
Talend Open Studio
for ESB

Mediation Components Reference
Guide

5.1_b



Talend Open Studio

Talend Open Studio : Mediation Components Reference Guide
Adapted for Talend Open Studio for ESB v5.1.x. Supersedes previous Reference Guide releases.

Copyleft

This documentation is provided under the terms of the Creative Commons Public License (CCPL).

For more information about what you can and cannot do with this documentation in accordance with the CCPL, please read: http://
creativecommons.org/licenses/by-nc-sa/2.0/

Notices

Talend, Talend Integration Factory, Talend Service Factory, and Talend ESB are trademarks of Talend, Inc.

Apache CXF, CXF, Apache Karaf, Karaf, Apache Camel, Camel, Apache Maven, Maven, Apache Archiva and Archiva are trademarks of
The Apache Foundation.

SoapUI is a trademark of SmartBear Software.

All other brands, product names, company names, trademarks and service marks are the properties of their respective owners.

http://creativecommons.org/licenses/by-nc-sa/2.0/
http://creativecommons.org/licenses/by-nc-sa/2.0/


Talend Open Studio for ESB Mediation Components Reference Guide

Table of Contents
Preface .................................................  v

General information . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v
Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v
Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v
Typographical conventions . . . . . . . . . . . . . . . .  v

History of changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v
Feedback and Support . . . . . . . . . . . . . . . . . . . . . . . . . .  vi

Context components ............................... 1
cConfig . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

cConfig properties . . . . . . . . . . . . . . . . . . . . . . . . .  2
Scenario: Implementing a dataset
from the Registry . . . . . . . . . . . . . . . . . . . . . . . . .  2

cJMSConnectionFactory . . . . . . . . . . . . . . . . . . . . . . . .  6
cJMSConnectionFactory properties . . . . . . .  6
Related scenario: . . . . . . . . . . . . . . . . . . . . . . . . . .  7

Exception components ............................  9
cErrorHandler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

cErrorHandler properties . . . . . . . . . . . . . . . . .  10
Scenario: Logging the exception
thrown during a client/server talk . . . . . . . .  11

cIntercept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14
cIntercept properties . . . . . . . . . . . . . . . . . . . . .  14
Scenario: Intercepting several routes
and redirect them in a single new
route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

cOnException . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19
cOnException properties . . . . . . . . . . . . . . . . .  19
Scenario: Using cOnException to
ignore exceptions and continue
message routing . . . . . . . . . . . . . . . . . . . . . . . . . .  19

cTry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
cTry properties . . . . . . . . . . . . . . . . . . . . . . . . . . .  24
Scenario: Using cTry to build Try/
Catch/Finally blocks for exception
handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

Messaging components .........................  29
cBean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

cBean properties . . . . . . . . . . . . . . . . . . . . . . . . .  30
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . . .  30

cCXF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
cCXF properties . . . . . . . . . . . . . . . . . . . . . . . . .  31
Scenario 1: Providing a Web service
using cCXF from a WSDL file . . . . . . . . . .  32
Scenario 2: Providing a Web service
using cCXF from a Java class . . . . . . . . . . .  34

cFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
cFile properties . . . . . . . . . . . . . . . . . . . . . . . . . .  38
Scenario: Reading files from one
directory and writing them to another
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38

cFtp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
cFtp properties . . . . . . . . . . . . . . . . . . . . . . . . . . .  41
Related scenario: . . . . . . . . . . . . . . . . . . . . . . . . .  41

cHttp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42
cHttp properties . . . . . . . . . . . . . . . . . . . . . . . . . .  42
Scenario: Retrieving the content of a
remote file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43

cJMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  47
cJMS properties . . . . . . . . . . . . . . . . . . . . . . . . . .  47
Scenario 1: Sending and receiving a
message from a JMS queue . . . . . . . . . . . . . .  47
Scenario 2: Setting up a JMS local
transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51
Scenario 3: Sending and receiving a
scheduled delivery of messages from
a JMS Queue using Camel Quartz . . . . . . .  58

cMail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64
cMail Properties . . . . . . . . . . . . . . . . . . . . . . . . .  64

Scenario: Using cMail to send and
receive mails . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64

cMessagingEndpoint . . . . . . . . . . . . . . . . . . . . . . . . . . .  68
cMessagingEndpoint properties . . . . . . . . . .  68
Scenario 1: Moving files from one
message endpoint to another . . . . . . . . . . . . .  69
Scenario 2: sending files to another
message endpoint . . . . . . . . . . . . . . . . . . . . . . . .  70

cPipesAndFilters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73
cPipesAndFilters properties . . . . . . . . . . . . . .  73
Scenario: Using cPipesAndFilters to
process the task in sequence . . . . . . . . . . . . .  73

cTalendJob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77
cTalendJob properties . . . . . . . . . . . . . . . . . . . .  77
Scenario: Using camel message
headers as context parameters to call
a job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77

Miscellaneous components ....................  83
cLog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  84

cLog properties . . . . . . . . . . . . . . . . . . . . . . . . . .  84
Related scenario: . . . . . . . . . . . . . . . . . . . . . . . . .  85

cLoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  86
cLoop properties . . . . . . . . . . . . . . . . . . . . . . . . .  86
Related scenario: . . . . . . . . . . . . . . . . . . . . . . . . .  86

cStop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  87
cStop properties . . . . . . . . . . . . . . . . . . . . . . . . . .  87
Related scenario: . . . . . . . . . . . . . . . . . . . . . . . . .  87

Processor components ..........................  89
cDelayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  90

cDelayer properties . . . . . . . . . . . . . . . . . . . . . .  90
Scenario: Using cDelayer to delay
message routing . . . . . . . . . . . . . . . . . . . . . . . . . .  90

cExchangePattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94
cExchangePattern properties . . . . . . . . . . . . .  94
Scenario: Enabling the InOut
exchange pattern to get replies . . . . . . . . . . .  94

cJavaDSLProcessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  99
cJavaDSLProcessor properties . . . . . . . . . . .  99
Related scenario: . . . . . . . . . . . . . . . . . . . . . . . . .  99

cProcessor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  100
cProcessor properties . . . . . . . . . . . . . . . . . . .  100
Related scenario: . . . . . . . . . . . . . . . . . . . . . . .  100

cThrottler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101
cThrottler properties . . . . . . . . . . . . . . . . . . . .  101
Scenario: Throttling the message
flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101
Viewing the code and executing the
Route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  103

Routing components ...........................  105
cAggregate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106

cAggregate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  106
Scenario: Aggregating three
messages into one . . . . . . . . . . . . . . . . . . . . . .  108

cDynamicRouter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  113
cDynamicRouter properties . . . . . . . . . . . . .  113
Scenario: Routing files conditionally
to different file paths . . . . . . . . . . . . . . . . . . .  113

cIdempotentConsumer . . . . . . . . . . . . . . . . . . . . . . . .  118
cIdempotentConsumer properties . . . . . . .  118
Scenario: Deduplicating messages
while routing them . . . . . . . . . . . . . . . . . . . . .  119

cLoadBalancer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  123
cLoadBalancer properties . . . . . . . . . . . . . . .  123
Scenario: Distributing messages to
receiver endpoints based on round
robin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124

cMessageFilter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  128
cMessageFilter properties . . . . . . . . . . . . . .  128
Scenario: Filtering messages
according to a criterion . . . . . . . . . . . . . . . . .  128

cMessageRouter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  132



Talend Open Studio

iv Talend Open Studio for ESB Mediation Components Reference Guide

cMessageRouter properties . . . . . . . . . . . . .  132
Scenario: Routing messages
according to a criterion . . . . . . . . . . . . . . . . .  132

cMulticast . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137
cMulticast properties . . . . . . . . . . . . . . . . . . .  137
Scenario: Multicasting a message to
two endpoints and using it to enrich
the contents received by the third
endpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  137

cRecipientList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143
cRecipientList properties . . . . . . . . . . . . . . .  143
Scenario: Routing a message to
multiple recipients . . . . . . . . . . . . . . . . . . . . . .  143

cSplitter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147
cSplitter properties . . . . . . . . . . . . . . . . . . . . . .  147
Related scenario: . . . . . . . . . . . . . . . . . . . . . . .  147

cRoutingSlip . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  148
cRoutingSlip properties . . . . . . . . . . . . . . . . .  148
Scenario 1: Routing a message
consecutively to a series of endpoints
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  148
Scenario 2: Routing each message
conditionally to a series of endpoints . . .  152

cWireTap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155
cWireTap properties . . . . . . . . . . . . . . . . . . . .  155
Scenario: Wiretapping a message in
a Route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  155

Transformation components ................  161
cContentEnricher . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162

cContentEnricher properties . . . . . . . . . . . .  162
Scenario: Receiving messages from a
list of URLs . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  168

cConvertBodyTo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  169
cConvertBodyTo properties . . . . . . . . . . . .  169
Scenario: Converting the body
of an XML file into an
org.w3c.dom.Document.class . . . . . . . . . . .  169

cSetBody . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  173
cSetBody properties . . . . . . . . . . . . . . . . . . . .  173
Scenario: Replacing the content of
messages with their extracts . . . . . . . . . . . .  173

cSetHeader . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  177
cSetHeader properties . . . . . . . . . . . . . . . . . .  177
Scenario: Splitting a message
and renaming the sub-messages
according to contained information . . . . .  177
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  181



Talend Open Studio for ESB Mediation Components Reference Guide

Preface

General information

Purpose

This Reference Guide explains in detail the major Camel components of the Mediation perspective
of Talend Open Studio for ESB.

Information presented in this document applies to Talend Open Studio for ESB releases beginning
with 5.1.x.

Audience

This guide is for users and administrators of Talend Open Studio for ESB.

The layout of GUI screens provided in this document may vary slightly from your actual GUI.

Typographical conventions

This guide uses the following typographical conventions:

• text in bold: window and dialog box buttons and fields, keyboard keys, menus, and menu options,

• text in [bold]: window, wizard, and dialog box titles,

• text in courier: system parameters typed in by the user,

• text in italics: file, schema, column, row, and variable names referred to in all use cases, and also
names of the fields in the Basic and Advanced setting views referred to in the property table for
each component,

•
The  icon indicates an item that provides additional information about an important point. It is
also used to add comments related to a table or a figure,

•
The  icon indicates a message that gives information about the execution requirements or
recommendation type. It is also used to refer to situations or information the end-user need to be
aware of or pay special attention to.

History of changes
The following table lists changes made in the Talend Open Studio for ESB Mediation Components
Reference Guide.



Feedback and Support

vi Talend Open Studio for ESB Mediation Components Reference Guide

Version Date History of Change

v5.0_b 13/02/2012 Separated the appendix for Camel components from Talend Open
Studio for ESB User Guide to form a new Talend Open Studio for
ESB Mediation Components Reference Guide.

v5.1_a 28/05/2012 Updates in Talend Open Studio for ESB Mediation Components
Reference Guide include:

• Updated the properties tables and scenarios of some components
to match the modifications in the GUI.

• Added new components in the Messaging family: cMail and
cHttp.

• Added a new component in the Context family:
cJMSConnectionFactory.

• Added a new component in the Miscellaneous family: cLog.

• Added a new component in the Exception family: cErrorHandler.

• Added a scenario for the cJMS component to explain how to set
up a local JMS transaction.

v5.1_b 05/07/2012 Updates in Talend Open Studio for ESB Mediation Components
Reference Guide include:

• Updated the cCXF component.

• Added scenarios to the cContentEnricher and cJMS components.

Feedback and Support
Your feedback is valuable. Do not hesitate to give your input, make suggestions or requests regarding
this documentation or product and find support from the Talend team, on Talend’s Forum website at:

http://talendforge.org/forum

http://talendforge.org/forum


Talend Open Studio for ESB Mediation Components Reference Guide

Context components
This chapter details the major components that you can find in the Context family from the Palette of the
Mediation perspective of Talend Open Studio for ESB.

The Context family groups components that define contexts you want to use in your Routes.



cConfig

2 Talend Open Studio for ESB Mediation Components Reference Guide

cConfig

cConfig properties

Component Family Context

Function cConfig allows you to set the CamelContext.

Purpose cConfig manipulates the Camel context as needed by the Routes.

Basic settings Code Write a piece of code to manipulate the CamelContext.

Dependencies Select the library or libraries that is required by the
CamelContext or Typeconverter Registry from the list.

Usage cConfig cannot be added directly in a Route.

Limitation  n/a

Scenario: Implementing a dataset from the Registry

In this scenario, an instance of dataset is added in the Registry and implemented by a cMessagingEndpoint
component.

Dropping and linking the components

1. From the Palette, expand the Context folder, and drop a cConfig component onto the design workspace.

2. Expand the Messaging folder, and drop a cMessagingEndpoint component onto the design workspace.

3. Expand the Processor folder, and drop a cProcessor component onto the design workspace.

4. Right-click the input cMessagingEndpoint component, select Row > Route from the contextual menu and
click the cProcessor component.

5. Label the components to better identify their functionality.



Scenario: Implementing a dataset from the Registry

Talend Open Studio for ESB Mediation Components Reference Guide 3

Configuring the components

1. Double-click the cConfig component, which is labelled Create_dataset, to display its Basic settings view
in the Component tab. and set its parameters.

2. Write a piece of code in the Code field to register the dataset instance foo into the registry, as shown below.

org.apache.camel.impl.SimpleRegistry registry = new
org.apache.camel.impl.SimpleRegistry();
                registry.put("foo", new 
org.apache.camel.component.dataset.SimpleDataSet());
camelContext.setRegistry(registry);

3. Double-click the input cMessagingEndpoint component, which is labelled Read_dataset, to display its Basic
settings view in the Component tab.

4. In the URI field, enter dataset:foo between the quotation marks.

5. Double-click the cProcessor component, which is labelled Monitor, to display its Basic settings view in the
Component tab.

6. In the Code box, customize the code as follows so that the Run console displays the message contents:



Scenario: Implementing a dataset from the Registry

4 Talend Open Studio for ESB Mediation Components Reference Guide

System.out.println("Message content: "+ 
exchange.getIn().toString());

7. Press Ctrl+S to save your route.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to have a look at the generated code.

As shown in the code, a message route is built from the endpoint identified byRead_dataset and
cProcessor_1 gets the message content and displays it on the console.

2. Click the Run view to display it and click the Run button to launch the execution of your route. You can
also press F6 to execute it.

RESULT: The message content is printed in the console.



Scenario: Implementing a dataset from the Registry

Talend Open Studio for ESB Mediation Components Reference Guide 5



cJMSConnectionFactory

6 Talend Open Studio for ESB Mediation Components Reference Guide

cJMSConnectionFactory

cJMSConnectionFactory properties

Component Family Context

Function cJMSConnectionFactory specifies the connection factory that can be used by multiple
cJMS components in a Route.

Purpose cJMSConnectionFactory is used to specify the JMS connection factory for message
handling.

MQ Server Select an MQ server from ActiveMQ, Customized, or
WebSphere MQ.

Use Transaction Select this check box to enable local transaction in the
current Route.

Broker URI

(for ActiveMQ only)

Type in the URI of the message broker. For intra-Route
message handling, you can simply use the default URI
vm://localhost?broker.persistent=false.

Use
PooledConnectionFactory

(for ActiveMQ only)

Select this check box to use PooledConnectionFactory.

Max Connections

(for ActiveMQ only)

Specify the maximum number of connections of the
PooledConnectionFactory. This field is available only
when the Use PooledConnectionFactory check box is
selected.

Max Active

(for ActiveMQ only)

Specify the maximum number of sessions per
connection. This field is available only when the Use
PooledConnectionFactory check box is selected.

Idle Timeout

(for ActiveMQ only)

Specify the maximum waiting time before the connection
breaks. This field is available only when the Use
PooledConnectionFactory check box is selected.

Expiry Timeout

(for ActiveMQ only)

Specify the time before the connection breaks since it is
used for the first time. This field is available only when the
Use PooledConnectionFactory check box is selected.

Codes

(for Customized only)

Write a piece of code to specify the JMS connection
factory to be used for message handling.

Dependencies

(for Customized only)

Specify the library or libraries required by the JMS
connection factory.

Host Name

(for WebSphere MQ only)

Type in the name or IP address of the host on which the
IBM WebSphere MQ server is running.

Port

(for WebSphere MQ only)

Type in the port of the IBM WebSphere MQ server, 1414
by default.



Related scenario:

Talend Open Studio for ESB Mediation Components Reference Guide 7

Transport Type

(for WebSphere MQ only)

Select a type of message transport between the IBM
WebSphere MQ server and the WebSphere MQ broker
from Bindings, Bindings then Client, and Client.

Queue Manager

(for WebSphere MQ only)

Type in the name of the queue manager, or specify the
name of the IBM WebSphere MQ server to find a queue
manager.

Authentication

(for WebSphere MQ only)

On some operating systems, select this check box
and provide the username and password for the IBM
WebSphere MQ server to validate the access permission.
This option is not required on Windows.

Dependencies

(for WebSphere MQ)

Specify additional libraries required by the IBM
WebSphere MQ broker, which are normally provided with
the server installer.

Usage cJMSConnectionFactory cannot be added directly in a Route.

Limitation  n/a

Related scenario:

For a related scenario, see the section called “Scenario 1: Sending and receiving a message from a JMS queue”.



Talend Open Studio for ESB Mediation Components Reference Guide



Talend Open Studio for ESB Mediation Components Reference Guide

Exception components
This chapter details the major components that you can find in the Exception family from the Palette of the
Mediation perspective of Talend Open Studio for ESB.

The Exception family groups components that are dedicated to exception handling of Routes.



cErrorHandler

10 Talend Open Studio for ESB Mediation Components Reference Guide

cErrorHandler

cErrorHandler properties

Component Family Exception

Function cErrorHandler provides multiple strategies to deal with errors processing an
Event Driven Consumer.

Purpose cErrorHandler offers different strategies for error handling during the
processing.

Basic settings Default Handler This error handler does not support a dead letter queue
and will return exceptions back to the caller.

Set Maximum Redeliveries: select this check box
to set the number of redeliveries in the Maximum
Redeliveries (int) field.

Set Redelivery Delay: select this check box to set
the initial redelivery delay (in milliseconds) in the
Redelivery Delay (long) field.

Set Retry Attempted Log Level: select this check box
to select the log level in the Level list for log messages
when retries are attempted.

Asynchronized Delayed Redelivery: select this check
box to allow asynchronous delayed redelivery.

Use Original Message: select this check box to use the
original message for redelivery.

More Configurations by Code: select this check box
to enter codes in the Code box for further configuration.

Dead Letter This handler supports attempting to redeliver the
message exchange a number of times before sending it
to a dead letter endpoint.

Dead Letter Uri: select this check box to define the
endpoint of the dead letter queue.

Other parameters share the same meaning as those of
the default handler.

Logging Handler This handler logs the exceptions.

Set Logger Name: select this check box to give a name
to the logger in the Name field.

Set Log Level: select this check box to decide the log
level from the Level list.

Usage cErrorHandler provides multiple strategies to deal with errors processing an
Event Driven Consumer.

Limitation



Scenario: Logging the exception thrown during a client/server talk

Talend Open Studio for ESB Mediation Components Reference Guide 11

Scenario: Logging the exception thrown during a
client/server talk

In this scenario, a Jetty server is started before a client browser requests access to it. Then an exception is thrown
at the server side and logged by cErrorHandler.

Dropping and linking the components

1. Drop the following components from the Palette onto the workspace: cMessagingEndpoint,
cErrorHandler and cProcessor, labelled as Jetty_Server, Error_Handler and Throw_Exception
respectively.

2. Link cMessagingEndpoint and cProcessor using a Row > Route connection.

Configuring the components

1. Double-click cErrorHandler to open its Basic settings view in the Component tab.

2. Select Logging Handler to log the exceptions that are thrown.

3. Double-click cMessagingEndpoint to open its Basic settings view in the Component tab.

4. In the Uri field, enter jetty:http://localhost:8889/service to specify the Jetty server.



Scenario: Logging the exception thrown during a client/server talk

12 Talend Open Studio for ESB Mediation Components Reference Guide

5. Click Advanced settings for further setup.

6. In the Dependencies table, click the [+] button to add a line and select jetty from the Camel component
list.

7. Double-click cProcessor to open its Basic settings view in the Component tab.

8. In the Code box, enter throw new Exception("server side error") to throw an exception.

9. Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to check the generated code.



Scenario: Logging the exception thrown during a client/server talk

Talend Open Studio for ESB Mediation Components Reference Guide 13

As shown above, the route starts from the endpoint Jetty_Server and throws the exception of server
side error via cProcessor_1.

2. Press F6 to execute the Route.

The Jetty server has started.

3. Launch an Internet browser and enter http://localhost:8889/service (the Jetty server URI
configured above) in the address bar to access the server.

As shown above, the request failed due to the server error.

4. Go to the Studio and check the results in the Run tab.

As shown above, cErrorHandler has logged the exception at the level of ERROR.



cIntercept

14 Talend Open Studio for ESB Mediation Components Reference Guide

cIntercept

cIntercept properties

Component Family Exception

Function cIntercept intercepts the messages in all the sub-routes on a Route before they are
produced, and routes them in a new single sub-route without modifying the original
ones. When this detour is complete, message routing to the originally intended target
endpoints continues.

Purpose cIntercept intercepts each message sub-route and redirects it in another sub-route
without modifying the original one. This can be useful at testing time to simulate error
handling.

Usage cIntercept is a start component of a sub-route.

Connections Row / Route Select the Route link to intercept all the messages of all the sub-
routes listened to by the cIntercept.

Trigger / When Select the When link to filter the messages to intercept and click the
Component view.

In the Type list, select the type of language you will use to declare
your condition.

In the Condition field, type in the condition that will be used to filter
the messages.

All the messages that do not match this condition are dropped by
default or can be retrieved with the Otherwise link to a different
channel.

Limitation To keep the original sub-routes untouched, cIntercept only be used in a separate sub-
route .

Scenario: Intercepting several routes and redirect
them in a single new route

In this scenario, messages on two sub-routes are intercepted and routed along a new sub-route, which is then
terminated before the original sub-routes continue.



Scenario: Intercepting several routes and redirect them in a single new route

Talend Open Studio for ESB Mediation Components Reference Guide 15

Dropping and linking the components

This scenario requires five cFile components, one cIntercept component, one cProcessor component, and one
cStop component.

1. From the Messaging folder of the Palette, drop four cFile components onto the design workspace.

2. Connect the two pairs of cFile components using Row > Route connections. Messages on these two sub-
routes will be intercepted.

3. From the Exception folder, drop a cIntercept component onto the design workspace.

4. From the Processor folder, drop a cProcessor component onto the design workspace.

5. From the Messaging folder, drop a fifth cFile component onto the design workspace.

6. From the Miscellaneous folder, drop a cStop component onto the design workspace.

7. Connect these four components one to the next using Row > Route connections. Along this sub-route,
intercepted messages will be directed to a new endpoint before the entire Route is terminated.

8. Label the components to better identify their roles in the Route.

Configuring the components and connections

In this scenario, the cIntercept component intercepts all the messages on all the sub-routes as soon as the messages
are sent and does not have properties to set. The cStop component stops the sub-route on which it is dropped before
it completes and does not have properties to set. Therefore, you only need to configure the messaging endpoints
and monitor components.

1. Double-click the cFile component labeled Sender_1 to display its Basic settings view in the Component tab.



Scenario: Intercepting several routes and redirect them in a single new route

16 Talend Open Studio for ESB Mediation Components Reference Guide

2. In the Path field, specify the file path to the first source your are going to send messages from, and leave
the other parameters as they are.

3. Double-click the cFile component labeled Receiver_1 to display its Basic settings view in the Component
tab.

4. In the Path field, specify the file path to the first destination you are going to send messages to, and leave
the other parameters as they are.

5. In the same way, set the cFile components labeled Sender_2 and Receiver_2 across the second sub-route.

6. Double-click the cProcessor component, which is labeled Monitor, to display its Basic settings view in
the Component tab, and customize the code in the Code area to display the file names of the messages
intercepted on the console:

System.out.println("Message intercepted: "+
exchange.getIn().getHeader("CamelFileName"));

7. Double-click the cFile component labeled Receiver_3 to display its Basic settings view in the Component
tab.



Scenario: Intercepting several routes and redirect them in a single new route

Talend Open Studio for ESB Mediation Components Reference Guide 17

8. In the Path field, specify the file path to the destination for the intercepted messages, and leave the other
parameters as they are.

9. Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to have a look at the generated code.

As shown in this piece of code, Interceptor intercepts all messages on route, the intercepted messages are
directed .to the endpoint Receiver_3, and cStop_1 terminates message routing before the messages are



Scenario: Intercepting several routes and redirect them in a single new route

18 Talend Open Studio for ESB Mediation Components Reference Guide

routed from the endpoint Sender_1 .to the endpoint Receiver_1 and from the endpoint Sender_2 .to
the endpoint Receiver_2.

2. Click the Run view and click the Run button to launch the execution of your Route. You can also press
F6 to execute it.

RESULT: Files are sent from the endpoints, caught by the cIntercept component, monitored by the
cProcessor component and sent to a new endpoint, and then the original sub-routes are terminated before
they can continue.



cOnException

Talend Open Studio for ESB Mediation Components Reference Guide 19

cOnException

cOnException properties

Component Family Exception

Function cOnException catches the defined exceptions to trigger desired actions.

Purpose cOnException is designed to catch the defined exceptions for desired error
handling.

Basic settings Exceptions Click the plus button to add as many lines as needed in
the table to define the exceptions to be caught.

Set a redelivering tries
count

Select this check box to set the maximum redelivering
tries in the Maximum redelivering tries field.

Non blocking
asynchronous behavior

Select this check box to enable the feature of not
blocking asynchronous behavior.

Exception behavior None: select this option to take no action on the original
route.

Handle the exceptions: select this option to handle
exceptions and break out the original route.

Ignore the exceptions: select this option to ignore the
exceptions and continue routing in the original route.

Route the original input
body instead of the
current body

Select this check box to route the original message
instead of the current message that might be changed
during the routing.

Usage cOnException is generally used as a standalone component in a sub-route.

Limitation  n/a

Scenario: Using cOnException to ignore exceptions
and continue message routing

In this scenario, a cOnException component is used to ignore an IO exception thrown by a Java bean so that the
message is successfully routed to the destination in spite of the exception.



Scenario: Using cOnException to ignore exceptions and continue message routing

20 Talend Open Studio for ESB Mediation Components Reference Guide

Dropping and linking the components

1. Drag and drop these components from the Palette onto the workspace: a cOnException component, a cFile
component, a cBean component, and cProcessor component.

2. Link cFile to cBean using a Row > Route connection.

3. Link cBean to cProcessor using a Row > Route connection.

4. Label the components to better identify their roles in the Route.

Configuring the components

1. Double-click the cOnException component, which is labelled Ignore_exception, to open its Basic settings
view in the Component tab.

2. Click the plus button to add a line in the Exceptions table, and define the exception to catch. In this example,
enter java.io.IOException to handle IO exceptions.

In the Exception behavior area, select the Ignore the exceptions option to ignore exceptions and let message
routing continue. Leave the other parameters as they are.

3. Double-click the cFile component, which is labelled Source, to open its Basic settings view in the
Component tab.



Scenario: Using cOnException to ignore exceptions and continue message routing

Talend Open Studio for ESB Mediation Components Reference Guide 21

4. In the Path field, enter the path of the message source, and leave the other parameters as they are.

5. Double-click the cBean component, which is labelled Throw_exception, to open its Basic settings view in
the Component tab.

6. In the Bean class field, enter the name of the bean to throw an IO exception, beans.throwIOException.class
in this scenario.

Note that this bean has already been defined in the Code node of the Repository and it looks like this:

package beans;

import java.io.IOException;

import org.apache.camel.Exchange;

public class throwIOException {

    /**

     * @throws IOException 
     */
    public static void helloExample(String message, Exchange exchange)
 throws IOException {
        throw new IOException("An IOException has been caught");
    }
}

For more information about creating and using Java Beans, see Talend Open Studio for ESB User Guide.



Scenario: Using cOnException to ignore exceptions and continue message routing

22 Talend Open Studio for ESB Mediation Components Reference Guide

7. Double-click the cProcessor component, which is labelled Monitor, to open its Basic settings view in the
Component tab.

8. In the Code area, customize the code to display the file name of the consumed message on the Run console:

System.out.println("Message consumed: "+ 
exchange.getIn().getHeader("CamelFileName")); 

9. Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to check the generated code.

As shown above, Ignore_exception handles any IO exception thrown by
.bean(beans.throwIOException.class) invoked by cBean_1, so that messages from the
endpoint Source can be successfully routed onwards (continued(true)) in spite of the exception.



Scenario: Using cOnException to ignore exceptions and continue message routing

Talend Open Studio for ESB Mediation Components Reference Guide 23

2. Press F6 to execute the Route.

The route gets executed successfully and the files from the source are successfully routed to the destination.

3. Change the exception handling option in the cOnException component or deactivate the component and run
the Route again.

The exception thrown by the Java bean prevents the messages from being routed successfully.



cTry

24 Talend Open Studio for ESB Mediation Components Reference Guide

cTry

cTry properties

Component Family Exception

Function cTry offers Java's exception handling abilities by building Try/Catch/Finally
blocks.

Purpose cTry is designed to build Try/Catch/Finally blocks to handle exceptions.

Usage cTry is used as a middle component in a Route.

Try Select this link to isolate the part of your Route that is likely to throw
an exception or exceptions.

When the Try link is followed by multiple components,
a compile error may occur showing "The method
doCatch() is undefined for the
type ExpressionNode". In this case, use a
cJavaDSLProcessor component to end the Try block with
the code .endDoTry() as a workaround.

Catch Select this link to catch any exception thrown in the Route.

In the Exceptions field, type in an expression to filter the type of
exception to catch.

This link can be used only when a Try link is present.

Finally Select link to execute final instructions regardless of any exceptions
that may occur in the Route.

This link can be used only when a Try link is present.

Connections

Route Select this link to route all the messages from the sender to the next
endpoint.

Limitation  n/a

Scenario: Using cTry to build Try/Catch/Finally blocks
for exception handling

In this scenario, the content of each file sent from the message sender to the receiver is checked and if any file does
not meet the content requirement, an exception is thrown and the relevant information is displayed on the console.



Scenario: Using cTry to build Try/Catch/Finally blocks for exception handling

Talend Open Studio for ESB Mediation Components Reference Guide 25

Dropping and linking components

1. From the Messaging folder of the Palette, drop twocFile components onto the design workspace, one as the
message sender and the other as the message receiver.

2. From the Exception folder, drop a cTry component onto the design workspace to build Try, Catch and
Finally blocks.

3. From the Processor folder, drop two cProcessor components onto the design workspace.

4. Link the cFile component serving as message sender to the cTry component using a Row > Route connection.

5. Link the cTry component to one cProcessor using a Row > Try connection. This cProcessor component
will throw an exception if any file coming via this connection does not contain the required content.

6. Link the cTry component to the other cProcessor component using a Row > Catch connection to catch the
exception. This cProcessor component will display the information related to the exception and the file name
that does not contain the required content.

7. Link the cTry component to the receiving cFile component using a Row > Finally connection.

8. Label the components according to their roles in the Route.

Configuring the components and connections

1. Double-click the cFile component labeled Sender to open its Basic settings view in the Component tab.



Scenario: Using cTry to build Try/Catch/Finally blocks for exception handling

26 Talend Open Studio for ESB Mediation Components Reference Guide

2. In the Path field, fill in or browse to the path to the folder that holds the source files.

3. From the Encoding list, select the encoding type of your source files. Leave the other parameters as they are.

4. Repeat these step to define the output file path and encoding type in the Basic settings view of the other
cFile component, which is labeled Receiver.

5. Double-click the cProcessor component labeled Throw_exception to open its Basic settings view in the
Component tab, and customize the code in the Code area to throw an exception and display relevant
information if any file coming via the try connection does not meet the content requirement, as follows:

String body = exchange.getIn().getBody(String.class);
System.out.println("\nTrying: "+body);
Exception e = new Exception("Only 'Talend Integration Solutions' is
 acceptable. Please check the file:");
if(!"Talend Integration Solutions".equals(body)){
 throw e;
}else{
    System.out.println("File is good.");
}

6. Click the catch connection and then the Component tab to open its Basic settings view, and fill the
Expression field with an expression to specify the type of exception to catch.

In this scenario, fill in Exception.class to catch any exception thrown.

7. Double-click cProcessor component labeled Show_exception to open its Basic settings view in the
Component tab, and customize the code in the Code area to display the exception information and the related
file name, as follows:

System.out.println(exchange.getProperty("CamelExceptionCaught")+
" " + exchange.getIn().getHeader("CamelFileName"));

8. Click Ctrl+S to save your Route.



Scenario: Using cTry to build Try/Catch/Finally blocks for exception handling

Talend Open Studio for ESB Mediation Components Reference Guide 27

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to check the generated code.

As shown above, while messages are routed from the sender .to the receiver, .doTry(), .doCatch()
and .doFinally() blocks are built by cTry_1. Thus, when any file does not meet the content
requirement, an exception is thrown and caught, before each file is finally routed to the receiver.

2. Press F6 to execute the Route.



Scenario: Using cTry to build Try/Catch/Finally blocks for exception handling

28 Talend Open Studio for ESB Mediation Components Reference Guide

RESULT: When a file that does not meet the content requirement is detected, an exception is thrown, and the
exception information is displayed on the console. Regardless of the exception, all the files from the sender
are sent to the receiver.



Talend Open Studio for ESB Mediation Components Reference Guide

Messaging components
This chapter details the major components that you can find in the Messaging family from the Palette of the
Mediation perspective of Talend Open Studio for ESB.

The Messaging family groups components that provide access to messaging endpoints, file systems, repository
of code, and so on.



cBean

30 Talend Open Studio for ESB Mediation Components Reference Guide

cBean

cBean properties

Component Family Transformation

Function cBean invokes a Java beans that is stored in the Code node of the Repository.

Purpose cBean allows you to invoke a beans that is stored in the Code node of the
Repository.

Basic settings Bean class Enter the name of a bean class that is stored in the Code
node of the Repository.

For more information about creating and using Java
Beans, see Talend Open Studio for ESB User Guide.

Specify the method Select this check box to enter the name of a method to
be included in the bean.

Usage cBean allows you to invoke a beans that is stored in the Code node of the
Repository.

Limitation

Related Scenario

For a related scenario, see:

• cConvertBodyTo: the section called “Scenario: Converting the body of an XML file into an
org.w3c.dom.Document.class”.



cCXF

Talend Open Studio for ESB Mediation Components Reference Guide 31

cCXF

cCXF properties

Component Family Messaging

Function cCXF provides integration with Apache CXF for connecting to JAX-WS services.

Purpose cCXF is used to provide or consume a Web service from a WSDL file or a Java
class.

Basic settings CXF Configuration/
Address

The service endpoint URL where the Web service is
provided.

In case cCXF is used to consume a Web service and the
endpoint lookup shall use the Service Locator (the Use
Service Locator check box is selected), the URL needs
to be "locator://anyAddress/".

CXF Configuration/
Type

Select which type you want to use to provide Web
service. Either wsdlURL or serviceClass.

wsdlURL: Select this type to provide the Web service
from a WSDL file.

serviceClass: Select this type to provide the Web service
from an SEI (Service Endpoint Interface) Java class.

CXF Configuration/
WSDL File

This field displays when the wsdlURL service type is
selected. Browse to or enter the path to the WSDL file
to be used to provide the Web service.

CXF Configuration/
Service Class

This field displays when the serviceClass service type is
selected. Enter the name of the service class to be used
to provide the Web service.

CXF Configuration/
Dataformat

The exchange data style. MESSAGE, PAYLOAD, or
POJO.

MESSAGE is the raw message that is received from the
transport layer.

PAYLOAD is the message payload, the contents of the
soap:body.

POJOs (Plain Old Java Objects) are the Java parameters
to the method being invoked on the target server.

Service Select this check box to specify the service port. This
option is useful especially when there are multi service
ports in the WSDL or service class.

Service Name The service name this service is implementing. It
maps to the wsdl:service@name in the format of
ns:SERVICE_NAME where ns is a namespace prefix
valid at this scope.



Scenario 1: Providing a Web service using cCXF from a WSDL file

32 Talend Open Studio for ESB Mediation Components Reference Guide

Port Name The endpoint name this service is implementing. It
maps to the wsdl:port@name, in the format of
ns:PORT_NAME where ns is a namespace prefix valid
at this scope.

ESB Features/Use
Service Locator

Provides service consumers with a mechanism to
discover service endpoints at runtime without specifying
the physical location of the endpoint. Additionally, it
allows service providers to automatically register and
unregister their service endpoints at the Service Locator.

For service consumers, the URL additionally
needs to be set to "locator://
anyAddress/" in the CXF Configuration /
Address field.

The Custom Properties table appears when the Use

Service Locator check box is selected. Click  to
add as many properties as needed to the table. Enter the
name and the value of each property in the Property
Name field and the Property Value field respectively
to identify the service. For more information, see Talend
ESB Runtime Configuration Guide for how to install and
configure the Service Locator.

ESB Features/Use
Service Activity
Monitor

Captures events and stores this information to facilitate
in-depth analysis of service activity and track-and-trace
of messages throughout a business transaction. This can
be used to analyze service response times, identify traffic
patterns, perform root cause analysis and more.

This feature is not supported when MESSAGE
is used as the processing mode. When
MESSAGE is selected in the Dataformat field,
the Use Service Activity Monitor check box is
disabled.

Advanced settings Arguments Set the optional arguments in the corresponding table.
Click [+] as many times as required to add arguments
to the table. Then click the corresponding Value field
and enter a value. See the site http://camel.apache.org/
cxf.html for available URI options.

Usage cCXF can be a start, middle or end component in a Route.

Limitation  Multiple cCXF components with the same label in a Route is not supported.

Scenario 1: Providing a Web service using cCXF from
a WSDL file
In this scenario, a Web service is produced by a cCXF component using a WSDL file.

http://camel.apache.org/cxf.html
http://camel.apache.org/cxf.html


Scenario 1: Providing a Web service using cCXF from a WSDL file

Talend Open Studio for ESB Mediation Components Reference Guide 33

Dropping and linking the components

This use case requires one cCXF component and one cProcessor component.

1. From the Palette, expand the Messaging folder, and drop a cCXF component onto the design workspace.

2. Expand the Processor folder, and drop a cProcessor component onto the design workspace.

3. Right-click the cCXF component, select Row > Route from the contextual menu and click the cProcessor
component.

4. Label the cCXF component for better identification of its functionality.

Configuring the components

In this scenario, the cProcessor component is used only to enable the cCXF component to function as a service
producer. Therefore, it does not need any configuration.

1. Double-click the cCXF component to display its Basic settings view in the Component tab.

2. In the Address field, type in the service endpoint URL for the Web service to be provided,
http://192.168.0.212:8000/service.endpoint in this example.

3. From the Type list, select wsdlURL to enable producing the Web service from a WSDL file.

4. In the Wsdl File field, browse to or type in the path to the WSDL file to be used.

5. From the Dataformat list, select PAYLOAD mode for the wsdlURL data format.

6. Press Ctrl+S to save your route.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to have a look at the generated code.



Scenario 2: Providing a Web service using cCXF from a Java class

34 Talend Open Studio for ESB Mediation Components Reference Guide

As shown in the code, the cCXF component labelled WebService_producer produces
the Web service from an input file airport_soap_route.wsdl using the endpoint URL
http://192.168.0.212:8000/service.endpoint.

2. Click the Run view to display it and click the Run button to launch the execution of your Route. You can
also press F6 to execute it.

RESULT: The service is successfully started. You can access it from a Web browser using the service
endpoint URL followed by ?wsdl.

Scenario 2: Providing a Web service using cCXF from
a Java class
In this scenario, a Web service is provided from a Java class file using a cCXF component.

Creating a Java class

1. From the repository tree view, expand the Code node and right click the Beans node. In the contextual menu,
select Create Bean.



Scenario 2: Providing a Web service using cCXF from a Java class

Talend Open Studio for ESB Mediation Components Reference Guide 35

2. The New Bean wizard opens. In the Name field, type in a name for the bean, for example, CXFdemobean.
Click Finish to close the wizard.

3. Change the class type to interface, change the return type to string and remove the message body.

package beans;

public interface CXFdemobean {
    public String helloExample(String message) ;
}

4. Press Ctrl+S to save your bean.

Dropping and linking the components

This use case requires one cCXF component and one cProcessor component.

1. From the Palette, expand the Messaging folder, select the cCXF component and drop it onto the design
workspace.

2. Expand the Processor folder, select the cProcessor component and drop it onto the design workspace.



Scenario 2: Providing a Web service using cCXF from a Java class

36 Talend Open Studio for ESB Mediation Components Reference Guide

3. Right-click the cCXF component, select Row > Route in the contextual menu and click the cProcessor
component.

4. Label the components for better identification of their functionality.

Configuring the components

In this scenario, the cProcessor component is used only to enable the cCXF component to function as a service
producer. Therefore, it does not need any configuration.

1. Double-click the cCXF component to display its Basic settings view in the Component tab.

2. In the Address field, type in the service endpoint URL for the Web service to be provided,
http://192.168.0.212:8001/service.endpoint in this example.

3. From the Type from, select serviceClass to start the Web service from a Java class.

4. In the Service Class field, specify the predefined bean class, CXFdemobean in this example.

5. From the Dataformat list, select POJO as the serviceClass service data format.

6. Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to have a look at the generated code.

As shown in the code, the cCXF component labelled WebService_producer produces
the Web service from an predefined bean beans.CXFdemobean using the endpoint URL
http://192.168.0.212:8001/service.endpoint.

2. Click the Run view to display it and click the Run button to launch the execution of your Route. You can
also press F6 to execute it.



Scenario 2: Providing a Web service using cCXF from a Java class

Talend Open Studio for ESB Mediation Components Reference Guide 37

RESULT: The service is successfully started. You can access it from a Web browser using the service
endpoint URL followed by ?wsdl.



cFile

38 Talend Open Studio for ESB Mediation Components Reference Guide

cFile

cFile properties

Component Family Messaging

Function cFile provides access to file systems.

Purpose cFile allows files to be processed by any other Camel components or messages
from other components to be saved to disk.

Basic settings Path Path to the file or files to be accessed or saved.

Parameters/Noop Select this check box to keep the file or files in the
original folder after being read.

Parameters/Flatten Select this check box to flatten the file name path to
strip any leading paths. This allows you to consume
recursively into sub-directories, but when you, for
example, write the files to another directory, they will be
written in a single directory.

Parameters/AutoCreate Select this check box to create the directory specified in
the Path field automatically if it does not exist.

Parameters/
BufferSize(kb)

Write buffer sized in bytes.

Encoding Specify the encoding of the file, ISO-8859-15, UTF-8,
or CUSTOM.

FileName The name of the file to be processed. Use this option if
you want to consume only a single file in the specified
directory.

Advanced settings Advanced Set the optional arguments in the corresponding table.
Click [+] as many times as required to add arguments
to the table. Then click the corresponding Value field
and enter a value. See the site http://camel.apache.org/
file2.html for available URI options.

Usage cFile can be a start, middle or end component in a Route.

Limitation  n/a

Scenario: Reading files from one directory and writing
them to another

In this scenario, an input cFile component is configured to visit a local file directory and send the files in the
directory to an output cFile component which writes the files in another directory.

http://camel.apache.org/file2.html
http://camel.apache.org/file2.html


Scenario: Reading files from one directory and writing them to another

Talend Open Studio for ESB Mediation Components Reference Guide 39

Dropping and linking the components

1. From the Palette, expand the Messaging folder and select the cFile component. Drop one as the input
component and another as the output component onto the design workspace.

2. Right-click the input cFile component, select Row > Route in the contextual menu and click the output cFile
component.

3. Label the components to better identify their respective functionality.

Configuring the components

1. Double-click the input cFile component to display its Basic settings view in the Component tab.

2. In the Path field, browse to or enter the input file path, and leave the other parameters as they are.

3. Double-click the output cFile component to display its Basic settings view in the Component tab.



Scenario: Reading files from one directory and writing them to another

40 Talend Open Studio for ESB Mediation Components Reference Guide

4. In the Path field, browse to or enter the output file path, as shown above. Leave the other parameters as
they are.

5. Press Ctrl+S to save your route.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to have a look at the generated code.

As shown in the code, a message route is built from one endpoint .to another.

2. Click the Run view to display it and click the Run button to launch the execution of your Route. You can
also press F6 to execute it.

RESULT: The input files are written to specified output directory.



cFtp

Talend Open Studio for ESB Mediation Components Reference Guide 41

cFtp

cFtp properties

Component Family Messaging

Function cFtp provides access to remote file systems over the FTP, FTPS and SFTP
protocols.

Purpose cFtp allows data exchange over remote file systems.

Basic settings Parameters/type Select the file transfer protocol, ftp or sftp, ftps.

Parameters/server Type in the remote server address to be accessed.

Parameters/port Type in the port number to be accessed.

Parameters/username Type in the user authentication information.

Parameters/password Type in the user authentication information.

Parameters/directory Enter the directory you want to access on the remote
server. If not specified, the root directory will be
accessed.

Advanced settings Advanced Set the optional arguments in the corresponding table.
Click [+] as many times as required to add arguments
to the table. Then click the corresponding Value field
and enter a value. See the site http://camel.apache.org/
ftp.html for available URI options.

Usage cFtp can be a start, middle or end component in a Route.

Limitation  n/a

Related scenario:

No scenario is available for this component yet.

http://camel.apache.org/ftp.html
http://camel.apache.org/ftp.html


cHttp

42 Talend Open Studio for ESB Mediation Components Reference Guide

cHttp

cHttp properties

Component Family Messaging

Function cHttp provides Http-based endpoints for consuming external Http resources, i.e.
as a client to call external servers using Http.

Purpose cHttp is designed to build a client endpoint to call external Http resources using
Http.

Basic settings Uri The URI of the Http resource to call.

Method List of the Http request methods.

Get Retrieve the information identified by the request URI:

Parameters: click the [+] button to add lines as needed
and define the key and value in the table.

Encoder Charset: enter the encoder charset in the field.

Post Request that the origin server accept the entity enclosed
in the request as a new subordinate of the resource
identified by the request URI:

Plain text: type in the text in the Content box as the
request message.

Form Style: click the [+] button to add lines as needed
and define the key and value in the Parameters table.
Also, enter the encoder charset in the Encoder Charset
field.

Use Message Body: use the incoming message body as
the Http request.

Put Request that the enclosed entity be stored under the
supplied request URI.

Delete Request that the origin server delete the resource
identified by the request URI.

Head Identical to GET except that the server MUST NOT
return a message body in the response:

Parameters: click the [+] button to add lines as needed
and define the key and value in the table.

Encoder Charset: enter the encoder charset in the field.

Options Represent a request for information about the
communication options available on the request/
response chain identified by the request URI.

Trace Invoke a remote, application-layer loop-back of the
request message.



Scenario: Retrieving the content of a remote file

Talend Open Studio for ESB Mediation Components Reference Guide 43

Advanced settings Headers Click the [+] button to add lines as needed and define
the key and value for headers.

Usage cHttp provides Http based endpoints for consuming external Http resources, i.e.
as a client to call external servers using Http.

Limitation

Scenario: Retrieving the content of a remote file
In this scenario, cHttp is used to request the body of a weather condition definition file that is available at http://
wsf.cdyne.com/WeatherWS/Weather.asmx.

Dropping and linking the components

1. Drop the following components from the Palette onto the workspace: cMessagingEndpoint,
cSetBody, cHttp and cProcessor, labelled as STARTER, HTTP_REQUEST_BODY,
GET_WEATHER_DESCRIPTION and PRINT_RESPONSE respectively.

2. Link the components using a Row > Route connection.

Configuring the components

1. Double-click cMessagingEndpoint to open its Basic settings view in the Component tab.

2. In the URI field, enter timer:go?repeatCount=1 to define a timer for starting message exchanges. In
this example, only one message exchange will be carried out due to the setting of repeatCount=1.

3. Double-click cSetBody to open its Basic settings view in the Component tab.

http://wsf.cdyne.com/WeatherWS/Weather.asmx
http://wsf.cdyne.com/WeatherWS/Weather.asmx


Scenario: Retrieving the content of a remote file

44 Talend Open Studio for ESB Mediation Components Reference Guide

4. In the Language field, select Constant.

5. In the Expression field, enter the following as the body of the request message:

<soapenv:Envelope xmlns:soapenv=\"http://schemas.xmlsoap.org/soap/
envelope/\" xmlns:weat=\"http://ws.cdyne.com
/WeatherWS/\"><soapenv:Header/
><soapenv:Body><weat:GetWeatherDefinitionInformation/></soapenv:Body></
soapenv:Envelope>

6. Double-click cHttp to open its Basic settings view in the Component tab.

7. In the Uri field, enter the location of the file to fetch, http://wsf.cdyne.com/WeatherWS/Weather.asmx in this
example.

8. Select POST in the Method list and then the Use Message Body box.

9. Click Advanced settings for further setup.

10. Click the [+] button to add two lines in the Headers table.

Type in Content-Type and text/xml;charset=UTF-8 for the Key and Value fields in the first line,
and SOAPAction as well as http://ws.cdyne.com/WeatherWS/GetWeatherInformation
in the second line.

11. Double-click cProcessor to open its Basic settings view in the Component tab.



Scenario: Retrieving the content of a remote file

Talend Open Studio for ESB Mediation Components Reference Guide 45

12. In the Code area, enter the following to print the response from the remote website, i.e. the body of the
desired file:

System.out.println("--------------------RESPONSE--------------------");
System.out.println(exchange.getIn().getBody(String.class));
System.out.println("--------------------END--------------------");

13. Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to check the generated code.

As shown above, the message exchange starts from the endpoint STARTER, gets its body
set to <soapenv:Envelope xmlns:soapenv=\"http://schemas.xmlsoap.org/soap/
envelope/\"xmlns:weat=\"http://ws.cdyne.com/WeatherWS/
\"><soapenv:Header/



Scenario: Retrieving the content of a remote file

46 Talend Open Studio for ESB Mediation Components Reference Guide

><soapenv:Body><weat:GetWeatherDefinitionInformation/></soapenv:Body></
soapenv:Envelope> at cSetBody_1, and then is sent out to the specified website by cHttp_1.
Finally, the response is printed out via cProcessor_1.

2. Press F6 to execute the Route.

As shown above, the retrieved file defines up to 37 weather conditions with detailed description.



cJMS

Talend Open Studio for ESB Mediation Components Reference Guide 47

cJMS

cJMS properties

Component Family Messaging

Function cJMS allows messages to be sent to, or consumed from, a JMS Queue or Topic.

Purpose cJMS is used to send messages to, or consume messages from, a JMS Queue or Topic.

URI/Type Select the messaging type, either queue or topic.

URI/Destination Type in a name for the JMS queue or topic.

ConnectionFactory Click the three-dot button and select a JMS connection
factory to be used for handling messages or enter the
name of the corresponding cJMSConnectionFactory
component directly in the field.

Advanced settings URI Options Set the optional arguments in the corresponding table.
Click [+] as many times as required to add arguments
to the table. Then click the corresponding value field
and enter a value. See the site http://camel.apache.org/
jms.html for available URI options.

Usage cJMS can be a start, middle or end component in a Route.

Limitation  n/a

Scenario 1: Sending and receiving a message from a
JMS queue

In this scenario, a cJMS component sends messages from the local file system to a message queue in one sub-
route, and the messages are then consumed by another cJMS component in the other sub-route.

http://camel.apache.org/jms.html
http://camel.apache.org/jms.html


Scenario 1: Sending and receiving a message from a JMS queue

48 Talend Open Studio for ESB Mediation Components Reference Guide

Dropping and linking the components

1. From the Palette, expand the Context folder, and drop a cJMSConnectionFactory component onto the
design workspace to specify the JMS connection factory for handling messages.

2. From the Messaging folder, drop one cFile and two cJMS components onto the design workspace.

3. From the Processor folder, drop a cProcessor component onto the design workspace.

4. Connect the cFile component to a cJMS component using a Row > Route connection as the message producer
sub-route.

5. Connect the other cJMS component to the cProcessor component using a Row > Route connection as the
message consumer sub-route.

6. Label the components properly for better identification of their functionalities.

Configuring the components

1. Double-click the cJMSConnectionFactory component to display its Basic settings view in the Component
tab.

2. From the MQ Server list, select an MQ server. In this use case, we use the default ActiveMQ server to
handle the messages.

In the Broker URI field, type in the URI of the message broker. Here we simply use the default URI "vm://
localhost?broker.persistent=false".

3. In the message producer sub-route, double-click the cFile component to display its Basic settings view.



Scenario 1: Sending and receiving a message from a JMS queue

Talend Open Studio for ESB Mediation Components Reference Guide 49

4. Define the properties of the cFile component.

In this use case, simply specify the path to the folder that holds the source file to be sent as electronic message,
and leave the other parameters as they are.

5. Double-click the cJMS component labeled Message_producer to display its Basic settings view.

6. From the Type list, select queue to send the messages to a JMS queue.

In the Destination field, type in a name for the JMS queue, "queue.hello" in this use case.

Double-click the [...] button next to ConnectionFactory. Select the JMS connection factory that you have
just configured in the dialog box and click OK. You can also enter the name of the cJMSConnectionFactory
component directly in the field.

7. Switch to the message consumer sub-route, and double click the cJMS component labeled
Message_consumer to display its Basic settings view.

8. Configure the message consumer using exactly the same parameters as in the message producer.

9. Double-click the cProcessor component to display its Basic settings view.



Scenario 1: Sending and receiving a message from a JMS queue

50 Talend Open Studio for ESB Mediation Components Reference Guide

10. In the Code area, customize the code as shown below to display the file names of the consumed messages
on the Run console.

System.out.println("Message consumed: "+
exchange.getIn().getHeader("CamelFileName"));

11. Press Ctrl+S to save your Routes.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to have a look at the generated code.

In the partially shown code, a message route is built from the File_source .to the
Message_producer which then sends the message to a message queue via a broker identified by



Scenario 2: Setting up a JMS local transaction

Talend Open Studio for ESB Mediation Components Reference Guide 51

vm://localhost?broker.persistent=false. The message from the Message_consumer is
processed by cProcessor_1.

2. Click the Run button in the Run view to launch the execution of your Route. You can also press F6 to
execute it.

RESULT: The message is received by the consumer, as shown on the Run console.

Scenario 2: Setting up a JMS local transaction

In this scenario, a local transaction with three steps is performed to send, test and consume a JMS message:

1. The first Route is used to send a "hello world!" message to feed the queue.hello JMS queue.

2. The second Route is used to test the received JMS message. This message is redelivered six times to the
queue.hello queue and is then moved to the Dead Letter JMS queue. The Route is programmed to throw an
exception every time an exchange is processed by the Route.

3. The last Route is used to consume the "hello world!" message from the Dead Letter JMS queue.

Sending a message to the queue.hello JMS queue

Dropping and linking the components

1. From the Palette, drop the five following components onto the design workspace: one
cJMSConnectionFactory, one cConfig, one cMessagingEndpoint, one cJMS and one cProcessor
component.

2. Connect the cMessagingEndpoint component to the cJMS using a Row > Route connection.

3. Connect the cJMS component to the cProcessor component using a Row > Route connection.



Scenario 2: Setting up a JMS local transaction

52 Talend Open Studio for ESB Mediation Components Reference Guide

Configuring the components

1. Double-click the cJMSConnectionFactory component labelled AMQ_Send_ConnectionFactory to display
its Basic settings view in the Component tab.

2. From the MQ Server list, select an MQ server. In this use case, we use the default ActiveMQ server to
handle the messages.

3. In the Broker URI field, type in Active MQ's default URI of the localhost server: "tcp://localhost:61616".

When using ActiveMQ to handle messages between different Routes, you need to launch the
ActiveMQ server before executing the Routes. For more information on installing and launching
ActiveMQ server, see the section about installing Apache ActiveMQ in the Talend ESB Installation
Guide.

4. Double-click the cConfig component, which is labelled DatasetConfig, to display its Basic settings view in
the Component tab and set its parameters.

5. Write a piece of code in the Code field to register the dataset instance hello into the registry, as shown below.

org.apache.camel.component.dataset.SimpleDataSet dataset = new 
org.apache.camel.component.dataset.SimpleDataSet(1);
dataset.setDefaultBody("Test Data: hello world!");
org.apache.camel.impl.SimpleRegistry registry = new  
org.apache.camel.impl.SimpleRegistry();
     registry.put("hello",dataset);



Scenario 2: Setting up a JMS local transaction

Talend Open Studio for ESB Mediation Components Reference Guide 53

camelContext.setRegistry(registry); 

6. Double-click the cMessagingEndpoint component, which is labelled SimpleDatasetGen, to display its Basic
settings view in the Component tab. and set its parameters.

7. In the URI field, enter dataset:hello between the quotation marks.

8. Double-click the cJMS component labeled AMQ_Send to display its Basic settings view.

9. From the Type list, select queue to send the message to a JMS queue.

In the Destination field, type in a name for the JMS queue, "queue.hello" in this use case.

Double-click the [...] button next to ConnectionFactory. Select the JMS connection factory that you have
just configured in the dialog box and click OK. You can also enter the name of the cJMSConnectionFactory
component directly in the field.

10. Double-click the cProcessor component labelled PrintSendMsg to display its Basic settings view in the
Component tab, and customize the code in the Code area to display the sent message intercepted on the
console.



Scenario 2: Setting up a JMS local transaction

54 Talend Open Studio for ESB Mediation Components Reference Guide

System.out.println("AMQ Send: "+
exchange.getIn().getBody(String.class));

Executing the Route

• Click the Run button in the Run view to launch the execution of your Route. You can also press F6 to
execute it.

RESULT: One "hello world!" message is sent to the JMS Queue, as shown in the Run console.

Testing the received message

Dropping and linking the components

1. From the Palette, drop the four following components onto the design workspace: one cJMS, two cProcessor
components and one cJMSConnectionFactory.

2. Connect the cJMS component to the first cProcessor using a Row > Route connection.

3. Connect the first cProcessor component to the second cProcessor component using a Row > Route
connection.

Configuring the components

1. Double-click the cJMSConnectionFactory component labelled AMQ_Rev_ConnectionFactory to display
its Basic settings view in the Component tab.



Scenario 2: Setting up a JMS local transaction

Talend Open Studio for ESB Mediation Components Reference Guide 55

2. From the MQ Server list, select an MQ server. In this use case, we use the default ActiveMQ server to
handle the messages.

Select the Use transaction check box.

3. In the Broker URI field, type in Active MQ's default URI of the localhost server: "tcp://localhost:61616".

4. Double-click the cJMS component labeled AMQ_Rev to display its Basic settings view.

5. From the Type list, select queue to send the messages to a JMS queue.

In the Destination field, type in a name for the JMS queue, "queue.hello" in this use case.

Double-click the [...] button next to ConnectionFactory. Select the JMS connection factory that you have
just configured in the dialog box and click OK. You can also enter the name of the cJMSConnectionFactory
component directly in the field.

6. Double-click the first cProcessor component labelled PrintRevMsg to display its Basic settings view in the
Component tab, and customize the code in the Code area to display the received message intercepted on
the console.

System.out.println("AMQ Receive: "+



Scenario 2: Setting up a JMS local transaction

56 Talend Open Studio for ESB Mediation Components Reference Guide

exchange.getIn().getBody(String.class));

7. Double-click the second cProcessor component labelled ThrowEx to display its Basic settings view in the
Component tab, and customize the code in the Code area to throw the Force fail exception every time an
exchange is processed by the route.

throw new Exception("Force fail")

Executing the Route

• Click the Run button in the Run view to launch the execution of your Route. You can also press F6 to
execute it.

RESULT: The "hello world!" message is tested and a rollback transaction is performed. Once the message
redelivery attempts exceeds six times, the pending message is sent to the Dead Letter JMS Queue.

Consuming the message from the DeadLetter JMS queue

Dropping and linking the components

1. From the Palette, drop the three following components onto the design workspace: one
cJMSConnectionFactory, one cJMS and one cProcessor component.

2. Connect the cJMS component to the cProcessor component using a Row > Route connection.

Configuring the components

1. Double-click the cJMSConnectionFactory component to display its Basic settings view in the Component
tab.

2. From the MQ Server list, select an MQ server. In this use case, we use the default ActiveMQ server to
handle the messages.

3. In the Broker URI field, type in Active MQ's default URI of the localhost server: "tcp://localhost:61616".



Scenario 2: Setting up a JMS local transaction

Talend Open Studio for ESB Mediation Components Reference Guide 57

4. Double-click the cJMS component labeled DeadLetterQueueJMS to display its Basic settings view.

5. From the Type list, select queue to send the messages to a JMS queue.

In the Destination field, type in a name for the JMS queue, "ActiveMQ.DLQ" in this use case (the default
Dead Letter Queue in ActiveMQ).

Double-click the [...] button next to ConnectionFactory. Select the JMS connection factory that you have
just configured in the dialog box and click OK. You can also enter the name of the cJMSConnectionFactory
component directly in the field.

6. Double-click the cProcessor component labelled PrintMsg to display its Basic settings view in the
Component tab, and customize the code in the Code area to display the received message intercepted on
the console.

System.out.println("AMQ Receive: "+ 
exchange.getIn().getBody(String.class));

Executing the Route

• Click the Run button in the Run view to launch the execution of your Route. You can also press F6 to
execute it.

RESULT: The "hello world!" message that was in the Dead Letter queue is consumed, as shown in the Run
console.



Scenario 3: Sending and receiving a scheduled delivery of messages from a JMS Queue using Camel Quartz

58 Talend Open Studio for ESB Mediation Components Reference Guide

Scenario 3: Sending and receiving a scheduled
delivery of messages from a JMS Queue using Camel
Quartz

This scenario will show you how to use the Camel Quartz component to provide a scheduled delivery of messages
from a JMS Queue.

To do this, we will build two Routes, a message producer Route and a consumer Route. We will implement the
Quartz component in the producer Route to send scheduled messages to a JMS Queue. The messages are then
consumed by the consumer Route.

In this use case, we will use Apache ActiveMQ as the message broker. We need to launch the ActiveMQ server
before executing the Route. For more information about installing and launching ActiveMQ server, see the site
http://activemq.apache.org/index.html.

Building the producer Route

Dropping and linking the components

1. From the Palette, drag and drop a cJMSConnectionFactory, a cJMS, a cSetBody, and two
cMessagingEndpoint components onto the design workspace.

http://activemq.apache.org/index.html


Scenario 3: Sending and receiving a scheduled delivery of messages from a JMS Queue using Camel Quartz

Talend Open Studio for ESB Mediation Components Reference Guide 59

2. Label the components for better identification of their roles and link them with the Row > Route connection
as shown above.

Configuring the components

1. Double-click the cJMSConnectionFactory component to display its Basic settings view in the Component
tab.

2. From the MQ Server list, select ActiveMQ to handle messages.

In the Broker URI field, type in the URI of the local Active MQ server, "tcp://localhost:61616".

Select the Use PooledConnectionFatory check box and keep the default settings.

3. Double-click the quartzConsumer component to open its Basic settings view in the Component tab.

4. In the URI field, enter the code "quartz://HelloWorld?
trigger.repeatInterval=2000&trigger.repeatCount=-1" to define a timer for starting
message exchanges. In this use case, we want the message to be delivered endlessly between an interval of
two seconds. For more information about Quartz, see the site http://camel.apache.org/quartz.html.

5.
Click the Advanced settings view. Click  at the bottom of the Dependencies list to add a row and select
quartz from the drop-down list. For more information about the Quartz component, see the site http://
camel.apache.org/quartz.html.

http://camel.apache.org/quartz.html
http://camel.apache.org/quartz.html
http://camel.apache.org/quartz.html


Scenario 3: Sending and receiving a scheduled delivery of messages from a JMS Queue using Camel Quartz

60 Talend Open Studio for ESB Mediation Components Reference Guide

6. Double-click the cSetBody component to open its Basic settings view in the Component tab.

7. Select Simple from the Language list box and type in "Hello world" in the Expression field.

8. Double-click the logMessage component to open its Basic settings view in the Component tab.

9. In the URI field, enter "log:quartzMessage" where the message exchanges are logged.

10. Double-click the jmsProducer component to display its Basic settings view in the Component tab.



Scenario 3: Sending and receiving a scheduled delivery of messages from a JMS Queue using Camel Quartz

Talend Open Studio for ESB Mediation Components Reference Guide 61

11. From the Type list, select queue to send the messages to a JMS queue.

In the Destination field, type in a name for the JMS queue, "quartzTest" in this use case.

In the ConnectionFactory field, enter the name of the JMS connection factory that you have just configured.

12. Press Ctrl+S to save your Route.

Viewing the code and executing the Route

1. Click the Code tab at the bottom of the design workspace to check the generated code.

As shown above, the message flow from quartzConsumer is given a payload by cSetBody_1 and then
sent to logMessage and jmsProducer.

2. Press F6 to execute the Route.

RESULT: The logs of the message exchange are printed in the console.



Scenario 3: Sending and receiving a scheduled delivery of messages from a JMS Queue using Camel Quartz

62 Talend Open Studio for ESB Mediation Components Reference Guide

Building the consumer Route

Dropping and linking the components

1. From the Palette, drag and drop a cJMSConnectionFactory, a cJMS, and a cMessagingEndpoint
component onto the design workspace.

2. Label the components for better identification of their roles and link them with the Row > Route connection
as shown above.

Configuring the components

1. Double-click the cJMSConnectionFactory component to display its Basic settings view in the Component
tab.

2. Configure the cJMSConnectionFatory component the same as in the producer Route.

3. Double-click the jmsConsumer component to display its Basic settings view in the Component tab.

4. Configure the jmsConsumer component the same as the jmsProducer component in the producer Route to
consume the messages in the defined queue "quartzTest".



Scenario 3: Sending and receiving a scheduled delivery of messages from a JMS Queue using Camel Quartz

Talend Open Studio for ESB Mediation Components Reference Guide 63

5. Double-click the logMessage component to open its Basic settings view in the Component tab.

6. In the URI field, enter "log:quartzMessage" where the message exchanges are logged.

7. Press Ctrl+S to save your Route.

Viewing the code and executing the Route

1. Click the Code tab at the bottom of the design workspace to check the generated code.

As shown above, the message flow is routed from jmsConsumer to logMessage.

2. Press F6 to execute the Route.

RESULT: The logs of the message exchange are printed in the console.



cMail

64 Talend Open Studio for ESB Mediation Components Reference Guide

cMail

cMail Properties

Component family Messaging

Function cMail is designed to send or receive mails.

Purpose Sends or receives mails in a route.

Basic settings Protocols List of protocols for sending or receiving mails.

Host Host name of the mail server.

Port Port number of the mail server.

UserName and
Password

Login authentication data.

Subject Subject of the mail being sent.

Content Type The mail content type.

From The mail sender.

To The mail receivers.

CC The CC recipients of the mail. Separate multiple email
addresses with a comma.

BCC The BCC recipients of the mail. Separate multiple email
addresses with a comma.

Advanced settings Arguments Click the [+] button to add lines as needed in the
Arguments table. Then, enter the name and value of an
argument.

Usage When used as a start component, cMail is intended to receive mails. Otherwise,
it is intended to send mails.

Limitation n/a

Scenario: Using cMail to send and receive mails

This scenario includes two routes. The first one sends a mail while the second receives it.

Now we build a route to send a mail.

Mail sending

1. Drop the components from the Palette onto the workspace: cFile, cMail and cProcessor, respectively
labelled as Mail_to_send, Send_Mail and Mail_Sent.

2. Link the components using a Row > Route connection.



Scenario: Using cMail to send and receive mails

Talend Open Studio for ESB Mediation Components Reference Guide 65

3. Double-click cFile to open its Basic settings view in the Component tab.

4. Click the [...] button next to the Path field to select the folder that has the file to send.

5. In the FileName field, enter the name of the file to send, test mail.txt in this use case. Keep the default setup
of other items.

The content of this file is test mail body.

6. Double-click cMail to open its Basic settings view in the Component tab.

7. In the Protocols list, select smtps.

In the Host field, type in the host name of the smtp server, smtp.gmail.com in this use case.

In the UserName and Password fields, enter the login authentication credentials, which are in the form of
context variables in this example. For more information about context variable setup, see Talend Open Studio
for ESB User Guide.

Keep the default setting of the ContentType field, i.e. text/plain.

In the To field, enter the receiver of the mail, which is also in the form of context variable in this example.

8. Double-click cProcessor to open its Basic settings view in the Component tab.



Scenario: Using cMail to send and receive mails

66 Talend Open Studio for ESB Mediation Components Reference Guide

9. In the Code box, enter the code below to give a prompt after the mail is sent.

System.out.println("Mail sent");

10. Save the route and press F6 to run.

As shown above, the mail has been sent out successfully.

Now we build a route to receive the mail.

Mail receiving

1. Drop the components from the Palette onto the workspace: cMail and cProcessor, respectively labelled as
Receive_Mail and Mail_Body.

2. Link the components using a Row > Route connection.

3. Double-click cMail to open its Basic settings view in the Component tab.

4. In the Protocols list, select imaps.

5. In the Host field, type in the host name of the imap server, imap.gmail.com in this use case.

6. In the Port field, type in the port number, 993 in this use case.

7. In the UserName and Password fields, enter the login authentication credentials, which are in the form of
context variables in this example. For more information about context variable setup, see Talend Open Studio
for ESB User Guide.

8. Keep the default setting of the ContentType field, i.e. text/plain.



Scenario: Using cMail to send and receive mails

Talend Open Studio for ESB Mediation Components Reference Guide 67

9. Double-click cProcessor to open its Basic settings view in the Component tab.

10. In the Code box, enter the code below to print the mail body.

System.out.println(exchange.getIn().getBody(String.class));

11. Save the route and press F6 to run.

As shown above, the mail has been received and its content is test mail body.



cMessagingEndpoint

68 Talend Open Studio for ESB Mediation Components Reference Guide

cMessagingEndpoint

cMessagingEndpoint properties

Component Family Messaging

Function cMessagingEndpoint allows two applications to communicate by either sending
or receiving messages, one endpoint can not do both.

Purpose cMessagingEndpoint sends or receives messages.

Basic settings URI URI of the messages to send or receive. It can be of
different format:

-File: "file:/",

-Database: "jdbc:/",

-Protocols: "ftp:/", "http:/"

-etc.

You can add parameters to the URI using the generic
URI syntax, for example:

"file:/directoryName?
option=value&option=value"

For more information on the different components
that can be used in cMessagingEndpoint, see
Apache Camel’s Website: http://camel.apache.org/
components.html.

Advanced settings Dependencies By default, the camel core supports the following
components: bean, browse, class, dataset, direct, file,
language, log, mock, properties, ref, seda, timer, vm.

To use other components, you have to provide the
dependencies corresponding to those components in the
cMessagingEndpoint component. To do so:

Click the plus button to add new lines in the Camel
component list. In the line added, select the component
you want to use in cMessagingEndpoint.

Use a custom
component

If you want to use a custom component, select this check
box and click the three-dot button to upload a jar file with
your own component.

All the transitive dependencies of this custom
component should be included in the jar file.

Usage This component can be used as sending and/or receiving message endpoint
according to its position in the Route.

http://camel.apache.org/components.html
http://camel.apache.org/components.html


Scenario 1: Moving files from one message endpoint to another

Talend Open Studio for ESB Mediation Components Reference Guide 69

Limitation  n/a

Scenario 1: Moving files from one message endpoint
to another

This scenatio uses two cMessagingEndpoint components to read and move files from one endpoint to another.

Dropping and linking the components

1. From the Messaging folder of the Palette, drag and drop two cMessagingEndpoint components onto the
design workspace, one as the message sender and the other as the message receiver, and label them Sender
and Receiver respectively to better identify their roles in the Route.

2. Right-click the component labeled Sender, select Row > Route in the menu and drag to the Receiver to link
them together with a route link.

Configuring the components and connections

1. Double-click the component labeled Sender to open its Basic settings view in the Component tab.

2. In the URI field, type in the URI of the messages you want to route.

As we are handling files, type in "file:///" and the path to the folder containing the files.

3. Double-click the component labeled Receiver to open its Basic settings view in the Component tab.

4. In the URI field, type in the URI of the folder where you want to route your message.

As we are handling files, type in "file:///" and the path to the folder to which the files will be sent.



Scenario 2: sending files to another message endpoint

70 Talend Open Studio for ESB Mediation Components Reference Guide

5. Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. To have a look at the generated code, click the Code tab at the bottom of the design workspace.

The code shows the from and .to corresponding to the two endpoints: from for the sending one and .to
for the receiving one.

2. In the Run view, click the Run button to launch the execution of your Route.

You can also press F6 to execute it.

RESULT: The files are moved from their original folder to the target one. Furthermore, a new .camel folder
is created in the source folder containing the consumed files. This is Camel’s default behavior. Thus, the files
will not be processed endlessly but they are backed up in case of problems.

Scenario 2: sending files to another message endpoint

This scenario accesses FTP service and transfers files from one endpoint to another.



Scenario 2: sending files to another message endpoint

Talend Open Studio for ESB Mediation Components Reference Guide 71

Dropping and linking components

1. From the Messaging folder of the Palette, drag and drop two cMessagingEndpoint components onto the
design workspace, one as the message sender and the other as the message receiver, and label them Sender
and Receiver respectively to better identify their roles in the Route.

2. Right-click the component labeled Sender, select Row > Route in the menu and drag to the Receiver to link
them together with a route link.

Configuring the components and connections

1. Double-click the component labeled Sender to display its Basic settings view in the Component tab.

2. In the URI field, type in the URI of the message you want to route.

Here, we are using an FTP component: ftp://indus@degas/remy/camel with URI specific
parameters authenticating the FTP connection: ?username=indus&password=indus.

3. For the FTP component to work in Camel, click the Advanced settings tab of cMessagingEndpoint, click the
[+] button to add a Camel component in the Dependencies table, and select ftp from the Camel component
list to activate the FTP component.

4. Double-click the component labeled Receiver to open its Basic settings view in the Component tab.

5. In the URI field, type in the URI of the folder to which you want your message to be routed.

As we are handling files, type in "file:///" and the path to the folder to which the files will be sent.



Scenario 2: sending files to another message endpoint

72 Talend Open Studio for ESB Mediation Components Reference Guide

6. Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. To have a look at the generated code, click the Code tab at the bottom of the design workspace.

In this part of code, we can see a route represented by from and .to, corresponding to the sending and
receiving endpoints.

2. In the Run view, click the Run button to launch the execution of your Route.

You can also press F6 to execute it.

RESULT: The message is sent (copied) to the receiving endpoint.



cPipesAndFilters

Talend Open Studio for ESB Mediation Components Reference Guide 73

cPipesAndFilters

cPipesAndFilters properties

Component Family Messaging

Function The cPipesAndFilters component divides message processing into a sequence of
independent endpoint instances, which can then be chained together.

Purpose This component allows you to split message routing into a series of independent
processing stages.

Basic settings URI list Click the plus button to add new lines for URIs that identify endpoints.

Usage cPipesAndFilters is usually used in the middle of a Route.

Limitation  n/a

Scenario: Using cPipesAndFilters to process the task
in sequence

In this scenario, a cPipesAndFilters component is used so that messages sent from the sender endpoint undergo
stage A and stage B. Upon completion of both stages, the messages are routed to a file system, which is the receiver
endpoint for the messages.

Dropping and linking the components

1. From the Messaging folder of the Palette, drop two cFile components onto the design workspace, one as
the message sender and the other as the message receiver, and label them Sender and Receiver respectively
to better identify their roles in the Route.

2. From the Messaging folder, drop one cPipesAndFilters component onto the design workspace, between the
two cFile components.



Scenario: Using cPipesAndFilters to process the task in sequence

74 Talend Open Studio for ESB Mediation Components Reference Guide

3. From the Messaging folder, drop two cMessagingEndpoint components onto the design workspace, one
as the endpoint of stage A and the other as the endpoint of stage B, and label them Stage_A and Stage_B
respectively to better identify their roles in the Route.

4. From the Processor folder, drop three cProcessor components onto the design workspace to monitor
messages received on the receiver, stage A and stage B endpoints respectively, and label them
Monitor_Receiver, Monitor_stage_A, and Monitor_stage_B respectively to better identify their roles in the
Route.

5. Right-click the cFile component labeled Sender, select Row > Route from the contextual menu, and click
the cPipesAndFilters component.

Repeat this step to set up the rest Row > Route connections, as shown above.

Configuring the components

1. Double-click the cFile component labeled Sender to open its Basic settings view in the Component tab.

2. In the Path field, fill in or browse to the path to the folder that holds the source files.

3. From the Encoding list, select the encoding type of your source files. Leave the other parameters as they are.

4. Repeat these steps to define the path to the output files and the output encoding type in the Basic settings
view of the cFile component labeled Receiver.

5. Double-click the cPipesAndFilters component to open its Basic settings view in the Component tab.



Scenario: Using cPipesAndFilters to process the task in sequence

Talend Open Studio for ESB Mediation Components Reference Guide 75

6. Click the plus button to add two lines to the URI list table, and fill the first line with "direct:a" and the
second line with "direct:b" to define the URIs of stage A and stage B that the messages will undergo.

7. Double-click the cMessagingEndpoint component labeled Stage_A to configure the component in its Basic
settings view and define the URI of stage A.

Repeat this step to define the URI of stage B in the Basic settings view of the cMessagingEndpoint
component labeled Stage_B.

8. Double-click the cProcessor component labeled Monitor_Receiver to open its Basic settings view, and
customize the code in the Code area to display the file names of the messages received on Receiver, as
follows:

System.out.println("Message sent to Receiver: "+
exchange.getIn().getHeader("CamelFileName"));

Repeat this step to customize the code in the other two cProcessor components to display the file names of
the messages received on stage A and stage B respectively:

System.out.println("Message sent to stage A: "+
exchange.getIn().getHeader("CamelFileName"));

System.out.println("Message sent to stage B: "+
exchange.getIn().getHeader("CamelFileName"));

9. Press Ctrl+S to save your Route.



Scenario: Using cPipesAndFilters to process the task in sequence

76 Talend Open Studio for ESB Mediation Components Reference Guide

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to have a look at the generated code.

As shown in the code, messages sent from Sender are redirected to endpoints identified by direct:a
and direct:b by cPipesAndFilters_1 before being routed to Receiver.

2. Press F6 to run your Route.

RESULT: The message delivery goes through stage A and then stage B before reaching Receiver.



cTalendJob

Talend Open Studio for ESB Mediation Components Reference Guide 77

cTalendJob

cTalendJob properties

Component Family Messaging

Function cTalendJob allows you to import a library.

Purpose cTalendJob calls a Talend Job exported as OSGI Bundle For ESB. For more
information on how to export a Job as OSGI Bundle, see Talend Open Studio for
ESB User Guide.

Basic settings Library Select the library you want to import from the list, or click on the
[...] button to import the jar library of your Talend Job.

Job Type in the name of the package and the name of your job separated
by a point. For example: route_project.txmlmap_0_1.tXMLMap
To get this naming, you can open the jar library of your Job,
go to OSGI-INF > blueprint and edit the job.xml file, the
naming is available in a bean node like <bean id="job"
class="route_project.txmlmap_0_1.tXMLMap"/>

Context Type in the name of the context to use to execute your Job

Usage cTalendJob can be a start, middle or end component in a Route.

Limitation  n/a

Scenario: Using camel message headers as context
parameters to call a job

In this scenario, a Data Integration Job is built with a context variable defined in the Integration perspective.
Then, a Route is established in the Mediation perspective with the message header defined the same as the context
variable in the DI Job. Meanwhile, a cTalendJob component is deployed to call the DI Job and pass the value of
the Route's message header to the DI Job's context variable.

Building a DI Job and exporting it as an OSGI Bundle for ESB

1. In the Integration perspective, drop the following components from the Palette onto the workspace:
tFixedFlowInput and tLogRow.

2. Link the components using a Row > Main connection.



Scenario: Using camel message headers as context parameters to call a job

78 Talend Open Studio for ESB Mediation Components Reference Guide

3. Double-click tFixedFlowInput to open its Basic settings view in the Component tab.

4. Click the [...] button next to Edit schema to open the schema editor.

Click the [+] button to add a line.

Enter file as the column name and choose String as the data type.

Click OK to close the editor.

5. Select the Use Single Table option and enter context.file as the value.

Note that the context default with the variable file has been defined.

For more information about the context setup, see Talend Open Studio for ESB User Guide.

6. Double-click tLogRow to open its Basic settings view in the Component tab.

7. Select Table (print values in cells of a table for a better display.

8. Press Ctrl+S to save the Job.

9. Export the Job as an OSGI Bundle for ESB.

10. Unzip the generated jar file.



Scenario: Using camel message headers as context parameters to call a job

Talend Open Studio for ESB Mediation Components Reference Guide 79

Building a Route for exchanging messages and calling the DI Job

1. In the Mediation perspective, drop the following components from the Palette onto the workspace: cFile,
cSetHeader and cTalendJob, respectively labelled as File_Source, Set_Header and Call_DI-Job.

2. Link the components using a Row > Route connection.

3. Double-click cFile to open its Basic settings view in the Component tab.

4. In the Path field, enter the variable context.root_dir to specify the file path.

Keep other default settings as they are.

For more information about the context setup, see Talend Open Studio for ESB User Guide.

5. Double-click cSetHeader to open its Basic settings view in the Component tab.

6. In the Header field, enter file, which is the same as the context variable of the DI Job.

Select Simple from the Language list.

In the Expression field, enter ${header.camelfilename} to get the file name.

7. Double-click cTalendJob to open its Basic settings view in the Component tab.



Scenario: Using camel message headers as context parameters to call a job

80 Talend Open Studio for ESB Mediation Components Reference Guide

8. Click the [...] button to browse the generated jar file for the DI Job.

9. Go to the unzipped folder of the above JAR file and open the job.xml in the <DI_Job_JAR_Path>\OSGI-
INF\blueprint folder, E:\cTalendJob_ShowContextVar-0.1\OSGI-INF\blueprint in this example.

Go to the bean tag and copy the content of the attribute class,
work.ctalendjob_showcontextvar_0_1.cTalendJob_ShowContextVar in this example.

Paste it in the Job field.

10. Press Ctrl+S to save the Route.

Viewing the code and executing the Route

1. Click the Code tab at the bottom of the design workspace to check the generated code.

As shown above, File_Source provides a file for the message exchange, cSetHeader sets a message
header and uses the source file name as the header value, and finally that value is passed to cTalendJob_1
for execution of the DI Job.

2. Press F6 to execute the Route.

3. Put a file into the folder specified by context.root_dir, test mail.txt in this example.

The result below can be found.



Scenario: Using camel message headers as context parameters to call a job

Talend Open Studio for ESB Mediation Components Reference Guide 81

As shown above, the source file name is displayed via tLogRow as the Route's message header value has
been passed to the context variable of the DI Job.



Talend Open Studio for ESB Mediation Components Reference Guide



Talend Open Studio for ESB Mediation Components Reference Guide

Miscellaneous components
This chapter details the major components that you can find in Miscellaneous family from the Palette of the
Mediation perspective of Talend Open Studio for ESB.

The Miscellaneous family groups components that cover the needs such as iterating a Route or stopping a Route.



cLog

84 Talend Open Studio for ESB Mediation Components Reference Guide

cLog

cLog properties

Component Family Miscellaneous

Function cLog logs message exchanges to the underlying logging mechanism. Apache Camel
provides the regular logger and the throughput logger. The default logger logs every
exchange. The throughput logger logs exchanges on a group basis. By default regular
logging is used.

Purpose cLog is used to log message exchanges.

Level Select a logging level from DEBUG, ERROR, INFO,
OFF, TRACE, or WARN.

Use default output log
message

Select this option to use the default output log message
provided by the underlying logging mechanism.

Options / None

(For default output log
message only)

Select this option to take no action on the log message.

Options / Specifies a group
size for throughput logging

(For default output log
message only)

Select this option to use throughput logging and specify a
group size for the throughput logging.

Size: Enter an integer that specifies a group size for
throughput logging.

Options / Group message
stats by time interval (in
millis)

(For default output log
message only)

Select this option to use throughput logging and group
message statistics.

Interval: Specify the time interval (in milliseconds) by
which the message statistics will be grouped.

Delay: Set the initial delay (in milliseconds) for message
statistics.

Options / Format the log
output

(For default output log
message only)

Select this option to format the log output. Click [+] as
many times as required to add arguments to the table.
Then click the corresponding value field and enter a value.
See the site http://camel.apache.org/log.html for available
options.

Specify output log message Select this option to specify the output log message.

Message: Use Simple language to construct a dynamic
message which gets logged.

Usage cLog is used as a middle or end component in a Route.

Limitation  n/a

http://camel.apache.org/log.html


Related scenario:

Talend Open Studio for ESB Mediation Components Reference Guide 85

Related scenario:

For a related scenario, see the section called “Scenario: Routing messages according to a criterion”.



cLoop

86 Talend Open Studio for ESB Mediation Components Reference Guide

cLoop

cLoop properties

Component Family Miscellaneous

Function cLoop allows you to process a message or messages a number of times and
possibly in different ways.

Purpose cLoop is used to process a message or messages repetitively.

 Basic settings Loop Type Select a type of loop to be carried out: Expression,
Header, or Value.

Expression: Use an expression to determine the loop
count.

Header: Use a header to determine the loop count.

Value: Use an argument to set the loop count.

When using Expression: In the Language field,
select the language of the expression you want to
use to determine the loop count between Constant,
EL, Groovy, Header, Javascript, JoSQL, JXPath,
MVEL, None, OGNL, PHP, Property, Python, Ruby,
Simple, SpEL, SQL, XPath, XQuery. Type in the
expression in the Expression field.

When using Header: Enter the name of the header that
you want to use to determine the loop count in header
field.

When using Value: Enter an integer you want to set as
the loop count in the value field.

Usage cLoop can be a middle component in a Route.

Limitation  n/a

Related scenario:

No scenario is available for this component yet.



cStop

Talend Open Studio for ESB Mediation Components Reference Guide 87

cStop

cStop properties

Component Family Miscellaneous

Function cStop stops the Route to which it is connected.

Purpose cStop stops the Route to which it is connected.

Usage cStop is not a start component, but it can be a middle or end component in a Route.

Limitation n/a

Related scenario:

For a related scenario, see the section called “Scenario: Intercepting several routes and redirect them in a single
new route” of the section called “cIntercept”.



Talend Open Studio for ESB Mediation Components Reference Guide



Talend Open Studio for ESB Mediation Components Reference Guide

Processor components
This chapter details the major components that you can find in Processor family from the Palette of the Mediation
perspective of Talend Open Studio for ESB.

The Processor family groups components that help you to perform all types of processing tasks on message flows
such monitoring the message sent or received, setting the message exchange mode, controlling the delivery time,
and so on.



cDelayer

90 Talend Open Studio for ESB Mediation Components Reference Guide

cDelayer

cDelayer properties

Component Family Processor

Function The cDelayer component delays the delivery of messages.

Purpose The cDelayer component allows you to set a latency in message routing.

Basic settings Time to wait (in ms) Fill this field with an integer (in milliseconds) to define
the time to wait before sending the message to the
subsequent endpoint.

Usage This component is usually used in the middle of a Route.

Limitation  n/a

Scenario: Using cDelayer to delay message routing

In this scenario, a cDelayer component is used to delay the routing of each message to the target endpoint by
20 seconds.

Dropping and linking the components

This use case requires one cDelayer component, two cFile components, and two cProcessor components.

1. From the Messaging folder of the Palette, drop two cFile components onto the design workspace, one to
read files from a local folder and the other to write the files to another local folder.

2. From the Processor folder of the Palette, drop two cProcessor components onto the design workspace, one
next to the reading component to monitor messages read from the source file folder, and the other next to the
writing component to monitor messages written to the target file folder.

3. From the Processor folder of the Palette, drop one cDelayer component onto the design workspace, between
the message reading monitor component and the message writing component.

4. Connect the components using Row > Route connections.

5. Label the components to better identify their roles in the Route, as shown above.



Scenario: Using cDelayer to delay message routing

Talend Open Studio for ESB Mediation Components Reference Guide 91

Configuring the components

1. Double-click the first cFile component, which is labelled Read, to open its Basic settings view in the
Component tab.

2. In the Path field, enter or browse to the path to the source files, and leave the other parameters as they are.

3. Repeat these steps to define the target folder in property settings of the second cFile component, which is
labelled Write.

4. Double-click the first cProcessor component, which is labelled Read_monitor, to open its Basics settings
view in the Component tab.

5. In the Code area, customize the code to display the time each message is read from the source:

Date date=new Date();
SimpleDateFormat formatter = new SimpleDateFormat("HH:mm:ss");
String s = formatter.format(date);
System.out.println("\nMessage "+
exchange.getIn().getHeader("CamelFileName")+
" read at "+(s));

6. Repeat these steps to configure the second cProcessor component, which is labelled Write_monitor, to
display the time each message is written to the target:

Date date=new Date();
SimpleDateFormat formatter = new SimpleDateFormat("HH:mm:ss");
String s = formatter.format(date);
System.out.println("Message "+
exchange.getIn().getHeader("CamelFileName")+ " written at "+(s));

7. Double-click the cDelayer component, which is labelled Delay_timer, to open its Basic settings view in the
Component tab.



Scenario: Using cDelayer to delay message routing

92 Talend Open Studio for ESB Mediation Components Reference Guide

8. In the Time to wait (in ms) field, enter the number of milliseconds by which you want to delay message
delivery. Note that the value must be a positive integer.

In this use case, we want each message to be delivered after a 20-second delay.

9. Press Ctrl+S to save your Route.

Viewing the code and executing the Route

1. Click the Code tab at the bottom of the design workspace to have a look at the generated code.

As shown in the code, a 20-second delay is implemented according to .delay(20000) in the message
routing from the Read endpoint .to the Write endpoint.

2. Press F6 to execute the Route.

RESULT: Each message read from the source folder is routed to the target folder after a 20-second delay.



Scenario: Using cDelayer to delay message routing

Talend Open Studio for ESB Mediation Components Reference Guide 93



cExchangePattern

94 Talend Open Studio for ESB Mediation Components Reference Guide

cExchangePattern

cExchangePattern properties

Component Family Processor

Function cExchangePattern can be configured to indicate the message exchange mode.

Purpose cExchangePattern allows you to set the message exchange mode.

Basic settings Exchange Patterns Select the message exchange mode from InOnly
or InOptionalOut, InOut, OutIn, OutOptionalIn,
RobustInOnly, RobustOutOnly.

Usage As a middle component in a Route, cExchangePattern allows you to set the
message exchange mode.

Limitation

Scenario: Enabling the InOut exchange pattern to get
replies

In this scenario, a cExchangePattern component is used to enable the request/reply exchange pattern in the Route,
so that the client can get a reply from the server.

To send requests to the server side, a soapUI is needed and its configuration will be briefed in the following
contents.

To build the Route, do the following.

Dropping and linking the components

1. From the Processor folder of the Palette, drag and drop a cCXF, a cExchangePattern and a cProcessor
onto the workspace, and label them WebService_producer, Set_exchange_mode and Build_reply_message
respectively to better identify their roles in the Route.

2. Link cCXF to cExchangePattern using a Row > Route connection.

3. Link cExchangePattern to cProcessor using a Row > Route connection.



Scenario: Enabling the InOut exchange pattern to get replies

Talend Open Studio for ESB Mediation Components Reference Guide 95

Configuring the components

1. Double-click cCXF to open its Basic settings view in the Component tab.

2. In the Address field, leave the default setting unchanged.

3. In the Type list, select wsdlURL.

4. In the WSDL File field, enter the URL of the wsdl file. You can also click the three-dot button to browse for it.

5. In the Dataformat list, select PAYLOAD.

6. Double-click cExchangePattern to open its Basic settings view in the Component tab.

7. In the Exchange Patterns list, select InOut to enable the request/reply message exchange mode.

8. Double-click cProcessor to open its Basic settings view in the Component tab.



Scenario: Enabling the InOut exchange pattern to get replies

96 Talend Open Studio for ESB Mediation Components Reference Guide

9. In the Code box, enter the code below.

StringBuilder sb = new StringBuilder();
sb.append("<tns:getAirportInformationByISOCountryCodeResponse
 xmlns:tns=\"http://airportsoap.sopera.de\">");
sb.append("<tns:getAirportInformationByISOCountryCodeResult>This is a
 response</tns:getAirportInformationByISOCountryCodeResult>");
sb.append("</tns:getAirportInformationByISOCountryCodeResponse>");
exchange.getOut().setBody(sb.toString());

As shown above, a string is built here and is used as a reply message of the route. It is in line with the message
definition of the above wsdl file.

10. Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to check the generated code.



Scenario: Enabling the InOut exchange pattern to get replies

Talend Open Studio for ESB Mediation Components Reference Guide 97

As shown above, the route has its message exchange pattern set as InOut using the method
.setExchangePattern(org.apache.camel.ExchangePattern.InOut). In the meantime, a
string is created using StringBuilder sb = new StringBuilder() at cProcessor_1 and is
used as the reply message via the method exchange.getOut().setBody( sb.toString()).

2. Press F6 to execute the Route.

The server Route gets started.

Creating and sending a request to the server Route and getting a
reply

1. In the soapUI, create a Test project and edit a request, as illustrated below:



Scenario: Enabling the InOut exchange pattern to get replies

98 Talend Open Studio for ESB Mediation Components Reference Guide

Note that the wsdl file must be same as that configured for cCXF, so that the request can be in line with the
definition of the web service.

2. Send the request to the server Route and you can get the reply, as illustrated below:



cJavaDSLProcessor

Talend Open Studio for ESB Mediation Components Reference Guide 99

cJavaDSLProcessor

cJavaDSLProcessor properties

Component Family Processor

Function cJavaDSLProcessor implements producers and consumers of message
exchanges or implements a Message Translator using the Java Domain Specific
Language (DSL).

Purpose cJavaDSLProcessor can be usable for quickly whirling up some code using Java
DSL. If the code in the inner class gets a bit more complicated it is of course
advised to refactor it into a separate class.

Basic settings Code Type in the code you want to implement using Java DSL.

Usage cJavaDSLProcessor is used as a middle or end component in a Route.

Limitation  n/a

Related scenario:

For a related scenario, see the section called “Scenario: Wiretapping a message in a Route”.



cProcessor

100 Talend Open Studio for ESB Mediation Components Reference Guide

cProcessor

cProcessor properties

Component Family Processor

Function cProcessor implements consumers of message exchanges or implements a
Message Translator.

Purpose cProcessor can be usable for quickly whirling up some code. If the code in the
inner class gets a bit more complicated it is of course advised to refactor it into
a separate class.

Basic settings Code Type in the Java code you want to implement.

Usage cProcessor is used as a middle or end component in a Route.

Limitation  n/a

Related scenario:

For a related scenario, see the section called “Scenario: Intercepting several routes and redirect them in a single
new route” of the section called “cIntercept”.



cThrottler

Talend Open Studio for ESB Mediation Components Reference Guide 101

cThrottler

cThrottler properties

Component Family Processor

Function cThrottler is designed to limit the number of messages flowing to the subsequent
endpoint.

Purpose cThrottler allows you to limit the number of messages flowing to a specific
endpoint in order to prevent it from getting overloaded.

Basic settings Request per period The number of messages allowed to pass cThrottler within
the defined time period.

Set time period Select this check box to set the value of the time period (in
milliseconds) and enable throttling.

Use asynchronous
delaying

If this check box is selected, any messages that are delayed
will be routed asynchronously using a scheduled thread
pool.

Usage Being a middle component, cThrottler allows you to limit the number of
messages flowing to a specific endpoint in order to prevent it from getting
overloaded.

throttler Select this link to route the throttled messages to the next
endpoint.

Connections

Route Select this link to route all the messages from the sender to
the next endpoint.

Limitation  n/a

Scenario: Throttling the message flow

In this scenario, a cThrottler component is used to reduce the number of messages flowing out within a time
period.



Scenario: Throttling the message flow

102 Talend Open Studio for ESB Mediation Components Reference Guide

To build the Route, do the following.

Dropping and linking the components

1. Drag and drop the components from the Palette onto the workspace: cThrottler, cFile and two cProcessor.
Change the label of the cFile component to Read_Output. Change the labels of the two cProcessor
components to Print_File_Name and Print_File_Content.

2. Link Read_Output to cThrottler using a Row > Route connection.

3. Link cThrottler to Print_File_Name using a Row > Throttler connection, and to Print_File_Content using
a Row > Route connection.

Configuring the components

1. Double-click Read_Output to open its Basic settings view in the Component tab.

2. In the Path field, type in the path to the source message, for example, "E:/data/output". Keep the default
settings for other fields.

3. Double-click cThrottler to open its Basic settings view in the Component tab.

4. In the Request per period field, type in the number of messages allowed to pass the throttler per period,
for example, 1.

In the Set time period field, type in the value of the period, for example, 8000.

5. Double-click Print_File_Name to open its Basic settings view in the Component tab.



Viewing the code and executing the Route

Talend Open Studio for ESB Mediation Components Reference Guide 103

6. In the Code box, enter the code below to get the name of the message that passes the throttler.

System.out.println("The file that passes throttler is:
 "+exchange.getIn().getHeader("CamelFileName"));

7. Double-click Print_File_Content to open its Basic settings view in the Component tab.

8. In the Code box, enter the code below to get the content of the message that passes the throttler.

System.out.println("The content of "
 +exchange.getIn().getHeader("CamelFileName")+ " is: "
+exchange.getIn().getBody(String.class));

9. Press Ctrl+S to save your Route.

Viewing the code and executing the Route

1. Click the Code tab at the bottom of the design workspace to check the generated code.



Viewing the code and executing the Route

104 Talend Open Studio for ESB Mediation Components Reference Guide

As shown above, the messages from Read_Output go through throttling at cThrottler_1, with only
(1) message allowed to leave the throttler within each timePeriodMillis(8000). Meanwhile, the
filename and the content of the throttled message are printed out via the two processors.

2. Press F6 to execute the Route.

As shown below, File_A.txt was delivered within the first time period while in the second period, File_B.txt
was delivered as well.



Talend Open Studio for ESB Mediation Components Reference Guide

Routing components
This chapter details the major components that you can find in Routing family from the Palette of the Mediation
perspective of Talend Open Studio for ESB.

The Routing family groups components that moves messages from one endpoint to another based on a set of
conditions.



cAggregate

106 Talend Open Studio for ESB Mediation Components Reference Guide

cAggregate

cAggregate

Component Family Routing

Function cAggregate aggregates messages together according to specified conditions.

Purpose cAggregate allows you to combine a number of messages together into a single
message.

Language Select the language of the expression you want to use
to filter your messages, from Constant, EL, Groovy,
Header, Javascript, JoSQL, JXPath, MVEL, None,
OGNL, PHP, Property, Python, Ruby, Simple, SpEL,
SQL, XPath, and XQuery.

Correlation expression/
Expression

Type in the expression that evaluates the correlation key
to be used for the aggregation.

Strategy Specify a Java bean to use as the aggregation strategy.

Completion conditions/
Number of messages

Select this check box to specify the number of messages
to aggregate per batch before the aggregation is
complete.

By default, this check box is selected and the
number of messages is set to 3. If you clear this
check box, and at least one of the other four
completion conditions is met, all the messages
retrieved will be aggregated in one batch.

Completion conditions/
Inactivity timeout (in
milliseconds)

Select this check box to specify the time (in
milliseconds) that an aggregated exchange should be
inactive before it is complete. This option can be set as
either a fixed value or using an Expression which allows
you to evaluate a timeout dynamically.

You can not use this option together with
Scheduled interval. Only one of them can be
used at a time.

Completion conditions/
Scheduled interval (in
milliseconds)

Select this check box to specify a repeating period (in
milliseconds) by which the aggregator will complete all
current aggregated exchanges.

You cannot use this option together with
Inactivity timeout. Only one of them can be
used at a time.

Completion conditions/
Predicate matched

Select this check box to specify a predicate to indicate
when an aggregated exchange is complete.

Basic settings

Completion conditions/
Batch consumer

Select this check box to aggregate all files consumed
from a file endpoint in a given poll.

Advanced settings Check completion
before aggregating

Select this check box to check for completion when a
new incoming exchange has been received. This option



cAggregate

Talend Open Studio for ESB Mediation Components Reference Guide 107

influences the behavior of the Predicate matched option
as the exchange being passed in changes accordingly.
When this option is disabled, the exchange passed
in the predicate is the aggregated exchange which
means any information you may store on the aggregated
exchange from the aggregation strategy is available for
the predicate. When this option is enabled, the exchange
passed in the predicate is the incoming exchange, which
means you can access data from the incoming exchange.

Close correlation group Select this check box to indicate that if a correlation key
has already been completed, then any new exchanges
with the same correlation key will be denied. When using
this option, enter a number in the Maximum bound field
to keep that last number of closed correlation keys.

Ignore invalid
correlation key

Select this check box to ignore the invalid correlation
key which could not be evaluated to a value. By default
Camel will throw an Exception on encountering an
invalid correlation key.

Group arriving
exchange

Select this check box to group all aggregated exchanges
into a single combined holder class that holds all the
aggregated exchanges. As a result only one exchange is
being sent out from the aggregator. This option can be
used to combine many incoming exchanges into a single
output exchange.

Use persistence Select this check box to plug in your own
implementation of the repository which keeps track of
the current in-flight aggregated exchanges. By default,
Camel uses a memory based implementation.

Repository This field appears when the Use persistence check box
is selected. The repository is AggregationRepository,
HawtDBAggregationRepository, or
RecoverableAggregationRepository.

AggregationRepository: The default repository used by
Camel which is a memory based implementation. Enter
the name of the repository in the field.

HawtDBAggregationRepository:
HawtDBAggregationRepository is an
AggregationRepository which persists the aggregated
messages on the fly. This ensures that you will not loose
messages. With this repository selected, the following
options appear:

Use persistent file: Select this check box to store the
aggregated exchanges in a file. Enter the name of the file
for the persistent storage in the Persistent file field. If
the file does not exists on startup, it will be created.

Recovery/Use recovery: Select this check box to
recover failed aggregated exchanges and have them
resubmitted automatically. In the Recovery interval
field, enter the interval (in milliseconds) to scan for
failed exchanges to recover and resubmit. By default this
interval is 5000 milliseconds. In the Dead letter channel
field, enter an endpoint URI for a Dead Letter Channel
where exhausted recovered exchanges will be moved.



Scenario: Aggregating three messages into one

108 Talend Open Studio for ESB Mediation Components Reference Guide

In the Maximum redeliveries field, enter the maximum
number of redelivery attempts for a given recovered
exchange.

RecoverableAggregationRepository:
RecoverableAggregationRepository is a JDBC based
AggregationRepository which persists the aggregated
messages on the fly. This ensures that you will not loose
messages. Enter the name of the repository in the field.

With this repository selected, the following options
appear:

Recovery/Use recovery: Select this check box to
recover failed aggregated exchanges and have them
resubmitted automatically. In the Recovery interval
field, enter the interval (in milliseconds) to scan for
failed exchanges to recover and resubmit. By default this
interval is 5000 milliseconds. In the Dead letter channel
field, enter an endpoint URI for a Dead Letter Channel
where exhausted recovered exchanges will be moved.
In the Maximum redeliveries field, enter the maximum
number of redelivery attempts for a given recovered
exchange.

Usage cAggregate is used as a middle or end component in a Route.

Aggregate Select this link to route messages to the next endpoint
according to the selected aggregation strategy.

Connections

Route Select this link to route all the messages from the sender
to the next endpoint.

Limitation n/a

Scenario: Aggregating three messages into one
In this scenario, the cAggregate component combines three messages from the local file system into one and prints
the messages in the console. A Java bean will be used as the aggregation strategy.

Creating a Java bean as the aggregation strategy

To aggregate the messages, we will use a Java bean that will help us build an aggregation strategy.

1. From the repository tree view, expand the Code node and right click the Beans node. In the contextual menu,
select Create Bean.



Scenario: Aggregating three messages into one

Talend Open Studio for ESB Mediation Components Reference Guide 109

2. The New Bean wizard opens. In the Name field, type in a name for the bean, for example, AggregateBody.
Click Finish to close the wizard.

3. Type in the codes as shown in the figure below. In this use case, we just want to aggregate all messages into
a single message.

package beans;

import org.apache.camel.Exchange;
import org.apache.camel.processor.aggregate.AggregationStrategy;

public class AggregateBody implements AggregationStrategy{

 public Exchange aggregate(Exchange oldEx, Exchange newEx) {
  if(oldEx==null){
   return newEx;
  }
  String oldBody = oldEx.getIn().getBody(String.class);
  String newBody = newEx.getIn().getBody(String.class);
  newEx.getIn().setBody(oldBody+newBody);
  return newEx;
 }
}

4. Press Ctrl+S to save your bean.



Scenario: Aggregating three messages into one

110 Talend Open Studio for ESB Mediation Components Reference Guide

Dropping and linking the components

1. From the Palette, expand the Messaging folder, and drop a cFile component onto the design workspace.

2. Expand the Routing folder, and drop a cAggregate component onto the design workspace.

3. Expand the Processor folder, and drop two cProcessor components onto the design workspace.

4. Right-click the cFile component, select Row > Route from the contextual menu and click the first cProcessor
component.

5. Repeat this operation to connect the first cProcessor component to the cAggregate component.

6. Right-click the cAggregate component, select Row > Aggregate from the contextual menu and click the
second cProcessor component.

7. Label all the components to better identify their functionality, as shown above.

Configuring the components

1. Double-click the cFile component, which is labelled File_source, to display its Basic settings view in the
Component tab.

2. In the Path field, browse to or enter the input file path, and leave the other parameters as they are.

In this scenario, there are four text files in the specified directory: a.txt, b.txt, c.txt and d.txt, the contents of
which are This is a! , This is b! , This is c! , and This is d!  respectively.

3. Double-click the cAggregate component, which is labelled Aggregator, to display its Basic settings view
in the Component tab.



Scenario: Aggregating three messages into one

Talend Open Studio for ESB Mediation Components Reference Guide 111

4. In the Language field, select Constant or Simple as the expression language.

In the Expression field, enter the expression "getBody(String.class)" to retrieve the body of the
message.

In the Strategy field, enter the name of the Java bean AggregateBody you just created.

Select the Number of messages check box and type in 2 in the field.

5. Double-click the cProcessor component labelled Monitor_before to display its Basic settings view in the
Component tab.

6. In the Code box, customize the code as follows so that the Run console displays the message contents before
an aggregation takes place:

System.out.println("Before aggregation: "+
exchange.getIn().getBody(String.class));

7. In the same way, configure the cProcessor component labelled Monitor_after so that the Run console displays
the message contents after an aggregation takes place:

System.out.println("After aggregation: "+
exchange.getIn().getBody(String.class));

8. Press Ctrl+S to save your route.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to have a look at the generated code.



Scenario: Aggregating three messages into one

112 Talend Open Studio for ESB Mediation Components Reference Guide

As shown in the code, a message from the File_source endpoint is routed via cProcessor_1 and
then aggregated according to the condition .aggregate.

2. Click the Run view to display it and click the Run button to launch the execution of your route. You can
also press F6 to execute it.

RESULT: The four messages are aggregated in two batches, two messages combined into one each batch.



cDynamicRouter

Talend Open Studio for ESB Mediation Components Reference Guide 113

cDynamicRouter

cDynamicRouter properties

Component Family Routing

Function cDynamicRouter allows you to route messages while avoiding the dependency
of the router on all possible destinations.

Purpose cDynamicRouter is used to route a message or messages to different endpoints
on specified conditions.

Basic settings Bean class Enter the name of the bean class to be used for the
dynamic router.

Specify the method Select this check box to specify the method to be used
which is defined in the bean class.

Ignore Invalid
Endpoints

Select this check box to ignore unresolved endpoint
URIs. Clear the check box to throw an exception when
endpoint URIs are not valid.

Usage cDynamicRouter is used as a middle or end component in a Route.

Limitation  n/a

Scenario: Routing files conditionally to different file
paths

In this scenario, three file messages containing people information are routed to different endpoints according to
the city names they contain.

The following is an extract of the example XML files used in this use case:

Message_1.xml:

<person>
  <firstName>Ellen</firstName>
  <lastName>Ripley</lastName>
  <city>Washington</city>
</person>

Message_2.xml:

<person>
  <firstName>Peter</firstName>
  <lastName>Green</lastName>
  <city>London</city>
</person>

Message_3.xml:



Scenario: Routing files conditionally to different file paths

114 Talend Open Studio for ESB Mediation Components Reference Guide

<person>
  <firstName>Alice</firstName>
  <lastName>Yang</lastName>
  <city>Beijing</city>
</person>

A predefined Java bean, setDynaURI, is called in this use case to return endpoint URIs according to the city name
contained in each message, so that the message containing the city name Washington will be routed to endpoint
Washington and so forth.

For more information about creating and using Java Beans, see Talend Open Studio for ESB User Guide.

package beans;

import org.apache.camel.Exchange;
import org.apache.camel.Header;
import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NodeList;

public class setDynaURI {

 public String setURI(Document document,
      @Header(Exchange.SLIP_ENDPOINT) String previous) {
    if(previous!=null){
     return null;
    }
  NodeList cities = document.getDocumentElement().getElementsByTagName(
    "city");
  Element city = (Element) cities.item(0);
  String textContent = city.getTextContent();
   return "direct:"+textContent;
  } 
}

Dropping and linking the components



Scenario: Routing files conditionally to different file paths

Talend Open Studio for ESB Mediation Components Reference Guide 115

1. From the Palette, expand the Messaging folder, and drop one cFile and three cMessagingEndpoint
components onto the design workspace.

2. Expand the Routing folder, and drop a cDynamicRouter component onto the design workspace.

3. Expand the Processor folder, and drop three cProcessor components onto the design workspace.

4. Label the components for better identification of their respective functionality.

5. Right-click the cFile component, select Row > Route from the contextual menu and click the
cDynamicRouter component.

6. Repeat this operation to connect the cMessagingEndpoint components to the cProcessor components.

Configuring the components and connections

1. Double-click the input cFile component to display its Basic settings view in the Component tab and set
its properties.

In this use case, simply specify the input file path and leave the other parameters as they are.

2. Double-click the cDynamicRouter component to display its Basic settings view in the Component tab.

3. In the Bean class field, type in the name of the predefined Java bean. Leave the Specify the method check
box unselected as there is only one method in the Java bean and leave the Ignore Invalid Endpoints check
box unselected if you want the component to throw an exception when endpoint URIs are not valid.



Scenario: Routing files conditionally to different file paths

116 Talend Open Studio for ESB Mediation Components Reference Guide

4. Double-click the first cMessagingEndpoint component, which is labelled Washington, to display its Basic
settings view in the Component tab, and type in the URI in the URI field for the destination of your message.

Here, we want to use this component to retrieve the message routed to the URI direct:Washington, as shown
below.

5. Repeat this step to set the endpoint URIs for the other two cMessagingEndpoint components: direct:London
and direct:Beijing respectively.

6. Double-click the first cProcessor component, which is labelled Monitor_Washington, to display its Basic
settings view in the Component tab.

7. In the Code box, customize the code to display the file name of the message routed to the endpoint Washington
on the console.

System.out.println("Message on endpoint Washington: "+
exchange.getIn().getHeader("CamelFileName"));

8. Repeat these steps to configure the other two cProcessor components to display the file names of the messages
routed to the endpoints London and Beijing respectively.

9. Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to have a look at the generated code.



Scenario: Routing files conditionally to different file paths

Talend Open Studio for ESB Mediation Components Reference Guide 117

As shown in the code, the incoming message from the endpoint Message_source is routed
by .dynamicRouter to endpoints the URIs of which are dynamically set according to
beans.setDynaURI.class.

2. Click the Run view to display it and click the Run button to launch the execution of your Route.

You can also press F6 to execute it.

RESULT: The source messages are routed to different endpoints based on the city names contained in the
messages.



cIdempotentConsumer

118 Talend Open Studio for ESB Mediation Components Reference Guide

cIdempotentConsumer

cIdempotentConsumer properties

Component Family Routing

Function cIdempotentConsumer deduplicates messages and thereby prevents the
receiving message endpoint from receiving duplicate messages.

Purpose cIdempotentConsumer identifies messages that have already been sent to the
receiver and eliminates them. Messages are still sent by the sender but are ignored
by the receiver at the delivery stage.

Basic settings Repository Type Message identifiers need to be stored in a repository. For
new incoming messages, identifiers are checked against
the ones stored in the repository to identify and drop
duplicates. There are two ways to store them:

Memory: messages identifiers are stored temporarily.

The in-memory storage mode can easily run out
of memory and does not work in a clustered
environment.

File: messages identifiers are stored in a file. Specify the
path to this file in the File store field.

File store Specify the path and name of the file storing messages
identifiers.

Cache Size Type in the size of the cache, namely the number of
message identifiers to store.

Use language Select this check box if you want to specify the language
used in the Predicate field to specify the identifier of the
messages.

Expression Type in the expression to use to specify the identifier of
the messages.

Eager Select this check box to detect duplicate messages even
when messages are currently in progress; clear it to
detect duplicates only when messages have successfully
been processed.

By default, this check box is selected.

SkipDuplicate Select this check box to drop duplicates; clear it to ignore
duplicates so that all messages will be continued.

By default, this check box is selected.

Usage cIdempotentConsumer is used as a middle component in a Route.

Connections idemp The idemp link retrieves messages deduplicated by the
cIdempotentConsumer component.

Route As an optional link, the Route link retrieves all messages
from the message sender.



Scenario: Deduplicating messages while routing them

Talend Open Studio for ESB Mediation Components Reference Guide 119

Limitation  n/a

Scenario: Deduplicating messages while routing them

In this scenario, duplicated messages are filtered and only the unique one is routed to the destination.

Three XML files that have the same content, as shown below, are used in this use case.

<people>
 <person id="8">
  <firstName>Ellen</firstName>
  <lastName>Ripley</lastName>
  <city>Washington</city>
 </person>
</people>

Dropping and linking the components

This use case requires one cFile component, one cIdempotentComsumer component, and two cProcessor
components.

1. From the Palette, expand the Messaging folder, select the cFile component, and drop it onto the design
workspace as the message source component.

2. Expand the Routing folder, select the cIdempotentComsumer component and drop it onto the design
workspace as the message deduplicator.

3. Expand the Processor folder, drop two cProcessor components onto the design workspace, one as the
consumer for deduplicated messages and another for all messages.

4. Right-click the cFile component, select Row > Route from the contextual menu and click the
cIdempotentComsumer component.

5. Right-click the cIdempotentComsumer component, select Row > idemp from the contextual menu and
click the cProcessor component on the top.

6. Connect the cIdempotentComsumer component to the other cProcessor component using a Row > Route
connection. This optional connection will retrieve all the messages coming from the source.

7. Label the components to better identify their roles in the Route.



Scenario: Deduplicating messages while routing them

120 Talend Open Studio for ESB Mediation Components Reference Guide

Configuring the components and connections

1. Double-click the cFile component, which is labelled Source, to display its Basic settings view in the
Component tab.

2. In the Path field, specify the file path to the message source.

From the Encoding list, select the encoding type of your source files, and leave all the other parameters as
they are.

3. Double-click the cIdempotentComsumer component, which is labelled Deduplicator, to display its Basic
settings view in the Component tab.

4. From the Repository Type list, select between Memory and File to specify where the message identifiers
will be stored before the deduplication process. For this scenario, select File.

In the File store field, specify the location of the file storing message identifiers.

In the Expression field, enter an expression to filter the messages. In this scenario, enter the following
expression to filter the messages according to the person node of the XML files: xpath("/people/
person"), and leave all the other parameters as they are. Alternatively, you can select the Use language
check box, select XPath from the Language list, and enter "/people/person" in the Predicate field.

5. Double-click the cProcessor component labelled Unique to display its Basic settings view in the Component
tab.



Scenario: Deduplicating messages while routing them

Talend Open Studio for ESB Mediation Components Reference Guide 121

6. In the Code area, customize the code to display the file name of the message that passes the deduplication:

System.out.println("Message consumed on Unique: "+
exchange.getIn().getHeader("CamelFileName"));

7. Repeat these steps to configure the other cProcessor component, which is labelled All, to display the file
names of all the messages coming from the source:

System.out.println("Message consumed on All: "+
exchange.getIn().getHeader("CamelFileName"));

8. Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to view the generated code.

In this partially shown piece of code, messages from the Source are filtered according to the expression
xpath("/people/person") and deduplicated by cIdempotentConsumer_1.

2. Click the Run view to display it and click the Run button to launch the execution of your Route. You can
also press F6 to execute it.

RESULT: When several files have the same content, only the first one is routed to the receiving endpoint.



Scenario: Deduplicating messages while routing them

122 Talend Open Studio for ESB Mediation Components Reference Guide



cLoadBalancer

Talend Open Studio for ESB Mediation Components Reference Guide 123

cLoadBalancer

cLoadBalancer properties

Component Family Routing

Function cLoadBalancer allows you to distribute messages across multiple endpoints using
different load balancing strategies.

Purpose cLoadBalancer allows you to distribute messages among several endpoints using a
variety of load balancing strategies.

Basic settings Strategy Select between Random, Round Robin, Sticky, Topic,
Failover, and Custom. Each method is described below.

Random The receiving endpoint is chosen randomly at each exchange.

Round Robin Messages are distributed according to the round robin method which distributes the load
evenly.

Sticky Language Select the language of the expression to use in the Expression
field to distribute the messages.

Expression Type in the expression that will be used to calculate a correlation
key that will determine the endpoint to choose.

Topic Select this option to send all the messages to all the endpoints.

Failover Basic mode By default, the failover load balancing always sends the
messages to the first endpoint. If the first endpoint fails, the
messages are sent to subsequent endpoints.

Specify exceptions Specify the exceptions to which the failover should react to in
the Exception table.

Use with Round robin Select this option to use failover with advanced options.

From the Maximum failover attempt list, select the number of
attempt to be proceed before giving up the transfer:

-Attempt forever: always attempts to transfer the messages and
always try to failover.

-Never failover: gives up immediately the transfer of messages
and never try to failover.

-A number of attempts: attempts n number of time to transfer
messages, specify that number in the Number of attempts field.

Inherit error handler: Select true if you want Camel error
handler to be used. If you select false, the load balancer will
immediately failover when an exception is thrown.

Use Round robin: Select true if you want to combine failover
with round robin. Failover load balancing with round robin mode
distributes the load evenly between the services, and it provides
automatic failover.

Custom Load balancer Type in the name of your custom load balancer.



Scenario: Distributing messages to receiver endpoints based on round robin

124 Talend Open Studio for ESB Mediation Components Reference Guide

Usage cLoadBalancer is used as a middle component in a Route.

Connections Load Balance Select this link to route messages to the next endpoint according
to the selected load-balancing strategy.

Route Select this link to route all the messages from the sender to the
next endpoint.

Limitation  n/a

Scenario: Distributing messages to receiver endpoints
based on round robin

In this scenario, a cLoadBalancer component is used to distribute four messages evenly to two receiving endpoints
in accordance with the round robin load balancing method.

Dropping and linking the components

This scenario requires one cFile component as the message sender, one cLoadBalancer component to distribute
the messages to two different receivers in a load balancing manner, two cJavaDSLProcessor components to
define the URIs of the receivers, two cMessagingEndpoint components to retrieve the messages routed to the
two receivers, and two cProcessor components to display the effect of round robin load balancing.

1. From the Messaging folder of the Palette, drop one cFile component and two cMessagingEndpoint
components onto the workspace, and label them according to their roles in the Route: Sender, Receiver_A,
and Receiver_B respectively.

2. From the Routing folder, drop a cLoadBalancer component onto the design workspace, and label it
Load_balancer.

3. From the Processor folder, drop two cJavaDSLProcessor components and two cProcessor components onto
the design workspace, and label them according to their roles in the Route: To_Receiver_A, To_Receiver_B,
Monitor_A, and Monitor_B respectively.

4. Link the cFile component to the cLoadBalancer component using a Row > Route connection.

5. Link cLoadBalancer to each of the two cJavaDSLProcessor components using a Row > Load Balance
connection.



Scenario: Distributing messages to receiver endpoints based on round robin

Talend Open Studio for ESB Mediation Components Reference Guide 125

6. Link each of the two cMessagingEndpoint components to the corresponding cProcessor component using
a Row > Route connection.

Configuring the components and connections

1. Double-click the cFile component to open its Basic Settings view in the Component tab.

2. In the Path field, specify the file path to message source.

3. From the Encoding list, select the encoding type of your message files. Leave the other parameters as they are.

4. Double-click the cLoadBalancer component to open its Basic Settings view in the Component tab, and
select the load balancing method you want to use from the Strategy list. In this scenario, we use the default
Round robin method.

5. Double-click the cJavaDSLProcessor component labeled To_Receiver_A to open its Basic Settings view
in the Component tab, and enter URI of the first receiver between the double quotation marks in the Code
area, direct:a in this example.



Scenario: Distributing messages to receiver endpoints based on round robin

126 Talend Open Studio for ESB Mediation Components Reference Guide

Repeat this step to define the URI of the other receiver, direct:b, in the cJavaDSLProcessor component
labeled To_Receiver_B.

6. Double-click the cMessagingEndpoint component labeled Receiver_A to open its Basic Settings view in
the Component tab, and enter URI of the first receiver between the double quotation marks in the URI field,
direct:a in this example.

Repeat this step to define the URI of the other receiver, direct:b, in the cMessagingEndpoint component
labeled Receiver_B.

7. Double-click the cProcessor component labeled Monitor_A to open its Basic Settings view in the
Component tab, and customize the code in the Code area to display the file names of the messages routed
to Receiver_A on the console:

System.out.println("Message on Receiver_A: "+
exchange.getIn().getHeader("CamelFileName"));

Repeat this step to customize the code in the cProcessor component labeled Monitor_B to display the file
names of the messages routed to Receiver_B on the console.

8. Press Ctrl+S to save your Route.

Viewing the code and executing the Route

1. Click the Code tab at the bottom of the design workspace to check the generated code:

As shown above, while messages are routed from the source endpoint .to the destination endpoints, routing
load balancing is implemented according to the .roundRobin() method by cLoadBalancer_1.

2. Press F6 to run your Route.

RESULT: Of the four messages from the sender, two are routed to Receiver_A and two are routed to
Receiver_B in a round robin manner.



Scenario: Distributing messages to receiver endpoints based on round robin

Talend Open Studio for ESB Mediation Components Reference Guide 127



cMessageFilter

128 Talend Open Studio for ESB Mediation Components Reference Guide

cMessageFilter

cMessageFilter properties

Component Family Routing

Function cMessageFilter filters the content of messages according to the specified criterion and
routes the filtered messages to the specified output channel. All messages that do not match
the criteria will be dropped.

For more information on the Camel Message Filter EIP: http://camel.apache.org/message-
filter.html.

Purpose Use cMessageFilter to eliminate unwanted messages from a channel according to the
defined criterion.

Basic settings Language Select the language of the expression you use to filter your messages from
Constant, EL, Groovy, Header, JavaScript, JoSQL, JXPath, MVEL,
None, OGNL, PHP, Property, Python, Ruby, Simple, SpEL, SQL,
XPath, and XQuery.

Expression Type in the expression to use to filter the messages.

Usage cMessageFilter is used as a middle component in a Route.

Connections Filter Select this link to route the filtered messages to the next endpoint.

Route Select this link to route all the messages from the sender to the next
endpoint.

Limitation  n/a

Scenario: Filtering messages according to a criterion
In this use case, we filter XML messages that are sent from the sending endpoint according to a defined criterion:
only the XML files in which the value of the city node is Paris are sent to a folder named Paris_only.

Of the four XML files used in this scenario, Message_1.xml and Message_4.xml contain the city name of Paris.
The following is an example:

<person>
  <firstName>Pierre</firstName>
  <lastName>Dupont</lastName>
  <city>Paris</city>
</person>

Dropping and linking the components

This scenario requires one cMessageFilter component to filter the messages from the sender, one cFile component
as the message sender, one cFile component to receiver the messages containing Paris, one cFile component to
receiver all the messages from the sender, and two cProcessor components to monitor the messages routed to
the two receivers.

http://camel.apache.org/message-filter.html
http://camel.apache.org/message-filter.html


Scenario: Filtering messages according to a criterion

Talend Open Studio for ESB Mediation Components Reference Guide 129

1. From the Messaging folder of the Palette, drop three cFile components onto the design workspace, and label
them Sender, Paris_only, and Unfiltered respectively to better identify their roles.

2. From the Routing folder, drop a cMessageFilter component onto the design workspace, and label it Filter.

3. From the Processor folder, drop two cProcessor components onto the design workspace, and label them
Monitor_Paris and Monitor_Unfiltered respectively.

4. Right-click the cFile component labeled Sender, select Row > Route from the contextual menu and click
the cMessageFilter component.

5. Right-click the cMessageFilter component, select Row > Filter from the contextual menu and click the cFile
component labeled Paris_only. This endpoint will retrieve the messages that meet the defined criterion.

6. Right-click the cMessageFilter component, select Row > Route from the contextual menu and click the
cFile component labeled Unfiltered. This endpoint will collect all the messages, including those meeting the
filter criterion. This connection is optional.

7. Right-click the cFile component labeled Paris_only, select Row > Route from the contextual menu and click
the cProcessor component labeled Monitor_Paris. Repeat this step to connect the cFile component labeled
Unfiltered to the cProcessor component labeled Monitor_Unfiltered.

Configuring the components and connections

1. Double-click the cFile component labeled Sender to open its Basic settings view in the Component tab.

2. In the Path field, specify the file path to message source.

3. From the Encoding list, select the encoding type of your message files. Leave the other parameters as they are.



Scenario: Filtering messages according to a criterion

130 Talend Open Studio for ESB Mediation Components Reference Guide

4. Double-click the cMessageFilter component to open its Basic settings view in the Component tab.

5. Select the language of the expression you want to use to filter your messages, and enter an expression to
define a criterion according to which you want to filter your messages.

In this scenario, we want to sort out the XML files containing a city node with the value of Paris, so
we select XPath from the Language list, and fill the in the Expression field with this expression: "/
person[city='Paris']".

6. Double-click the cFile component labeled Paris_only to open its Basic settings view in the Component
view, and specify the path for the messages meeting the filter criterion in the Path field.

Repeat this step to define the path for all the messages from the sender in the cFile component labeled
Unfiltered.

7. Double-click the cProcessor component labeled Monitor_Paris to open its Basic settings view in the
Component view, and customize the code in the Code area to display the file names of the messages that
meet the filter criterion on the console:

System.out.println("Message sent to folder Paris_only: "+
exchange.getIn().getHeader("CamelFileName"));

Repeat this step to customize the code in the cProcessor component labeled Monitor_Unfiltered to display
the file names of all the messages from the sender.

8. Press Ctrl+S to save your Route.

Viewing the code and executing the Route

1. To have a look at the generated code, click the Code tab at the bottom of the design workspace.



Scenario: Filtering messages according to a criterion

Talend Open Studio for ESB Mediation Components Reference Guide 131

As shown in this piece of code, messages from the sender are filtered by cMessageFilter_1 according
to .xpath("/person[city='Paris']") and the messages matching the filter are send .to the
endpoint Paris_only, while all messages are sent .to the endpoint Unfiltered.

2. Click the Run view to display it and click the Run button to launch the execution of your Route.

You can also press F6 to execute it.

RESULT: The messages are filtered according to the defined criterion and the messages containing "Paris"
are redirected to the Paris_only folder, all the messages, including those containing "Paris", are sent to the
Unfiltered folder.



cMessageRouter

132 Talend Open Studio for ESB Mediation Components Reference Guide

cMessageRouter

cMessageRouter properties

Component Family Routing

Function cMessageRouter routes messages in different channels according to specified
conditions.

Purpose cMessageRouter creates different channels for each filtered message types so
that messages can later on be treated more accurately in each new channel.

Usage cMessageRouter is used as a middle component in a Route. It can only have one
input channel but multiple output channels. Messages can be outputted through
either a When, Otherwise or Route types of connection.

Connections Trigger / When Select the When link and click the Component view.

In the Type list, select the type of language you will use to
declare your condition.

In the Condition field, type in the condition that will be
used to filter the messages.

All the messages that do not match this condition are
retrieved with the Otherwise link to a different channel or
dropped if an Otherwise link does not present.

There can be more than one When link in a Route.

Trigger / Otherwise This link automatically retrieves the messages that do not
match the When conditions.

There can be only one Otherwise link, which is
optional, in a Route.

Limitation It is recommended not to put any message handling after the When or the
Otherwise link. Always use a Mock/Direct endpoint to replace them and make
a new Route to handle the messages.

Scenario: Routing messages according to a criterion

In this use case, we route XML messages that are sent from the sending endpoint according to a defined criterion:
those XML files in which the value of the city node is Paris are sent to a folder named Paris_only, and other
messages are sent to a folder named Other_cities.



Scenario: Routing messages according to a criterion

Talend Open Studio for ESB Mediation Components Reference Guide 133

Of the four XML files used in this scenario, Message_1.xml and Message_4.xml contain the city name of Paris.
The following is an example:

<person>
  <firstName>Pierre</firstName>
  <lastName>Dupont</lastName>
  <city>Paris</city>
</person>

Dropping and linking the components

1. From the Messaging folder of the Palette, drop three cFile and four cMessagingEndpoint components
onto the design workspace, and label them Sender, Receiver_Paris, and Receiver_Others, directParis,
directOthers, directParisRoute, and directOthersRoute respectively to better identify their roles.

2. From the Routing folder, drop a cMessageRouter component onto the design workspace, and label it
Message_router.

3. From the Miscellaneous folder, drop two cLog components onto the design workspace, and label them
Monitor_Paris and Monitor_Others respectively.

4. Right-click the cFile component labeled Sender, select Row > Route from the contextual menu and click
the cMessageRouter component.

5. Right-click the cMessageRouter component, select Trigger > When from the contextual menu and click
the cMessagingEndpoint component labeled directParis. This endpoint will retrieve the messages that meet
the defined criterion.

6. Right-click the cMessageRouter component, select Trigger > Otherwise from the contextual menu and
click the cMessagingEndpoint component labeled directOthers. This endpoint will collect all the messages
that do not meet the filter criterion.

7. Right-click the cMessagingEndpoint component labeled directParis, select Row > Route from the
contextual menu and click the cFile component labeled Receiver_Paris. Repeat this operation to link
the component labeled Receiver_Paris to Monitor_Paris, directOthersRoute to Receiver_Others, and
Receiver_Others to Monitor_Others respectively using the Row > Route connection.



Scenario: Routing messages according to a criterion

134 Talend Open Studio for ESB Mediation Components Reference Guide

Configuring the components and connections

The cMessageRouter component does not have any property as it filters and routes the messages from one
endpoint to others based on the conditions set in its When connection(s).

1. Double-click the cFile component labeled Sender to open its Basic settings view in the Component tab.

2. In the Path field, specify the file path to message source.

From the Encoding list, select the encoding type of your message files. Leave the other parameters as they are.

3. In the design workspace, click the When connection you created and click the Component view to define
a filter against which messages will be routed.

4. In the Type list, select xpath because the format of the messages used is XML.

In the Condition field, type in "/person[city='Paris']" to retrieve only those messages in which
the value of the city node is Paris.

5. Double-click the cMessagingEndpoint component labeled directParis to open its Basic settings view in the
Component tab.

6. In the URI field, enter the endpoint URI, for example, "direct:Paris" to receive the filtered message.



Scenario: Routing messages according to a criterion

Talend Open Studio for ESB Mediation Components Reference Guide 135

7. Repeat these steps to set the endpoint URI of the cMessagingEndpoint components labeled directOthers as
"direct:Others". Set the endpoint URIs of the cMessagingEndpoint components labeled directParisRoute
and directOthersRoute as "direct:Paris" and "direct:Others" respectively.

8. Double-click the cFile component labeled Receiver_Paris to open its Basic settings view in the Component
tab, and specify the path for the messages meeting the filter criterion in the Path field.

Repeat this step to define the path for all the other messages from the sender in the cFile component labeled
Receiver_Others.

9. Double-click the cLog component labeled Monitor_Paris to open its Basic settings view in the Component
tab.

10. Select INFO in the Level list. Select the Specify output log message option and enter the following code in
the Message field to display the filename of the message sent to the specified directory.

Message sent to folder Paris_only: ${header.CamelFileNameOnly}

Repeat this step to customize the message in the cLog component labeled Monitor_Others to display the
filename of the message sent to the specified directory.

11. Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to have a look at the generated code.



Scenario: Routing messages according to a criterion

136 Talend Open Studio for ESB Mediation Components Reference Guide

As shown in the code, the messages are routed according to conditions initialized with the .choice() piece
of code. The filter you defined is initialized with the .when() piece of code, and the non filtered messages
are routed through the .otherwise() piece of code.

2. Click the Run button in the Run view or press F6 to execute your Route.

RESULT: The files containing “Paris” are sent to a folder named Paris_only, and the other messages are
sent in a folder called Other_cities.



cMulticast

Talend Open Studio for ESB Mediation Components Reference Guide 137

cMulticast

cMulticast properties

Component Family Routing

Function cMulticast routes one or more messages to a number of endpoints at one go.

Purpose cMulticast is used to route one or more messages to a number of endpoints at one
go and process them in different ways.

Basic settings URIS Add as many lines as needed in the URIs table to define the
endpoints to route the message(s) to.

Send in parallel Select this check box to multicast the message(s) to the
specified endpoints simultaneously.

Set timeout Select this check box and set a timeout in the Timeout field,
in milliseconds. If cMulticast fails to send and process all
the messages within the set timeframe, it breaks out and
continues.

Note that this check box appears only when the Send in
parallel check box is selected.

Use Aggregation
Strategy

Select this check box to refer to a predefined Java bean as
an aggregation strategy for assembling the messages from
the message source into a single outgoing message.

By default, the last message acts as the outgoing message.

Usage cMulticast can be used as a middle or end component in a Route.

Limitation  n/a

Scenario: Multicasting a message to two endpoints
and using it to enrich the contents received by the
third endpoint

In this scenario, a cMulticast component is used to route a message to two endpoints. Afterwards, that message
is added to the contents received by the third endpoint by using a cContentEnricher component.



Scenario: Multicasting a message to two endpoints and using it to enrich the contents received by the third
endpoint

138 Talend Open Studio for ESB Mediation Components Reference Guide

To build the Route, do the following.

Dropping and linking the components

1. Drag and drop the following components from the Palette onto the workspace: one cFile, three
cMessagingEndpoint, four cProcessor, one cMulticast and one cContentEnricher. For better
identification of the components' functionalities, change the labels of the three cMessagingEndpoint
components to direct_a, direct_b and direct_c, and change the labels of the four cProcessor components
to source_print, direct_a_print, direct_b_print and direct_c_print.

2. Link cFile to source_print using a Row > Route connection.

3. Link source_print to cMulticast using a Row > Route connection.

4. Link direct_a to cContentEnricher using a Row > Route connection.

5. Link cContentEnricher to direct_a_print using a Row > Route connection.

6. Link direct_b to direct_b_print using a Row > Route connection.

7. Link direct_c to direct_c_print using a Row > Route connection.

Configuring the components

Configuring the data source and the multicast recipients

1. Double-click cFile to open its Basic settings view in the Component tab.



Scenario: Multicasting a message to two endpoints and using it to enrich the contents received by the third
endpoint

Talend Open Studio for ESB Mediation Components Reference Guide 139

2. In the Path field, type in the path to the source message, for example, "E:/data/input/multicast". Keep the
default settings for other fields.

3. Double-click source_print to open its Basic settings view in the Component tab.

4. In the Code box, enter the code below to get the source message body and print it out.

String body = exchange.getIn().getBody(String.class);
System.out.println("Here is the original body:" 
+ exchange.getIn().getBody(String.class));

5. Double-click cMulticast to open its Basic settings view in the Component tab.

6. In the URIS table, click the plus button to add a line where you need to type in the URIs of the endpoints to
receive the multicast message, for example, "direct:a","direct:b".

7. Double-click direct_a to open its Basic settings view in the Component tab.



Scenario: Multicasting a message to two endpoints and using it to enrich the contents received by the third
endpoint

140 Talend Open Studio for ESB Mediation Components Reference Guide

8. In the URI field, enter the endpoint URI, for example, "direct:a".

Perform the same operation to direct_b and direct_c and type in the URIs of "direct:b" and "direct:c"
respectively.

Configuring the content enricher and printers

1. Double-click cContentEnricher to open its Basic settings view in the Component tab.

2. In the Resource URI field, type in the URI of the endpoint whose incoming contents will be enriched with
the message received by cContentEnricher, for example, "direct:c".

In the Merge data area, select using a producer to enable cContentEnricher to route the received message
to "direct:c".

3. Double-click direct_a_print to open its Basic settings view in the Component tab.

4. In the Code box, enter the code below to print out the message received by direct_a.

System.out.println("Direct a just
 downloaded:"+exchange.getIn().getBody(String.class));

Perform the same operation to direct_b_print and direct_c_print and type in the code below in their code
boxes in turn:

System.out.println("Direct b just
 downloaded:"+exchange.getIn().getBody(String.class));



Scenario: Multicasting a message to two endpoints and using it to enrich the contents received by the third
endpoint

Talend Open Studio for ESB Mediation Components Reference Guide 141

System.out.println("Direct c just
 downloaded:"+exchange.getIn().getBody(String.class));

5. Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to check the generated code.

As shown above, the route gets the original message from cFile_1, prints it out via cProcessor_1,
and then .multicast() it to( "direct:a", "direct:b"). Afterwards, the message received by
direct_a is used to .enrich("direct:c").

2. Press F6 to execute the Route.

The original message is multicast to direct_a and direct_b. Also, it is used to enrich the contents received
by direct_c.



Scenario: Multicasting a message to two endpoints and using it to enrich the contents received by the third
endpoint

142 Talend Open Studio for ESB Mediation Components Reference Guide



cRecipientList

Talend Open Studio for ESB Mediation Components Reference Guide 143

cRecipientList

cRecipientList properties

Component Family Routing

Function cRecipientList is designed to route messages to a number of dynamically
specified recipients.

Purpose cRecipientList allows you to route messages to a number of dynamically
specified recipients.

Basic settings Language Select the expression language from the drop-down list.

Expression Type in the expression that returns multiple endpoints.

Stop On Exception Select this check box to stop processing immediately when
an exception occurred.

Ignore Invalid
Endpoints

Select this check box to ignore invalid endpoints.

Parallel Processing Select this check box to send the message to the recipients
simultaneously.

Usage As a middle component, cRecipientList allows you to route messages to a number
of dynamically specified recipients.

Limitation  n/a

Scenario: Routing a message to multiple recipients

In this scenario, a cRecipientList component is used to route a message to a list of recipients.

To build the Route, do the following.



Scenario: Routing a message to multiple recipients

144 Talend Open Studio for ESB Mediation Components Reference Guide

Dropping and linking the components

1. Drag and drop the components from the Palette onto the workspace: cFile, cSetHeader, cRecipientList,
two cMessagingEndpoint and two cProcessor. Change the label of the cFile component to Read_Input.
Change the labels of the two cMessagingEndpoint components to Recipient_A and Recipient_B. Change
the labels of the two cProcessor components to Print_File_Name_A and Print_File_Name_B.

2. Link Read_Input to cSetHeader using a Row > Route connection.

3. Link cSetHeader to cRecipientList using a Row > Route connection.

4. Link Recipient_A to Print_File_Name_A using a Row > Route connection.

5. Link Recipient_B to Print_File_Name_B using a Row > Route connection.

Configuring the components

1. Double-click cFile to open its Basic settings view in the Component tab.

2. In the Path field, type in the path to the source message, for example, "E:/data/input". Keep other default
settings unchanged.

3. Double-click cSetHeader to open its Basic settings view in the Component tab.

4. In the Header field, enter the header name, for example, "ListOfRecipients".

In the Language list, select Constant.

In the Expression field, enter the endpoint URIs, for example, "direct:a,direct:b".

5. Double-click cRecipientList to open its Basic settings view in the Component tab.



Scenario: Routing a message to multiple recipients

Talend Open Studio for ESB Mediation Components Reference Guide 145

6. In the Language list, select Header.

In the Expression field, enter the name of the header that contains the recipients list, that is,
"ListOfRecipients".

7. Double-click Recipient_A to open its Basic settings view in the Component tab and define the URI of
recipient A.

Perform the same operation to Recipient_B to define the URI of recipient B.

8. Double-click Print_File_Name_A to open its Basic settings view in the Component tab and enter the code
below to print out the message received by Recipient_A.

System.out.println("Recipient_a just
 downloaded:"+exchange.getIn().getHeader("CamelFileName"));

Perform the same operation to Print_File_Name_B and type in the code below in its code box:

System.out.println("Recipient_b just
 downloaded:"+exchange.getIn().getHeader("CamelFileName"));

9. Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to check the generated code.



Scenario: Routing a message to multiple recipients

146 Talend Open Studio for ESB Mediation Components Reference Guide

As shown above, the route gets the message from Read_Input, and
.setHeader("ListOfRecipients") recipients using .constant("direct:a,direct:b").
Then, cRecipientList_1 reads .header("ListOfRecipients") and routes the message to the
recipients included in it.

2. Press F6 to execute the Route.

The message is sent to recipients included in the header.



cSplitter

Talend Open Studio for ESB Mediation Components Reference Guide 147

cSplitter

cSplitter properties

Component Family Routing

Function cSplitter splits a message into several submessages according to a condition.

Purpose cSplitter separates multiple elements of a message so that they can be handled
and treated differently in individual routes

Basic settings Expression Type in the expression to use to split the messages.

Usage cSplitter is used as a middle component in a Route.

split Select this link to route the splitted messages to the next
endpoint.

Connections

Route Select this link to route all the messages from the sender
to the next endpoint.

Limitation  n/a

Related scenario:

For a related scenario, see the section called “Scenario: Splitting a message and renaming the sub-messages
according to contained information” of the section called “cSetHeader”.



cRoutingSlip

148 Talend Open Studio for ESB Mediation Components Reference Guide

cRoutingSlip

cRoutingSlip properties

Component Family Routing

Function cRoutingSlip allows you to route a message or messages consecutively through
a series of processing steps, with the sequence of steps unknown at design time
and variable for each message.

Purpose cRoutingSlip is used to route a message or messages consecutively to a series of
endpoints.

Basic settings Header name Type in name of the message header as defined in the
preceding cSetHeader component, mySlip by default.
The header should carry a list of endpoint URIs you wish
each message to be routed to.

URI delimiter Delimiter used to separate multiple endpoint URIs
carried in the message header, comma (,) by default.

Usage cRoutingSlip is used as a middle or end component of a sub-route. It always
follows a cSetHeader component, which sets a header to each message to carry
a list of endpoint URIs.

Limitation n/a

Scenario 1: Routing a message consecutively to a
series of endpoints

In this scenario, messages from a file system is routed consecutively to a series of endpoints according to the URIs
carried in the message header.

Dropping and linking the components

This use case requires a cFile component as the message sender, a cSetHeader component to define a
series of endpoints, a cRoutingSlip component to route messages to the endpoints consecutively, three
cMessagingEndpoint components to retrieve messages routed to the endpoints, and three cProcessor components
to monitor messages routed to the connected messaging endpoints.



Scenario 1: Routing a message consecutively to a series of endpoints

Talend Open Studio for ESB Mediation Components Reference Guide 149

1. From the Palette, expand the Messaging folder, drop one cFile and three cMessagingEndpoint components
onto the design workspace, and label them to better identify their roles in the Route, as shown above.

2. From the Transformation folder, drop a cSetHeader component onto the design workspace, and label it to
better identify its role in the Route.

3. From the Routing folder, drop a cRoutingSlip component onto the design workspace, and label it to better
identify its role in the Route.

4. From the Processor folder, drop three cProcessor components onto the design workspace, and label them
to better identify their roles in the Route.

5. Right-click the cFile component, select Row > Route from the contextual menu and click the cSetHeader
component.

6. Right-click the cSetHeader component, select Row > Route from the contextual menu and click the
cRoutingSlip component.

7. Repeat this operation to connect the cMessagingEndpoint components to the corresponding cProcessor
components.

Configuring the components and connections

1. Double-click the cFile component, which is labelled Sender, to display its Basic settings view in the
Component tab.



Scenario 1: Routing a message consecutively to a series of endpoints

150 Talend Open Studio for ESB Mediation Components Reference Guide

2. In the Path field, fill in or browse to the path to the folder that holds the source files.

From the Encoding list, select the encoding type of your source files. Leave the other parameters as they are.

3. Double-click the cSetHeader component, which is labelled Set_endpoints, to display its Basic settings view
in the Component tab.

4. In the Header field, type in the name of the header you want to add to each message.

In this use case, we simply use mySlip, which is the default value filled in the Header name field of the
cRoutingSlip component.

5. From the Language list box, select the Constant or Simple, and in the Expression field, type in the URIs
you wish the message to be routed consecutively to, separated by a comma, which is the default value of the
URI delimiter field of the cRoutingSlip component.

In this use case, we want the message to be routed first to endpoint c, then to endpoint a, and finally to
endpoint b.

6. Double-click the cRoutingSlip component, which is labelled Routing_slip, to display its Basic settings view
in the Component tab, and define the message header in the Header name field and the URI delimiter in
the URI delimiter field.

In this use case, we simply use the default settings.

7. Double-click the cMessagingEndpoint component labelled Endpoint_a to display its Basic settings view in
the Component tab, and type in the URI in the URI field for the destination of your messages.

Here, we want to use this component to retrieve the message routed to the URI direct:a.



Scenario 1: Routing a message consecutively to a series of endpoints

Talend Open Studio for ESB Mediation Components Reference Guide 151

Repeat this step to set the endpoint URIs in the other cMessagingEndpoint components: direct:b and direct:c
respectively.

8. Double-click the cProcessor component, which is labelled Monitor_a, to display its Basic settings view in
the Component tab, and customize the code so that the console will display information the way you wish.

Here, we want to use this component to monitor the messages routed to the connected endpoint a and display
the file name, so we customize the code accordingly, as follows:

System.out.println("Message received on endpoint a: "+ 
exchange.getIn().getHeader("CamelFileName"));

Repeat this step to customize the code for the other two cProcessor components, for messages routed to the
connected endpoints b and c respectively.

System.out.println("Message received on endpoint b: "+ 
exchange.getIn().getHeader("CamelFileName"));

System.out.println("Message received on endpoint c: "+ 
exchange.getIn().getHeader("CamelFileName"));

9. Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to have a look at the generated code.

In this partially shown code, messages from the sender are given a header according to .setHeader, which
carries a list of URIs ("direct:c,direct:a,direct:b"), and then routed in the slip pattern according
by cRoutingSlip_1.

2. Click the Run view to display it and click the Run button to launch the execution of your Route.

You can also press F6 to execute it.



Scenario 2: Routing each message conditionally to a series of endpoints

152 Talend Open Studio for ESB Mediation Components Reference Guide

RESULT: The source file messages are routed consecutively to the defined endpoints: c, then a, and then b.

Scenario 2: Routing each message conditionally to a
series of endpoints

In this scenario, which is based on the previous scenario, each message from a file system is routed consecutively
to different endpoints according to the city name it contains.

All files used in this use case are named after the city name they contain. The following are the extracts of two
examples:

Beijing.xml:

<person>
    <firstName>Nicolas</firstName>
    <lastName>Yang</lastName>
    <city>Beijing</city>
</person>

Paris.xml:

<person>
  <firstName>Pierre</firstName>
  <lastName>Dupont</lastName>
  <city>Paris</city>
</person>

A predefined Java Bean, setEndpoints, is called in this use case to return endpoint URIs according to the city name
contained in each message, so that the messages will be routed as follows:

• The message containing the city name Paris will be routed first to endpoint a, then to endpoint b, and finally
to endpoint c.

• The message containing the city name Beijing will be routed first to endpoint c, then to endpoint a, and finally
to endpoint b.



Scenario 2: Routing each message conditionally to a series of endpoints

Talend Open Studio for ESB Mediation Components Reference Guide 153

• Any other messages will be routed to endpoint b and then to endpoint c.

For more information about creating and using Java Beans, see Talend Open Studio for ESB User Guide.

package beans;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NodeList;

public class setEndpoints {
 public String helloExample(Document document) {
  NodeList cities = document.getDocumentElement().getElementsByTagName(
    "city");
  Element city = (Element) cities.item(0);
  String textContent = city.getTextContent();
  if ("Paris".equals(textContent)) {
   return "direct:a,direct:b,direct:c";
  } else if ("Beijing".equals(textContent)) { 
   return "direct:c,direct:a,direct:b";
  } else
   return "direct:b,direct:c";
 }
}

Dropping and linking the components

In this scenario, we will reuse the Route set up in the previous scenario, without adding or removing any
components or modifying any connections.

Configuring the components and connections

In this scenario, we only need to configure the cSetHeader component to call the predefined Java Bean, and keep
the settings of all the other components are they are in the previous scenario.

1. Double-click the cSetHeader component to display its Basic settings view in the Component tab.

2. Select the Use bean check box, and in the Bean class field that appears, specify the Java Bean that will return
the endpoint URIs. In this use case, type in

beans.setEndpoints.class.



Scenario 2: Routing each message conditionally to a series of endpoints

154 Talend Open Studio for ESB Mediation Components Reference Guide

3. Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to have a look at the generated code.

In this partially shown code, messages from the sender are given a header according to .setHeader,
which carries a list of URIs returned by the beans.setEndpoints.class, and then routed to the
cRoutingSlip_1.

2. Click the Run view to display it and click the Run button to launch the execution of your Route.

You can also press F6 to execute it.

RESULT: The sources are routed consecutively to the defined endpoints: the message containing the city
name Beijing is routed first to endpoint c, then to endpoint a, and finally to endpoint b; the message containing
the city name Paris is routed first to endpoint a, then to endpoint b, and finally to endpoint c; the other
messages are routed to endpoint b and then to endpoint c.



cWireTap

Talend Open Studio for ESB Mediation Components Reference Guide 155

cWireTap

cWireTap properties

Component Family Routing

Function cWireTap allows you to route messages to a separate tap endpoint while it is
forwarded to the ultimate destination.

Purpose cWireTap is used to route messages to a separate endpoint while forwarded to
the ultimate destination.

Basic settings URI The endpoint URI to send the wire tapped message.

Populate new exchange Select this check box to populate a new exchange of the
message.

Populate Type This option appears when the Populate new exchange
check box is selected. The Populate Type is either
Expression or Processor.

Expression: Using expression allows you to set the
message body of the new exchange.

Language: Select the language of the expression you
want to use to set the message body between Constant,
Header, None, Property, Simple, XPath.

Expression: Enter the expression to set the message
body.

Processor: Using processor gives you full power to
specify how the exchange is populated as you can set
properties, headers and so on to the message with a piece
of Java code in the Code field.

Copy the original
message

Select this check box to use a copy of the exchange when
wire tapping the message. This option appears when the
Populate new exchange check box is selected.

Usage cWireTap can be a middle component in a Route.

Limitation  n/a

Scenario: Wiretapping a message in a Route

In this scenario, a cWireTap component is used to route a message to a separate endpoint while it is routed to
the ultimate destination.



Scenario: Wiretapping a message in a Route

156 Talend Open Studio for ESB Mediation Components Reference Guide

Dropping and linking the components

1. From the Palette, expand the Messaging folder, and drop a cFile and two cMessagingEndpoint components
onto the design workspace.

2. Expand the Routing folder, and drop a cWireTap component onto the design workspace.

3. Expand the Processor folder, and drop a cJavaDSLProcessor and two cProcessor components onto the
design workspace.

4. Right-click the cFile component, select Row > Route from the contextual menu and click the cWireTap
component.

5. Repeat this operation to connect the components as shown above.

6. Label the components to better identify their functionality.

Configuring the components

1. Double-click the cFile component labeled Source to display its Basic settings view in the Component tab.

2. In the Path field, browse to or enter the input file path. In this use case, there is a Hello.txt file in the specified
file path, which contains the content Hello World!. Leave the other parameters as they are.

3. Double-click the cWireTap component to display its Basic settings view in the Component tab.



Scenario: Wiretapping a message in a Route

Talend Open Studio for ESB Mediation Components Reference Guide 157

4. Enter "direct:a" in the URI field to route the wiretapped message to this endpoint.

Select the Populate new exchange check box, select Processor as the populate type, and then enter the
following code in the Code box to display the file name of the wiretapped message and its content on the
console:

System.out.println("\nMessage wiretapped: "+
exchange.getIn().getHeader("CamelFileName"));
System.out.println("Message content: "+
exchange.getIn().getBody(String.class)+"\n");

5. Double-click the cJavaDSLProcessor component to display its Basic settings view in the Component tab.

6. In the Code field, enter the Java code .to("direct:b") to define the URI of the endpoint to route the
original message to.

7. Double-click the cMessagingEndpoint component labeled Endpoint_a to display its Basic settings view in
the Component tab. Enter "direct:a" in the URI field to retrieve the message routed to this endpoint.

Repeat this operation to set the endpoint URI for Endpoint_b.

8. Double-click the cProcessor component labeled Monitor_a to display its Basic settings view in the
Component tab. Enter the following code in the Code box to display the file name of the message routed
to Endpoint_a.



Scenario: Wiretapping a message in a Route

158 Talend Open Studio for ESB Mediation Components Reference Guide

System.out.println("Message on endpoint a: "+
exchange.getIn().getHeader("CamelFileName"));

Then, configure the other cProcessor component in the same way to display the file name of the message
routed to Endpoint_b.

9. Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to have a look at the generated code.

In this partially shown code, any message from the endpoint Source will be wiretapped by .wireTap
and routed to "direct:a". The fine name and content of each wiretapped message will be displayed on the
console. The original message will be routed .to an endpoint identified by the URI "direct:b", which
is defined in cJavaDSLProcessor_1.

2. Click the Run view to display it and click the Run button to launch the execution of your Route. You can
also press F6 to execute it.



Scenario: Wiretapping a message in a Route

Talend Open Studio for ESB Mediation Components Reference Guide 159

RESULT: The source message is wiretapped and routed to endpoint a as well as being routed to endpoint b.



Talend Open Studio for ESB Mediation Components Reference Guide



Talend Open Studio for ESB Mediation Components Reference Guide

Transformation components
This chapter details the major components that you can find in Transformation family from the Palette of the
Mediation perspective of Talend Open Studio for ESB.

The Transformation family groups component that execute data transformation processes.



cContentEnricher

162 Talend Open Studio for ESB Mediation Components Reference Guide

cContentEnricher

cContentEnricher properties

Component Family Transformation

Function cContentEnricher is designed to use a consumer or producer to obtain additional
data, respectively intended for event messaging and request/reply messaging.

Purpose cContentEnricher allows you to use a consumer or producer to obtain additional
data, respectively intended for event message messaging and request/reply
messaging.

Basic settings Resource URI This refers to the destination to which a message will be
delivered if using a producer is selected; it refers to the
source from which a message will be obtained if using a
consumer is selected.

Using a producer Select this check box to use a producer to provide
additional data, i.e. sending a message to the defined URI.

Using a consumer Select this check box to use a consumer to obtain additional
data, i.e. requesting a message from the defined URI.

Use Aggregation
Strategy

Select this check box to define the aggregation strategy for
assembling the basic message and the additional data.

Specify timeout This area appears when Using a consumer is selected. The
timeout options are as follows:

Wait until a message arrive: the component keeps waiting
for a message.

Immediately polls the message: the component
immediately polls from the defined URI.

Waiting at most until the timeout triggers: select this
check box to type in a timeout value in Millis. The
component waits for the message only within the defined
time period.

Usage cContentEnricher allows you to use a consumer or producer to obtain additional
data, respectively intended for event message messaging and request/reply
messaging.

Limitation  n/a

Scenario: Receiving messages from a list of URLs

In this scenario, we will use the Camel component HTTP4 and the cContentEnricher component to retrieve
messages from a list of URLs. To do this, we need to build two sub-routes, one to read a file with a list of URLs
and send the messages to the local file system, the other to retrieve the messages on these URLs.



Scenario: Receiving messages from a list of URLs

Talend Open Studio for ESB Mediation Components Reference Guide 163

In this use case, we will take a list of URLs on the local Tomcat server as the example. So we need to start Apache
Tomcat before executing the Route.

A TXT file URLlist is used to provide the list of URLs, as shown below.

docs/introduction.html
docs/setup.html

Dropping and linking the components

1. From the Palette, drag and drop a cSplitter, a cJavaDSLProcessor, a cContentEnricher, two cFile, two
cMessagingEndpoint, and three cSetHeader components onto the design workspace.

2. Label the components properly for better identification of their roles and link them using the Row > Route
connection as shown above.

Configuring the components

Configuring the first sub-route

1. Double-click the URLlist component to display its Basic settings view in the Component tab.

2. In the Path field, browse to the file path where the URL list file is saved.

In the FileName field, enter the filename URLlist.txt.



Scenario: Receiving messages from a list of URLs

164 Talend Open Studio for ESB Mediation Components Reference Guide

3. Double-click the cSplitter component to display its Basic settings view in the Component tab.

4. In the Expression field, enter the code body(String.class).tokenize("\r\n") to split the
message in each row into sub-messages.

Note that this piece of code is for Windows only. For Unix,
change it to body(String.class).tokenize("\n"), and for Mac,
body(String.class).tokenize("\r").

5. Double-click the cJavaDSLProcessor component to display its Basic settings view in the Component tab.

6. In the Code area, enter the code .log("splitterOutput: ${body}") to get the splitted message
body.

7. Double-click the cContentEnricher component display its Basic settings view in the Component tab.

8. Select using a producer to use a producer to provide additional data and send the message to a defined URI.

In the Resource URI field, enter "direct:fetchURL" where the message will be delivered.

9. Double-click the setFileName component to display its Basic settings view in the Component tab.



Scenario: Receiving messages from a list of URLs

Talend Open Studio for ESB Mediation Components Reference Guide 165

10. In the Header field, enter org.apache.camel.Exchange.FILE_NAME to define the file name for
each incoming message.

Select Simple in the Language list.

In the Expression field, enter "${header.CamelHttpPath}" to get the URI's path of the incoming
message.

11. Double-click the retrievedFiles component to display its Basic settings view in the Component tab.

12. In the Path field, browse to the destination file path where you want the messages to be saved.

Configuring the second sub-route

1. Double-click the fetchURL component to display its Basic settings view in the Component tab.

2. In the URI field, enter "direct:fetchURL" that is defined in the cContentEnricher component.

3. Double-click the setURI component to display its Basic settings view in the Component tab.



Scenario: Receiving messages from a list of URLs

166 Talend Open Studio for ESB Mediation Components Reference Guide

4. In the Header field, enter org.apache.camel.Exchange.HTTP_URI to define the HTTP URI of
each message.

Select Simple in the Language list.

In the Expression field, enter "http://localhost:8080" of the local Tomcat server.

5. Double-click the setPATH component to display its Basic settings view in the Component tab.

6. In the Header field, enter org.apache.camel.Exchange.HTTP_PATH to define the HTTP path of
each message.

Select Simple in the Language list.

In the Expression field, enter "${body}" that is splitted from the original message.

7. Double-click the http4Endpoint component to display its Basic settings view in the Component tab.

8. In the URI field, enter "http4:localhost:8080" to consuming HTTP resources on the local Tomcat server.

9.
Click the Advanced settings view. Click  at the bottom of the Dependencies list to add a row and select
http4 from the drop-down list. For more information about HTTP4, see the site http://camel.apache.org/
http4.html.

http://camel.apache.org/http4.html
http://camel.apache.org/http4.html


Scenario: Receiving messages from a list of URLs

Talend Open Studio for ESB Mediation Components Reference Guide 167

Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to have a look at the generated code.

As shown above, a message route is built from the URLlist to the retrievedFiles via the
.split, .log, .enrich, and .setHeader. The other message route is built from fetchURL to
http4Endpoint via two .setHeader.

2. Press F6 to execute the Route.



Related scenario

168 Talend Open Studio for ESB Mediation Components Reference Guide

RESULT: The splitted message is printed on the Run console.

The messages from the list of URLs are saved in defined directory of the local file system.

Related scenario

For a related scenario, see:

• cMulticast: the section called “Scenario: Multicasting a message to two endpoints and using it to enrich the
contents received by the third endpoint”.



cConvertBodyTo

Talend Open Studio for ESB Mediation Components Reference Guide 169

cConvertBodyTo

cConvertBodyTo properties

Component Family Transformation

Function cConvertBodyTo converts the message body to the given class type.

Purpose cConvertBodyTo is used to convert the message body to a given class type.

Basic settings Target Class Name Enter the name of the class type that you want to convert
the message body to.

Usage cConvertBodyTo is used as a middle component in a Route.

Limitation

Scenario: Converting the body of an XML file into an
org.w3c.dom.Document.class

In this scenario, a cConvertBodyTo component is used to convert the body of an XML file into an
org.w3c.dom.Document.class. Then a cBean component imports the org.w3c.dom.Document class, checks its
contents and prints out the root element name and the content of each category element.

The XML file is as follows:

<bookstore>
    <bookshelf>
        <category>Cooking</category>
        <quantity>100</quantity>
    </bookshelf>
    <bookshelf>
        <category>Languages</category>
        <quantity>200</quantity>
    </bookshelf>
    <bookshelf>
        <category>Arts</category>
        <quantity>300</quantity>
    </bookshelf>
    <bookshelf>
        <category>Science</category>
        <quantity>400</quantity>
    </bookshelf>
</bookstore>



Scenario: Converting the body of an XML file into an org.w3c.dom.Document.class

170 Talend Open Studio for ESB Mediation Components Reference Guide

Dropping and linking the components

1. Drag and drop the following components from the Palette onto the workspace: cFile, cConvertBodyTo and
cBean.

2. Link cFile to cConvertBodyTo using a Row > Route connection.

3. Link cConvertBodyTo to cBean using a Row > Route connection.

4. Label the components to better identify their functionality.

Configuring the components

1. Double-click the cFile component, which is labelled Read_message, to open its Basic settings view in the
Component tab.

2. In the Path field, enter or browse to the path to the source XML file.

3. If the source file folder contains more than one file, enter the name of the XML file of interest in the FileName
field, and leave the other parameters as they are.

4. Double-click the cConvertBodyTo component, which is labelled Convert_message_body, to open its Basic
settings view in the Component tab.



Scenario: Converting the body of an XML file into an org.w3c.dom.Document.class

Talend Open Studio for ESB Mediation Components Reference Guide 171

5. In the Target Class Name field, enter your target class name, org.w3c.dom.Document.class in this scenario.

6. Double-click the cBean component, which is labelled Print_content, to open its Basic settings view in the
Component tab.

7. In the Bean class field, enter the name of the bean to be invoked, beans.PrintConvertToBean.class in this
scenario.

Note that this bean has already been defined in the Code node of the Repository and it looks like this:

package beans;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NodeList;
public class PrintConvertToBean {

 /**
  * print input message
  * @param message
  */
 public static void helloExample(Document message) {
  if (message == null) {
   System.out.println("There's no message here!");
   return;
  }
  Element rootElement = message.getDocumentElement();
  if (rootElement == null) {
   System.out.println("There's no root element here!");
   return;
  }
  System.out.println("The root element name is:"
    + rootElement.getNodeName());
  System.out.println("The book categories are:");
  NodeList types = rootElement.getElementsByTagName("category");
  for(int i = 0;i<types.getLength();i++){
   Element child = (Element) types.item(i);
   System.out.println(child.getFirstChild().getNodeValue());
  }
 }
}

For more information about creating and using Java Beans, see Talend Open Studio for ESB User Guide.

8. Press Ctrl+S to save your Route.



Scenario: Converting the body of an XML file into an org.w3c.dom.Document.class

172 Talend Open Studio for ESB Mediation Components Reference Guide

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to check the generated code.

As shown above, the message from the endpoint Read_message has its
body converted to org.w3c.dom.Document.class by cConvertBodyTo_1. Then,
org.w3c.dom.Document.class is processed by
.bean(beans.PrintConvertToBean.class) invoked by cBean_1.

2. Press F6 to execute the Route.

RESULT: The root element name and the contents of the category elements are displayed.



cSetBody

Talend Open Studio for ESB Mediation Components Reference Guide 173

cSetBody

cSetBody properties

Component Family Transformation

Function cSetBody replaces the payload of each message sent to it.

Purpose cSetBody is used to replace the content of each message sent to it according to
expression value.

Basic settings Language Select the language of the expression you use to set
the content for matched messages, from Constant,
EL, Groovy, Header, JavaScript, JoSQL, JXPath,
MVEL, None, OGNL, PHP, Property, Python, Ruby,
Simple, SpEL, SQL, XPath, and XQuery.

Expression Type in the expression to set the message content.

Usage cSetBody is used as a middle component in a Route.

Limitation  n/a

Scenario: Replacing the content of messages with
their extracts

In this scenario, file messages are routed from one endpoint to another, with the content of each message replaced
with the information extracted from it.

The following is an example of the XML files used in this use case:

<people>
    <person>
        <firstName>Pierre</firstName>
        <lastName>Dubois</lastName>
        <city>Paris</city>
    </person>
</people>

Dropping and linking the components

This use case uses two cFile components, one as the message sender and the other as the receiver, a cSetBody
component to replace the content of the messages on route, and a cProcessor component to display the new content
of the messages routed to the receiving endpoint.



Scenario: Replacing the content of messages with their extracts

174 Talend Open Studio for ESB Mediation Components Reference Guide

1. From the Palette, expand the Messaging folder, and drop two cFile components onto the design workspace.

2. From the Transformation folder, drop a cSetBody component onto the design workspace, between the two
cFile components.

3. From the Processor folder, drop a cProcessor component onto the design workspace, following the second
cFile component.

4. Right-click the first cFile select Row > Route from the contextual menu and click the cSetBody component.

5. Repeat this operation to connect the cSetBody component to the second cFile component, and the second
cFile component to the cProcessor component.

6. Label the components to better identify their roles in the Route, as shown above.

Configuring the components and connections

1. Double-click the cFile component labeled Sender to display its Basic settings view in the Component tab.

2. In the Path field, fill in or browse to the path to the folder that holds the source files.

3. From the Encoding list, select the encoding type of your source files. Leave the other parameters as they are.

4. Repeat these steps to define output file path and encoding type in the Basic settings view of the other cFile
component, which is labeled Receiver.

5. Double-click the cSetBody component to display its Basic settings view in the Component tab.

6. From the Language list box, select the language of the expression you are going to use.

Here we are handling XML files, so select XPath from the list box.



Scenario: Replacing the content of messages with their extracts

Talend Open Studio for ESB Mediation Components Reference Guide 175

7. In the Expression field, type in the expression that will return the new message content you want.

In this use case, we want person to be the root element of each file when routed to the receiving endpoint,
so type in "/people/person" in the Expression field.

8. Double-click the cProcessor component to display its Basic settings view in the Component tab, and
customize the code so that the console will display information the way you wish.

In this use case, we want to display the file name and content of each message routed to the receiving endpoint,
so we customize the code as follows:

System.out.println("File received: " +
exchange.getIn().getHeader("CamelFileName") + 
"\nContent:\n " + 
exchange.getIn().getBody(String.class));

9. Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to have a look at the generated code.

In this partially shown code, a message route is built from one endpoint .to another, and while in routing,
the content of each message is replaced according to the condition .xpath("/people/person") by
"cSetBody_1".

2. Click the Run view to display it and click the Run button to launch the execution of your Route. You can
also press F6 to execute it.



Scenario: Replacing the content of messages with their extracts

176 Talend Open Studio for ESB Mediation Components Reference Guide

RESULT: The XML files are sent to the receiver, where person has become the root element of each file.



cSetHeader

Talend Open Studio for ESB Mediation Components Reference Guide 177

cSetHeader

cSetHeader properties

Component Family Transformation

Function cSetHeader sets a header on each message sent to it.

Purpose cSetHeader is used to set a header or customize the default header, if any, on each
message sent to it for subsequent message processing.

Basic settings Header Type in a name for the message header.

Use bean Select this check box if you want to call a predefined
Java Bean to return the header value.

When this check box is selected, a Bean class field
appears for you specify the Bean class to call.

Bean class Type in the Bean class that will return a
value for the message header, in the form of
beans.BEAN_NAME.class.

Language Select the language of the expression you use, from
Constant, EL, Groovy, Header, JavaScript, JoSQL,
JXPath, MVEL, None, OGNL, PHP, Property,
Python, Ruby, Simple, SpEL, SQL, XPath, and
XQuery.

This list box is hidden when the Use bean check box is
selected.

Expression Type in the expression to set the value of the message
header.

This field is hidden when the Use bean check box is
selected.

Usage cSetHeader is used as a middle component in a Route.

Limitation  n/a

Scenario: Splitting a message and renaming the sub-
messages according to contained information

In this scenario, a file message containing people information is split into sub-messages. Each sub-messages is
renamed according the city name it contains, and then routed to another endpoint.

The following is the example XML file used in this use case:

<people>
    <person>
        <firstName>Pierre</firstName>



Scenario: Splitting a message and renaming the sub-messages according to contained information

178 Talend Open Studio for ESB Mediation Components Reference Guide

        <lastName>Dubois</lastName>
        <city>Paris</city>
    </person>
    <person>
        <firstName>Nicolas</firstName>
        <lastName>Yang</lastName>
        <city>Beijing</city>
    </person>
    <person>
        <firstName>Ellen</firstName>
        <lastName>Ripley</lastName>
        <city>Washington</city>
    </person>
</people>

A predefined Java Bean, setFileNames, is called by the cSetHeader component used in this use case to define a
file name for each message according to the city name it contains. For more information about creating and using
Java Beans, see Talend Open Studio for ESB User Guide.

package beans;

import org.w3c.dom.Document;
import org.w3c.dom.Element;
import org.w3c.dom.NodeList;

public class setFileNames {
 public String getCityName(Document document) {
  NodeList cities = document.getDocumentElement().getElementsByTagName(
    "city");
  Element city = (Element) cities.item(0);
  String textContent = city.getTextContent();
   return textContent+".xml";
  }
}

Dropping and linking the components

This use case uses two cFile components, one as the message sender and the other as the receiver, a cSplitter
component to split the source message into sub-messages, a cSetHeader component to rename each sub-message,
and a cProcessor component to display the file name of each message routed to the receiver.

1. From the Palette, expand the Messaging folder, and drop two cFile components onto the design workspace.



Scenario: Splitting a message and renaming the sub-messages according to contained information

Talend Open Studio for ESB Mediation Components Reference Guide 179

2. From the Routing folder, drop a cSplitter component onto the design workspace, between the two cFile
components.

3. From the Transformation folder, drop a cSetHeader component onto the design workspace, between the
cSplitter component and the receiving cFile component.

4. Right-click the first cFile component, select Row > Route from the contextual menu and click the cSplitter
component.

5. Right-click the cSplitter component, select Row > Split from the contextual menu and click the cSetHeader
component.

6. Right-click the cSetHeader component, select Row > Route from the contextual menu and click the second
cFile component.

7. Right-click the second cFile component, select Row > Route from the contextual menu and click the
cProcessor component.

8. Label the components to better identify their roles in the Route, as shown above.

Configuring the components and connections

1. Double-click the cFile component labeled Sender to display its Basic settings view in the Component tab.

2. In the Path field, fill in or browse to the path to the folder that holds the source files.

From the Encoding list, select the encoding type of your source files.

In the FileName field, type in the file name of the source message. You can skip this step if the source folder
contains only one file.

3. Repeat steps 1 and 2 above to define the output file path and encoding type in the Basic settings view of the
other cFile component, which is labeled Receiver. Leave the FileName field blank.



Scenario: Splitting a message and renaming the sub-messages according to contained information

180 Talend Open Studio for ESB Mediation Components Reference Guide

4. Double-click the cSplitter component to display its Basic settings view in the Component tab, and fill the
Expression field with an expression according to which you want to split the source message.

In this use, as we want to split the message into sub-messages at each person node of the XML file, type in
xpath("/people/person").

5. Double-click the cSetHeader component, which is labeled Message_renamer to display its Basic settings
view in the Component tab.

6. In the Header field, type in the name of the header you want to give to the messages.

Here, as we want to define the file name for each incoming message, fill in "CamelFileName" as the
header name.

7. Select the Use bean check box, and in the Bean class field that appears, type in the name of the predefined
Java Bean. In this use case, type in beans.setFileNames.class.

8. Double-click the cProcessor component to display its Basic settings view in the Component tab, and
customize the code so that the console will display information the way you wish.



Related scenarios

Talend Open Studio for ESB Mediation Components Reference Guide 181

In this use case, we want to display the file name each message routed to the receiving endpoint, so we
customize the code as follows:

System.out.println("File received: "+ 
exchange.getIn().getHeader("CamelFileName"));

9. Press Ctrl+S to save your Route.

Viewing code and executing the Route

1. Click the Code tab at the bottom of the design workspace to have a look at the generated code.

As shown in the code, a message route is built from one endpoint .to another, and while in routing, the
source message is split according to the condition xpath("/people/person") by cSplitter_1,
and each sub-message is given a header named CamelFileName, the value of which is returned by
.method(beans.setFileName.class).

2. Click the Run view to display it and click the Run button to launch the execution of your Route. You can
also press F6 to execute it.

RESULT: The source file message is split into sub-messages and each sub-message is renamed after the city
name it contains and routed to the receiving endpoint.

Related scenarios

For more scenarios, see:

the section called “Scenario: Using camel message headers as context parameters to call a job”



Related scenarios

182 Talend Open Studio for ESB Mediation Components Reference Guide

the section called “Scenario 1: Routing a message consecutively to a series of endpoints”

the section called “Scenario 2: Routing each message conditionally to a series of endpoints”


	Talend Open Studio
	Table of Contents
	Preface
	General information
	Purpose
	Audience
	Typographical conventions

	History of changes
	Feedback and Support

	Context components
	cConfig
	cConfig properties
	Scenario: Implementing a dataset from the Registry
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route


	cJMSConnectionFactory
	cJMSConnectionFactory properties
	Related scenario:


	Exception components
	cErrorHandler
	cErrorHandler properties
	Scenario: Logging the exception thrown during a client/server talk
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route


	cIntercept
	cIntercept properties
	Scenario: Intercepting several routes and redirect them in a single new route
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route


	cOnException
	cOnException properties
	Scenario: Using cOnException to ignore exceptions and continue message routing
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route


	cTry
	cTry properties
	Scenario: Using cTry to build Try/Catch/Finally blocks for exception handling
	Dropping and linking components
	Configuring the components and connections
	Viewing code and executing the Route



	Messaging components
	cBean
	cBean properties
	Related Scenario

	cCXF
	cCXF properties
	Scenario 1: Providing a Web service using cCXF from a WSDL file
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	Scenario 2: Providing a Web service using cCXF from a Java class
	Creating a Java class
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route


	cFile
	cFile properties
	Scenario: Reading files from one directory and writing them to another
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route


	cFtp
	cFtp properties
	Related scenario:

	cHttp
	cHttp properties
	Scenario: Retrieving the content of a remote file
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route


	cJMS
	cJMS properties
	Scenario 1: Sending and receiving a message from a JMS queue
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	Scenario 2: Setting up a JMS local transaction
	Sending a message to the queue.hello JMS queue
	Testing the received message
	Consuming the message from the DeadLetter JMS queue

	Scenario 3: Sending and receiving a scheduled delivery of messages from a JMS Queue using Camel Quartz
	Building the producer Route
	Building the consumer Route


	cMail
	cMail Properties
	Scenario: Using cMail to send and receive mails

	cMessagingEndpoint
	cMessagingEndpoint properties
	Scenario 1: Moving files from one message endpoint to another
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	Scenario 2: sending files to another message endpoint
	Dropping and linking components
	Configuring the components and connections
	Viewing code and executing the Route


	cPipesAndFilters
	cPipesAndFilters properties
	Scenario: Using cPipesAndFilters to process the task in sequence
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route


	cTalendJob
	cTalendJob properties
	Scenario: Using camel message headers as context parameters to call a job
	Building a DI Job and exporting it as an OSGI Bundle for ESB
	Building a Route for exchanging messages and calling the DI Job
	Viewing the code and executing the Route



	Miscellaneous components
	cLog
	cLog properties
	Related scenario:

	cLoop
	cLoop properties
	Related scenario:

	cStop
	cStop properties
	Related scenario:


	Processor components
	cDelayer
	cDelayer properties
	Scenario: Using cDelayer to delay message routing
	Dropping and linking the components
	Configuring the components
	Viewing the code and executing the Route


	cExchangePattern
	cExchangePattern properties
	Scenario: Enabling the InOut exchange pattern to get replies
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route
	Creating and sending a request to the server Route and getting a reply


	cJavaDSLProcessor
	cJavaDSLProcessor properties
	Related scenario:

	cProcessor
	cProcessor properties
	Related scenario:

	cThrottler
	cThrottler properties
	Scenario: Throttling the message flow
	Dropping and linking the components
	Configuring the components

	Viewing the code and executing the Route


	Routing components
	cAggregate
	cAggregate
	Scenario: Aggregating three messages into one
	Creating a Java bean as the aggregation strategy
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route


	cDynamicRouter
	cDynamicRouter properties
	Scenario: Routing files conditionally to different file paths
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route


	cIdempotentConsumer
	cIdempotentConsumer properties
	Scenario: Deduplicating messages while routing them
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route


	cLoadBalancer
	cLoadBalancer properties
	Scenario: Distributing messages to receiver endpoints based on round robin
	Dropping and linking the components
	Configuring the components and connections
	Viewing the code and executing the Route


	cMessageFilter
	cMessageFilter properties
	Scenario: Filtering messages according to a criterion
	Dropping and linking the components
	Configuring the components and connections
	Viewing the code and executing the Route


	cMessageRouter
	cMessageRouter properties
	Scenario: Routing messages according to a criterion
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route


	cMulticast
	cMulticast properties
	Scenario: Multicasting a message to two endpoints and using it to enrich the contents received by the third endpoint
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route


	cRecipientList
	cRecipientList properties
	Scenario: Routing a message to multiple recipients
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route


	cSplitter
	cSplitter properties
	Related scenario:

	cRoutingSlip
	cRoutingSlip properties
	Scenario 1: Routing a message consecutively to a series of endpoints
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	Scenario 2: Routing each message conditionally to a series of endpoints
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route


	cWireTap
	cWireTap properties
	Scenario: Wiretapping a message in a Route
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route



	Transformation components
	cContentEnricher
	cContentEnricher properties
	Scenario: Receiving messages from a list of URLs
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route

	Related scenario

	cConvertBodyTo
	cConvertBodyTo properties
	Scenario: Converting the body of an XML file into an org.w3c.dom.Document.class
	Dropping and linking the components
	Configuring the components
	Viewing code and executing the Route


	cSetBody
	cSetBody properties
	Scenario: Replacing the content of messages with their extracts
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route


	cSetHeader
	cSetHeader properties
	Scenario: Splitting a message and renaming the sub-messages according to contained information
	Dropping and linking the components
	Configuring the components and connections
	Viewing code and executing the Route

	Related scenarios



