1"). t o("seda: quot eAggr egator");
from"seda: vendor2").to("bean: vendor2").to("seda: quot eAggregator");
from"seda: vendor 3").to("bean: vendor3"). to("seda: quot eAggregator");
from("seda: quot eAggr egat or ")

. aggr egat e(header (" quot eRequest 1 d"), new Lowest Quot eAggregati onStrategy()).to(
"mock:result")

2.45. Selective Consumer

The Selective Consumer from the EIP patterns can be implemented in two ways

%% Hot%

o _ =elective
Specifying Messages with Consum er
Froducer Selection Values

Heceiver

The first solution is to provide a Message Selector to the underlying URIs when creating your consumer. For
example when using Section 3.24, “JMS” you can specify a selector parameter so that the message broker will
only deliver messages matching your criteria.

The other approach is to use a Section 2.27, “Message Filter” which is applied; then if the filter matches the
message your consumer is invoked as shown in the following example

Using the Fluent Builders

Rout eBui | der buil der = new Rout eBui l der () {
public void configure() {
error Handl er (deadLet t er Channel (" nock: error"));

from"seda: a")
.filter(header("foo").isEqual To("bar"))
. process(nmyProcessor);

b
Using the Spring XML Extensions
<bean id="nyProcessor" cl ass="org. apache. canel . bui |l der. MyProcessor"/ >

<canel Cont ext errorHandl er Ref ="error Handl er"
xm ns="http://canel.apache. org/ schena/ spri ng">

<rout e>
<fromuri="seda: a"/>
<filter>
<xpat h>$f oo = ' bar' </ xpat h>

<process ref="nyProcessor"/>

Talend Mediation Developer Guide 75

http://www.enterpriseintegrationpatterns.com/MessageSelector.html
http://camel.apache.org/uris.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

Service Activator

</filter>
</ rout e>
</ canel Cont ext >

2.46. Service Activator

Camel has several endpoint components that support the Service Activator from the EIP patterns.

—~ B
Request Service
-
el acvator
Fequestar Replier

Componentslike Section 3.3, “Bean”, Section 3.8, “CXF" and Pojo provide aaway to bind the message exchange
to a Java interface/service where the route defines the endpoints and wiresit up to the bean.

In addition you can use the Bean Integration to wire messages to a bean using annotation.

Here isasimple example of using a Direct endpoint to create a messaging interface to a Pojo Bean service. Using
the Fluent Builders:

from("direct:invokeMyService").to("bean: nyService");
Using the Spring XML Extensions:

<r out e>
<fromuri="direct:invokeMyService"/>
<to uri="bean: nyService"/>

</route>

2.47. Sort

Sort can be used to sort a message. Imagine you consume text files and before processing each file you want to
be sure the content is sorted.

Sort will by default sort the body using a default comparator that handles numeric values or uses the string
representation. You can provide your own comparator, and even an expression to return the value to be sorted.

76 Talend Mediation Developer Guide

http://www.enterpriseintegrationpatterns.com/MessagingAdapter.html
http://camel.apache.org/pojo.html
http://camel.apache.org/bean-integration.html

JavaDSL Example

Sort requires the value returned from the expression evaluation is convertibleto j ava. uti | . Li st asthisis
required by the JDK sort operation.

Name Default Value Description

conpar at or Ref A->Z sorting Refers to a custom javautil.Comparator to use for
sorting the message body. Camel will by default use a
comparator which doesaA..Z sorting.

2.47.1. Java DSL Example

In the route below it will read the file content and tokenize by line breaks so each line can be sorted.

from("file://inbox").sort(body().tokenize("\n")).to(
"bean: MySer vi ceBean. processLi ne");

Y ou can passin your own comparator as a second argument:

from("file://inbox").sort(body().tokenize("\n"), new MyReverseConparator())
.to("bean: MyServi ceBean. processLi ne");

2.47.2. Spring DSL Example

In the route below it will read the file content and tokenize by line breaks so each line can be sorted.

Example 2.1. Camel 2.7 onwar ds

<rout e>
<fromuri="file://inbox"/>
<sort>
<si nmpl e>body</ si npl e>
</sort>
<beanRef ref="nyServiceBean" mnethod="processLi ne"/>
</route>

Example 2.2. Camel 2.6 or older

<rout e>
<fromuri="file://inbox"/>
<sort>
<expressi on>
<si nmpl e>body</ si npl e>
</ expr essi on>
</sort>
<beanRef ref="nyServiceBean" method="processLi ne"/>
</route>

And to use our own comparator we can refer to it as a Spring bean:

Talend Mediation Developer Guide 77

Splitter

Example 2.3. Camédl 2.7 or older

<r out e>
<fromuri="file://inbox"/>
<sort conpar at or Ref =" myRever seConpar at or " >
<si nmpl e>body</ si npl e>
</sort>
<beanRef ref="MServiceBean" method="processLi ne"/>
</route>

<bean i d="nmyReverseConparator"” class="com myconpany. M/Rever seConpar ator"/>

Example 2.4. Camel 2.6 or older

<r out e>
<fromuri="file://inbox"/>
<sort conparat or Ref =" myRever seConpar at or" >
<expressi on>
<si npl e>body</ si npl e>
</ expr essi on>
</sort>
<beanRef ref="MServi ceBean" met hod="processLi ne"/>
</route>

<bean i d="myReverseConparator" class="com myconpany. M/Rever seConparator"/>

Besides <si npl e>, you can supply an expression using any language you like, so long asit returns alist.

2.48. Splitter

The Splitter from the EI P patterns allows you split amessage into anumber of piecesand processthem individually

% % %

Crder Crder Order
[term 1 ltem 2 ltern 3

Mew Order oplitter

Y ou need to specify a Splitter asspl i t () . Inearlier versions of Camel, youneedtousesplitter ().

Options:
Name Default Value Description
strategyRef Refersto an AggregationStrategy to be used to assemble

therepliesfrom the sub-messages, into asingle outgoing
message from the Splitter. See the defaults described
below in What the Splitter returns.

parallel Processing false If enables then processing the sub-messages occurs
concurrently. Note the caller thread will still wait until

78 Talend Mediation Developer Guide

http://camel.apache.org/languages.html
http://www.enterpriseintegrationpatterns.com/Sequencer.html

Splitter

Name

Default Value

Description

al sub-messages has been fully processed, before it
continues.

executorServiceRef

Refers to a custom Thread Pool to be used for parallel
processing. Notice if you set this option, then paralle
processing is automatic implied, and you do not have to
enable that option aswell.

stopOnException

fase

Camel 2.2: Whether or not to stop continue processing
immediately when an exception occurred. If disable,
then Camel continue splitting and process the sub-
messages regardless if one of them failed. Y ou can deal
with exceptionsin the AggregationStrategy class where
you have full control how to handle that.

streaming

false

If enabled then Camel will split in a streaming fashion,
which means it will split the input message in chunks.
This reduces the memory overhead. For example if
you split big messages its recommended to enable
streaming. If streaming is enabled then the sub-message
replies will be aggregated out-of-order, eg in the order
they come back. If disabled, Camel will process sub-
message repliesin the same order asthey where splitted.

timeout

Camel 2.5: Sets a total timeout specified in millis. If
the Recipient List hasn't been able to split and process
all replies within the given timeframe, then the timeout
triggersand the Splitter breaks out and continues. Notice
if you provide a TimeoutAwareAggregationStrategy
then the timeout method isinvoked before breaking out.

onPrepareRef

Camel 2.8: Refers to a custom Processor to prepare the
sub-message of the Exchange, beforeitsprocessed. This
alowsyouto do any custom logic, such as deep-cloning
the message payload if that's needed etc.

shareUnitOfWork

fase

Camel 2.8: Whether the unit of work should be shared.
See further below for more details.

Exchange Properties:

Property

Type Description

Camel SplitIndex

int Camel 2.0: A split counter that increasesfor each Exchange being split.
The counter starts from O.

Camel SplitSize

int Camel 2.0: The total humber of Exchanges that was splitted. This
header is not applied for stream based splitting. From Camel 2.9
onwards this header is also set in stream based splitting, but only on
the completed Exchange.

Camel SplitComplete

boolean

Whether or not this Exchange is the last.

i What does the splitter return?

The Section 2.48, “Splitter” will by default return the last splitted message.

The Section 2.48, “ Splitter” will by default return the original input message.

For all versionsY ou can override this by suppling your own strategy asan Aggr egat i onSt r at egy.
See the Came Website for the split aggregate request/reply sample. It uses the same strategy the
Section 2.2, “ Aggregator” supports. This Section 2.48, “ Splitter” can be viewed as having abuild in light
weight Section 2.2, “ Aggregator”.

Talend Mediation Developer Guide 79

http://camel.apache.org/splitter.html#Splitter-Splitaggregaterequest/replysample

Example

2.48.1. Example

The following example shows how to take a request from the queue:a endpoint the split it into pieces using an
Expression, then forward each piece to queue:b

Using the Fluent Builders

Rout eBui | der buil der = new Rout eBui l der () {
public void configure() {
error Handl er (deadLet t er Channel (" nock: error"));

from"seda: a")
.split(body(String.class).tokenize("\n"))
.to("seda: b");

b

The splitter can use any Expression language so you could use any of the Languages Supported such as XPath,
XQuery, SQL or one of the Scripting Languages to perform the split. e.g.

from("activenqg: my. queue").split(xpath("//fool/bar")).convertBodyTo(
String.class).to("file://sone/directory")

Using the Spring XML Extensions

<canel Cont ext errorHandl er Ref =" error Handl er"
xm ns="http://canel.apache. org/ schena/ spri ng">
<rout e>
<fromuri="seda: a"/>
<split>
<xpat h>/i nvoi ce/l i nel t ens</ xpat h>
<to uri="seda: b"/>
</split>
</route>
</ carel Cont ext >

For further examples of this pattern in use you could look at one of the junit test case
Using Tokenizer from Spring XML Extensions

Y ou can use the tokenizer expression in the Spring DSL to split bodies or headers using atoken. Thisisacommon
use-case, so we provided a special tokenizer tag for this. In the sample below we split the body using a @ as
separator. Y ou can of course use comma or space or even aregex pattern, also set regex=true.

<canel Cont ext xml ns="http://canel.apache. org/ schena/ spri ng">
<rout e>
<fromuri="direct:start"/>
<split>
<t okeni ze token="@/ >
<to uri="nock:result"/>
</split>
</ route>
</ carel Cont ext >

Splitting the body in Spring XML is abit harder as you need to use the Simple language to dictate this

<split>
<si npl e>${ body} </ si npl e>

80 Talend Mediation Developer Guide

http://camel.apache.org/expression.html
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/expression.html
http://localhost:8080/confluence/pages/viewpage.action?pageId=3244472
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/sql.html
http://camel.apache.org/scripting-languages.html
http://camel.apache.org/spring-xml-extensions.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/SplitterTest.java?view=markup
http://camel.apache.org/spring-xml-extensions.html
http://camel.apache.org/simple.html

Exchange properties

<to uri="nock:result"/>
</split>

2.48.2. Exchange properties

The following propertiesis set on each Exchange that is split:

header type description

Canel Splitl ndex int A split counter that increases for each Exchange being
split. The counter starts from O.

Canel SplitSize int The total number of Exchanges that was splitted. This
header is not applied for stream based splitting.

Camel Spl it Conpl et e |boolean Whether or not this Exchange is the last.

2.48.3. Parallel execution of distinct 'parts’

If you want to execute all partsin paralel you can use special notation of spl i t () with two arguments, where
the second one is aboolean flag if processing should be parallel. e.g.

XPat hBui | der xPat hBui | der = new XPat hBui | der ("//foo/ bar");
from("activeng: my. queue").split(xPat hBuil der, true).to(
"activeny: nmy. parts");

In the boolean option has been refactored into a builder method par al | el Processi ng so it is easier to
understand what the route does when we use a method instead of truejfalse.

XPat hBui | der xPat hBui | der = new XPat hBui | der ("//foo/ bar");
from("activeng: my. queue").split(xPat hBuil der). parall el Processing().
to("activenq: my.parts");

2.48.4. Stream based

The XPath enginein Javaand X Query will load the entire XML content into memory. And thus they are not well
suited for very big XML payloads. Instead you can use a custom Expression which will iterate the XML payload
in a streamed fashion. From Camel 2.9 onwards you can use the Tokenizer language which supports this when
you supply the start and end tokens.

Y ou can split streams by enabling the streaming mode using the st r eami ng builder method.

from("direct:stream ng").split(body().tokenize(",")).stream ng().
to("activenq: nmy. parts");

Y ou can a'so supply your custom splitter to use with streaming like this:

i mport static org.apache. canel . buil der. Expr essi onBui | der . beanExpr essi on;
from("direct: stream ng")
.split(beanExpressi on(new MyCustoml teratorFactory(), "iterator"))
.stream ng().to("activenqg: ny. parts")

Talend Mediation Developer Guide 8l

Streaming big XML payloads using Tokenizer language

2.48.5. Streaming big XML payloads using Tokenizer
language

If you have abig XML payload, from afile source, and want to split it in streaming mode, then you can use the
Tokenizer language with start/end tokensto do thiswith low memory footprint. (Note the Camel StAX component
can also be used to split big XML filesin a streaming mode.) See the Camel Website for an example.

2.48.6. Specifying a custom aggregation strategy

Thisis specified similar to the Section 2.2, “ Aggregator”.

2.48.7. Specifying a custom ThreadPoolExecutor

Y ou can customize the underlying ThreadPool Executor used in the parallel splitter. Inthe JavaDSL try something
like this:

XPat hBui | der xPat hBui | der = new XPat hBui | der ("//f oo/ bar");

Execut or Servi ce pool = ...

from("activeng: ny. queue")
.split(xPathBuilder).parallel Processi ng().executorService(pool)
.to("activenqg: my. parts");

2.48.8. Using a Pojo to do the splitting

As the Section 2.48, “ Splitter” can use any Expression to do the actual splitting we leverage this fact and use a
method expression to invoke a Section 3.3, “Bean” to get the splitted parts. The Section 3.3, “Bean” should return
avauethatisiterablesuchas:j ava. util . Col Il ection, java.util.lterator oranarray.

In the route we define the Expression as a method call to invoke our Section 3.3, “Bean” that we have registered
with the id mySplitterBean in the Registry.

from("direct: body")
/1 here we use a PQJO bean nmySplitterBean to do the split of the payl oad
.split().method("mySplitterBean", "splitBody")
.to("nock:result");
from("direct: message")
/1 here we use a PQJO bean nmySplitterBean to do the split of the nessage
/1 with a certain header val ue
.split().method("mySplitterBean", "splitMessage")
.to("nock:result");

And the logic for our Section 3.3, “Bean” is as simple as. Notice we use Camel Bean Binding to pass in the
message body as a String object.

public class MySplitterBean {

/**

82 Talend Mediation Developer Guide

http://camel.apache.org/splitter.html#Splitter-StreamingbigXMLpayloadsusingTokenizerlanguage
http://camel.apache.org/expression.html
http://camel.apache.org/expression.html
http://camel.apache.org/registry.html
http://camel.apache.org/bean-binding.html

Stop processing in case of exceptions

The split body method returns sonething that is iteratable
such as a java.util.List.

@ar am body the payl oad of the incom ng nessage
@eturn a list containing each part splitted
/
public List<String> splitBody(String body) {
/1 since this is based on an unit test you can of cause
/1 use different logic for splitting as Canel have out
/1 of the box support for splitting a String based on comma
/1 but this is for show and tell, since this is Java code
/1 you have the full power how you like to split your messages
Li st<String> answer = new ArrayList<String>();
String[] parts = body.split(",");
for (String part : parts) {
answer . add(part);

*
*
*
*
*
*

}
return answer;
}
/**
* The split message nmethod returns sonething that is iteratable
* such as a java.util.List.
*
* @aram header the header of the incom ng nessage with the name user
* @aram body the payl oad of the i ncom ng nessage
* @eturn a list containing each part splitted
*

~

public List<Message> splitMessage(@eader (val ue = "user")

String header, @ody String body) {
/1 we can | everage the Paraneter Binding Annotations
/1 http://camel.apache. or g/ par anet er - bi ndi ng- annot ati ons. ht m
/1 to access the message header and body at sane tinme,
/1 then create the nessage that we want, splitter wll
/1 take care rest of them
/1 *NOTE* this feature requires Canel version >= 1.6.1
Li st <Message> answer = new Arrayli st <Message>();
String[] parts = header.split(",");
for (String part : parts) {

Def aul t Message nessage = new Def aul t Message();

nmessage. set Header ("user", part);

nmessage. set Body(body) ;

answer . add(message) ;

}

return answer;

2.48.9. Stop processing in case of exceptions

The Section 2.48, “Splitter” will by default continue to process the entire Exchange even in case of one of the
splitted message will throw an exception during routing. For example if you have an Exchange with 1000 rows
that you split and route each sub message. During processing of these sub messages an exception isthrown at the
17th. What Camel does by default is to process the remainder 983 messages. Y ou have the chance to remedy or
handle thisin the Aggr egat i onStr at egy.

Talend Mediation Developer Guide 83

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

Sharing Unit of Work

But sometimes you just want Camel to stop and let the exception be propagated back, and let the Camel error
handler handleit. Y ou can do this by specifying that it should stop in case of an exception occurred. Thisis done
by the st opOnExcept i on option as shown below:

from"direct:start")
.split(body().tokenize(",")).stopOnException()
. process(new MyProcessor())
.to("nock:split");

And using XML DSL you specify it as follows:

<rout e>

<fromuri="direct:start"/>

<split stopOnException="true">
<t okeni ze token=",6"/>
<process ref="nyProcessor"/>
<to uri="nock:split"/>

</split>

</route>

2.48.10. Sharing Unit of Work

The Splitter will by default not share aunit of work between the parent exchange and each splitted exchange. This
means each sub exchange has its own individual unit of work. For example you may have an use case, where you
want to split a big message, and you want to regard that process as an atomic isolated operation that either is a
success or failure. In case of afailure you want that big message to be moved into a dead letter queue. To support
this use case, you would have to share the unit of work on the Splitter. See the online example maintained on the
Apache Camel site for more information.

XPat hBui | der xPat hBui | der = new XPat hBui | der ("//foo/ bar");
from("activeng: my. queue").split(xPat hBuil der). parall el Processing().
to("activenq: nmy. parts");

2.49. Throttler

The Throttler Pattern allows you to ensure that a specific endpoint does not get overloaded, or that we don't exceed
an agreed SLA with some external service.

Options:

Name Default Value |Description

maxi munRequest sPer Peri od Maximum number of requests per period to throttle.
This option must be provided and a positive number.
Note, in the XML DSL, from Camel 2.8 onwards this
option is configured using an Expression instead of an
attribute.

tinmePeriodMI1lis 1000 The time period in millis, in which the throttler will
alow at most maximumRequestsPerPeriod number of
messages.

asyncDel ayed false If enabled then any messages which is delayed happens
asynchronously using a scheduled thread pool.

84 Talend Mediation Developer Guide

http://camel.apache.org/splitter.html#Splitter-Sharingunitofwork

Transactional Client

Name Default Value |Description

execut or Ser vi ceRef Refersto acustom Thread Pool to be used if asyncDelay
has been enabled.

cal | er RunsWhenRej ect ed true Isusedif asyncDelayed wasenabled. Thiscontrolsif the
caller thread should execute the task if the thread pool
rejected the task.

Using the Fluent Builders

from"seda:a").throttle(3).timePeriodMI1is(10000).to("log:result",
"mock:result");

The above example will throttle messages all messages received on seda:a before being sent to mock:result
ensuring that a maximum of 3 messages are sent in any 10 second window. Note that typically you would often
use the default time period of a second. So to throttle requests at 100 requests per second between two endpoints
it would look more like this...

from "seda:a").throttl e(100).to("seda: b");
For further examples of this pattern in use you could look at the junit test case
Using the Spring XML Extensions
<r out e>
<fromuri="seda:a" />
<throttle tinePeriodMIIis="10000"/>
<const ant >3</ const ant >
<to uri="nock:result" />

</throttle>
</rout e>

You can let the Section 2.49, “Throttler” use non-blocking asynchronous delaying, which means Camel will use
a scheduler to schedule atask to be executed in the future. The task will then continue routing. This allows the
caller thread to not block and be able to service other messages etc.

from "seda:a").throttl e(100). asyncDel ayed().to("seda: b");

2.50. Transactional Client

Camel recommends supporting the Transactiona Client from the EIP patterns using Spring transactions.

transaction transaction

W/VF

—
Transactional Transactional
Message
Froducer Consurmer
sender Hecelver

Talend Mediation Developer Guide 85

http://camel.apache.org/fluent-builders.html
http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/ThrottlerTest.java?view=markup
http://camel.apache.org/spring-xml-extensions.html
http://www.enterpriseintegrationpatterns.com/TransactionalClient.html

Transaction Policies

Transaction Oriented Endpoints (Camel Toes) like Section 3.24, “JMS’ support using a transaction for both
inbound and outbound message exchanges. Endpoints that support transactions will participate in the current
transaction context that they are called from.

i Configuration of Redelivery

The redelivery in transacted mode is not handled by Camel but by the backing system (the transaction
manager). In such cases you should resort to the backing system how to configure the redelivery.

Y ou should use the SpringRouteBuilder to setup the routes since you will need to setup the Spring context with
the TransactionTemplate s that will define the transaction manager configuration and policies.

For inbound endpoint to be transacted, they normally need to be configured to use a Spring
PlatformTransactionManager. In the case of the IMS component, this can be done by looking it up in the Spring
context.

Y ou first define needed object in the Spring configuration.

<bean id="jnsTransacti onManager"
cl ass="org. spri ngfranmework. jns. connecti on. JnsTransact i onManager " >
<property nanme="connecti onFactory" ref="jnsConnectionFactory" />
</ bean>

<bean i d="j nmsConnecti onFact ory"
cl ass="org. apache. acti veny. Acti veMXonnecti onFactory">
<property nanme="broker URL" val ue="tcp://I|ocal host: 61616"/>
</ bean>

Then you look them up and use them to create the JmsComponent.

Pl at f or nTr ansact i onManager transacti onManager =

(Pl at f ornilransact i onManager) spring. get Bean("j nsTransacti onManager");

Connecti onFactory connecti onFactory = (Connecti onFactory) spring. get Bean(
"j msConnecti onFactory");

JnmsConponent conponent = JnmsConponent . j nsConponent Tr ansact ed(
connectionFactory, transactionManager);

conponent . get Confi guration(). set Concurrent Consuners(1);

ct x. addConponent ("activeng", component);

2.50.1. Transaction Policies

Outbound endpoints will automatically enlist in the current transaction context. But what if you do not want your
outbound endpoint to enlist in the same transaction as your inbound endpoint? The solution isto add a Transaction
Policy to the processing route. You first have to define transaction policies that you will be using. The policies
use a Spring TransactionTemplate under the covers for declaring the transaction demarcation to use. So you will
need to add something like the following to your Spring XML:

<bean i d="PROPAGATI ON_REQUI RED"
cl ass="org. apache. canel . spring. spi . Spri ngTransacti onPol i cy" >
<property nane="transacti onManager" ref="jnmsTransacti onManager"/>
</ bean>

<bean i d="PROPAGATI ON_REQUI RES_NEW
cl ass="org. apache. canel . spring. spi . Spri ngTransacti onPol i cy" >
<property nane="transacti onManager" ref="jnmsTransacti onManager"/>

86 Talend Mediation Developer Guide

http://localhost:8080/confluence/pages/viewpage.action?pageId=3244447
http://camel.apache.org/maven/current/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html
http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html
http://www.springframework.org/docs/api/org/springframework/transaction/PlatformTransactionManager.html
http://www.springframework.org/docs/api/org/springframework/transaction/support/TransactionTemplate.html

OSGi Blueprint

<property nane="propagati onBehavi or Nanme"
val ue=" PROPAGATI ON_REQUI RES_NEW / >
</ bean>

Then in your SpringRouteBuilder, you just need to create new SpringTransactionPolicy objects for each of the
templates.

public void configure() {

Pol i cy requried = bean(SpringTransacti onPolicy.class,
" PROPAGATI ON_REQUI RED")) ;

Pol i cy requi renew = bean(SpringTransactionPolicy. cl ass,
" PROPAGATI ON_REQUI RES_NEW)) ;

}

Once created, you can use the Policy objectsin your processing routes:

/1 Send to bar in a new transaction
from("activenq: queue: foo"). policy(requirenew).to("activeny: queue: bar");

/1 Send to bar without a transaction.
from"activeny: queue: foo"). policy(notsupported).to("activeny: queue: bar");

2.50.2. OSGi Blueprint

If you are using OSGi Blueprint then you most likely have to explicit declare apolicy and refer to the policy from
the transacted in the route.

<bean id="required"
cl ass="org. apache. canel . spring. spi . Spri ngTransacti onPol i cy">
<property nane="transacti onManager" ref="jnmsTransacti onManager"/>
<property nane="propagati onBehavi or Name" val ue="PROPAGATI ON_REQUI RED'/ >
</ bean>

And then refer to "required” from the route:

<rout e>
<fromuri="activeny: queue: f 00"/ >
<transacted ref="required"/>
<to uri="activeny: queue: bar"/ >
</route>

}

2.50.3. Database Sample

In this sample we want to ensure that two endpoints are under transaction control. These two endpointsinsert data
into a database. The sample appearsin full in aunit test.

First of all we setup the normal Spring configuration file. Here we have defined a DataSource to the HSQLDB
and amost importantly the Spring DataSource TransactionManager that is doing the heavy lifting of ensuring our
transactional policies. You are of course free to use any of the Spring based TransactionMananger, eg. if you are
inafull blown J2EE container you could use JTA or the WebL ogic or WebSphere specific managers.

Talend Mediation Developer Guide 87

http://camel.apache.org/maven/current/camel-spring/apidocs/org/apache/camel/spring/SpringRouteBuilder.html
http://svn.apache.org/viewvc/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/interceptor/TransactionalClientDataSourceMinimalConfigurationTest.java?view=log

Database Sample

As we use the new convention over configuration we do not need to configure a transaction policy bean, so we
do not have any PROPAGATI ON_REQUI RED beans. All the beans needed to be configured is standard Spring
beans only, eg. there are no Camel specific configuration at all.

<l-- this exanple uses JDBC so we define a data source -->

<bean i d="dat aSour ce"
cl ass="org. spri ngf ranewor k. j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property nane="driverCd assNane" val ue="org. hsql db. j dbcDriver"/>
<property nane="url" val ue="j dbc: hsql db: mem canel "/ >
<property nane="usernane" val ue="sa"/>
<property nane="password" val ue=""/>

</ bean>
<l-- Spring transaction manager -->
<l-- this is the transacti on manager Canel w |l use for transacted routes -->

<bean id="t xManager"
cl ass="org. spri ngf ranewor k. j dbc. dat asour ce. Dat aSour ceTr ansact i onManager " >
<property nane="dat aSour ce" ref="dataSource"/>

</ bean>

<l-- bean for book business logic -->

<bean i d="bookServi ce"
cl ass="org. apache. canel . spri ng. i nt ercept or. BookServi ce">
<property nane="dat aSour ce" ref="dataSource"/>

</ bean>

Then we are ready to define our Camel routes. We have two routes: 1 for success conditions, and 1 for aforced
rollback condition. This is after all based on a unit test. Notice that we mark each route as transacted using the
transacted tag.

<canel Cont ext xml ns="http://canel.apache. org/ schena/ spri ng">

<r out e>
<fromuri="direct:okay"/>
<l-- W& mark this route as transacted. Canel will |ookup the Spring

transacti on manager and use it by default. W can optimally
pass in arguments to specify a policy to use that is configured

with a Spring transacti on manager of choice. However Canel

supports convention over configuration as we can just use the

defaults out of the box suitable for npost situations -->
<transacted/ >
<set Body>

<constant>Tiger in Action</constant>
</ set Body>
<bean ref ="bookService"/>
<set Body>

<const ant >El ephant in Action</constant>
</ set Body>
<bean ref ="bookService"/>

</ rout e>
<rout e>
<fromuri="direct:fail"/>
<l-- we mark this route as transacted. See coments above. -->
<t ransact ed/ >
<set Body>

<constant>Tiger in Action</constant>
</ set Body>
<bean ref ="bookService"/>
<set Body>

88 Talend Mediation Developer Guide

JMS Sample

<const ant >Donkey in Acti on</constant>
</ set Body>
<bean ref="bookService"/>
</route>
</ canel Cont ext >

That is all that is needed to configure a Camel route as being transacted. Just remember to use the transacted
DSL. Therest is standard Spring XML to setup the transaction manager.

2.50.4. IMS Sample

In this sample we want to listen for messages on a queue and process the messages with our business logic Java
code and send them along. Since it is based on a unit test the destination is amock endpoint.

First we configure the standard Spring XML to declare a JM S connection factory, a IM S transaction manager and
our ActiveMQ component that we use in our routing.

<l-- setup JMS connection factory -->
<bean i d="j nsConnecti onFact ory"
cl ass="org. apache. acti venqg. Acti veMXonnect i onFact ory" >
<property name="br oker URL"
val ue="vm / /| ocal host ?br oker. per si st ent =f al se&br oker . useJnx=f al se"/ >
</ bean>

<l-- setup Spring jns TX manager -->
<bean id="j msTransacti onManager"
cl ass="org. spri ngf ranewor k. j ns. connecti on. JnsTr ansact i onManager " >
<property name="connectionFactory" ref="jmsConnectionFactory"/>
</ bean>

<l-- define our activeng conponent -->

<bean id="activem"
cl ass="org. apache. acti veng. canel . conponent . Acti veMXonponent " >
<property name="connectionFactory" ref="jmsConnectionFactory"/>

<l-- define the jns consuner/producer as transacted -->
<property nane="transacted" value="true"/>

<l-- setup the transaction manager to use -->

<l-- if not provided then Canmel will automatically use a

JnsTransacti onManager, however if you for instance use a JTA
transacti on manager then you nust configure it -->
<property nane="transacti onManager" ref="jnmsTransacti onManager"/>
</ bean>

And then we configure our routes. Noticethat all we haveto doismark theroute astransacted using thetr ansacted
tag.

<canel Cont ext xml ns="http://canel.apache. org/ schena/ spri ng">
<l-- disable JMX during testing -->
<j nkAgent id="agent" di sabl ed="true"/>

<r out e>
<l-- 1: fromthe jns queue -->
<fromuri="activeny: queue: okay"/ >
<l-- 2: mark this route as transacted -->
<transacted/ >
<l-- 3: call our business logic that is myProcessor -->

<process ref="nyProcessor"/>

Talend Mediation Developer Guide 89

http://svn.apache.org/viewvc/camel/trunk/components/camel-jms/src/test/java/org/apache/camel/component/jms/tx/TransactionMinimalConfigurationTest.java?view=log

Validate

<l-- 4: if success then send it to the nmock -->
<to uri="nock:result"/>
</ rout e>

</ canel Cont ext >

<bean i d="myProcessor"
cl ass="org. apache. canel . component . j ms. t x. JMSTr ansacti onal C i ent Test \\
$M/Processor "/ >

i Transaction error handler

When a route is marked as transacted using transacted Came will automatically use the
TransactionErrorHandler as Error Handler. It supports basically the same feature set as the
DefaultErrorHandler, so you can for instance use Exception Clause as well.

2.51. Validate

Validate uses an expression or predicates to validate the contents of a message. It is useful for ensuring that
messages are valid before attempting to process them.

You can use the validate DSL with all kind of Predicates and Expressions. Validate evaluates the Predicate/
Expressionand if itisfaseaPr edi cat eVal i dati onExcept i on isthrown. If it istrue message processing
continues.

2.51.1. Using from Java DSL

The route below will read the file contents and validate them against aregular expression.

from("file://inbox")
.validate(body(String.class).regex(""\\w{ 10}\\,\\d{2}\\,\\w{24}$"))
.to("bean: MySer vi ceBean. processLi ne");

Validate is not limited to the message body. Y ou can also validate the message header.

from("file://inbox")
.val i dat e(header ("bar").isG eat er Than(100))
.to("bean: MyServi ceBean. processLi ne");

Y ou can a'so use validate together with smple.
from("file://inbox")

.validate(sinple("${in.header.bar} == 100"))
.to("bean: MyServi ceBean. processLi ne");

2.51.2. Using from Spring DSL

To use validate in the Spring DSL, the easiest way isto use simple expressions.

<r out e>
<fromuri="file://inbox"/>

20 Talend Mediation Developer Guide

http://camel.apache.org/transactionerrorhandler.html
http://camel.apache.org/error-handler.html
http://camel.apache.org/defaulterrorhandler.html
http://camel.apache.org/exception-clause.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html

Wire Tap

<val i dat e>
<si mpl e>${ body} regex M\ wW{10}\\ \\d{2}\\,\\ w24} $</ si npl e>
</val i dat e>
<beanRef ref="nyServiceBean" method="processLi ne"/>
</route>

<bean i d="myServi ceBean" cl ass="com myconpany. MyServi ceBean"/>
The XML DSL to validate the message header would looks like this:

<rout e>
<fromuri="file://inbox"/>
<val i dat e>
<si mpl e>${i n. header . bar} == 100</si npl e>
</val i dat e>
<beanRef ref="nyServiceBean" method="processLi ne"/>
</route>

<bean i d="myServi ceBean" cl ass="com myconpany. MyServi ceBean"/>

2.52. Wire Tap

The Wire Tap from the EIP patterns allows you to route messages to a separate tap location while it is forwarded

to the ultimate destination.

Wire Tap

Source —;— Destination

]

Options:

Name Default Value Description

uri The URI of the endpoint to which the wire-tapped
message will be sent. Y ou should use either uri or ref.

r ef Reference identifier of the endpoint to which the wire-

tapped message will be sent. Y ou should use either uri
or ref.

execut or Ser vi ceRef

Reference identifier of a custom Thread Pool to use
when processing the wire-tapped messages. If not set,
Camel will use adefault thread pool.

processor Ref

Reference identifier of a custom Processor to use for
creating anew message (e.g., the "send a new message"
mode).

Talend Mediation Developer Guide 91

http://www.enterpriseintegrationpatterns.com/WireTap.html

WireTap node

Name Default Value

Description

copy true

Whether to copy the Exchange before wire-tapping the
message.

onPr epar eRef

Reference identifier of a custom Processor to prepare
the copy of the Exchangeto bewire-tapped. Thisallows
you to do any custom logic, such as deep-cloning the

message payload.

2.52.1. WireTap node

Camd's WireTap node supports two flavors when tapping an Exchange.

» With the traditional Wire Tap, Camel will copy the original Exchange and set its Exchange Pattern to InOnly,
as we want the tapped Exchange to be sent in a fire and forget style. The tapped Exchange is then sent in a
separate thread so it can run in parallel with the original.

» Camel aso provides an option of sending a new Exchange allowing you to populate it with new values. Seethe
Camel Website for dynamically maintained examples of this pattern in use.

2.52.2. Sending a copy (traditional wire tap)

Using the Fluent Builders

from("direct:start")
.to("l og: foo")
Wi reTap("direct:tap")
.to("nock:result");

Using the Spring XML Extensions

<r out e>
<fromuri="direct:start"/>
<to uri="log:foo"/>

<wi reTap uri="direct:tap"/>
<to uri="nock:result"/>
</ rout e>

92 Talend Mediation Developer Guide

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/wire-tap.html#WireTap-SendinganewExchange
http://camel.apache.org/fluent-builders.html
http://camel.apache.org/spring-xml-extensions.html

Chapter 3. Components

The following Camel components are discussed within this guide:

Component / Artifactid / URI

Description

Section 3.1, “ActiveMQ” / activemg-camel

activenqy: [topic:]destinati onNane

For IMS Messaging with Apache ActiveMQ

Section 3.2, “Atom” / camel-atom

atom uri

Working with Apache Abderafor atomintegration, such
as consuming an atom feed.

Section 3.3, “Bean” / camel-core

bean: beanNane[?net hod=someMet hod]

Uses the Camel Bean Binding to bind message
exchanges to beans in the Camel Registry. Is aso
used for exposing and invoking POJO (Plain Old Java
Objects).

Section 3.4, “Cache” / camel-cache

cache: // cachenane[?opti ons]

The cache component facilitates creation of caching
endpoints and processors using EHCache as the cache
implementation.

Section 3.5, “Class’ / camel-core

cl ass: cl assNane[?net hod=soneMet hod]

Uses the Camel Bean Binding to bind message
exchanges to beans in the Came Registry. Is also
used for exposing and invoking POJOs (Plain Old Javal
Objects).

Section 3.6, “Context” / camel-context

cont ext : canel Cont ext | d:
| ocal Endpoi nt Nane

Used to refer to endpoints within a separate
CamelContext to provide a simple black box
composition approach so that routes can be combined
into a CamelContext and then used as a black box
component inside other routesin other Camel Contexts

Section 3.7, “Crypto (Digital Signatures)”

crypto: si gn: nane[?opti ons]
crypto:verify: name[?opti ons]

Used to sign and verify exchanges using the Signature
Service of the Java Cryptographic Extension.

Section 3.8, “CXF” / camel-cxf

Working with Apache CXF for web servicesintegration

Talend Mediation Developer Guide

http://activemq.apache.org/
http://incubator.apache.org/abdera/
http://ehcache.org/
http://apache.org/cxf/

Component / Artifactid / URI

Description

cxf: address[?servi ceC ass=...]

Section 3.9, “CXF Bean Component” / camel-cxf

cxf: bean nane

Process the exchange using a JAX WS or JAX
RS annotated bean from the registry. Requires less
configuration than the above CXF Component

Section 3.10, “CXFRS’ / camel-cxf

cxfrs: address[?resourcesd asses=. ..

Working with Apache CXF for REST services
integration

Section 3.11, “Direct” / camel-core

di rect: nane

Synchronous call to another endpoint from same
CamelContext

Section 3.12, “Event” / camel-spring

event://defaul t
spring-event://default

Working with Spring ApplicationEvents

Section 3.13, “Exec” / camel-exec

exec: // execut abl e[?opti ons]

For executing system commands

Section 3.14, “File” / camel-core

file://nameOFFileOrDirectory

Sending messagesto afile or polling afile or directory.

Section 3.15, “Hatpack” / camel-flatpack

flatpack:[fixed|delim:configFile

Processing fixed width or delimited files or messages
using the FlatPack library

Section 3.16, “Freemarker” / camel-freemarker

freemar ker: soneTenpl at eResour ce

Generates aresponse using a Freemarker template

Section 3.17, “FTP” / camel-ftp

ftp://host[:port]/fil eNane

Sending and receiving files over FTP.

Section 3.17, “FTP" / camel-ftp (FTPS)

ftps://host[:port]/fil eNane

Sending and receiving files over FTP Secure (TLS and
SSL).

Section 3.18, “HI7”

m na:tcp://hostnane[: port]

For working with the HL7 MLLP protocol and the HL7
model using the HAPI library.

Section 3.19, “HTTP4" / camel-http4

htt p4://host nanme[: port]

For calling out to external HTTP servers using Apache
HTTP Client 4.x

Section 3.30, “Mail” / camel-mail

i map: // host name[: port]

Receiving email using IMap

Section 3.20, “Jasypt” / camel-jasypt

jasypt: uri

Simplified on-the-fly encryption library, integrated with
Camel.

Section 3.21, “JCR” / camel-jcr

jecr://user: password@ epository/
pat h/ t o/ node

Storing a message in a JCR (JSR-170) compliant
repository like Apache Jackrabbit

Section 3.22, “JDBC” / camel-jdbc

j dbc: dat aSour ceNane?opt i ons

For performing JDBC queries and operations

Section 3.23, “ Jetty” / camel-jetty

For exposing servicesover HTTP

94 Talend Mediation Developer Guide

http://apache.org/cxf/
http://flatpack.sourceforge.net
http://freemarker.org/
http://jackrabbit.apache.org

Component / Artifactid / URI

Description

jetty:url

Section 3.24, “IMS’ / camel-jms

jms: [topic:]destinati onNane

Working with IM S providers

Section 3.25, “IMX” / camel-jmx

jmx: /[platfornoptions

For working with IMX notification listeners

Section 3.26, “JPA” / camel-jpa

jpa://lentityNane

For using adatabase asaqueue viathe JPA specification
for working with OpenJPA, Hibernate or TopLink

Section 3.27, “Jsch” / camel-jsch

scp:/ /1 ocal host/ destination

Support for the scp protocol.

Section 3.28, “Log” / camel-core

| og: | oggi ngCat egor y[?I evel =ERRCR]

Uses Jakarta Commons Logging to log the message
exchange to some underlying logging system like log4j

Section 3.29, “Lucene” / camel-lucene

| ucene: sear cher Nane: i nsert
[?anal yzer =<anal yzer >]

Uses Apache Lucene to perform Java-based indexing
and full text based searches using advanced analysis/
tokenization capabilities

Section 3.30, “Mail” / camel-mail

mai | : //user-info@ost: port

Sending and receiving email

Section 3.31, “Mock” / camel-core

nock: nane

For testing routes and mediation rules using mocks

Section 3.30, “Mail” / camel-mail

pop3://user-info@ost: port

Receiving email using POP3 and JavaMail

Section 3.32, “MyBatis’ / camel-mybatis

nmybati s:// st at enment Nane

Performs a query, poll, insert, update or delete in a
relational database using MyBatis

Section 3.33, “Properties’ / camel-core

properties://key[?opti ons]

The properties component facilitates using property
placeholders directly in endpoint uri definitions.

Section 3.34, “Quartz” / camel-quartz

quart z://groupNane/ti nmer Name

Provides a scheduled delivery of messages using the
Quartz scheduler

Section 3.35, “Ref” / camel-core

ref : nane

Component for lookup of existing endpoints bound in
the Camel Registry.

Section 3.36, “RMI” / camel-rmi

rm://host[:port]

Working with RMI

Section 3.37, “RSS"’ / camel-rss

rss:uri

Working with ROME for RSS integration, such as
consuming an RSS feed.

Section 3.38, “SEDA” / camel-core

seda: nane

Asynchronous call to another endpoint in the same
Camel Context

Section 3.39, “Servlet” / camel-servlet

For exposing services over HTTP through the servlet
which is deployed into the Web container.

Talend Mediation Developer Guide 95

http://openjpa.apache.org/
http://www.hibernate.org/
http://mybatis.org/
http://www.opensymphony.com/quartz/
http://rometools.org/

Component / Artifactid / URI

Description

servl et:uri

Section 3.17, “FTP" | camel-ftp (SFTP)

sftp://host[:port]/fil eNane

Sending and receiving filesover SFTP (FTP over SSH).

Section 3.30, “Mail” / camel-mail

sntp://user-info@uost[: port]

Sending email using SMTP and JavaMail

Section 3.41, “SMPP” / camel-smpp

snpp://user-info@ost[:port]?options

To send and receive SMS using Short Messaging
Service Center using the JSMPP library

Section 3.42, “SNMP” / camel-snmp

snip:// host[: port]?options

Polling OID values and receiving trapsusing SNMP via
SNMPA4J library

Section 3.43, “Spring Integration” / camel-spring-
integration

spring-integration: def aul t Channel Nane

The bridge component of Camel and Spring I ntegration

Section 3.45, “SQL Component” / camel-sql

sql:select * fromtable where id=#

Performing SQL queriesusing JDBC

Section 3.46, “SSH” / camel-ssh

ssh: [usernane[: password] @ host [: port]

For sending commands to a SSH server

?opt i ons]

Section 3.47, “ Stub”

st ub: someQt her Canel Uri

Allows you to stub out some physical middleware
endpoint for easier testing or debugging

Section 3.48, “Test” / camel-spring

t est: expect edMessagesEndpoi nt Uri

Creates a Section 3.31, “Mock” endpoint which expects
to receive al the message bodies that could be polled
from the given underlying endpoint

Section 3.49, “Timer” / camel-core

timer://nanme

A timer endpoint

Section 3.50, “Velocity” / camel-velocity

vel oci ty: soneTenpl at eResour ce

Generates a response using an Apache Velocity
template

Section 3.51, “VM” / camel-core

vim nane

Asynchronous call to another endpoint in the same VM

Section 3.52, “XQuery Endpoint” / camel-saxon

xquery: someXQuer yResour ce

Generates aresponse using an XQuery template

Section 3.53, “XSLT” / camel-spring

xsl t: someTenpl at eResour ce

Generates aresponse using an XSLT template

Section 3.54, “Zookeeper”

zookeeper:// host: port/path

Working with ZooK eeper cluster(s)

96

Talend Mediation Developer Guide

http://code.google.com/p/jsmpp/
http://snmp4j.com
http://www.springframework.org/spring-integration
http://velocity.apache.org/
http://www.w3.org/TR/xslt
http://camel.apache.org/zookeeper.html

ActiveMQ

3.1. ActiveMQ

The ActiveM Q component allows messagesto be sent to aJM S Queue or Topic or messages to be consumed from
aJMS Queue or Topic using Apache ActiveMQ.

This component is based on IMS Component and uses Spring's JM S support for declarative transactions, using
Spring's Jmrs Tenpl at e for sending and a Messageli st ener Cont ai ner for consuming. All the options
from the Section 3.24, “JMS’ component also apply for this component.

To use this component make sure you have the activeny.jar or activenqg-core.jar on your

classpath along with any Camel dependenciessuchascanel - core. j ar,canel - spri ng. j ar andcanel -
jms.jar.

3.1.1. URI format and Options

activenq: [queue: | topi c:]destinati onNane

where destinationName is an ActiveM Q queue or topic name. By default, the destinationNameisinterpreted as
a queue name. For example, to connect to the queue, FOO. BAR, use:

activenqg: FOO. BAR
Y ou can include the optional queue: prefix, if you prefer:
activeng: queue: FOO. BAR

To connect to a topic, you must include the t opi c: prefix. For example, to connect to the topic,
St ocks. Pri ces, use

activeng: topic: Stocks. Prices

For options, see the Section 3.24, “IMS’ component as all these options also apply for this component.

3.1.2. Configuring the Connection Factory

Thistest case shows how to add an ActiveM QComponent to the Camel Context using the activeM QComponent()
method while specifying the brokerURL used to connect to ActiveM Q.

canel Cont ext . addConponent ("acti veng", activeMXonponent (
"vm / /1 ocal host ?br oker. persi stent=fal se"));

3.1.3. Configuring the Connection Factory using
Spring XML

Y ou can configure the ActiveMQ broker URL on the ActiveM QComponent as follows

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"

Talend Mediation Developer Guide 97

http://java.sun.com/products/jms/
http://activemq.apache.org/
http://svn.apache.org/repos/asf/activemq/trunk/activemq-camel/src/test/java/org/apache/activemq/camel/component/ActiveMQRouteTest.java
http://activemq.apache.org/configuring-transports.html

Using connection pooling

Xsi : schenmaLocat i on="
htt p: // ww. spri ngfranewor k. or g/ scherma/ beans
htt p: // www. spri ngf ranewor k. or g/ scherma/ beans/ spri ng- beans- 2. 0. xsd
http://camel . apache. or g/ schema/ spri ng
http://canel . apache. or g/ schena/ spri ng/ canel - spri ng. xsd">

<canel Cont ext xm ns="http://canel.apache. org/ schema/ spri ng">
</ canel Cont ext >

<bean id="activemy"
cl ass="org. apache. acti veng. canel . conponent . Acti veMXonponent " >
<property nane="broker URL" val ue="tcp://sonehost: 61616"/>
</ bean>
</ beans>

3.1.4. Using connection pooling

When sending to an ActiveMQ broker using Camel it is recommended to use a pooled connection factory to
efficiently handle pooling of JIMS connections, sessions and producers. This is documented on the ActiveMQ

Spring Support page.

You can grab ActiveMQ'sor g. apache. acti venq. pool . Pool edConnect i onFact ory with Maven:

<dependency>
<gr oupl d>or g. apache. acti veng</ gr oupl d>
<artifactld>activenqg-pool </artifactld>
<versi on>5. 3. 2</ ver si on>

</ dependency>

And then setup the activemq Camel component as follows:

<bean i d="j msConnecti onFactory"
cl ass="org. apache. acti venqg. Acti veMXonnect i onFact ory" >
<property nane="broker URL" val ue="tcp://|ocal host: 61616" />
</ bean>

<bean i d="pool edConnecti onFact ory"
cl ass="org. apache. acti veng. pool . Pool edConnecti onFactory" >
<property nane="maxConnecti ons" val ue="8" />
<property nane="nmaxi numActive" val ue="500" />
<property nane="connecti onFactory" ref="jnsConnectionFactory" />
</ bean>

<bean id="j nmsConfi g"
cl ass="or g. apache. canel . conponent . j ns. JnsConfi gurati on">
<property nane="connecti onFactory" ref="pool edConnecti onFactory"/>
<property nane="transacted" val ue="fal se"/>
<property nane="concurrent Consuners" val ue="10"/>
</ bean>

<bean id="activen"
cl ass="org. apache. acti veng. canel . conponent . Act i veMXonponent " >
<property nane="configuration" ref="jnsConfig"/>

</ bean>

98 Talend Mediation Developer Guide

http://activemq.apache.org/spring-support.html
http://activemq.apache.org/spring-support.html

Invoking MessagelL istener POJOs in a Camel route

3.1.5. Invoking MessageListener POJOs in a Camel
route

The ActiveM Q component al so providesahel per TypeConverter fromaJM S M essagel istener to aProcessor. This
means that the Bean component is capable of invoking any JIMS Messagel istener bean directly inside any route.

So for example you can create a Messagel istener in IMS like this:

public class MListener inmplenents Messageli stener {
public void onMessage(Message j nsMessage) ({
/1

}
}

Then useit in your Camel route as follows

from("file://foolbar").
bean(MyLi st ener. cl ass);

That is, you can reuse any of the Camel Components and easily integrate them into your JMS
Messageli st ener POJO.

3.1.6. Consuming Advisory Messages

ActiveMQ can generate Advisory messages which are put in topics that you can consume. Such messages can
help you send alerts in case you detect slow consumers or to build statistics (number of messages/produced per
day, etc.) The following Spring DSL example shows you how to read messages from atopic.

The below route starts by reading the topic ActiveMQ.Advisory.Connection. To watch another
topic, simply change the name according to the name provided in ActiveMQ Advisory
Messages documentation. The parameter mapJnsMessage=fal se alows for converting the
or g. apache. acti veny. command. Act i veMyMessage object from the IMS queue. Next, the body
received is converted into a String for the purposes of this example and a carriage return is added. Finally, the
string is added to afile:

<r out e>
<fromuri="activeny: topic:Acti veMQ Advi sory. Connecti on?
mapJmsMessage=f al se" />

<convert BodyTo type="java.lang. String"/>
<transfornmp
<si npl e>${i n. body}  </ si npl e>
</transfornmp
<to uri="file://datal/activeng/ ?fil eExi st =Append&anp;
fil eNane=advi soryConnecti on- ${dat e: now. yyyyMwd} . t xt" />

</route>

If you consume a message on a queue, you should see the following files under the data/activemq folder :
advisoryConnection-20100312.txt advisoryProducer-20100312.txt

and containing string:

Acti veMQVvessage {commandld = 0, responseRequired = fal se,
nessageld = ID: dell-charl es-3258-1268399815140- 1: 0: 0: 0: 221,
original Destination = null, original Transactionld = null, producerld = ID:

Talend Mediation Developer Guide 99

http://activemq.apache.org/advisory-message.html

Getting Component JARs

del | -char| es- 3258-1268399815140- 1: 0: 0: 0, destination =
topic://ActiveM) Advi sory. Connection, transactionld = null, expiration = 0,
timestamp = 0, arrival = 0, brokerInTime = 1268403383468, brokerQutTine =
1268403383468, correlationld = null, replyTo = null, persistent = fal se,
type = Advisory, priority = 0, grouplD = null, groupSequence = O,

target Consunerld = null, conpressed = false, userID = null, content = null,
mar shal | edProperties = org.apache. activenqg. util.ByteSequence@7e2705,

dat aStructure = Connectionlnfo {commandld = 1, responseRequired = true,
connectionld = ID:dell-charl es-3258-1268399815140-2:50, clientld =

| D: del | -charl es-3258-1268399815140- 14: 0, userNane = , password = *****,
brokerPath = null, brokerMasterConnector = fal se, manageable = true,
clientMaster = true}, redeliveryCounter = 0, size = 0, properties =

{origi nBroker Name=nast er,

ori gi nBroker|d=ID:del |l -charl es-3258-1268399815140-0: 0,

ori gi nBroker URL=vm // master}, readOnlyProperties = true

readOnl yBody = true, droppable = false}

3.1.7. Getting Component JARsS

Y ou will need these dependencies
e canel -jns

» activeny- canel

3.1.7.1. camel-jms

You must havethecanel - j ns as dependency as Section 3.1, “ActiveMQ” is an extension to the Section 3.24,
“JMS’ component.

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -jms</artifactld>
<versi on>1. 6. 0</ ver si on>

</ dependency>

The ActiveMQ Camel component is released with the ActiveMQ project itself. For Maven 2 users you ssmply
need to add the following dependency to your project.

3.1.7.2. ActiveMQ 5.2 or later

<dependency>
<gr oupl d>or g. apache. acti veng</ gr oupl d>
<artifactld>activeng-canel </artifactld>
<ver si on>5. 2. 0</ ver si on>

</ dependency>

3.1.7.3. ActiveMQ 5.1.0

For 5.1.0 it isin the activemg-core library

100 Talend Mediation Developer Guide

Atom

<dependency>
<gr oupl d>or g. apache. acti vemg</ gr oupl d>
<artifactld>activeng-core</artifactld>
<versi on>5. 1. 0</ versi on>

</ dependency>

Alternatively you can download the component jar directly from the Maven repository:
* activemg-camel-5.2.0.jar

 activemg-core-5.1.0.jar

3.2. Atom

The atom: component is used for polling Atom feeds.

Camd will poll the feed every 60 seconds by default. Note: The component currently only supports polling
(consuming) feeds.

Maven users will need to add the following dependency to their pom xm for this component:
<dependency>

<gr oupl d>or g. apache. canel </ gr oupl d>

<artifactld>canel -atonx/artifactld>

<ver si on>Xx. x. x</ ver si on>

<l-- use the sane version as your Canel core version -->
</ dependency>

See the Apache Camel website for examples of this component in use.

3.2.1. URI format and options

atom //atonri[?0ptions]

where atomUri isthe URI to the Atom feed to poll.

Options

Property Default Description

splitEntries true Ift r ue Camel will poll the feed and for the subsequent
polls return each entry poll by poll. For example, if the
feed contains seven entries then Camel will return the
first entry on the first poll, the second entry on the next
poll, until no more entrieswhere as Camel will do anew
update on the feed. If f al se then Camel will poll a
fresh feed on every invocation.

filter true is only used by the split entries to filter the
entries to return. Camel will default use the
Updat eDat eFi | t er that only returns new entries
from the feed. So the client consuming from the feed
never receives the same entry more than once. Thefilter
will return the entries ordered by the newest last.

Talend Mediation Developer Guide 101

http://repo2.maven.org/maven2/org/apache/activemq/activemq-camel/5.2.0/activemq-camel-5.2.0.jar
http://repo2.maven.org/maven2/org/apache/activemq/activemq-core/5.1.0/activemq-core-5.1.0.jar
http://camel.apache.org/atom.html

Exchange data format

Property Default Description

| ast Updat e nul | Is only used when filter=true. It defines the
starting timestamp for selecting newer entries
(uses the entry.updated timestamp). Syntax
format is. yyyy- Mi ddTHH MM ss. Example:
2007- 12- 24T17: 45: 59.

throttleEntries true Sets whether al entries identified in a single feed
poll should be delivered immediately. If t rue, only
one entry is processed per consurmer . del ay. Only
applicablewhensplitEntri esissettotrue.

f eedHeader true Sets whether to add the Abdera Feed object as a header.

sortEntries fal se If splitEntries istrue, this sets whether to sort
those entries by updated date.

consurmer . del ay 60000 Delay in milliseconds between each poll.

consuner.initial Del ay 1000 Millis before polling starts.

consumer . user Fi xedDel ay fal se Ift r ue, usefixed delay between pools, otherwisefixed
rate is used. See ScheduledExecutorService in JDK for
details.

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

3.2.2. Exchange data format

Camel will set the In body on the returned Exchange with the entries. Depending onthespl i t Entri es flag
Camel will either returnone Ent ry or aLi st <Entry>.

Option Value Behavior

splitEntries true Only asingle entry from the currently being processed feed is
set: exchange. i n. body(Ent ry)

splitEntries fal se |The entire list of entries from the feed is set:
exchange. i n. body(Li st <Entry>)

Camel can set the Feed object on the In header (seef eedHeader option to disable this).

3.2.3. Message Headers

Camel atom uses these headers:

Header Description

Canel At onfeed When consuming the
or g. apache. abder a. nodel . Feed object is set
to this header.

3.3. Bean

The bean: component binds beans to Camel message exchanges.

102 Talend Mediation Developer Guide

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

URI format and options

3.3.1. URI format and options

bean: beanl O] ?opt i ons]

where beanl D can be any string which is used to look up the bean in the Camel Registry.

Options

Name Type Default Description

met hod String nul | The method name from the bean that will beinvoked. If
not provided, Camel will try to pick the method itself.
In case of ambiguity an exception will be thrown. See
Camel Bean Binding for more details.

cache bool ean fal se If enabled, Camel will cache the result of the first
Registry look-up. Cache can be enabled if the bean in
the Registry is defined as a singleton scope.

mul ti- bool ean fal se How to treat the parameters which are passed from the

Par anet er - message body; if itist r ue, the In message body should

Array be an array of parameters.

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ueé&. . .

3.3.2. Using

The object instance that is used to consume messages must be explicitly registered with the Camel Registry. For
example, if you are using Spring you must define the bean in the Spring configuration, spri ng. xm ; or if you
don't use Spring, by registering the bean in INDI, as described here:

/1 let's populate the context with the services we need

/1 note that we could just use a spring.xm file to avoid this step
Jndi Cont ext context = new Jndi Context();

cont ext . bi nd("bye", new SayService("Good Bye!"));

Canel Cont ext canel Cont ext = new Def aul t Canel Cont ext (cont ext);

Once an endpoint has been registered, you can build Camel routes that use it to process exchanges.

/1 let's add sinmple route
canel Cont ext . addRout es(new Rout eBui | der () {
public void configure() {
from"direct:hello").to("bean: bye");
}
1)

Note: A bean: endpoint cannot be defined as the input to the route; that is you cannot consume from it, you can
only route from some inbound message endpoint to the bean endpoint as output. So consider using a direct: or
gueue: endpoint as the input.

You canusethecr eat ePr oxy() methods on ProxyHelper to create a proxy that will generate BeanExchanges
and send them to any endpoint:

Endpoi nt endpoi nt = canel Cont ext. get Endpoi nt ("direct: hello");

Talend Mediation Developer Guide 103

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/bean/ProxyHelper.html

Bean as endpoint

| Say proxy = ProxyHel per.createProxy(endpoint, |Say.class);
String rc = proxy.say();
assert Equal s(" Good Bye!™", rc);

And the same route using Spring DSL.:

<r out e>
<fromuri="direct: hello">
<to uri="bean: bye"/>
</rout e>

3.3.3. Bean as endpoint

Camd also supports invoking Section 3.3, “Bean” as an Endpoint. In the route below:

<canel Cont ext xm ns="http://canel.apache. org/ schena/ spring">
<r out e>
<fromuri="direct:start"/>
<to uri="mnmyBean"/>
<to uri="nock:results"/>
</route>
</ carel Cont ext >

<bean id="nyBean" cl ass="org. apache. canel . spring. bi nd. Exanpl eBean"/ >

What happensis that when the exchange is routed to the my Bean Camel will use the Bean Binding to invoke the
bean. The source for the bean is just a plain POJO:

public cl ass Exanpl eBean {

public String sayHello(String name) {
return "Hello " + nanme + "I";

}
}

Camel will use the Bean Binding to invoke the sayHel | o method, by converting the Exchange's In body to the
St ri ng type and storing the output of the method on the Exchange Out body.

3.3.4. Bean Binding

How bean methods to be invoked are chosen (if they are not specified explicitly through the method parameter)
and how parameter values are constructed from the M essage are all defined by the Bean Binding mechanism. This
is used throughout all of the various Bean Integration mechanismsin Camel.

3.4. Cache

The cache component enables you to perform caching operations using EHCache as the Cache Implementation.
The cache itsdlf is created on demand or if a cache of that name already exists then it is simply utilized with its
original settings.

This component supports producer and event based consumer endpoints.

104 Talend Mediation Developer Guide

URI format and Options

The Cache consumer is an event based consumer and can be used to listen and respond to specific cache activities.
If you need to perform selections from a pre-existing cache, use the processors defined for the cache component.

Maven users will need to add the following dependency to their pom xmi for this component:

<dependency>

<gr oupl d>or g. apache. canel </ gr oupl d>

<artifactld>canel -cache</artifactld>

<ver si on>x. X. x</ ver si on>

<l-- use the sane version as your Canel core version -->
</ dependency>

3.4.1. URI format and Options

cache: // cacheNane[?opti ons]

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

Options
Name Default Value Description
maxEl ement sl nMenory 1000 The numer of elementsthat may be stored in the defined
cache
menor y St or e- Menor y St or e- The number of elements that may be stored in the
Evi ctionPol i cy Evi cti onPol i cy |défiriéd cache. Optionsinclude
« MemoryStoreEvictionPolicy.LFU - Least frequently
used
* MemoryStoreEvictionPolicy.LRU - Least recently
used
* MemoryStoreEvictionPolicy.FIFO - first in first out,
the oldest element by creation time
over fl owToDi sk true Specifies whether cache may overflow to disk
et er nal fal se Sets whether elements are eternal. If eternal, timeouts
areignored and the element never expires.
ti meToLi veSeconds 300 The maximum time between creation time and when
an element expires. Is used only if the element is not
eternal.
ti meTol dl eSeconds 300 The maximum amount of time between accesses before
an element expires
di skPer si st ent fal se Whether the disk store persists between restarts of the
Virtual Machine.
di skExpi ryThr ead- 120 The number of seconds between runs of the disk expiry
I nt erval Seconds thread.
cacheManager Fact ory nul | If you want to wuse a custom factory
which instantiates and creates the EHCache
net. sf. ehcache. CacheManager. Use type
of abstract or g. apache. camel .
component . cache. CacheManager Factory.
event Li stener Regi stry |null Sets a list of EHCache
net.sf.ehcache.event.CacheEventListener for all new

Talend Mediation Developer Guide 105

Sending/Receiving Messages to/from the cache

Name

Default Value

Description

caches - no need to define it per cache in
EHCache xml config anymore. Use type of
or g. apache. canel . conponent. cache.
CacheEvent Li st ener Regi stry.

cachelLoader Regi stry

nul |

Sets a list of org.apache.camel. component.cache.
CacheLoaderWrapper that extends EHCache
net.sf.ehcache.loader.Cachel. oader for al new caches
- no need to define it per cache in EHCache xml
config anymore. Use type of or g. apache. canel .
conponent . cache. CachelLoader Regi stry

key

nul |

To configure using a cache key by default. If akey is
provided in the message header, then the key from the
header takes precedence.

operation

nul |

To configure using an cache operation by default. If an
operation in the message header, then the operation from
the header takes precedence.

3.4.2. Sending/Receiving Messages to/from the cache

3.4.2.1. Message Headers

Header

Description

Camel CacheQper ati on

The operation to be performed on the cache. These headers are removed
from the exchange after the cache operation is performed. Valid optionsare

+ CamelCacheGet

» CamelCacheCheck
» CamelCacheAdd

e CamelCacheUpdate
» CamelCacheDelete

» CamelCacheDeleteAll

Canel CachekKey

The cache key used to store the Message in the cache. The cache key is
optiona if the Camel CacheOperation is Camel CacheDeleteAll.

3.4.2.2. Cache Producer

Sending data to the cache involves the ability to direct payloads in exchanges to be stored in a pre-existing or
created-on-demand cache. The mechanics of doing thisinvolve

* setting the Message Exchange Headers shown above.

* ensuring that the Message Exchange Body contains the message directed to the cache

106

Talend Mediation Developer Guide

Cache Usage Samples

3.4.2.3. Cache Consumer

Receiving data from the cache involves the ability of the CacheConsumer to listen on a pre-existing or created-
on-demand Cache using an event Listener and receive automatic notifications when any cache activity take place
(i.e., Add, Update, Delete, or DeleteAll). Upon such an activity taking place

* an exchange containing Message Exchange Headers and a M essage Exchange Body containing the just added/
updated payload is placed and sent.

* in case of aCamel CacheDeleteAll operation, the M essage Exchange Header Camel CacheK ey and the Message
Exchange Body are not populated.

3.4.2.4. Cache Processors

Thereare aset of nice processorswith the ability to perform cache lookups and selectively replace payload content
at the

* body
o token

» Xpath level

3.4.3. Cache Usage Samples

3.4.3.1. Example: Configuring the cache

from("cache:// MyApplicationCache" +
"?maxEl ement sl nMenor y=1000" +
" &renorySt or eEvi cti onPol i cy=" +
"MenorySt or eEvi cti onPol i cy. LFU' +
"&over fl owToDi sk=true" +
"&eternal =true" +
"&t i meTolLi veSeconds=300" +
"&t i meTol dl eSeconds=true" +
" &di skPersi stent =true" +
" &di skExpi ryThr eadl nt er val Seconds=300")

3.4.3.2. Example: Adding keys to the cache

Rout eBui | der buil der = new Rout eBui l der () {
public void configure() {
from("direct:start")

. set Header (CacheConst ant s. CACHE _OPERATI ON,
const ant (CacheConst ant s. CACHE_OPERATI ON_ADD))

. set Header (CacheConst ant s. CACHE_KEY,
const ant (" Ral ph_Wal do_Enerson"))

.to("cache:// Test Cachel")

Talend Mediation Developer Guide 107

Cache Usage Samples

3.4.3.3. Example: Updating existing keys in a cache

Rout eBui | der buil der = new Rout eBui |l der () {
public void configure() {
from("direct:start")

. set Header (CacheConst ant s. CACHE OPERATI ON,
const ant (CacheConst ant s. CACHE OPERATI ON_UPDATE))

. set Header (CacheConst ant s. CACHE_KEY,
const ant (" Ral ph_Wal do_Enerson"))

.to("cache:// Test Cachel")

3.4.3.4. Example: Deleting existing keys in a cache

Rout eBui | der buil der = new Rout eBuil der () {
public void configure() {
from"direct:start")

. set Header (CacheConst ant s. CACHE_OPERATI ON,
const ant (CacheConst ant s. CACHE_DELETE))

. set Header (CacheConst ant s. CACHE_KEY,
const ant (" Ral ph_Wal do_Enerson"))

.to("cache:// Test Cachel")

3.4.3.5. Example: Deleting all existing keys in a cache

Rout eBui | der buil der = new Rout eBui l der () {
public void configure() {
from"direct:start")
. set Header (CacheConst ant s. CACHE_OPERATI ON,
const ant (CacheConst ant s. CACHE DELETEALL))
.to("cache:// Test Cachel");

3.4.3.6. Example: Notifying any changes registering in a Cache to
Processors and other Producers

Rout eBui | der buil der = new Rout eBui l der () {
public void configure() {
from("cache:// Test Cachel"). process(new Processor () {
public void process(Exchange exchange) throws Exception {

String operation =
(String) exchange.getln().getHeader (
CacheConst ant s. CACHE_OPERATI ON) ;

String key = (String)
exchange. get I n() . get Header (CacheConst ant s. CACHE_KEY) ;

bj ect body = exchange. getln(). get Body();

/1 Do sonething

108 Talend Mediation Developer Guide

Cache Usage Samples

1)

3.4.3.7. Example: Using Processors to selectively replace payload
with cache values

Rout eBui | der buil der = new Rout eBui |l der () {
public void configure() {
/I Message Body Repl acer
from "cache:// Test Cachel")
.filter(header(CacheConstants. CACHE KEY). i sEqual To("greeting"))
. process(new CacheBasedMessageBodyRepl acer (
"cache: // Test Cachel", "farewel | "))
.to("direct:next");
/I Message Token repl acer
from "cache:// Test Cachel")
.filter(header(CacheConstants. CACHE KEY). i sEqual To("quote"))
. process(new CacheBasedTokenRepl acer (
"cache: // Test Cachel", "novel ", "#novel #"))
. process(new CacheBasedTokenRepl acer (
"cache: // Test Cachel", "aut hor", "#aut hor#"))
. process(new CacheBasedTokenRepl acer (
"cache: // Test Cachel", "nunber ", "#nunber #"))
.to("direct:next");

/I Message XPath repl acer
from "cache:// Test Cachel")
.filter(header(CacheConstants. CACHE KEY). i sEqual To(" XM._FRAGVENT"))
. process(new CacheBasedXPat hRepl acer (
"cache: // Test Cachel", "book1", "/ books/ bookl"))
. process (new CacheBasedXPat hRepl acer (
"cache: // Test Cachel", "book2", "/ books/ book2"))
.to("direct:next");

3.4.3.8. Example: Getting an entry from the Cache

from("direct:start")
/'l Prepare headers
. set Header (CacheConst ant s. CACHE_OPERATI ON, const ant (
CacheConst ant s. CACHE_OPERATI ON_GET))

. set Header (CacheConst ant s. CACHE_KEY, constant ("Ral ph_Wal do_Enerson")).

.to("cache:// Test Cachel").

/1 Check if entry was not found

. choi ce() . when(header (

CacheConst ant s. CACHE_ELEMENT _WAS FOUND).isNull()).
/1 1f not found, get the payload and put it to cache
.to("cxf: bean: soneHeavywei ght Operati on")
. set Header (CacheConst ant s. CACHE_OPERATI ON, const ant (

Talend Mediation Developer Guide 109

Management of EHCache

CacheConst ant s. CACHE_OPERATI ON_ADD))
. set Header (CacheConst ant s. CACHE_KEY,
const ant (" Ral ph_Wal do_Enerson"))
.to("cache:// Test Cachel")
.end()
.to("direct: next Phase");

3.4.3.9. Example: Checking for an entry in the Cache

Note: The CHECK command tests existence of an entry in the cache but doesn't place a message in the body.

from("direct:start")
/'l Prepare headers
. set Header (CacheConst ant s. CACHE OPERATI ON,
const ant (CacheConst ant s. CACHE OPERATI ON_CHECK))
. set Header (CacheConst ant s. CACHE_KEY, constant (" Ral ph_Wal do_Enerson")).
.to("cache:// Test Cachel").
/1 Check if entry was not found
. choi ce().when(header (CacheConst ant s. CACHE_ELEMENT_WAS FOUND).isNull()).
/1 1f not found, get the payload and put it to cache
.to("cxf:bean: soneHeavywei ght Operati on").
. set Header (CacheConst ant s. CACHE OPERATI ON,
const ant (CacheConst ant s. CACHE_OPERATI ON_ADD))
. set Header (CacheConst ant s. CACHE_KEY, constant ("Ral ph_Wal do_Enerson"))
.to("cache:// Test Cachel")
.end();

3.4.4. Management of EHCache

EHCache has its own statistics and management from JMX.

Here's a snippet on how to expose them viaJM X in a Spring application context:

<bean i d="ehCacheManagenent Servi ce"
cl ass="net. sf. ehcache. managenent . Managenent Ser vi ce"
init-nethod="init" lazy-init="fal se">
<constructor-arg>
<bean cl ass="net. sf.ehcache. CacheManager"
factory-net hod="get | nst ance"/ >
</ constructor-arg>
<constructor-arg>
<bean cl ass="org. springframework. j nx. support.JnxUtils"
factory-met hod="1 ocat eMBeanServer"/ >
</ constructor-arg>
<constructor-arg val ue="true"/>
<constructor-arg val ue="true"/>
<constructor-arg val ue="true"/>
<constructor-arg val ue="true"/>
</ bean>

Of course the same thing can be donein straight Java:

110 Talend Mediation Developer Guide

http://ehcache.org/
http://camel.apache.org/camel-jmx.html

Class

Managemnent Ser vi ce. r egi st er MBeans(
CacheManager . get | nstance(), nbeanServer, true, true, true, true);

You can get cache hits, misses, in-memory hits, disk hits, size stats this way. You can also change
CacheConfiguration parameters on the fly.

3.5. Class

3.5.1. Class Component

The class: component binds beans to Camel message exchanges. It works in the same way as the Section 3.3,
“Bean” component but instead of looking up beans from a Registry it creates the bean based on the class name.

3.5.1.1. URI format

cl ass: cl assName[?opt i ons]

where className is the fully qualified class name to create and use as bean.

3.5.1.2. Options

Name Type Default Description

met hod String nul | The method name that bean will beinvoked. If not
provided, Camel will try to pick the method itself.
In case of ambiguity an exception is thrown. See
Bean Binding for more details.

mul ti - bool ean fal se How to treat the parameters which are passed from
Par anet er - the message body; if it istrue, the In message
Array body should be an array of parameters.

Y ou can append query optionsto the URI in the following format, ?opt i on=val ue&opti on=val ueé&. ..

3.5.1.3. Using

Y ou simply usethe class component just asthe Section 3.3, “Bean” component but by specifying thefully qualified
classname instead. For example to use the My FooBean you have to do as follows:

from"direct:start")
.to("class: org. apache. canel . conponent . bean. MyFooBean")
.to("nmock:result");

Y ou can also specify which method to invoke on the My FooBean, for examplehel | o :

from("direct:start")
.to("cl ass: org. apache. canel . conponent . bean. MyFooBean?net hod=hel | 0")
.to("nock:result");

Talend Mediation Developer Guide 111

http://camel.apache.org/registry.html
http://camel.apache.org/bean-binding.html

Setting properties on the created instance

3.5.2. Setting properties on the created instance

In the endpoint uri you can specify propertiesto set on the created instance, for example, if it hasaset Pr ef i x
method:

from("direct:start")
.to("class: org. apache. canel . conponent . bean. MyPr ef i xBean?pr ef i x=Bye")
.to("nock:result");

Y ou can also use the # syntax to refer to propertiesto be looked up in the Registry .

from"direct:start")
.to("class: org. apache. canel . conponent . bean. MyPr ef i xBean?cool =#f 00")
.to("nock:result");

Thiswill lookup abean from the Registry withtheidf oo andinvoketheset Cool method onthe created instance
of the MyPr ef i xBean class.

i Seemore

See more details at the Section 3.3, “Bean” component as the class component works in much the same
way.

3.6. Context

Available as of Camél 2.7

The context component allows you to create new Camel Components from a CamelContext with a number of
routes which is then treated as a black box, alowing you to refer to the local endpoints within the component
from other Camel Contexts.

It is similar to the Routebox component in idea, though the Context component tries to be really simple for end
users; just a simple convention over configuration approach to refer to local endpoints inside the Camel Context
Component.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>

<gr oupl d>or g. apache. canel </ gr oupl d>

<artifactld>canel -context</artifactld>

<ver si on>x. X. x</ ver si on>

<l-- use the sane version as your Canmel core version -->
</ dependency>

3.6.1. URI format

cont ext : camel Cont ext 1 d: | ocal Endpoi nt Nane[?opti ons]

Or you can omit the "context:" prefix.

canel Cont ext | d: | ocal Endpoi nt Nane[?opt i ons]

» camelContextld isthe ID you used to register the Camel Context into the Registry.

* localEndpointName can be a valid Came URI evaluated within the black box CamelContext. Or it can
be a logical name which is mapped to any local endpoints. For example if you locally have endpoints like

112 Talend Mediation Developer Guide

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/routebox.html
http://camel.apache.org/registry.html

Example

direct:invoices and seda: purchaseOrders inside a Camel Context of id supplyChain, then you can just use
the URIs supplyChain:invoices or supplyChain:purchaseOrder s to omit the physical endpoint kind and use
purelogica URIs.

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ueé&. . .

3.6.2. Example

In this example we'll create a black box context, then we'll use it from another Camel Context.

3.6.2.1. Defining the context component

First you need to create a CamelContext, add some routes in it, start it and then register the Camel Context into
the Registry (JNDI, Spring, Guice or OSGi €tc).

This can be donein the usual Camel way from thistest case (see the createRegistry() method); this example shows
Javaand JNDI being used:

/1 let's create our black box as a Canel context and a set of routes
Def aul t Canel Cont ext bl ackBox = new Def aul t Canel Cont ext (regi stry);
bl ackBox. set Nane(" bl ackBox") ;
bl ackBox. addRout es(new Rout eBui | der () {
@verride
public void configure() throws Exception {
/1 receive purchase orders, let's process it in sone way then send
/1 an invoice to our invoice endpoint
from("direct: purchaseOrder")
. set Header ("recei ved")
.constant ("true")
.to("direct:invoice");
}
1)
bl ackBox. start ();

regi stry. bi nd("accounts", bl ackBox);

Notice in the above route we are using pure local endpoints (direct and seda). Also note we expose this
Camel Context using the accounts ID. We can do the same thing in Spring via:

<canel Cont ext id="accounts" xm ns="http://camnel.apache. org/schena/spring">
<r out e>
<fromuri="direct:purchaseOder"/>

<to uri="direct:invoice"/>

</route>
</ canel Cont ext >

3.6.2.2. Using the context component

Then in another CamelContext we can then refer to this "accounts black box" by just sending to
accounts: purchaseOrder and consuming from accounts.invoice .

Talend Mediation Developer Guide 113

http://camel.apache.org/registry.html
http://svn.apache.org/viewvc/camel/trunk/components/camel-context/src/test/java/org/apache/camel/component/context/JavaDslBlackBoxTest.java?revision=1069442&view=markup

Crypto (Digital Signatures)

If you prefer to be more verbose and explicit you could use context:accounts:purchaseOrder or even
context:accounts:direct://purchaseOrder if you prefer. But using logical endpoint URIsis preferred asit hides
the implementation detail and provides asimple logical naming scheme.

For example, if we wish to subsequently expose this accounts black box on some middleware (outside of the black
box) we can do things like:

<canel Cont ext xm ns="http://canel.apache. org/ schenma/ spring">
<r out e>
<l-- consunme froman ActiveMQ into the black box -->
<fromuri ="activenq: Account s. PurchaseCOrders"/>
<to uri="accounts: purchaseOrders"/>
</route>
<r out e>
<l-- let's send invoices fromthe black box -->
<l-- to a different ActiveM) Queue -->
<fromuri="accounts:invoice"/>
<to uri="activeny: UK. Accounts. | nvoi ces"/ >
</route>
</ canel Cont ext >

3.6.2.3. Naming endpoints

A context component instance can have many public input and output endpoints that can be accessed from outside
its CamelContext. When there are many it is recommended that you use logical names for them to hide the
middleware as shown above.

However when there is only one input, output or error/dead letter endpoint in a component we recommend using
the common posix shell namesin, out and err

3.7. Crypto (Digital Signatures)

Using Camel cryptographic endpoints and Java's Cryptographic extension it is easy to create Digital Signatures
for Exchanges. Camel provides a pair of flexible endpoints which get used in concert to create a signature for an
exchange in one part of the exchange's workflow and then verify the signaturein alater part of the workflow.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>

<gr oupl d>or g. apache. canel </ gr oupl d>

<artifactld>canel -crypto</artifactld>

<ver si on>x. x. X</ ver si on>

<l-- use the sane version as your Canel core version -->
</ dependency>

3.7.1. Introduction

Digital signatures make use of Asymmetric Cryptographic techniques to sign messages. From a (very) high level,
the algorithms use pairs of complimentary keys with the special property that data encrypted with one key can
only be decrypted with the other. One, the private key, is closely guarded and used to 'sign' the message while the
other, public key, is shared around to anyone interested in verifying the signed messages. Messages are signed
by using the private key to encrypting a digest of the message. This encrypted digest is transmitted along with

114 Talend Mediation Developer Guide

URI Format

the message. On the other side the verifier recal cul ates the message digest and uses the public key to decrypt the
the digest in the signature. If both digests match the verifier knows only the holder of the private key could have
created the signature.

Camel uses the Signature service from the Java Cryptographic Extension to do all the heavy cryptographic lifting
required to create exchange signatures.

3.7.2. URI Format

As mentioned Camel provides a pair of crypto endpoints to create and verify signatures:

crypto: si gn: nane[?opti ons]
crypto: verify: name[?opti ons]

* crypto:sign creates the signature and storesit in the Header keyed by the constant Exchange.SIGNATURE, i.e.
"CamelDigital Signature”.

* crypto:sign creates the signature and storesit in the Header keyed by the constant Exchange.SIGNATURE, i.e.
"CamelDigital Signature”.

In order to correctly function, the sign and verify process needs a pair of keys to be shared, signing requiring a
PrivateK ey and verifying a PublicKey (or a Certificate containing one). Using the JCE it isvery simpleto generate
these key pairs but it is usually most secure to use a KeyStore to house and share your keys. The DSL is very
flexible about how keys are supplied and provides a number of mechanisms.

The most basic way to way to sign an verify an exchange is with a KeyPair as follows:

from"direct: keypair").to("crypto:sign://basic?privateKey=#nyPrivat eKey",
"crypto:verify://basi c?publicKey=#nyPublicKey", "nock:result");

The same can be achieved with the Spring XML Extensions using referencesto keys:

<r out e>
<fromuri="direct: keypair"/>
<to uri="crypto:sign://basic?privat eKey=#nyPri vat eKey"/ >
<to uri="crypto:verify://basic?publicKey=#myPublicKey"/>
<to uri="nock:result"/>

</route>

See the Camel Website for the most up-to-date examples of more advanced usages of this component.

3.7.3. Options

Name Type Default Description

al gorithm String DSA The name of the JCE Signature algorithm that will
be used.

alias String null An alias name that will be used to select akey from
the keystore.

bufferSi ze Integer 2048 The size of the buffer used in the signature process.

certificate Certificate null A Certificate used to verify the signature of the
exchange's payload. Either this or a Public Key is
required.

Talend Mediation Developer Guide 115

http://camel.apache.org/crypto-digital-signatures.html#Crypto%28DigitalSignatures%29-Using

CXF

Name Type Default Description

keystore KeyStore null A reference to a JCE Keystore that stores keys and
certificates used to sign and verify.

provi der String null The name of the JCE Security Provider that should
be used.

pri vat eKey PrivateKey null The private key used to sign the exchange's payload.

publ i cKey PublicKey null The public key used to verify the signature of the
exchange's payload.

secur eRandom secureRandom | null A reference to a SecureRandom object that will be
used to initialize the Signature service.

password char(] null The password for the keystore.

cl ear Header s String true Remove camé crypto headers from Message after a
verify operation (value can be "true"/"false").

3.8. CXF

When using CXF as a consumer, the Section 3.9, “ CXF Bean Component” allows you to factor out how

¥ message payloads are received from their processing as a RESTful or SOAP web service. This has the
potential of using amultitude of transportsto consume web services. The bean component's configuration
isalso simpler and provides the fastest method to implement web services using Camel and CXF.

The cxf: component provides integration with Apache CXF for connecting to JAX-WS services hosted in CXF.
Maven users will need to add the following dependency to their pom xm for this component:

<dependency>

<gr oupl d>or g. apache. canel </ gr oupl d>

<artifactld>canel -cxf</artifactld>

<ver si on>x. x. x</ ver si on>

<l-- use the sane version as your Canmel core version -->
</ dependency>

i CXF dependencies

If you want to learn about CXF dependencies you can checkout the WHI CH JARS text file.

3.8.1. URI format

There are two scenarios:
cxf: bean: cxf Endpoi nt [?opt i ons]

where cxfEndpoint represents abean 1D that references a bean in the Spring bean registry. With this URI format,
most of the endpoint details are specified in the bean definition.

cxf:// someAddr ess[?opti ons]

where someAddr ess specifies the CXF endpoint's address. With this URI format, most of the endpoint details
are specified using options.

For either style above, you can append options to the URI asfollows:

116 Talend Mediation Developer Guide

http://cxf.apache.org
http://svn.apache.org/repos/asf/cxf/trunk/distribution/src/main/release/lib/WHICH_JARS

Options

cxf: bean: cxf Endpoi nt ?wsdl URL=wsdl / hel | o_wor | d. wsdl &Jat aFor mat =PAYLCQAD

3.8.2. Options

Name

Required

Description

wsdl URL

No

Thelocation of the WSDL.. It is obtained from endpoint address by
default.

Example: file://local/wsdl/hello.wsdl or wsdl/
hel | 0. wsdl

servi ced ass

Yes

The name of the SEI (Service Endpoint Interface) class. This class
can have, but does not require, JSR181 annotations.

Since 2.0, this option is only required by POJO mode. If
the wsdlURL option is provided, serviceClass is not required
for PAYLOAD and MESSAGE mode. When wsdlURL option
is used without serviceClass, the serviceName and portName
(endpointName for Spring configuration) options MUST be
provided. It is possible to use # notation to reference a
servi ceC ass object instance from the registry. For example,
servi ceCl ass=#beanNane.

Since 2.8, it is possible to omit both wsdlURL and serviceClass
options for PAYLOAD and MESSAGE mode. When they are
omitted, arbitrary XML elements can be put in CxfPayload's body
in PAYLOAD mode to facilitate CXF Dispatch Mode.

Please be advised that the referenced object cannot be
a Proxy (Spring AOP Proxy is OK) as it relies on
hj ect . get d ass() . get Name() method for non Spring
AOP Proxy.

Example: or g. apache. canel . Hel | o

servi ced assl nst ance

Yes

Useeither servi ceCl ass or servi ced assl nst ance.

Deprecated in 2x. In 1.6x serviceC asslnstance
works like servi ceCd ass=#beanNane, which looks up a
servi ceQbj ect instance from the registry.

Example: servi ceC assl nst ance= beanNane

servi ceNane

No*

The service name this service is implementing, it maps to the
wsdl : servi ce@arne

*Required for camel-cxf consumer since camel-2.2.0 or if more
than one serviceName is present in WSDL .

Example: { http:-//org.apache.camel} ServiceName

port Nanme

No*

The port name this service is implementing, it maps to the
wsdl : port @ane

*Required for camel-cxf consumer since camel-2.2.0 or if more
than one portName is present under serviceName. Example:
{ http:-//org.apache.camel} PortName

dat aFor mat

No

The data type messages supported by the CXF endpoint.

Talend Mediation Developer Guide 117

Options

Name

Required

Description

Default: POJO
Example: PQJ O,PAYLOAD,VESSAGE

rel ayHeader s No Please see the Description of r el ayHeader s option section for
this option in 2.0. Should a CXF endpoint relay headers along the
route. Currently only available when dat aFor mat =PQJO
Default: true
Example:it r ue f al se

wr apped No Which kind of operation that CXF endpoint producer will invoke.
Default:f al se
Exampleit rue,fal se

wr appedStyl e No New in 2.5.0 The WSDL style that describes how parameters are
represented in the SOAP body. If the valueisfalse, CXF will chose
the document-literal unwrapped style. If the valueistrue, CXF will
chose the document-literal wrapped style.
Default: Nul |
Example:it r ue,f al se

set Def aul t Bus No This will set the default bus when CXF endpoint create a bus by
itself.
Default: f al se
Exampleit rue,fal se

bus No New in 2.0. A default bus created by CXF Bus Factory. Use #
notation to reference a bus object from the registry. The referenced
object must be an instance of or g. apache. cxf . Bus .
Example: bus=#busNamne

cxf Bi ndi ng No New in 2.0, use # notation to reference a CXF binding object
from the registry. The referenced object must be an instance of
or g. apache. canel . conponent . cxf . Cxf Bi ndi ng (use
an instance of org.apache. canel.conponent. cxf.
Def aul t Cxf Bi ndi ng).
Example: cxf Bi ndi ng=#bi ndi ngName

headerFilterStrategy |No New in 2.0, use# notation to reference aheader filter strategy object

from the registry. The referenced object must be an instance of
org. apache. canel . spi . Header Fi |l ter Str at egy (use
an instance of org.apache. canel.conponent. cxf.

Cxf Header Fi |l t er- Str at egy)..

Example: header Fi | t er St r at egy=#st r at egyNane

118

Talend Mediation Developer Guide

Options

Name

Required

Description

| oggi ngFeat ur eEnabl ed

No

New in 2.3, this option enables CXF Logging Feature which writes
inbound and outbound SOAP messages to log.

Default:false
Example:l oggi ngFeat ur eEnabl ed=t r ue

def aul t Oper at i onName

No

New in 2.4, this option will set the default operationName that will
be used by the CxfProducer which invokes the remote service.

Default: null
Example:def aul t Oper at i onName=gr eet Me

def aul t Oper at i onNane-
Space

No

New in 2.4, this option will set the default operationNamespace that
will be used by the CxfProducer which invokes the remote service.

Default: null
Example:def aul t Qper ati onNanmespace=
http://apache.org/ hell o world soap_http

synchr onous

No

New in 2.5, this option will let cxf endpoint decide to use sync or
async API to do the underlying work. The default value is false
which means camel-cxf endpoint will try to use async APl by
default.

Default: false
Example: synchronous=true

publ i shedEndpoi nt Ur |

No

New in 2.5, this option can override the endpointUrl that published
from the WSDL which can be accessed with service address url
plus 2wsdl.

Default: null
Example: publshedEndpointUrl=http://example.com/service

The servi ceNanme and por t Nanme are QNames, so if you provide them, be sure to prefix them with their
{ namespace} as shown in the examples above. NOTE: theser vi ced ass for aCXF producer (that is, thet o
endpoint) should be a Javainterface.

3.8.2.1. The descriptions of the dataformats

DataFor mat Description

PQIO POJOs (Plain old Java objects) are the Java parameters to the method being invoked
on the target server. Both Protocol and Logical JAX-WS handlers are supported.

PAYLQAD PAYLQAD is the message payload (the contents of the soap: body) after message
configuration in the CXF endpoint is applied. Only Protocol JAX-WS handler is
supported. Logical JAX-WS handler is not supported.

Talend Mediation Developer Guide 119

http://en.wikipedia.org/wiki/QName

Options

DataFor mat Description

MVESSAGE MESSAGE is the raw message that is received from the transport layer. JAX-WS
handler is not supported.

You can determine the data format mode of an exchange by retrieving the
exchange property, Canel CXFDat aFormat. The exchange key constant is defined in
or g. apache. camel . component . cxf . Cxf Const ant s. DATA_FORMAT_PROPERTY .

3.8.2.2. How to enable CXF's LoggingOutinterceptor in MESSAGE
mode

CXF'sLoggi ngQut | nt er cept or outputs outbound message that goes on the wire to logging system (Java
Util Logging). Since the Loggi ngQut | nt er cept or isin PRE_STREAMphase (but PRE_STREAMphaseis
removed in MESSAGE mode), you have to configure Loggi ngQut | nt er cept or to berun during the WRI TE
phase. The following is an example:

<bean id="I oggi ngQut I nterceptor"
cl ass="org. apache. cxf.interceptor.Loggi ngQutlnterceptor">

<l-- it really should have been user-prestream -->
<!-- but CXF does have such phase! -->
<constructor-arg value="wite"/>

</ bean>

<cxf: cxf Endpoi nt id="servi ceEndpoint"
address="http://1 ocal host: 9002/ hel | owor| d"
servi ceC ass="org. apache. canel . component . cxf. Hel | oServi ce">
<cxf:outlnterceptors>
<ref bean="|oggi ngQutl nterceptor"/>
</ cxf:outlnterceptors>
<cxf:properties>
<entry key="dataFormat" val ue="MESSAGE"/ >
</ cxf:properties>
</ cxf : cxf Endpoi nt >

3.8.2.3. Description of relayHeaders option

There are in-band and out-of-band on-the-wire headers from the perspective of a JAXWS WSDL -first devel oper.

Thein-band headers are headers that are explicitly defined as part of the WSDL binding contract for an endpoint
such as SOAP headers.

The out-of-band headers are headers that are serialized over the wire, but are not explicitly part of the WSDL
binding contract.

Headers relaying/filtering is bi-directional.
When aroute has a CXF endpoint and the developer needs to have on-the-wire headers, such as SOAP headers,

be relayed along the route to be consumed say by another JAXWS endpoint, then r el ayHeader s should be
settot r ue, which isthe default value.

120 Talend Mediation Developer Guide

Options

Ther el ayHeader s=t r ue express an intent to relay the headers. The decision on whether a given header is
relayed is del egated to apluggable instance that implementsthe MessageHeader sRel ay interface. A concrete
implementation of MessageHeader sRel ay will be consulted to decide if a header needs to be relayed or not.
Thereisalready an implementation of SoapMessageHeader sRel ay which bindsitself to well-known SOAP
name spaces. Currently only out-of-band headers are filtered, and in-band headers will aways be relayed when
r el ayHeader s=t r ue . If there is a header on the wire, whose name space is unknown to the runtime, then a
fall back Def aul t MessageHeader sRel ay will be used, which simply allows all headers to be relayed.

Ther el ayHeader s=f al se setting asserts that al headers in-band and out-of-band will be dropped.

» PQJO and PAYLQAD modes are supported. In PQJO mode, only out-of-band message headers are available
for filtering as the in-band headers have been processed and removed from header list by CXF. The in-band
headers are incorporated into the MessageCont ent Li st in POJO mode. If filtering of in-band headersis
required, please use PAYLOAD mode or plug in a (pretty straightforward) CXF interceptor/JAXWS Handler
to the CXF endpoint.

» The Message Header Relay mechanism has been merged into Cxf Header Fil ter Strategy . The
rel ayHeader s option, its semantics, and default value remain the same, but it is a property of
Cxf Header Fi | t er St r at egy . Hereisan example of configuring it:

<bean i d="dropAl | MessageHeader sStrat egy"
cl ass="org. apache. canel . conponent . cxf. Cxf Header Fi | t er St r at egy" >
<l-- Set relayHeaders to false to drop all SOAP headers -->
<property name="rel ayHeaders" val ue="fal se"/>

</ bean>

Then, your endpoint can reference the Cxf Header Fi | t er St r at egy .

<rout e>

<from uri ="cxf: bean: rout er NoRel ayEndpoi nt ?header Fi |l t er St r at egy
=#dr opAl | MessageHeader sStrat egy"/ >

<to uri="cxf:bean: servi ceNoRel ayEndpoi nt ?header Fi | t er St r at egy
=#dr opAl | MessageHeader sStrat egy"/ >
</route>

» The MessageHeadersRel ay interfface has changed dightly and has been renamed to
MessageHeader Fi |l t er . It is a property of Cxf Header Fi | t er St r at egy . Here is an example of
configuring user defined Message Header Filters:

<bean id="cust onvessageFilter Strategy"
cl ass="org. apache. canel . conponent . cxf. Cxf Header Fi | t er St r at egy" >
<property nane="nessageHeaderFilters">

<list>
<!-- SoapMessageHeaderFilter is the built in filter. -->
<l-- It can be renoved by omtting it. -->

<bean cl ass=
"org. apache. canel . conponent . cxf. SoapMessageHeaderFilter"/ >

<l-- Add customfilter here -->
<bean cl ass=
"org. apache. canel . conponent . cxf. soap. Cust onHeaderFilter"/ >

</[list>
</ property>
</ bean>

Talend Mediation Developer Guide 121

Configure the CXF endpoints with Spring

e Other than relayHeaders, there ae new properties that can be configured in
CxfHeaderFilterStrategy.

Name Description type Required? Default value

rel ayHeaders |All message headers will be/bool ean No true
processed by Message Header Filters

rel ayAll - All message headers will be bool ean No fal se

MessageHeader s|propagated (without processing by
Message Header Filters)

allowFilter- If two filters overlap in activation bool ean No fal se
NanespaceC ash|namespace, the property control how
it should be handled. If the value is
true, last one wins. If the value is
f al se, it will throw an exception

3.8.3. Configure the CXF endpoints with Spring

Y ou can configure the CXF endpoint with the Spring configuration file shown below, and you can also embed
the endpoint into the canel Cont ext tags. When you are invoking the service endpoint, you can set the
oper ati onNare and oper at i onNanespace headersto explicitly state which operation you are calling.

<beans xm ns="http://ww. spri ngframework. or g/ schena/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schena-i nst ance"
xm ns: cxf="http://camel .apache. org/ schema/ cxf"
xsi : schemalLocat i on="
http://ww. springframework. or g/ schena/ beans
http://ww. springfranework. org/ scherma/ beans/ spri ng- beans- 2. 0. xsd
http://canel . apache. or g/ schena/ cxf
http://canel . apache. or g/ schenma/ cxf/ camel - cxf . xsd
http://camel . apache. or g/ schena/ spri ng
http://canel . apache. or g/ schena/ spri ng/ canel - spri ng. xsd ">

<cxf: cxf Endpoi nt i d="rout er Endpoi nt"
address="http:/ /1 ocal host: 9003/ Canel Cont ext/ Rout er Port "
servi ceC ass="org. apache. hell o_worl d_soap_http. Geeterlnml"/>

<cxf: cxf Endpoi nt id="servi ceEndpoi nt"
address="http://1 ocal host: 9000/ SoapCont ext / SoapPort"
wsdl URL="t estutil s/hello_world.wsdl"
servi ceC ass="org. apache. hel | o_worl d_soap_http. Geeter"
endpoi nt Nanme="s: SoapPort "
servi ceNane="s: SOAPSer vi ce"
xm ns: s="http://apache.org/ hello_world_soap_http" />

<canel Cont ext id="canel"
xm ns="http://activenyg. apache. or g/ canel / schema/ spri ng" >
<r out e>
<fromuri ="cxf: bean: rout er Endpoint" />
<to uri="cxf:bean: servi ceEndpoint" />
</route>
</ camel Cont ext >

122 Talend Mediation Developer Guide

Configure the CXF endpoints with Spring

</ beans>

Be sure to include the JAX-WS schenalLocati on attribute specified on the root beans element. This
allows CXF to validate the file and is required. Also note the namespace declarations at the end of the
<cxf: cxf Endpoi nt / > tag--these are required because the combined { nanespace} | ocal Nane syntax is
presently not supported for this tag's attribute values.

Thecxf : cxf Endpoi nt element supports many additional attributes:

Name

Value

Por t Nane

The endpoint name this service is implementing, it maps to the
wsdl : port @ane . In the format of ns: PORT_NAME where ns is a
namespace prefix valid at this scope.

servi ceNane

The service name this service is implementing, it maps to the
wsdl : servi ce@ane . In the format of ns: SERVI CE_NANME where
ns isanamespace prefix valid at this scope.

wsdl URL The location of the WSDL. Can be on the classpath, file system, or be
hosted remotely.

bi ndi ngl d Thebi ndi ngl d for the service model to use.

addr ess The service publish address.

bus The bus name that will be used in the JAX-WS endpoint.

servi ced ass

The class name of the SEI (Service Endpoint Interface) class which could
have JSR181 annotation or not.

It also supports many child elements:

Name

Value

cxf:inlnterceptors

The incoming interceptors for this endpoint. A list of <bean> or <r ef >.

cxf:inFaul tlnterceptors

The incoming fault interceptors for this endpoint. A list of <bean> or
<ref>.

cxf:outlnterceptors

The outgoing interceptors for this endpoint. A list of <bean> or <r ef > .

cxf:outFaultlnterceptors

The outgoing fault interceptors for this endpoint. A list of <bean> or
<ref>.

cxf: properties

A properties map which should be supplied to the JAX-WS endpoint. See
below.

cxf:handl ers

A JAX-WShandler list which should be supplied to the JAX-WS endpoint.
See below.

cxf: dat aBi ndi ng

Y ou can specify thewhich Dat aBi ndi ng will beuseintheendpoint. This
can be supplied using the Spring<bean cl ass=" MyDat aBi ndi ng"/
> syntax.

cxf: bi ndi ng

Y ou can specify the Bi ndi ngFact or y for thisendpoint to use. Thiscan
besupplied usingthe Spring<bean cl ass="MyBi ndi ngFact ory"/
> syntax.

cxf:features

The features that hold the interceptors for this endpoint. A list of
{{<bean>}}sor {{<ref>}}s

cxf:schemaLocati ons

The schemalocationsfor endpoint to use. A list of { { <schemal ocation>}} s

cxf:serviceFactory

The service factory for this endpoint to use. This can be supplied using the
Spring <bean cl ass="MySer vi ceFact ory"/ > syntax

Y ou can find more advanced examples which show how to provide interceptors, properties and handlers here.

Talend Mediation Developer Guide 123

http://cwiki.apache.org/CXF20DOC/jax-ws-configuration.html

How to make the camel-cxf component use log4j instead of java.util.logging

NOTE Y ou can use cxf:properties to set the camel-cxf endpoint's dataFormat and setDefaultBus properties from
Spring configuration file.

<cxf:cxf Endpoi nt id="testEndpoint" address="http://l|ocal host: 9000/ router"
servi ceC ass="or g. apache. canel . conponent . cxf. Hel | oSer vi ce"
endpoi nt Name="s: Port Nane"
servi ceNane="s: Servi ceNanme"
xm ns: s="http://ww. exanpl e. conftest">
<cxf:properties>
<entry key="dataFormat" val ue="MESSAGE"/ >
<entry key="set Def aul t Bus" val ue="true"/>
</ cxf:properties>
</ cxf: cxf Endpoi nt >

3.8.4. How to make the camel-cxf component use log4j
instead of java.util.logging

CXF'sdefault loggerisj ava. uti | . 1 oggi ng . If you want to change it to log4j, proceed as follows. Create a
file, intheclasspath, named META- | NF/ cxf / or g. apache. cxf. | ogger . Thisfileshould containthefully-
qualified name of the class, or g. apache. cxf. common. | oggi ng. Log4j Logger , with no comments, on
asingleline.

3.8.5. How to consume a message from a camel-cxf
endpoint in POJO data format

The canel - cxf endpoint consumer POJO data format is based on the cxf invoker, so the message header has
a property with the name of Cxf Const ant s. OPERATI ON_NANME and the message body is a list of the SEI
method parameters.

public class PersonProcessor inplenents Processor {

private static final transient Logger LOG =
Logger Fact ory. get Logger (Per sonPr ocessor. cl ass) ;

@uppr essWar ni ngs("unchecked")
public void process(Exchange exchange) throws Exception {
LOG. i nfo("processi ng exchange in canel");

Bi ndi ngOper ati onl nfo boi = (Bi ndi ngOper ati onl nf 0) exchange. get Property(
Bi ndi ngOperationlnfo.class.toString());
if (boi !'=null) {
LOG. i nfo("boi.isUnw apped” + boi.isUnw apped());
}

/1l Get the parameters list which element is the hol der.
MessageCont ent sLi st nmsgList = (
MessageCont ent sLi st) exchange. get | n() . get Body() ;

Hol der <String> personld = (Hol der<String>)nsgLi st. get (0);
Hol der <String> ssn = (Hol der<String>)nsgList.get(1);
Hol der <String> name = (Hol der<String>)nsgList.get(2);

124 Talend Mediation Developer Guide

http://cwiki.apache.org/CXF20DOC/invokers.html

How to prepare the message for the camel-cxf endpoint in POJO data format

if (personld.value == null || personld.value.length() == 0) {
LOG i nfo("person id 123, so throw ng exception");
/1 Try to throw out the soap fault nessage
org. apache. camel . wsdl _first.types. UhknownPer sonFaul t personFault =
new or g. apache. canel . wsdl _first.types. UnknownPer sonFaul t () ;
personFaul t. set Personl d("");
or g. apache. camel . wsdl _first.UnknownPersonFault fault =
new or g. apache. canel . wsdl _first. UnknownPer sonFaul t (
"CGet the null value of person name", personFault);
/1 Since Canel has its own exception handler framework, we can't
/1 throw the exception to trigger it. W set the fault nessage
/1 in the exchange for canel -cxf conmponent handling and return
exchange. get Qut () . set Faul t (true);
exchange. get Qut () . set Body(faul t);

return;
nane. val ue = "Bonj our";
ssn.value = "123";

LOG i nfo("setting Bonjour as the response”);

/1 Set the response nessage, first element is the return val ue of

/1 the operation, the others are the hol ders of nethod paraneters
exchange. get Qut () . set Body(new Qbj ect[] {null, personld, ssn, nane});

3.8.6. How to prepare the message for the camel-cxf
endpoint in POJO data format

Thecanel - cxf endpoint producer is based on the cxf client API. First you need to specify the operation name
in the message header, then add the method parametersto alist, and initialize the message with this parameter list.
The response message's body is a messageContentsList; you can get the result from that list.

Note: the message body is a MessageCont ent sLi st . If you want to get the object array from the message
body, you can get the body using message. get body(Obj ect[] . cl ass), asfollows:

Exchange sender Exchange = new Def aul t Exchange(cont ext, ExchangePattern.|nQut);
final List<String> params = new Arraylist<String>();

/1l Prepare the request nessage for the camel -cxf procedure

par ans. add(TEST_MESSAGE) ;

sender Exchange. get | n() . set Body(par ans) ;

sender Exchange. get | n() . set Header (Cxf Const ant s. OPERATI ON_NAME, ECHO OPERATI ON) ;

Exchange exchange = tenpl ate. send("direct: Endpoi nt A", sender Exchange);
or g. apache. canel . Message out = exchange. get Qut();

/1 The response nessage's body is a MessageContentsList whose first el ement
/1l is the return value of the operation. If there are sone hol der paraneters,
/1 the holder paraneter will be filled in the rest of List. The result wll
/1 be extracted fromthe MessageContentsList with the String class type
MessageCont ent sLi st result = (MessageCont entsLi st)out. getBody();

Talend Mediation Developer Guide 125

https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java

How to deal with the message for a camel-cxf endpoint in PAYLOAD data format

LOG i nfo("Received output text: " + result.get(0));
Map<Stri ng,

hj ect > responseCont ext =
CastUtils. cast ((Mp)out. get Header (O i ent . RESPONSE_CONTEXT)) ;

assert Not Nul | (responseCont ext);
assert Equal s("We shoul d get the response context here", "UTF-8",

responseCont ext . get (or g. apache. cxf . message. Message. ENCODI NG)) ;

assert Equal s("Reply body on Canel is wong", "echo " +

TEST_MESSACGE, result.get(0));

3.8.7. How to deal with the message for a camel-cxf
endpoint in PAYLOAD data format

PAYLOAD means that you process the payload message from the SOAP envelope. You can use the
Header . HEADER LI ST as the key to set or get the SOAP headers and use the Li st <El enent > to set or
get SOAP body elements.

We use the common Camel Def aul t Messagel npl underlayer. Message. get Body() will return an
or g. apache. camel . conmponent . cxf. Cxf Payl oad object, which has getters for SOAP message
headers and Body elements. This change enables decoupling the native CXF message from the Camel message.

prot ect ed Rout eBuil der createRouteBuilder() {
return new Rout eBuilder() {

public void configure() {
fronm(SI MPLE_ENDPO NT_URI + " &dat aFor mat =PAYLOAD")

.to("log:info").process(new Processor() {

@uppr essWar ni ngs("unchecked")
public void process(final Exchange exchange) throws Exception {

Cxf Payl oad<SoapHeader > r equest Payl oad =
exchange. get I n() . get Body(Cxf Payl oad. cl ass);

Li st <El ement > i nEl enents = request Payl oad. get Body() ;
Li st <El ement > out El enents = new Arrayli st<El enent >();
/1 You can use a custonmer toStringConverter to turn a
/1 CxfPayLoad nmessage into String as you want
String request = exchange. getln().getBody(String.class);
Xm Converter converter = new Xnl Converter();
String docunment String = ECHO RESPONSE;
if (inElements. get(0).getLocal Nane(). equal s("echoBool ean")) {

docunent String = ECHO BOOLEAN RESPONSE;

assert Equal s("Get a wrong request",

ECHO BOOLEAN REQUEST, request);

} else {

assert Equal s("Get a wrong request", ECHO REQUEST, request);
}

Docurent out Docunment = converter.toDOVDocunent (docurment Stri ng);
out El ement s. add(out Docunent . get Docunent El enent ()) ;
/1l set the payl oad header with null
Cxf Payl oad<SoapHeader > r esponsePayl oad =

new Cxf Payl oad<SoapHeader >(nul |, outEl enents);
exchange. get Qut () . set Body(r esponsePayl oad) ;

Talend Mediation Developer Guide

How to get and set SOAP headers in POJO mode

3.8.8. How to get and set SOAP headers in POJO mode

PQJ O means that the dataformat is a"list of Java objects’ when the Camel-cxf endpoint produces or consumes
Camd exchanges. Even though Camel expose message body as POJOs in this mode, Camel-cxf still provides
access to read and write SOAP headers. However, since CXF interceptors remove in-band SOAP headers from
Header list after they have been processed, only out-of-band SOAP headers are available to Camel-cxf in POJO
mode.

The following example illustrate how to get/set SOAP headers. Suppose we have a route that forwards from one
Camel-cxf endpoint to another. That is, SOAP Client -> Camel -> CXF service. We can attach two processors
to obtain/insert SOAP headers at (1) before request goes out to the CXF service and (2) before response comes
back to the SOAP Client. Processor (1) and (2) in this example are InsertRequestOutHeaderProcessor and
I nsertResponseOutHeaderProcessor. Our route looks like this:

<rout e>
<fromuri ="cxf: bean: rout er Rel ayEndpoi nt Wt hl nsertion"/>
<process ref="Insert Request Qut Header Processor" />
<to uri="cxf: bean: servi ceRel ayEndpoi nt Wt hl nsertion"/>
<process ref="Insert ResponseQut Header Processor" />
</route>

In 2x SOAP headers are propagated to and from Camel Message headers. The Camel
message header name is "org.apache.cxf.headers.Header.list" which is a constant defined in CXF
(org.apache.cxf.headers.Header. HEADER_LIST). The header value is a List of CXF SoapHeader objects
(org.apache.cxf.binding.soap.SoapHeader). The following snippet is the InsertResponseOutHeaderProcessor
(that inserts a new SOAP header in the response message). The way to access SOAP headers in both
InsertResponseOutHeaderProcessor and InsertRequestOutHeaderProcessor is the same. The only difference
between the two processors is setting the direction of the inserted SOAP header.

public static class |InsertResponseQut Header Processor inplenents Processor {

@uppr essWar ni ngs("unchecked")
public void process(Exchange exchange) throws Exception {
Li st <SoapHeader > soapHeaders =
(Li st)exchange. getln(). get Header (Header . HEADER LI ST) ;

/1 Insert a new header
String xm =

"<?xm version=\"1.0\" encodi ng=\"utf-8\"?><out of bandHeader "
"xm ns=\"http://cxf.apache. or g/ out of band/ Header\" "
"hdrAttribute=\"testHdrAttribute\" "
"xm ns:soap=\"http://schenmas. xm soap. or g/ soap/ envel ope/\" "
"soap: must Under st and=\" 1\ " ><nane>"
"New_t est CobHeader </ nane><val ue>New_t est CobHeader Val ue"
"</ val ue></ out of bandHeader >";

+ 4+ + + + 4+

SoapHeader newHeader = new SoapHeader (soapHeaders. get (0). get Nanme(),
DOMU i |'s. readXm (new StringReader (xm)).
get Docunent El enent ()) ;

/1 nmake sure directionis OUT since it is a response nessage.
newHeader . setDirecti on(Directi on. DI RECTI ON_QUT) ;

/ I newHeader . set Must Under st and(f al se) ;

soapHeader s. add(newHeader) ;

Talend Mediation Developer Guide 127

How to get and set SOAP headersin POJO mode

}

In 1.x SOAP headers are not propagated to and from Camel Message headers. Users have to go deeper into CXF
APIsto access SOAP headers. Also, accessing the SOAP headersin arequest message is dlight different thanina
response message. The | nsertRequestOutHeaderProcessor and | nsertResponseOutHeaderProcessor are asfollows:

public static class InsertRequest Qut Header Processor inpl enents Processor ({
public void process(Exchange exchange) throws Exception {
Cxf Message nmessage = exchange. getln(). get Body(Cxf Message. cl ass);
Message cxf = nessage. get Message();
Li st <SoapHeader > soapHeaders = (List)cxf.get(Header. HEADER LI ST);

/1 Insert a new header
String xm =
"<?xm version=\"1.0\" encodi ng=\"utf-8\"?><out of bandHeader "
+ "xm ns=\"http://cxf.apache. or g/ out of band/ Header\" ™"
"hdrAttribute=\"testHdrAttribute\" "
"xm ns: soap=\"http://schemas. xm soap. or g/ soap/ envel ope/\
" soap: nust Under st and=\ "1\ " ><name>"
"New_t est CobHeader </ nane><val ue>New t est CobHeader Val ue"
"</ val ue></ out of bandHeader >";

+ + + + +

SoapHeader newHeader = new SoapHeader (soapHeaders. get (0). get Name(),
DOMUL i |s. readXm (new StringReader (xm)). get Docunent El enent ());

/1 make sure direction is INsince it is a request nmessage.
newHeader . setDirection(Direction. DI RECTI ON_I N);

/I newHeader . set Must Under st and(f al se) ;

soapHeader s. add(newHeader) ;

}

public static class InsertResponseQut Header Processor inplements Processor {
public void process(Exchange exchange) throws Exception {
Cxf Message nmessage = exchange. getl n(). get Body(Cxf Message. cl ass);
Map responseContext =
(Map) nessage. get Message() . get (C i ent . RESPONSE_CONTEXT) ;
Li st <SoapHeader > soapHeaders =
(Li st) responseCont ext . get (Header . HEADER LI ST) ;

/1 Insert a new header

String xm = "<?xml version=\"1.0\" encodi ng=\"utf-8\"?>"
+ "<out of bandHeader xm ns="

"\"http://cxf.apache. or g/ out of band/ Header\ "

"hdrAttribute=\"testHdrAttri bute\" "

"xm ns: soap=\"http://schemas. xm soap. or g/ soap/ envel ope/\"

"soap: must Under st and=\ "1\ " >"

"<name>New t est CobHeader </ nane><val ue>"

"New_t est CobHeader Val ue</ val ue></ out of bandHeader >";

+ 4+ + + + +

SoapHeader newHeader = new SoapHeader (soapHeaders. get (0). get Name(),
DOMU i |s. readXm (new StringReader (xm)). get Docunent El enent ()

)

/1 make sure direction is QUT since it is a response nessage.
newHeader . setDirecti on(Di recti on. DI RECTI ON_QUT) ;
/I newHeader . set Must Under st and(f al se) ;

128 Talend Mediation Developer Guide

How to get and set SOAP headersin PAYLOAD mode

soapHeader s. add(newHeader) ;

3.8.9. How to get and set SOAP headers in PAYLOAD
mode

We've aready shown how to access SOAP message (CxfPayload object) in PAY LOAD mode (See "How to deal
with the message for a camel-cxf endpoint in PAYLOAD dataformat").

In 2.x Once you obtain a CxfPayload object, you can invoke the CxfPayload.getHeaders() method that returns a
List of DOM Elements (SOAP headers).

from(get Rout er Endpoi nt URI ()). process(new Processor () {
@uppr essWar ni ngs("unchecked")
public void process(Exchange exchange) throws Exception {
Cxf Payl oad<SoapHeader > payl oad =
exchange. get I n() . get Body(Cxf Payl oad. cl ass);
Li st <El enent > el ements = payl oad. get Body() ;
assertNot Nul | ("We shoul d get the el enents here", elenents);
assert Equal s("Get the wong el ements size", 1, elenents.size());
assert Equal s("CGet the wong nanespace URI",
"http://canel.apache. org/ pi zzal/ t ypes",
el ement s. get (0) . get NanmespaceURI ());

Li st <SoapHeader > headers = payl oad. get Headers();
assert Not Nul | ("We shoul d get the headers here", headers);
assert Equal s("CGet the wong headers size", headers.size(), 1);
assert Equal s("CGet the wong nanespace URI",
((El enent) (headers. get (0).get Obj ect())).get NamespaceURI (),
"http://canel.apache. org/ pi zza/ types");

}
})
.to(get Servi ceEndpoi nt URI ());

3.8.10. SOAP headers are not available in MESSAGE
mode

SOAP headers are not available in MESSAGE mode as SOAP processing is skipped.

3.8.11. How to throw a SOAP Fault from Camel

If you areusing acanel - cxf endpoint to consume the SOAP request, you may need to throw the SOAP Fault
from the Camel context. Basically, you can usethet hr owfFaul t DSL to do that; it works for PQJ O, PAYLQAD
and MESSAGE data format. Y ou can define the soap fault like this

SOAP_FAULT = new SoapFaul t (EXCEPTI ON_MESSAGE, SoapFaul t. FAULT_CODE_CLI ENT) ;

Talend Mediation Developer Guide 129

How to propagate a camel-cxf endpoint's request and response context

El ement detail = SOAP_FAULT. get OrCreateDetail ();
Docurent doc = detail.get Omer Docunent () ;

Text tn = doc. createText Node(DETAI L_TEXT) ;

det ai | . appendChi I d(tn);

Then throw it asyou like:
from(rout er Endpoi nt URl) . set Faul t Body(const ant (SOCAP_FAULT)) ;

If your CXF endpoint is working in the MESSACGE data format, you could set the SOAP Fault message in the
message body and set the response code in the message header.

from(rout er Endpoi nt URI') . process(new Processor () {

public void process(Exchange exchange) throws Exception {
Message out = exchange. getQut ();
/1 Set the nessage body with the
out . set Body(this.getd ass().
get Resour ceAsSt r ean(" SoapFaul t Message. xm ")) ;
/1 Set the response code here
out . set Header (
or g. apache. cxf. nessage. Message. RESPONSE_CODE, new | nt eger (500));

1),

Same for using POJO data format. Y ou can set the SOAPFault on the out body and also indicate it is a fault by
calling Message.setFault(true):

from"direct:start"). onExcepti on(SoapFaul t.cl ass)
. maxi munRedel i veri es(0). handl ed(true)
. process(new Processor () {
public void process(Exchange exchange) throws Exception {
SoapFault fault = exchange
. get Property(Exchange. EXCEPTI ON_CAUGHT, SoapFault.cl ass);
exchange. get Qut (). set Faul t (true);
exchange. get Qut () . set Body(faul t);
}
}
).end().to(SERVI CE URI);

3.8.12. How to propagate a camel-cxf endpoint's
request and response context

cxf client API providesaway to invokethe operation with request and response context. If you areusingacanel -
cxf endpoint producer to invoke the outside web service, you can set the request context and get response context
with the following code:

Cxf Exchange exchange =
(Cxf Exchange) t enpl at e. send(get JaxwsEndpoi nt Uri (), new Processor() {
public void process(final Exchange exchange) ({
final List<String> parans = new ArrayList<String>();
par ans. add(TEST_MESSAGE) ;
/1 Set the request context to the i nMessage

130 Talend Mediation Developer Guide

https://svn.apache.org/repos/asf/cxf/trunk/api/src/main/java/org/apache/cxf/endpoint/Client.java

Attachment Support

Map<String, Object> requestContext =
new HashMap<String, Object>();
r equest Cont ext . put (Bi ndi ngPr ovi der . ENDPO NT_ADDRESS PROPERTY,
JAXWS_SERVER ADDRESS) ;
exchange. get I n(). set Body(par ans);
exchange. getln(). set Header (O i ent . REQUEST_CONTEXT , request Context);
exchange. getI n() . set Header (
Cxf Const ant s. OPERATI ON_NANME, GREET_ME_OPERATI ON) ;

1)

or g. apache. canel . Message out = exchange. get Qut();

/1 The output is an object array,

/1 the first elenent of the array is the return val ue

oj ect\[\] output = out.getBody(Cbject\[\].class);

LOG i nfo("Received output text: " + output\[O\]);

/1l Get the response context form outMessage

Map<String, Object> responseContext =
CastUtils. cast ((Mp)out. get Header (O i ent . RESPONSE_CONTEXT)) ;

assert Not Nul | (responseCont ext);

assert Equal s("Get the wong wsdl opertion name",
"{http://apache.org/ hell o_world_soap_http}greet 2",
responseCont ext . get ("j avax. xm . ws. wsdl . operation”).toString());

3.8.13. Attachment Support

POJO M ode: Both SOAP with Attachment and MTOM are supported (see examplein Payload Modefor enabling
MTOM). However, SOAP with Attachment is not tested. Since attachments are marshalled and unmarshalled into
POJOs, userstypically do not need to deal with the attachment themselves. Attachments are propagated to Camel
message's attachments since 2.1. So, it is possible to retrieve attachments by Camel Message API

Dat aHandl er Message. get Attachnment (String id)

Payload M ode: MTOM is supported since 2.1. Attachments can be retrieved by Camel Message API's mentioned
above. SOAP with Attachment (SwA) is supported and attachments can be retrieved since 2.5. SwA isthe default
(same as setting the CXF endpoint property "mtom_enabled" to false).

To enable MTOM, set the CXF endpoint property "mtom_enabled" to true . (I believe you can only do it with
Spring.)

<cxf: cxf Endpoi nt id="routerEndpoi nt"
address="http://| ocal host: 9091/ axws-mnt om hel | 0"
wsdl URL="nt om wsdl "
servi ceNane="ns: Hel | oServi ce"
endpoi nt Nanme="ns: Hel | oPort™"
xm ns: ns="http://apache. org/ canel / cxf/ntom feature">

<cxf:properties>
<l-- enable ntomby setting this property to true -->
<entry key="ntonm enabl ed" val ue="true"/>

<l-- set the canel -cxf endpoint data fromat to PAYLOAD node -->

Talend Mediation Developer Guide 131

Attachment Support

<entry key="dataFormat" val ue="PAYLQAD"/ >
</ cxf:properties>

Y ou can produce a Camel message with attachment to send to a CXF endpoint in Payload mode.

Exchange exchange = context. creat eProducer Tenpl at e() . send(

"direct:test Endpoint", new Processor() {

public void process(Exchange exchange) throws Exception {

}
1)

exchange. set Patt er n(ExchangePattern. I nQut);
Li st <El ement > el ements = new ArraylLi st <El enent >();

el ements. add(DOMUt i | s. readXm (

new Stri ngReader (M onTest Hel per. REQ MESSAGE)) . get Documnent El enent ()) ;
Cxf Payl oad<SoapHeader > body = new Cxf Payl oad<SoapHeader >(

new Arrayli st <SoapHeader>(), el enents);

exchange. get I n(). set Body(body) ;
exchange. get I n(). addAt t achment (M onilest Hel per. REQ PHOTO _Cl D,
new Dat aHandl er (new Byt eArr ayDat aSour ce(
M onilest Hel per. REQ PHOTO DATA, "application/octet-strean)));

exchange. get I n(). addAt t achment (M onilest Hel per. REQ | MAGE_ClI D,
new Dat aHandl er (new Byt eArr ayDat aSour ce(
M onilest Hel per. request Jpeg, "image/jpeg")));

/1 process response

Cxf Payl oad<SoapHeader > out = exchange. get Qut (). get Body(Cxf Payl oad. cl ass);
Assert.assert Equal s(1, out.getBody().size());

Map<String, String> ns = new HashMap<String, String>();
ns. put ("ns", M onilest Hel per. SERVI CE_TYPES_NS) ;
ns. put ("xop", M oniest Hel per. XOP_NS) ;

XPathUtils xu = new XPat hUtil s(ns);
El ement ele = (El enent) xu. get Val ue(

"/l ns: Det ai | Response/ ns: phot o/ xop: | ncl ude",
out . get Body() . get (0), XPat hConst ant s. NODE) ;

String photold = ele.getAttribute("href").substring(4); // skip "cid:"

ele

(El erent) xu. get Val ue(
"/l ns: Detail Response/ ns: i nage/ xop: | ncl ude",
out . get Body() . get (0), XPat hConst ant s. NODE) ;

String imageld = ele.getAttribute("href").substring(4); // skip "cid:"

Dat aHandl er dr = exchange. get Qut (). get Attachnent (photol d);
Assert.assert Equal s("application/octet-streanm, dr.getContentType());
M onilest Hel per. assert Equal s(

M onilest Hel per. RESP_PHOTO_DATA,
[OUtils.readByt esFronttrean(dr.getlnputStrean()));

dr = exchange. get Qut().get Attachnent (i magel d);

132

Talend Mediation Developer Guide

Attachment Support

Assert.assert Equal s("i mage/j peg", dr.getContentType());

Buf f er edl mage i mage = | nagel O read(dr. getlnputStreamn());
Assert . assert Equal s(560, inage.getWdth());
Assert . assert Equal s(300, inage.getHeight());

Y ou can also consume a Camel message received from a CXF endpoint in Payload mode.

public static class MyProcessor inplements Processor {

@uppr essWar ni ngs("unchecked")
public void process(Exchange exchange) throws Exception {
Cxf Payl oad<SoapHeader > i n = exchange. get | n(). get Body(Cxf Payl oad. cl ass);

/1 verify request
Assert.assert Equal s(1, in.getBody().size());

Map<String, String> ns = new HashMap<String, String>();
ns. put ("ns", M onilest Hel per. SERVI CE_TYPES_NS) ;
ns. put ("xop", M oniest Hel per. XOP_NS) ;

XPathUtils xu = new XPat hUtil s(ns);
El ement ele = (El enent)xu. getVal ue("//ns: Detail/ns:photo/xop: I nclude",
i n. get Body() . get (0), XPat hConst ant s. NODE) ;

String photold = ele.getAttribute("href").substring(4); // skip "cid:"
Assert . assert Equal s(M omlest Hel per. REQ PHOTO Cl D, photol d);

ele = (El ement) xu. get Val ue("//ns: Detail/ns:imge/xop: | ncl ude",
i n. get Body().get(0), XPathConstants. NODE);

String imageld = ele.getAttribute("href").substring(4); // skip "cid:"
Assert . assert Equal s(M omlest Hel per. REQ | MAGE_CI D, inmagel d);

Dat aHandl er dr = exchange. getln().get Attachnent (photol d);

Assert.assert Equal s("application/octet-streanm, dr.getContentType());

M onilest Hel per. assert Equal s(M onTest Hel per . REQ PHOTO DATA,
[OUtils.readByt esFronttreanm(dr.getlnputStrean()));

dr = exchange.getln(). getAttachnment (i magel d);

Assert.assert Equal s("i mage/j peg", dr.getContentType());

M onilest Hel per. assert Equal s(M onTest Hel per . r equest Jpeg,
[OUtils.readByt esFronttreanm(dr. getlnputStrean()));

/1 create response
Li st <El ement > el ements = new ArraylLi st <El enent >();
el ements. add(DOMUX i | s. readXm (new Stri ngReader (
M onilest Hel per. RESP_MESSAGE)) . get Documnent El enent ()) ;
Cxf Payl oad<SoapHeader > body = new Cxf Payl oad<SoapHeader >(
new Arrayli st <SoapHeader>(), el enents);
exchange. get Qut () . set Body(body) ;
exchange. get Qut () . addAtt achnment (M onTTest Hel per . RESP_PHOTO ClI D,
new Dat aHandl er (new Byt eArr ayDat aSour ce(
M onilest Hel per. RESP_PHOTO DATA, "application/octet-stream')));

exchange. get Qut () . addAtt achnment (M onTTest Hel per . RESP_| MAGE_CI D,

Talend Mediation Developer Guide 133

CXF Bean Component

new Dat aHandl er (new Byt eArr ayDat aSour ce(
M onilest Hel per. responseldpeg, "inmage/jpeg")));

}

Message M ode: Attachments are not supported as it does not process the message at all.

3.9. CXF Bean Component

The cxfbean: component allows other Camel endpoints to send exchange and invoke Web service bean objects.
(Currently, it only supports JAXRS, JAXW S(new to camel2.1) annotated service bean.)

Note : Cxf BeanEndpoi nt isaProcessor Endpoi nt so it has no consumers. It works similarly to a Bean
component.

3.9.1. URI format

cxf bean: servi ceBeanRef

where serviceBeanRef is a registry key to look up the service bean object. If ser vi ceBeanRef references a
Li st object, elementsof the Li st are the service bean objects accepted by the endpoint.

3.9.2. Options

Name Required | Description

cxf BeanBi ndi ng No CXF bean binding specified by the # notation.
The referenced object must be an instance
of or g. apache. canel . conponent . cxf . cxf bean.

Cxf BeanBi ndi ng.

Default: Def aul t Cxf BeanBi ndi ng
Example: cxf Bi ndi ng=#bi ndi ngNane

bus No CXF bus reference specified by the # notation. The referenced
object must be an instance of or g. apache. cxf . Bus.

Default: Def aul t bus created by CXF Bus Factory
Example: bus=#busName

headerFilterStrategy |No Header filter strategy specified by the # notation.
The referenced object must be an instance of
org. apache. canel . spi . Header Fi | ter Strat egy.

Default: Cxf Header Fi | t er St rat egy
Example: header Fi | t er St r at egy=#st r at egyNane

134 Talend Mediation Developer Guide

Headers

Name

Required

Description

set Def aul t Bus No

This will set the default bus when CXF endpoint create a bus by
itself.

Default: f al se
Example: t rue,f al se

popul at eFronC ass No

Since 2.3, the wsdlLocation annotated in the POJO is ignored
(by default) unless this option is set to f al se. Prior to 2.3, the
wsdl L ocation annotated in the POJO isalways honored and it is not
possible to ignore.

Default: t r ue
Example: t rue,f al se

provi ders No

Since 2.5, setting the providers for the CXFRS endpoaint.

Default: nul |
Example: provi der s=#pr ovi der Ref 1, #provi der Ref 2

3.9.3. Headers

A Compatiblity
Currently, CXF Bean component has (only) been tested with Jetty HT TP component -- it can understand
headers from Jetty HTTP component without requiring conversion.

Name Required | Description

Camel Ht t pChar act er Encodi ng|None

(before 2.0-m2: Camel Cxf Bean-
Char act er Encodi ng)

Character encoding

Type:String
In/Out:In

Default: None
Example: 1SO-8859-1

Camel Cont ent Type (before 2.0-|No

m2:
Camel Cxf BeanCont ent Type)

Content type

Type: St ri ng
In/Out:In

Default: */*
Example: t ext / xni

CamelHttpBaseUri
before:
Canel Cxf BeanRequest BasePat|h

)

(20-m3 and|Yes

The value of this header will be set in the CXF message as
the Message. BASE_PATH property. It is needed by CXF
JAX-RS processing. Basicaly, it isthe scheme, host and port
portion of the request URI.

Talend Mediation Developer Guide 135

A Working Sample

Name Required | Description
Type: String
In/Out:In
Default; The Endpoint URI of the source endpoint in the Camel
exchange

Example: http://localhost:9000

Canel Ht t pPat h (before 2.0-m2:|Yes Reguest URI's path
Canel Cxf BeanRequest Pat h)
Type: String
In/Out:In
Default: None

Example: consumer/123

Camel Ht t pMet hod (before 2.0-|Yes RESTful request verb
m2: Canel Cxf BeanVerb)
Type: String
In/Out:In
Default: None

Example: GET,PUT,POST,DELETE

Canel Ht t pResponseCode No HTTP response code

Type: | nt eger
In/Out; Out
Default: None
Example: 200

3.9.4. A Working Sample

This sample shows how to create aroute that starts a Jetty HT TP server. The route sends requests to a CXF Bean
and invokes a JAXRS annotated service.

First, create aroute asfollows. Thef r omendpoint isaJetty HT TP endpoint that is listening on port 9000. Notice
that the mat chOnUr i Pr ef i x option must be set to t r ue because RESTful request URI will not match the
endpoint's URI http:-//localhost:9000 exactly.

<rout e>
<fromuri="jetty: http://1ocal host:9000?mat chOnUri Prefi x=true" />
<t o uri="cxfbean: cust oner Servi ceBean" />

</ rout e>

Thet o endpoint is a CXF Bean with bean name cust onrer Ser vi ceBean . The name will be looked up from
theregistry. Next, we make sure our service bean isavailablein Spring registry. We create abean definition in the
Spring configuration. In this example, we create a List of service beans (of one element). We could have created
just asingle bean without a List.

<util:list id="customerServiceBean">
<bean cl ass="org. apache. canel . conponent . cxf.t est bean. Cust orer Servi ce"/ >
<futil:list>

136 Talend Mediation Developer Guide

CXFRS

<bean cl ass="org. apache. canel . wsdl _first.Personlnpl" id="jaxwsBean" />

That's it. Once the route is started, the web service is ready for business. A HTTP client can make a request and
receive response.

url = new URL(
"http://1ocal host: 9000/ cust oner servi ce/ orders/ 223/ product s/ 323");
in = url.openStream);
assert Equal s("{\"Product\":{\"description\":\"product 323\",\"id\":323}}",
CxfUtils.getStringFrom nputStrean(in));

3.10. CXFRS

When using CXF as a consumer, the Section 3.9, “ CXF Bean Component” allows you to factor out how

¥ message payloads are received from their processing as a RESTful or SOAP web service. This has the
potential of using amultitude of transportsto consume web services. The bean component's configuration
isalso simpler and provides the fastest method to implement web services using Camel and CXF.

The cxfrs: component provides integration with Apache CXF for connecting to JAX-RS services hosted in CXF.
Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -cxf</artifactld>
<l-- use the sane version as your Canmel core version -->
<versi on>X. X. X</ ver si on>
</ dependency>

3.10.1. URI format

cxfrs://address?options

where addr ess represents the CXF endpoint's address

cxfrs: bean: rsEndpoi nt

where r sEndpoint represents the Spring bean's name which presents the CXFRS client or server
For either style above, you can append options to the URI as follows:

cxfrs: bean: cxf Endpoi nt ?r esour ceCl asses=or g. apache. canel . rs. Exanpl e

3.10.2. Options

Name Required | Description

resour ceC asses No The resource classes which you want to export as REST service.
Multiple classes can be separated by comma.

Default: None
Example: r esour ceC asses=
or g. apache. canel . rs. Exanpl el,

Talend Mediation Developer Guide 137

http://incubator.apache.org/cxf/

Direct

Name

Required

Description

or g. apache. canel . rs. Exchange2

htt pC i ent API No If it is true, the CxfRsProducer will use the HttpClientAPI to
invoke the service If it is fase, the CxfRsProducer will use the
ProxyClientAPI to invoke the service
Default: true
Example: httpClientAPl=true

synchronous No New in 2.5, this option will let CxfRsConsumer decide to use sync
or async API to do the underlying work. The default value is false
which means it will try to use async API by default.

Default:false
Example: synchronous=true

throwExceptionOnFailure No New in 2.6, this option tells the CxfRsProducer to inspect return
codes and will generate an Exception if the return code is larger
than 207.
Default:true
Exampl e: throwExceptionOnFailure=true

maxd i ent CacheSi ze No New in 26, you can set a IN message header
Camel DestinationOverrideUrl to dynamically override the target
destination Web Service or REST Service defined in your routes.
The implementation caches CXF clients or ClientFactoryBean
in CxfProvider and CxfRsProvider. This option alows you to
configure the maximum size of the cache.
Default: 10
Example:maxClientCacheSize=5

set Def aul t Bus false If true, will set the default bus when CXF endpoint create a bus by

itself.

bus

A default bus created by CXF Bus Factory. Prefix bus namewith a
to reference a bus object from the registry. The referenced object
must be an instance of org.apache.cxf.Bus.

Y ou can a so configure the CXF REST endpoint through the Spring configuration. Sincethere arelotsof difference
between the CXF REST client and CXF REST Server, we provides different configuration for them. Please check
out the schema file and CXF REST user guide for more information.

See the Camel Website for the latest examples of this component in use.

3.11. Direct

The direct: component provides direct, synchronous invocation of any consumers when a producer sends a
message exchange. This endpoint can be used to connect existing routes in the same Camel context.

138

Talend Mediation Developer Guide

http://svn.apache.org/repos/asf/camel/trunk/components/camel-cxf/src/main/resources/schema/cxfEndpoint.xsd
http://cwiki.apache.org/CXF20DOC/jax-rs.html
http://camel.apache.org/cxfrs.html

URI format

j Asynchronous

The Section 3.38, “SEDA” component provides asynchronous invocation of any consumers when a
producer sends a message exchange.

i Connection to other Camel contexts

The Section 3.51, “VM” component provides connections between Camel contexts as long they run in
the same JVM .

3.11.1. URI format

di rect : soneNane[?opt i ons]

where someName can be any string to uniquely identify the endpoint.

3.11.2. Samples

In the route below we use the direct component to link the two routes together:

from("activenq: queue: order.in"
.to("bean: order Server ?net hod=val i dat e")
.to("direct:processOder");

from("direct:processOrder")
.to("bean: order Servi ce?met hod=pr ocess")
.to("activeny: queue: order.out");

and the sample using Spring DSL:

<r out e>
<fromuri ="activenqg: queue: order.in"/>
<to uri="bean: order Servi ce?net hod=val i date"/ >
<to uri="direct:processOder"/>
</ rout e>

<r out e>
<fromuri="direct:processOder"/>
<to uri="bean: order Servi ce?net hod=process"/ >
<to uri="activenty: queue: order.out"/>
</route>

See also samples from the Section 3.38, “SEDA” component, how they can be used together.

3.12. Event

The event: component provides access to the Spring ApplicationEvent objects. This allows you to publish
ApplicationEvent objects to a Spring ApplicationContext or to consume them. You can then use Enterprise
Integration Patterns to process them such as Section 2.27, “Message Filter” .

Talend Mediation Developer Guide 139

URI format

3.12.1. URI format

spring-event://default

3.13. Exec

The exec component can be used to execute system commands. For this component, Maven users will need to
add the following dependency to their pom xmi file:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -exec</artifactld>
<ver si on>${ canel - ver si on} </ ver si on>
</ dependency>
replacing ${ canel - ver si on} with the precise version used.
This component has URI format of:

exec: // execut abl e[?opti ons]

where execut abl e isthe name, or file path, of the system command that will be executed. If executable name
isused (for example, exec: j ava), the executable must be in the system path.

3.13.1. URI options

Name Default value Description

args nul | The arguments of the executable- they may
be one or many whitespace-separated tokens,
that can be quoted with ", for example,
args="arg 1" arg2 will use two
arguments arg 1 and ar g2. To include the
quotes, enclose them in another set of quotes;
for example, args=""arg 1"" arg2 will
usethearguments"arg 1" andar g2.

wor ki ngDi r nul | The directory in which the command should be
executed. If nul | , theworking directory of the
current process will be used.

ti meout Long. MAX_VALUE The timeout, in milliseconds, after which the
executable should be terminated. If execution
has not completed within this period, the
component will send a termination request.

outFile nul | The name of afile, created by the executable,
that should be considered as output of the
executable. If no out Fi | e is set, the standard
output (stdout) of the executable will be used

instead.
bi ndi ng a Defaul t ExecBi ndi ng|A reference to an or g. apache. conmons.
instance exec. ExecBi ndi ng inthe Registry .

140 Talend Mediation Developer Guide

http://camel.apache.org/registry.html

Message headers

Name Default value

Description

commandExecut or a

Def aul t Command-
Execut or instance

A reference to an or g. apache. commons.

exec. ExecCommandExecutor in the
Registry, that customizes the command
execution. The default command executor
utilizes the commons-exec library. which adds
a shutdown hook for every executed command.

useSt derr OnEnpt y- fal se

St dout

A boolean which dictates when stdin is
empty, it should fallback and use st derr in
the Camel Message Body. Thisoption isdefault
fal se.

3.13.2. Message headers

The supported headers are defined in or g. apache. canel . conponent . exec. ExecBi ndi ng .

Name Message |Description

ExecBi ndi ng. in The name of the system command that will be

EXEC COVMAND EXECUTABLE executed. Overridestheexecut abl e inthe URI.
Type: Stri ng

ExecBi ndi ng. EXEC COMVAND _ARGS |in The arguments of the executable. The arguments
are used literally, no quoting is applied. Overrides
existing ar gs inthe URI.
Type: java.util.List<String>

ExecBi ndi ng. EXEC_ COMVAND_ARGS |in The arguments of the executable as a single string
where each argument is whitespace separated (see
args in URI option). The arguments are used
literally, no quoting is applied. Overrides existing
ar gs inthe URI.
Type: String

ExecBi ndi ng. in The name of a file, created by the executable, that

EXEC_COVMAND_QUT_FI LE should be considered as output of the executable.
Overrides existing out Fi | e inthe URI.
Type: String

ExecBi ndi ng. in The timeout, in milliseconds, after which the

EXEC_COWWAND TI MEQUT executable should be terminated. Overrides existing
ti meout intheURI.
Type: | ong

ExecBi ndi ng. in The directory in which the command should be

EXEC_COVWAND_WORKI NG DI R executed. Overrides existing wor ki ngDi r in the
URI.
Type: String

ExecBi ndi ng. EXEC EXI T_VALUE out The value of this header is the exit value of the

executable. Non-zero exit values typically indicate
abnormal termination. Note that the exit value is OS-
dependent.

Talend Mediation Developer Guide

141

http://camel.apache.org/registry.html
http://commons.apache.org/exec/

M essage body

Name Message |Description
Type: i nt
ExecBi ndi ng. EXEC_STDERR out The value of this header points to the standard error

stream (stderr) of the executable. If no stderr is
written, thevalueisnul | .

Type: java.io. |l nputStream

ExecBi ndi ng. in Indicates when the st di n is empty, should we

EXEC USE_STDERR ON EMPTY_STDOUT fallback and use st der r as the body of the Camel
message. By default thisoptionisf al se.

Type: bool ean

3.13.3. Message body

If thei n message body, that the Exec component receivesisconvertibletoj ava. i 0. | nput St r eamitisused
to feed theinput of the executableviaits stdin. After the execution, the message body isthe result of the execution,
thatisor g. apache. canel . conponent s. exec. ExecResul t instance containing the stdout, stderr, exit
value and out file. The component supports the following ExecResul t type converters for convenience:

From To

ExecResul t java.io. | nput Stream
ExecResul t String

ExecResul t byte []

ExecResul t or g. w3c. dom Docunent

If out file is wused (the endpoint is configured with outFile, or there is
ExecBi ndi ng. EXEC_COMVAND QUT_FI LE header) the converters return the content of the out file. If no
out file is used, then the converters will use the stdout of the process for conversion to the target type.

For an example, the below executes we (word count, Linux) to count the words in file/ usr/ shar e/ di ct/
wor ds . Theword count (output) is written in the standard output stream of wc.

from("direct:exec")
.to("exec:wc?args=--words /usr/share/dict/words")
. process(new Processor () {
public void process(Exchange exchange) throws Exception {
/1 By default, the body is ExecResult instance
assertlslnstance (ExecResul t. cl ass, exchange. getln(). getBody());
/1 Use the Canel Exec String type converter to convert the ExecResult
/1 to String. In this case, the stdout is considered as out put.
String wordCount Qut put = exchange. getln().getBody(String.class);
/1 do sonething with the word count

1),

3.14. File

The File component provides access to file systems. The main functionality that this facilitatesis:

142 Talend Mediation Developer Guide

http://camel.apache.org/exchange.html
http://camel.apache.org/type-converter.html

URI format

« files may be processed by other Camel Components. A typical pattern is that files are written to a directory
(or subdirectories) by one or more components (producers). Other components (consumers) may subsequently
read, process (and move or delete) these files. Consumers may generate new files based on templates or filters
being applied to the existing files. Temporary subdirectories or files may be created or used by consumers or
producers as part of the processing.

» messagesfrom other components may be saved to disk, and thismay also involve applying filtersto the contents,
logging information in the messages, and so on.

Avoid reading files currently being written by another application

Beware the JDK File 10 APl is somewhat limited in detecting whether another application is currently
writing or copying a file. The implementation semantics can aso vary, depending on the OS platform.
This could lead to the situation where Camel thinks the file is not locked by another process and starts
consuming it. You may need to check how thisis implemented for your specific environment.

If needed, to assist you with this issue, Camel provides different r eadLock options and a
doneFi | eOpti on option that you can use. See aso the section Consuming files from folders where
othersdrop filesdirectly.

Should you ever need to activate debugging for this component it logs at level t r ace.

3.14.1. URI format

file:directoryNane[?options]

or

file://directoryName[?opti ons]

where dir ectoryName represents the underlying file directory.

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

j Only directories

Camel 2.0 onwards only supports endpoints configured with a starting directory. So the directoryName
must be a directory.

If you want to consume asinglefile only, specify the starting directory, and then use the fileName option,
for example by setting f i | eName=i nf 0. xm .

Note: the starting directory must not contain dynamic expressions with ${ } placeholders; again, use the
fi | eName option to specify the dynamic part of the filename.

3.14.2. URI Options

3.14.2.1. Common

Name

Default Value

Description

aut oCreat e

true

Automatically create missing directoriesin the file's pathname. For
the file consumer, that means creating the starting directory. For
the file producer, it means creating the directory the files should be
written to.

Talend Mediation Developer Guide 143

URI Options

Name

Default Value

Description

buf ferSi ze

128kb

Write buffer, sized in bytes.

fil eNanme

nul |

Use Expression such as File Language to dynamically set the
filename. For consumers, it is used as a filename filter. For
producers, it is used to evaluate the filename to write. If an
expression is set, it take precedence over the Canel Fi | eNane
header. (Note: The header itself can also be an Expression).

The expression options support both St r i ng and Expr essi on
types. If the expression isa St ri ng type, it is always evaluated
using the File Language.

If the expression is an Expression type, the specified
Expressi on type is used; this allows you, for instance,
to use OGNL expressions. For the consumer, you can use
it to filter filenames, so you can for instance consume
today's file using the File Language syntax: mydat a-
${ dat e: now yyyyMwd} . t xt .

flatten

fal se

Flatten isused to flatten thefile name path to strip any leading paths,
soitispurely thefile name. Thisallowsyou to consumerecursively
into sub-directories. However, for example, if you writethefilesto
another directory they will be written in a (flat) single directory.

Setting this to t r ue on the producer ensures that any file name
received in Canel Fi | eName header will be stripped of any
leading paths.

char set

nul |

This option is used to specify the encoding of the file, and camel
will set the Exchange property with Exchange. CHARSET_NAME
with the value of this option. Y ou can use this on the consumer, to
specify the encodings of the files, which allow Camel to know the
charset it should load the file content in case thefile content isbeing
accessed. Likewise when writing afile, you can use this option to
specify which charset to write the file as well.

copyAndDel et e
OnRenaneFai l

true

Whether to fallback and do a copy and delete file, in case the file
could not be renamed directly. This option is not available for the
[FTP|FTP2] component.

3.14.2.2. Consumer

Name Default Value |Description

initial Del ay 1000 Milliseconds before polling the file or directory starts.

del ay 500 Milliseconds before the next poll of thefile or directory.

useFi xedDel ay true Controls if fixed delay or fixed rate is wused. See
ScheduledExecutorService in JDK for details.

runLoggi ngLevel |TRACE The consumer logs a start/completelog line when it polls. Thisoption
allows you to configure the logging level for that.

recursive fal se if it is consuming a directory, it will look for files in all the sub-
directories as well.

del ete fal se If t r ue, thefilewill be deleted after it is processed

noop fal se If true, the file is not moved or deleted in any way. This
option is good for readonly data, or for ETL type requirements. If

144 Talend Mediation Developer Guide

http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/ognl.html
http://camel.apache.org/file-language.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://camel.apache.org/etl.html

URI Options

Name

Default Value

Description

noop=t r ue, Camel will seti denpot ent =t r ue aswell, to avoid
consuming the same files over and over again.

preMove

nul |

If afileisto be moved before processing, use Expression such as
File Language to dynamically specify the target directory name. For
example to move in-progress files into the or der directory set this
valueto or der .

nove

. camnel

If afileisto be moved after processing, use Expression such as File
Language to dynamically set the target directory name. To movefiles
into a. done subdirectory just enter . done.

noveFai | ed

nul |

Expression (such asFile Language) used to dynamically set adifferent
target directory when moving files after processing (configured via
nove setting defined above) failed. For example, to move files into
a. error subdirectory use: . er r or . Note: When moving the files
to the“fail” location Camel will handle the error and will not pick up
thefile again.

i ncl ude

nul |

Isused to include files, if filename matches the regex pattern.

excl ude

nul |

Is used to exclude files, if filename matches the regex pattern.

ant | ncl ude

null

Ant style filter inclusion, for example {{antInclude=**/*.txt}}.
Multiple inclusions may be specified in comma-delimited format.

ant Excl ude

null

Ant style filter exclusion. If both ant | ncl ude and ant Excl ude
the latter takes precedence. Multiple exclusions may be specified in
comma-delimited format.

i denpot ent

fal se

Option to use the Section 2.18, “Idempotent Consumer” EIP pattern
to let Camel skip already processed files. This will by default use a
memory based LRUCache that holds 1000 entries. If noop=t r ue
then idempotent will be enabled aswell to avoid consuming the same
files over and over again.

i denpot ent -
Repository

nul |

Pluggable repository as a org.apache.camel.
processor.idempotent.Messagel dRepository class. This will by
default use Mermor yMessagel dReposi t ory if noneis specified
andi denpot ent istrue.

i nProgress-
Repository

menory

A pluggable in-progress repository org.apache.camel.spi.
|dempotentRepository. The in-progress repository is used to account
the current in-progress files being consumed. By default a memory
based repository is used.

filter

nul |

Pluggable filter asaor g. apache. canel . conponent . fi |l e.
Generi cFil eFil ter class. This will skip files if filter returns
fal seinitsaccept () method.

sorter

nul |

Pluggable sorter as a java.util.Comparator
<org.apache.camel .component.file.GenericFile> class.

sort By

nul |

Built-in sort using the File Language. Supports nested sorts, so you
can have a sort by file name and as a second group sort by modified
date. See sorting section below for details.

readLock

mar ker -
File

Used by consumer, to only poll the files if it has exclusive read-lock
onthefile (that is, the fileis not in-progress or being written). Camel
will wait until the file lock is granted. This option provides the built-
in strategies:

mar ker Fi | e is where Camel will create a marker file and hold
a lock on the marker file. This option is not avail for the FTP
component.

Talend Mediation Developer Guide 145

http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/processor/idempotent/MessageIdRepository.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/IdempotentRepository.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/spi/IdempotentRepository.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Comparator.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/Comparator.html
http://camel.apache.org/file-language.html

URI Options

Name

Default Value

Description

changed is using file length/modification timestamp to detect
whether the fileis currently being copied or not. Thiswill at least use
1 sec. to determine this, so this option cannot consume files asfast as
the others, but can be more reliable asthe JDK 10 API cannot always
determine whether afile is currently being used by another process.
Thisoptionis not avail for the FTP component.

fil eLockisforusingj ava. ni o. channel s. Fi | eLock. This
optionisnot available for the FTP component. This approach should
be avoided when accessing a remote file system via a mount/share
unless that file system supports distributed file locks.

r enamne is for using a try to rename the file as atest if we can get
exclusive read-lock.

none is for no read locks at all. Note from Camel 2.10 onwards
the read locks changed, fi | eLock and r enane will also use a
mar ker Fi | e as well, to ensure not picking up files that may be
in process by another Camel consumer running on another node (eg
cluster). This is supported only by the file component (not the ftp
component).

readLockTi meout

10000

Optional timeout in milliseconds for the read-lock, if supported by
the read-lock. If the read-lock could not be granted and the timeout
triggered, then Camel will skip the file. At next poll Camel, will try
the file again, and this time maybe the read-lock could be granted.
Use avalue of 0 or lower to indicate forever. Currently fi | eLock,
changed and r ename support the timeout.

readLockCheck-
I nt erval

1000

Interval in milliseconds for the read-lock, if supported by the read
lock. Thisinterval is used for sleeping between attempts to acquire
the read lock. For example when using the changed read lock, you
can set a higher interval period to cater for ow writes . The default
of 1 sec. may betoo fast if the producer is very slow writing thefile.

di rect or yMust -
Exi st

fal se

Similar to starti ngDi rect oryMust Exi st but this applies
during polling recursive sub directories.

doneFi | eNane

nul |

If provided, Camel will only consume filesif adone file exists. This
option configureswhat file nameto use. Either you can specify afixed
name, or you can use dynamic placeholders. The done file is always
expected in the same folder as the original file. See using done file
and writing done file sections for examples.

excl usi veRead-
LockStr at egy

nul |

Pluggable read-lock as a
or g. apache. canel . conponent . file.

Generi cFi | eExcl usi veReadLockSt r at egy
implementation.

maxMessages-
Per Pol |

An integer that defines the maximum number of messages to gather
per poll. By default, no maximum isset. It can be used to set alimit of,
for example, 1000 to avoid having the server read thousands of files
as it starts up. Set a value of 0 or negative to disable it. You can use
the eager MaxMessagesPer Pol | option and set thisto f al se
to allow to scan al filesfirst and then sort afterwards.

eager Max-
MessagesPer Pol |

true

Allows for controlling whether the limit from
maxMessagesPer Pol | is eager or not. If eager then the limit is
during the scanning of files. Whereas f al se would scan al files,
and then perform sorting. Setting thisoptiontof al se alowsto sort

146

Talend Mediation Developer Guide

URI Options

Name

Default Value

Description

all filesfirst, and then limit the poll. Note that this requires a higher
memory usage as all file details are in memory to perform the sorting.

nmi nDept h

The minimum depth to start processing when recursively processing
a directory. Using minDepth=1 means the base directory. Using
minDepth=2 means the first sub directory.

max Dept h

Integer.
MAX_VALUE

The maximum depth to traverse when recursively processing a
directory.

processStrat egy

nul |

A pluggable org. apache. canel . conponent . file.
Generi cFi |l eProcessStrat egy alowing you to implement
your own r eadLock option or similar. Can also be used when
special conditions must be met before a file can be consumed, such
as aspecia ready file exists. If this option is set thenther eadLock
option does not apply.

startingDirect-
or yMust Exi st

fal se

whether the starting directory must exist. Keep in mind that the
aut oCr eat e option is default enabled, which means the starting
directory is normally auto created if it doesn't exist. You can disable
aut oCr eat e and enable this to ensure the starting directory must
exist. It will then throw an exception if the directory doesn't exist.

pol | St rat egy

null

A pluggable
or g. apache. canel . Pol | i ngConsurer Pol | Strat egy
allowing you to provide your custom implementation to control error
handling usually occurred during the poll operation *before* an
Exchange has been created and routed in Camel. In other words
the error occurred while the polling was gathering information, for
instance access to a file network failed so Camel cannot access it
to scan for files. The default implementation will log the caused
exception at WARN level and ignoreit.

sendEnpt y-
MessageVWhenl dl e

fase

If the polling consumer did not poll any files, you can enable this
option to send an empty message (no body) instead.

consuner . bri dge-
Er r or Handl er

false

Allowsfor bridging the consumer to the Camel routing Error Handler,
which mean any exceptions occurred while trying to pickup files,
or the likes, will now be processed as a message and handled by
the routing Error Handler. By default the consumer will use the
org.apache.camel .spi.ExceptionHandler to deal with exceptions, that
by default will be logged at WARN/ERROR level and ignored.

3.14.2.3. Default behavior for file consumer

. groovy.

By default the file islocked for the duration of the processing.
After the route has completed, filesare moved into the . camel subdirectory, so that they appear to be del eted.

The File Consumer will always skip any file whose name starts with a dot, such as ., . canmel , . n2 or

Only files (not directories) are matched for valid filename, if optionssuch as: i ncl ude or excl ude are used.

Talend Mediation Developer Guide 147

URI Options

3.14.2.4. Producer

Name

Default Value

Description

fileExist

Overri de

this specifieswhat to do if afile already exists with the same name.
The following values can be specified: Override, Append, Fail
and Ignore.

e Overri de, whichisthe default, replaces the existing file.
« Append adds content to the existing file.

e Fail throws a CGenericFil eQperation- Excepti on,
indicating that thereis already an existing file.

* | gnor e silently ignores the problem and does not override the
existing file, but assumes everything is okay.

tenpPrefix

nul |

This option is used to write the file using a temporary name and
then, after the writeis complete, rename it to the real name. Can be
used to identify files being written and also avoid consumers (not
using exclusive read locks) reading in-progress files. |s often used
by FTP when uploading big files.

t enpFi | eNarne

nul |

Thesameast enpPr ef i x option but offering amorefine grained
control on the naming of the temporary filename asit uses the File
Language .

keepLast Modi fi ed

fal se

If enabled, will keep the last modified timestamp from
the source file (if any). This will use the Exchange.

FI LE_LAST_MODI FI ED header to located the timestamp. This
header can contain either aj ava. uti | . Dat e or | ong with the
timestamp. If the timestamp exists and the option is enabled it will
set thistimestamp on thewrittenfile. Note: Thisoption only applies
to the file producer. Y ou cannot use this option with any of the ftp
producers.

eager Del et eTar get -
File

true

Whether or not to eagerly delete any existing target file. (This
option only applieswhenyou usef i | eExi st s=Cverri de and
thet enpFi | eName option). Y ou can use this to disable deleting
the target file before the temp file is written. For example you may
have large files and want the target file to persist while the temp
fileisbeingwritten. Settingeager Del et eTar get Fi | e tofalse
ensures the target file is only deleted until the very last moment,
just before the temp file is being renamed to the target filename.

doneFi | eNane

nul |

Camel 2.6: If provided, then Camel will write a second done file
when the original file has been written. The donefile will be empty.
Thisoption configureswhat file nameto use. Either you can specify
afixed name. Or you can use dynamic placeholders. The donefile
will always be written in the same folder as the original file. See
writing done file section for examples.

3.14.2.5. Default behavior for file producer

By default it will override any existing file, if one exist with the same name.

148

Talend Mediation Developer Guide

http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html

Move and Delete operations

j Overrideisdefault

Overri de is the default for the file producer. This is also the default file operation using
java.io. Fi | e - and aso the default for the FTP library we use in the camel-ftp component.

3.14.3. Move and Delete operations

Any move or delete operation is executed after the routing has completed (post command); so during processing
of the Exchange thefileis till located in the inbox folder.

Let'sillustrate this with an example:

from("file://inbox?nove=.done").to("bean: handl eOrder");

When afileis dropped in thei nbox folder, the file consumer notices this and creates anew Fi | eExchange
that isrouted to thehandl eOr der bean. The bean then processesthe Fi | e object. At thispoint in timethefile
isdtill located in thei nbox folder. After the bean completes, and thus the route is completed, the file consumer

will perform the move operation and move thefileto the . done sub-folder.

The move and preM ove options should be a directory name, which can be either relative or absolute. If relative,
the directory is created as a sub-folder from within the folder where the file was consumed.

By default, Camel will move consumed files to the . canmel sub-folder relative to the directory where the file
was consumed.

If you want to delete the file after processing, the route should be:
from("file://inobox?del ete=true").to("bean: handl eOrder");

We have introduced a pr e move operation to move files befor e they are processed. Thisallowsyou to mark which
files have been scanned as they are moved to this sub folder before being processed.

from("file://inbox?preMyve=i nprogress").to("bean: handl eOrder");
Y ou can combine the pre move and the regular move:
from("file://inbox?preMyve=i nprogress&move=. done").to("bean: handl eOrder");

So in this situation, the file isin the i npr ogr ess folder when being processed and after it is processed, it is
moved to the . done folder.

3.14.3.1. Fine grained control over Move and PreMove option

The move and preMove option is Expression -based, so we have the full power of the File Language to do
advanced configuration of thedirectory and name pattern. Camel will, infact, internally convert the directory name
you enter into a File Language expression. So, for example, when we enter nove=. done Camel will convert
thisinto: ${file: parent}/.done/ ${fil e: onl ynane}. Thisonly happensif Camel detects that you
have not provided a ${ } in the option value. So when you enter a${ } Camel will not convert it and thus you
have full control.

So, if we want to move the file into a backup folder with today's date as the pattern, we can do:

nove=backup/ ${ dat e: now. yyyyMvdd}/ ${fi | e: nane}

Talend Mediation Developer Guide 149

http://camel.apache.org/expression.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html

Message Headers

3.14.3.2. About moveFailed

The nmoveFai | ed option allows you to move files that could not be processed succesfully to another location
such as a error folder of your choice. For example to move the files in an error folder with a timestamp you
can use noveFail ed=/error/ ${fil e: nane. noext} - ${dat e: now. yyyyMldHHMESSSS} .

${file:ext}.

See more examplesin File Language

3.14.4. Message Headers

The following headers are supported by this component:

3.14.4.1. File producer only

Header

Description

Canel Fi | eNanme

Specifies the name of the file to write (relative to the endpoint
directory). The name can bea String ; a St ri ng with aFile
Language or Simple expression; or an Expression object. If it
isnul I then Camel will auto-generate a filename based on the
message unique ID.

Canel Fi | eNanmePr oduced

The absolute filepath (path + name) for the output file that was
written. This header is set by Camel and its purpose is providing
end-users with the name of the file that was written.

3.14.4.2. File consumer only

Header

Description

Canel Fi | eNanme

Name of the consumed file as a relative file path with offset from
the starting directory configured on the endpoint.

Camel Fi | eNameOnl y

Just the file name (the name with no leading paths).

Canel Fi | eAbsol ute

A bool ean option specifying whether the consumed file denotes
an absolute path or not. It should normally be f al se for relative
paths. Absolute paths should normally not be used but we added to
the move option to allow moving files to absolute paths; it can also
be used elsewhere.

Canel Fi | eAbsol ut ePat h

The absolute path to the file. For relative files this path holds the
relative path instead.

Canel Fi | ePat h

The file path. For relative files this is the starting directory + the
relative filename. For absolute files thisis the absolute path.

Canel Fi |l eRel ati vePat h

The relative path.

Canel Fi | ePar ent

The parent path.

Canel Fil eLength

A | ong vaue containing the file size.

Canel Fi | eLast Modi fi ed

A Dat e vaue containing the last modified timestamp of thefile.

150

Talend Mediation Developer Guide

http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html
http://camel.apache.org/simple.html
http://camel.apache.org/expression.html

Batch Consumer

3.14.5. Batch Consumer

This component implements the Batch Consumer .

3.14.5.1. Exchange Properties, file consumer only

Asthefile consumer isBat chConsuner it supports batching thefilesit polls. By batching it means that Camel
will add some properties to the Exchange so you know the number of files polled, and the current index, in that
order.

Property Description

Canel Bat chSi ze The total number of files that was polled in this batch.

Canel Bat chl ndex The current index of the batch. Starts from 0.

Canel Bat chConpl et e A bool ean valueindicating thelast Exchangein thebatch. Isonly
t r ue for the last entry.

Thiswould allow you, for example, to know how many files exist in the batch and use that information to let the
Section 2.2, “Aggregator” aggregate that precise number of files.

3.14.6. Common gotchas with folder and filenames

When Camel is producing files (writing files) there are a few gotchas affecting how to set a filename of your
choice. By default, Camel will use the message ID as the filename, and since the message ID isnormally aunique
generated 1D, you will end up with filenames such as: | D- MACHI NENAME- 2443-1211718892437-1-0 . If
such afilename is not desired, then you must provide a filename in the Carrel Fi | eNane message header. The
constant, Exchange. FI LE_NAME, can aso be used.

The sample code below produces files using the message ID as the filename:
from"direct:report”).to("file:target/reports”);

Touser eport.txt asthefilename you haveto do:

from("direct:report"). set Header (Exchange. FI LE_NAVE, constant("report.txt"))
.to("file:target/reports");

... the same as above, but with Canel Fi | eNane :

from("direct:report"). set Header (" Canel Fi | eNanme", constant("report.txt"))
.to("file:target/reports");

An example of a syntax where we set the filename on the endpoint with the fileName URI option:

from"direct:report”).to("file:target/reports/?fil eNane=report.txt");

3.14.7. Filename Expression

Filename can be set either using the expression option or as a string-based File Language expression in the
Canel Fi | eNare header. See the File Language for syntax and samples.

Talend Mediation Developer Guide 151

http://camel.apache.org/batch-consumer.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html

Consuming files from folders where others drop files directly

3.14.8. Consuming files from folders where others
drop files directly

Warning: there may be difficulties if you consume files from a directory where other applications directly write
files. Please look at the different r eadLock optionsto seeif they can help.

If you are writing files to the folder, then the best approach is to write to another folder and after the write, move
thefilein the drop folder.

However if you need to writefilesdirectly to the drop folder then the option changed could better detect whether
afileis currently being written/copied. changed uses a file changed agorithm to see whether the file size or
modification changes over a period of time. The other r eadLock options rely on Java File APl which is not
always good at detecting file changes. Y ou may aso want to look at the doneFi | eNane option, which uses a
marker file (done) to signal when afileis done and ready to be consumed.

3.14.9. Using done files

Available as of Camel 2.6
See also section writing done files below.

If you want only to consume files when a done file exists, then you can use the doneFi | eNamne option on the
endpoint.

from("file: bar?doneFi | eNanme=done");

Thiswill only consume files from the bar folder, if afile name done existsin the same directory asthetarget files.
For versions prior to 2.9.3, Camel will automatically delete the done file when it is finished consuming the files.

However it's more common to have one done file per target file. This meansthereisa 1:1 correlation. To do this
you must use dynamic placeholdersin the doneFi | eName option. Currently Camel supports the following two
dynamictokens. file:nane and file:nane. noext whichmustbeenclosedin$ }. The consumer
only supports the static part of the done file name as either prefix or suffix (not both).

from"file:bar?doneFi | eNane=${fil e: nane}. done");

In this example only fileswill be polled if there exists a done file with the name file name .done. For example
* hel | 0.t xt isthefileto be consumed

* hel | 0.t xt. done isthe associated donefile

You can aso use a prefix for the done file, such as:

from("file:bar?doneFi | eName=r eady- ${fil e: name}");

* hel | 0.t xt isthefileto be consumed

» ready-hel | 0.t xt isthe associated donefile

3.14.10. Writing done files

Available as of Camédl 2.6

152 Talend Mediation Developer Guide

Samples

After you have written a file you may want to write an additional done file as a kind of marker, to indicate to
others that the file is finished and has been written. To do that you can use the doneFi | eNane option on the
file producer endpoint.

.to("file:bar?doneFi | eNane=done");
Thiswill simply create afile named done in the same directory as the target file.

However it's more common to have one done file per target file. This meansthereisa1:1 correlation. To do this
you must use dynamic placeholdersin the doneFi | eNane option. Currently Camel supports the following two
dynamictokens: file:nane and file:nanme. noext whichmustbeenclosedin${}.

.to("file:bar?doneFi | eName=done- ${fi |l e: nane}");

Thiswill for example create afile named done- f 00. t xt if thetarget filewasf 00. t xt in the same directory
asthe target file.

.to("file:bar?doneFi | eNane=${fil e: nane}. done");

Thiswill for example create afilenamed f 00. t xt . done if thetarget filewasf 00. t xt in the same directory
asthetarget file.

.to("file:bar?doneFi| eName=${fil e: nane. noext}. done");

This will for example create a file named f 00. done if the target file was f 00. t xt in the same directory as
the target file.

3.14.11. Samples

3.14.11.1. Read from a directory and write to another directory

from("file://inputdir/?delete=true").to("file://outputdir")

Listen on adirectory and create a message for each file dropped there. Copy the contentsto the out put di r and
deletethefileinthei nput di r .

3.14.11.2. Reading recursively from a directory and writing to
another

from("file://inputdir/?recursive=true&del ete=true").to("file://outputdir")

Listen on adirectory and create a message for each file dropped there. Copy the contentsto the out put di r and
delete thefileinthei nput di r . Thiswill scan recursively into sub-directories, and lay out the filesin the same
directory structure in the out put di r asthei nput di r, including any sub-directories.

i nputdir/foo.txt
i nput di r/ sub/ bar.txt

Thiswill result in the following output layout:

out put di r/foo. txt
out put di r/ sub/ bar . t xt

Talend Mediation Developer Guide 153

Samples

Using flatten

If you want to store the files in the outputdir directory in the same directory, disregarding the source directory
layout (for example to flatten out the path), you add thef | at t en=t r ue option on the file producer side:

from("file://inputdir/?recursive=trueé&del ete=true")
.to("file://outputdir?flatten=true")

Thiswill result in the following output layout:

out put di r/ foo. t xt
out put di r/ bar . t xt

3.14.11.3. Reading from a directory and the default move
operation

Camdl will by default move any processed fileintoa. canel subdirectory in the directory the file was consumed
from.

from("file://inputdir/?recursive=true&del ete=true").to("file://outputdir")
Affectsthe layout as follows:
before

i nputdir/foo.txt
i nput di r/sub/ bar.txt

after

i nputdir/.canel/foo.txt

i nputdir/sub/.camnel/bar.txt
out put di r/ foo. t xt

out put di r/ sub/ bar . t xt

3.14.11.4. Read from a directory and process the message in java

from("file://inputdir/").process(new Processor() {
public void process(Exchange exchange) throws Exception {
hj ect body = exchange. getln(). get Body();
/1 do sone business logic with the input body

}
1),

The body will beaFi | e object that pointsto the file that was just dropped into thei nput di r directory.

3.14.11.5. Writing to files

Camdl is of course also able to write files, that is, produce files. In the sample below we receive some reports on
the SEDA queue that we process before the reports are written to a directory.

public void testToFile() throws Exception {

154 Talend Mediation Developer Guide

Samples

}

MockEndpoi nt nock = get MockEndpoi nt ("nock: result”);

nock. expect edMessageCount (1) ;

nock. expect edFi | eExi sts("target/test-reports/report.txt");
tenpl at e. sendBody("direct:reports”, "This is a great report");

assert MockEndpoi nt sSati sfied();

protected Jndi Registry createRegistry() throws Exception {

}

/1 bind our processor in the registry with the given id
Jndi Regi stry reg = super.createRegistry();

reg. bi nd("processReport"”, new ProcessReport());

return reg;

prot ect ed Rout eBuil der createRouteBuil der() throws Exception {

}

return new Rout eBuilder() {
public void configure() throws Exception {
/1 the reports fromthe seda queue are processed by our
/1 processor before they are witten to files in the
/] target/reports directory
from"direct:reports"). processRef ("processReport")
.to("file://target/test-reports”, "nmock:result");

b

private class ProcessReport inplenents Processor {

public void process(Exchange exchange) throws Exception {
String body = exchange.getln().getBody(String.class);
/! do sone business |logic here

/1 set the output to the file
exchange. get Qut () . set Body(body) ;

/! set the output filenane using java code logic, notice that this
/1 is done by setting a special header property of the out exchange
exchange. get Qut () . set Header (Exchange. FI LE_NAME, "report.txt");

3.14.11.6. Write to subdirectory using Exchange.FILE_NAME

Using asingleroute, it is possible to write afile to any number of subdirectories. If you have aroute setup as such:

<rout e>

<fromuri ="bean: myBean"/ >
<to uri="file:/rootDirectory"/>

</rout e>

You can have nyBean set the header Exchange. FI LE_NAME to values such as:

Exchange. FI LE_NAME
Exchange. FI LE_NAME

hell o.txt => /rootDirectory/ hello.txt
foo/ bye.txt => /rootDirectory/foo/bye.txt

Talend Mediation Developer Guide 155

Avoiding reading the same file more than once (idempotent consumer)

This allows you to have a single route to write files to multiple destinations.

3.14.11.7. Using expression for filenames

In this sample we want to move consumed files to a backup folder using today's date as a sub-folder name:
from("file://inbox?mve=backup/ ${dat e: now. yyyyMdd}/ ${file:name}").to("...");

See File Language for more samples.

3.14.12. Avoiding reading the same file more than
once (idempotent consumer)

Camd supports Section 2.18, “lIdempotent Consumer” directly within the component so it will skip already
processed files. This feature can be enabled by setting thei denpot ent =t r ue option.

from("file://inbox?i denpotent=true").to("...");

By default Camel uses ain memory based store for keeping track of consumed files, it uses a least recently
used cache holding up to 1000 entries. You can plugin your own implementation of this store by using the
i denmpot ent Reposi t ory option using the # sign in the value to indicate it is a referring to a bean in the
Registry with the specifiedi d .

<!-- define our store as a plain Spring bean -->
<bean id="nyStore" class="com nyconpany. M/l denpot ent Store"/>

<r out e>
<fromuri=
"file://inbox?i denpot ent =t rue&anp; i denpot ent Reposi t ory=#nyStore"/>
<to uri="bean: processl nbox"/>
</rout e>

Camel will log at DEBUG level if it skips afile because it has been consumed before:

DEBUG Fi | eConsuner is idenmpotent and the file has been consuned before.
This will skip this file: target\idenpotent\report.txt

3.14.13. Filter using
org.apache.camel.component.file.GenericFileFilter

Camdl supports pluggabl efiltering strategies. Y ou can then configure the endpoint with such afilter to skip certain
files being processed.

In the sample we have built our own filter that skips files starting with ski p in the filename:

public class M/FileFilter inplenents GenericFileFilter {
public bool ean accept (CGenericFile pathnane) {
/1 we don't accept any files starting with skip in the nane
return ! pat hnane. getFil eNane().startsWth("skip");

156 Talend Mediation Developer Guide

http://camel.apache.org/file-language.html
http://camel.apache.org/registry.html

Filter using org.apache.camel.component.file.GenericFileFilter

}

Then we can configure our route using the filter attribute to reference our filter (using # notation) that we have
definesin the Spring XML file:

<!-- define our sorter as a plain Spring bean -->
<bean id="myFilter" class="com myconpany. M/Fi | eSorter"/>

<r out e>
<fromuri="file://inbox?filter=#nyFilter"/>
<to uri="bean: processl nbox"/ >

</route>

3.14.13.1. Filtering using ANT path matcher

Thereareaso ant | ncl ude and ant Excl ude options to make it easy to specify ANT style include/
exclude without having to define the filter. See the URI options above for more information.

The ANT path matcher is shipped out-of-the-box in the camel-spring jar. So you need to depend on camel-spring
if you are using Maven. The reason is that we leverage Spring's AntPathMatcher to do the matching.

The file paths is matched with the following rules:
+ ? matches one character

* * matches zero or more characters

» ** matches zero or more directoriesin a path

The sample below demonstrates how to useit:

<canel Cont ext xml ns="http://canel.apache. org/ schena/ spri ng">
<tenpl ate i d="canel Tenpl ate"/ >

<l-- use nyFilter as filter to allow setting
ANT paths for which files to scan for -->
<endpoi nt i d="nyFil eEndpoint" uri=
"file://target/antpat hmatcher?recursive=true&filter=#nyAntFilter"/>

<rout e>
<fromref="nyFi | eEndpoi nt"/ >
<to uri="nock:result"/>
</ rout e>
</ carel Cont ext >

<l-- we use the antpath file filter to use ant paths -->
<l-- for includes and excl udes -->
<bean id="nmyAntFilter"
cl ass="org. apache. canel . conponent . fil e. Ant Pat hVMat cher GenericFileFilter">

<l-- include and file in the subfolder that has 'day' in the name -->
<property nane="incl udes" val ue="**/subfol der/**/*day*"/>
<l-- exclude all files with "bad" in nane or .xm files. -->
<l-- Use comma to separate multiple excludes -->
<property nane="excl udes" val ue="**/*bad*,**/*.xm"/>
</ bean>

Talend Mediation Developer Guide 157

http://static.springsource.org/spring/docs/3.0.x/api/org/springframework/util/AntPathMatcher.html

Sorting using Comparator

3.14.14. Sorting using Comparator

Camel supports pluggable sorting strategies. This strategy it to use the built inj ava. uti | . Conpar at or in
Java. You can then configure the endpoint with such a comparator and have Camel sort the files before being
processed.

In the sample we have built our own comparator that sorts by file name:

public class MyFileSorter inplenents Conparator<GenericFile> {
public int conpare(GenericFile ol, CGenericFile 02) {
return ol. getFil eNane().conpareTol gnoreCase(02. get Fi |l eNarme());

}
}

Then we can configure our route using the sorter option to referenceto our sorter (my Sor t er) we have defined
in the Spring XML file:

<!-- define our sorter as a plain Spring bean -->
<bean id="nySorter" class="com nyconpany. M/Fi | eSorter"/>

<r out e>
<fromuri="file://inbox?sorter=#nySorter"/>
<to uri="bean: processl nbox"/>

</route>

i URI options can reference beans using the # syntax

In the Spring DSL route, notice that we can refer to beans in the Registry by prefixing the id with # .
So writing sor t er =#my Sor t er, will instruct Camel to go look in the Registry for a bean with the
ID,mySorter .

3.14.15. Sorting using sortBy

Camel supports pluggable sorting strategies. This strategy it to use the File Language to configure the sorting. The
sort By option is configured as follows:

sortBy=group 1;group 2;group 3;...

where each group is separated with semi colon. Inthe simple situationsyou just use one group, so asimple example
could be:

sortBy=fil e: nane

This will sort by file name, you can reverse the order by prefixing r ever se: to the group, so the sorting is
now Z..A:

sortBy=reverse:fil e: nane

As we have the full power of File Language we can use some of the other parameters, so if we want to sort by
file size we do:

sortBy=file:length

Y ou can configureto ignorethe case, usingi gnor eCase: for string comparison, so if you want to usefile name
sorting but to ignore the case then we do:

sort By=i gnoreCase: fil e: nane

Y ou can combine ignore case and reverse, however reverse must be specified first:

158 Talend Mediation Developer Guide

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/file-language.html
http://camel.apache.org/file-language.html

Using GenericFileProcessStrategy

sort By=reverse:ignoreCase:file: name

In the sample below we want to sort by last modified file, so we do:

sortBy=fil e: nodifed

Then we want to group by name as a second option so files with same modification is sorted by name;
sortBy=file:nodifed;file:nane

Now there is an issue here, can you spot it? Well the modified timestamp of the file is too fine as it will be in
milliseconds, but what if we want to sort by date only and then subgroup by name? Well aswe have the true power
of File Language we can use the its date command that supports patterns. So this can be solved as:

sortBy=date: file:yyyyMd; fil e: nane
That is powerful. You can also use reverse per group, so we could reverse the file names:

sortBy=date:file:yyyyMvd; reverse: fil e: name

3.14.16. Using GenericFileProcessStrategy

Theoption pr ocessSt r at egy can beused to useacustom Generi cFi | eProcessStr at egy that alows
you to implement your own begin, commit and rollback logic. For instance let's assume a system writes afilein
a folder you should consume. But you should not start consuming the file before another ready file have been
written as well.

So by implementing our own Gener i cFi | eProcessSt r at egy we can implement this as:

* Inthebegi n() method we can test whether the special ready file exists. The begin method returnsabool ean
to indicate if we can consume the file or not.

* Intheabort () (Camel 2.10) specia logic can be executed in case the begin operation returned false, for
example to cleanup resources, etc.

e intheconmi t () method we can move thefile and also delete the ready file.

3.15. Flatpack

3.15.1. Flatpack Component

The Flatpack component supports fixed width and delimited file parsing via the FlatPack library.

i Notice:
This component only supports consuming from flatpack files to Object model. Y ou can not (yet) write
from Object modél to flatpack format.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -fl at pack</artifactld>
<ver si on>x. x. X</ ver si on>
<l-- use the same version as your Canmel core version -->
</ dependency>

Talend Mediation Developer Guide 159

http://camel.apache.org/file-language.html
http://flatpack.sourceforge.net

Flatpack Component

3.15.1.1. URI format

fl atpack: [delinfixed]:flatPackConfig.pzmp.xm [?options]

Or for adelimited file handler with no configuration file use

fl at pack: someNamne[?opt i ons]

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

3.15.1.2. URI Options

Name Default Value |Description

delimter , The default character delimiter for delimited files.

textQualifier The text qualifier for delimited files.

i gnor eFi rst Record true Whether the first line isignored for delimited files (for
the column headers).

spl it Rows true The component can either process each row one by one
or the entire content at once.

al | owShort Li nes fal se Allowsfor linesto be shorter than expected and ignores
the extra characters.

i gnor eExt r aCol unms fal se Allows for lines to be longer than expected and ignores

the extra characters.

3.15.1.3. Examples

o fl atpack: fixed: foo. pzmap. xm creates a fixed-width endpoint using the f 0o. pzmap. xm file

configuration.

« flat pack: del i mbar. pznmap. xm creates a delimited endpoint using the bar. pzmap. xm file

configuration.

» fl at pack: f oo creates adelimited endpoint called f oo with no file configuration.

3.15.1.4. Message Headers

Camel will store the following headers on the IN message:

Header

Description

camel Fl at packCount er

The current row index. For spl i t Rows=f al se the
counter isthe total number of rows.

3.15.1.5. Message Body

The component delivers

the data

in the IN message as a

or g. apache. canel . conmponent . f | at pack. Dat aSet Li st object that has converters for

e java.util.Mp

e java. util.List

160

Talend Mediation Developer Guide

Flatpack Component

Usually you want the Map if you process one row at atime (spl i t Rows=tr ue). Use Li st for the entire
content (spl i t Rows=f al se), where each element in the list isa Map . Each Map contains the key for the
column name and its corresponding value.

For example to get the firstname from the sample below:

Map row = exchange. getln(). get Body(Map. cl ass);
String firstNanme = row. get (" FI RSTNAVE") ;

However, you can also alwaysget it asalLi st (evenfor spl i t Rows=t r ue). The same example:

Li st data = exchange. getln().get Body(List.class);
Map row = (Map) data. get (0);
String firstNane = row. get (" FI RSTNAVE") ;

3.15.1.6. Header and Trailer records

The header and trailer notionsin Flatpack are supported. However, you must use fixed record 1Ds:
» header for the header record (must be lowercase)
» trail er forthetrailer record (must be lowercase)

The example below illustrates this fact that we have a header and a trailer. You can omit one or both of them
if not needed.

<RECORD i d="header" startPosition="1" endPosition="3" indicator="HBT">
<COLUWN nane="I| NDI CATOR" | ength="3"/>
<COLUWN nane="DATE" |ength="8"/>
</ RECORD>

<COLUWN name="Fl RSTNAME" | engt h="35" />
<COLUWN name="LASTNAME" | engt h="35" />
<COLUWN nane=" ADDRESS" | engt h="100" />
<COLUWN name="CI TY" | ength="100" />
<COLUWN nane="STATE" |ength="2" />
<COLUWN name="ZIP" | ength="5" />

<RECORD i d="trailer" startPosition="1" endPosition="3" indicator="FBT">
<COLUWN nane="1 NDI CATOR" | engt h="3"/>
<COLUWN nane="STATUS" | ength="7"/>

</ RECORD>

3.15.1.7. Using the endpoint

A common use case is sending afile to this endpoint for further processing in a separate route. For example:

<canel Context xm ns="http://activenqg. apache. org/ canel / schema/ spri ng">
<r out e>
<fromuri="file://sonebDirectory"/>
<to uri="fl at pack: foo"/>
</route>

<r out e>
<fromuri="fl at pack: foo"/ >

</ rout e>

Talend Mediation Developer Guide 161

Flatpack DataFormat

</ canel Cont ext >

Y ou can a'so convert the payload of each message created to a Map for easy Bean Integration

3.15.2. Flatpack DataFormat

The Section 3.15, “Flatpack” component ships with the Flatpack data format that can be used to format between
fixed width or delimited text messagestoalLi st of rowsasMap .

e marsha =fromLi st <Map<String, Object>>toCQut put Stream(canbeconvertedtoStri ng)

e unmarsha =fromj ava.io. | nput Stream(suchasaFileorString)toajava.util.List aan
or g. apache. canel . conponent . f | at pack. Dat aSet Li st instance. Theresult of the operation will
contain all the data. If you need to process each row one by one you can split the exchange, using Section 2.48,

“Splitter” .

Notice: The Flatpack library does currently not support header and trailers for the marshal operation.

3.15.2.1. Options

The data format has the following options:

Option Default Description

definition nul | The flatpack pzmap configuration file. Can be omitted in
simpler situations, but it is preferred to use the pzmap.

fixed fal se Delimited or fixed.

i gnor eFi r st Record true Whether the first line is ignored for delimited files (for the
column headers).

textQualifier " If thetext is qualified with achar suchas" .

delimter , The delimiter char (could be; , or similar)

par ser Factory nul | Uses the default Flatpack parser factory.

3.15.2.2. Usage

To use the data format, simply instantiate an instance and invoke the marhsal or unmarshal operation in the route
builder:

Fl at packDat aFormat fp = new Fl at packDat aFor mat () ;
fp.setDefinition(new Cl assPat hResource(" | NVENTORY-Del i mted. pzmap. xm ")) ;

from("file:order/in").unmarshal (df).to("seda: queue: neworder");

The sample above will read files from the or der/i n folder and unmarshal the input using the Flatpack
configuration file | NVENTORY- Del i mi t ed. pzmap. xm that configures the structure of the files. The result
isaDat aSet Li st object we store on the SEDA queue.

Fl at packDat aFor mat df = new Fl at packDat aFor mat () ;

df . setDefiniti on(new O assPat hResour ce(" PEOPLE- Fi xedLengt h. pzmap. xm ")) ;
df . set Fi xed(true);

df . set |l gnor eFi rst Record(fal se);

from("seda: peopl e"). marshal (df). convert BodyTo(Stri ng. cl ass)

162 Talend Mediation Developer Guide

http://camel.apache.org/bean-integration.html

Freemarker

.to("jnms:queue: peopl e");

In the code above we marshal the data from a Object representation as a Li st of rows as Maps. The rows as
Map containsthe column name as the key, and the corresponding value. This structure can be created in Java code
(for example from a processor). We marshal the data according to the Flatpack format and convert the result as
aSt ri ng object and storeit on aJM S queue.

3.15.2.3. Dependencies

To use Flatpack in your Camel routes, you need to add the a dependency on camel-flatpack which implements
this data format.

If you use Maven you could add the following to your pom.xml, substituting the version number for the latest
release (see the download page for the latest versions).

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -fl at pack</artifactld>
<versi on>1. 5. 0</ ver si on>

</ dependency>

3.16. Freemarker

The freemarker component allows for processing amessage using a FreeMarker template. This can be ideal when
using Templating to generate responses for requests.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>

<gr oupl d>or g. apache. canel </ gr oupl d>

<artifactld>canel -freemarker</artifactld>

<ver si on>x. X. x</ ver si on>

<l-- use the sane version as your Canel core version -->
</ dependency>

3.16.1. URI format

freemar ker: t enpl at eNanme[?opt i ons]

where templateName is the classpath-local URI of the template to invoke; or the complete URL of the remote
template (for example: file://folder/myfile.ftl").

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opt i on=val ue&. . .

3.16.2. Options

Option Default Description

cont ent Cache true Cache for the resource content when it is loaded. Note:
Cached resource content can be cleared via IMX using
the endpoint's {{ clearContentCache} } operation.

Talend Mediation Developer Guide 163

http://localhost:8080/confluence/pages/viewpage.action?pageId=3244313
http://freemarker.org/
http://camel.apache.org/templating.html

Headers

Option Default Description
encodi ng nul | Character encoding of the resource content.
t enpl at eUpdat eDel ay 5 Character encoding of the resource content.

3.16.3. Headers

Headers set during the FreeMarker evaluation are returned to the message and added as headers. This provides a
mechanism for the FreeMarker component to return values to the Message.

An example: Set the header value of f r ui t in the Freemarker template:
${request.setHeader (' fruit', 'Apple')}

The header, f r ui t , isnow accessible from themessage. out . headers .

3.16.4. Freemarker Context

Camd will provide exchange information in the Freemarker context (just aMap). The Exchange istransferred
as.

key value

exchange The Exchange itself.

exchange. properties The Exchange properties.

headers The headers of the In message.

canel Cont ext The Camel Context.

r equest The In message.

body The In message body.

response The Out message (only for InOut message exchange pattern).

3.16.5. Hot reloading

The Freemarker template resource is by default not hot reloadable for both file and classpath resources (expanded
jar).If youset cont ent Cache=f al se, then Camel will not cachetheresource and hot reloading isthus enabl ed.
This scenario can be used in devel opment.

3.16.6. Dynamic templates

Camd provides two headers by which you can define a different resource location for atemplate or the template
content itself. If any of these headersis set then Camel usesthis over the endpoint configured resource. Thisallows
you to provide a dynamic template at runtime.

Header Type Description

FreemarkerConstants. String A URI for the template resource to use instead of the endpoint
FREEMARKER_RESOURCE_URI configured.

FreemarkerConstants. String The template to use instead of the endpoint configured.
FREEMARKER_TEMPLATE

164 Talend Mediation Developer Guide

Samples

3.16.7. Samples

For example you could use something like:

from("activenmy: My. Queue")
.to("freemarker: com acnme/ MyResponse. ftl");

to use a FreeMarker template to formulate a response for a message for InOut message exchanges (where there
isaJMSRepl yTo header).

If you want to use InOnly and consume the message and send it to another destination you could use:

from("activenqg: My. Queue")
.to("freemarker: com acnme/ MyResponse. ftl")
.to("activeny: Anot her. Queue") ;

Todisablethe content cache, for example, for development usagewherethe. f t | template should be hot rel oaded:

from"activeng: My. Queue")
.to("freemarker: com acnme/ MyResponse. ft| ?cont ent Cache=f al se")
.to("activeny: Anot her. Queue") ;

A file-based resource:

from("activenqg: My. Queue")
.to("freemarker:file://nyfol der/ MyResponse. ftl ?cont ent Cache=f al se")
.to("activeny: Anot her. Queue") ;

Initispossible to specify what template the component should use dynamically via a header, so for example:

from "direct:in").setHeader (Freemar ker Const ant s. FREEMARKER RESOURCE _URI) .
constant ("path/to/ny/tenplate.ftl").to("freemarker: dummy");

3.17. FTP

This component provides access to remote file systems over the FTP and SFTP protocols.
Maven users will need to add the following dependency to their pom xm for this component:

<dependency>

<gr oupl d>or g. apache. canel </ gr oupl d>

<artifactld>canel -ftp</artifactld>

<ver si on>x. X. x</ ver si on>

<l-- use the sane version as your Canmel core version -->
</ dependency>

1) UsingFTPS

FTPS (also known as FTP Secure) is an extension to FTP that adds support for the Transport Layer
Security (TLS) and the Secure Sockets Layer (SSL) cryptographic protocols.

1) Librariesused

This component uses two different libraries for the FTP work. FTP and FTPS uses Apache Commons
Net while SFTP uses JCraft JSCH .

Talend Mediation Developer Guide 165

http://commons.apache.org/net/
http://commons.apache.org/net/
http://www.jcraft.com/jsch/

URI format and Options

3.17.1. URI format and Options

ftp://[username@ host name[: port]/directoryname[?opti ons]
sftp://[usernane@ host nane[: port]/directorynane[?o0pti ons]
ftps://[usernane@ host nane[: port]/directorynane[?0pti ons]

where dir ectoryname represents the underlying directory, which can contain nested folders.

If no username is provided, then anonynous login is attempted using no password. If no port number is
provided, Camel will provide default values according to the protocol (ftp = 21, sftp = 22, ftps = 2222).

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opt i on=val ue&. . .

URI Options

Name

Default
Value

Description

user nane

nul |

Specifies the username to use to log into the remote file
system.

password

nul |

Specifiesthe password to useto log into theremotefile system.

bi nary

fal se

Specifies the file transfer mode, BINARY or ASCII. Default
iSASCII (f al se).

di sconnect

fal se

Whether or not to disconnect from remote FTP server right
after use. Can be used for both consumer and producer.
Disconnect will only disconnect the current connection to the
FTP server. If you have a consumer which you want to stop,
then you need to stop the consumer/route instead.

| ocal Wor kDi rectory

nul |

When consuming, alocal work directory can be used to store
the remote file content directly in local files, to avoid loading
the content into memory. Thisis beneficial if you consume a
very big remote file and thus can conserve memory. See bel ow
for more details.

passi veMbde

fal se

FTP and FTPSonly : Specifies whether to use passive mode
connections. Default is active mode (f al se).

securityProtocol

TLS

FTPS only: Sets the underlying security protocol. The
following values are defined: TLS : Transport Layer Security
SSL : Secure Sockets Layer

di sabl eSecur eDat aChannel -
Defaul ts

fal se

FTPSonly : Whether or not to disable using default valuesfor
execPbsz and execPr ot when using secure data transfer.
You can set thisoptionto t r ue if you want to be in absolute
full control what the options execPbsz and execPr ot
should be used.

execPr ot

nul |

FTPS only : Thiswill use option P by default, if secure data
channel defaults hasn't been disabled. Possible values are: C
: Clear S : Safe (SSL protocol only) E : Confidential (SSL
protocol only) P : Private

execPbsz

nul |

FTPSonly : Thisoption specifiesthe buffer size of the secure
datachanndl. If optionuseSecur eDat aChannel hasbeen
enabled and this option has not been explicit set, then value
0 isused.

islnmplicit

fal se

FTPS only: Setsthe security mode(implicit/explicit). Default
isexplicit (f al se).

knownHost sFi | e

nul |

SFTP only: Sets the known_host s file, so that the SFTP
endpoint can do host key verification.

166

Talend Mediation Developer Guide

URI format and Options

Name

Default
Value

Description

privat eKeyFil e

nul |

SFTP only: Set the private key file to that the SFTP endpoint
can do private key verification.

pri vat eKeyFi | ePassphrase

nul |

SFTPonly: Settheprivatekey file passphraseto that the SFTP
endpoint can do private key verification.

stri ct Host KeyChecki ng

no

SFTP only: Sets whether to use strict host key checking.
Possible values are: no, yes and ask. Note: ask does not
make sense to use as Camel cannot answer the question for
you asit is meant for human intervention.

maxi mumReconnect Att enpt s

3

Specifies the maximum reconnect attempts Camel performs
when it tries to connect to the remote FTP server. Use 0 to
disable this behavior.

reconnect Del ay

1000

Delay in milliseconds Camel will wait before performing a
reconnect attempt.

connect Ti meout

10000

the connect timeout in milliseconds. This correspondsto using
ftpdient.connect Ti neout for the FTP/FTPS. For
SFTP this option is also used when attempting to connect.

soTi neout

nul |

FTP and FTPS Only: the
Socket Opti ons. SO TI MEQUT vaue in milliseconds.
Note SFTP will automatic usetheconnect Ti neout asthe
soTi neout .

ti meout

30000

FTP and FTPS Only: the data timeout in milliseconds. This
corresponds to using f t pCl i ent . dat aTi meout for the
FTP/FTPS. For SFTP there is no data timeout.

t hr onExcept i onOnConnect -
Fail ed

fal se

Whether or not to throw an exception if a successful
connection and login could not be established. This allows
a custom pol | Strat egy to deal with the exception, for
exampl e to stop the consumer.

si t eCommand

nul |

FTP and FTPS Only: To execute site commands after
successful login. Multiple site commands can be separated
using anew line character (\n). Usehel p si t e toseewhich
site commands your FTP server supports.

stepw se

true

Camel 2.6 onwards: Whether or not stepwise traversing
directories should be used or not. Stepwise means that it will
'cd' one directory at atime. See more details below. Y ou can
disable thisin case you can't use this approach.

separ at or

Aut o

Camel 2.6 onwards: Dictates what path separator char to use
when uploading files. Aut o = Use the path provided without
atering it. UNI X = Use unix style path separators. W ndows
= Use Windows style path separators.

ftpdient

nul |

FTP and FTPS Only: Allows you to use a custom
or g. apache. commons. net . ftp. FTPO i ent
instance.

ftpdientConfig

nul |

FTP and FTPS Only: Allows you to use a custom
org. apache. commons. net. ftp. FTPC i ent Confi g
instance.

ftplient.trustStore.filg

nul |

FTPS Only: Sets the trust store file, so that the FTPS client
can look up for trusted certificates.

ftpdient.trustStore.type

JKS

FTPS Only: Setsthe trust store type.

Talend Mediation Developer Guide

167

URI format and Options

Name Default Description

Value
ftpdient.trustStore. SunX509 |FTPSOnly: Setsthetrust store agorithm.
al gorithm
ftpdient.trustStore. nul | FTPS Only: Setsthe trust store password.
password
ftplient.keyStore.file |null FTPSOnly: Setsthekey storefile, so that the FTPS client can

look up for the private certificate.

ftplient. keyStore.type |[JKS FTPS Only: Setsthe key store type.
ftpdient. keyStore. SunX509 |FTPSOnly: Setsthe key store algorithm.
al gorithm
ftpdient. keyStore. nul | FTPS Only: Setsthe key store password.
password
ftpdient. keyStore. nul | FTPS Only: Setsthe private key password.
keyPasswor d

1) FTPScomponent default trust store

By default, the FTPS component trust store accepts all certificates. If you only want to trust selective
certificates, you have to configure the trust store withthef t pCl i ent . t r ust St or e. Xxxx options or
by configuring acustomft pd i ent .

Y ou can configure additional optionsontheft pd i ent andft pd i ent Confi g from the URI directly by
usingtheft pClient. orftpdient Config. prefix.

For exampleto set the set Dat aTi meout onthe FTPC i ent to 30 seconds you can do:

from("ftp://foo@yserver ?password=secret & t pd i ent. dat aTi neout =30000")
.to("bean: fo0");

Y ou can mix and match and have use both prefixes, for example to configure date format or timezones.

from("ftp://foo@yserver ?password=secret & t pd i ent. dat aTi neout =30000&" +
"ftpdientConfig.serverlLanguageCode=fr").to("bean:fo0");

Y ou can have as many of these options as you like.

See the documentation of the Apache Commons FTP FTPClientConfig for possible options and more details, and
also Apache Commons FTP FTPClient.

If you do not like having complex configurations inserted in the url you can use ftpdient or
ft pd i ent Confi g by letting Camel look in the Registry for it. For example:

<bean id="myConfig" class="org. apache. commons. net.ftp. FTPC i ent Confi g">
<property nane="l|eni ent Fut ureDat es" val ue="true"/>
<property nane="server LanguageCode" val ue="fr"/>

</ bean>

And then let Camel lookup this bean when you use the # notation in the url.

from("ftp://foo@yserver ?password=secret & t pd i ent Confi g=#nyConfi g")
.to("bean: foo0");

168 Talend Mediation Developer Guide

http://commons.apache.org/net/api/org/apache/commons/net/ftp/FTPClientConfig.html
http://commons.apache.org/net/api/org/apache/commons/net/ftp/FTPClient.html
http://camel.apache.org/registry.html

More URI options

3.17.2. More URI options

1 See Section 3.14, “File” as al the options there also apply to this component.

3.17.3. Stepwise changing directories

Camel FTP can operate in two modes in terms of traversing directories when consuming files (for example,
downloading) or producing files (for example, uploading)

e stepwise
* not stepwise

You may want to pick either one (Camel 2.6 onwards) depending on your situation and security issues (some
Camel end users can only download files if they use stepwise, while others can only download if they do not).
You can usethe st epwi se option to control the behavior.

Note that stepwise changing of directory will in most cases only work when the user is confined to its home
directory and when the home directory isreported as" /" .

The difference between the two behaviours is best illustrated with an example. Suppose we have the following
directory structure on the remote FTP server we need to traverse and download files:

/

/ one

/ one/ t wo

/ one/ t wo/ sub- a
/ one/ t wo/ sub-b

And that we have afile in each of sub-a (a.txt) and sub-b (b.txt) folder.

3.17.3.1. Using stepwise=true (default mode)

TYPE A

200 Type set to A

PVD

257 "/" is current directory.

CQ\D one

250 CWD successful. "/one" is current directory.
QD two

250 CWD successful. "/one/two" is current directory.
SYST

215 UNI X enmul ated by FileZilla

PORT 127,0,0,1, 17,94

200 Port conmand successfu

LI ST

150 Opening data channel for directory |ist.

226 Transfer K

CWD sub-a

250 CWD successful. "/one/two/sub-a" is current directory.
PORT 127,0,0,1, 17,95

200 Port conmand successfu

LI ST

150 Opening data channel for directory |ist.

226 Transfer K

Talend Mediation Developer Guide 169

Stepwise changing directories

CDuP

200 CDUP successful. "/one/two" is current directory.

QWD sub-b

250 OWD successful . "/one/two/sub-b" is current directory.

PORT 127,0,0,1, 17,96

200 Port command successfu

LI ST

150 Opening data channel for directory |ist.
226 Transfer OK

CDUP

200 CDUP successful. "/one/two" is current directory.
W /

250 OAD successful. "/" is current directory.

PWD

257 "/" is current directory.

QWD one

250 ON\D successful. "/one" is current directory.

QWD two

250 OND successful. "/one/two" is current directory.

PORT 127,0,0,1, 17,97

200 Port command successfu

RETR f 0o. t xt

150 Opening data channel for file transfer
226 Transfer OK

W /

250 OND successful. "/" is current directory.

PWD

257 "/" is current directory.

QWD one

250 OW\D successful. "/one" is current directory.

QWD t wo

250 OAD successful. "/one/two" is current directory.

QWD sub-a

250 ON\D successful . "/one/two/sub-a" is current directory.

PORT 127,0,0,1, 17,98

200 Port command successfu

RETR a. t xt

150 Opening data channel for file transfer
226 Transfer K

W /

250 OAD successful. "/" is current directory.

PWD

257 "/" is current directory.

QWD one

250 OW\D successful. "/one" is current directory.

QWD t wo

250 OAD successful. "/one/two" is current directory.

QWD sub-b

250 ON\D successful . "/one/two/sub-b" is current directory.

PORT 127,0,0, 1, 17,99

200 Port conmand successfu

RETR b. t xt

150 Opening data channel for file transfer
226 Transfer K

QWD /

250 OAD successful. "/" is current directory.
QUIT

221 Goodbye

170 Talend Mediation Developer Guide

Examples

di sconnect ed.

Asyou can see when stepwise is enabled, it will traverse the directory structure using CD xxx.

3.17.3.2. Using stepwise=false

230 Logged on

TYPE A

200 Type set to A

SYST

215 UNI X enmul ated by Filezilla

PORT 127,0,0,1, 4, 122

200 Port conmand successfu

LI ST one/two

150 Opening data channel for directory I|ist
226 Transfer K

PORT 127,0,0,1, 4, 123

200 Port conmand successfu

LI ST one/two/ sub-a

150 Opening data channel for directory I|ist
226 Transfer K

PORT 127,0,0,1, 4, 124

200 Port conmand successfu

LI ST one/two/ sub-b

150 Opening data channel for directory I|ist
226 Transfer K

PORT 127,0,0,1, 4, 125

200 Port conmand successfu

RETR one/ two/ f 00. t xt

150 Opening data channel for file transfer
226 Transfer K

PORT 127,0,0,1, 4, 126

200 Port conmand successfu

RETR one/ two/ sub-a/ a. t xt

150 Opening data channel for file transfer
226 Transfer K

PORT 127,0,0,1, 4, 127

200 Port conmand successfu

RETR one/ two/ sub-b/ b. t xt

150 Opening data channel for file transfer
226 Transfer K

QUT

221 Goodhye

di sconnect ed.

Asyou can see when not using stepwise, there are no CD operation invoked at all.

3.17.4. Examples

ftp://someone@oneftpserver. coni public/upl oad/i mages/ hol i day2008?passwor d=
secr et &i nary=t rue
ftp://sonmeoneel se@oneot herftpserver. co. uk: 12049/ report s/ 2008/ passwor d=

Talend Mediation Developer Guide 171

Default when consuming files

secr et &i nary=f al se
ftp://publicftpserver.conl downl oad

FTP Consumer does not support concurrency

The FTP consumer (with the same endpoint) does not support concurrency (the backing FTP client is not
thread safe). You can use multiple FTP consumers to poll from different endpoints. It is only a single
endpoint that does not support concurrent consumers.

The FTP producer does not have thisissue, it supports concurrency.

In the future we will add consumer pooling to Camel to allow this consumer to support concurrency as
well.

i Moreinformation

This component is an extension of the Section 3.14, “File” component, and there are more samples and
details on the Section 3.14, “File” component page.

3.17.5. Default when consuming files

The FTP consumer will by default leave the consumed files untouched on the remote FTP server. You have to
configureit explicitly if youwant it to del ete the files or move them to another location. For example, you can use
del et e=t r ue to delete thefiles, or use nove=. done to move the files into a hidden done subdirectory.

The regular File consumer is different as it will (by default) move filesto a. canel sub directory. The reason
Camel does not do this by default for the FTP consumer is that it may lack permissions by default to be able to
move or delete files.

3.17.5.1. limitations

The option readL ock can be used to force Camel not to consume files that is currently in the progress of being
written. However, this option isturned off by default, asit requires that the user has write access. Thereareonly a
few options supported for FTP. There are other solutionsto avoid consuming filesthat are currently being written
over FTP; for instance, you can write thefile to atemporary destination and move thefile after it has been written.

When moving filesusing move or pr eMbv e option thefilesarerestricted tothe FTP_ROOT folder. That prevents
you from moving files outside the FTP area. If you want to move files to another area, you can use soft links and
move files into a soft linked folder.

3.17.6. Message Headers

The following message headers can be used to affect the behavior of the component

Header Description

Canel Fi | eNarre Specifies the output file name (relative to the endpoint directory)
to be used for the output message when sending to the endpoint.
If neither Camel Fi | eNane or an expression are specified, then a
generated message ID is used as the filename instead.

172 Talend Mediation Developer Guide

https://issues.apache.org/activemq/browse/CAMEL-1682

About timeouts

Header Description

Camel Fi | eNanePr oduced The absolute filepath (path + name) for the output file that was
written. This header is set by Camel and its purpose is providing
end-users the name of the file that was written.

Canel Fi | eBat chl ndex Current index out of total number of files being consumed in this
batch.

Canel Fi | eBat chSi ze Total number of files being consumed in this batch.

Canel Fi | eHost The remote hostname.

Camel Fi | eLocal Wor kPat h Path to the local work file, if local work directory is used.

3.17.7. About timeouts

Thetwo set of libraries (seetop) hasdifferent API for setting timeout. Y ou can usetheconnect Ti meout option
for both of them to set a timeout in milliseconds to establish a network connection. An individual soTi meout
can aso be set on the FTP/FTPS, which corresponds to using f t pCl i ent . soTi nmeout . Notice SFTP will
automatically use connect Ti meout asitssoTi nmeout. Theti neout option only applies for FTP/FTSP
as the data timeout, which corresponds to the ft pCl i ent . dat aTi neout vaue. All timeout values are in
milliseconds.

3.17.8. Using Local Work Directory

Camd supports consuming from remote FTP servers and downloading thefilesdirectly into alocal work directory.
This avoids reading the entire remote file content into memory as it is streamed directly into the local file using
Fi | eCut put St ream.

Camd will storeto aloca file with the same name as the remote file, though with . i npr ogr ess as extension
while the file is being downloaded. Afterwards, the file is renamed to remove the . i npr ogr ess suffix. And
finally, when the Exchange is complete the local fileis deleted.

So if you want to download files from a remote FTP server and store it as files then you need to route to afile
endpoint such as:

from("ftp://soneone@oneserver. con?passwor d=secr et & ocal Wr kDi r ect ory=/t nmp")
.to("file://inbox");

i Optimization by renaming work file

Theroute aboveis ultraefficient asit avoids reading the entire file content into memory. It will download
the remotefile directly to alocal file stream. Thej ava. i 0. Fi | e handleisthen used as the Exchange
body. Thefile producer leveragesthisfact and can work directly onthework filej ava. i 0. Fi | e handle
and perform aj ava. i 0. Fi | e. r enane tothetarget filename. As Camel knowsitisalocal work file,
it can optimize and use arename instead of afile copy, asthe work file is meant to be deleted anyway.

3.17.9. Samples

In the sample below we set up Camel to download all the reports from the FTP server once every hour (60 min)
as BINARY content and store it as files on the local file system.

Talend Mediation Developer Guide 173

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

Samples

prot ect ed Rout eBuil der createRouteBuil der() throws Exception {
return new Rout eBuilder() {
public void configure() throws Exception {
/1 we use a delay of 60 m nutes
/1 (for exanple, once per hour we poll the FTP server)
| ong delay = 60 * 60 * 1000L;

/1l fromthe given FTP server we poll (= download) all the files
/1 fromthe public/reports folder as BI NARY types and store this as
/1l files in a local directory. Canel will use the filenames fromthe

/1 FTPServer. Notice that the FTPConsumer properties must be prefixed
/1 with "consumer.”. In the URL the delay parameter is fromthe
/1l FileConsumer conponent so we should use consuner. del ay as
/1 the URI paraneter name. The FTP Conponent is an extension of the
/1 File Conponent.
from"ftp://tiger:scott@ocal host/public/reports?binary=true&
consuner . del ay=" + delay).to("file://target/test-reports");
}
b
}

And the route using Spring DSL.:

<rout e>
<fromuri="ftp://scott@ ocal host/public/reports?password=
ti ger &np; bi nar y=t r ue&anp; del ay=60000"/ >

<to uri="file://target/test-reports”/>
</route>

3.17.9.1. Consuming a remote FTPS server (implicit SSL) and
client authentication

from

"ftps://adm n@ ocal host: 2222/ publ i ¢/ canel ?passwor d=adm né&securityProt ocol =
SSL& sinplicit=true&tpCient.keyStore.file=./src/test/resources/server.jks
& t pCient. keySt or e. passwor d=passwor d&

ftpdient. keyStore. keyPasswor d=password") . to("bean: foo");

3.17.9.2. Consuming a remote FTPS server (explicit TLS) and a
custom trust store configuration

from("ftps://adm n@ ocal host : 2222/ publ i ¢/ canel ?passwor d=adm n&f t pd i ent.
trustStore.file=./src/test/resources/server.jks& tpCient.trustStore.
passwor d=password").to("bean: foo");

174 Talend Mediation Developer Guide

Filter using org.apache.camel.component.file.GenericFileFilter

3.17.10. Filter using
org.apache.camel.component.file.GenericFileFilter

Came supports pluggable filtering strategies. This strategy it to use the built in
or g. apache. canel . component . file. GenericFil eFilter in Java You can then configure the
endpoint with such afilter to skip certain filters before being processed.

In the sample we have build our own filter that only accepts files starting with report in the filename.

public class MyFileFilter inplenents GenericFileFilter {

public bool ean accept(CenericFile file) {
/1 we only want report files
return file.getFileName().startsWth("report");

}

And then we can configure our route using the filter attribute to reference our filter (using # notation) that we
have defined in the Spring XML file:

<!-- define our sorter as a plain Spring bean -->
<bean id="nyFilter" class="com nyconpany. MyFileFilter"/>

<r out e>
<fromuri=
"ftp://soneuser @oneftpserver. con?password=secret &np; filter=#nyFilter"/>
<to uri="bean: processl nbox"/>

</route>

3.17.11. Filtering using ANT path matcher

The ANT path matcher isafilter that is shipped out-of-the-box in the camel-spring jar. So you need to depend on
camel-spring if you areusing Maven. The reason isthat we leverage Spring's AntPathM atcher to do the matching.

The file paths are matched with the following rules:
» ? matches one character

* * matches zero or more characters

e ** matches zero or more directoriesin a path

The sample below demonstrates how to useit:

<canel Cont ext xml ns="http://canel.apache. org/ schena/ spri ng">
<tenpl ate id="canel Tenpl ate"/ >
<l-- use nyFilter as filter to allow setting ANT paths for which -->
<l-- filesto scan for -->
<endpoi nt i d="nyFTPEndpoi nt"
uri="ftp://adm n@ ocal host : 20123/ ant pat h?passwor d=adni n&r ecur si ve=true&
del ay=10000&i ni ti al Del ay=2000&f i | ter=#nyAntFilter"/>

<r out e>
<fromref="nmyFTPEndpoi nt"/ >

Talend Mediation Developer Guide 175

http://static.springsource.org/spring/docs/3.0.x/api/org/springframework/util/AntPathMatcher.html

Debug logging

<to uri="nock:result"/>
</ rout e>
</ canel Cont ext >

<I-- we use the AntPathMatcherRenmpteFileFilter to use ant paths for -->
<!-- includes and excludes -->
<bean id="myAntFilter"

cl ass="org. apache. canel . component . fil e. Ant Pat hVat cher GenericFileFilter">

<l-- include and file in the subfol der that has day in the name -->
<property nane="incl udes" val ue="**/subfol der/**/*day*"/>
<l-- exclude all files with bad in name or .xm files. -->
<l-- Use commma to separate multiple excludes -->
<property nane="excl udes" val ue="**/*bad*,**/*.xm"/>
</ bean>

3.17.12. Debug logging

This component has log level TRACE that can be helpful if you have problems.

3.18. HI7

The hl7 component is used for working with the HL7 MLLP protocol and the HL7 model using the HAPI library.
This component supports the following:

* HL7 MLLP codec for Mina

» Agnostic dataformat using either plain String objects or HAPI HL7 model objects.

e Type Converter from/to HAPI and String

e HL7 DataFormat using HAPI library

» Even more ease-of-use as it's integrated well with the camel-mina component.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -hl 7</artifactld>
<ver si on>x. X. x</ ver si on>
<l-- use the sane version as your Canel core version -->
</ dependency>

3.18.1. HL7 MLLP protocol

HL7 is often used with the HL7 MLLP protocol that is atext based TCP socket based protocol. This component
ships with a Mina Codec that conforms to the MLLP protocol so you can easily expose a HL7 listener that
accepts HL7 requests over the TCP transport. To expose aHL7 listener service we reuse the existing camel-mina
component where we just use HL7M_LPCodec as codec.

176 Talend Mediation Developer Guide

http://www.hl7.org/
http://hl7api.sourceforge.net/
http://mina.apache.org/

HL7 MLLP protocol

The HL7 MLLP codec has the following options:

Name Default Value Description

startByte 0x0b The start byte spanning the HL7 payload.

endByt el Ox1c Thefirst end byte spanning the HL 7 payload.

endByt e2 0x0d The 2nd end byte spanning the HL7 payload.

char set JVM Default The encoding (is a charset name) to use for the codec.

convert LFt oCR true Will convert \n to \r (0x0d, 13 decimal) as HL7
usually uses\r as segment terminators. The HAPI library
requires the use of \r.

val i dat e true Whether HAPI Parser should validate or not.

3.18.1.1. Exposing a HL7 listener

In our Spring XML file, we configure an endpoint to listen for HL7 requests using TCP:

<endpoi nt id="hl7listener"
uri="mna:tcp://Iocal host: 8888?sync=t rue&codec=#hl 7codec"/ >

Noticewe configureit to use camel-minawith TCP on thelocalhost on port 8888. Weusesync=t r ue toindicate
that thislistener is synchronous and therefore will return a HL 7 response to the caller. Then we setup minato use
our HL7 codec with codec=#hl7codec. Notice that hl7codec is just a Spring bean 1D, so we could have named it
mygreatcodecforhl 7 or whatever. The codec is also set up in the Spring XML file:

<bean id="hl 7codec" cl ass="org. apache. canel . conponent. hl 7. HLYM_LPCodec" >
<property nane="charset" val ue="iso-8859-1"/>
</ bean>

And here we configure the charset encoding to use, and is0-8859-1 is commonly used.
The endpoint hl7listener can then be used in aroute as a consumer, as thisjava DSL exampleillustrates:
from("hl 7socket").to("pati ent LookupService");

Thisis avery ssimple route that will listen for HL7 and route it to a service named patientL ookupService that is
also a Spring bean ID we have configured in the Spring XML as:

<bean i d="pati ent LookupServi ce"
cl ass="com nmyconpany. heal t car e. servi ce. Pat i ent LookupServi ce"/ >

Another powerful feature of Camel isthat we can have our businesslogic in POJO classesthat isnot tied to Camel
as shown here:

public class PatientlLookupService {
public Message | ookupPati ent (Message input) throws HL7Exception {
QRD gqrd = (QRD)i nput. get ("QRD");
String patientld =
grd. get WhoSubj ect Fil ter (0). get | DNunber (). get Val ue();

/1 find patient data based on the patient id and

/1 create a HL7 nobdel object with the response
Message response = ... create and set response data
return response

Talend Mediation Developer Guide 177

HL7 Model using java.lang.String

}

Notice that this class uses just imports from the HAPI library and none from Camel.

3.18.2. HL7 Model using java.lang.String

The HL7MLLP codec uses plain Strings as its data format. Camel uses its Type Converter to convert to/from
strings to the HAPI HL7 model objects. However, you can use plain String objects if you prefer, for instance if
you wish to parse the data yourself.

3.18.3. HL7 Model using HAPI

The HL7 model uses Java objects from the HAPI library. Using this library, we can encode and decode from the
EDI format (ER7) that is mostly used with HL7. With this model you can code with Java objects instead of the
EDI based HL 7 format that can be hard for humans to read and understand.

The ER7 sample below is arequest to lookup a patient with the patient 1D, 0101701234,

MBH| ~~\'\ & MYSENDER| MYRECEI VER| MYAPPLI CATI ON| | 200612211200

| | QRYMNAL9| 1234| P| 2. 4

QRD| 200612211200| R | | Get Pati ent| || 1"RD| 0101701234| DEM |

Using the HL7 model we can work with the data as a ca.uhn.hl7v2.model .M essage.Message object. To retrieve
the patient ID for the patient in the ER7 above, you can do thisin Java code:

Message nsg = exchange. getln(). get Body(Message. cl ass);
QRD grd = (QRD) nsg. get ("QRD") ;
String patientld = qrd. get WioSubj ectFilter(0).getlDNunber (). getVal ue();

Camd has built-in type converters, so when this operation isinvoked:

Message nmsg = exchange. getln(). get Body(Message. cl ass);

Camel will convert the received HL7 datafrom String to Message. Thisis powerful when combined with the HL7
listener, then you as the end-user don't have to work with byte[], String or any other simple object formats. You
can just use the HAPI HL7 model objects.

3.18.4. Message Headers

The unmarshal operation adds these MSH fields as headers on the Camel message:

Key MSH field Example

Canmel HL7Sendi ngAppl i cati on MSH-3 MY SERVER
Camel HL7Sendi ngFacility MSH-4 MY SERVERAPP
Camel HL7Recei vi ngAppl i cati on MSH-5 MY CLIENT

178 Talend Mediation Developer Guide

Options

Key MSH field Example

Camel HL7Recei vi ngFaci lity MSH-6 MY CLIENTAPP
Camel HL7Ti nmest anp MSH-7 20071231235900
Camel HL7Security MSH-8 null

Camel HL7MessageType MSH-9-1 ADT

Camel HL7Tri gger Event MSH-9-2 A01

Canel HL7MessageCont r ol MSH-10 1234

Canel HL7Pr ocessi ngl d MSH-11 P

Canel HL7Ver si onl d MSH-12 24

3.18.5. Options

The HL7 Data Format supports the following options:

Option Default Description
val i dat e true Whether the HAPI Parser should validate.

3.18.6. Dependencies

To use HL7 in your Camel routes you'll need to add a Maven dependency on camel-hl7 listed above, which
implements this data format. The HAPI library is split into a base library and several structures libraries, one for
each HL 7v2 message version.

By default camel-hl7 only references the HAPI base library. Applications are responsible for including structures
libraries themselves. For example, if a application works with HL7v2 message versions 2.4 and 2.5 then the
following dependencies must be added:

<dependency>
<gr oupl d>ca. uhn. hapi </ gr oupl d>
<artifactld>hapi-structures-v24</artifactld>
<ver si on>1. 0</ ver si on>

</ dependency>

<dependency>
<gr oupl d>ca. uhn. hapi </ gr oupl d>
<artifactld>hapi-structures-v25</artifactld>
<versi on>1. 0</versi on>

</ dependency>

Alternatively, an OSGi bundle containing the base library, all structure libraries and required dependencies (on
the bundle classpath) can be downloaded from the HAPI Maven repository:

<dependency>
<gr oupl d>ca. uhn. hapi </ gr oupl d>
<artifactld>hapi-osgi-base</artifactld>
<versi on>1. 0. 1</ ver si on>

</ dependency>

See the Camel Website for examples of this component in use.

Talend Mediation Developer Guide 179

http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-base/1.0/
http://hl7api.sourceforge.net/m2/ca/uhn/hapi
http://hl7api.sourceforge.net/m2/ca/uhn/hapi/hapi-osgi-base/
http://camel.apache.org/hl7.html

HTTP4

3.19. HTTP4

The http4: component provides HTTP based endpoints for consuming external HTTP resources (as a client to
call external serversusing HTTP).

Maven users will need to add the following dependency to their pom xm for this component:
<dependency>

<gr oupl d>or g. apache. canel </ gr oupl d>

<artifactld>canel -httpd</artifactld>

<versi on>x. x. x</ ver si on>

<l-- use the sane version as your Canel core version -->
</ dependency>

3.19.1. URI format

htt p4: host name[: port][/resourceUri][?options]
Thiswill by default use port 80 for HTTP and 443 for HTTPS.
Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ueé&. . .
1) camel-http4 vs camel-jetty
Y ou can produce only to endpoints generated by the HTTP4 component. Therefore it should never be

used as input into your Camel routes. To bind/expose an HTTP endpoint viaa HTTP server as input to
aCamel route, use the Jetty Component instead.

3.19.2. HttpEndpoint Options

Name Default Description
Value
x509Host naneVerifi er See Default value: or g. apache. http. conn. ssl .
Description Br owser Conpat Host naneVeri fi er
Camel 2.7 onwards: You can refer
to a different org.apache. http.conn. ssl.
X509Host naneVeri fi er instance in the
Registry such as org. apache. http. conn. ssl.
StrictHost nameVerifier or

or g. apache. http. conn. ssl .
Al'l owAl | Host naneVerifier .

t hr owExcepti onOnFai l ure |[true Option to disable throwing the
Ht t pOper ati onFai | edExcepti on in case of failed
responses from the remote server. This allows you to get all
responses regardless of the HTTP status code.

bri dgeEndpoi nt fal se If true, HttpProducer will ignore the Exchange HTTP_URI
header, and use the endpoint's URI for requests. You may
also set the throwExceptionOnFailur e to be false to let the
HttpProducer send all the fault response back. Also if set

180 Talend Mediation Developer Guide

http://camel.apache.org/endpoint.html
http://camel.apache.org/registry.html

HttpEndpoint Options

Name

Default
Value

Description

to true HttpProducer and CamelServiet will skip the gzip
processing if the content-encoding is "gzip".

di sabl eSt reantCache

fal se

DefaultHttpBinding will copy the request input stream into a
stream cache and put it into message body if thisoptionisfalse
to support multiple reads, otherwise DefaultHttpBinding will
set the request input stream directly in the message body.

ht t pBi ndi ngRef

nul |

Referenceto aCamel Ht t pBi ndi ng object in the Registry .
Recommended to use the ht t pBi ndi ng option instead.

ht t pBi ndi ng

nul |

To use a custom HttpBinding.

htt pd i ent Confi gur er Ref

nul |

Reference to a Camel HttpdientConfigurer
object in the Registry Recommended to use the
htt pl i ent Confi gur er option instead.

ht t pCont ext

nul |

To use a custom HttpContext when executing requests.

ht t pCont ext Ref

nul |

Reference to a custom org.apache.http.protocol .HttpContext
in the Registry. Recommended to use the httpContext option
instead.

htt pd i ent Confi gurer

nul |

Reference to a
or g. apache. canel . component . http.
Ht t pCl i ent Confi gur er intheRegistry .

htt pdient. XXX

nul |

Setting options on the BasicHttpParams . For
instance httpdC i ent.soTi meout =5000 will set the
SO TIMEQUT to 5 seconds. Look on the setter
methods of the following parameter beans for a
complete reference: AuthParamBean, ClientParamBean,
ConnConnectionParamBean, ConnRouteParamBean,
CookieSpecParamBean, HttpConnectionParamBean and
HttpProtocol ParamBean

cl i ent Connect i onManager

nul |

To wuse a custom org.apache. http.conn.
C i ent Connecti onManager .

transf er Excepti on

fal se

If enabled and an Exchange faled processing on the
consumer side, and if the caused Excepti on was send
back serialized in the response as a appl i cati on/ x-
java-seri al i zed- obj ect content type (for example
using Section 3.23, “Jetty” or Section 3.39, “Servlet”
Camel components). On the producer side the exception
will be deseridlized and thrown as is, instead of
the Ht t pOper ati onFai | edExcepti on . The caused
exception isrequired to be serialized.

maxTot al Connecti ons

200

The maximum number of connections.

connecti onsPer Rout e

20

The maximum number of connections per route.

The following authentication options can also be set on the HttpEndpoint:

3.19.2.1. Setting Basic Authentication and Proxy

Name Default Description
Value
user name nul | Username for authentication.

Talend Mediation Developer Guide 181

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://hc.apache.org/httpcomponents-core-ga/httpcore/apidocs/org/apache/http/params/BasicHttpParams.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/auth/params/AuthParamBean.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/client/params/ClientParamBean.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/params/ConnConnectionParamBean.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/conn/params/ConnRouteParamBean.html
http://hc.apache.org/httpcomponents-client-ga/httpclient/apidocs/org/apache/http/cookie/params/CookieSpecParamBean.html
http://hc.apache.org/httpcomponents-core-ga/httpcore/apidocs/org/apache/http/params/HttpConnectionParamBean.html
http://hc.apache.org/httpcomponents-core-ga/httpcore/apidocs/org/apache/http/params/HttpProtocolParamBean.html
http://camel.apache.org/exchange.html

HttpComponent Options

Name Default Description

Value
password nul | Password for authentication.
domai n nul | The domain name for authentication.
host nul | The host name authentication.
pr oxyHost nul | The proxy host name
pr oxyPor t nul | The proxy port number
pr oxyUser nanme nul | Username for proxy authentication
pr oxyPasswor d nul | Password for proxy authentication
pr oxyDonmai n nul | The proxy domain name
pr oxy Nt Host nul | The proxy Nt host name

3.19.3. HttpComponent Options

Name Default Description
Value

ht t pBi ndi ng nul | To use a custom org. apache. canel . conponent .
http. H t pBi ndi ng .

htt pd i ent Confi gurer nul | To use a custom org. apache. canel . conponent .
http. Ht pd i ent Confi gurer .

ht t pConnect i onManager nul | Touseacustomor g. apache. cormons. httpclient.
Ht t pConnect i onManager .

ht t pCont ext nul | To use a custom HttpContext when executing requests.

x509Host naneVeri fi er nul | Camel 27 onwards To use a custom

or g. apache. http. conn. ssl .
X509Host naneVeri fi er

3.19.4. Message Headers

Name Type Description

Exchange. HTTP_URI String |URItocal. Thiswill override existing URI set directly onthe
endpoint.

Exchange. HTTP_PATH String |Reguest URI'spath, the header will be usedto build the request
URI withthe HTTP_URI.

Exchange. HTTP_QUERY String |URI parameters. This will override existing URI parameters
set directly on the endpoint.

Exchange. i nt The HTTP response code from the external server. Is 200 for

HTTP_RESPONSE_CCDE OK.

Exchange. String |Character encoding.

HTTP_CHARACTER_ENCODI NG

Exchange. CONTENT _TYPE String |The HTTP content type. Is set on both the IN and OUT

message to provide a content type, such ast ext/ ht mi .

Exchange. CONTENT_ENCODI NG

5St ri ng

The HTTP content encoding. Is set on both the IN and OUT
message to provide a content encoding, such asgzi p .

182

Talend Mediation Developer Guide

Message Body

3.19.5. Message Body

Camel will storethe HTTP response from the external server on the OUT body. All headers from the IN message
will be copied to the OUT message, so headers are preserved during routing. Additionally Camel will add the
HTTP response headers as well to the OUT message headers.

3.19.6. Response code

Camel will handle according to the HT TP response code:
» Response code isin the range 100..299, Camel regards it as a success response.

» Response code is in the range 300..399, Camel regards it as a redirection response and will throw a
Ht t pOper at i onFai | edExcept i on with the information.

* Response code is 400+, Camel regards it as an externa server failure and will throw a
Ht t pOper at i onFai | edExcept i on with the information.

i throwExceptionOnFailure

The option, throwExcepti onOnFailure, can be set to false to prevent the
Ht t pOper at i onFai | edExcepti on from being thrown for failed response codes. This allows
you to get any response from the remote server. There is a sample below demonstrating this.

3.19.7. HttpOperationFailedException

This exception contains the following information:
* The HTTP status code

» The HTTP status line (text of the status code)

» Redirect location, if server returned aredirect

» Responsebody asaj ava. | ang. Stri ng, if server provided a body as response

3.19.8. Calling using GET or POST

The following algorithm is used to determine whether the GET or POST HTTP method should be used: 1. Use
method provided in header. 2. GET if query string is provided in header. 3. GET if endpoint is configured with a
query string. 4. POST if thereis datato send (body is not null). 5. GET otherwise.

3.19.9. How to get access to HttpServletRequest and
HttpServletResponse

Y ou can get access to these two using the Camel type converter system using NOTE Y ou can get the request and
response not just from the processor after the camel-jetty or camel-cxf endpoint.

Ht t pSer vl et Request request = exchange. getln(). get Body(

Talend Mediation Developer Guide 183

Configuring URI to call

Ht t pSer vl et Request . cl ass);
Ht t pSer vl et Request response =
exchange. getIn(). get Body(Htt pServl et Response. cl ass);

3.19.10. Configuring URI to call

You can set the HTTP producer's URI directly form the endpoint URI. In the route below, Camel will call out to
the external server, ol dhost , using HTTP.

from"direct:start").to("http4://ol dhost");
And the equivalent Spring sample;

<canel Context xm ns="http://activeny. apache. org/ canel / schenma/spring">
<r out e>
<fromuri="direct:start"/>
<to uri="http4://ol dhost"/>
</route>
</ camnel Cont ext >

Y ou can override the HTTP endpoint URI by adding a header with the key, Ht t pConst ants. HTTP_URI , on
the message.

from"direct:start")
. set Header (Ht t pConst ants. HTTP_URI, constant ("http://newhost"))
.to("http4://ol dhost");

In the sample above Camel will call the http://newhost despite the fact the endpoint is configured with http4://
oldhost. where Constantsisthe class, or g. apache. canel . conponent . htt p4. Const ant s .

3.19.11. Configuring URI Parameters

The http producer supports URI parametersto be sent to the HTTP server. The URI parameters can either be set
directly on the endpoint URI or as a header with the key Exchange. HTTP_QUERY on the message.

from"direct:start").to("http4://ol dhost ?order=123&det ai | =short");
Or options provided in a header:
from"direct:start")

. set Header (Exchange. HTTP_QUERY, constant ("order=123&det ai | =short"))
.to("http4://ol dhost");

3.19.12. How to set the http method (GET/POST/
PUT/DELETE/HEAD/OPTIONS/TRACE) to the HTTP
producer

The HTTP4 component provides a way to set the HTTP request method by setting the message header. Here is
an example;

184 Talend Mediation Developer Guide

Configuring a Proxy

from"direct:start")
. set Header (Exchange. HTTP_METHQOD,
const ant (or g. apache. canel . conponent . htt p4. Ht t pMet hods. POST))
.to("http4://ww. googl e. cont)
.to("nock:results");

The method can be written a bit shorter using the string constants:
. set Header (" Canel H t pMet hod", constant ("POST"))
And the equivalent Spring sample:

<canel Context xm ns="http://activeny. apache. or g/ canel / schenma/ spri ng">
<rout e>
<fromuri="direct:start"/>
<set Header header Narme="Canel Ht t pMet hod" >
<const ant >POST</ const ant >
</ set Header >
<to uri="http4://ww. googl e. cont'/ >
<to uri="nock:results"/>
</route>
</ canel Cont ext >

3.19.13. Configuring a Proxy

The HTTP4 component provides away to configure a proxy.

from"direct:start")
.to("http4://ol dhost ?pr oxyHost =www. mypr oxy. con&pr oxyPor t =80") ;

Thereis also support for proxy authentication viathe pr oxyUser name and pr oxyPasswor d options.

3.19.13.1. Using proxy settings outside of URI

To avoid System properties conflicts, you can set proxy configuration only from the Camel Context or URI. Java
DSL:

context.getProperties().put("http.proxyHost", "172.168.18.9");
context.getProperties().put("http.proxyPort" "8080");

Spring XML

<canel Cont ext >
<properties>
<property key="http. proxyHost" val ue="172.168. 18.9"/>
<property key="http. proxyPort" val ue="8080"/>
</ properties>
</ camel Cont ext >

Camd will first set the settings from Java System or Camel Context Properties and then the endpoint proxy options
if provided. So you can override the system properties with the endpoint options.

Talend Mediation Developer Guide 185

Configuring charset

3.19.14. Configuring charset

If you are using POST to send data you can configure the char set using the Exchange property:

exchange. set Propert y(Exchange. CHARSET NAME, "I SO 8859-1");

3.19.14.1. Sample with scheduled poll

This sampl e polls the Google homepage every 10 seconds and write the pageto thefile message. ht i :

from("timer://foo?fixedRat e=true&del ay=0&peri od=10000")
.to("http4://ww. googl e. coni)
. set Header (Fi | eConponent . HEADER_FI LE_NAME, "nessage. htmi ")
.to("file:target/google");

3.19.14.2. URI Parameters from the endpoint URI

In this sample we have the complete URI endpoint that is just what you would have typed in a web browser.
Multiple URI parameters can of course be set using the & character as separator, just as you would in the web
browser. Camel does no tricks here.

/1 we query for Canel at the Googl e page
t enpl at e. sendBody(" htt p4://wwmv. googl e. conif search?g=Canel ", null);

3.19.14.3. URI Parameters from the Message

Map headers = new HashMap();

headers. put (Ht t pProducer . QUERY, "g=Canel & r=I ang_en");

/1 we query for Camel and English | anguage at Googl e

t enpl at e. sendBody(" htt p4://ww. googl e. conl search", null, headers);

In the header value above notice that it should not be prefixed with ? and you can separate parameters as usual
with the & char.

3.19.14.4. Getting the Response Code

You can get the HTTP response code from the HTTP4 component by getting the value from the Out message
header with Ht t pPr oducer . HTTP_RESPONSE CCDE .

Exchange exchange =
tenpl at e. send("http4://ww. googl e. coml search", new Processor() {
public void process(Exchange exchange) throws Exception {
exchange. get I n(). set Header (
Ht t pProducer . QUERY, constant ("hl =en&q=acti veny"));

1)

186 Talend Mediation Developer Guide

Disabling Cookies

Message out = exchange. get Qut ();
i nt responseCode = out.get Header (Htt pProducer. HTTP_RESPONSE CODE,
I nt eger. cl ass) ;

3.19.15. Disabling Cookies

To disable cookies you can set the HTTP Client to ignore cookies by adding this URI option:
htt pd i ent. cooki ePol i cy=i gnor eCooki es

3.19.16. Advanced Usage

If you need more control over the HT TP producer you should usethe Ht t pConponent whereyou can set various
classes to give you custom behavior.

3.19.16.1. Setting up SSL for HTTP Client

Basicaly camel-http4 component is built on the top of Apache HTTP client.
Please refer to SSL/TLS customization for detals or have a look into the
or g. apache. canel . conponent . htt p4. Ht t psSer ver Test Support unit test base class. You can
also implement a custom or g. apache. canel . conponent . htt p4. Ht t pCl i ent Confi gurer to do
some configuration on the http client if you need full control of it.

However if you just want to specify the keystore and truststore you can do this with Apache HTTP
Ht t pC i ent Confi gur er, for example:

KeyStore keystore = ...;
KeyStore truststore = ...;

ScheneRegi stry registry = new ScheneRegi stry();
registry.regi ster(new Schene("https", 443, new SSLSocket Fact ory(
keystore, "nmypassword", truststore)));

And then you need to create a class that implements Ht t pCl i ent Conf i gur er, and registers https protocol
providing a keystore or truststore per example above. Then, from your Camel route builder class you can hook
it up like so:

Ht t pConponent htt pConponent =
get Cont ext () . get Conponent ("http4", HttpConponent.cl ass);
ht t pConponent . set Ht t pCl i ent Confi gurer (new MyHtt pdl i ent Configurer());

If you are doing this using the Spring DSL, you can specify your Ht t pCl i ent Conf i gur er using the URI.
For example:

<bean id="nyHtt pd i ent Configurer"
class="ny. https. Ht plient Configurer">
</ bean>

<to uri="https4://myhost nane. com 443/ myURL?ht t pd i ent Confi gurer=
nyHtt pd i ent Confi gurer"/>

Talend Mediation Developer Guide 187

http://hc.apache.org/
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html#d4e537

Jasypt

Aslong asyou implement the HttpClientConfigurer and configure your keystore and truststore as described above,
it will work fine.

3.20. Jasypt

Jasypt isasimplified encryption library which makes encryption and decryption easy. Camel integrateswith Jasypt
to allow sensitive information in Section 3.33, “Properties’ filesto be encrypted. By dropping canel - j asypt
on the classpath those encrypted values will automatic be decrypted on-the-fly by Camel. This ensuresthat human
eyes can't easily spot sensitive information such as usernames and passwords.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel-jasypt</artifactld>
<versi on>X. X. X</ ver si on>
<l-- use the sane version as your Canmel core version -->
</ dependency>

3.20.1. Tooling

The Section 3.20, “Jasypt” component provides a little command line tooling to encrypt or decrypt values.
The console output the syntax and which options it provides:
Apache Canel Jasypt takes the follow ng options

-h or -help = Displays the help screen

-c or -command <command> = Command either encrypt or decrypt
-p or -password <password> = Password to use

-i or -input <input> = Text to encrypt or decrypt

-a or -algorithm<algorithne = Optional algorithmto use

For example to encrypt the value t i ger you run with the following parameters. In the apache Camel kit, you
cd into the lib folder and run the following java cmd, where <CAMEL_HOME> is where you have downloaded
and extract the Camel distribution.

$ cd <CAMVEL_HOVE>/1i b
$ java -jar canel-jasypt-2.5.0.jar -c encrypt -p secret -i tiger

Which outputs the following result
Encrypted text: gaEEacuWBULti 8LcMyyj Kw==

This means the encrypted representation gaEEacuW/BUt i 8LcMyyj Kw== can be decrypted back tot i ger if
you know the master password whichwassecr et . If you run the tool again then the encrypted value will return
adifferent result. But decrypting the value will always return the correct original value.

So you can test it by running the tooling using the following parameters:

$ cd <CAMEL_HOVE>/1i b
$ java -jar canel-jasypt-2.5.0.jar -c decrypt -p secret
-i gaEEacuWBUt i 8LcMyyj Kw==

188 Talend Mediation Developer Guide

http://www.jasypt.org/

URI Options

Which outputs the following result:
Decrypted text: tiger

The ideais then to use those encrypted values in your Section 3.33, “Properties’ files. Notice how the password
value is encrypted and the value has the tokens surrounding ENC(val ue here)

refer to a nock endpoi nt nane by that encrypted password
cool . resul t =nock: {{ cool . passwor d}}

here is a password which is encrypted
cool . passwor d=ENC(bsVWuV37gQCQHFU7KOO3Wh==)

3.20.1.1. Tooling dependencies for Camel 2.6

The tooling requires the following JARs in the classpath, which has been enlisted in the MANI FEST. M file of
canel -j asypt withopti onal / asprefix. Hence why the java cmd above can pickup the needed JARs from
the Apache Distribution in the opt i onal directory.

jasypt-1.6.jar comons-lang-2.4.jar comobns-codec-1.4.jar icu4j-4.0.1.jar

1) Javalbusers
Thei cu4j-4.0. 1. ar isonly needed when running on JDK 1.5.

This JAR is not distributed by Apache Camel and you have to download it manually and copy it to the
| i b/ opti onal directory of the Camel distribution. Y ou can download it from Apache Central Maven

repo .

3.20.1.2. Tooling dependencies for Camel 2.7 onwards

Jasypt 1.7 onwards is now fully standalone so no additional JARs is needed.

3.20.2. URI Options

The options below are exclusive for the Section 3.20, “Jasypt” component.

Name Default Value Type Description

password nul | String Specifies the master password to use for
decrypting. This option is mandatory. See
below for more details.

al gorithm nul | String Name of an optional algorithm to use.

3.20.3. Protecting the master password

The master password used by Section 3.20, “Jasypt” must be provided, so it is capable of decrypting the values.
However having this master password out in the open may not be an ideal solution. Therefore you could for

Talend Mediation Developer Guide 189

http://repo2.maven.org/maven2/com/ibm/icu/icu4j/4.0.1/
http://repo2.maven.org/maven2/com/ibm/icu/icu4j/4.0.1/

Example with Java DSL

example provide it as a WM system property or as a OS environment setting. If you decide to do so then the
passwor d option supports prefixes which dictates this. sysenv: meansto lookup the OS system environment
with the given key. sys: meansto lookup a JVM system property.

For example you could provided the password before you start the application
$ export CAMEL_ENCRYPTI ON_PASSWORD=secr et

Then start the application, such as running the start script.

When the application is up and running you can unset the environment

$ unset CAMEL_ENCRYPTI ON_PASSWORD

The password option is then a matter of defining as follows:
passwor d=sysenv: CAVEL ENCRYPTI ON_PASSWORD.

3.20.4. Example with Java DSL

In Java DSL you need to configure Section 3.20, “ Jasypt” asaJasypt Properti esPar ser instance and set
it on the Section 3.33, “Properties’ component as shown below:

/1 create the jasypt properties parser

Jasypt Properti esParser jasypt = new JasyptPropertiesParser();
/1 and set the master password

j asypt. set Password("secret");

/1 create the properties conponent
Properti esConmponent pc = new Properti esConponent ();
pc. set Locat i on(
"cl asspat h: or g/ apache/ canel / conponent / j asypt/ myproperties. properties");
/1 and use the jasypt properties parser so we can decrypt val ues
pc. set Properti esParser(jasypt);

/1 add properties component to Canel context
cont ext . addConponent (" properties", pc);

The properties file mypr operti es. properti es then contain the encrypted value, such as shown below.
Notice how the password value is encrypted and the value has the tokens surrounding ENC(val ue here)

refer to a nock endpoi nt nane by that encrypted password
cool . resul t =nock: {{cool . passwor d}}

here is a password which is encrypted
cool . passwor d=ENC(bs\VWOuV37gQCQHFU7KOI3Wh==)

3.20.5. Example with Spring XML

In Spring XML you needto configuretheJasypt Pr operti esPar ser whichisshown below. Thenthe Camel
Section 3.33, “Properties’ component istold to usej asypt asthe properties parser, which means Section 3.20,
“Jasypt” have its chance to decrypt values looked up in the properties.

190 Talend Mediation Developer Guide

JCR

<l-- define the jasypt properties parser with the given password -->
<bean id="jasypt"
cl ass="org. apache. canel . component . j asypt . Jasypt Properti esParser">
<property nane="password" val ue="secret"/>
</ bean>

<l-- define the Camel properties conponent -->
<bean i d="properties"
cl ass="org. apache. canel . conponent . properties. Properti esConponent ">

<l-- the properties file is in the classpath -->
<property nane="|ocati on"
val ue=
"cl asspat h: or g/ apache/ canel / conponent / j asypt/ myprops. properti es"/>
<lI-- and let it |leverage the jasypt parser -->
<property nane="propertiesParser"” ref="jasypt"/>
</ bean>

The Section 3.33, “Properties” component can also be inlined inside the <camel Cont ext > tag which is shown
below. Notice how we use the pr oper t i esPar ser Ref attribute to refer to Section 3.20, “ Jasypt” .

<l-- define the jasypt properties parser with the given password -->
<bean id="jasypt"
cl ass="org. apache. canel . conponent . j asypt. Jasypt Properti esParser">
<l-- password is nandatory, you can prefix it with sysenv: or sys:
to indicate it should use an OS environnment or JVM system property
val ue, so you don't have the naster password defined here -->
<property nane="password" val ue="secret"/>
</ bean>

<canel Cont ext xm ns="http://canel.apache. org/ schena/ spri ng">
<l-- define the Canel properties placeholder and let it use jasypt -->
<pr opertyPl acehol der
i d="properties"
| ocati on=
"cl asspat h: or g/ apache/ canel / conponent/j asypt/ nmyproperties. properties"
properti esParser Ref ="j asypt"/>
<r out e>
<fromuri="direct:start"/>
<to uri="{{cool .result}}"/>
</route>
</ camel Cont ext >

3.21. JCR

The j cr component allows you to add nodes to a JCR (JSR-170) compliant content repository (for example,
Apache Jackrabbit).

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel-jcr</artifactld>
<ver si on>x. X. x</ ver si on>
<l-- use the sane version as your Canel core version -->

Talend Mediation Developer Guide 191

http://jackrabbit.apache.org/

URI format

</ dependency>

3.21.1. URI format

jer:/luser:password@ epository/ path/to/ node

3.21.2. Usage

Ther eposi t ory element of the URI is used to look up the JCR Reposi t or y object in the Camel context
registry.

If amessageis sent to a JCR producer endpoint:

» A new node s created in the content repository,

 All the message properties of the IN message are transformed to JCR Val ue instances and added to the new
node,

» Thenode's UUID isreturned in the OUT message.

3.21.3. Message properties

All message properties are converted to node properties, except for the Canel Jcr NodeNane property (you can
refer to Jcr Const ant s. NODE_NAME in your code), which is used to determine the node name.

3.21.4. Example

The snippet below creates a node named node under the / hone/ t est node in the content repository. One
additional attribute is added to the node aswell: ny. cont ent s. pr oper t y which will contain the body of the
message being sent.

from("direct:a").setProperty(JcrConstants. JCR_ NODE NAME, constant("node"))
.setProperty("ny.contents. property", body())
.to("jcr://user:pass@epository/hone/test");

3.22. JDBC

The jdbc component enables you to access databases through JDBC, where SQL queries and operations are sent
in the message body. This component uses the standard JDBC API, unlike the Section 3.45, “ SQL Component”
component, which uses spring-jdbc.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -jdbc</artifactld>

192 Talend Mediation Developer Guide

URI format

<ver si on>x. x. x</ ver si on>
<l-- use the sanme version as your Canmel core version -->

</ dependency>

This component can only be used to define producer endpoints, which means that you cannot use the
JDBC component inaf r on{) statement.

This component can not be used as a Transactional Client. If you need transaction support in your route,
’ you should use the Section 3.45, “SQL Component” component instead.

3.22.1. URI format

j dbc: dat aSour ceNare[?opt i ons]

This component only supports producer endpoints.

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ueé&. . .

3.22.2. Options

Name

Default
Value

Description

readSi ze

The default maximum number of rows that can be read by a
polling query. The default value is 0.

st at enment . <xxx>

nul |

Sets additional optionsonthej ava. sql . St at enent that
is used behind the scenes to execute the queries. For instance,
st at ement . maxRows=10 . For detailed documentation,
seethe j ava. sql . St at enent javadoc documentation.

useJDBC4Col utmNaneAnd-
Label Semanti cs

true

Sets whether to use JDBC 4/3 column label/name semantics.
You can use this option to turn it f al se in case you have
issues with your JDBC driver to select data. Thisonly applies
when using SQL SELECT using aliases (for example, SQL
SELECT id as identifier, name as gi ven_nane
from persons).

r eset Aut oCommi t

true

Came will set the autoCommit on the JDBC connection to
be false, commit the change after executing the statement
and reset the autoCommit flag of the connection at the end,
if the resetAutoCommit is true. If the JDBC connection
doesn't support resetting the autoCommit flag, you can set the
resetAutoCommit flag to be false, and Camel will not try to
reset the autoCommit flag.

3.22.3. Result

Theresultisreturnedinthe OUT body asan Ar r ayLi st <HashMap<Stri ng, Obj ect>>.ThelLi st object
contains the list of rows and the Map objects contain each row with the St r i ng key as the column name.

Note: This component fetches Resul t Set Met aDat a to be able to return the column name as the key in the

Map .

Talend Mediation Developer Guide 193

http://camel.apache.org/transactional-client.html
http://java.sun.com/j2se/1.5.0/docs/api/java/sql/Statement.html

Samples

3.22.3.1. Message Headers

Header Description

Canel JdbcRowCount If the query is a SELECT, query the row count is returned in this OUT
header.

Camel JdbcUpdat eCount If the query isan UPDATE, query the update count is returned in thisOUT
header.

Canel Gener at edKeysRows Rows that contain the generated keys. If you insert data using SQL
INSERT, setting this valueto true causes the generated keysto be returned
in headers.

Canel Gener at edKeys- The number of rowsin the header that contains generated keys.
RowCount

3.22.4. Samples

In the following example, we fetch the rows from the customer table.
First we register our datasource in the Camel registry ast est db :

Jndi Regi stry reg = super.createRegistry();
reg. bi nd("testdb", ds);
return reg;

Then we configure a route that routes to the JDBC component, so the SQL will be executed. Note how we refer
tothet est db datasource that was bound in the previous step:

/1l let's add a sinple route

public void configure() throws Exception {
from("direct:hello").to("jdbc:testdb?readSi ze=100");

}

Or you can create a Dat aSour ce in Spring like this:

<canel Context id="canel" xm ns="http://canel.apache. org/schenma/spring">
<r out e>
<fromuri="tiner://kickoff?period=10000"/>
<set Body>
<const ant >sel ect * from custoner </ const ant >
</ set Body>

<to uri="jdbc:testdb"/>
<to uri="nock:result"/>
</ rout e>

</ canel Cont ext >

<!-- Just add a denp to show how to
bind a date source for Canel in Spring-->
<bean i d="t est db"
cl ass="org. spri ngfranewor k. j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property nane="driverd assNane" val ue="org. hsql db. j dbcDriver"/>
<property nane="url" val ue="j dbc: hsql db: mem canel _j dbc" />
<property nane="usernane" val ue="sa" />
<property nane="password" val ue="" />
</ bean>

194 Talend Mediation Developer Guide

We create an endpoint, add the SQL query to the body of the IN message, and then send the exchange. The result
of the query isreturned in the OUT body:

/1 first we create our exchange using the endpoint

Endpoi nt endpoi nt cont ext . get Endpoi nt ("direct: hello");
Exchange exchange endpoi nt. cr eat eExchange() ;

/1 then we set the SQ on the in body

exchange. getIn(). set Body("select * from customer order by ID");

/1 now we send the exchange to the endpoint, and receive Canel response
Exchange out = tenpl ate.send(endpoi nt, exchange);

/1 assertions of the response

assert Not Nul | (out);

assertNot Nul | (out.getQut());

ArraylLi st <HashMap<String, Object>> data = out.getQut (). getBody(
ArraylLi st.cl ass);

assert Not Nul | ("out body could not be converted to an ArraylList - was: "
+ out.getQut().getBody(), data);

assert Equal s(2, data.size());

HashMap<String, Object> row = data.get(0);

assert Equal s("cust1", row.get("1D"));

assert Equal s("j bl oggs", row. get ("NAVE"));

row = data.get(1);

assert Equal s("cust2", row.get("1D"));

assert Equal s("nsandhu", row. get ("NAVE"));

If you want to work on the rows one by oneinstead of the entire ResultSet at once you need to use the Section 2.48,
“Splitter” EIP such as:

from("direct:hello")
/1 here we split the data fromthe testdb into new nessages one by one
/1 so the nmock endpoint will receive a nessage per rowin the table
.to("jdbc:testdb").split(body()).to("nock:result");

3.23. Jetty

Thejetty component provides HT TP-based endpointsfor consuming HT TP requests. That is, the Jetty component
behaves as a simple Web server. Jetty can also be used as a http client which mean you can also use it with Camel
as a Producer.

Note Jetty is stream based, which means the input it receives is submitted to Camel as a stream. That means you
will only be able to read the content of the stream once. If you find a situation where the message body appears
to be empty or you need to access the data multiple times (for example,: doing multicasting, or redelivery error
handling) you should use Stream Caching or convert the message body to a St r i ng which is safe to be re-read
multiple times.

3.23.1. URI format

jetty:http://hostnane[:port][/resourceUri][?options]

Talend Mediation Developer Guide 195

http://camel.apache.org/endpoint.html
http://camel.apache.org/stream-caching.html

Options

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

3.23.2. Options

Name

Default
Value

Description

sessi onSupport

fal se

Specifies whether to enabl e the session manager on the server
side of Jetty.

htt pdient. XXX

nul |

Configuration of Jetty's HttpClient . For example,
settinght t pCl i ent . i dl eTi neout =30000 setstheidle
timeout to 30 seconds.

ht t pBi ndi ngRef

nul |

Referenceto an Camel Ht t pBi ndi ng object in the Registry
. Ht t pBi ndi ng can be used to customize how a response
should be written for the consumer.

j ettyHt t pBi ndi ngRef

nul |

Reference to a Camel Jet t yHt t pBi ndi ng object in the
Registry . Jet t yHt t pBi ndi ng can be used to customize
how a response should be written for the producer.

mat chOnUri Prefi x

fal se

Whether or not the Canel Ser vl et shouldtry tofind atarget
consumer by matching the URI prefix if no exact match is
found. See here How do | let Jetty match wildcards .

handl er s

nul |

Specifies a comma-delimited set of
org.nortbay.jetty. Handl er instances in your
Registry (such as your Spring Appl i cati onCont ext).
These handlers are added to the Jetty serviet context (for
example, to add security).

chunked

true

If this option is false Jetty servlet will disable the HTTP
streaming and set the content-length header on the response

enabl eJnx

fal se

If thisoptionistrue, Jetty IM X support will be enabled for this
endpoint. See Jetty IMX support for more details.

di sabl eSt reantCache

fal se

Determines whether or not the raw input stream from Jetty is
cached or not (Camel will read the stream into ain memory/
overflow to file, Stream Caching) cache. By default Camel
will cache the Jetty input stream to support reading it multiple
timesto ensure it Camel can retrieve all data from the stream.
However you can set this option to true when you for
example need to access the raw stream, such as streaming it
directly to afile or other persistent store. DefaultHttpBinding
will copy the request input stream into a stream cache and put
it into message body if thisoptionisf al se to support reading
the stream multiple times. If you use [Jetty] to bridge/proxy
an endpoint then consider enabling this option to improve
performance, in case you do not need to read the message
payload multiple times.

bri dgeEndpoi nt

fal se

If the option is true, HttpProducer will ignore the
Exchange.HTTP_URI header, and use the endpoint's URI for
request. You may also set the throwExceptionOnFailure to
be false to let the HttpProducer send all the fault response
back. If the optionistrue, HttpProducer and Camel Servlet will
skip the gzip processing if the content-encodingis"gzip". Also
consider setting *disableStreamCache* to true to optimize
when bridging.

196

Talend Mediation Developer Guide

http://wiki.eclipse.org/Jetty/Tutorial/HttpClient
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://localhost:8080/confluence/pages/viewpage.action?pageId=3244612
http://camel.apache.org/registry.html
http://camel.apache.org/stream-caching.html

Message Headers

Name Default Description
Value
enabl eMul tipartFilter true Whether Jetty org. ecli pse. jetty.servlets.

Mul ti Part Filter isenabled or not. You should set this
valueto f al se when bridging endpoints, to ensure multipart
requestsis proxied/bridged as well.

mul tipartFilterRef nul | Camel 2.6 onwards: Allows using a custom multipart filter.
Note: setting nul ti part Fi | t er Ref forces the value of
enabl eMul tipartFilter totrue.

Fi |l t er sRef nul | Camd 2.9: Allowsusing acustom filter whichisput into alist
and can be found in the Registry

ssl Cont ext Par anet er sRef |nul | Camel 2.8: Reference to an org.apache.camel.util.jsse.
SSL ContextParameters object in the Camel Registry. This
reference overrides any configured SSL ContextParameters at
the component level.

traceEnabl ed fal se Specifies whether to enable HTTP TRACE for this Jetty
consumer. By default TRACE isturned off.
conti nuati onTi neout nul | Camel 2.6 onwards: Allows to set atimeout in milliseconds

when using Section 3.23, “Jetty” as consumer (server). By
default Jetty uses 30000. Y ou can useavaueof <= 0 to never
expire. If a timeout occurs then the request will be expired
and Jetty will return back a http error 503 to the client. This
optionisonly in use when using Section 3.23, “ Jetty” with the
Asynchronous Routing Engine .

useConti nuati on true Camel 2.6 onwar ds. Whether or not to use Jetty continuations
for the Jetty Server.

3.23.3. Message Headers

Camed uses the same message headers as the Section 3.19, “HTTP4” component. It also uses
(Exchange.HTTP_CHUNKED,CamelHttpChunked) header to turn on or turn off the chunked encoding on the
camel-jetty consumer.

Camd also populatesall request.parameter and request.headers. For example, given aclient request withthe URL,
http://nyserver/myserver?orderi d=123 ,theexchangewill contain aheader named or der i d with
the value 123.

You can get the request.parameter from the message header not only from Get Method, but also other HTTP
methods.

3.23.4. Usage

The Jetty component only supports consumer endpoints. Therefore a Jetty endpoint URI should be used only as
the input for a Camel route (in af ron() DSL cal). To issue HTTP requests against other HTTP endpoints,
use the HTTP4 Component

3.23.5. Component Options

TheJet t yHt t pConponent provides the following options:

Talend Mediation Developer Guide 197

http://camel.apache.org/asynchronous-routing-engine.html
http://wiki.eclipse.org/Jetty/Feature/Continuations

Sample

Properties

Name Default Description
Value

enabl eJnx fal se If thisoptionistrue, Jetty IMX support will be enabled for this
endpoint. See Jetty IMX support for more details.

ssl KeyPasswor d nul | Consumer only : The password for the keystore when using
SSL.

ssl Password nul | Consumer only : The password when using SSL.

ssl Keyst ore nul | Consumer only : The path to the keystore.

m nThr eads nul | Consumer only : To set a value for minimum number of
threads in server thread pool.

maxThr eads nul | Consumer only : To set a value for maximum number of
threads in server thread pool.

t hr eadPool nul | Consumer only : To use a custom thread pool for the server.

ssl Socket Connect or s nul | Consumer only: A map which contains per port humber
specific SSL connectors. See section S support for more
details.

socket Connectors nul | Consumer only: A map which contains per port humber
specific HTTP connectors. Uses the same principle as
ssl Socket Connect ors and therefore see section SS9
support for more details.

ssl Socket Connect or - nul | Consumer only. A map which contains general SSL

connector properties. See section SSL support for more details.

socket Connect or Properti es

nul |

Consumer only. A map which contains general HTTP
connector properties. Uses the same principle as
ssl Socket Connect or Properti es and therefore see
section SSL support for more details.

htt pd i ent nul | Producer only : Touseacustom Ht t pCl i ent withthejetty
producer.

htt pd i ent M nThr eads nul | Producer only : To set avaluefor minimum number of threads
inHt t pdl i ent thread pool.

htt pd i ent MaxThr eads nul | Producer only : To set a value for maximum number of
threadsin Ht t pdl i ent thread pool.

htt pd i ent Thr eadPool nul | Producer only : To use a custom thread pool for the client.

ssl Cont ext Par aneters nul | To configure a custom SSL/TLS configuration options at the

component level.

3.23.6. Sample

In this sample we define a route that exposes a HTTP serviceat htt p://1 ocal host : 8080/ nmyapp/

nyservice

from"jetty:http://local host:{{port}}/ myapp/ nmyservice").process(

new MyBookService());

Usage of localhost

When you specify | ocal host inaURL, Camel exposesthe endpoint only on thelocal TCP/IP network
interface, so it cannot be accessed from outside the machine it operates on.

198

Talend Mediation Developer Guide

Session Support

If you need to expose a Jetty endpoint on a specific network interface, the numerical IP address of this
interface should be used as the host. If you need to expose a Jetty endpoint on all network interfaces, the
0. 0. 0. 0 address should be used.

Our businesslogicisimplemented in the MyBook Ser vi ce class, which accessesthe HTTP request contents and
then returns aresponse. Note: Theassert call appearsin this example, because the code is part of an unit test.

public class MyBookService inplenments Processor {

public void process(Exchange exchange) throws Exception {
/1 just get the body as a string
String body = exchange. getln().getBody(String.class);
/1 we have access to the HtpServl et Request here and we can grab it
/1 if we need it
Ht t pSer vl et Request req =

exchange. get I n(). get Body(Htt pServl et Request . cl ass);

assertNotNul | (req);

/1 for unit testing
assert Equal s("booki d=123", body);

/1 send a html response
exchange. get Qut () . set Body(
"<ht M ><body>Book 123 is Factory Patterns</body></htm >");

}

The following sample shows a content-based route that routes all requests containing the URI parameter, one, to
the endpoint, nock: one, and all othersto nock: ot her.

from"jetty:" + serverUri)
. choi ce()
.when().sinple("in. header.one").to("nock:one")
. ot herwi se()
.to("nock: ot her");

So if aclient sendsthe HTTPrequest, http://serverUri ?one=hel | o , the Jetty component will copy
the HTTP request parameter, one to theexchange'si n. header . We canthen usethe Si npl e languageto route
exchanges that contain this header to a specific endpoint and all others to another. If we used a language more
powerful than Simple -- such as EL or OGNL --we could also test for the parameter value and do routing based
on the header value as well.

3.23.7. Session Support

The session support option, sessi onSuppor t , can be used to enableaHt t pSessi on object and access the
session object while processing the exchange. For example, the following route enables sessions:

<r out e>
<fromuri="jetty:http://0.0.0.0/ nyapp/ myservi ce/ ?sessi onSupport=true"/>
<processRef ref="myCode"/>

<r out e>

The ny Code Processor can be instantiated by a Spring bean element:
<bean i d="myCode"cl ass="com myconpany. MyCodePr ocessor"/ >
where the processor implementation can accessthe Ht t pSessi on asfollows:

public voi d process(Exchange exchange) throws Exception {

Talend Mediation Developer Guide 199

http://camel.apache.org/simple.html
http://camel.apache.org/el.html
http://camel.apache.org/ognl.html
http://camel.apache.org/processor.html

SSL Support (HTTPS)

Ht t pSessi on sessi on = exchange. get | n(H t pMessage. cl ass) . get Request ()
. get Session();

3.23.8. SSL Support (HTTPS)

The Jetty component supports SSL/TL S configuration through the Camel JSSE Configuration Utility This utility
greatly decreases the amount of component specific code you need to write and is configurable at the endpoint
and component levels. The following examples demonstrate how to use the utility with the Jetty component.

Programmatic configuration of the component:

KeySt or ePar anet ers ksp = new KeySt or ePar aneters();
ksp. set Resource("/ users/hone/ server/keystore.jks");
ksp. set Passwor d(" keyst or ePassword") ;

KeyManager sPar anet ers knp = new KeyManager sPar aneters();
knp. set KeySt or e(ksp) ;
knmp. set KeyPasswor d(" keyPasswor d") ;

SSLCont ext Paraneters scp = new SSLCont ext Par anmet er s();
scp. set KeyManager s(knp) ;

JettyConmponent jettyConponent = get Context().getConponent("jetty",
JettyConmponent . cl ass);
j ettyConponent . set Ssl Cont ext Par anet er s(scp) ;

Spring DSL based configuration of endpoint

<canel : ssl Cont ext Par anet er s

i d="ssl Cont ext Par anet er s" >

<canel : keyManager s

keyPasswor d=" keyPasswor d" >

<canel : keyStore

resour ce="/users/ hone/ server/ keystore.jks"
passwor d="keyst or ePasswor d"/ >

</ canel : keyManager s>

</ camel : ssl Cont ext Par anet ers>. . .

<to uri="jetty:https://127.0.0. 1/ nail/?ssl Cont ext ParanetersRef=... \
ssl Cont ext Paraneters"/ >

You can also configure Jetty for SSL directly. In this case, simply format the URI withtheht t ps: // prefix---
for example:

<fromuri="jetty: https://0.0.0.0/nyapp/ nmyservice/"/>

Jetty also needs to know where to load your keystore from and what passwords to use in order to load the correct
SSL certificate. Set the following VM System Properties:

e« org.eclipse.jetty. ssl.keyst or e specifiesthelocation of the Javakeystore file, which containsthe
Jetty server's own X.509 certificate in a key entry . A key entry stores the X.509 certificate (effectively, the
public key) and also its associated private key.

200 Talend Mediation Developer Guide

http://camel.apache.org/camel-configuration-utilities.html

SSL Support (HTTPS)

e org.eclipse.jetty. ssl. password the store password, which is required to access the keystore file
(thisis the same password that is supplied to the keyst or e command's - st or epass option).

 org.eclipse.jetty.ssl. keypasswor d thekey password, whichisused to accessthe certificate'skey
entry in the keystore (this is the same password that is supplied to the keyst or e command's - keypass
option).

For details of how to configure SSL on a Jetty endpoint, read the Jetty documentation here.

The value you use as keys in the above map is the port you configure Jetty to listen on.

3.23.8.1. Configuring general SSL properties

Instead of a per port number specific SSL socket connector (as shown above) you can now configure general
properties which applies for all SSL socket connectors (which is not explicit configured as above with the port
number as entry).

<bean id="jetty" class="org.apache. canel.conponent.jetty.JettyH tpConponent">
<property nane="ssl|l Socket Connect or Properties">
<properties>

<property nane="password"val ue="..."/>
<property nane="keyPassword"val ue="..."/>
<property nane="keystore"value="..."/>
<property nane="needC i ent Aut h"val ue="..."/>
<property nane="truststore"value="..."/>

</ properties>
</ property>
</ bean>

3.23.8.2. Configuring general HTTP properties

Instead of a per port number specific HTTP socket connector (as shown above) you can now configure general
properties which applies for all HTTP socket connectors (which is not explicit configured as above with the port
number as entry).

<bean id="jetty" class="org.apache. canel.conponent.jetty. JettyHttpConponent">
<property nanme="socket Connect or Properties">
<properties>
<property nane="acceptors" val ue="4"/>
<property nanme="maxl dl eTi re" val ue="300000"/ >
</ properties>
</ property>
</ bean>

3.23.8.3. Default behavior for returning HTTP status codes

The default behavior of HTTP status codes is defined by the
or g. apache. canel . conponent . htt p. Def aul t Ht t pBi ndi ng class, which handles how a response
iswritten and also setsthe HTTP status code.

If the exchange was processed successfully, the 200 HTTP status code is returned. If the exchange failed with an
exception, the 500 HTTP status code is returned, and the stacktrace is returned in the body. If you want to specify
which HTTP status code to return, set the code in the Ht t pPr oducer . HTTP_RESPONSE CODE header of
the OUT message.

Talend Mediation Developer Guide 201

http://docs.codehaus.org/display/JETTY/How+to+configure+SSL

JMS

3.23.8.4. Jetty JMX support

Camel-jetty supportstheenabling of Jetty'sIMX capabilities at the component and endpoint level with the endpoint
configuration taking priority. Note that IMX must be enabled within the Camel context in order to enable IMX
support in this component as the component provides Jetty with a reference to the MBeanServer registered with
the Camel context. Because the camel-jetty component caches and reuses Jetty resources for a given protocol/
host/port pairing, this configuration option will only be evaluated during the creation of the first endpoint to use
a protocol/host/port pairing.

For example, given two routes created from the following XML fragments, IMX support would remain enabled
for all endpoints listening on "https://0.0.0.0".

<fromuri="jetty:https://0.0.0.0/ nyapp/ nmyservi cel/ ?enabl eJnx=true"/>
<fromuri="jetty: https://0.0.0.0/nyapp/ nyservi ce2/ ?enabl eJnx=f al se"/ >

The camel-jetty component also provides for direct configuration of the Jetty MBeanContainer. Jetty creates
MBean names dynamically. If you are running another instance of Jetty outside of the Camel context and sharing
the same MBeanServer between the instances, you can provide both instances with a reference to the same
MBeanContainer in order to avoid name collisions when registering Jetty MBeans.

3.24. IMS

1) UsingActiveMQ

If you are using Apache ActiveMQ, you should prefer the Section 3.1, “ActiveMQ” component as it
has been optimized for it. . All of the options and samples on this page are also valid for the ActiveMQ
component.

The JM S component allows messagesto be sent to (or consumed from) aJM S Queue or Topic. Theimplementation
of the IMS Component uses Spring's JM S support for declarative transactions, using Spring'sJns Tenpl at e for
sending and aMessagelLi st ener Cont ai ner for consuming.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel-jms</artifactld>
<versi on>X. X. X</ ver si on>
<l-- use the sane version as your Canmel core version -->
</ dependency>

3.24.1. URI format

j ms: [queue: | topic:]destinati onNanme[?opti ons]

wheredest i nat i onNane isaJMS queue or topic name. By default, thedest i nat i onName isinterpreted
as a queue name. For example, to connect to the queue, FOO.BAR, use:

j ms: FOO. BAR
Y ou can include the optional queue: prefix, if you prefer:
j ms: queue: FOO. BAR

To connect to a topic, you must include the t opi c: prefix. For example, to connect to the topic,
St ocks. Pri ces, use

202 Talend Mediation Developer Guide

http://activemq.apache.org/
http://java.sun.com/products/jms/

Notes

jms:topic:Stocks. Prices

Append query optionsto the URI using the following format, ?opt i on=val ue&opti on=val ueé&. ..

3.24.2. Notes

1) Ifyouareusing ActiveMQ

Note that the IM S component reuses Spring 2's Jns Tenpl at e for sending messages. Thisis not ideal
for use in a non-J2EE container and typically requires some caching in the JMS provider to avoid poor
performance .

If you intend to use Apache ActiveMQ as your Message Broker, then we recommend that you either:

e Usethe Section 3.1, “ActiveM Q" component, which isalready configured to use ActiveM Q efficiently,
or

e UsethePool i ngConnect i onFact ory in ActiveMQ.

If you are consuming messages and using transactions (transacted=true) then the default settings for cache level
can impact performance. If you are using XA transactions then you cannot cache asit can cause the XA transaction
not to work properly. If you are not using XA, then you should consider caching asit speeds up performance, such
as setting cachel evelName=CACHE_ CONSUMER.

The default setting for cacheL evelName is CACHE _AUTO. This default auto detects the mode and sets the cache
level accordingly to: CACHE CONSUMERf transacted isfalse, or CACHE NONE if transacted istrue. So you can
say the default setting is conservative. Consider using cachel. evelName=CACHE CONSUMER if you are using
non-XA transactions.

If you wish to use durabl e topic subscriptions, you need to specify both clientld and durableSubscriptionName.
The value of the cl i ent | d must be unique and can only be used by a single JM S connection instance in your
entire network. Y ou may prefer to use Virtual Topicsinstead to avoid thislimitation. More background on durable
messaging is available on the ActiveM Q site.

When using message headers, the JIM S specification states that header names must be valid Java identifiers. So,
by default, Camel ignores any headers that do not match thisrule. So try to name your headers asif they arevalid
Java identifiers. One benefit of doing this is that you can then use your headers inside a IMS Selector (whose
SQL 92 syntax mandates Java identifier syntax for headers).

A simple strategy for mapping header names is used by default. The strategy is to replace any dots in the header
name with the underscore character and to reverse the replacement when the header name isrestored fromaJM S
message sent over the wire. What does this mean? No more losing method names to invoke on abean component,
no more losing the filename header for the File Component, and so on.

The current header name strategy for accepting header namesin Camel is asfollows:

» Dotsarereplaced by DOT _ and the replacement is reversed when Camel consumes the message. (for example,
or g. apache. canel . Met hodNane becomesor g_DOT_apache_DOT_canel _DOT_Met hodNane).

» Hyphenisreplaced by HYPHEN and the replacement is reversed when Camel consumes the message.

e Testif thenameisavalidjavaidentifier using the JDK core classes.

If the test success, the header is added and sent over the wire; otherwise it is dropped (and logged at DEBUG
level).

Areyou using transactions?

If you are consuming messages, and have transacted=true, then the default settings for cache level can
impact performance. Unfortunately the default setting is always CACHE_CONSUMER. However when

Talend Mediation Developer Guide 203

http://activemq.apache.org/jmstemplate-gotchas.html
http://activemq.apache.org/jmstemplate-gotchas.html
http://activemq.apache.org/
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/how-do-durable-queues-and-topics-work.html

Options

you use transaction the cache level should be set to CACHE_NONE. This has been corrected in Camel
2.8 onwards where it auto detects the mode and set the level appropriately (thelevel isCACHE_AUTO).
So the workaround is to set cacheL evelName=CACHE_NONE if you are using transactions.

3.24.3. Options

You can configure many different properties on the JMS endpoint which map to properties on the
JM SConfiguration POJO. Note: Many of these properties map to properties on Spring IM S, which Camel usesfor
sending and receiving messages. Y ou can get more information about these properties by consulting the relevant

Spring documentation.

The optionsisdivided into two tables, thefirst one with the most common options used. Thelatter containstherest.

3.24.3.1. Most commonly used options

Option

Default Value

Description

clientld

nul |

Sets the JMS client ID to use. Note that this
value, if specified, must be unique and can only
be used by a single JMS connection instance.
It is typicaly only required for durable topic
subscriptions. You may prefer to use Virtual
Topicsinstead.

concurrent Consuner s

Specifies the default number of concurrent
consumers.

di sabl eRepl yTo

fal se

If t rue, a producer will behave like a InOnly
exchange with the exception that JMSRepl yTo
header is sent out and not be suppressed likeinthe
caseof | nOnl y. Likel nOnl y the producer will
not wait for areply. A consumer with thisflag will
behavelikel nOnl y. Thisfeature can be used to
bridge | nQut requests to another queue so that
aroute on the other queue will send it’s response
directly back to the original JMSRepl yTo.

dur abl eSubscri pti onNane

nul |

The durable subscriber name for specifying
durable topic subscriptions. The clientld
option must be configured as well.

maxConcur r ent Consuner s

Specifies the maximum number of concurrent
CONsUMers.

preser veMessageQos

fal se

Set to true, if you want to send message
using the QoS settings specified on the message,
instead of the QoS settings on the JIM S endpoint.
The following three headers are considered
JVSPriority, JMmsDeliveryhMde, and
JMSEXpi rati on. You can provide al or only
some of them. If not provided, Camel will
fal back to use the values from the endpoint
instead. So, when using this option, the headers
override the values from the endpoint. The
explicit QsEnabl ed option, by contrast,
will only use options set on the endpoint, and not
values from the message header.

204

Talend Mediation Developer Guide

http://camel.apache.org/maven/current/camel-jms/apidocs/org/apache/camel/component/jms/JmsConfiguration.html
http://activemq.apache.org/virtual-destinations.html
http://activemq.apache.org/virtual-destinations.html

Options

Option

Default Value

Description

replyTo

nul |

Provides an explicit ReplyTo destination,
which overrides any incoming value of
Message. get IMSRepl yTo() . If you do
[Request Reply] over IMS then read the section
further below for more details.

repl yToType

nul |

Allows to explicit specify which kind of
strategy to use for replyTo queues when doing
request/reply over JMS. Possible values are:
{{Temporary}}, {{Shared}}, or {{ Exclusive}}.
By default Camel will use temporary queues.
However if {{replyTo}} has been configured,
then {{Shared}} is used by default. This option
allows you to use exclusive instead of shared
gueues. Check the Camel website for more about
this option.

request Ti meout

20000

(Producer only) The timeout for waiting for
a reply when using the InOut Exchange
Pattern (in - milliseconds). See aso the
requestTimeoutCheckerInterval option.

sel ect or

nul |

Sets the IMS Selector, which is an SQL 92
predicate that is used to filter messages within
the broker. You may have to encode special
characters such as = as %3D.

ti meTolLi ve

nul |

When sending messages, specifies the time-to-
live of the message (in milliseconds).

transact ed

fal se

Specifies whether to use transacted mode for
sending/receiving messages using the InOnly
Exchange Pattern.

t est Connecti onOnSt art up

fal se

Specifies whether to test the connection on
startup. This ensures that when Camel starts
that all JMS consumers and producers have
a valid connection to the JMS broker. If a
connection cannot be granted then Camel throws
an exception on startup. This ensures that Camel
is not started with failed connections.

All the other options

Option

Default Value

Description

accept MessagesWi | e-
St oppi ng

fal se

Specifies whether the consumer accept messages
while it is stopping. You may consider enabling
this option, if you start and stop JMS routes at
runtime, while there are still messages enqued on
the queue. If thisoption isf al se, and you stop
the JVS route, then messages may be rejected,
and the JMS broker would have to attempt
redeliveries, which yet again may berejected, and
eventually the message may be moved at a dead
letter queue on the IM S broker. To avoid thisits
recommended to enable this option.

acknow edgenent ModeNare

AUTO_ACKNOWLEDGE

The IM S acknowledgement name, which is one
of: TRANSACTED, CLI ENT_ACKNOW.EDGE,
AUTO_ACKNOWLEDCE,
DUPS_OK_ACKNOW.EDGE

Talend Mediation Developer Guide

205

http://camel.apache.org/jms.html#JMS-RequestreplyoverJMSandusinganexclusivefixedreplyqueue
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/exchange-pattern.html
http://camel.apache.org/exchange-pattern.html

Options

Option

Default Value

Description

acknow edgenent Mode

-1

The JMS acknowledgement mode defined as
an Integer. Allows you to set vendor-specific
extensions to the acknowledgment mode. For
the regular modes, it is preferable to use the
acknow edgenent ModeNane instead.

al waysCopyMessage

fal se

Ift r ue, Camel will always makeaJM S message
copy of the message when it is passed to
the producer for sending. Copying the message
is needed in some situations, such as when
a replyToDestinationSel ect or Nane
is set (incidentally, Camel will set the
al waysCopyMessage option to true, if
arepl yToDesti nati onSel ect or Nane is
Set)

asyncStart Li stener

fal se

Whether to startup the JmsConsumer message
listener asynchronously, when starting a route.
For example if a JmsConsumer cannot get a
connection to a remote JMS broker, then it may
block while retrying and/or failover. This will
cause Camel to block while starting routes. By
setting this option to t r ue, you will let routes
startup, while the JnsConsuner connects to
the JMS broker using a dedicated thread in
asynchronous mode. If this option is used, then
beware that if the connection could not be
established, then an exceptionislogged at WARN
level, and the consumer will not be ableto receive
messages; Y ou can then restart the route to retry.

asyncSt oplLi st ener

fal se

(In Camel 2.10 only) Whether to stop the
JmsConsumer message listener asynchronously,
when stopping aroute.

autoStartup

true

Specifies whether the consumer container should
auto-startup.

asyncConsuner

fal se

Whether the JmsConsumer processes
the Exchange asynchronously using the
Asynchronous Routing Engine. If enabled then
the JmsConsumer may pick up the next message
from the IMS queue, while the previous message
is being processed asynchronously. This means
that messages may be processed not 100%
strictly in order. If disabled (as default) then
the Exchange is fully processed before the
JmsConsumer will pickup the next message from
the IMS queue. Note if transactions have been
enabled, then asyncConsumer=true does not run
asynchronously, as transactions must be executed
synchronously.

cachelLevel Nanme

CACHE_CONSUMER

Sets the cache level by name for the
underlying JMS resources. Possible values
are. CACHE_AUTO, CACHE_CONNECTI ON,
CACHE_CONSUMER, CACHE_NONE, and
CACHE_SESSI ON. See the Spring
documentation and see the warning above.

206

Talend Mediation Developer Guide

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jms/listener/DefaultMessageListenerContainer.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jms/listener/DefaultMessageListenerContainer.html

Options

Option

Default Value

Description

cachelLevel

-1

Setsthe cachelevel by ID for the underlying IMS
resources.

consuner Type

Def aul t

The consumer type to use, which can
be one of: Sinple, Default or
Server Sessi onPool . The consumer type
determines which Spring JM S listener to use.

o Default will use
org. springfranmework.jns.listener.
Def aul t Messageli st ener Cont ai ner

* Sinple will use
org. springframework. jns.|istener.
Si npl eMessageli st ener Cont ai ner

e Server Sessi onPool will use
org.springframework. jns.listener.
server sessi on. Server Sessi on-
Message- Li st ener Cont ai ner.

o If the option, useVersionl02=true,
Camel will use the IMS 1.0.2 Spring classes
instead.

connecti onFact ory

nul |

The default JMS connection factory to use
forthel i st ener Connecti onFact ory and
t empl at eConnect i onFact ory, if neither
is specified.

del i veryPer si st ent

true

Specifies whether persistent delivery is used by
default.

destination

nul |

Specifies the IMS Destination object to use on
this endpoint.

desti nati onNane

nul |

Specifiesthe IM S destination name to use on this
endpoint.

desti nati onResol ver

nul |

A pluggable
org. springframework. j ms. support.
destinati on. Desti nati onResol ver
that allows you to use your own resolver (for
example, to lookup the real destinationin a JNDI

registry).

di sabl eTi neTolLi ve

fal se

Use this option to force disabling time to
live. For example when you do request/reply
over IMS, then Camel will by default use the
{{requestTimeout}} value as time to live on the
message being sent. The problem is that the
sender and receiver systems have to have their
clocks synchronized, so they are in sync. This
is not aways so easy to archive. So you can
use {{disableTimeToLive=true}} to *not* set a
time to live value on the send message. Then the
message will not expire on the receiver system.

eager Loadi ngOr Properties

fal se

Enables eager loading of JM S properties as soon
as a message is received, which is generaly
inefficient, because the JMS properties might
not be required. However, this feature can

Talend Mediation Developer Guide 207

Options

Option

Default Value

Description

sometimes catch any issues with the underlying
JMS provider and the use of JMS properties at
an early stage. This feature can also be used for
testing purposes, to ensure JM S properties can be
understood and handled correctly.

excepti onLi st ener

nul |

Specifiesthe IM S Exception Listener that isto be
notified of any underlying JMS exceptions.

error Handl er

nul |

Specifies a
org.springframework.util.ErrorHandler to be
invoked in case of any uncaught exceptions
thrown while processing a message. By default
these exceptions will be logged at the WARN
level, if no errorHandler has been configured.
From Camel 2.9.1 onwards you can configure
logging level and whether stack traces should be
logged using the below two options. This makes
it much easier to configure, than having to code a
custom errorHandler.

error Handl er Loggi ngLevel

WARN

Allows for configuring the default errorHandler
logging level for logging uncaught exceptions.

error Handl er LogSt ackTr ace

true

Allows to control whether stacktraces should be
logged or not, by the default errorHandler.

explicit QosEnabl ed

fal se

Set if the deliveryMode, priority or
ti meToLi ve qualitiesof service should be used
when sending messages. This option is based on
Spring'sJnsTenpl at e. Thedel i ver yMode,
priority and timeTolLive options are
applied to the current endpoint. This contrasts
with the preserveMessageQos option,
which operates at message granularity, reading
QoS properties exclusively from the Camel In
message headers.

exposeli st ener Sessi on

true

Specifies whether the listener session should be
exposed when consuming messages.

forceSendOri gi nal Message

fal se

When using mapJmsMessage=f al se Camel
will create a new JMS message to send to a new
JMS destination if you touch the headers (get or
set) during the route. Set this optiontot r ue to
force Camel to send the original IMS message
that was received.

i dl eConsuner Limt

Specify thelimit for the number of consumersthat
are alowed to beidle at any given time.

i dl eTaskExecutionLimt

Specifiesthe limit for idle executions of areceive
task, not having received any message within its
execution. If this limit is reached, the task will
shut down and leave receiving to other executing
tasks (in the case of dynamic scheduling; see the
maxConcur r ent Consurrer s setting).

j msMessageType

nul |

Allows you to force the use of a specific
j avax.j ms. Message implementation for
sending JMS messages. Possible values are:
Byt es, Map, Obj ect, Stream Text. By
default, Camel would determine which JMS

208

Talend Mediation Developer Guide

Options

Option

Default Value

Description

message type to use from the In body type. This
option allows you to specify it.

j msKeyFor mat St r at egy

def aul t

Pluggable strategy for encoding and decoding
IJMS keys so they can be compliant with
the IMS specification. Camel provides two
implementations out of the box: defaul t
and passt hrough. The def aul t strategy
will safely marshal dots (.) and hyphens
(-) The passthrough strategy leaves the
key as is. Can be used for JMS brokers
which do not care whether IMS header
keys contain illegal characters. You can
provide your own implementation of the
or g. apache. canel . conmponent . j ns.
JnsKeyFornmat Strategy and refer to it
using the # notation.

j msQper ati ons

nul |

Allows you to use your own implementation of
the org.springfranework.jns.core.
JnmsQperations interface. Camel uses
JnsTenpl at e as default. Can be used for
testing purpose (rarely used, as stated in the
Spring API docs) .

| azyCr eat eTr ansact i on-
Manager

true

If true, Camel will create a
JnsTransacti onManager, if there is no
transacti onManager injected when option
transact ed=t r ue.

| i st ener Connecti on-
Factory

nul |

The JM'S connection factory used for consuming
messages.

mapJnsMessage

true

Specifies whether Camel should auto map the
received JMS message to an appropiate payload
type, such asj avax. j ms. Text Message to
aString etc. See section about how mapping
works below for more details.

maxMessagesPer Task

-1

The number of messages per task. -1 isunlimited.

maxi munBr owseSi ze

-1

Limits the number of messages fetched at most,
when browsing endpoints using Browse or IMX
API.

nmessageConverter

nul |

To use a custom Spring
org. springframework. j ns. support.
converter.MessageConverter so you
can betotally in control how to map to and from
aj avax. j ns. Message.

nmessagel dEnabl ed

true

When sending, specifies whether message I1Ds
should be added.

nmessageTi mest anpEnabl ed

true

Specifies whether timestamps should be enabled
by default on sending messages.

password

nul |

The password for the connector factory.

priority

Vauesgreater than 1 specify the message priority
when sending (where 0 is the lowest priority and
9isthe highest). Theexpl i ci t QosEnabl ed
option must also be enabled in order for this
option to have any effect.

Talend Mediation Developer Guide 209

Options

Option

Default Value

Description

pubSubNoLocal

fal se

Specifies whether to inhibit the delivery of
messages published by its own connection.

recei veTi meout

None

The timeout for
milliseconds).

receiving messages (in

recoveryl nterval

5000

Specifiesthe interval between recovery attempts,
that is, when a connection is being refreshed, in
milliseconds. The default is 5000 ms, that is, 5
seconds.

repl yToCachelLevel Nane

Sets the cache level by name for the reply
consumer when doing request/reply over JMS.
This option only applies when using fixed
reply queues (not temporary). Camel will by
default use: CACHE CONSUMER for exclusive
or shared w/ {{replyToSelectorName}}.
And CACHE_SESSI ON for shared without
repl yToSel ect or Nane. Some JMS brokers
such as IBM WebSphere may require to set
the replyToCachel evel Name=CACHE_NONE to
work.

repl yToDest i nati on-
Sel ect or Namre

nul |

Sets the IMS Selector using the fixed name to be
used so you can filter out your own replies from
the others when using a shared queue (that is, if
you are not using atemporary reply queue).

repl yToDel i very-
Per si st ent

true

Specifies whether to use persistent delivery by
default for replies.

request Ti meout -
Checker | nterval

1000

Configures how often Camel should check for
timed out Exchanges when doing reguest/reply
over JIMS. By default Camel checks once per
second. But if you must react faster when
a timeout occurs, then you can lower this
interval, to check more frequently. Thetimeout is
determined by the requestTimeout option.

subscri pti onDurabl e

fal se

@deprecated: Enabled by default, if you
specify a dur abl eSubscri ber Nanme and a
clientld.

t askExecut or

nul |

Allows you to specify a custom task executor for
consuming messages.

t askExecut or Spri ng2

nul |

Camel 2.6 To use when using Spring 2.x with
Camedl. Allows you to specify a custom task
executor for consuming messages.

t enpl at eConnect i on-
Factory

nul |

The JMS connection factory used for sending
messages.

transact edl nQut

fal se

@deprecated: Specifies whether to use
transacted mode for sending messages using the
InOut Exchange Pattern. Appliesonly to producer
endpoints. See section Enabling Transacted
Consumption for more details.

transacti onManager

nul |

The Spring transaction manager to use.

t ransacti onName

JnsConsurmer

[desti nati onNane]

The name of the transaction to use.

210

Talend Mediation Developer Guide

http://camel.apache.org/exchange-pattern.html

Options

Option

Default Value

Description

transacti onTi meout

nul |

The timeout value of the transaction, if using
transacted mode.

transf er Exception

fal se

If enabled and you are using Section 2.39,
“Request Reply” messaging (InOut) and an
Exchange failed on the consumer side, then
the caused Excepti on will be send back in
responseasaj avax. j ns. Obj ect Message.
If the client is Camel, the returned Except i on
is rethrown. This alows you to use Camel
Section 3.24, “JMS’ as a bridge in your routing;
for example, using persistent queues to enable
robust routing. Notice that if you aso have
transfer Exchange enabled, this option takes
precedence. The caught exception is required
to be seridlizable. The origind Excepti on
on the consumer side can be wrapped in an
outer exception suchasor g. apache. canel .
Runt i neCanel Except i on when returned to
the producer.

t ransf er Exchange

fal se

You can transfer the exchange over the wire
instead of just the body and headers. The
following fields are transferred: In body, Out
body, Fault body, In headers, Out headers,
Fault headers, exchange properties, exchange
exception. This requires that the objects are
seridizable. Camel will exclude any non-
serializable objectsand log it at WARN level. You
must enable this option on both the producer
and consumer side, so Camel knows the payloads
form an Exchange and not a regular payload.

user nane

nul |

The username for the connector factory.

useMessagel DAs-
Correlationl D

fal se

Specifies whether JMSMessagel D should
always be used as JMSCor rel ati onl D for
INOut messages.

Message Mapping between JIMS and CamelCame automatically maps messages between
javax.j nms. Message and or g. apache. canel . Message. When sending a JMS message, Camel
converts the message body to the following JM S message types:

Body Type JM S M essage Comment

String j avax. j ms. Text Message

or g. w3c. dom Node j avax. j ns. Text Message The DOM will be converted to
String.

Map j avax. j nms. MapMessage

java.io. Serializable j avax.j nms. Obj ect Message

byte[] j avax. j ns. Byt esMessage

java.io.File j avax. j nms. Byt esMessage

j ava.i o. Reader j avax. j ns. Byt esMessage

java.io. | nput Stream j avax. j ns. Byt esMessage

j ava. ni o. Byt eBuf f er j avax. j nms. Byt esMessage

When receiving a JIM S message, Camel converts the IM'S message to the following body type:

Talend Mediation Developer Guide 211

http://camel.apache.org/exchange.html

Message format when sending

JM S Message Body Type

j avax. j ns. Text Message String

j avax. j ns. Byt esMessage byt e[]

j avax. j ns. MapMessage Map<String, Object>
j avax. j nms. Obj ect Message bj ect

3.24.4. Message format when sending

The exchange that is sent over the IMS wire must conform to the IM S M essage spec.

For theexchange. i n. header thefollowing rules apply for the header keys:

» Keys starting with JV5 or J MSX are reserved.

» exchange. i n. header s keys must be literals and al be valid Java identifiers (do not use dots in the key

name).

» Camel replaces dots and hyphens with underscores in key names (." isreplaced by _DOT_and ' ' is replaced

by HYPHEN). Thisreplacement is reversed when Camel consumes JM S messages.

» See aso the option j nsKeyFor nat St r at egy, which alows you to use your own custom strategy for

formatting keys.

For theexchange. i n. header , the following rules apply for the header values:

» The values must be primitives or their counter objects (such as| nt eger, Long, Char act er). The types,
Stri ng, Char Sequence, Dat e, Bi gDeci nal andBi gl nt eger areall convertedtotheirt oSt ri ng()

representation. All other types are dropped.

Camel will log with category or g. apache. canel . conponent . j ms. JnsBi ndi ng at DEBUG level if it

drops a given header value. For example:

2008-07-09 06:43:04, 046 [main
- lgnoring non primtive header: order of class: org.apache.canel.conponent
.jme.issues. DummyOQrder with val ue:

guantity=2}

DummyOr der { or der | d=333,

] DEBUG JnsBi ndi ng

3.24.5. Message format when receiving

Camel adds the following properties to the Exchange when it receives a message:

Property

Type

Description

org. apache. canel . j ns.
repl yDesti nation

javax.jns. Destination

Thereply destination.

Camd adds the following JM S properties to the In message headers when it receives a JM S message:

Header

Type

Description

JVBCorrel ati onl D

String

The IMS correlation ID.

212

Talend Mediation Developer Guide

item d=4444,

http://java.sun.com/j2ee/1.4/docs/api/javax/jms/Message.html

Message format when receiving

Header Type Description
JNVBDel i ver yMbde i nt The IMS delivery mode.
JMBDest i nati on javax.jns. Destination The IM S destination.

JVMBExpi ration | ong The IMS expiration.

JMSMessagel D String The JMS unique message ID.

JMSPriority i nt The JMS priority (with O as the
lowest priority and 9 as the highest).

JVSRedel i ver ed bool ean the IM'S message redelivered.

JMSRepl yTo javax.jns. Destination The IMS reply-to destination.

JMSTi mest anp | ong The IM S timestamp.

JMSType String The IMStype.

JMBXG oupl D String The IMS group ID.

As all the above information is standard JM S you can check the IMS documentation for further details.

i Using Camel JM Sto send and recelve messages

The IMS component is complex and you have to pay close attention to how it works in some cases. So
thisis ashort summary of some of the areas/pitfallsto look for.

When Camel sends a message using its JMSPr oducer , it checks the following conditions:

¢ The message exchange pattern,

* Whether a JMSRepl yTo was set in the endpoint or in the message headers,

« Whether any of the following options have been set on the JIMS endpoint: di sabl eRepl yTo,
preserveMessageQos, expl i ci t QosEnabl ed.

All this can be complex to understand and configure to support your use case.

3.24.6.1. ImsProducer

The JnsPr oducer behaves asfollows, depending on configuration:

Exchange Pattern Other options Description

InOut - Camel will expect a reply, set a temporary
JMSRepl yTo, and after sending the message, it will
start to listen for the reply message on the temporary
queue.

InOut JMBRepl yTo isset Camel will expect a reply and, after sending the
message, it will start to listen for the reply message on
the specified JMSRepl yTo queue.

InOnly - Camel will send the message and not expect areply.

INOnly JVSRepl yTo isset By default, Camel discards the JMBRepl yTo

destination and clears the JMSRepl yTo header
before sending the message. Camel then sends the
message and does not expect a reply. Camel logs
this in the log a DEBUG level. You can use
preser veMessageQuo=true to instruct Camel
to keep the JMBRepl yTo. In al situations the

Talend Mediation Developer Guide 213

http://java.sun.com/javaee/5/docs/api/javax/jms/Message.html

Configuring different IMS providers

Exchange Pattern Other options Description

JnsProducer does not expect any reply and thus
continue after sending the message.

3.24.6.2. ImsConsumer

The JmsConsunmer behaves as follows, depending on configuration:

Exchange Pattern Other options Description

InOut - Camel will send the reply back to the JMSRepl yTo
queue.

INOnly - Camel will not send a reply back, as the pattern is
InOnly.

- di sabl eRepl yTo=t r ueThis option suppresses replies.

Thus, pay attention to the message exchange pattern set on your exchanges.

If you send amessage to aJM S destination in the middle of your route you can specify the exchange pattern to use,
seemore at Section 2.39, “Request Reply”. Thisisuseful if you want to send an | nOnl y messageto aJM Stopic:

from"activenq: queue:in")
.to("bean: val i dateOrder")
.to(ExchangePattern. I nOnly, "activenq:topic:order")
.to("bean: handl eOrder");

3.24.7. Configuring different JMS providers

Y ou can configure your JIMS provider in Spring XML as follows:

<canel Context id="canel" xm ns="http://canel.apache. org/schema/spring">
<j mkAgent id="agent" di sabl ed="true"/>
</ camnel Cont ext >

<bean id="activemy"
cl ass="org. apache. acti veng. canel . conponent . Acti veMXonponent " >
<property nane="connecti onFactory">
<bean cl ass="org. apache. acti veny. Acti veMXonnecti onFactory">
<property nane="broker URL" val ue=
"vm / /1 ocal host ?br oker. per si st ent =f al se&br oker . useJnx=f al se"/ >
</ bean>
</ property>
</ bean>

Basically, you can configure as many JMS component instances as you wish and give them a unique name
using thei d attribute . The preceding example configures an act i veny component. You could do the same
to configure MQSeries, TibCo, BEA, Sonic and so on.

Once you have a named JMS component, you can then refer to endpoints within that component using URIs.
For example for the component name, act i vent, you can then refer to destinations using the URI format,
activenq: [queue: | topi c:]destinati onName. You can use the same approach for al other IMS
providers.

214 Talend Mediation Developer Guide

http://camel.apache.org/spring.html

Samples

Thisworks by the SpringCamel Context lazily fetching components from the Spring context for the scheme name
you use for Endpoint URIs and having the Component resolve the endpoint URIs.

3.24.8. Samples

JMSis used in many examples for other components as well. But we provide afew samples below to get started.

3.24.8.1. Receiving from JMS

In the following sample we configure aroute that receives IM S messages and routes the message to a POJO:

from("j ns: queue: foo").
t o(" bean: nyBusi nessLogi c");

Y ou can of course use any of the EIP patterns so the route can be context based. For example, here's how to filter
an order topic for the big spenders:

from"jms:topic: OrdersTopic").

filter(). method("nmyBean", "isGol dCustomer").
to("j ms: queue: Bi gSpender sQueue");

3.24.8.2. Sending to a JMS

In the sample below we poll afile folder and send the file content to a JIMS topic. As we want the content of the
fileasaText Message instead of aByt esMessage, we need to convert thebody toaSt ri ng :

from("file://orders").
convert BodyTo(String. cl ass).
to("jms:topic: OrdersTopic");

3.24.8.3. Using Annotations

Cameél also has annotations so you can use POJO Consuming and POJO Producing.

3.24.8.4. Spring DSL sample

The preceding examples use the JavaDSL.. Camel also supports Spring XML DSL. Hereisthe big spender sample
using Spring DSL:

<r out e>
<fromuri="jms:topic: OdersTopic"/>
<filter>
<net hod bean="nyBean" nethod="i sCGol dCustoner"/>
<to uri="jms:queue: Bi gSpender sQueue"/ >
</filter>
</route>

Talend Mediation Developer Guide 215

http://camel.apache.org/endpoint.html
http://camel.apache.org/uris.html
http://camel.apache.org/pojo-consuming.html
http://camel.apache.org/pojo-producing.html

JMX

3.24.8.5. Other samples

JMSS appears in many of the examplesfor other components and EIP patterns, as well in the online Apache Camel
documentation. A recommended tutorial is this one that uses IM S but focuses on how well Spring Remoting and
Camel work together Tutorial-JmsRemoting.

3.25. IMX

Available as of Camel 2.6

Component allows consumers to subscribe to an mbean's Natifications. The component supports passing the
Notification object directly through the Exchange or serializing it to XML according to the schemaprovided within
this project. Thisis aconsumer only component. Exceptions are thrown if you attempt to create a producer for it.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel-jnmx</artifactld>
<ver si on>x. X. x</ ver si on>
<l-- use the sane version as your Canmel core version -->
</ dependency>

3.25.1. URI Format

The component can connect to the local platform mbean server with the following URI:
jmx://platfornPoptions

A remote mbean server url can be provided following theinitial IMX scheme like so:
jmx:service:jmk:rm:///jndi/rm://]ocal host: 1099/ nxrmni ?options

Y ou can append query options to the URI in the following format, ?options=value& option2=value& ...

3.25.2. URI Options

Property Required |Default | Description

format no xml Format for the message body. Either "xml" or "raw". If xml, the
notification is serialized to xml. If raw, then the raw java object is
set as the body.

user no Credentials for making a remote connection.

password no Credentials for making a remote connection.

objectDomain yes The domain for the mbean you're connecting to.

objectName no The name key for the mbean you're connecting to. This value is
mutually exclusive with the object properties that get passed. (see
below)

notificationFilter no Reference to a bean that implements the
NotificationFilter. The #ref syntax should be used to
reference the bean via the Registry.

216 Talend Mediation Developer Guide

http://camel.apache.org/tutorial-jmsremoting.html
http://camel.apache.org/registry.html

ObjectName Construction

Property Required | Default | Description

handback no Value to handback to the listener when a notification is received.
This value will be put in the message header with the key
"jmx.handback™

3.25.3. ObjectName Construction

The URI must always have the objectDomain property. In addition, the URI must contain either objectName or
one or more properties that start with "key."

3.25.4. Domain with Name property

When the objectName property is provided, the following constructor is used to build the ObjectName? for the
mbean:

Obj ect Nane(String donmain, String key, String val ue)

The key value in the above will be "name" and the value will be the value of the objectName property.

3.25.5. Domain with Hashtable

bj ect Nanme(String donmai n, Hashtabl e<String, String> table)

The Hashtable is constructed by extracting properties that start with "key." The properties will have the "key."
prefixed stripped prior to building the Hashtable. This allows the URI to contain a variable number of properties
to identify the mbean.

3.25.6. Example

from("j mx: pl at f or n?0bj ect Domai n=j nkExanpl e&key. name=si npl eBean") .
to("l og:jnkEvent");

A full exampleis here.

3.26. JPA

The jpa component enables you to store and retrieve Java objects from persistent storage using EJB 3's Java
Persistence Architecture (JPA), which isa standard interface layer that wraps Object/Relational Mapping (ORM)
products such as OpenJPA, Hibernate, TopLink, and so on.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -jpa</artifactld>
<ver si on>x. X. x</ ver si on>

Talend Mediation Developer Guide 217

http://camel.apache.org/jmx-component-example.html

Sending to the endpoint

<l-- use the sanme version as your Canmel core version -->
</ dependency>

3.26.1. Sending to the endpoint

You can store a Java entity bean in a database by sending it to a JPA producer endpoint. The body of the In
message is assumed to be an entity bean (that is, a POJO with an @Entity annotation on it) or a collection or
array of entity beans.

If the body does not contain one of the previous listed types, put a Section 2.29, “Message Trandator” in front of
the endpoint to perform the necessary conversion first.

3.26.2. Consuming from the endpoint

Consuming messages from a JPA consumer endpoint removes (or updates) entity beans in the database. This
allows you to use a database table as a logical queue: consumers take messages from the queue and then del ete/
update them to logically remove them from the queue.

If you do not wish to delete the entity bean when it has been processed, you can specify
consuneDbel et e=f al se onthe URI. Thiswill result in the entity being processed each poll.

If you would rather perform some update on the entity to mark it as processed (such asto exclude it from afuture
guery) then you can annotate a method with @Consumed which will be invoked on your entity bean when the
entity bean is consumed.

3.26.3. URI format

jpa:[entityd assNane] [?opti ons]

For sending to the endpoint, the entityClassName is optional. If specified, it helps the Type Converter to ensure
the body is of the correct type.

For consuming, the entityClassName is mandatory.

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ueé&. . .

3.26.4. Options

Name Default Value Description

entityType entityClassName Overrides the entityClassName from the URI.

per si stenceUni t canel The JPA persistence unit used by default.

consunebel et e true JPA consumer only: If true, the entity is
deleted after it isconsumed; if f al se, the entity
is not deleted.

consumelLockEntity true JPA consumer only: Specifies whether or not to
set an exclusive lock on each entity bean while
processing the results from polling.

218 Talend Mediation Developer Guide

http://java.sun.com/javaee/5/docs/api/javax/persistence/Entity.html
http://camel.apache.org/maven/current/camel-jpa/apidocs/org/apache/camel/component/jpa/Consumed.html
http://camel.apache.org/type-converter.html

Message Headers

Name Default Value Description

fl ushOnSend true JPA producer only: Flushes the EntityManager
after the entity bean has been persisted.

maxi munResul ts -1 JPA consumer only: Set the maximum number
of results to retrieve on the Query.

transacti onManager nul | Specifies the transaction manager to use.
If none provided, Camel will use a
JpaTransacti onManager by default. Can
be used to set a JTA transaction manager (for
integration with an EJB container).

consuner . del ay 500 JPA consumer only: Delay in milliseconds
between each poll.

consuner.initial Del ay 1000 JPA consumer only: Milliseconds before polling

starts.

consuner . useFi xedDel ay fal se

JPA consumer only: Settot rue to use fixed
delay between polls, otherwise fixed rate is
used. See ScheduledExecutorService in JDK for
details.

maxMessagesPer Pol | 0

JPA consumer only: An integer value to define
the maximum number of messages to gather per
poll. By default, no maximum is set. Can be used
to avoid polling many thousands of messages
when starting up the server. Set a value of 0 or
negative to disable.

CONSUNEr. query

JPA consumer only: To use a custom query
when consuming data.

consurmer . namedQuery

JPA consumer only: Touseanamed query when
consuming data.

consuner. nati veQuery

JPA consumer only: To use a custom native
guery when consuming data.

consuner. resul td ass

Camel 2.7: JPA consumer only: Defines the
type of the returned payload (we will call
entityManager. creat eNativeQuery
(nativeQuery, resultd ass) instead
ofentityManager. creat eNati veQuery
(nativeQuery)). Without this option, we
will return an object array. Only has an affect
when using in conjunction with native query
when consuming data.

usePer si st fal se

JPA producer only: Indicates to
use entityManager. persist(entity)
instead of
entityManager. nmerge(entity). Note
entityManager. persist(entity)
doesn't work for detached entities (where the
EntityManager has to execute an UPDATE
instead of an INSERT query)!

3.26.5. Message Headers

Camd adds the following message headers to the exchange:

Talend Mediation Developer Guide 219

http://java.sun.com/javaee/5/docs/api/javax/persistence/EntityManager.html
http://java.sun.com/javaee/5/docs/api/javax/persistence/Query.html
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

Configuring EntityManagerFactory

Header Type Description

Camel JpaTenpl at e JpaTenpl at e TheJpaTenpl at e object that is used to access
the entity bean. You need this object in some
situations, for instancein atype converter or when
you are doing some custom processing.

3.26.6. Configuring EntityManagerFactory

It is strongly advised to configure the JPA component to use a specific Ent i t yManager Fact or y instance. If
failed to do so each JpaEndpoi nt will auto create their own instance of Ent i t yManager Fact ory which
most often is not what you want.

For example, you can instantiate a JPA component that references the myEMFact or y entity manager factory,
asfollows:

<bean id="jpa" class="org. apache. canel . conponent.j pa. JpaConponent ">
<property nane="entityManager Factory" ref="nyEMractory"/>
</ bean>

In Camd 2.3 the JpaConponent will auto lookup the Ent i t yManager Fact or y from the Registry which
means you do not need to configure thison the JpaConponent as shown above. Y ou only need to do so if there
isambiguity, in which case Camel will log aWARN.

3.26.7. Configuring TransactionManager

It is strongly advised to configure the Tr ansact i onManager instance used by the JPA component. If failed
to do so each JpaEndpoi nt will auto create their own instance of Tr ansact i onManager which most often
is not what you want.

For example, you can instantiate a JPA component that references the ny Tr ansact i onManager transaction
manager, as follows:

<bean id="jpa" class="org.apache. canel.conponent.j pa. JpaConponent" >
<property nane="entityManager Factory" ref="nyEMractory"/>
<property nane="transacti onManager" ref="nyTransacti onManager"/>
</ bean>

In Camel 2.3 the JpaConponent will auto lookup the Tr ansact i onManager from the Registry which
means you do not need to configure thison the JpaConponent as shown above. Y ou only need to do so if there
isambiguity, in which case Camel will log a WARN.

3.26.8. Using a consumer with a named query

For consuming only selected entities, you can use the consuner . nanedQuer y URI query option. First, you
have to define the named query in the JPA Entity class:

@ntity
@\anmedQuery(nane = "stepl",
query = "select x fromMiltiSteps x where x.step = 1")

public class Multi Steps {

}

220 Talend Mediation Developer Guide

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

Using a consumer with a query

After that you can define a consumer uri like this one:

from("jpa://org. apache. canmel . exanpl es. Mul ti St eps?consumner. namedQuer y=st epl")
. to(" bean: myBusi nessLogi c");

3.26.9. Using a consumer with a query

For consuming only selected entities, you can use the consuner . quer y URI query option. Y ou only have to
define the query option:

from("jpa://org. apache. canel . exanpl es. Mul ti St eps?consuner. query=
sel ect o from org. apache. canel . exanples. Multi Steps o where o.step = 1")
.to(" bean: myBusi nessLogi c");

3.26.10. Using a consumer with a native query

For consuming only selected entities, you can usethe consumer . nat i veQuer y URI query option. You only
have to define the native query option:

from("jpa://org. apache. canel . exanpl es. Mul ti St eps?consuner. nati veQuery=
select * fromMiltiSteps where step = 1")
.to(" bean: myBusi nessLogi c");

If you use the native query option, you will receive an object array in the message body.

3.26.11. Example

See Tracer Example for an example using Section 3.26, “ JPA” to store traced messages into a database.

3.27.Jsch

The camel-jsch component supports the SCP protocol using the Client API of the Jsch project. Jschisalready used
in Camel by the FTP component for the sftp: protocol. Maven users will need to add the following dependency
to their pom.xml for this component:

<dependency>

<gr oupl d>or g. apache. canel </ gr oupl d>

<artifactld>canel -jsch</artifactld>

<ver si on>x. X. x</ ver si on>

<l-- use the sane version as your Canel core version -->
</ dependency>

3.27.1. URI format and options

scp://host[:port]/destination[?options]

Y ou can append query options to the URI in the following format: ?option=value& option=value& ...

Talend Mediation Developer Guide 221

http://camel.apache.org/tracer-example.html
http://en.wikipedia.org/wiki/Secure_copy
http://www.jcraft.com/jsch/

Limitations

Thefilename can be specified either in the <path> part of the URI or asa" CamelFileName" header on the message
(Exchange.FILE_NAME if used in code).

Options

Name Default Description

user name null Specifiesthe usernameto usetolog into the remotefile
system.

password null Specifiesthe password to useto log in to theremotefile
system.

knownHost sFi | e null Sets the known_hosts file, so that the scp endpoint can
do host key verification.

strict Host KeyChecki ng no Sets whether to use strict host key checking. Possible
values are: no, yes

chnod null Allowsyou to set chmod on the stored file. For example
chmod=664.

3.27.2. Limitations

Currently camel-jsch only supports a Producer (i.e. copy files to another host). The reason is that the scp protocol
does not offer the possibility to scan (list) the content of adirectory. As such apolling consumer cannot watch for
changes and trigger events on changes. It is possible however to use camel-jsch in sink mode for one time copy
from aremote host using a Consumer Template (see Polling Consumer for more details). If continuous monitoring
of adirectory on aremote host and secure transfer is required, you can consider using the sftp protocol.

3.28. Log

The log: component logs message exchanges to the underlying logging mechanism.
Camd uses commons-logging which allows you to configure logging via

* Log4

* JDK 1.41ogging

* Avaon

» SimpleLog - asimple provider in commons-logging

Refer to the commons-logging user guide for a more complete overview of how to use and configure commons-
logging.

3.28.1. URI format and Options

| 0g: | oggi ngCat egor y[?opt i ons]

where loggingCategory is the name of the logging category to use. Y ou can append query options to the URI in
the following format, ?opt i on=val ue&opt i on=val ueé&. . .

For example, alog endpoint typically specifiesthe logging level using thel evel option, asfollows:

222 Talend Mediation Developer Guide

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/Producer.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/ConsumerTemplate.html
https://cwiki.apache.org/confluence/display/CAMEL/Polling+Consumer
http://commons.apache.org/logging/
http://logging.apache.org/log4j/
http://java.sun.com/j2se/1.4.2/docs/api/java/util/logging/package-summary.html
http://commons.apache.org/logging/commons-logging-1.1.1/guide.html

Formatting

| og: or g. apache. canel . exanpl e?l evel =DEBUG

The default logger logs every exchange (regular logging). But Camel also ships with the Thr oughput logger,
which is used whenever the gr oupSi ze option is specified.

i AlsoalogintheDSL

Thereisaso al og directly in the DSL, but it has a different purpose. It is meant for lightweight and
human logs. See more details at Section 2.20, “Log”.

Options

Option Default Type Description

| evel I NFO String Logging level to use. Possible values:
FATAL, ERROR, WARN, | NFO, DEBUG,
TRACE, OFF

marker nul | String An optional Marker name to use.

groupSi ze nul | I nt eger An integer that specifies a group size for
throughput logging.

groupl nterval |null I nt eger If specified will group message stats by this
timeinterval (in milliseconds)

gr oupDel ay 0 | nt eger Set the initial delay for stats (in
milliseconds)

gr oupActi veOnl ytrue bool ean If true, will hide statswhen no new messages
have been received for a time interval,
if false, show stats regardless of message
traffic.

Note: groupDelay and groupActiveOnly are only applicable when using grouplnterval

3.28.2. Formatting

The log formats the execution of exchangesto log lines. By default, the log uses LogFor mat t er to format the
log output, where LogFor mat t er hasthe following options:

Option Default Description

showAl | fal se Quick option for turning al options on. (multiline, maxChars
has to be manually set if to be used)

showExchangel d fal se Show the unique exchange ID.

showExchangePat t ern true Shows the M essage Exchange Pattern (or MEP for short).

showPr operties fal se Show the exchange properties.

showHeader s fal se Show the In message headers.

showBodyType true Show the In body Javatype.

showBody true Show the In body.

showQut fal se If the exchange has an Out message, show the Out message.

showExcepti on fal se If the exchange has an exception, show the exception message
(no stack trace).

showCaught Excepti on fal se If the exchange has a caught exception, show the
exception message (no stack trace). A caught exception
is stored as a property on the exchange (using the

Talend Mediation Developer Guide 223

http://www.slf4j.org/api/org/slf4j/Marker.html

Regular logger sample

Option

Default

Description

key Exchange.EXCEPTION_CAUGHT) and for instance a
doCat ch can catch exceptions. See Try Catch Finally.

showSt ackTr ace

fal se

Show the stack trace, if an exchange has an exception.
Only effective if one of showAl | , showExcepti on or
showCaught Except i on are enabled.

showFi | es

fal se

Whether Camel should show file bodies or not (eg such as
javaio.File).

showFut ur e

fal se

Whether Came should show
java.util.concurrent. Future bodies or not. If
enabled Camel could potentialy wait until the Fut ur e task
isdone. By default, thiswill not wait.

showSt r eans

fal se

Whether Camel should show stream bodies or not (eg such
asjava.io.lnputStream). Beware if you enable this option then
you may hot be able later to access the message body as the
stream have already been read by this logger. To remedy this
you will have to use Stream Caching.

mul tiline

fal se

If t r ue, each piece of information islogged on anew line.

maxChar s

Limits the number of characterslogged per line.

3.28.3. Regular logger sample

In the route below we log the incoming orders at DEBUG level before the order is processed:

from("activeny: orders")

.to("l og: com nyconpany. or der ?l evel =DEBUG")
.to("bean: processOrder");

Or using Spring XML to define the route:

<r out e>

<fromuri="activeny: orders"/>

<to uri="I|o0g: com nyconpany. or der ?l evel =DEBUG'/ >

<to uri="bean: processOrder"/>

</ rout e>

3.28.4. Regular logger with formatter sample

In the route below we log the incoming orders at | NFOlevel before the order is processed.

from"activeny: orders")

.to("log: com nyconpany. or der ?showAl | =t rue&nul tiline=true")
.to("bean: processOrder");

3.28.5. Throughput logger with groupSize sample

In the route below we log the throughput of the incoming orders at DEBUG level grouped by 10 messages.

224

Talend Mediation Developer Guide

http://camel.apache.org/try-catch-finally.html
http://camel.apache.org/stream-caching.html

Throughput logger with grouplnterval sample

from"activeny: orders")
.to("l og: com nycomnpany. or der ?| evel =DEBUG?gr oupSi ze=10")
.to("bean: processOrder");

3.28.6. Throughput logger with grouplnterval sample

Thisroute will result in message stats logged every 10s, with an initial 60s delay and stats displayed even if there
isn't any message traffic.

from"activeny: orders")

.to("l og: com nyconpany. or der ?I evel =DEBUG?gr oupl nt er val =10000&gr oup
Del ay=60000&gr oupActi veOnl y=f al se")

.to("bean: processOrder");

The following will be logged:

"Recei ved: 1000 new nessages, with total 2000 so far. Last group took:
10000 millis which is: 100 nessages per second. average: 100"

S

3.29. Lucene

The lucene component is based on the Apache Lucene project. Apache Lucene is a powerful high-performance,
full-featured text search engine library written entirely in Java. For more details about Lucene, please see the
following links

* http://lucene.apache.org/java/docs/
« http://lucene.apache.org/java/docs/features.html

Thelucene component in Camel facilitatesintegration and utilization of Lucene endpointsin enterpriseintegration
patterns and scenarios. The lucene component does the following

* builds a searchable index of documents when payloads are sent to the Lucene Endpoint

« facilitates performing of indexed searchesin Camel

This component only supports producer endpoints.

Maven users will need to add the following dependency to their pom xmi for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -l ucene</artifactld>
<ver si on>x. X. x</ ver si on>
<l-- use the sane version as your Canel core version -->
</ dependency>

3.29.1. URI format

| ucene: sear cher Nane: i nsert [?opti ons]
| ucene: sear cher Nane: quer y[?opti ons]

Talend Mediation Developer Guide 225

Insert Options

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

3.29.2

. Insert Options

Name

Default Value

Description

anal yzer

St andar dAnal yzer

An Anayzer builds TokenStreams, which analyze
text. It thus represents a policy for extracting
index terms from text. The vaue for analyzer
can be any class that extends the abstract
class org.apache.lucene.analysis.Analyzer. Lucene also
offersarich set of analyzers out of the box

i ndexDi r

./lindexDirectory

A file system directory in which index files are created
upon analysis of the document by the specified analyzer

srcDir

nul |

An optional directory containing files to be used to be
analyzed and added to the index at producer startup.

3.29.3

. Query Options

Name

Default Value

Description

anal yzer

St andar dAnal yzer

An Anayzer builds TokenStreams, which analyze
text. It thus represents a policy for extracting
index terms from text. The vaue for analyzer
can be any class that extends the abstract
class org.apache.lucene.analysis.Analyzer. Lucene also
offersarich set of analyzers out of the box

i ndexDi r

./indexDirectory

A file system directory in which index files are created
upon analysis of the document by the specified analyzer

maxHi ts

10

An integer value that limits the result set of the search
operation

3.29.4. Sending/Receiving Messages to/from the cache

3.29.4.1. Message Headers

Header

Description

QUERY

The Lucene Query to performed on the index. The query may include
wildcards and phrases

3.29.4.2. Lucene Producers

This component supports two producer endpoints.

* insert: the insert producer builds a searchable index by analyzing the body in incoming exchanges and
associating it with atoken ("content").

226

Talend Mediation Developer Guide

Lucene Usage Samples

3

query: the query producer performs searches on a pre-created index. The query uses the searchable index
to perform score & relevance based searches. Queries are sent via the incoming exchange contains a header
property name called 'QUERY". The value of the header property 'QUERY ' isa L ucene Query. For more details
on how to create Lucene Queries check out http://lucene.apache.org/javal3_0_0/queryparsersyntax.html

.29.4.3. Lucene Processor

There is a processor called LuceneQueryProcessor available to perform queries against lucene without the need

to

create a producer.

3.29.5. Lucene Usage Samples

3

.29.5.1. Example: Creating a Lucene index

Rout eBui | der buil der = new Rout eBuil der () {

3

public void configure() {
from"direct:start")
.to("l ucene: whi t espaceQuot esl ndex: i nsert ?anal yzer =
#whi t espaceAnal yzer & ndexDi r =#whi t espace&srcDi r=#l oad_dir")
.to("nock:result");

.29.5.2. Example: Loading properties into the JNDI registry in the

Camel Context

@verride
protected Jndi Regi stry createRegistry() throws Exception {

}

Jndi Regi stry registry = new Jndi Regi stry(createJdndi Context());

regi stry. bi nd("whitespace", new File("./whitespacelndexDir"));
registry.bind("load dir", new File("src/test/resources/sources"));
regi stry. bi nd("whit espaceAnal yzer", new Wi tespaceAnal yzer());
return registry;

Canel Cont ext context = new Def aul t Canel Cont ext (creat eRegi stry());

3

.29.5.3. Example: Performing searches using a Query Producer

Rout eBui | der buil der = new Rout eBui l der () {

public void configure() {
from"direct:start").
set Header (" QUERY", constant("Seinfeld")).
to("l ucene: searchl ndex: query?
anal yzer =#whi t espaceAnal yzer & ndexDi r =#whi t espace&raxHi t s=20") .
to("direct:next");

Talend Mediation Developer Guide 227

Lucene Usage Samples

from "direct:next").process(new Processor() {
public void process(Exchange exchange) throws Exception {
Hits hits = exchange.getln().getBody(Hits.class);
printResults(hits);

}

private void printResults(H ts hits) {
LOG debug(" Nunber of hits: " + hits.getNunberOHi ts());
for (int i =0; i < hits.getNunmberOHits(); i++) {
LOG debug("Hit " + i + " Index Location:"
+ hits.getH t().get(i).getH tLocation());
LCG debug("Hit " + i + " Score:"
+ hits.getH t().get(i).getScore());
LOG debug("Hit " + i + " Data:"
+ hits.getH t().get(i).getData());
}

}).to("nmock: searchResult");

3.29.5.4. Example: Performing searches using a Query Processor

Rout eBui | der buil der = new Rout eBuil der () {
public void configure() {
try {
from"direct:start").
set Header (" QUERY", constant ("Rodney Dangerfield")).
process(new LuceneQueryProcessor (
"target/stdindexDir", analyzer, null, 20)).
to("direct:next");
} catch (Exception e) {
e.printStackTrace();

}

from("direct:next").process(new Processor() {
public void process(Exchange exchange) throws Exception {
Hits hits = exchange.getln().getBody(H ts.class);
printResults(hits);

}

private void printResults(Hts hits) {

LCG debug(" Nunber of hits: " + hits.getNunberOHits());
for (int i = 0; i < hits.getNumberOfHits(); i++) {
LCG debug("Hit " + i + " Index Location:" +

hits.getH t().get(i).getH tLocation());
LCOG debug("Ht " + i + " Score:" +
hits.getH t().get(i).getScore());
LOG debug("Hit " + i + " Data:" +
hits.getH t().get(i).getData());
}

}).to("nock: searchResult");

228 Talend Mediation Developer Guide

Mail

3.30. Mail

The mail component provides access to Email via Spring's Mail support and the underlying JavaMail system.
Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -mail </artifactld>
<ver si on>x. X. x</ ver si on>
<l-- use the sane version as your Canmel core version -->
</ dependency>

3.30.1. URI format

Mail endpoints can have one of the following URI formats (for the protocols, SMTP, POP3, or IMAP,
respectively):

sntp://[usernane@ host[: port][?options]
pop3://[username@ host[: port][?opti ons]
i map://[username@ host[: port][?options]

Themail component al so supports secure variants of these protocol s (layered over SSL). Y ou can enable the secure
protocols by adding s to the scheme:

sntps://[username@ host[: port][?options]
pop3s://[usernane@ host[: port][?options]
i maps://[usernane@ host[: port][?options]

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

3.30.1.1. Sample endpoints

Typically, you specify a URI with login credentials as follows (taking SMTP as an example):
sntp://[usernane@ host[: port][?passwor d=somepwd]

Alternatively, it is possible to specify both the user name and the password as query options:
sntp://host[: port] ?passwor d=sonepwd&user hame=someuser

For example:

sntp:// myconpany. mai | server: 30?passwor d=ti ger &user name=scot t

3.30.1.2. Default ports

Default port numbers are supported. If the port number is omitted, Camel determines the port number to use based
on the protocol.

Protocol Default Port Number
SMTP 25

SMIPS 465

POP3 110

Talend Mediation Developer Guide 229

Options

Protocol Default Port Number

POP3S 995

| VAP 143

| MAPS 993

3.30.2. Options

Property Default Description

host The host name or | P address to connect to.

port See DefaultPorts The TCP port number to connect on.

user name The user name on the email server.

password nul | The password on the email server.

i gnoreUri Schene fal se If fal se, Camel uses the scheme to determine the
transport protocol (POP, IMAP, SMTP etc.)

def aul t Encodi ng nul | The default encoding to use for Mime Messages.

content Type

text/plain

The mail message content type. Uset ext/ ht m for
HTML mails.

f ol der Nane

I NBOX

Thefolder to poll.

desti nation

user nane@ost

@deprecated Use the t o option instead. The TO
recipients (receivers of the email).

to user name@ost The TO recipients (the receivers of the mail). Separate
multiple email addresses with a comma.

replyTo al i as@ost The Reply-To recipients (the receivers of the response
mail). Separate multiple email addresses with acomma.

CcC nul | The CC recipients (the receivers of the mail). Separate
multiple email addresses with acomma.

BCC nul | The BCC recipients (the receivers of the mail). Separate
multiple email addresses with acomma.

from canmel @ ocal host The FROM email address.

subj ect The Subject of the message being sent. Note; Setting the
subject in the header takes precedence over this option.

del ete fal se Deletes the messages after they have been processed.
This is done by setting the DELETED flag on the mail
message. If f al se, the SEEN flag is set instead.

unseen true Is used to fetch only unseen messages (that is, new
messages). Note that POP3 does not support the SEEN
flag; use IMAP instead.

fetchSi ze -1 This option sets the maximum number of messages

to consume during a poll. This can be used to avoid
overloading amail server, if amailbox folder containsa
lot of messages. Default value of - 1 meansnofetch size
and all messages will be consumed. Setting the value to
Oisaspecial corner case, where Camel will not consume
any messages at all.

al t ernati veBody-
Header

Canel Mai | Al t er nat -

i veBody

Specifiesthe key to an IN message header that contains
an alternative email body. For example, if you send
emailsint ext/ htm format and want to provide an

230

Talend Mediation Developer Guide

Options

Property Default Description

aternative mail body for non-HTML email clients, set
the alternative mail body with this key as a header.

debugMbode fal se It is possible to enable debug mode on the underlying
mail framework. The SUN Mail framework logs the
debug messagesto Syst em out by default.

connecti onTi neout [30000 The connection timeout can be configured in
milliseconds. Default is 30 seconds.

consuner. 1000 Milliseconds before the polling starts.

i nitial Del ay

consuner . del ay 60000 The default consumer delay is now 60 seconds. Camel

will therefore only poll the mailbox once a minute to
avoid overloading the mail server.

consuner. fal se Set to true to use a fixed delay between

useFi xedDel ay polls, otherwise fixed rate is used. See
ScheduledExecutorService in JDK for details.

di sconnect fal se Whether the consumer should disconnect after polling.

If enabled this forces Camel to connect on each poll.

mai | . XXX nul | You can set any additional java mail properties.
For instance if you want to set a specia
property when using POP3 you can now
provide the option directly in the URI such
as.mai | . pop3. forgettopheaders=true.You
can set multiple such options, for example
mai | . pop3. forgettopheaders=true&

mai | . m ne. encodefi | enane=tr ue.

mapMai | Message true Specifies whether Camel should map the received mail
message to Camel body/headers. If set to true, the body
of the mail message is mapped to the body of the
Camel IN message and the mail headers are mapped
to IN headers. If this option is set to false then the
IN message containsaraw j avax. nai | . Message.
You can retrieve this raw message by caling
exchange. get 1 n(). get Body(j avax. mai | . Message. cl

maxMessagesPer Pol | |0 Specifies the maximum number of messages to gather
per poll. By default, no maximum is set. Can be used to
set alimit of, for example, 1000 to avoid downloading
thousands of files when the server starts up. Set avalue
of 0 or negative to disable this option.

j avaMai | Sender nul | Specifies a pluggable
org. springframewor k. mai |l . javamail .
JavaMai | Sender instance in order to
use a custom emal implementation. If

none provided, Camel uses the default,
org. springframewor k. mai |l . javamail .
JavaMai | Sender | npl .

i gnor eUnsupported- |fal se Option to let Camel ignore unsupported charset in
Char set the loca JVM when sending mails. If the charset
is unsupported then char set =XXX (where XXX
represents the unsupported charset) isremoved from the
cont ent -t ype and it relies on the platform default
instead.

Talend Mediation Developer Guide 231

http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html
http://java.sun.com/products/javamail/javadocs/index.html

SSL support

Property Default Description

ssl Cont ext Par anet erisul | Reference to a
org. apache. canel . util.jsse. SSLCont ext Par amet ers
inthe Registry. Thisreference overrides any configured
SSL ContextParameters at the component level. See
Using the JSSE Configuration Utility for more
information.

3.30.3. SSL support

The underlying mail framework isresponsible for providing SSL support. Camel uses SUN JavaMail, which only
trusts certificates issued by well known Certificate Authorities. So if you issue your own certificate, you have to
import it into the local Java keystore file (see SSLNOTES. t xt in JavaMail for details).

3.30.4. Mail Message Content

Camel uses the message exchange's IN body as the MimeMessage text content. The body is converted to
String.cl ass.

Camel copies all of the exchange's IN headers to the MimeM essage headers.

The subject of the MimeMessage can be configured using a header property on the IN message. The code below
demonstrates this:

from("direct:a").set Header ("subj ect", constant(subject))
.to("smtp://joe2@ocal host");

The same applies for other MimeM essage headers such as recipients, so you can use a header property as To :

Map<String, Object> map = new HashMap<String, Object>();

map. put ("To", "jenshansen@nuil.coni);
map. put ("Froni', "jbloggs@nmail.cont);
map. put (" Subj ect", "Camel rocks");

String body = "Hello Jens.\nYes it does.\n\nRegards Joe.";
t enpl at e. sendBodyAndHeader s("snt p://jenshansen@nuai | . con', body, map);

3.30.5. Headers take precedence over pre-configured
recipients

The recipients specified in the message headers always take precedence over recipients pre-configured in the
endpoint URI. The idea is that if you provide any recipients in the message headers, that is what you get. The
recipients pre-configured in the endpoint URI are treated as a fallback.

In the sample code below, the email messageissenttoj enshansen@mai | . com becauseit takes precedence
over the pre-configured recipient, i nf o@ryconpany. com Any CC and BCC settings in the endpoint URI are
alsoignored and those recipientswill not receiveany mail. The choi ce between headers and pre-configured settings
isall or nothing: the mail component either takes the recipients exclusively from the headers or exclusively from
the pre-configured settings. It is not possible to mix and match headers and pre-configured settings.

232 Talend Mediation Developer Guide

http://camel.apache.org/registry.html
http://camel.apache.org/http4.html#HTTP4-UsingtheJSSEConfigurationUtility
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html
http://java.sun.com/javaee/5/docs/api/javax/mail/internet/MimeMessage.html

Multiple recipients for easier configuration

Map<String, Object> headers = new HashMap<String, bject>();
headers. put ("to", "jenshansen@nuail.com');

t empl at e. sendBodyAndHeader s(
"snt p://adm n@ ocal host ?t o=i nf o@ryconpany. cont,
"Hell o Worl d", headers);

3.30.6. Multiple recipients for easier configuration

It is possible to set multiple recipients using a comma-separated or a semicolon-separated list. This applies both
to header settings and to settingsin an endpoint URI. For example:

Map<String, Object> headers = new HashMap<String, bject>();
headers. put ("to",
"j enshansen@mai |l . com; jbl oggs@nuail.com; janedoe@mail.cont);

The preceding example uses asemicolon, ; , as the separator character.

3.30.7. Setting sender name and email

You can specify recipients in the format, name <emai | >, to include both the name and the email address of
the recipient.

For example, you define the following headers on the a Section 2.22, “Message” :

Map headers = new HashMap();

map. put ("To", "Jens Hansen <jenshansen@nmail.conm");
map. put ("From', "Joe Bl oggs <j bl oggs@mail.com");
map. put (" Subj ect”, "Canel is cool");

3.30.8. SUN JavaMail

SUN JavaMail is used under the hood for consuming and producing mails. We encourage end-users to consult
these references when using either POP3 or IMAP protocol. Note particularly that POP3 has a much more limited
set of features than IMAP, so end users are recommended to use IMAP where possible.

* SUN POP3 API
* SUN IMAP API

» And generally about the MAIL Flags

3.30.9. Samples

We start with a simple route that sends the messages received from a JMS queue as emails. The email account is
theadni n account onnymai | server. com

Talend Mediation Developer Guide 233

http://java.sun.com/products/javamail/
http://java.sun.com/products/javamail/javadocs/com/sun/mail/pop3/package-summary.html
http://java.sun.com/products/javamail/javadocs/com/sun/mail/imap/package-summary.html
http://java.sun.com/products/javamail/javadocs/javax/mail/Flags.html

Mock

from("jms://queue: subscription")
.to("sntp://adm n@wynai |l server. con?passwor d=secret");

In the next sample, we poll amailbox for new emails once every minute. Notice that we usethe special consuner
option for setting the poll interval, consuner . del ay, as 60000 milliseconds = 60 seconds.

from("i map://adm n@rynail server.com
passwor d=secr et &unseen=t r ue&consuner . del ay=60000")
.to("seda://mails");

In this sample we want to send amail to multiple recipients.

/1 all the recipients of this mail are:
/1 To: camel @iders.org , easy@iders.org
/1 CC. me@ou.org
/1 BCC. soneone@onewhere. org
String recipients =

"&To=canel @i ders.org, easy@i ders. org&
CC=me@ou. or g&BCC=soneone@onewher e. or g";

from"direct:a")
.to("sntp://you@vymail server. conPpasswor d=secr et &r onmryou@pache. or g"
+ recipients);

Check the Apache Camel website for several more examples, including handling mail attachments and SSL
configuration.

3.31. Mock

Testing of distributed and asynchronous processing is notoriously difficult. The Section 3.31, “Mock”,
Section 3.48, “Test” and DataSet endpoints work great with the Camel Testing Framework to simplify your unit
and integration testing using Enterprise | ntegration Patterns and Camel'slarge range of Components together with
the powerful Bean Integration.

The Mock component provides a powerful declarative testing mechanism, which is similar to jMock in that it
allows declarative expectations to be created on any Mock endpoint before a test begins. Then the test is run,
which typically fires messages to one or more endpoints, and finally the expectations can be asserted in atest case
to ensure the system worked as expected.

This allows you to test various things like:

» The correct number of messages are received on each endpoint,

 The correct payloads are received, in the right order,

» Messages arrive on an endpoint in order, using some Expression to create an order testing function,

» Messages arrive match some kind of Predicate such as that specific headers have certain values, or that parts of
the messages match some predicate, such as by evaluating an XPath or X Query Expression.

Note that there is also the Test endpoint which is a Mock endpoint, but which uses a second endpoint to provide
the list of expected message bodies and automatically sets up the Mock endpoint assertions. In other words, it is
a Mock endpoint that automatically sets up its assertions from some sample messages in a Section 3.14, “File’
or database, for example.

234 Talend Mediation Developer Guide

http://camel.apache.org/mail.html#Mail-Sendingmailwithattachmentsample
http://camel.apache.org/testing.html
http://camel.apache.org/dataset.html
http://camel.apache.org/testing.html
http://camel.apache.org/bean-integration.html
http://jmock.org
http://camel.apache.org/expression.html
http://camel.apache.org/predicate.html
http://camel.apache.org/xpath.html
http://camel.apache.org/xquery.html
http://camel.apache.org/expression.html

URI format

Mock endpoints keep received Exchangesin memory indefinitely

Remember that Mock is designed for testing. When you add Mock endpoints to a route, each Exchange
sent to the endpoint will be stored (to allow for later validation) in memory until explicitly reset or the
JVM isrestarted. If you are sending high volume and/or large messages, this may cause excessive memory
use. If your goal isto test deployable routesinline, consider using NotifyBuilder or AdviceWith in your
tests instead of adding Mock endpoints to routes directly.

From Camel 2.10 onwards there are two new optionsr et ai nFi r st and r et ai nLast that can be
used to limit the number of messages the Mock endpoints keep in memory.

3.31.1. URI format

nock: soneNane[?opt i ons]
where someName can be any string that uniquely identifies the endpoint.

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ueé&. . .

3.31.2. Options

Option Default Description
report Goup nul | A sizeto use athroughput logger for
reporting

3.31.3. Simple Example

Here's a simple example of Mock endpoint in use. First, the endpoint is resolved on the context. Then we set an
expectation, and then, after the test has run, we assert that our expectations have been met.

MockEndpoi nt resul t Endpoi nt =
cont ext . resol veEndpoi nt (" nock: f oo", MockEndpoi nt. cl ass);

resul t Endpoi nt . expect edMessageCount (2) ;

/! send sone nessages

/1 now let's assert that the nock:foo endpoint received two nessages
resul t Endpoi nt. assertlsSatisfied();

You typically always call the assertlsSatisfied() method to test that the expectations were met after running atest.

Camd will by default wait 10 secondswhentheassert | sSati sfi ed() isinvoked. This can be configured
by setting theset Resul t VAi t Tine(mi | | i seconds) method.

When the assertion is satisfied then Camel will stop waiting and continue from the assert | sSati sfi ed
method. That meansif a new message arrives on the mock endpoint, just abit later, that arrival will not affect the
outcome of the assertion. Suppose you do want to test that no new messages arrives after a period thereafter, then
you can do that by setting the set Assert Per i od method.

Talend Mediation Developer Guide 235

http://camel.apache.org/notifybuilder.html
http://camel.apache.org/advicewith.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied()

Setting expectations

3.31.3.1. Using assertPeriod

When the assertion is satisfied then Camel will stop waiting and continue from the assert | sSati sfi ed
method. That means if a new message arrives on the mock endpoint, just abit later, that arrival will not affect the
outcome of the assertion. Suppose you do want to test that no new messages arrives after a period thereafter, then
you can do that by setting the set Asser t Per i od method, for example:

MockEndpoi nt resul t Endpoi nt = cont ext. resol veEndpoi nt (" nock: f oo",
MockEndpoi nt . cl ass);

resul t Endpoi nt. set Assert Peri od(5000) ;

resul t Endpoi nt . expect edMessageCount (2) ;

/1 send sone nessages

/1 now let's assert that the nock:foo endpoint received tw nessages
resul t Endpoi nt. assertlsSatisfied();

3.31.4. Setting expectations

Y ou can see from the javadoc of MockEndpoint the various hel per methods you can use to set expectations. The
main methods are as follows:

Method Description

expectedM essageCount(int) To define the expected message count on the endpoint.

expectedMinimumM essageCount(int) To define the minimum number of expected messages on the
endpoint.

expectedBodiesReceived(...) To define the expected bodies that should be received (in order).

expectedHeaderReceived(...) To define the expected header that should be received

expectsAscending(Expression) To add an expectation that messages are received in order, using

the given Expression to compare messages.

expectsDescending(Expression) To add an expectation that messages are received in order, using
the given Expression to compare messages.

expectsNoDuplicates(Expression) To add an expectation that no duplicate messages are received;
using an Expression to calculate a unique identifier for each
message. This could be something like the JMSMessagel D if
using JMS, or some unique reference number within the message.

Here's another example:

resul t Endpoi nt . expect edBodi esRecei ved("first MessageBody", "secondMessageBody",
"t hi rdMessageBody") ;

3.31.4.1. Adding expectations to specific messages

In addition, you can use the message(int messagel ndex) method to add assertions about a specific message that
isreceived.

For example, to add expectations of the headers or body of the first message (using zero-based indexing like
java. util.List), youcan usethefollowing code:

236 Talend Mediation Developer Guide

httphttp://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedMinimumMessageCount(int)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedBodiesReceived(java.lang.Object...)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectedHeaderReceived(java.lang.String,%20java.lang.String)
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsAscending(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsDescending(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#expectsNoDuplicates(org.apache.camel.Expression)
http://camel.apache.org/expression.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#message(int)

Mocking existing endpoints

resul t Endpoi nt . nessage(0). header ("foo").i sEqual To("bar");

There are some examples of the Mock endpoint in use in the camel-core processor tests .

3.31.5. Mocking existing endpoints

Available as of Camel 2.7

Camel now allows you to automatically mock existing endpoints in your Camel routes.

1) Howitworks

Important: The endpoints are still in action, what happens is that a Section 3.31, “Mock” endpoint is
injected and receives the message first, and then it del egates the message to the target endpoint. Y ou can
view this as akind of intercept and delegate or endpoint listener.

Suppose you have the given route below:

@verride
protected RouteBuil der createRouteBuilder() throws Exception {
return new RouteBuil der() {
@verride
public void configure() throws Exception {
from"direct:start").to("direct:foo").to("log:foo").to(
"nmock:result");

from "direct:foo").transform constant("Bye Wrld"));

}

You can then use the advi ceW t h feature in Camel to mock all the endpoints in a given route from your unit
test, as shown below:

public void testAdvi sedvMbckEndpoi nts() throws Exception {
/1 advice the first route using the inlined AdviceWth route buil der
/1 which has extended capabilities than the regul ar route buil der
cont ext . get Rout eDefinitions().get(0)
.advi ceWth(context, new Advi ceWthRouteBuil der() {
@verride
public void configure() throws Exception {
/1 nmock all endpoints
nockEndpoi nt s() ;

1)

get MockEndpoi nt ("nock: direct:start").
expect edBodi esRecei ved("Hell o World");
get MockEndpoi nt (" nock: direct: foo").
expect edBodi esRecei ved("Hell o World");
get MockEndpoi nt (" nock: | og: f 00") . expect edBodi esRecei ved("Bye Worl d");
get MockEndpoi nt ("nock: resul t"). expect edBodi esRecei ved("Bye Worl d");

tenpl at e. sendBody("direct:start", "Hello Wrld");

Talend Mediation Developer Guide 237

http://svn.apache.org/viewvc/camel/trunk/camel-core/src/test/java/org/apache/camel/processor/

Mocking existing endpoints

}

Notice that the mock endpointsisgiven theuri nock: <endpoi nt >, for examplenock: di r ect : f 00. Camel

assert MockEndpoi nt sSati sfied();

/] additional test to ensure correct endpoints in registry
assert Not Nul | (cont ext. hasEndpoint ("direct:start"));

assert Not Nul | (cont ext . hasEndpoi nt ("direct:fo00"));

assert Not Nul | (cont ext . hasEndpoi nt ("1 og: foo"));

assert Not Nul | (cont ext . hasEndpoi nt ("nock:result"));

/1 all the endpoints was nocked

assert Not Nul | (cont ext. hasEndpoi nt ("nock: direct:start"));
assert Not Nul | (cont ext . hasEndpoi nt (" nock: direct:fo0"));
assert Not Nul | (cont ext . hasEndpoi nt (" nmock: | og: fo0"));

logsat | NFOlevel the endpoints being mocked:

I NFO Advi ced endpoint [direct://foo] with nock endpoint [nock:direct:foo]

It is also possible to only mock certain endpoints using a pattern. For example to mock all | og endpoints you

Mocked endpoints are without parameters

Endpoints which are mocked will have their parameters stripped off. For example the endpoint "log:foo?
showAll=true" will be mocked to the following endpoint "mock:log:foo". Notice the parameters have

been removed.

do as shown:

public void testAdvi sedMbckEndpoi ntsWthPattern() throws Exception {

/1 advice the first route using the inlined AdviceWth route buil der
/1 which has extended capabilities than the regular route buil der
cont ext . get Rout eDefinitions().get(0)
.advi ceWth(context, new Advi ceWt hRout eBuilder() ({
@verride
public void configure() throws Exception {
/1 nock only | og endpoints
nockEndpoi nts("l og*");
}
1)

/1 now we can refer to log:foo as a nmock and set our expectations
get MockEndpoi nt (" nock: | og: f 00") . expect edBodi esRecei ved("Bye Worl d");

get MockEndpoi nt ("nock: resul t") . expect edBodi esRecei ved("Bye Worl d");
tenpl at e. sendBody("direct:start", "Hello Wrld");
assert MockEndpoi nt sSati sfied();

/] additional test to ensure correct endpoints in registry
assert Not Nul | (cont ext. hasEndpoint("direct:start"));

assert Not Nul | (cont ext. hasEndpoi nt ("direct:foo0"));

assert Not Nul | (cont ext. hasEndpoi nt ("l og: fo0"));

assert Not Nul | (cont ext. hasEndpoi nt ("nock: result"));

/1 only the |og:foo endpoi nt was nocked

assert Not Nul | (cont ext. hasEndpoi nt (" nock: | og: foo"));

assert Nul | (cont ext. hasEndpoi nt ("nock: direct:start"));
assert Nul | (cont ext. hasEndpoi nt (" nock: direct:foo"));

238

Talend Mediation Developer Guide

Limiting the number of messages to keep

The pattern supported can be awildcard or aregular expression. See more details about this functionality on the
Apache Camel website.

1 Mind that mocking endpoints causes the messages to be copied when they arrive on the mock. That means
Camel will use more memory. This may not be suitable when you send in alot of messages.

3.31.6. Limiting the number of messages to keep

The Mock endpoints will by default keep a copy of every Exchange that it received. So if you test with alot of
messages, then it will consume memory. From Camel 2.10 onwards we have introduced two options retainFirst
and retainL ast that can be used to specify to only keep N'th of the first and/or last Exchanges. For example in the
code below, we only want to retain a copy of the first 5 and last 5 Exchanges the mock receives.

MockEndpoi nt nock = get MockEndpoi nt (" nock: data");
nock. set Ret ai nFirst (5);

nock. set Ret ai nLast (5) ;

nock. expect edMessageCount (2000) ;

nock. assert|sSatisfied();

Using this has some limitations. The getExchanges() and getReceivedExchanges() methods on the M ockEndpoint
will return only the retained copies of the Exchanges. So in the example above, the list will contain 10 Exchanges,
the first five, and the last five. The retainFirst and retainLast options also have limitations on which expectation
methods you can use. For example the expectedX XX methods that work on message bodies, headers, etc. will
operate only on the retained messages. In the example above they can test only the expectations on the 10 retained

messages.

3.31.7. Testing with arrival times

The Section 3.31, “Mock” endpoint stores the arrival time of the message as a property on the Exchange.
Date tine = exchange. get Property(Exchange. RECEI VED Tl MESTAMP, Date. cl ass);

You can use this information to know when the message arrived on the mock. But it also provides foundation
to know the time interval between the previous and next message arrived on the mock. Y ou can use this to set
expectationsusing thear ri ves DSL on the Section 3.31, “Mock” endpoint.

For example to say that the first message should arrive between 0-2 seconds before the next you can do:
nmock. message(0).arrives().noLaterThan(2).seconds(). beforeNext();

Y ou can also define this as that the second message (0 index based) should arrive no later than 0-2 seconds after
the previous:

nock. nessage(1).arrives().noLaterThan(2).seconds().afterPrevious();
Y ou can a'so use between to set alower bound. For example suppose that it should be between 1-4 seconds:
nock. nessage(1).arrives().between(1l, 4).seconds().afterPrevious();

Y ou can also set the expectation on all messages, for example to say that the gap between them should be at most
1 second:

nock. al | Messages().arrives().noLaterThan(1).seconds(). beforeNext();

Talend Mediation Developer Guide 239

http://camel.apache.org/mock.html#Mock-Mockingexistingendpoints
http://camel.apache.org/exchange.html

MyBatis

j time units

In the example above we use seconds as the time unit, but Camel offers mi | | i seconds, and
m nut es aswell.

3.32. MyBatis

The MyBatis component allows you to query, poll, insert, update and delete data in a relational database using
MyBatis.
Maven users will need to add the following dependency to their pom xm for this component:
<dependency>

<gr oupl d>or g. apache. canel </ gr oupl d>

<artifactld>canel -nybatis</artifactld>

<ver si on>x. X. x</ ver si on>

<l-- use the sane version as your Canel core version -->
</ dependency>

3.32.1. URI format

nybati s: st at enent Nanme[?opt i ons]

Where statementName is the statement name in the MyBatis XML configuration file which maps to the query,
insert, update or delete operation you wish to evaluate.

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

This component will by default load the MyBatis SglMapConfig file from the root of the classpath with the
expected name of Sql MapConf i g. xm . If thefileislocated in another location, you will need to configure the
configurationUri option on the MyBatisComponent component.

3.32.2. Options

Option Type Default Description

consuner . onConsure String nul | Statements to run after consuming. Can
be used, for exampl e, to update rows after
they have been consumed and processed
in Camel. Multiple statements can be
separated with commas.

consumer. uselterator |bool ean true If t r ue each row returned when polling
will be processed individudly. If f al se
the entire Li st of datais set as the IN

body.
consurer . bool ean fal se Sets whether empty result sets should be
r out eEnpt yResul t Set routed.
st at enent Type St at ement Type |nul | Mandatory to specify for the Producer

to control which kind of operation

240 Talend Mediation Developer Guide

http://mybatis.org/

Message Headers

Option Type Default Description

to invoke. The enum vaues are
Sel ect One, Sel ect Li st, I nsert,
I nsertList,Update,Del ete.

maxMessagesPer Pol | i nt 0 An integer to define the maximum
messages to gather per poll. By default,
no maximum is set. Can be used to set
a limit of, for example, 1000 to avoid
when starting up the server that there are
thousands of files. Set a value of O or
negative to disableit.

3.32.3. Message Headers

Camel will populate the result message, either IN or OUT with a header with the statement used:

Header Type Description

Camel MyBat i s- String |ThestatementName used (for example: insertAccount).

St at ement Nane

Canel MyBat i sResul t Obj ect | Theresponsereturned from MyBatisin any of the operations.
For instance an | NSERT could return the auto-generated key,
or number of rows etc.

3.32.4. Message Body

The response from MyBatis will only be set as body if it isa SELECT statement. That means, for example, for
| NSERT statements Camel will not replace the body. This allows you to continue routing and keep the original
body. The response from MyBatis is always stored in the header with the key Canel MyBat i sResul t .

3.32.5. Samples

For example if you wish to consume beans from a IMS queue and insert them into a database you could do the
following:

from("activenq: queue: newAccount ")
.to("nybatis:insertAccount ?st at enent Type=Il nsert");

Noticewe haveto specify thest at ement Type, aswe need to instruct Camel which kind of operation to invoke.
TheinsertAccount value given above isthe MyBatis ID in the SQL map file:

<l-- Insert exanple, using the Account paraneter class -->
<insert id="insertAccount" paraneterC ass="Account">
insert into ACCOUNT (
ACC | D,
ACC_FI RST_NAME,
ACC_LAST_NAME,
ACC_EMAI L

Talend Mediation Developer Guide 241

Using StatementType for better control of MyBatis

val ues (
#i d#, #firstName#, #| astNane#, #enmnil Address#

)

</insert>

3.32.6. Using StatementType for better control of
MyBatis

When routing to an MyBatis endpoint you will want more fine grained control so you can control whether the
SQL statement to be executed is a SELECT, UPDATE, DELETE or | NSERT etc. So for instance if we want to
route to an MyBatis endpoint in which the IN body contains parametersto a SELECT statement we can do:

from("direct:start")
.to("nybatis: sel ect Account Byl d?st at emrent Type=Quer yFor Cbj ect ")
.to("nock:result");

In the code above we invoke the MyBatis statement sel ect Account Byl d and the IN body should contain the
account id we want to retrieve, such asan | nt eger type.

We can do the same for some of the other operations, such as Sel ect Li st :

from("direct:start")
.to("nybatis: sel ect All Account s?st at ement Type=Sel ect Li st")
.to("nock:result");

And the same for UPDATE, where we can send an Account abject asthe IN body to MyBatis:

from"direct:start")
.to("nybatis: updat eAccount ?st at ement Type=Updat e")
.to("mock:result");

3.32.6.1. Using onConsume

This component supports executing statements after data have been consumed and processed by Camel. This
allows you to do post updates in the database. Notice all statements must be UPDATE statements. Camel supports
executing multiple statements whose names should be separated by commas.

The route below illustrates executing the consumeAccount statement after the data is processed. This allows us
to change the status of the row in the database to " processed"”, so we avoid consuming it twice or more.

from("nybatis: sel ect UnprocessedAccount s?consuner.
onConsune=consuneAccount").to("nock: resul ts");

And the statementsin the sgimap file:

<sel ect id="sel ect UnprocessedAccounts" resultMp="Account Result">
sel ect * from ACCOUNT where PROCESSED = fal se

</ sel ect >

<updat e i d="consuneAccount" paramneterd ass="Account">
updat e ACCOUNT set PROCESSED = true where ACC | D = #i d#

</ updat e>

242 Talend Mediation Developer Guide

Properties

3.33. Properties

3.33.1. Properties Component

3.33.1.1. URI format

properties: key[?opti ons]

where key isthe key for the property to lookup

3.33.1.2. Options

Name Type Default Description
cache bool ean true Whether or not to cache loaded properties.
| ocati ons String nul | A list of locations to load properties.

You can use comma to separate multiple
locations. This option will override any
default locations and only use the locations
from this option.

3.33.2. Using PropertyPlaceholder

Camd now provides a new Properti esConponent in camel-core which allows you to use property
placeholders when defining Camel Endpoint URIs. This works much like you would do if using Spring's
<pr operty- pl acehol der > tag. However Spring have a limitation which prevents 3rd party frameworksto
leverage Spring property placeholders to the fullest. See more at How do | use Spring Property Placeholder with
Camel XML .

The property placeholder is generally in use when doing:

* lookup or creating endpoints

* lookup of beansin the Registry

* additional supported in Spring XML (see below in examples)

* using Blueprint PropertyPlaceholder with Camel Section 3.33, “Properties’ component

3.33.2.1. Syntax

The syntax to use Camel's property placeholder is to use {{ key }} for example {{ file.uri }} where
file.uri isthe property key. You can use property placeholders in parts of the endpoint URI's which for
example you can use placeholders for parametersin the URIs.

Talend Mediation Developer Guide 243

http://camel.apache.org/endpoint.html
http://localhost:8080/confluence/pages/viewpage.action?pageId=3244150
http://localhost:8080/confluence/pages/viewpage.action?pageId=3244150
http://camel.apache.org/registry.html

Using PropertyPlacehol der

3.33.2.2. PropertyResolver

As usuad Camel provides a pluggable mechanism which alows 3rd pat to provide
their own resolver to lookup properties. Camel provides a default implementation
or g. apache. canel . conmponent . properti es. Def aul t Properti esResol ver which is capable
of loading properties from the file system, classpath or Registry. Y ou can prefix the locations with either:

» ref: tolookupinthe Registry
» file: toloadthefrom file system
e cl asspat h: toload from classpath (thisis also the default if no prefix is provided)

e bl ueprint: Camel 2.7: to use aspecific OSGi blueprint placeholder service

3.33.2.3. Defining location

The Properti esResol ver need to know a location(s) where to resolve the properties. Y ou can define one
to many locations. If you define the location in a single String property you can separate multiple locations with
comma such as.

pc. set Locat i on(
"com myconpany/ nypr op. properties, com myconpany/ ot her. properties");

Using system and environment variables in locations

Available as of Camel 2.7

The location now supports using placeholders for VM system properties and OS environments variables.
For example:

| ocation=file: ${karaf. hone}/etc/foo.properties

In the location above we defined a location using the file scheme using the VM system property with key
kar af . hone.

To use an OS environment variable instead you would have to prefix with env:
[ocati on=file: ${env: APP_HOVE}/ et c/ f 00. properties
where APP_HOME is an OS environment.

Y ou can have multiple placeholders in the same location, such as:

| ocation=file: ${env: APP_HOVE}/ et c/ ${ pr op. nane}. properties

3.33.2.4. Configuring in Java DSL

Y ou have to create and register the Pr oper t i esConponent under the name pr operti es such as.

Properti esConmponent pc = new Properti esConponent ();
pc. set Locati on("cl asspat h: coml myconpany/ nmypr op. properties");
cont ext . addConponent (" properties", pc);

244 Talend Mediation Developer Guide

http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

Using PropertyPlaceholder

3.33.2.5. Configuring in Spring XML

Spring XML offers two variations to configure. You can define a Spring bean asa Pr oper t i esConponent
which resembles the way donein JavaDSL. Or you can usethe <pr oper t yPl acehol der > tag.

<bean i d="properties"
cl ass="org. apache. canel . conponent . properties. Properti esConponent">
<property nane="|ocati on"
val ue="cl asspat h: conf nyconpany/ nypr op. properties"/>
</ bean>

Using the<pr oper t yPl acehol der > tag makes the configuration a bit more fresh such as:

<canel Context ...>
<propertyPl acehol der id="properties"
| ocati on="com myconpany/ mypr op. properties"/>
</ camel Cont ext >

3.33.2.6. Using a Properties from the Registry

For example in OSGi you may want to expose a service which returns the properties as a
java.util.Properties object.

Then you could setup the Section 3.33, “Properties” component as follows:
<propertyPl acehol der id="properties" |ocation="ref:nyProperties"/>

where nyPr operti es istheid to use for lookup in the OSGi registry. Notice we use the r ef : prefix to tell
Camel that it should lookup the properties for the Registry.

3.33.2.7. Examples using properties component

When using property placeholders in the endpoint URIs you can either use the pr operti es: component or
define the placeholders directly in the URI. We will show example of both cases, starting with the former.

/1 properties
cool . end=nock: resul t

/1 route
from"direct:start").to("properties:{{cool.end}}");

Y ou can a'so use placeholders as a part of the endpoint uri:

/1 properties
cool . foo=resul t

/1 route
from("direct:start").to("properties:nock:{{cool.foo}}");

In the example above the to endpoint will be resolved to nock: resul t .
Y ou can aso have properties with refer to each other such as:

/1 properties
cool . foo=resul t
cool . concat =nock: {{cool . fo0}}

Talend Mediation Developer Guide 245

http://camel.apache.org/registry.html

Using PropertyPlacehol der

/1 route
from"direct:start").to("properties: nock: {{cool.concat}}");

Notice how cool . concat refer to another property.

The properti es: component also offers you to override and provide a location in the given uri using the
| ocat i ons option:

from"direct:start")
.to("properties: bar.end?l ocati ons=com myconpany/ bar. properties");

3.33.2.8. Examples

Y ou can aso use property placeholders directly in the endpoint uris without having to use pr operti es: .

/1 properties
cool . foo=resul t

/1 route
from"direct:start").to("nock: {{cool.foo}}");

And you can use them in multiple wherever you want them:

/1 properties

cool .start=direct:start
cool . show d=true

cool .result=result

/1 route

from"{{cool .start}}")
.to("log: {{cool.start}}?showBodyType=f al se"
+ "&showkxchangel d={{cool . showi d}}")
.to("nmock: {{cool .result}}");

Y ou can a'so your property placehol ders when using ProducerTemplate for example:

t enpl at e. sendBody("{{cool .start}}", "Hello Wrld");

3.33.2.9. Example with Simple language

The Simple language now also support using property placeholders, for example in the route below:

/1 properties
cheese. quot e=Canel rocks

/1 route
from"direct:start")
.transform(). sinmpl e(
"H ${body} do you think ${properties:cheese. quote}?");

Y ou can also specify the location in the Simple language for example:

/1 bar.properties
bar. quot e=Beer tastes good

246 Talend Mediation Developer Guide

http://camel.apache.org/producertemplate.html
http://camel.apache.org/simple.html
http://camel.apache.org/simple.html

Using PropertyPlaceholder

/1 route
from"direct:start")
.transform)
. si npl e(
"H ${body}. ${properties:com nyconpany/bar.properties:bar.quote}.");

3.33.2.10. Additional property placeholder supported in Spring
XML

The property placeholders is also supported in many of the Camel Spring XML tags such as <package>,
<packageScan>, <cont ext Scan>, <j mxAgent >, <endpoi nt >, <r out eBui | der >,
<pr oxy> and the others.

The example below has property placeholder in the <jmxAgent> tag:

<canel Cont ext xm ns="http://canel.apache. org/ schema/ spri ng">
<pr opertyPl acehol der id="properties”
| ocati on="or g/ apache/ canel / spring/jnx. properties"/>

<I-- we can use propery placehol ders when we define the JMX agent -->
<j mkAgent id="agent"
regi stryPort="{{nyj mx.port}}" disabl ed="{{nyjnx.disabled}}"
usePl at f or mvBeanSer ver =" {{ nyj nx. usePl atfornt}"
creat eConnector="true"
statisticsLevel ="RoutesOnly"/>

<route id="foo" autoStartup="false">
<fromuri="seda:start"/>
<to uri="nock:result"/>
</rout e>
</ canel Cont ext >

You can also define property placeholders in the various attributes on the <camelContext> tag such ast r ace
as shown here:

<canel Context trace="{{foo.trace}}"
xm ns="http://canel.apache. org/ schena/ spri ng">
<pr opert yPl acehol der
i d="properties"
| ocati on="or g/ apache/ canel / spri ng/ processor/ nyprop. properties"/>

<tenpl ate id="canel Tenpl at e" def aul t Endpoi nt="{{fo0o0.cool }}"/>

<rout e>
<fromuri="direct:start"/>
<set Header header Name="{{f o0o0. header}}">

<si npl e>${i n. body} Worl d! </ si npl e>

</ set Header >
<to uri="nock:result"/>

</ rout e>

</ canel Cont ext >

Talend Mediation Developer Guide 247

Using PropertyPlacehol der

3.33.2.11. Overriding a property setting using a JVM System
Property

It is possible to override a property value at runtime using a VM System property without the need to restart
the application to pick up the change. This may a so be accomplished from the command line by creating aJVM
System property of the same name as the property it replaces with a new value. An example of thisis given below

Properti esConmponent pc =
cont ext . get Conmponent (" properties", PropertiesConmponent.cl ass);
pc. set Cache(fal se);

System set Property("cool .end", "mock:override");
System set Property("cool .result", "override");

cont ext . addRout es(new Rout eBui | der () {
@verride
public void configure() throws Exception {
from"direct:start").to("properties:cool.end");
from"direct:foo").to("properties: mock:{{cool.result}}");
}
1)

context.start();
get MockEndpoi nt (" nock: overri de"). expect edMessageCount (2) ;

tenpl at e. sendBody("direct:start", "Hello Wrld");
tenpl at e. sendBody("direct:foo", "Hello Foo");

System cl ear Property("cool . end");
System cl ear Property("cool .result");

assert MockEndpoi nt sSati sfied();

3.33.2.12. Using property placeholders for any kind of attribute in
the XML DSL

Available as of Camél 2.7

Previoudly it was only the xs: st ri ng type attributesin the XML DSL that support placeholders. For example
often atimeout attribute would be axs: i nt type and thus you cannot set a string value as the placeholder key.
Thisis now possible from Camel 2.7 onwards using a special placeholder namespace.

In the example below we use the pr op prefix for thenamespace htt p: // canel . apache. or g/ schena/
pl acehol der by which we can use the pr op prefix in the attributes in the XML DSLs. Notice how we use
that in the Section 2.32, “Multicast” to indicate that the option st opOnExcept i on should be the value of the
placeholder with the key "stop”.

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: prop="http://canel.apache. or g/ schena/ pl acehol der"
Xxsi : schemaLocat i on="

htt p: // ww. spri ngfranmewor k. or g/ scherma/ beans

248 Talend Mediation Developer Guide

Using PropertyPlaceholder

htt p: // www. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans. xsd
http://camel . apache. or g/ schema/ spri ng
http://canel . apache. or g/ schena/ spri ng/ canel - spri ng. xsd

s

<I-- Notice in the declaration above, we have defined the prop -->

<l-- prefix as the Canel placehol der namespace -->

<bean id="damm" cl ass="java.l ang. ||| egal Argunent Excepti on">
<constructor-arg i ndex="0" val ue="Dam"/ >

</ bean>

<canel Cont ext xm ns="http://canel.apache. org/ schema/ spri ng">

<propertyPl acehol der id="properties” |ocation=
"cl asspat h: or g/ apache/ canel / conponent / properti es/ nyprop. properties”
xm ns="http://canel.apache. org/ schema/ spring"/>

<rout e>
<fromuri="direct:start"/>
<l-- use prop nanespace, to define a property placehol der,

whi ch maps to option stopOnException={{stop}} -->
<mul ti cast prop:stopOnExcepti on="stop">
<to uri="nock:a"/>
<t hr onExcepti on ref="dam"/ >
<to uri="nock: b"/>
</mul ti cast>
</route>

</ canel Cont ext >

</ beans>

In our properties file we have the value defined as

st op=true

3.33.2.13. Using property placeholder in the Java DSL

Available as of Camel 2.7

Likewise we have added support for defining placeholders in the Java DSL using the new pl acehol der DSL
as shown in the following equivalent example:

from("direct:start")
/1 use a property placeholder for the option stopOnException on the
/1 Multicast EIP which should have the value of {{stop}}
/1 key being |ooked up in the properties file
.multicast()
. pl acehol der (" st opOnExcepti on", "stop")
.to("nock: a")
.throwException(new ||| egal AccessExcepti on("Dam"))
.to("nock: b");

Talend Mediation Developer Guide 249

Using PropertyPlacehol der

3.33.2.14. Using Blueprint property placeholder with Camel routes

Available as of Camel 2.7

Camel supports Blueprint which also offers a property placeholder service. Camel supports convention over
configuration, so al you have to do isto define the OSGi Blueprint property placeholder in the XML file as shown
below:

<bl ueprint xm ns="http://ww. osgi.org/xm ns/blueprint/vl.0.0"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns:cmE"http://aries.apache. org/ bl ueprint/xm ns/ bl ueprint-cnfvl.0.0"
xsi : schemalLocat i on="
http://ww. osgi.org/ xm ns/blueprint/vl1.0.0
http://ww. osgi.org/ xm ns/ bl ueprint/vl1l.0.0/blueprint.xsd">

<l-- OSGE blueprint property placehol der -->
<cm property-pl acehol der id="nybl ueprint. pl acehol der"
persi stent-id="canel . bl ueprint">
<l-- list some properties for this test -->
<cm def aul t - properti es>
<cm property nane="result" val ue="nock:result"/>
</cm defaul t-properties>
</ cm property-pl acehol der >

<canel Cont ext xm ns="http://canel.apache. org/ schema/ bl ueprint">

<l-- in the route we can use {{ }} placeholders which will lookup in -->
<!-- blueprint as Canmel will auto detect the OSG blueprint property -->
<l-- placehol der and use it -->

<r out e>

<fromuri="direct:start"/>
<to uri="nock: foo"/>
<to uri="{{result}}"/>
</route>
</ carel Cont ext >
</ bl ueprint>

By default Camel detects and uses OSGi blueprint property placeholder service. You can disable this by setting
the attribute useBl uepri nt Pr opert yResol ver tofalseonthe<canel Cont ext > definition.

1) About placeholder syntaxes

Notice how we can use the Camel syntax for placeholders{{ }} inthe Camd route, which will lookup the
value from OSGi blueprint. The blueprint syntax for placeholdersis ${ }. So outside the <camel Context>
you must usethe ${ } syntax. Whereasinside <camel Context> you must use{{ }} syntax. OSGi blueprint
alows you to configure the syntax, so you can align those if you want.

You can aso explicit refer to a specific OSGi blueprint property placeholder by itsid. For that you need to use
the Camel's <propertyPlaceholder> as shown in the example below:

<bl ueprint xm ns="http://ww. osgi.org/xm ns/blueprint/vl.0.0"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schena-i nst ance"
xm ns:cmE"http://aries. apache. or g/ bl ueprint/xnm ns/ bl ueprint-cmvi1. 0. 0"
xsi : schenmaLocat i on="

http://ww. osgi.org/ xm ns/blueprint/v1.0.0 http://ww. osgi.org/xmns/

bl ueprint/v1. 0.0/ bl ueprint.xsd">

250 Talend Mediation Developer Guide

http://camel.apache.org/using-osgi-blueprint-with-camel.html

Quartz

<l-- OSGE@ Dblueprint property placehol der -->
<cm property-pl acehol der id="nmybl ueprint. pl acehol der™
persi stent-id="canel . bl ueprint">
<l-- list sone properties for this test -->
<cm def aul t - properti es>
<cm property nane="result" val ue="nock:result"/>
</cm defaul t-properties>
</ cm property-pl acehol der>

<canel Cont ext xm ns="http://canel.apache. org/ schema/ bl ueprint">

<l-- using Camel properties conponent and refer to the blueprint -->
<l-- property placeholder by its id -->
<pr opertyPl acehol der id="properties”

| ocati on="bl ueprint: nybl ueprint. pl acehol der"/ >

<l-- in the route we can use {{ }} placeholders which will [ookup -->
<l-- in blueprint -->
<rout e>

<fromuri="direct:start"/>

<to uri="nock:foo"/>

<to uri="{{result}}"/>
</rout e>

</ canel Cont ext >

</ bl ueprint >

Notice how we usethe bl uepr i nt schemeto refer to the OSGi blueprint placeholder by itsid. Thisalowsyou
to mix and match, for example you can also have additional schemes in the location. For example to load afile
from the classpath you can do:

| ocati on="bl uepri nt: nybl ueprint. pl acehol der,
cl asspat h: myproperties. properties”

Each location is separated by comma.

3.34. Quartz

The quartz: component provides a scheduled delivery of messages using the Quartz scheduler. Each endpoint
represents a different timer (in Quartz terms, a Trigger and JobDetail).

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>

<gr oupl d>or g. apache. canel </ gr oupl d>

<artifactld>canel -quartz</artifactld>

<ver si on>x. x. X</ ver si on>

<l-- use the sanme version as your Canmel core version -->
</ dependency>

1) Using cron expressions
Configuring the cron expression is based on a URI option. Note: it is possible to use the/ cron special

character (for increments). However, you may need to escape certain URI characters such asusing ?in
the quartz cron expression.

Talend Mediation Developer Guide 251

http://www.opensymphony.com/quartz/
http://www.december.com/html/spec/esccodes.html

URI format

3.34.1. URI format

quartz://timer Name?options
quartz://groupNane/ti mer Name?opti ons

quartz://groupNane/ti mer Name/ cr onExpr essi on (@lepr ecat ed)
quartz://groupName/ti mer Name/ ?cr on=expr essi on (Canel 2.0)
quartz://ti mer Name?cr on=expressi on (Canel 2.0)

The component uses either a Cr onTri gger or a Si npl eTri gger . If no cron expression is provided, the
component uses a simple trigger. If no gr oupNane is provided, the quartz component uses the Canel group
name.

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opt i on=val ue&. . .

3.34.2. Options

Parameter Default Description

cron None Specifies a cr on expression (not compatible with the
trigger.* orjob. * options).

trigger.repeat Count0 SimpleTrigger: How many times should the timer
repeat?

trigger.repeatlnten@al SimpleTrigger: The amount of time in milliseconds
between repeated triggers.

j ob. nane nul | Sets the job name.

j ob. XXX nul | Sets the job option with the XXX setter name.

trigger. XXX nul | Sets the trigger option with the XXX setter name.

st at ef ul fal se Uses a Quartz St at ef ul Job instead of the default
job.

fireNow fal se If it is true will fire the trigger when the route is start
when using SimpleTrigger.

For example, the following routing rule will fire two timer eventsto the nock: r esul t s endpoint:

from
"quartz://myG oup/ myTi mer Nane?t ri gger.repeat| nterval =2"

+ "&trigger.repeat Count =1")
.routeld("nmyRoute").to("nock:result");

When using a Stateful Job, the JobDataMap is re-persisted after every execution of the job, thus preserving state
for the next execution.

If you run in OSGi such as within Apache Karaf and have multiple bundles with Camel routes that start from
Quartz endpoints, then make sureif you assign an id to the <camel Context> that thisid isunique, asthisisrequired
by the QuartzScheduler in the OSGi container. If you do not set any id on <camel Context> then an uniqueid will
be auto assigned instead.

3.34.3. Configuring quartz.properties file

By default Quartz will look for aquart z. pr operti es fileintheroot of the classpath. If you are using WAR
deployments this means just drop the quartz.propertiesin WEB- | NF/ ¢l asses.

252 Talend Mediation Developer Guide

http://www.quartz-scheduler.org/docs/api/org/quartz/StatefulJob.html
http://www.quartz-scheduler.org/docs/api/org/quartz/JobDataMap.html

Starting the Quartz scheduler

However the Camel Section 3.34, “Quartz” component also allows you to configure properties:

Par ameter Default Type Description

properties nul | Properties|You can configure a
java. util.Propoperti es instance.

propertiesFile nul | String File name of the properties to load from the
classpath

To do this you can configure thisin Spring XML asfollows

<bean id="quartz"
cl ass="org. apache. canel . conponent . quart z. Quart zConponent " >
<property nane="propertiesFile"
val ue="conf nyconpany/ nyquart z. properties"/>

</ bean>

3.34.4. Starting the Quartz scheduler

The Section 3.34, “Quartz’ component offers an option to let the Quartz scheduler be started delayed, or not auto
started at all.

Par ameter Default Type Description

start Del ayedSeconds |0 i nt Seconds to wait before starting the quartz
scheduler.

aut oSt art Schedul er true bool ean Whether or not the scheduler should be auto
started.

To do this you can configure thisin Spring XML asfollows

<bean id="quartz"
cl ass="or g. apache. canel . conponent . quart z. Quart zConponent " >
<property nane="start Del ayedSeconds" val ue="5"/>

</ bean>

3.34.5. Clustering

If you use Quartz in clustered mode, for example, the Job St or e isclustered. Then from Camel 2.4 onwards the
Section 3.34, “Quartz” component will not pause/remove triggers when a node is being stopped/shutdown. This
allows the trigger to keep running on the other nodes in the cluster.

Note : When running in clustered node no checking is done to ensure unique job name/group for endpoints.

3.34.6. Message Headers

Camel adds the getters from the Quartz Execution Context as header values. The following headers are
added: cal endar, fireTine, jobDetail, joblnstance, jobRunt Ti me, mer gedJobDat aMap,
next Fi reTi me, previ ousFi reTi me,refireCount,resul t,schedul edFi reTi ne,schedul er,
trigger,triggerNane,triggerG oup.

Thef i reTi me header containsthej ava. uti | . Dat e of when the exchange was fired.

Talend Mediation Developer Guide 253

Using Cron Triggers

3.34.7. Using Cron Triggers

Quartz supports Cron-like expressions for specifying timersin a handy format. Y ou can use these expressionsin
thecr on URI parameter; though to preserve valid URI encoding we allow + to be used instead of spaces. Quartz
provides alittle tutorial on how to use cron expressions.

For example, the following will fire a message every five minutes starting at 12pm (noon) to 6pm on weekdays:

from("quartz:// myG oup/ nmyTi mer Nane?cr on=0+0/ 5+12- 18+?+* +MON- FRI ")
.to("activeny: Total |l y. Rocks");

which is equivalent to using the cron expression
0 0/5 12-18 ? * MON-FRI

The following table shows the URI character encodings we use to preserve valid URI syntax:

URI Character Cron character

+ Soace

3.35. Ref

Theref: component is used for lookup of existing endpoints bound in the Registry.

3.35.1. URI format

r ef : soneName

where someName is the name of an endpoint in the Registry (usually, but not always, the Spring registry). If you
are using the Spring registry, soneNane would be the bean ID of an endpoint in the Spring registry.

3.35.2. Runtime lookup

This component can be used when you need dynamic discovery of endpoints in the Registry where you can
compute the URI at runtime. Then you can look up the endpoint using the following code:

/1 1 ookup the endpoint
String nyEndpoi nt Ref = "bi gspender Order";
Endpoi nt endpoi nt = context.get Endpoint("ref:" + nyEndpoi nt Ref);

Producer producer = endpoint.createProducer();
Exchange exchange = producer. creat eExchange();
exchange. get 1 n() . set Body(payl oadToSend) ;

/1 send the exchange
producer . process(exchange);

And you could have a list of endpoints defined in the Registry such as:

254 Talend Mediation Developer Guide

http://www.opensymphony.com/quartz/api/org/quartz/CronTrigger.html
http://www.opensymphony.com/quartz/wikidocs/CronTriggers%20Tutorial.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html
http://camel.apache.org/registry.html

Sample

<canel Cont ext id="canel"
xm ns="http://activenyg. apache. or g/ canel / schema/ spri ng" >
<endpoi nt id="normal Order" uri="activeny: order.slow'/>
<endpoi nt i d="bi gspender Order" uri="activenq: order. hi gh"/>

</ canel Cont ext >

3.35.3. Sample

In the sample below we usether ef : inthe URI to reference the endpoint with the Spring ID, endpoi nt 2 :

<bean i d="nmybean" cl ass="org. apache. canel . spring. exanpl e. DumryBean" >
<property nane="endpoi nt" ref="endpointl"/>
</ bean>

<canel Context id="canel" xm ns="http://canel.apache. org/schema/spring">
<j mkAgent id="agent" di sabl ed="true"/>
<endpoi nt i d="endpointl1" uri="direct:start"/>
<endpoi nt i d="endpoi nt2" uri="nock: end"/ >

<rout e>
<fromref="endpoint1"/>
<to uri="ref:endpoint2"/>
</route>
</ canel Cont ext >

Y ou could, of course, have used ther ef attribute instead:
<to ref="endpoi nt2"/>

Which is the more common way to write it.

3.36. RMI

The rmi: component binds PojoExchanges to the RMI protocol (JRMP).

Since this binding is just using RMI, normal RMI rules still apply regarding what methods can be invoked. This
component supports only PojoExchangesthat carry amethod invocation from an interface that extendsthe Remote
interface. All parameters in the method should be either Serializable or Renpt e objects.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel-rm</artifactld>
<versi on>X. X. X</ ver si on>
<l-- use the sane version as your Canel core version -->
</ dependency>

3.36.1. URI format

rm://rm-regisitry-host:rm -registry-port/regi stry-path[?options]

Talend Mediation Developer Guide 255

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/pojo/PojoExchange.html
http://java.sun.com/j2se/1.3/docs/api/java/rmi/Remote.html
http://java.sun.com/j2se/1.5.0/docs/api/java/io/Serializable.html

Options

For example:
rm://1ocal host: 1099/ path/to/ service

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ueé&. . .

3.36.2. Options

Name Default Value Description

net hod nul | Y ou can set the name of the method to invoke.

renotel nterfaces |null It is now possible to use this option from Camel 2.7:
in the XML DSL. It can be a list of interface names
separated by comma.

3.36.3. Using

To call out to an existing RMI service registered in an RMI registry, create aroute similar to the following:
from("pojo:foo").to("rm://local host: 1099/ f00");
To bind an existing Camel processor or servicein an RMI registry, define an RMI endpoint as follows:

Rm Endpoi nt endpoi nt = (Rmi Endpoi nt) endpoint("rm://Iocal host: 1099/ bar");
endpoi nt . set Renot el nt erfaces(| Say. cl ass);
from endpoi nt).to("pojo:bar");

Note that when binding an RMI consumer endpoint, you must specify the Renot e interfaces exposed.
In XML DSL you can do asfollows from Camel 2.7 onwards:

<carmel : rout e>
<fromuri="rm://|ocal host: 37541/ hel | oServi ceBean?renpt el nt erfaces=
or g. apache. canel . exanpl e. osgi . Hel | oServi ce"/ >
<t o uri="bean: hel | oServi ceBean"/ >
</ canel : rout e>

3.37. RSS

Therss: component is used for polling RSS feeds. Camel will default poll the feed every 60th seconds.
Maven users will need to add the following dependency to their pom xmi for this component:

<dependency>

<gr oupl d>or g. apache. canel </ gr oupl d>

<artifactld>canel -rss</artifactld>

<ver si on>x. X. x</ ver si on>

<l-- use the sane version as your Canel core version -->
</ dependency>

256 Talend Mediation Developer Guide

URI format

The RSS component ships with an RSS dataformat that can be used to convert between String (as XML) and
ROME RSS model objects, as well as filter out certain entries. Camel's Bean Integration can also be used for
filtering out RSS entries. See the Camel Website for examples of this component in use.

Note: The component currently only supports polling (consuming) feeds.

3.37.1. URI format

rss:rssuUri

wherer ssUri isthe URI to the RSS feed to poll.

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ueé&. . .

3.37.2. Options

Property

Default

Description

splitEntries

true

If t rue, Camel splits afeed into its individua entries
and returns each entry, poll by poll. For example, if a
feed contains seven entries, Camel returnsthe first entry
onthefirst poll, the second entry on the second poll, and
so on. When no more entries are left in the feed, Camel
contacts the remote RSS URI to obtain a new feed. If
f al se, Camel obtains a fresh feed on every poll and
returns all of the feed's entries.

filter

true

Useincombinationwiththespl i t Ent ri es optionin
order tofilter returned entries. By default, Camel applies
the Updat eDat eFi | t er filter, which returns only
new entries from the feed, ensuring that the consumer
endpoint never receives an entry more than once. The
filter ordersthe entries chronologically, with the newest
returned last.

throttl eEntries

true

Sets whether al entries identified in a single feed poll
should be delivered immediately. If true, only one entry
is processed per consumer.delay. Only applicable when
splitEntries is set to true.

| ast Updat e

nul |

Use in combination with the filter option
to block entries earlier than a specific date/
time (uses the entry. updat ed timestamp). The
format is. yyyy- MA ddTHH MM ss. Example:
2007- 12- 24T17: 45: 59.

f eedHeader

true

Specifies whether to add the ROME SyndFeed object
as aheader.

sortEntries

fal se

If splitEntriesistrue, this specifies whether to
sort the entries by updated date.

consuner . del ay

60000

Delay in milliseconds between each poll.

consuner.initial Del ay

1000

Milliseconds before polling starts.

consumer . user Fi xedDel ay

fal se

Settot r ue to usefixed delay between pools, otherwise
fixed rate is used. See ScheduledExecutorService in
JDK for details.

Talend Mediation Developer Guide 257

http://camel.apache.org/bean-integration.html
http://camel.apache.org/rss.html#RSS-RSSDataformat
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/ScheduledExecutorService.html

Exchange data types

3.37.3. Exchange data types

Camel initializes the In body on the Exchange with a ROME SyndFeed. Depending on the value of the
splitEntries flag, Camel returns either a SyndFeed with one SyndEntry or aj ava. util . Li st of
SyndEntrys.

Option Value Behavior

splitEntries true A single entry from the current feed is set in the
exchange.

splitEntries fal se The entire list of entries from the current feed is set in
the exchange.

3.37.4. Message Headers

Header Description
Canel RssFeed The entire SyncFeed object.

3.38. SEDA

The seda: component provides asynchronous SEDA behavior, so that messages are exchanged on a
BlockingQueue and consumers are invoked in a separate thread from the producer.

Note that queues are only visible within a single CamelContext. If you want to communicate across
Canel Cont ext instances (for example, communicating between Web applications), seethe Section 3.51, “VM”
component.

This component does not implement any kind of persistence or recovery, if the VM terminates while messages
are yet to be processed. If you need persistence, reliability or distributed SEDA, try using either Section 3.24,
“JMS’ or Section 3.1, “ActiveMQ".

i Synchronous

The Section 3.11, “Direct” component provides synchronous invocation of any consumers when a
producer sends a message exchange.

3.38.1. URI format and options

seda: soneNane[?opti ons]

where someName can be any string that uniquely identifies the endpoint within the current Camel Context.

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .
Note: the same gueue hame must be used for both producer and consumer.

An exactly identical Section 3.38, “SEDA” queue name must be used for both the producer endpoint and the
consumer endpoint. Otherwise Camel will create a second Section 3.38, “SEDA” endpoint, even though the
someNane portion of the queue isidentical. For example:

from("direct:foo").to("seda: bar ?concurr ent Consunmer s=5") ;

258 Talend Mediation Developer Guide

http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://camel.apache.org/camelcontext.html
http://camel.apache.org/camelcontext.html

Use of Request Reply

from("seda: bar ?concur rent Consuners=5").to("file://output");

Options

Name Default Description

si ze The maximum size (= capacity of the number of
messagesit can max hold) of the SEDA queue. Thesize
is unbounded by default.

concurrent - 1 the number of concurrent threads to process exchanges.

Consuner s

wai t For TaskTo-
Conpl et e

| f Repl yExpect ed

option to specify whether the caller should wait
for the async task to complete or not before
continuing. The following three options are supported:
Al ways, Never or | f Repl yExpect ed. The first
two values are self-explanatory. The last value,
| f Repl yExpect ed, will only wait if the message is
Section 2.39, “ Request Reply” based. Thedefault option
is| f Repl yExpect ed. See more information about

Async messaging.

ti meout

30000

Timeout in milliseconds a seda producer will at
most waiting for an async task to complete. See
wai t For TaskToConpl et e and Async for more
details. Y ou can disabletimeout by using O or anegative
value.

mul ti pl eConsurmer s

fal se

Specifies whether multiple consumers is allowed or
not. If enabled you can use Section 3.38, “SEDA” for
a pubsub style messaging. Send a message to a seda
queue and have multiple consumers receive a copy of
the message. This option should be specified on every
consumer endpoint, if in use.

l'i mtConcurrent-
Consuner s

true

Whether to limit the concurrentConsumersto maximum
500. If it is configured with a higher number an
exception will bethrown. Y ou can disable this check by
turning this option off.

bl ockWhenFul |

false

Whether to block the current thread when sending a
message to a SEDA endpoint, and the SEDA queue
is full (capacity hit). By default an exception will be
thrown stating the queueisfull. By setting thisoption to
t r ue the caler thread will instead block and wait until
the message can be delivered to the SEDA queue.

queueSi ze

The maximum size (capacity of the number of messages
it can hold) of the SEDA queue.

pol | Ti meout

1000

Consumer only. Thetimeout used when polling. When a
timeout occurs then the consumer can check whether its
allowed to continue to run. Setting alower value alows
the consumer to react faster upon shutting down.

See the Camel Website for the most up-to-date examples of this component in use.

3.38.2. Use of Request Reply

The Section 3.38, “SEDA” component supports using Section 2.39, “Request Reply”, where the caller will wait
for the Async route to complete. For instance:

Talend Mediation Developer Guide 259

http://camel.apache.org/async.html
http://camel.apache.org/async.html
http://camel.apache.org/seda.html#SEDA-Sample
http://camel.apache.org/async.html

Concurrent consumers

from"mna:tcp://0.0.0.0:9876?textline=true&sync=true").to("seda:input");

from("seda:input”).to("bean: processlnput").to("bean: creat eResponse");

In the route above, we have a TCP listener on port 9876 that accepts incoming requests. The request is routed to
theseda: i nput queue. Asitisa Section 2.39, “Request Reply” message, we wait for the response. When the
consumer ontheseda: i nput queueiscomplete, it copies the response to the original message response.

Using Section 2.39, “Request Reply” over Section 3.38, “SEDA” or Section 3.51, “VM”, you can chain as many
endpoints asyou like.

3.38.3. Concurrent consumers

By default, the SEDA endpoint uses a single consumer thread, but you can configureit to use concurrent consumer
threads. So instead of thread pools you can use:

from("seda: st ageNane?concurr ent Consumer s=5") . process(...)

As for the difference between the two, note a thread pool can increase/shrink dynamically at runtime depending
on load, whereas the number of concurrent consumers is always fixed.

3.38.4. Thread pools

Be aware that adding a thread pool to a SEDA endpoint by doing something like:
from"seda: st ageNane") .t hread(5).process(...)

Can wind up withtwo Bl ockQueues : one from the SEDA endpoint, and one from the workqueue of the thread
pool, which may not be what you want. Instead, you might wish to configure a Section 3.11, “Direct” endpoint
with athread pool, which can process messages both synchronously and asynchronously. For example:

from("direct:stageNane").thread(5).process(...)

You can aso directly configure number of threads that process messages on a SEDA endpoint using the
concur r ent Consuner s option.

3.39. Servlet

The servlet: component provides HTTP based endpoints for consuming HTTP requests that arrive at a HTTP
endpoint and this endpoint is bound to a published Servlet.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>

<gr oupl d>or g. apache. canel </ gr oupl d>

<artifactld>canel -servlet</artifactld>

<ver si on>x. x. x</ ver si on>

<\!-\- use the sane version as your Canel core version \-->
</ dependency>

Servlet is stream based, which means the input it receivesis submitted to Camel as a stream. That means you will
only be able to read the content of the stream once. If you find a situation where the message body appears to
be empty or you need to access the data multiple times (eg: doing multicasting, or redelivery error handling) you
should use Stream Caching or convert the message body to a String which is safe to be read multiple times.

260 Talend Mediation Developer Guide

http://camel.apache.org/endpoint.html

URI format and options

3.39.1. URI format and options

servlet://relative_path[?options]

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ueé&. . .

Options
Name Default Description
Value

ht t pBi ndi ngRef nul | Referenceto an Camel Ht t pBi ndi ng object inthe Registry.
A Ht t pBi ndi ng implementation can be used to customize
how to write a response.

mat chOnUri Prefi x fal se Whether or not the Canel Ser vl et shouldtry tofind atarget
consumer by matching the URI prefix, if no exact match is
found.

servl et Nane Canel Ser p8petifies the servlet name that the serviet endpoint will bind
to. This name should match the name you define in web.xml
file.

3.39.2. Message Headers

Camd will apply the same Message Headers as the Section 3.19, “HTTP4” component.

Camd will also populateall r equest . par anet er andr equest . header s. For example, if aclient request
hastheURL, http:// myserver/ nyserver?orderi d=123 ,theexchangewill contain aheader named
or deri d with the value 123.

3.39.3. Usage

Y ou can only consume from endpoints generated by the Servliet component. Therefore, it should only be used as
input into your Camel routes. To issue HTTP requests against other HT TP endpoints, use the HTTP4 Component.

3.39.4. Sample

In this sample, we define a route that exposes a HTTP serviceat http:/ /1 ocal host: 8080/ canel /
servi ces/ hell o . First, you need to publish the CamelHttpTransportServlet through the normal Web
Container, or OSGi Service. Usethe Web. xnl file to publish the CamelHttpTransportServlet as follows:

<web- app>

<servl et >
<servl et - name>Canel Ser vl et </ servl et - nane>
<di spl ay- name>Canel Http Transport Servl et </di spl ay- nane>
<servl et-cl ass>
or g. apache. canel . conponent . servl et. Canel Ht t pTransport Ser vl et
</ servl et-cl ass>
</servlet>

<servl et - mappi ng>

Talend Mediation Developer Guide 261

http://camel.apache.org/registry.html
http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-servlet/src/main/java/org/apache/camel/component/servlet/CamelHttpTransportServlet.java

Shiro Security

<servl et - nanme>Canel Ser vl et </ servl et - nane>
<url -pattern>/services/*</url-pattern>
</ servl et - mappi ng>

</ web- app>

Then you can define your route as follows:

from("servlet:///hello?mat chOnUri Prefi x=true").process(new Processor() {
public void process(Exchange exchange)
t hrows Exception {
String content Type =
exchange. get I n(). get Header (Exchange. CONTENT_TYPE, String.cl ass);
String path =
exchange. get I n() . get Header (Exchange. HTTP_PATH, Stri ng. cl ass);
assert Equal s("Got a wrong content type", CONTENT_TYPE, contentType);
/1 assert Canel http header
String charset Encodi ng = exchange. getln()
. get Header (Exchange. HTTP_CHARACTER _ENCODI NG, Stri ng. cl ass);
assert Equal s("Got a wrong charset nanme fromthe nessage header",
"UTF- 8", charset Encodi ng);
/1 assert exchange charset
assert Equal s("Got a wrong charset name fromthe exchange property",
"UTF- 8", exchange. get Property(Exchange. CHARSET NAME)) ;
exchange. get Qut () . set Header (Exchange. CONTENT_TYPE, content Type +
"; charset=UTF-8");
exchange. get Qut () . set Header (" PATH', path);
exchange. get Qut () . set Body("Hel | o Worl d</ b>");

1)
Specify therelative path for camel-servlet endpoint

Since we are binding the Http transport with a published serviet, and we don't know the servlet's
application context path, the canel - ser vl et endpoint uses the relative path to specify the endpoint's
URL. A client can access the canel - servl et endpoint through the servliet publish address:
("http://1ocal host: 8080/ camel / servi ces") + RELATIVE _PATH("/ hel | 0").

See the Camel Website for more examples of this component in use.

3.40. Shiro Security

The shiro-security component in Camel is a security focused component, based on the Apache Shiro security
project.

Apache Shiro is a powerful and flexible open-source security framework that cleanly handles authentication,
authorization, enterprise session management and cryptography. The objective of the Apache Shiro project isto
provide the most robust and comprehensive application security framework available while also being very easy
to understand and extremely simpleto use.

This Camel shiro-security component allows authentication and authorization support to be applied to different
segments of a Camel route.

Shiro security isapplied on aroute using aCamel Policy. A Policy in Camel utilizes a strategy pattern for applying
interceptors on Camel Processors. It offering the ability to apply cross-cutting concerns (for example. security,
transactions etc) on sections/segments of a Camel route.

262 Talend Mediation Developer Guide

http://camel.apache.org/servlet.html#SERVLET-Sample

Shiro Security Basics

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>

<gr oupl d>or g. apache. canel </ gr oupl d>

<artifactld>canel -shiro</artifactld>

<versi on>x. X. X</ ver si on>

<l-- use the sane version as your Canel core version -->
</ dependency>

3.40.1. Shiro Security Basics

To employ Shiro security on a Camel route, a ShiroSecurityPolicy object must be instantiated with security
configuration detail s (including users, passwords, rol esetc). Thisobject must then be appliedto aCamel route. This
ShiroSecurityPolicy Object may also be registered in the Camel registry (JNDI or ApplicationContextRegistry)
and then utilized on other routes in the Camel Context.

Configuration details are provided to the ShiroSecurityPolicy using an Ini file (properties file) or an Ini object.
The Ini fileis astandard Shiro configuration file containing user/role details as shown below

[users]
user 'ringo’ with password 'starr' and the 'sec-levell' role
ringo = starr, sec-levell

george = harrison, sec-level2
john = | ennon, sec-level3
paul = ntcartney, sec-level3
[rol es]

'sec-level 3' role has all perm ssions, indicated by the
w | dcard ' *'
sec-level 3 = *

The 'sec-level2' role can do anything with access of permn ssion
readonly (*) to help
sec-level 2 = zonel: *

The 'sec-levell' role can do anything with access of perm ssion
readonly
sec-level 1 = zonel:readonly:*

3.40.2. Instantiating a ShiroSecurityPolicy Object

A ShiroSecurityPolicy object isinstantiated as follows

private final String ini ResourcePath = "classpath:shiro.ini";
private final byte[] passPhrase = {
(byte) 0x08, (byte) 0x09, (byte) OxO0A, (byte) 0x0B
(byte) OxOC, (byte) OxOD, (byte) OxOE, (byte) OxOF
(byte) 0x10, (byte) O0x11, (byte) 0x12, (byte) 0x13,
(byte) 0x14, (byte) 0x15, (byte) O0x16, (byte) O0x17};
Li st <per m ssi on> perm ssi onsLi st = new ArrayLi st <perm ssi on>();
Perm ssi on perm ssion = new W dcardPerni ssion("zonel:readwite:*");
per m ssi onsLi st. add(perni ssion);

final ShiroSecurityPolicy securityPolicy =

Talend Mediation Developer Guide 263

ShiroSecurityPolicy Options

new ShiroSecurityPolicy(ini ResourcePath, passPhrase,

per m ssi onslLi st);

true,

3.40.3. ShiroSecurityPolicy Options

Name Default Value

Type

Description

i ni Resour cePat h
or ini

none

Resource String or
Ini Object

A mandatory Resource String for the
iniResourcePath or an instance of an Ini
object must be passed to the security policy.
Resources can be acquired from the file
system, classpath, or URLs when prefixed
with "file:, classpath:, or url:" respectively.
For e.g "classpath:shiro.ini"

enticate

passPhrase An AES 128 | byte[] A passPhrase to decrypt
based key ShiroSecurityToken(s) sent aong with

Message Exchanges
al waysReaut h- [true boolean Setting to ensure re-authentication on every

individual request. If set to false, the user
is authenticated and locked such than only
reguests from the same user going forward
are authenticated.

per m ssi onsLi stinone

List<Permission>

A List of permissions required in order for
an authenticated user to be authorized to
perform further action i.e continue further
on the route. If no Permissions list is
provided to the ShiroSecurityPolicy object,
then authorization is deemed as not required

ci pher Service |AES

org.apache.shiro.
crypto.CipherService

Shiro ships with AES & Blowfish based
CipherServices. You may use one these or
passin your own Cipher implementation

3.40.4. Applying Shiro Authentication on a Camel

Route

The ShiroSecurityPolicy, tests and permits incoming message exchanges containing a encrypted Security Token
in the Message Header to proceed further following proper authentication. The SecurityToken object contains a
Username/Password details that are used to determine where the user isavalid user.

prot ect ed RouteBuil der createRouteBuilder() throws Exception {

final

Shi roSecurityPolicy securityPolicy
new ShiroSecurityPolicy("classpath:shiro.ini",

return new Rout eBuilder() {
public void configure() {
onExcepti on(UnknownAccount Excepti on. cl ass).
to("nock: aut henti cati onException");
onException(lncorrect Credenti al sexception. cl ass).
to("nock: aut henti cati onException");
onExcepti on(LockedAccount Excepti on. cl ass) .
to("nock: aut henti cati onException");
onExcepti on(Aut henti cati onExcepti on. cl ass).

passPhr ase);

264

Talend Mediation Developer Guide

Applying Shiro Authorization on a Camel Route

to("nock: aut henti cati onExcepti on™);

from("direct:secureEndpoint").
to("l og:incom ng payl oad").
pol i cy(securityPolicy).
to("nock: success");

3.40.5. Applying Shiro Authorization on a Camel Route

Authorization can be applied on a Camel route by associating a Permissions List with the ShiroSecurityPolicy.
The Permissions List specifies the permissions necessary for the user to proceed with the execution of the route
segment. If the user does not have the proper permission set, the request is not authorized to continue any further.

prot ect ed Rout eBuil der createRouteBuilder() throws Exception {
final ShiroSecurityPolicy securityPolicy =
new ShiroSecurityPolicy(
".Isrc/test/resources/securityconfig.ini", passPhrase);

return new Rout eBuilder() {
public void configure() {

onExcept i on(UnknownAccount Excepti on. cl ass).
to("nock: aut henti cati onException");

onException(lncorrect Credenti al sexception. cl ass).
to("nock: aut henti cati onException");

onExcepti on(LockedAccount Excepti on. cl ass) .
to("nock: aut henti cati onException");

onExcepti on(Aut henti cati onExcepti on. cl ass).
to("nock: aut henti cati onException");

from("direct:secureEndpoint").
to("l og:incom ng payl oad").
pol i cy(securityPolicy).
to("nock: success");

3.40.6. Creating a ShiroSecurityToken and injecting it
into a Message Exchange

A ShiroSecurity Token object may be created and injected into a M essage Exchange using a Shiro Processor called
ShiroSecurity Tokenlnjector. An example of injecting a ShiroSecurity Token using a ShiroSecurity Tokenlnjector
inthe client is shown below

Shi roSecurityToken shiroSecurityToken =
new ShiroSecurityToken("ringo", "starr");
Shi roSecuri tyTokenl nj ector shiroSecurityTokenl njector =
new ShiroSecurityTokenl nj ector(shiroSecurityToken,
passPhr ase);

Talend Mediation Developer Guide 265

Sending Messages to routes secured by a ShiroSecurityPolicy

from("direct:client")
. process(shiroSecurityTokenl njector)
.to("direct:secureEndpoint");

3.40.7. Sending Messages to routes secured by a
ShiroSecurityPolicy

Messages and Message Exchanges sent along the Camel route where the security policy is applied need to be
accompanied by a SecurityToken in the Exchange Header. The SecurityToken is an encrypted object that holds
a Username and Password. The SecurityToken is encrypted using AES 128 hit security by default and can be
changed to any cipher of your choice.

Given below is an example of how a request may be sent using a ProducerTemplate in Camel along with a
SecurityToken

@rest
public void testSuccessful ShiroAuthenticati onWthNoAut hori zation()
t hrows Exception {
//lncorrect password
Shi roSecurityToken shiroSecurityToken =
new ShiroSecurityToken("ringo", "stirr");

/1 Test ShiroSecurityTokenl njector extends ShiroSecurityTokenl njector
Test Shi roSecurityTokenl nj ector shiroSecurityTokenl njector =
new Test Shi roSecurityTokenl njector(shiroSecurityToken, passPhrase);

successEndpoi nt . expect edMessageCount (1) ;
fail ureEndpoi nt. expect edMessageCount (0) ;

tenpl at e. send("direct: secureEndpoi nt", shiroSecurityTokenl njector);

successEndpoi nt. assertlsSatisfied();
fail ureEndpoi nt. assertlsSatisfied();

3.41. SMPP

This component provides access to an SMSC (Short Message Service Center) over the SMPP protocol to send
and receive SMS. The JISMPP is used.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>

<gr oupl d>or g. apache. canel </ gr oupl d>

<artifactld>canel -snpp</artifactld>

<ver si on>x. X. x</ ver si on>

<l-- use the sane version as your Canel core version -->
</ dependency>

This component has log level DEBUG, which can be helpful in debugging problems. If you use log4j, you can
add the following line to your configuration:

| og4j . 1 ogger. org. apache. canel . conponent . snpp=DEBUG

266 Talend Mediation Developer Guide

http://smsforum.net/SMPP_v3_4_Issue1_2.zip
http://code.google.com/p/jsmpp/

URI Format

3.41.1. URI Format

snpp://[usernane@ host nane[: port][?opti ons]
snpps: / /[user nane@ host nane[: port][?opti ons]

If no username is provided, then Camel will provide the default value snppcl i ent . If no port number is
provided, then Camel will provide the default value 2775. If the protocol nameis"smpps’, camel-smpp with try
to use SSL Socket to init a connection to the server.

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

3.41.2. URI Options

Name

Default Value

Description

password

passwor d

Specifies the password to use to log into the SMSC.

syst eniype

cp

This parameter is used to categorize the type of ESME
(External Short Message Entity) that is binding to the
SMSC (max. 13 characters).

al phabet

Defines encoding of data according the SMPP 3.4
specification, section 5.2.19. Example data encodings are:
0 : SMSC Default Alphabet 4 : 8 hit Alphabet 8 : UCS2
Alphabet

encodi ng

| SO- 8859-1

Defines the encoding scheme of the short message user
data. Only for SubmitSm, ReplaceSm and SubmitMulti.

enqui r eLi nkTi mer

5000

Defines the interval in milliseconds between the
confidence checks. The confidence check isused to test the
communication path between an ESME and an SMSC.

transacti onTi ner

10000

Defines the maximum period of inactivity allowed after a
transaction, after which an SMPP entity may assume that
the session is no longer active. This timer may be active
on either communicating SMPP entity (that is, SMSC or
ESME).

i nitial Reconnect Del ay

5000

Definestheinitial delay in milliseconds after the consumer/
producer tries to reconnect to the SMSC, after the
connection was lost.

reconnect Del ay

5000

Definesthe interval in milliseconds between the reconnect
attempts, if the connection to the SMSC was lost and the
previous was not succeed.

regi steredDel i very

Only for SubmitSm, ReplaceSm and SubmitMulti and
DataSm. Is used to request an SMSC delivery receipt
and/or SME originated acknowledgements. The following
values are defined: 0 : No SMSC delivery receipt
requested. 1 : SMSC delivery receipt requested where
final delivery outcome is success or failure. 2 : SMSC
delivery receipt requested where thefinal delivery outcome
isdelivery failure.

servi ceType

The service type parameter can be used to indicate the
SM S Application service associated with the message. The
following generic service typesaredefined: CMT : Cellular
Messaging CPT : Cdlular Paging VMN : Voice Mail
Notification VMA : Voice Mail Alerting WAP : Wireless

Talend Mediation Developer Guide

267

URI Options

Name

Default Value

Description

Application Protocol USSD : Unstructured Supplementary
Services Data

sour ceAddr

1616

Defines the address of SME (Short Message Entity) which
originated this message.

dest Addr

1717

Only for SubmitSm, SubmitMulti, Cancel Sm and DataSm.
Defines the destination SME address. For mobile
terminated messages, this is the directory number of the
recipient MS.

sour ceAddr Ton

Defines the type of number (TON) to be used in the SME
originator address parameters. The following TON values
aredefined: 0 : Unknown 1 : International 2 : Nationa 3 :
Network Specific 4 : Subscriber Number 5 : Alphanumeric
6 : Abbreviated

dest Addr Ton

Only for SubmitSm, SubmitMulti, Cancel Sm and DataSm.
Defines the type of number (TON) to be used in
the SME destination address parameters. Same as the
sour ceAddr Ton URI options listed above.

sour ceAddr Npi

Defines the numeric plan indicator (NPI) to be used in
the SME originator address parameters. Thefollowing NPI
values are defined: O : Unknown 1 : ISDN (E163/E164) 2
: Data (X.121) 3 : Telex (F.69) 6 : Land Mobile (E.212) 8
: National 9 : Private 10 : ERMES 13 : Internet (IP) 18 :
WAP Client Id (to be defined by WAP Forum)

dest Addr Npi

Only for SubmitSm, SubmitMulti, Cancel Sm and DataSm.
Defines the numeric plan indicator (NPI) to be used in
the SME destination address parameters. Same as the
sour ceAddr Npi URI options listed above.

priorityFl ag

Only for SubmitSm, SubmitMulti. Allows the originating
SME to assign a priority level to the short message. Four
Priority Levels are supported: O : Level O (lowest) priority
1:Level 1priority 2 : Level 2priority 3 : Level 3 (highest)
priority

repl acel f Present Fl ag

Only for SubmitSm, SubmitMulti. Used to request the
SMSC to replace a previously submitted message, that is
still pending delivery. The SMSC will replace an existing
message provided that the source address, destination
address and service type match the same fields in the new
message. The following replace if present flag values are
defined: O : Don't replace 1 : Replace

t ypeOf Nunber

Defines the type of number (TON) to be used in the SME.
Same asthe sour ceAddr Ton URI options listed above.

nunberi ngPl anl ndi cat or

Defines the numeric plan indicator (NPI) to be used in the
SME. Same as the sour ceAddr Npi URI options listed
above.

| azySessi onCreati on

false

Sessions can be lazily created to avoid exceptions, if the
SMSC is not available when the Camel producer is started.

ht t pPr oxyHost

null

If you need to tunnel SMPP through aHTTP proxy, set this
attribute to the hostname or ip address of your HTTP proxy.

ht t pPr oxyPor t

3128

If you need to tunnel SMPP through aHTTP proxy, set this
attribute to the port of your HTTP proxy.

268

Talend Mediation Developer Guide

Producer Message Headers

Name Default Value |Description

ht t pProxyUser nane null If your HTTP proxy requires basic authentication, set this
attribute to the username required for your HTTP proxy.

ht t pProxyPassword null If your HTTP proxy requires basic authentication, set this

attribute to the password required for your HT TP proxy.

Y ou can have as many of these options as you like, for example:

snpp://smppclient @ocal host: 2775?passwor d=passwor d&enqui r eLi nkTi ner =
3000&t ransacti onTi mer =5000&syst enilype=consuner

3.41.3. Producer Message Headers

The following message headers can be used to affect the behavior of the SMPP producer

Header

Type

Description

Camel SnppDest Addr

List/String

Only for SubmitSm, SubmitMulti, CancelSm and
DataSm. Defines the destination SME address. For
mobile terminated messages, this is the directory
number of the recipient MS.

Camel SnppDest Addr Ton

Byte

Only for SubmitSm, SubmitMulti, CancelSm and
DataSm. Defines the type of number (TON) to be used
in the SME destination address parameters. Same asthe
sour ceAddr Ton URI options listed above.

Camel SnppDest Addr Npi

Byte

Only for SubmitSm, SubmitMulti, CancelSm and
DataSm. Definesthe numeric plan indicator (NPI) to be
used in the SME destination address parameters. Same
asthesour ceAddr Npi URI options listed above.

Canel SnppSour ceAddr

String

Defines the address of SME (Short Message Entity)
which originated this message.

Camel SnppSour ceAddr Ton

Byte

Defines the type of number (TON) to be used in
the SME originator address parameters. Same as the
sour ceAddr Ton URI options listed above.

Canel SnppSour ceAddr Npi

Byte

Defines the numeric plan indicator (NPI) to be used
in the SME originator address parameters. Same as the
sour ceAddr Npi URI options listed above.

Camel SnppServi ceType

String

The service type parameter can be used to indicate the
SMS Application service associated with the message.
Same astheser vi ceType URI options listed above.

Canel SnmppRegi stered
Del i very

Byte

Only for SubmitSm, SubmitMulti, CancelSm and
DataSm. Same as the r egi st er edDel i very URI
options listed above.

Camel SnppPriorityFl ag

Byte

Only for SubmitSm and SubmitMulti. Same as the
priorityFl ag URI options listed above.

Canel SnppSchedul e
Del i veryTi ne

Date

Only for SubmitSm, SubmitMulti, ReplaceSm. This
parameter specifies the scheduled time at which the
message delivery should be first attempted. It defines
either the absolute date and time or relative time from
the current SMSC timeat which delivery of thismessage
will be attempted by the SMSC. It can be specified in
either absolute time format or relative time format. The

Talend Mediation Developer Guide 269

Consumer Message Headers

Header

Type

Description

encoding of atime format is specified in Chapter 7.1.1.
in the SM PP specification v3.4.

Camel SnppVval i di tyPeri od

String/Date

Only for SubmitSm, SubmitMulti and ReplaceSm. The
validity period parameter indicatesthe SM SC expiration
time, after which the message should be discarded if not
delivered to the destination. It can be defined in absolute
time format or relative time format. The encoding of
absolute and relative time format is specified in chapter
7.1.1 in the smpp specification v3.4.

Camel SnppRepl ace
| f Present Fl ag

Byte

The replace if present flag parameter is used to request
the SMSC to replace a previously submitted message,
that is still pending delivery. The SMSC will replace
an existing message provided that the source address,
destination address and service type match the same
fields in the new message. The following values are
defined: O : Don't replace 1 : Replace

Canel SnppAl phabet

Byte

Only for SubmitSm, SubmitMulti and ReplaceSm.
Same asthe al phabet URI optionslisted above.

Thefollowing message headers are used by the SMPP producer to set the response from the SMSC in the message

header

Header

Type

Description

Camel Snppl d

String

Li st<String> message for later use (delivery receipt,

or |the id to identify the submitted short

query sm, cancel sm, replace sm). In case
of a ReplaceSm, QuerySm, CancelSm
and DataSm this header value is a String.
In case of aSubmitSm or SubmitMultiSm
this header vaule isa List<String>.

Canel SnppSent MessageCount

I nt eger

For SubmitSm and SubmitMultiSm only
- the total number of messages which has
been sent.

Canel SnppError

Map<String,

Object>>>

List<Map<String, The errors which occurred by

For SubmitMultiSm only -

sending the short message(s) the
form Map<String, List<Map<String,
Object>>>}} (messagelD : (destAddr :
address, error : errorCode)).

3.41.4. Consumer Message Headers

The following message headers are used by the SMPP consumer to set the request data from the SMSC in the

message header

Header

Description

Camel SnppSequenceNunber

only for alert notification, deliver sm and data sm : A sequence
number allowsaresponse PDU to be correlated with arequest PDU.
The associated SMPP response PDU must preserve this field.

Canel SnppComandl d

only for alert notification, deliver sm and data sm : The
command id field identifies the particular SMPP PDU. For the

270 Talend Mediation Developer Guide

Consumer Message Headers

Header

Description

complete list of defined values see chapter 5.1.2.1 in the smpp
specification v3.4.

Camel SnppSour ceAddr

only for alert notification, deliver sm and data sm : Defines
the address of SME (Short Message Entity) which originated this

message.

Camel SnppSour ceAddr Npi

only for alert notification and data sm : Defines the numeric
plan indicator (NPI) to be used in the SME originator address
parameters. Same as the sour ceAddr Npi URI options listed
above.

Canel SnppSour ceAddr Ton

only for alert notification and data sm : Defines the type
of number (TON) to be used in the SME originator address
parameters. Same as the sour ceAddr Ton URI options listed
above.

Camel SnppEsneAddr

only for alert notification : Definesthe destination ESME address.
For mobile terminated messages, thisisthe directory number of the
recipient MS.

Camel SnppEsneAddr Npi

only for alert notification : Defines the numeric plan indicator
(NPI) to be used in the ESME originator address parameters. Same
asthesour ceAddr Npi URI options listed above.

Camel SnppEsneAddr Ton

only for alert notification : Defines the type of number (TON) to
be used in the ESME originator address parameters. The following
TON values are defined: Same as the sour ceAddr Ton URI
options listed above.

Canel Snppl d

only for smsc delivery receipt and data sm : The message ID
allocated to the message by the SMSC when originally submitted.

Canel SnppDel i ver ed

only for smsc delivery receipt : Number of short messages
delivered. This is only relevant where the original message was
submitted to a distribution list.The value is padded with leading
zeros if necessary.

Camel SnppDoneDat e

only for smsc delivery receipt : The time and date at which the
short message reached its fina state. The format is as follows:
YYMMDDhhmm.

Canel SnppSt at us

only for smscdelivery receipt and datasm : Thefinal statusof the
message. The following values are defined: DELI VRD : Message
is delivered to destination EXPI RED : Message validity period
has expired. DELETED : Message has been deleted. UNDELI V :
Message is undeliverable ACCEPTD : Message isin accepted state
(that is, has been manualy read on behalf of the subscriber by
customer service) UNKNOAN: Messageisininvalid state REJECTD
: Message isin argjected state

Canel SnppError

only for smsc delivery receipt : Where appropriate this may hold
a Network specific error code or an SMSC error code for the
attempted delivery of the message. These errors are Network or
SMSC specific and are not included here.

Canel SnppSubni t Dat e

only for smsc delivery receipt : The time and date at which the
short message was submitted. In the case of a message which
has been replaced, this is the date that the original message was
replaced. The format is asfollows. YYMMDDhhmm.

Camel SnppSubnitted

only for smsc delivery receipt : Number of short messages
originally submitted. This is only relevant when the origina

Talend Mediation Developer Guide 271

Samples

Header

Description

message was submitted to a distribution list.The value is padded
with leading zeros if necessary.

Camel SnppDest Addr

only for deliver sm and data sm : Defines the destination SME
address. For mobile terminated messages, this is the directory
number of the recipient MS.

Camel SnppSchedul eDel i veryTi ne

only for deliver sm and data sm : This parameter specifies
the scheduled time at which the message delivery should be first
attempted. It defines either the absolute date and time or relative
time from the current SM SC time at which delivery of this message
will beattempted by the SMSC. It can be specified in either absolute
time format or relative time format. The encoding of atime format
is specified in Section 7.1.1. in the smpp specification v3.4.

Canel SnppVal i di tyPeri od

only for deliver sm : The validity period parameter indicates the
SM SC expiration time, after which the message should be discarded
if not delivered to the destination. It can be defined in absolute
time format or relative time format. The encoding of absolute
and relative time format is specified in Section 7.1.1 in the smpp
specification v3.4.

Canel SnppServi ceType

only for deliver sm and data sm : The service type parameter
indicatesthe SM'S Application service associated with the message.

Camel SnppRegi st eredDel i very

Only for DataSm. Is used to request an delivery receipt
and/lor SME originated acknowledgements. Same as the
regi st eredDel i very URI optionslisted above.

Camel SnppDest Addr Npi

Only for DataSm. Defines the numeric plan indicator (NP1) in the
destination address parameters. Same as the sour ceAddr Npi
URI options listed above.

Canel SnppDest Addr Ton

Only for DataSm. Defines the type of number (TON) in the
destination address parameters. Same as the sour ceAddr Ton
URI options listed above.

Canel SnppMessageType

Identifies the type of an incoming message:
Al ertNotification:anSMSC dert notification Dat aSm:
an SMSC data short message Del i ver yRecei pt : an SMSC
delivery receipt Del i ver Sm: an SMSC deliver short message

i JSMPP library

See the documentation of the JISMPP Library for more details about the underlying library.

3.41.5. Samples

A route which sends an SMS using the Java DSL.:

from("direct:start")

.to("snpp://snppclient@ocal host: 27757
passwor d=passwor d&enqui r eLi nkTi ner =3000&t r ansact i onTi nmer =
5000&syst enifype=pr oducer");

A route which sends an SMS using the Spring XML DSL:

272 Talend Mediation Developer Guide

http://code.google.com/p/jsmpp/

SNMP

<r out e>
<fromuri="direct:start"/>
<to uri="snpp://snppclient@ocal host: 2775?
passwor d=passwor d&anp; enqui r eLi nkTi mer =3000&anp; t r ansact i onTi mer =
5000&anp; syst emlype=pr oducer "/ >
</route>

A route which receives an SMS using the Java DSL.:

from("smpp://snppclient @ocal host: 2775?passwor d=passwor d&enqui r eLi nkTi mer =
3000&t ransact i onTi mer =5000&syst emlype=consuner ")
.to("bean: fo0");

A route which receives an SMS using the Spring XML DSL:

<rout e>
<fromuri="snpp://snppclient @ocal host: 2775?
passwor d=passwor d&anp; enqui r eLi nkTi mer =3000&anp;
transacti onTi mer =5000&anp; syst eniType=consurmer "/ >
<to uri="bean: foo"/>
</route>

i SM SC simulator

If you need an SMSC simulator for your test, you can use the simulator provided by Logica.

3.42. SNMP

The snmp: component gives you the ability to poll SNMP capable devices or receiving traps.
Maven users will need to add the following dependency to their pom xm for this component:

<dependency>

<gr oupl d>or g. apache. canel </ gr oupl d>

<artifactld>canel -snnp</artifactld>

<versi on>X. X. X</ ver si on>

<l-- use the sane version as your Camel core version -->
</ dependency>

3.42.1. URI format

snnp: // host nanme[: port] [?0pti ons]
The component supports polling OID values from an SNMP enabled device and receiving traps.

Y ou can append query optionsto the URI in the following format, ?opt i on=val ue&opti on=val ueé&. ..

3.42.2. Options

Name Default Value Description
type none The type of action you want to perform. Y ou can enter
here POLL or TRAP. The value PCLL will instruct the

Talend Mediation Developer Guide 273

http://opensmpp.logica.com/CommonPart/Download/download2.html#simulator

Theresult of apoll

Name Default Value Description
endpoint to poll agiven host for the supplied OID keys.
If you put in TRAP you will setup alistener for SNMP
Trap Events.

addr ess none This is the IP address and the port of the host to
poll or where to setup the Trap Receiver. Example:
127.0.0. 1: 162

pr ot ocol udp Here you can select which protocol to use. Y ou can use
either udp ort cp.

retries 2 Defines how often aretry is made before canceling the
request.

ti meout 1500 Sets the timeout value for the request in milliseconds.

snnpVer si on 0 (which means SNMPv1) | Sets the snmp version for the request.

snnpComuni ty public Sets the community octet string for the snmp request.

del ay 60 seconds Defines the delay in seconds between to poll cycles.

oi ds none Defines which values you are interested in. Please have
a look at the Wikipedia to get a better understanding.
You may provide a single OID or a comma separated
list of OIDs. Example; 0ids="1.3.6.1.2.1.1.3.0 ,
13.6.1.212532151 , 13612 .1.2535111 |,
136.1.2.1.4351.1.11.1"

3.42.3. The result of a poll

Given the situation, that | poll for the following OIDs:

Example 3.1. oids

.3.0

PEPEPE
oo
el
NN NN
el
ANNBR

5. 3.
5. 3.
3.5.

Theresult will be the following:

274

Talend Mediation Developer Guide

http://en.wikipedia.org/wiki/Object_identifier

Examples

Example 3.2. Result of toString conversion

<?xm version="1.0" encodi ng="UTF-8""?>
<snnp>
<entry>
<0id>1.3.6.1.2.1.1.3.0</0id>
<val ue>6 days, 21:14:28.00</val ue>
</entry>
<entry>
<0id>1.3.6.1.2.1.25.3.2.1.5. 1</ 0i d>
<val ue>2</val ue>
</entry>
<entry>
<0id>1.3.6.1.2.1.25.3.5.1. 1. 1</ 0i d>
<val ue>3</val ue>
</entry>
<entry>
<0id>1.3.6.1.2.1.43.5.1.1.11. 1</ 0i d>
<val ue>6</ val ue>
</entry>
<entry>
<0id>1.3.6.1.2.1.1.1. 0</0i d>
<val ue>My Very Special Printer O Brand Unknown</val ue>
</entry>
</ snmp>

As you maybe recognized there is one more result than requested....1.3.6.1.2.1.1.1.0. This one is filled in by
the device automatically in this special case. So it may absolutely happen, that you receive more than you
requested...be prepared.

3.42.4. Examples

Polling aremote device:

snnp: 192. 168. 178. 23: 161?pr ot ocol =udp&t ype=POLL&o0i ds=1.3.6.1.2.1.1.5.0
Setting up atrap receiver (Notethat no OID info isneeded here!):

snnp: 127. 0. 0. 1: 162?pr ot ocol =udpé&t ype=TRAP

Starting with Camel 2.10.0, you can get the community of SNMP TRAP with message header 'securityName', and
the peer address of the SNMP TRAP with message header 'peerAddress.

Routing example in Java: (converts the SNMP PDU to XML String)

from("snnp: 192. 168. 178. 23: 161?pr ot ocol =udp&t ype=POLL"
+ "&0ids=1.3.6.1.2.1.1.5.0").convertBodyTo(String.class).
to("activenqg: snnp. states");

3.43. Spring Integration

The spring-integration: component provides a bridge for Camel components to talk to Spring integration
endpoints.

Maven users will need to add the following dependency to their pom xm for this component:

Talend Mediation Developer Guide 275

http://camel.apache.org/springintegration.html
http://camel.apache.org/springintegration.html

URI format

<dependency>

<gr oupl d>or g. apache. canel </ gr oupl d>

<artifactld>canel -spring-integration</artifactld>

<ver si on>x. x. x</ ver si on>

<l-- use the sanme version as your Camel core version -->
</ dependency>

3.43.1. URI format

spring-integration: def aul t Channel Name[?opt i ons]

where defaultChannelName represents the default channel name which is used by the Spring Integration
Spring context. It will equa to the i nput Channel name for the Spring Integration consumer and the
out put Channel name for the Spring Integration provider.

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ueé&. . .

3.43.2. Options

Name Type Description

i nput Channel String The Spring integration input channel name that this
endpoint wants to consume from, where the specified
channel name is defined in the Spring context.

out put Channel String The Spring integration output channel namethat is used
to send messages to the Spring integration context.

i nCut String The exchange pattern that the Spring integration
endpoint should use. If i nQut =t rue then a reply
channel is expected, either from the Spring Integration
Message header or configured on the endpoint.

3.43.3. Usage

The Spring integration component is a bridge that connects Camel endpoints with Spring integration endpoints
through the Spring integration's input channels and output channels. Using this component, we can send Camel
messagesto Spring | ntegration endpointsor receive messagesfrom Spring integration endpointsin aCamel routing
context.

3.43.4. Examples

3.43.4.1. Using the Spring integration endpoint

Y ou can set up a Spring integration endpoint using a URI, asfollows:

<beans: beans xm ns="http://ww. spri ngframework. org/ schena/integration”

276 Talend Mediation Developer Guide

Examples

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: beans="http://ww. springframework. or g/ schema/ beans™
xsi : schemaLocati on="htt p://wwv. spri ngfranewor k. or g/ schema/ beans
htt p: // www. spri ngf ranmewor k. or g/ scherma/ beans/ spri ng- beans. xsd
htt p: // www. spri ngfranmewor k. org/ schenma/ i nt egrati on
http: //wwv. spri ngfranewor k. org/ schema/integration/spring-integration. xsd
http://camel . apache. or g/ schema/ spri ng
http://canel . apache. or g/ schena/ spri ng/ canel - spri ng. xsd">

<l-- Spring integration channels -->
<channel id="i nput Channel "/ >
<channel i d="out put Channel "/ >
<channel i d="onewayChannel "/ >

<l-- Spring integration service activators -->

<servi ce-activator input-channel ="i nput Channel" ref="hell oService"
nmet hod="sayHel | 0"/ >

<servi ce-activator input-channel ="onewayChannel " ref="hell oService"
nmet hod="greet"/ >

<l-- custom bean -->
<beans: bean i d="hel | 0Servi ce" class=
"org. apache. canel . conponent . spring.integration. Hel | oWor| dServi ce"/ >

<canel Context id="canel" xm ns="http://canel.apache. org/schema/spring">
<rout e>
<fromuri="direct:twowayMessage"/>
<to uri="spring-integration:inputChannel ?i nQut=true&
i nput Channel =out put Channel "/ >
</route>
<r out e>
<fromuri="direct: onewayMessage"/ >
<to uri="spring-integration: onewayChannel ?i nQut =f al se"/ >
</route>
</ canel Cont ext >

<l-- Spring integration channels -->
<channel id="request Channel "/ >
<channel id="responseChannel "/>

<l-- cusom Canel processor -->
<beans: bean i d="nyProcessor"”
cl ass="org. apache. canel . component . spri ng. i ntegrati on. MyProcessor"/ >

<l-- Canel route -->
<canel Context xm ns="http://canel.apache. org/schema/spring">
<r out e>
<fromuri=

"spring-integration://request Channel ?out put Channel =r esponseChanne
& nQut =true"/>
<process ref="nyProcessor"/>
</route>
</ camnel Cont ext >

Or directly using a Spring integration channel name:

Talend Mediation Developer Guide 277

Examples

<beans: beans xm ns="http://ww. spri ngframework. org/ schenma/integration”
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xm ns: beans="http://ww. springframework. or g/ schenma/ beans™
xsi : schemalLocati on="htt p://wwv. spri ngfranewor k. or g/ schema/ beans
htt p: // www. spri ngf ranmewor k. or g/ scherma/ beans/ spri ng- beans. xsd
htt p: // www. spri ngfranmewor k. org/ schenma/ i nt egrati on
http: //wwv. spri ngfranmewor k. org/ schema/integration/spring-integration. xsd
http://camel . apache. or g/ schema/ spri ng
http://canel . apache. or g/ schena/ spri ng/ canel - spri ng. xsd">

<l-- Spring integration channel -->
<channel i d="out put Channel "/ >

<canel Cont ext xm ns="http://canel.apache. org/ schema/ spri ng">
<rout e>
<from uri =" out put Channel "/ >
<to uri="nock:result"/>
</route>
</ canel Cont ext >

3.43.4.2. The Source and Target adapter

Spring integration also provides the Spring integration's source and target adapters, which can route messages
from a Spring integration channel to a Camel endpoint or from a Camel endpoint to a Spring integration channel.

This exampl e uses the following namespaces:

<beans: beans xm ns="http://ww. spri ngframework. org/ schema/integration”
xm ns: beans="http://ww. springframework. or g/ schenma/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schemna- i nst ance"
xm ns: canmel -si ="http://canel . apache. org/ schema/ spring/integration"
Xxsi : schenmaLocat i on="
htt p: // ww. spri ngf ranewor k. or g/ scherma/ beans
htt p: // ww. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans. xsd
htt p: //ww. spri ngf ranmewor k. or g/ schema/ i nt egrati on
http: //wwv. spri ngfranewor k. org/ schema/i ntegration/spring-integration.xsd
http://canel . apache. or g/ schenma/ spri ng/integration
http://camel . apache. or g/ schena/ spri ng/integration/canel -spring-integration. xsd
http://camel . apache. or g/ schena/ spri ng
http://canel . apache. or g/ schenma/ spri ng/ canel - spri ng. xsd
">

Y ou can bind your source or target to a Camel endpoint as follows:

<l-- Create the Canel context here -->
<canel Cont ext i d="canel Tar get Cont ext"
xm ns="http://canel.apache. org/ schena/ spri ng">
<r out e>
<fromuri="direct: Endpoi nt A" />
<to uri="nock:result" />
</route>
<r out e>
<fromuri="direct: EndpointC'/ >
<process ref="nyProcessor"/>
</route>

278 Talend Mediation Developer Guide

Spring Security

</ canel Cont ext >

<l-- We can bind the canmel Target to the Canel context's endpoint by -->
<l-- specifying the canel EndpointUri attribute -->
<canel - si : canel Target id="canel Target A"
canel Endpoi nt Uri ="di rect : Endpoi nt A" expect Repl y="f al se">
<canel - si : canel Cont ext Ref >
canel Tar get Cont ext
</ canel - si : canel Cont ext Ref >
</ canel - si : canel Tar get >

<canel - si : canel Target id="canel TargetB" canel Endpoi nt Uri ="di r ect : Endpoi nt C
repl yChannel =" channel C' expect Repl y="true">
<canel - si : canel Cont ext Ref >
canel Tar get Cont ext
</ canel - si : canel Cont ext Ref >
</ canel - si : canel Tar get >

<canel - si : canel Target id="canel Target D' canel Endpoi nt Uri ="di rect: Endpoi nt C
expect Repl y="true">
<canel - si : canel Cont ext Ref >
canel Tar get Cont ext
</ canel - si : canel Cont ext Ref >
</ canel - si : canel Tar get >

<beans: bean i d="nyProcessor"”
cl ass="org. apache. canel . component . spri ng. i ntegration. MyProcessor"/ >

3.44. Spring Security

The camel-spring-security component provides role-based authorization for Camel routes. It leverages the
authentication and user services provided by Spring Security (formerly Acegi Security) and adds a declarative,
role-based policy system to control whether a route can be executed by agiven principal.

If you are not familiar with the Spring Security authentication and authorization system, please review the current
reference documentation on the SpringSource web site linked above.

3.44.1. Creating authorization policies

Access to a route is controlled by an instance of a Spri ngSecuri t yAut hori zati onPol i cy object. A
policy object contains the name of the Spring Security authority (role) required to run a set of endpoints and
references to Spring Security Aut hent i cat i onManager and AccessDeci si onManager objects used to
determine whether the current principal has been assigned that role. Policy objects may be configured as Spring
beans or by using an <aut hori zat i onPol i cy> element in Spring XML.

The<aut hori zat i onPol i cy> element may contain the following attributes:

Name Default Value Description

id nul | The unique Spring bean identifier which is used to
reference the policy in routes (required)

access nul | The Spring Security authority name that is passed to the
access decision manager (required)

Talend Mediation Developer Guide 279

http://static.springsource.org/spring-security/site/index.html

Controlling access to Camel routes

Name Default Value Description

aut henti cati on- aut henti cati on- The name of the Spring Security
Manager Manager Aut hent i cati onManager object in the context
accessDeci si on- accessDeci si on- The name of the Spring Security
Manager Manager AccessDeci si onManager object in the context
aut henti cati on- DefaultAuthentication- The name of a camel-spring-security
Adapt er Adapter Aut hent i cati onAdapt er object in the

context that is used to convert a
j avax. security. aut h. Subj ect into a Spring
Security Aut hent i cat i on instance.

useThreadSecurity- [true If a javax.security.auth. Subject cannot
Cont ext be found in the In message header under
Exchange AUTHENTICATION, check the Spring
Security Securi tyCont ext Hol der for an
Aut hent i cat i on object.

al ways- fal se If Set to true, the
Reaut henti cate SpringSecurityAut horizationPolicy will
aways call

Aut hent i cati onManager . aut henti cat e()
each time the policy is accessed.

3.44.2. Controlling access to Camel routes

A Spring Security Aut hent i cati onManager and AccessDeci si onManager are required to use this
component. Here is an example of how to configure these objects in Spring XML using the Spring Security
namespace:

<beans xm ns="http://ww. spri ngfranmework. or g/ schena/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: spring-security="http://ww.springframework. org/schena/security"
Xsi : schemaLocati on="htt p://ww. spri ngfranewor k. or g/ schema/ beans
htt p: //ww. spri ngfranmewor k. or g/ schema/ beans/ spri ng- beans. xsd
htt p: //ww. spri ngfranmewor k. org/ schema/ security
htt p: //ww. spri ngfranmewor k. org/ schema/ security/spring-security.xsd">
<bean i d="accessDeci si onManager"
cl ass="org. spri ngfranework. security.access.vote. Affirmati veBased" >
<property nane="al | owl f Al | Abst ai nDeci si ons" val ue="true"/>
<property nane="deci si onVoters">
<list>
<bean cl ass="org. springfranmework. security.access. vote. Rol eVoter"/>
</list>
</ property>
</ bean>

<spring-security:authentication-manager alias="authenticati onManager">
<spring-security:authentication-provider
user-servi ce-ref="userDetail sService"/>
</ spring-security:authenticati on- nanager >

<spring-security:user-service id="userDetail sService">
<spring-security:user name="jint
password="j i nmepassword" authorities="ROLE USER, ROLE ADM N'/ >

280 Talend Mediation Developer Guide

Authentication

<spring-security:user nanme="bob"
passwor d="bobspassword" authorities="ROLE USER'/ >
</ spring-security:user-service>

</ beans>

Now that the underlying security objects are set up, we can use them to configure an authorization policy and use
that policy to control access to aroute:

<beans xm ns="http://ww. spri ngfranework. or g/ schena/ beans"
xm ns: xsi ="http://ww.w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: spring-security="http://ww.springframework. org/schenma/security"
xsi : schemaLocati on="htt p://wwv. spri ngfranework. or g/ scherma/ beans
http://ww. springfranmewor k. or g/ schena/ beans/ spri ng- beans. xsd
http://camel . apache. or g/ schena/ spri ng
http://camel . apache. or g/ schema/ spri ng/ canel - spri ng. xsd
http://canel . apache. or g/ schena/ spri ng-security
http://canel . apache. or g/ schena/ spri ng-security/canel -spring-security.xsd
http://ww. springfranework. org/ scherma/ security
http://ww. springfranmework. org/ schema/ security/spring-security-3.0.3.xsd">

<l-- inport the Spring security configuration -->
<i nport resource=
"cl asspat h: or g/ apache/ canel / conponent / spri ng/ security/ comonSecurity.xm"/>

<aut hori zationPolicy id="adnm n" access="ROLE_ADM N'
aut henti cati onManager =" aut henti cati onManager"
accessDeci si onManager =" accessDeci si onManager "
xm ns="http://canel.apache. org/ schena/ spri ng-security"/>

<canel Cont ext i d="myCanel Cont ext"
xm ns="http://canmel .apache. org/ schema/ spring">

<r out e>
<fromuri="direct:start"/>
<l-- The exchange shoul d be authenticated with the role of -->
<l-- ADM N before it is send to nock: endpoint -->

<policy ref="adm n">
<to uri="nock: end"/>
</ policy>
</ route>
</ carel Cont ext >

</ beans>

In this example, the endpoint nock: end will not be executed unless a Spring Security Aut henti cati on
object that has been or can be authenticated and containsthe ROLE_ADM N authority can be located by the admin
SpringSecurityAut hori zati onPolicy.

3.44.3. Authentication

The process of obtaining security credential sthat are used for authorization isnot specified by thiscomponent. Y ou
can write your own processors or components which get authentication information from the exchange depending
on your needs. For example, you might create a processor that gets credentials from an HTTP request header
originating in the camel-jetty component. No matter how the credentials are collected, they need to be placed in
the In message or the Secur i t yCont ext Hol der so the camel-spring-security component can access them:

i mport javax.security. auth. Subject;

Talend Mediation Developer Guide 281

Handling authentication and authorization errors

i mport org.apache. canel . *;
i mport org.apache. conmons. codec. bi nary. Base64;
i mport org.springfranework. security.authentication.*;

public class MyAut hService inplements Processor {
public void process(Exchange exchange) throws Exception {
/1 get the username and password fromthe HITP header
/1 http://en.w ki pedi a. org/w ki /Basi c_access_aut hentication

String userpass = new String(Base64. decodeBase64(
exchange. get I n(). get Header (" Aut hori zation", String.class)));
String[] tokens= userpass.split(":");

/1 create an Authentication object
User nanmePasswor dAut hent i cati onToken aut hToken =
new User nanePasswor dAut hent i cati onToken(t okens[0], tokens[1]);

/1l wap it in a Subject
Subj ect subject = new Subject();
subj ect. get Pri nci pal s(). add(t oken);

/1 place the Subject in the In nessage
exchange. get I n() . set Header (Exchange. AUTHENTI CATI ON, subj ect);

/1 you could also do this if useThreadSecurityContext is set to true
/1 SecurityCont ext Hol der. get Cont ext (). set Aut henti cati on(aut hToken);

}

The Spri ngSecurityAut hori zati onPol i cy will automatically authenticate the Aut henti cati on
object if necessary.

There are two issues to be aware of when using the Secur i t yCont ext Hol der instead of or in addition
to the Exchange. AUTHENTI CATI ON header. First, the context holder uses a thread-local variable to hold
the Aut henti cati on object. Any routes that cross thread boundaries, like seda or jms, will lose the
Aut hent i cat i on object. Second, the Spring Security system appears to expect that an Aut henti cati on
object in the context is already authenticated and has roles (see the Technical Overview section 5.3.1 for more
details).

The default behavior of camel-spring-security is to look for a Subject in the
Exchange. AUTHENTI CATI ON header. This Subj ect must contain at least one principal, which
must be a subclass of org. springfranmework. security.core. Authentication. You can
customize the mapping of Subj ect to Authentication object by providing an implementation
of the org. apache. canel . conponent . spring. security. Aut henti cati onAdapt er to your
<aut hori zati onPol i cy> bean. This can be useful if you are working with components that do not
use Spring Security but do provide a Subj ect . At this time, only the camel-cxf component populates the
Exchange. AUTHENTI CATI ON header.

3.44.4. Handling authentication and authorization
errors
If authentication or authorization fails in the SpringSecurityAuthorizationPolicy, a

Canel Aut hori zat i onExcept i on will be thrown. This can be handled using Camel's standard exception
handling methods, like the Exception clause. The Canel Aut hori zat i onExcept i on will have areference

282 Talend Mediation Developer Guide

http://static.springsource.org/spring-security/site/docs/3.0.x/reference/technical-overview.html#tech-intro-authentication

Dependencies

to the ID of the policy which threw the exception so you can handle errors based on the policy as well as the
type of exception:

<onExcepti on>
<exception>org. spri ngframewor k. security. authentication.
AccessDeni edExcepti on</ excepti on>
<choi ce>
<when>
<si npl e>${ excepti on. policyld} == 'user'</sinple>
<transfornmp
<constant >You do not have ROLE USER access! </ const ant >
</transfornmp
</ when>
<when>
<si npl e>${ excepti on. policyld} == "adm n'</sinpl e>
<transfornmp
<const ant >You do not have ROLE ADM N access! </ const ant >
</transfornmp
</ when>
</ choi ce>
</ onExcepti on>

3.44.5. Dependencies

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -spring-security</artifactld>
<versi on>2. 4. 0</ ver si on>

</ dependency>

This dependency will aso pull in org. spri ngframework. security: spring-
security-core: 3. 0. 3. RELEASE andor g. spri ngf ramewor k. security: spring-security-
config: 3. 0. 3. RELEASE

3.45. SQL Component

The sgl: component alows you to work with databases using JDBC queries. The difference between this
component and Section 3.22, “JDBC” component is that in case of SQL the query is a property of the endpoint
and it uses message payload as parameters passed to the query.

This component usesspr i ng- j dbc behind the scenes for the SQL handling.
Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -sql </artifactld>
<ver si on>x. X. x</ ver si on>
<l-- use the sane version as your Canel core version -->
</ dependency>

Talend Mediation Developer Guide 283

URI format

The SQL component also supports:
» aJDBC based repository for the Section 2.18, “Idempotent Consumer” EIP pattern. See further below.

» aJDBC based repository for the Aggregator EIP pattern. See further below.

3.45.1. URI format

£ The SQL component can only be used to define producer endpoints. In other words, you cannot define
#5 anSQL endpointinafron() statement.

The SQL component uses the following endpoint URI notation:
sqgl:select * fromtable where i d=# order by nane[?opti ons]

Notice that the standard ? symbol that denotes the parameters to an SQL query is substituted with the # symbol,
because the ? symbol is used to specify options for the endpoint. The ? symbol replacement can be configured
on endpoint basis.

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ueé&. . .

3.45.2. Options

Option Type Default | Description
dat aSour ceRef |String |null Reference to aDat aSour ce to look up in the registry.
pl acehol der String |# Specifies a character that will be replaced to ? in SQL query.

Notice, thatitissimple St ri ng. repl aceAl | () operation and
no SQL parsing isinvolved (quoted strings will also change)

tenpl at e. <xxx> nul | Sets additional options on the Spring JdbcTenpl at e that is
used behind the scenes to execute the queries. For instance,
t enpl at e. maxRows=10. For detailed documentation, see the
JdbcTemplate javadoc documentation.

3.45.3. Treatment of the message body

The SQL component tries to convert the message body to an object of j ava. uti | . It er at or typeand then
uses this iterator to fill the query parameters (where each query parameter is represented by a # symbol (or
configured placeholder) in the endpoint URI). If the message body is not an array or collection, the conversion
resultsin an iterator that iterates over only one object, which is the body itself.

For example, if the message body isaninstanceof j ava. uti | . Li st , thefirstiteminthelistissubstituted into
the first occurrence of # in the SQL query, the second item in the list is substituted into the second occurrence
of #, and so on.

3.45.4. Result of the query

For sel ect operations, theresultisaninstanceof Li st <Map<Stri ng, Obj ect >> type, asreturned by the
JdbcTemplate.queryForList() method. For updat e operations, the result is the number of updated rows, returned
asanl nt eger.

284 Talend Mediation Developer Guide

http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jdbc/core/JdbcTemplate.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/jdbc/core/JdbcTemplate.html#queryForList(java.lang.String,%20java.lang.Object%91%93)

Header values

3.45.5. Header values

When performing updat e operations, the SQL Component stores the update count in the following message
headers:

Header Description

Canel Sql Updat eCount The number of rows updated for updat e operations, returned as
an| nt eger object.

Canel Sql RowCount The number of rows returned for sel ect operations, returned as
anl nt eger object.

3.45.6. Configuration in Camel

The SQL component must be configured before it can be used. In Spring, you can configure it as follows:

<bean id="sql" class="org. apache. canel . conponent. sql . Sql Conponent " >
<property nane="dat aSource" ref="nyDS"/>
</ bean>

<bean i d="nyDS"
cl ass="org. spri ngf ranewor k. j dbc. dat asour ce. Dri ver Manager Dat aSour ce" >
<property nane="driverd assNane" val ue="com nysql .jdbc.Driver" />
<property nane="url" val ue="jdbc: nysql://I ocal host: 3306/ds" />
<property nane="usernane" val ue="user nane" />
<property nane="password" val ue="password" />
</ bean>

Y ou can now set areference to aDat aSour ce in the URI directly:

sqgl :select * fromtable where id=# order by name?dat aSour ceRef =nyDS

3.45.8. Sample

In the sample below we execute a query and retrieve the result as a Li st of rows, where each row is a
Map<Stri ng, Obj ect andthekey isthe column name.

First, we set up atable to use for our sample. Asthisisbased on an unit test, we'll do it using java code:

/1l this is the database we create with sonme initial data for our unit test
j dbcTenpl ate. execute("create table projects (id integer prinmary key,"

+ "project varchar(10), |icense varchar(5))");
jdbcTenpl ate. execute("insert into projects values (1, 'Canel', "ASF)");
jdbcTenpl ate. execute("insert into projects values (2, 'AMJ, 'ASF)");
jdbcTenpl ate. execute("insert into projects values (3, 'Linux', "XXX)");

Then we configure our route and our sql component. Notice that weuseadi r ect endpoint in front of thesql
endpoint. This allows us to send an exchange to the di r ect endpoint with the URI, di r ect : si npl e, which
is much easier for the client to use than thelong sql : URI. Note that the Dat aSour ce islooked up up in the
registry, so we can use standard Spring XML to configure our Dat aSour ce.

from("direct:sinple")

Talend Mediation Developer Guide 285

Using the JDBC based idempotent repository

.to("sql:select * fromprojects where |icense=# order by id?dataSourceRef=
j dbc/ nyDat aSour ce").to("nmock: result");

And then we fire the message into the di r ect endpoint that will route it to our sql component that queries
the database.

MockEndpoi nt nmock = get MockEndpoi nt (" nock: result");

nock. expect edMessageCount (1) ;

/1 send the query to direct that will route it to the sql where we wll

/] execute the query and bind the paranmeters with the data from the body.
/1 The body only contains one value in this case (XXX) but if we should use
/1 multiple values then the body will be iterated so we could supply a

/1 List<String> instead containing each binding val ue.

tenpl at e. sendBody("di rect:sinple", "XXX');

nock. assertlsSatisfied();

/1 the result is a List
Li st received = assertlslnstanced (
Li st.cl ass, nock. get Recei vedExchanges().get(0).getln().getBody());

/1 and each rowin the list is a Map
Map row = assertlslnstanceO (Map. cl ass, received. get(0));

/1 and we shoul d be able the get the project
/1 fromthe map that should be Linux
assert Equal s("Linux", row. get("PRQIECT"));

We could configure the Dat aSour ce in Spring XML asfollows:

<j ee:jndi-lookup id="nmyDS" jndi-nanme="j dbc/ nyDat aSour ce"/ >

3.45.9. Using the JDBC based idempotent repository

Available as of Camel 2.7 : In this section we will use the IDBC based idempotent repository.

First we need to setup aj avax. sql . Dat aSour ce inthe Spring XML file:

<bean i d="dat aSour ce"
cl ass="org. spri ngf ranewor k. j dbc. dat asour ce. Si ngl eConnect i onDat aSour ce" >
<property nane="driverd assNane" val ue="org. hsql db. j dbcDriver"/>
<property nane="url" val ue="j dbc: hsql db: mrem canel _j dbc"/>
<property nane="usernane" val ue="sa"/>
<property nane="password" val ue=""/>

</ bean>

And we can create our JDBC idempotent repository in the Spring XML file aswell:

<bean i d="nessagel dRepository" cl ass=
"org. apache. canel . processor. i denpotent.jdbc. JdbcMessagel dReposi tory" >
<constructor-arg ref="dataSource" />
<constructor-arg val ue="nyProcessor Nanme" />

</ bean>

286 Talend Mediation Developer Guide

Using the JDBC based aggregation repository

<canel : canel Cont ext >

<canel : error Handl er
i d="deadLett er Channel " type="DeadLett er Channel "
deadLetter Ui ="nock:error">
<canel : redel i veryPol i cy maxi nunRedel i veri es="0"
maxi munRedel i veryDel ay="0" | ogSt ackTrace="fal se" />
</ canel : errorHandl er >

<canel : rout e i d="JdbcMessagel dRepositoryTest™"
error Handl er Ref =" deadLet t er Channel ">
<canel :fromuri="direct:start" />
<canel : i denpot ent Consuner
nmessagel dReposi t or yRef =" messagel dReposi tory" >
<canel : header >nessagel d</ canel : header >
<canel :to uri="nock:result" />
</ canel : i denpot ent Consuner >
</ canel : rout e>
</ canel : canel Cont ext >

3.45.10. Using the JDBC based aggregation repository

Available as of Camel 2.6
1) Using JdbcAggregationRepository in Camel 2.6

In Camel 2.6, the JdbcAggregationRepository is provided in the canel -j dbc- aggr egat or
component. From Camel 2.7 onwards, the JdbcAggr egat i onReposi tory is provided in the
camel - sql component.

JdbcAggr egati onRepository is an Aggregati onRepository which on the fly persists the
aggregated messages. This ensures that you will not loose messages, as the default aggregator will use an in
memory only Aggr egat i onReposi tory. The JdbcAggr egat i onReposi t ory alows together with
Camd to provide persistent support for the Aggregator.

It has the following options:

Option Type Description

dat aSour ce Dat aSour ce Mandatory: The
javax.sql . Dat aSource to wuse for
accessing the database.

reposi t or yNane String Mandatory: The name of the repository.

transacti onManager Transact i onManager Mandatory: The
org. springframework. transacti on.
Pl at f or MTr ansact i onManager to

mange transactions for the database. The
TransactionManager must be able to support
databases.

| obHandl er LobHandl er A
or g. springframewor k. j dbc. support|.
| ob. LobHandl er to handle Lob types in
the database. Use this option to use a vendor
specific LobHandler, for example when using
Oracle.

Talend Mediation Developer Guide 287

Using the JDBC based aggregation repository

Option Type Description

ret ur nA dExchange boolean Whether the get operation should return the old
existing Exchangeif any existed. By default this
optionisf al se to optimize as we do not need
the old exchange when aggregating.

useRecovery boolean Whether or not recovery is enabled. This option
is by default t r ue. When enabled the Camel
Aggregator automatic recover failed aggregated
exchange and have them resubmitted.

recoverylnterval long If recovery is enabled then abackground task is
run every X'th time to scan for failed exchanges
to recover and resubmit. By default thisinterval
is 5000 milliseconds.

maxi nunRedel i veries |int Allows you to limit the maximum number of
redelivery attempts for a recovered exchange.
If enabled then the Exchange will be moved to
the dead letter channel if all redelivery attempts
failed. By default this option is disabled. If
this option is used then the deadLet t er Ur i
option must aso be provided.

deadLetter Uri String An endpoint uri for a Section 2.10, “Dead
Letter Channel” where exhausted recovered
Exchanges will be moved. If this option is used
then the maxi nunRedel i veri es option
must also be provided.

3.45.10.1. What is preserved when persisting

JdbcAggr egat i onReposi t ory will only preserve any Seri al i zabl e compatible data types. If a data
type is not such a type it is dropped and a WARN is logged. And it only persists the Message body and the
Message headers. The Exchange properties are not persisted.

3.45.10.2. Recovery

The JdbcAggr egat i onReposi t ory will by default recover any failed Exchange. It does this by having a
background tasks that scans for failed Exchange s in the persistent store. You can use the checkl nt er val
option to set how often this task runs. The recovery works as transactional which ensures that Camel will try to
recover and redeliver the failed Exchange. Any Exchange which was found to be recovered will be restored from
the persistent store and resubmitted and send out again.

The following headersis set when an Exchange is being recovered/redelivered:

Header Type Description

Exchange. REDELI VERED Boolean Is set to true to indicate the Exchange is being
redelivered.

Exchange. Integer Thereddlivery attempt, starting from 1.

REDEL| VERY_COUNTER

Only when an Exchange has been successfully processed it will be marked as complete which happens when the
conf i r mmethod isinvoked onthe Aggr egat i onReposi t or y. Thismeansif the same Exchangefailsagain
it will be kept retried until it success.

288 Talend Mediation Developer Guide

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html

Using the JDBC based aggregation repository

You can use option maxi munrRedel i veri es to limit the maximum number of redelivery attempts for agiven
recovered Exchange. Youmust also setthedeadLet t er Ur i option so Camel knowswhereto send the Exchange
when the maxi munRedel i veri es washit.

Y ou can see some examples in the unit tests of camel-sgl, for example this test.

3.45.10.3. Database

To be operational, each aggregator uses two table: the aggregation and completed one. By convention the
completed has the same name as the aggregation one suffixed with " COVPLETED". The name must be
configured in the Spring bean with the Reposi t or yNane property. In the following example aggregation will
be used.

The table structure definition of both table areidentical: in both case a String valueisused askey (id) whereasa
Blob contains the exchange serialized in byte array. However one difference should be remembered: theid field
does not have the same content depending on the table. In the aggregation table id holds the correlation 1d used
by the component to aggregate the messages. In the completed table, id holds the id of the exchange stored in
corresponding the blob field.

Here isthe SQL query used to create the tables, just replace " aggr egat i on" with your aggregator repository
name.

CREATE TABLE aggregation (
id varchar (255) NOT NULL,
exchange bl ob NOT NULL,
constraint aggregation_pk PRI MARY KEY (i d)
)
CREATE TABLE aggregati on_conpleted (
id varchar (255) NOT NULL,
exchange bl ob NOT NULL,
constraint aggregati on_conpl eted_pk PRI MARY KEY (i d)

3.45.10.4. Codec (Serialization)

Since they can contain any type of payload, Exchanges are not serializable by design. It is converted into a byte
array to be stored in a database BLOB field. All those conversions are handled by the JdbcCodec class. One
detail of the code requires your attention: the Cl assLoadi ngAwar eCbj ect | nput St r eam

The d assLoadi ngAwar eQbj ect | nput St r eam has been reused from the Apache ActiveMQ project.
It wraps an Cbj ectl nput Stream and use it with the Cont ext Cl assLoader rather than the
current Thr ead one. The benefit is to be able to load classes exposed by other bundles. This allows the
exchange body and headers to have custom types object references.

3.45.10.5. Transaction

A Spring Pl at f or nTr ansact i onManager isrequired to orchestrate transaction.

3.45.10.6. Service (Start/Stop)

The st art method verify the connection of the database and the presence of the required tables. If anything is
wrong it will fail during starting.

Talend Mediation Developer Guide 289

http://camel.apache.org/exchange.html
http://camel.apache.org/exchange.html
https://svn.apache.org/repos/asf/camel/trunk/components/camel-sql/src/test/java/org/apache/camel/processor/aggregate/jdbc/JdbcAggregateRecoverDeadLetterChannelTest.java
http://activemq.apache.org/

SSH

3.45.10.7. Aggregator configuration

Depending on the targeted environment, the aggregator might need some configuration. As you already know,
each aggregator should have its own repository (with the corresponding pair of table created in the database)
and a data source. If the default lobHandler is not adapted to your database system, it can be injected with the
| obHandl er property.

Here is the declaration for Oracle:

<bean i d="| obHandl er"
cl ass="org. spri ngf ranewor k. j dbc. support .| ob. O acl eLobHandl er" >
<property nane="nativeJdbcExtractor" ref="nativeJdbcExtractor"/>
</ bean>

<bean id="nativeJddbcExtractor" class=
"org. springframework. jdbc. support.nativej dbc. CoommonsDbcpNati veJdbcExtractor"/ >

<bean id="repo" class=
"org. apache. canel . processor. aggr egat e. j dbc. JdbcAggr egat i onReposi tory" >
<property nane="transacti onManager" ref="transacti onManager"/>
<property nane="repositoryNane" val ue="aggregation"/>
<property nane="dat aSour ce" ref="dataSource"/>

<I-- Only with Oacle, else use default -->
<property nane="| obHandl er" ref="|obHandl er"/>
</ bean>

3.46. SSH

The SSH component enables access to SSH servers such that you can send an SSH command, and process the
response. Maven users will need to add the following dependency to their pom.xml for this component:

<dependency>

<gr oupl d>or g. apache. canel </ gr oupl d>

<artifactld>canel -ssh</artifactld>

<ver si on>x. X. x</ ver si on>

<l-- use the sane version as your Canel core version -->
</ dependency>

3.46.1. URI Format

ssh:[username] :password] @] host[: port] [?options]

3.46.2. Options

Name Default Value Description
host Hostname of SSH Server
host Hostname of SSH Server

290 Talend Mediation Developer Guide

Stub

Name Default Value Description

port 22 SSH Server port

user nane Username to authenticate with SSH Server

password Password used for authenticating with SSH Server.
Used if keyPairProvider isnull.

keyPai r Provi der Refers to a org.apache.sshd.common.KeyPairProvider

to use for loading keys for authentication. If this option
isused, then passwor d isnot used.

keyType ssh-rsa Refers to a key type to load from keyPairProvider. The
key types can for example be "ssh-rsa" or "ssh-dss".

certFil ename File name of thekeyPai r Pr ovi der .

ti meout 30000 Milliseconds to wait beforing timing out connection to
SSH Server.

initial Del ay 1000 Consumer only: Milliseconds before polling the SSH
server starts.

del ay 500 Consumer only: Milliseconds before the next poll of the
SSH Server.

useFi xedDel ay true Consumer only: Controlsif fixed delay or fixed rate is
used. See Schedul edExecutorServicein JDK for details.

pol | Command Consumer only: Command to send to SSH Server during

each poll cycle. Used only when acting as Consumer.

3.47. Stub

The stub: component provides a simple way to stub out any physical endpoints for easy testing. Just add stub: in
front of any endpoint URI in order to stub out the endpoint. Thisis useful in development where you might wish
to try aroute without needing to connect to a specific SMTP or HTTP endpoint.

Internally the Stub component creates VM endpoints. The main difference between Stub and VM isthat VM will
validate the URI and parameters you give it, so putting vm: in front of a typical URI with query arguments will
usually fail. Stub won't though asit basically ignores all query parametersto let you quickly stub out one or more
endpoints in your route temporarily.

3.47.1. URI Format

st ub: someUri

Where someUri can be any URI with any query parameters.

3.47.2. Samples

Here are some samples:
stub: snt p://sonehost . f 00. conuser =what not &onet hi ng=el se

st ub: http://sonehost. bar. coni sonet hi ng

Talend Mediation Developer Guide 291

http://camel.apache.org/vm.html

Test

3.48. Test

Testing of distributed and asynchronous processing is notoriously difficult. The Section 3.31, “Mock”,
Section 3.48, “Test” and DataSet endpoints work great with the Camel Testing Framework to simplify your unit
and integration testing using Enterprise | ntegration Patterns and Camel'slarge range of Components together with
the powerful Bean Integration.

The test component extends the Section 3.31, “Mock” component to support pulling messages from another
endpoint on startup to set the expected message bodies on the underlying Section 3.31, “Mock” endpoint. That
is, you use the test endpoint in a route and messages arriving on it will be implicitly compared to some expected
messages extracted from some other location.

So you can use, for example, an expected set of message bodies asfiles. Thiswill then set up aproperly configured
Section 3.31, “Mock” endpoint, which is only valid if the received messages match the number of expected
messages and their message payloads are equal .

3.48.1. URI format

t est: expect edMessagesEndpoi nt Uri

where expectedM essagesEndpointUri refers to some other Component URI that the expected message bodies
are pulled from before starting the test.

3.48.2. Example

For example, you could write atest case as follows:

from("seda: someEndpoi nt").
to("test:file://datalexpectedCQutput?noop=true");

If your test then invokes the M ockEndpoint.assertl sSatisfied(camel Context) method, your test case will perform
the necessary assertions.

Hereisareal example test case using Mock and Spring along with its Spring XML.

To see how you can set other expectations on the test endpoint, see the Section 3.31, “Mock” component.

3.49. Timer

Thetimer: component is used to generate message exchanges when atimer fires Y ou can only consume events
from this endpoint.

3.49.1. URI format

ti mer: name[?opti ons]

where nane is the name of the Ti mer object, which is created and shared across endpoints. So if you use the
same name for al your timer endpoints, only one Ti mer object and thread will be used.

292 Talend Mediation Developer Guide

http://camel.apache.org/testing.html
http://camel.apache.org/dataset.html
http://camel.apache.org/testing.html
http://camel.apache.org/bean-integration.html
http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/component/mock/MockEndpoint.html#assertIsSatisfied(org.apache.camel.CamelContext)
http://svn.apache.org/viewvc/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/component/test/TestEndpointTest.java?view=markup
https://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/component/test/TestEndpointTest-context.xml

Options

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

Note: The N body of the generated exchangeisnul | . Soexchange. get I n() . get Body() returnsnul | .

i Advanced Scheduler

See also the Section 3.34, “Quartz” component that supports much more advanced scheduling.

i Specify timein human friendly format

Y ou can specify the time in human friendly syntax.

3.49.2. Options

Name Default Value Description

tinme nul | A java.util.Date the first event should be
generated. If using the URI, the pattern expected
is. yyyy- Mt dd HH. mMm ss or yyyy- MMV
dd' T' HH: mm ss.

pattern nul | Allows you to specify acustom Dat e pattern to use for
setting the time option using URI syntax.

peri od 1000 If greater than O, generate periodic events every
per i od milliseconds.

del ay 0 Thenumber of millisecondstowait beforethefirst event
isgenerated. Should not be used in conjunction with the
ti me option.

fi xedRat e fal se Events take place at approximately regular intervals,
separated by the specified period.

daenon true Specifies whether or not the thread associated with the
timer endpoint runs as a daemon.

3.49.3. Exchange Properties

When the timer isfired, it adds the following information as properties to the Exchange :

Name Type Description

or g. apache. canel . ti mer. nane String The value of the nane option.
org. apache. canel . tinmer.tine Dat e Thevalue of thet i e option.
org. apache. canel . ti ner. period |l ong The value of the per i od option.
org. apache. canel . ti ner. Dat e The time when the consumer fired.
firedTime

3.49.4. Message Headers

When the timer isfired, it adds the following information as headers to the IN message

Talend Mediation Developer Guide

293

http://camel.apache.org/how-do-i-specify-time-period-in-a-human-friendly-syntax.html

Sample

Name Type Description

firedTime java.util.Date The time when the consumer fired

3.49.5. Sample

To set up aroute that generates an event every 60 seconds:

from("timer://foo?fixedRat e=t rueé&peri od=60000") .
t o(" bean: nyBean?met hod=soneMet hodNane") ;

The above route will generate an event and then invoke the soneMet hodNane method on the bean called
nyBean in the Registry such as INDI or Spring.

And the routein Spring DSL:

<r out e>
<fromuri="tiner://foo?fi xedRat e=t rue&anp; peri od=60000"/ >
<to uri="bean: nyBean?net hod=soneMet hodNane"/ >
</route>

3.50. Velocity

The velocity: component allows you to process a message using an Apache Velocity template. This can be ideal
when using Templating to generate responses for requests.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>

<gr oupl d>or g. apache. canel </ gr oupl d>

<artifactld>canel -velocity</artifactld>

<ver si on>x. x. x</ ver si on>

<l-- use the sane version as your Canel core version -->
</ dependency>

3.50.1. URI format

vel oci ty: tenpl at eNane[?opti ons]

where templateName is the classpath-local URI of the template to invoke; or the complete URL of the remote
template (for example: file://folder/myfilevm®).

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

3.50.2. Options

Option Default Description
| oader Cache true Velocity based file loader cache.

294 Talend Mediation Developer Guide

http://camel.apache.org/registry.html
http://camel.apache.org/spring.html
http://velocity.apache.org/
http://camel.apache.org/templating.html

Message Headers

Option Default Description

cont ent Cache true Cache for the resource content when it is
loaded.

encodi ng nul | Character encoding of the resource content.

propertiesFile nul | The URI of the properties file which is used
for VelocityEngine initialization.

3.50.3. Message Headers

Thevelocity component sets a coupl e headers on the message (you can't set these yourself and velocity component
will not set these headers which will cause some side effect on the dynamic template support):

Header Description
Canel Vel oci t yResour celr i ThetemplateNameasa St ri ng object.

Headers set during the Velocity evaluation are returned to the message and added as headers. Then it's possible
to return values from Velocity to the Message.

For example, to set the header value of f r ui t inthe Velocity template. t m:
$in.setHeader (' fruit', 'Apple')

Thef r ui t header isnow accessible from thenessage. out . headers.

3.50.4. Velocity Context

Camd will provide exchange information in the Velocity context (just aMap). The Exchange istransfered as:

key value

exchange The Exchange itsdlf.

header s The headers of the In message.

canel Cont ext The Camel Context intance.

request The In message.

in The In message.

body The In message body.

out The Out message (only for InOut message exchange pattern).
response The Out message (only for InOut message exchange pattern).

3.50.5. Hot reloading

The Velocity template resource is, by default, hot reloadable for both file and classpath resources (expanded jar).
If you set cont ent Cache=t r ue, Camel will only load the resource once, and thus hot rel oading is not possible.
This scenario can be used in production, when the resource never changes.

Talend Mediation Developer Guide 295

Dynamic templates

3.50.6. Dynamic templates

Camd provides two headers by which you can define a different resource location for atemplate or the template
content itself. If any of these headersis set then Camel usesthis over the endpoint configured resource. Thisallows
you to provide a dynamic template at runtime.

Header Type Description

Camel VelocityResourceUri String A URI for the template resource to use instead of the endpoint
configured.

CamelVelocityTemplate String The template to use instead of the endpoint configured.

3.50.7. Samples

For example you could use something like

from "activeny: My. Queue")
.to("velocity: conf acme/ M\yResponse. vni') ;

To use a Velocity template to formulate a response to a message for InOut message exchanges (where there is
aJVMSRepl yTo header).

If you want to use InOnly and consume the message and send it to another destination, you could use the following
route:

from"activeng: My. Queue")
.to("vel ocity: conf acnme/ MyResponse. vini')
.to("activeny: Anot her. Queue") ;

And to use the content cache, for example, for use in production, where the . vmtemplate never changes:

from("activenyg: My. Queue")
.to("vel ocity: confacme/ MyResponse. vnf?cont ent Cache=t rue")
.to("activeny: Anot her. Queue") ;

And afile based resource:

from"activeng: My. Queue")
.to("velocity:file://nyfol der/ MyResponse. vncont ent Cache=t rue")
.to("activeny: Anot her. Queue") ;

Initispossibleto specify what template the component should use dynamically via a header, so for example:

from"direct:in")
. set Header (" Canel Vel oci t yResourceUri ")
.constant ("path/to/ my/tenpl ate. vn')
.to("vel ocity: dumy");

In it is possible to specify atemplate directly as a header the component should use dynamically via a header,
so for example:

from("direct:in")
. set Header (" Canel Vel oci tyTenpl ate")
.constant("H this is a velocity tenplate" +
"that can do tenplating ${body}")
.to("vel ocity: dumy");

296 Talend Mediation Developer Guide

VM

3.51. VM

Thevm: component provides asynchronous SEDA behavior so that messages are exchanged on a BlockingQueue
and consumers are invoked in a separate thread pool to the producer.

This component differs from the Section 3.38, “SEDA” component in that VM supports communication across
Camel Context instances, so you can use this mechanism to communicate across web applications, provided that
thecanel - core. j ar isonthesyst eni boot classpath.

This component is an extension to the Section 3.38, “SEDA” component.

3.51.1. URI format

vm soneNane[?opt i ons]

where someName can be any string to uniquely identify the endpoint within the VM (or at least within the
classloader which |oaded the camel-core.jar)

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ueé&. . .

3.51.2. Options

See the Section 3.38, “SEDA” component for options and other important usage as the same rules apply for this
Section 3.51, “VM” component.

3.51.3. Samples

In the route below we send the exchange to the VM queue that is working across Camel Context instances:
from"direct:in").bean(MyOrderBean. cl ass).to("vmorder.emil");
And then in another Camel context such as deployed asin another . war application:

from("vmorder.emil").bean(M/Or der Enmi | Sender . cl ass);

3.52. XQuery Endpoint

The xquery: component allowsyou to process a message using an XQuery template. This can beideal when using
Templating to generate responses for requests.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel -saxon</artifactld>
<ver si on>x. X. x</ ver si on>

Talend Mediation Developer Guide 297

http://www.eecs.harvard.edu/~mdw/proj/seda/
http://java.sun.com/j2se/1.5.0/docs/api/java/util/concurrent/BlockingQueue.html
http://camel.apache.org/xquery.html
http://camel.apache.org/templating.html

URI format

<l-- use the sanme version as your Canmel core version -->
</ dependency>

3.52.1. URI format

xquery:tenpl at eNane

where templateName is the classpath-local URI of the template to invoke; or the complete URL of the remote
template.

For example you could use something like this:

from"activenqg: My. Queue") .
to("xquery: com acne/ myt ransf or m xquery");

To use an XQuery template to formulate a response to a message for InOut message exchanges (where there is
aJMSRepl yTo header).

If you want to use InOnly, consume the message, and send it to another destination, you could use the following
route:

from"activenqg: My. Queue")
.to("xquery: conf acrme/ nytransf orm xquery")
.to("activeny: Anot her. Queue") ;

3.53. XSLT

The xdt: component allows you to process a message using an XSLT template. This can be ideal when using
Templating to generate responses for requests.

3.53.1. URI format

xsl t:tenpl at eName[?opt i ons]

where templateName is the classpath-local URI of the template to invoke; or the complete URL of the remote
template. Refer to the Spring Documentation for more detail of the URI syntax

Y ou can append query options to the URI in the following format, ?opt i on=val ue&opti on=val ue&. . .

Here are some example URIs

URI Description

xsl t: com acne/ nytransform xsl refers to the file com/acme/mytransform.xsl on the
classpath

xslt:file:///foolbar.xsl refersto the file /foo/bar.xdl

xslt:http://acnme. conl cheese/f 0o. xsl refers to the remote http resource

Maven users will need to add the following dependency to their pom xm for this component:

298 Talend Mediation Developer Guide

http://www.w3.org/TR/xslt
http://camel.apache.org/templating.html
http://static.springframework.org/spring/docs/2.5.x/api/org/springframework/core/io/DefaultResourceLoader.html

Options

<dependency>

<gr oupl d>or g. apache. canel </ gr oupl d>

<artifactld>canel -spring</artifactld>
<ver si on>x. x. x</ ver si on>
<l-- use the sanme version as your Canmel core version -->

</ dependency>

3.53.2. Options

Name

Default Value

Description

converter

nul |

Option to override default XmlConverter. This
will lookup for the converter in the Registry.
The provided converted must be of type
org.apache.camel.converter.jaxp.XmlConverter.

t ransf or mer Fact ory

nul |

Camel 16 Option to overide default
TransformerFactory. This will ~ lookup for
the transformerFactory in the Registry. The
provided transformer factory must be of type
javax.xml transform.TransformerFactory.

transf orner Fact oryd ass

nul |

Camel 16 Option to overide default
TransformerFactory. This will create a
TransformerFactoryClass instance and set it to the
converter.

uri Resol ver

nul |

Camel 23 : Allows you to use a custom
j avax. xm . transformati on. URl Resol ver.
Camel will by default use its own implementation
or g. apache. canel . bui | der. xm .

Xsl t Uri Resol ver whichiscapableof loading from

classpath.

resul t Handl er Fact ory

nul |

Camel 2.3 Allows you to use a
custom org. apache. canel . bui | der. xm .

Resul t Handl er Fact or y whichiscapableof using
custom org. apache. canel . bui | der. xm .

Resul t Handl er types.

fai | OnNul | Body

true

Camel 2.3: Whether or not to throw an exception if the
input body is null.

del eteCQutputFil e

fal se

Camel 2.6: If you haveout put =f i | e thenthisoption
dictates whether or not the output file should be deleted
when the Exchange is done processing. For example
suppose the output fileisatemporary file, then it can be
agood ideato delete it after use.

out put

string

Camel 2.3: Option to specify which output type to use.
Possiblevaluesare:stri ng, bytes, DOM file.
The first three options are al in memory based, where
asfile isstreamed directly to ajava.io. File.
For fil e you must specify the filename in the IN
header with the key Exchange. XSLT_FI LE_NAME
whichisaso Canel Xsl t Fi | eNane. Also any paths
leading to the filename must be created beforehand,
otherwise an exception is thrown at runtime.

cont ent Cache

true

Camel 2.6: Cache for the resource content (the
stylesheet file) when it is loaded. If set to fal se

Talend Mediation Developer Guide 299

http://camel.apache.org/maven/current/camel-core/apidocs/org/apache/camel/converter/jaxp/XmlConverter.html
http://camel.apache.org/registry.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/transform/TransformerFactory.html
http://camel.apache.org/registry.html
http://java.sun.com/j2se/1.5.0/docs/api/javax/xml/transform/TransformerFactory.html
http://camel.apache.org/exchange.html

Using XSLT endpoints

Name Default Value |Description

Camel will reloader the stylesheet file on each message
processing. Thisis good for development.

3.53.3. Using XSLT endpoints

For example you could use something like

from "activeny: My. Queue")
.to("xslt:con acnme/ nytransform xsl");

To use an XSLT template to formulate a response for a message for InOut message exchanges (where there is
aJMSRepl yTo header).

If you want to use InOnly and consume the message and send it to another destination you could use the following
route:

from"activenqg: My. Queue")
.to("xslt:com acre/ nytransform xsl ")
.to("activeny: Anot her. Queue");

3.53.4. Getting Parameters into the XSLT to work with

By default, al headers are added as parameters which are available in the XSLT. To do this you will need to
declare the parameter so it is then useable.

<set Header header Name="myPar am' ><const ant >42</ const ant ></ set Header >
<to uri="xslt: WTransform xsl"/>

And the XSLT just needs to declare it at the top level for it to be available:

<xsl : par am nanme="nyPar ani'/ >

<xsl:tenplate ...>

3.53.5. Spring XML versions

To use the above examples in Spring XML you would use something like

<canel Context xm ns="http://activeny. apache. org/ canel / schenma/spri ng">
<r out e>
<fromuri="activermy: My. Queue"/ >
<to uri="xslt:org/apache/ canel/spring/processor/exanpl e. xsl"/>
<to uri="activeny: Anot her. Queue"/ >
</route>
</ camel Cont ext >

Thereis atest case along with its Spring XML if you want a concrete example.

300 Talend Mediation Developer Guide

http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/java/org/apache/camel/spring/processor/XsltTest.java
http://svn.apache.org/repos/asf/camel/trunk/components/camel-spring/src/test/resources/org/apache/camel/spring/processor/XsltTest-context.xml

Using xd:include

3.53.6. Using xsl:include

Camdl provides its own implementation of URI Resol ver which allows Camel to load included files from the
classpath and more intelligent than before.

For example thisinclude:

<xsl:include href="staff_tenplate.xsl"/>

Thiswill now be located relative from the starting endpoint, which for example could be:
.to("xslt:org/apache/ canel / conponent/xslt/staff _include relative.xsl")

Which means Camel will locate the file in the classpath as or g/ apache/ canel / conponent / xsl t/
staf f _tenpl at e. xsl . Thisallows you to use xd include and have xdl files located in the same folder such
aswedo in the example or g/ apache/ canel / conponent / xsl t.

You can use the following two prefixes cl asspat h: or fil e: toinstruct Camel to look either in classpath
or file system. If you omit the prefix then Camel uses the prefix from the endpoint configuration. If that neither
has one, then classpath is assumed.

You can aso refer back in the paths such as
<xsl:include href="../staff_other_tenplate.xsl"/>

Which then will resolve the xdl file under or g/ apache/ canel / conponent .

3.54. Zookeeper

The ZooK eeper component alows interaction with a ZooKeeper cluster and exposes the following features to
Camdl:

* Creation of nodesin any of the ZooK eeper create modes.
» Get and Set the data contents of arbitrary cluster nodes.
 Create and retrieve the list the child nodes attached to a particular node.

» A Distributed RoutePolicy that |everages al eader el ection coordinated by ZooK eeper to determineif exchanges
should get processed.

Maven users will need to add the following dependency to their pom xm for this component:

<dependency>
<gr oupl d>or g. apache. canel </ gr oupl d>
<artifactld>canel - zookeeper</artifactld>
<ver si on>x. x. x</ ver si on>
<l-- use the sane version as your Canmel core version -->
</ dependency>

3.54.1. URI Format and Options

zookeeper:// zookeeper-server[:port][/path][?options]

The path from the uri specifiesthe node in the ZooK eeper server (akaznode) that will be thetarget of the endpoint.

Talend Mediation Developer Guide 301

Use cases

Options

Name Default Value Description

sessionld null Thesessionid usedtoidentify aconnectiontothecluster

password null The password to use when making a connection

awai t Creati on true Should the endpoint await the creation of a node that
does not yet exist.

listChildren fase Whether the children of the node should be listed

r epeat false Should changesto the znode be 'watched' and repeatedly
processed.

backof f 5000 The time interval to backoff for after an error before
retrying.

ti meout 5000 The time interval to wait on connection before timing
out.

create false Should the endpoint create the node if it does not
currently exist.

cr eat evbde EPHEMERAL The create mode that should be used for the newly
created node (see below).

sendEnpt yMessage- |[true Camel 2.10: Upon the delete of a znode, should an

OnDel et e empty message be send to the consumer.

3.54.2. Use cases

3.54.2.1. Reading from a znode

Thefollowing snippet will read the data from the znode '/somepath/somenode/* provided that it already exists. The
dataretrieved will be placed into an exchange and passed onto the rest of the route.

from("zookeeper://1ocal host: 39913/ sonepat h/ sonenode").to("nock:result");
If the node does not yet exist then aflag can be supplied to have the endpoint await its creation:

from("zookeeper://1ocal host: 39913/ sonepat h/ sonenode?awai t Creati on=true").
to("nock:result");

Starting with Camel 2.10, when data is read due to a WatchedEvent received from the ZooK eeper ensemble, the
Camel ZookeeperEventType header will hold the ZooK eeper's EventType value from that WatchedEvent. If the
dataisread initialy (not triggered by a WatchedEvent) the Camel ZookeeperEventType header will not be set.

3.54.2.2. Writing to a znode

The following snippet will write the payload of the exchange into the znode at ‘/somepath/somenode/' provided
that it already exists:

from("direct:wite-to-znode").
to("zookeeper:/ /| ocal host: 39913/ sonmepat h/ sonenode") ;

302 Talend Mediation Developer Guide

ZooK eeper enabled Route policy

For flexibility, the endpoint allows the target znode to be specified dynamically as a message header. If a header
keyed by the string 'CamelZooK eeperNode' is present then the value of the header will be used as the path to the
znode on the server. For instance using the same route definition above, the following code snippet will write the
data not to ‘/somepath/somenode’ but to the path from the header ‘/somepath/someothernode’

Exchange e = creat eExchangeWt hBody(t est Payl oad);
t enpl at e. sendBodyAndHeader ("direct: wite-to-znode",
e, "Canel ZooKeeper Node", "/somepat h/ soneot her node");

To aso create the node if it does not exist the 'create’ option should be used.

from"direct:create-and-wite-to-znode").
to("zookeeper://| ocal host: 39913/ sonmepat h/ sonenode?cr eat e=true");

ZooKeeper nodes can have different types, they can be 'Ephemeral’ or 'Persistent’ and 'Sequenced' or
‘Unsequenced'. Information of each type is described on the ZooKeeper site. By default endpoints will create
unsequenced, ephemeral nodes, but the type can be easily manipulated viaa uri config parameter or via a special
message header. The values expected for the create mode are simply the names from the CreateM ode enumeration

* PERSI STENT

* PERSI STENT_SEQUENTI AL

 EPHEMERAL

o EPHEMERAL _SEQUENTI AL

For example to create a persistent znode viathe URI config:

from("direct:create-and-wite-to-persistent-znode").
to("zookeeper://l ocal host: 39913/ sonepat h/ sonenode?cr eat e=true
&cr eat eMode=PERSI STENT") ;

Or using the header 'Camel Zookeeper CreateM ode’

Exchange e = creat eExchangeW t hBody(t est Payl oad) ;
t enpl at e. sendBodyAndHeader ("direct: create-and-wite-to-persistent-znode",
e, "Canel ZooKeeper Cr eat eMode", "PERSI STENT");

3.54.3. ZooKeeper enabled Route policy

ZooKeeper allows for very simple and effective leader election out of the box. This component exploits this
election capability in a RoutePolicy to control when and how routes are enabled. This policy would typically be
used in fail-over scenarios, to control identical instances of aroute across acluster of Camel based servers. A very
common scenario isasimple 'Master-Slave' setup where there are multiple instances of a route distributed across
a cluster but only one of them, that of the master, should be running at atime. If the master fails, a new master
should be elected from the available slaves and the route in this new master should be started.

The policy uses acommon znode path across all instances of the RoutePolicy that will beinvolved in the election.
Each policy writesitsid into this node and zookeeper will order the writesin the order it received them. The policy
then reads the listing of the node to see what postion of itsid; this postion is used to determine if the route should
be started or not. The policy is configured at startup with the number of route instances that should be started
acrossthe cluster and if itsposition inthelist islessthan thisvalue then itsroute will be started. For aMaster-slave
scenario, the route is configured with 1 route instance and only the first entry in the listing will start its route. All
policies watch for updates to the listing and if the listing changes they recalculate if their route should be started.
The following example uses the node '/someapplication/somepolicy’ for the election and is set up to start only the
top '1' entriesin the node listing i.e. elect a master:

Talend Mediation Developer Guide 303

http://zookeeper.apache.org/doc/trunk/zookeeperProgrammers.html#Ephemeral+Nodes

ZooK eeper enabled Route policy

ZooKeeper Rout ePol i cy policy = new ZooKeeper Rout ePol i cy("
zookeeper: | ocal host: 39913/ soneapp/ sonepol i cy", 1);
from("direct:policy-controlled").routePolicy(policy).to(

"mock: control | ed");

304 Talend Mediation Developer Guide

Chapter 4. Talend ESB Mediation Examples

The samplesfolder of the Talend ESB download contain examplesthat are provided by the Apache Camel project,
as well as Talend ESB-specific examples showing multiple usages of Camel routing. Each Talend ESB sample
has its own README file providing a full description of the sample along with deployment information using
embedded Jetty or Talend OSGi container. The examples provided by the Apache Camel project and bundled with
the Talend ESB are listed and explained on the Camel website; the below listing provides asummary of additional
mediation examples provided in the Talend ESB distribution.

Example Description

blueprint Provides an example of deploying Camel routes as an OSGi bundle in the
TESB container.

claimcheck EAIl patterns example demonstrating use of the Claim Check, Splitter,
Reswquencer and Delayer patterns.

jaxrs-jms-http Showshow aJAX-RS service can be offered an used with Camel transports.

jaxws-jms Shows how to publish and call a CXF service using SOAP/IMS using
Camel as a CXF transport.

spring-security Example shows how to leverage Spring Security to secure Camel routes

in general and also specifically when combined with CXF JAX-WS and
JAX-RS endpoints.

Talend Mediation Developer Guide

http://camel.apache.org/examples.html

Talend Mediation Developer Guide

	Talend Mediation
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Enterprise Integration Patterns
	2.1. List of EIPs
	2.1.1. Messaging Systems
	2.1.2. Messaging Channels
	2.1.3. Message Construction
	2.1.4. Message Routing
	2.1.5. Message Transformation
	2.1.6. Messaging Endpoints
	2.1.7. System Management

	2.2. Aggregator
	2.2.1. Aggregator Pattern
	2.2.2. Aggregator options
	2.2.3. Exchange Properties
	2.2.4. About AggregationStrategy
	2.2.5. About completion

	2.3. Claim Check
	2.4. Competing Consumers
	2.5. Composed Message Processor
	2.6. Content Based Router
	2.7. Content Enricher
	2.7.1. Content enrichment using a Message Translator or a Processor
	2.7.2. Content enrichment using the enrich DSL element
	2.7.3. Aggregation strategy is optional
	2.7.4. Content enrichment using pollEnrich

	2.8. Content Filter
	2.9. Correlation Identifier
	2.10. Dead Letter Channel
	2.10.1. Redelivery
	2.10.2. About moving Exchange to dead letter queue and using handled
	2.10.3. About moving Exchange to dead letter queue and using the original message
	2.10.4. OnRedelivery
	2.10.5. Redelivery default values
	2.10.6. Redeliver Delay Pattern
	2.10.7. Redelivery header
	2.10.8. Determining location of endpoint failures
	2.10.9. Samples

	2.11. Delayer
	2.11.1. Asynchronous delaying
	2.11.1.1. From Java DSL
	2.11.1.2. From Spring XML

	2.11.2. Creating a custom delay

	2.12. Detour
	2.13. Durable Subscriber
	2.14. Dynamic Router
	2.14.1. Java DSL
	2.14.2. Spring XML
	2.14.3. @DynamicRouter annotation

	2.15. Event Driven Consumer
	2.16. Event Message
	2.17. Guaranteed Delivery
	2.18. Idempotent Consumer
	2.18.1. Options
	2.18.2. Using the Fluent Builders
	2.18.3. Spring XML example

	2.19. Load Balancer
	2.19.1. Built-in load balancing policies
	2.19.2. Round Robin
	2.19.3. Failover
	2.19.3.1. Using failover in Spring DSL
	2.19.3.2. Using failover in round robin mode

	2.19.4. Weighted Round-Robin and Random Load Balancing

	2.20. Log
	2.20.1. Using log DSL from Spring
	2.20.2. Using slf4j Marker

	2.21. Loop
	2.22. Message
	2.23. Message Bus
	2.24. Message Channel
	2.25. Message Dispatcher
	2.26. Message Endpoint
	2.27. Message Filter
	2.27.1. Using stop
	2.27.2. Knowing if Exchange was filtered or not

	2.28. Message Router
	2.29. Message Translator
	2.30. Messaging Gateway
	2.31. Messaging Mapper
	2.32. Multicast
	2.32.1. Example
	2.32.2. Stop processing in case of exception
	2.32.3. Using onPrepare to execute custom logic when preparing messages

	2.33. Normalizer
	2.34. Pipes and Filters
	2.35. Point to Point Channel
	2.36. Polling Consumer
	2.36.1. ConsumerTemplate
	2.36.2. Scheduled Poll Components
	2.36.3. About error handling and scheduled polling consumers
	2.36.3.1. Controlling the error handling using PollingConsumerPollStrategy
	2.36.3.2. Configuring an Endpoint to use PollingConsumerPollStrategy

	2.37. Publish Subscribe Channel
	2.38. Recipient List
	2.38.1. Options
	2.38.2. Static Recipient List
	2.38.3. Dynamic Recipient List
	2.38.3.1. Iteratable value
	2.38.3.2. Using delimiter in Spring XML

	2.39. Request Reply
	2.40. Resequencer
	2.40.1. Batch Resequencing
	2.40.2. Stream Resequencing
	2.40.3. Further Examples

	2.41. Return Address
	2.42. Routing Slip
	2.42.1. Example
	2.42.2. Configuration options
	2.42.3. Ignore invalid endpoints
	2.42.4. Expression supporting

	2.43. Sampling
	2.44. Scatter-Gather
	2.44.1. Dynamic Scatter-Gather Example
	2.44.2. Static Scatter-Gather Example

	2.45. Selective Consumer
	2.46. Service Activator
	2.47. Sort
	2.47.1. Java DSL Example
	2.47.2. Spring DSL Example

	2.48. Splitter
	2.48.1. Example
	2.48.2. Exchange properties
	2.48.3. Parallel execution of distinct 'parts'
	2.48.4. Stream based
	2.48.5. Streaming big XML payloads using Tokenizer language
	2.48.6. Specifying a custom aggregation strategy
	2.48.7. Specifying a custom ThreadPoolExecutor
	2.48.8. Using a Pojo to do the splitting
	2.48.9. Stop processing in case of exceptions
	2.48.10. Sharing Unit of Work

	2.49. Throttler
	2.50. Transactional Client
	2.50.1. Transaction Policies
	2.50.2. OSGi Blueprint
	2.50.3. Database Sample
	2.50.4. JMS Sample

	2.51. Validate
	2.51.1. Using from Java DSL
	2.51.2. Using from Spring DSL

	2.52. Wire Tap
	2.52.1. WireTap node
	2.52.2. Sending a copy (traditional wire tap)

	Chapter 3. Components
	3.1. ActiveMQ
	3.1.1. URI format and Options
	3.1.2. Configuring the Connection Factory
	3.1.3. Configuring the Connection Factory using Spring XML
	3.1.4. Using connection pooling
	3.1.5. Invoking MessageListener POJOs in a Camel route
	3.1.6. Consuming Advisory Messages
	3.1.7. Getting Component JARs
	3.1.7.1. camel-jms
	3.1.7.2. ActiveMQ 5.2 or later
	3.1.7.3. ActiveMQ 5.1.0

	3.2. Atom
	3.2.1. URI format and options
	3.2.2. Exchange data format
	3.2.3. Message Headers

	3.3. Bean
	3.3.1. URI format and options
	3.3.2. Using
	3.3.3. Bean as endpoint
	3.3.4. Bean Binding

	3.4. Cache
	3.4.1. URI format and Options
	3.4.2. Sending/Receiving Messages to/from the cache
	3.4.2.1. Message Headers
	3.4.2.2. Cache Producer
	3.4.2.3. Cache Consumer
	3.4.2.4. Cache Processors

	3.4.3. Cache Usage Samples
	3.4.3.1. Example: Configuring the cache
	3.4.3.2. Example: Adding keys to the cache
	3.4.3.3. Example: Updating existing keys in a cache
	3.4.3.4. Example: Deleting existing keys in a cache
	3.4.3.5. Example: Deleting all existing keys in a cache
	3.4.3.6. Example: Notifying any changes registering in a Cache to Processors and other Producers
	3.4.3.7. Example: Using Processors to selectively replace payload with cache values
	3.4.3.8. Example: Getting an entry from the Cache
	3.4.3.9. Example: Checking for an entry in the Cache

	3.4.4. Management of EHCache

	3.5. Class
	3.5.1. Class Component
	3.5.1.1. URI format
	3.5.1.2. Options
	3.5.1.3. Using

	3.5.2. Setting properties on the created instance

	3.6. Context
	3.6.1. URI format
	3.6.2. Example
	3.6.2.1. Defining the context component
	3.6.2.2. Using the context component
	3.6.2.3. Naming endpoints

	3.7. Crypto (Digital Signatures)
	3.7.1. Introduction
	3.7.2. URI Format
	3.7.3. Options

	3.8. CXF
	3.8.1. URI format
	3.8.2. Options
	3.8.2.1. The descriptions of the dataformats
	3.8.2.2. How to enable CXF's LoggingOutInterceptor in MESSAGE mode
	3.8.2.3. Description of relayHeaders option

	3.8.3. Configure the CXF endpoints with Spring
	3.8.4. How to make the camel-cxf component use log4j instead of java.util.logging
	3.8.5. How to consume a message from a camel-cxf endpoint in POJO data format
	3.8.6. How to prepare the message for the camel-cxf endpoint in POJO data format
	3.8.7. How to deal with the message for a camel-cxf endpoint in PAYLOAD data format
	3.8.8. How to get and set SOAP headers in POJO mode
	3.8.9. How to get and set SOAP headers in PAYLOAD mode
	3.8.10. SOAP headers are not available in MESSAGE mode
	3.8.11. How to throw a SOAP Fault from Camel
	3.8.12. How to propagate a camel-cxf endpoint's request and response context
	3.8.13. Attachment Support

	3.9. CXF Bean Component
	3.9.1. URI format
	3.9.2. Options
	3.9.3. Headers
	3.9.4. A Working Sample

	3.10. CXFRS
	3.10.1. URI format
	3.10.2. Options

	3.11. Direct
	3.11.1. URI format
	3.11.2. Samples

	3.12. Event
	3.12.1. URI format

	3.13. Exec
	3.13.1. URI options
	3.13.2. Message headers
	3.13.3. Message body

	3.14. File
	3.14.1. URI format
	3.14.2. URI Options
	3.14.2.1. Common
	3.14.2.2. Consumer
	3.14.2.3. Default behavior for file consumer
	3.14.2.4. Producer
	3.14.2.5. Default behavior for file producer

	3.14.3. Move and Delete operations
	3.14.3.1. Fine grained control over Move and PreMove option
	3.14.3.2. About moveFailed

	3.14.4. Message Headers
	3.14.4.1. File producer only
	3.14.4.2. File consumer only

	3.14.5. Batch Consumer
	3.14.5.1. Exchange Properties, file consumer only

	3.14.6. Common gotchas with folder and filenames
	3.14.7. Filename Expression
	3.14.8. Consuming files from folders where others drop files directly
	3.14.9. Using done files
	3.14.10. Writing done files
	3.14.11. Samples
	3.14.11.1. Read from a directory and write to another directory
	3.14.11.2. Reading recursively from a directory and writing to another
	Using flatten

	3.14.11.3. Reading from a directory and the default move operation
	3.14.11.4. Read from a directory and process the message in java
	3.14.11.5. Writing to files
	3.14.11.6. Write to subdirectory using Exchange.FILE_NAME
	3.14.11.7. Using expression for filenames

	3.14.12. Avoiding reading the same file more than once (idempotent consumer)
	3.14.13. Filter using org.apache.camel.component.file.GenericFileFilter
	3.14.13.1. Filtering using ANT path matcher

	3.14.14. Sorting using Comparator
	3.14.15. Sorting using sortBy
	3.14.16. Using GenericFileProcessStrategy

	3.15. Flatpack
	3.15.1. Flatpack Component
	3.15.1.1. URI format
	3.15.1.2. URI Options
	3.15.1.3. Examples
	3.15.1.4. Message Headers
	3.15.1.5. Message Body
	3.15.1.6. Header and Trailer records
	3.15.1.7. Using the endpoint

	3.15.2. Flatpack DataFormat
	3.15.2.1. Options
	3.15.2.2. Usage
	3.15.2.3. Dependencies

	3.16. Freemarker
	3.16.1. URI format
	3.16.2. Options
	3.16.3. Headers
	3.16.4. Freemarker Context
	3.16.5. Hot reloading
	3.16.6. Dynamic templates
	3.16.7. Samples

	3.17. FTP
	3.17.1. URI format and Options
	3.17.2. More URI options
	3.17.3. Stepwise changing directories
	3.17.3.1. Using stepwise=true (default mode)
	3.17.3.2. Using stepwise=false

	3.17.4. Examples
	3.17.5. Default when consuming files
	3.17.5.1. limitations

	3.17.6. Message Headers
	3.17.7. About timeouts
	3.17.8. Using Local Work Directory
	3.17.9. Samples
	3.17.9.1. Consuming a remote FTPS server (implicit SSL) and client authentication
	3.17.9.2. Consuming a remote FTPS server (explicit TLS) and a custom trust store configuration

	3.17.10. Filter using org.apache.camel.component.file.GenericFileFilter
	3.17.11. Filtering using ANT path matcher
	3.17.12. Debug logging

	3.18. Hl7
	3.18.1. HL7 MLLP protocol
	3.18.1.1. Exposing a HL7 listener

	3.18.2. HL7 Model using java.lang.String
	3.18.3. HL7 Model using HAPI
	3.18.4. Message Headers
	3.18.5. Options
	3.18.6. Dependencies

	3.19. HTTP4
	3.19.1. URI format
	3.19.2. HttpEndpoint Options
	3.19.2.1. Setting Basic Authentication and Proxy

	3.19.3. HttpComponent Options
	3.19.4. Message Headers
	3.19.5. Message Body
	3.19.6. Response code
	3.19.7. HttpOperationFailedException
	3.19.8. Calling using GET or POST
	3.19.9. How to get access to HttpServletRequest and HttpServletResponse
	3.19.10. Configuring URI to call
	3.19.11. Configuring URI Parameters
	3.19.12. How to set the http method (GET/POST/PUT/DELETE/HEAD/OPTIONS/TRACE) to the HTTP producer
	3.19.13. Configuring a Proxy
	3.19.13.1. Using proxy settings outside of URI

	3.19.14. Configuring charset
	3.19.14.1. Sample with scheduled poll
	3.19.14.2. URI Parameters from the endpoint URI
	3.19.14.3. URI Parameters from the Message
	3.19.14.4. Getting the Response Code

	3.19.15. Disabling Cookies
	3.19.16. Advanced Usage
	3.19.16.1. Setting up SSL for HTTP Client

	3.20. Jasypt
	3.20.1. Tooling
	3.20.1.1. Tooling dependencies for Camel 2.6
	3.20.1.2. Tooling dependencies for Camel 2.7 onwards

	3.20.2. URI Options
	3.20.3. Protecting the master password
	3.20.4. Example with Java DSL
	3.20.5. Example with Spring XML

	3.21. JCR
	3.21.1. URI format
	3.21.2. Usage
	3.21.3. Message properties
	3.21.4. Example

	3.22. JDBC
	3.22.1. URI format
	3.22.2. Options
	3.22.3. Result
	3.22.3.1. Message Headers

	3.22.4. Samples

	3.23. Jetty
	3.23.1. URI format
	3.23.2. Options
	3.23.3. Message Headers
	3.23.4. Usage
	3.23.5. Component Options
	3.23.6. Sample
	3.23.7. Session Support
	3.23.8. SSL Support (HTTPS)
	3.23.8.1. Configuring general SSL properties
	3.23.8.2. Configuring general HTTP properties
	3.23.8.3. Default behavior for returning HTTP status codes
	3.23.8.4. Jetty JMX support

	3.24. JMS
	3.24.1. URI format
	3.24.2. Notes
	3.24.3. Options
	3.24.3.1. Most commonly used options

	3.24.4. Message format when sending
	3.24.5. Message format when receiving
	3.24.6.
	3.24.6.1. JmsProducer
	3.24.6.2. JmsConsumer

	3.24.7. Configuring different JMS providers
	3.24.8. Samples
	3.24.8.1. Receiving from JMS
	3.24.8.2. Sending to a JMS
	3.24.8.3. Using Annotations
	3.24.8.4. Spring DSL sample
	3.24.8.5. Other samples

	3.25. JMX
	3.25.1. URI Format
	3.25.2. URI Options
	3.25.3. ObjectName Construction
	3.25.4. Domain with Name property
	3.25.5. Domain with Hashtable
	3.25.6. Example

	3.26. JPA
	3.26.1. Sending to the endpoint
	3.26.2. Consuming from the endpoint
	3.26.3. URI format
	3.26.4. Options
	3.26.5. Message Headers
	3.26.6. Configuring EntityManagerFactory
	3.26.7. Configuring TransactionManager
	3.26.8. Using a consumer with a named query
	3.26.9. Using a consumer with a query
	3.26.10. Using a consumer with a native query
	3.26.11. Example

	3.27. Jsch
	3.27.1. URI format and options
	3.27.2. Limitations

	3.28. Log
	3.28.1. URI format and Options
	3.28.2. Formatting
	3.28.3. Regular logger sample
	3.28.4. Regular logger with formatter sample
	3.28.5. Throughput logger with groupSize sample
	3.28.6. Throughput logger with groupInterval sample

	3.29. Lucene
	3.29.1. URI format
	3.29.2. Insert Options
	3.29.3. Query Options
	3.29.4. Sending/Receiving Messages to/from the cache
	3.29.4.1. Message Headers
	3.29.4.2. Lucene Producers
	3.29.4.3. Lucene Processor

	3.29.5. Lucene Usage Samples
	3.29.5.1. Example: Creating a Lucene index
	3.29.5.2. Example: Loading properties into the JNDI registry in the Camel Context
	3.29.5.3. Example: Performing searches using a Query Producer
	3.29.5.4. Example: Performing searches using a Query Processor

	3.30. Mail
	3.30.1. URI format
	3.30.1.1. Sample endpoints
	3.30.1.2. Default ports

	3.30.2. Options
	3.30.3. SSL support
	3.30.4. Mail Message Content
	3.30.5. Headers take precedence over pre-configured recipients
	3.30.6. Multiple recipients for easier configuration
	3.30.7. Setting sender name and email
	3.30.8. SUN JavaMail
	3.30.9. Samples

	3.31. Mock
	3.31.1. URI format
	3.31.2. Options
	3.31.3. Simple Example
	3.31.3.1. Using assertPeriod

	3.31.4. Setting expectations
	3.31.4.1. Adding expectations to specific messages

	3.31.5. Mocking existing endpoints
	3.31.6. Limiting the number of messages to keep
	3.31.7. Testing with arrival times

	3.32. MyBatis
	3.32.1. URI format
	3.32.2. Options
	3.32.3. Message Headers
	3.32.4. Message Body
	3.32.5. Samples
	3.32.6. Using StatementType for better control of MyBatis
	3.32.6.1. Using onConsume

	3.33. Properties
	3.33.1. Properties Component
	3.33.1.1. URI format
	3.33.1.2. Options

	3.33.2. Using PropertyPlaceholder
	3.33.2.1. Syntax
	3.33.2.2. PropertyResolver
	3.33.2.3. Defining location
	Using system and environment variables in locations

	3.33.2.4. Configuring in Java DSL
	3.33.2.5. Configuring in Spring XML
	3.33.2.6. Using a Properties from the Registry
	3.33.2.7. Examples using properties component
	3.33.2.8. Examples
	3.33.2.9. Example with Simple language
	3.33.2.10. Additional property placeholder supported in Spring XML
	3.33.2.11. Overriding a property setting using a JVM System Property
	3.33.2.12. Using property placeholders for any kind of attribute in the XML DSL
	3.33.2.13. Using property placeholder in the Java DSL
	3.33.2.14. Using Blueprint property placeholder with Camel routes

	3.34. Quartz
	3.34.1. URI format
	3.34.2. Options
	3.34.3. Configuring quartz.properties file
	3.34.4. Starting the Quartz scheduler
	3.34.5. Clustering
	3.34.6. Message Headers
	3.34.7. Using Cron Triggers
	3.34.8.

	3.35. Ref
	3.35.1. URI format
	3.35.2. Runtime lookup
	3.35.3. Sample

	3.36. RMI
	3.36.1. URI format
	3.36.2. Options
	3.36.3. Using

	3.37. RSS
	3.37.1. URI format
	3.37.2. Options
	3.37.3. Exchange data types
	3.37.4. Message Headers

	3.38. SEDA
	3.38.1. URI format and options
	3.38.2. Use of Request Reply
	3.38.3. Concurrent consumers
	3.38.4. Thread pools

	3.39. Servlet
	3.39.1. URI format and options
	3.39.2. Message Headers
	3.39.3. Usage
	3.39.4. Sample

	3.40. Shiro Security
	3.40.1. Shiro Security Basics
	3.40.2. Instantiating a ShiroSecurityPolicy Object
	3.40.3. ShiroSecurityPolicy Options
	3.40.4. Applying Shiro Authentication on a Camel Route
	3.40.5. Applying Shiro Authorization on a Camel Route
	3.40.6. Creating a ShiroSecurityToken and injecting it into a Message Exchange
	3.40.7. Sending Messages to routes secured by a ShiroSecurityPolicy

	3.41. SMPP
	3.41.1. URI Format
	3.41.2. URI Options
	3.41.3. Producer Message Headers
	3.41.4. Consumer Message Headers
	3.41.5. Samples

	3.42. SNMP
	3.42.1. URI format
	3.42.2. Options
	3.42.3. The result of a poll
	3.42.4. Examples

	3.43. Spring Integration
	3.43.1. URI format
	3.43.2. Options
	3.43.3. Usage
	3.43.4. Examples
	3.43.4.1. Using the Spring integration endpoint
	3.43.4.2. The Source and Target adapter

	3.44. Spring Security
	3.44.1. Creating authorization policies
	3.44.2. Controlling access to Camel routes
	3.44.3. Authentication
	3.44.4. Handling authentication and authorization errors
	3.44.5. Dependencies

	3.45. SQL Component
	3.45.1. URI format
	3.45.2. Options
	3.45.3. Treatment of the message body
	3.45.4. Result of the query
	3.45.5. Header values
	3.45.6. Configuration in Camel
	3.45.7.
	3.45.8. Sample
	3.45.9. Using the JDBC based idempotent repository
	3.45.10. Using the JDBC based aggregation repository
	3.45.10.1. What is preserved when persisting
	3.45.10.2. Recovery
	3.45.10.3. Database
	3.45.10.4. Codec (Serialization)
	3.45.10.5. Transaction
	3.45.10.6. Service (Start/Stop)
	3.45.10.7. Aggregator configuration

	3.46. SSH
	3.46.1. URI Format
	3.46.2. Options

	3.47. Stub
	3.47.1. URI Format
	3.47.2. Samples

	3.48. Test
	3.48.1. URI format
	3.48.2. Example

	3.49. Timer
	3.49.1. URI format
	3.49.2. Options
	3.49.3. Exchange Properties
	3.49.4. Message Headers
	3.49.5. Sample

	3.50. Velocity
	3.50.1. URI format
	3.50.2. Options
	3.50.3. Message Headers
	3.50.4. Velocity Context
	3.50.5. Hot reloading
	3.50.6. Dynamic templates
	3.50.7. Samples

	3.51. VM
	3.51.1. URI format
	3.51.2. Options
	3.51.3. Samples

	3.52. XQuery Endpoint
	3.52.1. URI format

	3.53. XSLT
	3.53.1. URI format
	3.53.2. Options
	3.53.3. Using XSLT endpoints
	3.53.4. Getting Parameters into the XSLT to work with
	3.53.5. Spring XML versions
	3.53.6. Using xsl:include

	3.54. Zookeeper
	3.54.1. URI Format and Options
	3.54.2. Use cases
	3.54.2.1. Reading from a znode
	3.54.2.2. Writing to a znode

	3.54.3. ZooKeeper enabled Route policy

	Chapter 4. Talend ESB Mediation Examples

