
Talend ESB STS
User Guide

5.1_b

Talend ESB STS: User Guide

Publication date 5 July 2012
Copyright © 2011-2012 Talend Inc.

Copyleft

This documentation is provided under the terms of the Creative Commons Public License (CCPL). For more information about what you can
and cannot do with this documentation in accordance with the CCPL, please read: http://creativecommons.org/licenses/by-nc-sa/2.0/

This document may include documentation produced at The Apache Software Foundation which is licensed under The Apache License 2.0.

Notices

Talend and Talend ESB are trademarks of Talend, Inc.

Apache CXF, CXF, Apache Karaf, Karaf, Apache Cellar, Cellar, Apache Camel, Camel, Apache Maven, Maven, Apache Archiva, Archiva
are trademarks of The Apache Foundation.

Eclipse Equinox is a trademark of the Eclipse Foundation, Inc. SoapUI is a trademark of SmartBear Software. Hyperic is a trademark of
VMware, Inc. Nagios is a trademark of Nagios Enterprises, LLC.

All other brands, product names, company names, trademarks and service marks are the properties of their respective owners.

Talend ESB STS User Guide

Table of Contents
1. Introduction .. 1

1.1. What is a Security Token Service? ... 1
1.2. The STS provider framework in Apache CXF .. 3

2. Security Token Service Architecture ... 5
2.1. The TokenProvider Interface ... 5
2.2. TokenProvider Parameters .. 6
2.3. TokenProviderResponse ... 6
2.4. The SCTProvider .. 7
2.5. TokenProvider token caching .. 7
2.6. The SAMLTokenProvider .. 8
2.7. Realms in the Token Providers .. 8
2.8. Populating SAML Tokens .. 9
2.9. Token Validation .. 11
2.10. Token Renewal ... 16
2.11. Token Batch Processing .. 18
2.12. Token Cancellation .. 19
2.13. Token Caching .. 20
2.14. Generic Token Handling ... 22
2.15. Claims Handling in the STS .. 29
2.16. The TokenValidateOperation ... 30

3. Using STS with the Talend Runtime ... 33
3.1. Deploying the STS into the Talend Runtime container .. 33
3.2. Deploying the STS into a Servlet Container (Tomcat) .. 34
3.3. Security Token Service (STS) Configuration .. 34
3.4. Data Service Configuration for using STS .. 35
3.5. Creating keys for the Security Token Service ... 36

4. Secure Token Service (STS) Client Configuration .. 39
4.1. STS Client Behavior .. 39
4.2. Running the JAX-WS CXF WS-Trust Sample from Talend ESB 41

Talend ESB STS User Guide

Talend ESB STS User Guide

Chapter 1. Introduction

1.1. What is a Security Token Service?
An informal description of a Security Token Service is that it is a web service that offers some or all of the
following services (among others):

• It can issue a Security Token of some sort based on presented or configured credentials.

• It can say whether a given Security Token is valid or not.

• It can renew (extend the validity of) a given Security Token.

• It can cancel (remove the validity of) a given Security Token.

• It can transform a given Security Token into a Security Token of a different sort.

Offloading this functionality to another service greatly simplifies client and service provider functionality, as they
can simply call the STS appropriately rather than have to handle the security processing logic themselves. For
example, the WSDL of a service provider might state that a particular type of security token is required to access
the service. Then:

1. A client of the service can ask an STS for a Security Token of that particular type, which is then sent to the
service provider.

2. The service provider could choose to validate the received token locally, or dispatch the token to an STS for
validation.

These are the two most common use cases of an STS:

Security Token Services are defined formally within the OASIS WS-Trust specification. They help immensely
in decoupling authentication and authorization maintenance from the web service clients and providers that need

http://docs.oasis-open.org/ws-sx/ws-trust/v1.4/ws-trust.html

A sample request/response for issuing a Security Token

2 Talend ESB STS User Guide

that information. Using the STS eliminates the need for the Web Service Provider (WSP) and Web Service Clients
(WSC) to have a direct trust relationship, freeing WSPs from needing to maintain WSC UsernameToken passwords
or X509 certificates from acceptable clients. Instead, it is just necessary for the WSP to trust the STS and for the
STS to be able to validate the WSC's credentials prior to making the STS call.

A client can communicate with the STS via a protocol defined in the WS-Trust specification. The SOAP Body of
the request contains a "RequestSecurityToken" element as follows:

<wst:RequestSecurityToken Context="..." xmlns:wst="...">
 <wst:TokenType>...</wst:TokenType>
 <wst:RequestType>...</wst:RequestType>
 <wst:SecondaryParameters>...</wst:SecondaryParameters>
 ...
</wst:RequestSecurityToken>

The Apache CXF STS implementation supports a wide range of parameters that are passed in
the RequestSecurityToken element. The SOAP Body of the response from the STS will contain a
"RequestSecurityTokenResponse(Collection)" element, e.g.:

<wst:RequestSecurityTokenResponseCollection xmlns:wst="...">
 <wst:RequestSecurityTokenResponse>
 ...
 </wst:RequestSecurityTokenResponse>
</wst:RequestSecurityTokenResponseCollection>

1.1.1. A sample request/response for issuing a
Security Token

A sample client request is given here, where the client wants the STS to issue a Security Assertion Markup
Language (SAML) 2.0 token for a service hosted at http://cxf.apache.org:8080/service:

<wst:RequestSecurityToken Context="..." xmlns:wst="...">
 <wst:TokenType>
 http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0
 </wst:TokenType>
 <wst:RequestType>
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Issue
 </wst:RequestType>
 <wsp:AppliesTo>http://cxf.apache.org:8080/service</wsp:AppliesTo>
</wst:RequestSecurityToken>

The STS responds with:

<wst:RequestSecurityTokenResponseCollection xmlns:wst="...">
 <wst:RequestSecurityTokenResponse>
 <wst:TokenType>
 http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0
 </wst:TokenType>
 <wst:RequestedSecurityToken>
 <saml2:Assertion xmlns:saml2="..." ... />
 </wst:RequestedSecurityToken>
 </wst:RequestSecurityTokenResponse>

http://cxf.apache.org:8080/service

The STS provider framework in Apache CXF

Talend ESB STS User Guide 3

</wst:RequestSecurityTokenResponseCollection>

1.2. The STS provider framework in Apache
CXF
The first support for an STS in Apache CXF appeared in the 2.4.0 release with the addition of an STS provider
framework in the WS-Security module. This is essentially an API that can be used to create your own STS
implementation. As the STS implementation shipped in CXF 2.5 is based on this provider framework, it makes
sense to examine it in more detail.

The SEI (Service Endpoint Interface) is available here. It contains the following methods that are relevant to the
STS features discussed above:

• RequestSecurityTokenResponseCollectionType issue(RequestSecurityTokenType
request) - to issue a security token

• RequestSecurityTokenResponseType issueSingle(RequestSecurityTokenType
request) - to issue a security token that is not contained in a "Collection" wrapper (for legacy applications)

• RequestSecurityTokenResponseType cancel(RequestSecurityTokenType request)
- to cancel a security token

• RequestSecurityTokenResponseType validate(RequestSecurityTokenType
request) - to validate a security token

• RequestSecurityTokenResponseType renew(RequestSecurityTokenType request) -
to renew a security token

The SEI implementation handles each request by delegating it to a particular operation, which is just an interface
that must be implemented by the provider framework implementation. Finally, a JAX-WS provider is available,
which dispatches a request to the appropriate operation.

Talend ESB STS User Guide

Talend ESB STS User Guide

Chapter 2. Security Token Service
Architecture

2.1. The TokenProvider Interface
Security tokens are created in the Security Token Service via the TokenProvider interface. It has three methods:

• boolean canHandleToken(String tokenType) - Whether this TokenProvider implementation can
provide a token of the given type

• boolean canHandleToken(String tokenType, String realm) - Whether this TokenProvider
implementation can provide a token of the given type, in the given realm

• TokenProviderResponse createToken(TokenProviderParameters tokenParameters)
- Create a token using the given parameters

A client can request a security token from the STS by either invoking the issue operation and supplying
a desired token type, or else calling the "validate" operation and passing a (different) token type (token
transformation). Assuming that the client request is authenticated and well-formed, the STS will iterate through
a list of TokenProvider implementations to see if they can "handle" the received token type. If they can, then the
implementation is used to create a security token, which is returned to the client. The second "canHandleToken"
method which also takes a "realm" parameter.

So to support the issuing of a particular token type in an STS deployment, it is necessary to specify a TokenProvider
implementation that can handle that token type. The STS currently ships with two TokenProvider implementations,
one for generating SecurityContextTokens, and one for generating SAML Assertions. Before we look at these
two implementations, let's take a look at the "createToken" operation in more detail. This method takes a
TokenProviderParameters instance.

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/TokenProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/TokenProviderParameters.java?view=markup

TokenProvider Parameters

6 Talend ESB STS User Guide

2.2. TokenProvider Parameters
The TokenProviderParameters class is nothing more than a collection of configuration properties to use in creating
the token, which are populated by the STS operations using information collated from the request, or static
configuration, etc. The properties of the TokenProviderParameters are:

• STSPropertiesMBean stsProperties - A configuration MBean that holds the configuration for the
STS as a whole, such as information about the private key to use to sign issued tokens, etc.

• EncryptionProperties encryptionProperties - A properties object that holds encryption
information relevant to the intended recipient of the token.

• Principal principal - The current client Principal object. This can be used as the "subject" of the
generated token.

• WebServiceContext webServiceContext - The current web service context object. This allows
access to the client request.

• RequestClaimCollection requestedClaims - The requested claims in the token.

• KeyRequirements keyRequirements - A set of configuration properties relating to keys.

• TokenRequirements tokenRequirements - A set of configuration properties relating to the token.

• String appliesToAddress - The URL that corresponds to the intended recipient of the token.

• ClaimsManager claimsManager - An object that can manage claims.

• Map<String, Object> additionalProperties - Any additional (custom) properties that might be
used by a TokenProvider implementation.

• TokenStore tokenStore - A cache used to store tokens.

• String realm - The realm to create the token in (this should be the same as the realm passed to
"canHandleToken").

If this looks complicated then remember that the STS will take care of populating all of these properties from the
request and some additional configuration. You only need to worry about the TokenProviderParameters object if
you are creating your own TokenProvider implementation.

2.3. TokenProviderResponse
The "createToken" method returns an object of type TokenProviderResponse. Similar to the
TokenProviderParameters object, this just holds a collection of objects that is parsed by the STS operation to
construct a response to the client. The properties are:

• Element token - The (DOM) token that was created by the TokenProvider.

• String tokenId - The ID of the token

• long lifetime - The lifetime of the token

• byte[] entropy - Any entropy associated with the token

• long keySize - The key size of a secret key associated with the token.

• boolean computedKey - Whether a computed key algorithm was used in generating a secret key.

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/STSPropertiesMBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/service/EncryptionProperties.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/claims/RequestClaimCollection.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/KeyRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/TokenRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/claims/ClaimsManager.java?view=markup
http://cxf.apache.org/javadoc/latest-2.6.x/org/apache/cxf/ws/security/tokenstore/TokenStore.html
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/TokenProviderResponse.java?view=markup

The SCTProvider

Talend ESB STS User Guide 7

• TokenReference attachedReference - An object which gives information how to refer to the token
when it is "attached".

• TokenReference unAttachedReference - An object which gives information how to refer to the
token when it is "unattached".

Most of these properties are optional as far as the STS operation is concerned, apart from the token and token
ID. The TokenReference object contains information about how to refer to the token (direct reference vs. Key
Identifier, etc.), that is used by the STS to generate the appropriate reference to return to the client.

2.4. The SCTProvider
Now that we've covered the TokenProvider interface, let's look at an implementation that is shipped with the
STS. The SCTProvider is used to provide a token known as a SecurityContextToken, that is defined in the WS-
SecureConversation specification. A SecurityContextToken essentially consists of a String Identifier which is
associated with a particular secret key. If a service provider receives a SOAP message with a digital signature
which refers to a SecurityContextToken in the KeyInfo of the signature, then the service provider knows that it
must somehow obtain a secret key associated with that particular Identifier to verify the signature. How this is
done is "out of band".

To request a SecurityContextToken, the client must use one of the following Token Types:

• http://schemas.xmlsoap.org/ws/2005/02/sc/sct

• http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512

Two properties can be configured on the SCTProvider directly:

• long lifetime - The lifetime of the generated SCT. The default is 30 minutes.

• boolean returnEntropy - Whether to return any entropy bytes to the client or not. The default is true.

The SCTProvider generates a secret key using the KeyRequirements object that was supplied, and constructs a
SecurityContextToken with a random Identifier. It creates a CXF SecurityToken object that wraps this information,
and stores it in the supplied cache using the given lifetime. The SecurityContextToken element is then returned,
along with the appropriate references, lifetime element, entropy, etc.

When requesting a token from an STS, the client will typically present some entropy along with a computed
key algorithm. The STS will generate some entropy of its own, and combine it with the client entropy using the
computed key algorithm to generate the secret key. Alternatively, the client will present no entropy, and the STS
will supply all of the entropy. Any entropy the STS generates is then returned to the client, who can recreate the
secret key using its own entropy, the STS entropy, and the computed key algorithm.

This secret key is then used for the SCT use-case to encrypt/sign some part of a message. The
SecurityContextToken is placed in the security header of the message, and referred to in the KeyInfo element
of the signed/encrypted structure. As noted earlier, the service provider must obtain somehow the secret key
corresponding to the SecurityContextToken identifier. Perhaps the service provider shares a (secured) distributed
cache with an STS instance. Or perhaps the service provider sends the SCT to an STS instance to "validate" it,
and receives a SAML token in response with the embedded (encrypted) secret key.

2.5. TokenProvider token caching
Finally, we will cover token caching in a TokenProvider implementation. The SCTProvider is essentially useless
without a cache, as otherwise there is no way for a third-party to know the secret key corresponding to a

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/TokenReference.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/SCTProvider.java?view=markup
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html#_Toc162064047
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html#_Toc162064047
http://schemas.xmlsoap.org/ws/2005/02/sc/sct
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512

The SAMLTokenProvider

8 Talend ESB STS User Guide

SecurityContextToken. Any TokenProvider implementation can cache a generated token in the TokenStore object
supplied as part of the TokenProviderParameters.

The SCTProvider creates a SecurityToken with the ID of the SCT, the secret key associated with the SCT and the
client principal. If a "realm" is passed through, then this is recorded as a property of the SecurityToken (keyed via
STSConstants.TOKEN_REALM). Finally, the STS ships with two TokenStore implementations, an in-memory
implementation based on eh-cache, and an implementation that uses Hazelcast.

2.6. The SAMLTokenProvider
The SAMLTokenProvider can issue SAML 1.1 and SAML 2.0 tokens. To request a SAML 1.1 token, the client
must use one of the following Token Types:

• http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1

• urn:oasis:names:tc:SAML:1.0:assertion

To request a SAML 2.0 token, the client must use one of the following Token Types:

• http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0

• urn:oasis:names:tc:SAML:2.0:assertion

The following properties can be configured on the SAMLTokenProvider directly:

• List<AttributeStatementProvider> attributeStatementProviders - A list of objects that can add attribute
statements to the token.

• List<AuthenticationStatementProvider> authenticationStatementProviders - A list of objects that can add
authentication statements to the token.

• List<AuthDecisionStatementProvider> authDecisionStatementProviders - A list of objects that can add
authorization decision statements to the token.

• SubjectProvider subjectProvider - An object used to add a Subject to the token.

• ConditionsProvider conditionsProvider - An object used to add a Conditions statement to the token.

• boolean signToken - Whether to sign the token or not. The default is true.

• Map<String, SAMLRealm> realmMap - A map of realms to SAMLRealm objects.

We will explain each of these properties in more detail in the next few sections.

2.7. Realms in the Token Providers
As explained in the previous section, the TokenProvider interface has a method that takes a realm parameter:

• boolean canHandleToken(String tokenType, String realm) - Whether this TokenProvider
implementation can provide a token of the given type, in the given realm

In other words, the TokenProvider implementation is being asked whether it can supply a token corresponding to
the Token Type in a particular realm. How the STS knows what the desired realm is will be covered subsequently.
However, we will explain how the realm is handled by the TokenProviders here. The SCTProvider ignores the
realm in the canHandleToken method. In other words, the SCTProvider can issue a SecurityContextToken in any

http://cxf.apache.org/javadoc/latest-2.6.x/org/apache/cxf/ws/security/tokenstore/TokenStore.html
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/STSConstants.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/cache/HazelCastTokenStore.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/SAMLTokenProvider.java?view=markup
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV1.1
urn:oasis:names:tc:SAML:1.0:assertion
http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0
urn:oasis:names:tc:SAML:2.0:assertion
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/AttributeStatementProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/AuthenticationStatementProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/AuthDecisionStatementProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/SubjectProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/ConditionsProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/realm/SAMLRealm.java?view=markup

Populating SAML Tokens

Talend ESB STS User Guide 9

realm. If a realm is passed through via the TokenProviderParameters when creating the token, the SCTProvider
will cache the token with the associated realm as a property.

Unlike the SCTProvider, the SAMLTokenProvider does not ignore the realm parameter to the
canHandleToken method. Recall that the SAMLTokenProvider has a property "Map<String, SAMLRealm>
realmMap". The canHandleToken method checks to see if the given realm is null, and if it is not null then
the realmMap must contain a key which matches the given realm. So if the STS implementation is designed to
issue tokens in different realms, then the realmMap of the SAMLTokenProvider must contain the corresponding
realms in the key-set of the map.

The realmMap property maps realm Strings to SAMLRealm objects. Among other properties, the SAMLRealm
class contains the following settings:

• String issuer - the Issuer String to use in this realm

• String signatureAlias - the keystore alias to use to retrieve the private key the SAMLTokenProvider uses to
sign the generated token

If the SAMLTokenProvider is "realm aware", then it can issue tokens with an issuer name and signing key specific
to a given realm. SAMLRealms also contain cryptographic and CallbackHandler settings to allow for configuring
realm-specific keystores if desired. If no realm is passed to the SAMLTokenProvider, then these properties are
obtained from the "system wide" properties defined in the STSPropertiesMBean object passed as part of the
TokenProviderParameters, which can be set via the following methods:

• void setSignatureUsername(String signatureUsername)

• void setIssuer(String issuer)

Two additional properties are required when signing SAML Tokens. A password is required to access the private
key in the keystore, which is supplied by a CallbackHandler instance. A WSS4J "Crypto" instance is also required
which controls access to the keystore. These are both set on the STSPropertiesMBean object via:

• void setCallbackHandler(CallbackHandler callbackHandler)

• void setSignatureCrypto(Crypto signatureCrypto)

Note that the signature of generated SAML Tokens can be disabled, by setting the "signToken" property of the
SAMLTokenProvider to "false". As per the SCTProvider, the generated SAML tokens are stored in the cache with
the associated realm stored as a property.

2.8. Populating SAML Tokens
In the previous section we covered how a generated SAML token is signed, how to configure the key used to sign
the assertion, and how to set the Issuer of the Assertion. In this section we will describe how to populate the SAML
Token itself. The SAMLTokenProvider is designed to be able to issue a wide range of SAML Tokens. It does this
by re-using the SAML abstraction library that ships with Apache WSS4J, which defines a collection of beans that
are configured and then assembled in a CallbackHandler to create a SAML assertion.

2.8.1. Configure a Conditions statement

The SAMLTokenProvider has a "ConditionsProvider conditionsProvider" property, which can be used to
configure the generated Conditions statement which is added to the SAML Assertion. The ConditionsProvider has
a method to return a ConditionsBean object, and a method to return a lifetime in seconds. The ConditionsBean
holds properties such as the not-before and not-after dates, etc. The SAMLTokenProvider ships with a

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/realm/SAMLRealm.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/STSPropertiesMBean.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/saml/ext/bean/
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/SamlCallbackHandler.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/ConditionsProvider.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/saml/ext/bean/ConditionsBean.java?view=markup

Configure a Subject

10 Talend ESB STS User Guide

default ConditionsProvider implementation that is used to insert a Conditions statement in every SAML
token that is generated. This implementation uses a default lifetime of 30 minutes, and set the Audience
Restriction URI of the Conditions Statement to be the received "AppliesTo" address, which is obtained from the
TokenProviderParameters object.

The DefaultConditionsProvider can be configured to change the lifetime of the issued token. If you want to remove
the ConditionsProvider altogether from the generation assertion, or implement a custom Conditions statement,
then you must implement an instance of the ConditionsProvider interface, and set it on the SAMLTokenProvider.

2.8.2. Configure a Subject

The SAMLTokenProvider has a "SubjectProvider subjectProvider" property, which can be used to configure the
Subject of the generated token, regardless of the version of the token. The SubjectProvider interface defines a
single method to return a SubjectBean, given the token provider parameters, the parent Document of the assertion,
and a secret key to use (if any). The SubjectBean contains the Subject name, name-qualifier, confirmation method,
and KeyInfo element, amongst other properties. The SAMLTokenProvider ships with a default SubjectProvider
implementation that is used to insert a Subject into every SAML Token that is generated.

The DefaultSubjectProvider has a single configuration method to set the subject name qualifier. It creates a
subject confirmation method by checking the received key type. The subject name is the name of the principal
obtained from TokenProviderParameters. Finally, a KeyInfo element is set on the SubjectBean under the following
conditions:

• If a "SymmetricKey" Key Type algorithm is specified by the client, then the secret key passed through to the
SubjectProvider is encrypted with the X509Certificate of the recipient, and added to the KeyInfo element. How
the provider knows the public key of the recipient will be covered subsequently.

• If a "PublicKey" KeyType algorithm is specified by the client, the X509Certificate that is received as part of
the "UseKey" request is inserted into the KeyInfo element of the Subject.

If a "Bearer" KeyType algorithm is specified by the client, then no KeyInfo element is added to the Subject. For the
"SymmetricKey" Key Type case, the SAMLTokenProvider creates a secret key using a SymmetricKeyHandler
instance. The SymmetricKeyHandler first checks the key size that is supplied as part of the KeyRequirements
object, by checking that it fits in between a minimum and maximum key size that can be configured. It also checks
any client entropy that is supplied, as well as the computed key algorithm. It then creates some entropy and a
secret key.

To add a custom Subject element to an assertion, you must create your own SubjectProvider implementation, and
set it on the SAMLTokenProvider.

2.8.3. Adding Attribute Statements

The SAMLTokenProvider has a "List<AttributeStatementProvider> attributeStatementProviders" property, which
can be used to add AttributeStatments to the generated assertion. Each object in the list adds a single Attribute
statement. The AttributeStatementProvider contains a single method to return an AttributeStatementBean given
the TokenProviderParameters object. This contains a SubjectBean (for SAML 1.1 assertions), and a list of
AttributeBeans. The AttributeBean object holds the attribute name/qualified-name/name-format, and a list of
attribute values, amongst other properties.

If no statement provider is configured in the SAMLTokenProvider, then the DefaultAttributeStatementProvider
is invoked to create an Attribute statement to add to the assertion. It creates a default "authenticated" attribute,
and also creates separate Attributes for any "OnBehalfOf" or "ActAs" elements that were received in the request.
If the received OnBehalfOf/ActAs element was a UsernameToken, then the username is added as an Attribute. If
the received element was a SAML Assertion, then the subject name is added as an Attribute.

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/DefaultConditionsProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/SubjectProvider.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/saml/ext/bean/SubjectBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/DefaultSubjectProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/SymmetricKeyHandler.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/AttributeStatementProvider.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/saml/ext/bean/AttributeStatementBean.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/saml/ext/bean/AttributeBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/DefaultAttributeStatementProvider.java?view=markup

Adding Authentication Statements

Talend ESB STS User Guide 11

2.8.4. Adding Authentication Statements

The SAMLTokenProvider has a "List<AuthenticationStatementProvider> authenticationStatementProviders"
property, which can be used to add AuthenticationStatements to the generated assertion. Each object in the
list adds a single Authentication statement. The AuthenticationStatementProvider contains a single method to
return an AuthenticationStatementBean given the TokenProviderParameters object. This contains a SubjectBean
(for SAML 1.1 assertions), an authentication instant, authentication method, and other properties. No default
implementation of the AuthenticationStatementProvider interface is provided in the STS, so if you want to issue
Authentication Statements you will have to write your own.

2.8.5. Adding Authorization Decision Statements

The SAMLTokenProvider has a "List<AuthDecisionStatementProvider> authDecisionStatementProviders"
property, which can be used to add AuthzDecisionStatements to the generated assertion. Each object in
the list adds a single statement. The AuthDecisionStatementProvider contains a single method to return an
AuthDecisionStatementBean given the TokenProviderParameters object. This contains a SubjectBean (for SAML
1.1 assertions), the decision (permit/indeterminate/deny), the resource URI, a list of ActionBeans, amongst other
properties. No default implementation of the AuthDecisionStatementProvider interface is provided in the STS.

Note that for SAML 1.1 tokens, the Subject is embedded in one of the Statements. When creating a SAML
1.1 Assertion, if a given Authentication/Attribute/AuthzDecision statement does not have a subject, then the
standalone Subject is inserted into the statement. Finally, once a SAML token has been created, it is stored
in the cache (if one is configured), with a lifetime corresponding to that of the Conditions statement. A
TokenProviderResponse object is created with the DOM representation of the SAML Token, the SAML Token
ID, lifetime, entropy bytes, references, etc.

2.9. Token Validation

2.9.1. The TokenValidator interface

SecurityTokens are validated in the STS via the TokenValidator interface. It is very similar to the TokenProvider
interface. It has three methods:

• boolean canHandleToken(ReceivedToken validateTarget) - Whether this TokenValidator
implementation can validate the given token

• boolean canHandleToken(ReceivedToken validateTarget, String realm) - Whether
this TokenValidator implementation can validate the given token in the given realm

• TokenValidatorResponse validateToken(TokenValidatorParameters tvp) - Validate
a token using the given parameters.

A client can validate a security token via the STS by invoking the "validate" operation. Assuming that the client
request is authenticated and well-formed, the STS will iterate through a list of TokenValidator implementations
to see if one can "handle" the received token. If one can, then that implementation is used to validate the received
security token, and the validation result is returned to the client. The second "canHandleToken" method also takes
a "realm" parameter.

So to support the validation of a particular token type in an STS deployment, it is necessary to
specify a TokenValidator implementation that can handle that token. The STS currently ships with four

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/AuthenticationStatementProvider.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/saml/ext/bean/AuthenticationStatementBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/AuthDecisionStatementProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/AuthDecisionStatementProvider.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/saml/ext/bean/AuthDecisionStatementBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/AuthDecisionStatementProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/validator/TokenValidator.java?view=markup

TokenValidatorParameters

12 Talend ESB STS User Guide

TokenValidator implementations, to validate SecurityContextTokens, SAML Assertions, UsernameTokens, and
BinarySecurityTokens. Before we look at these implementations, let's take a look at the "validateToken" operation
in more detail. This method takes a TokenValidatorParameters instance.

2.9.2. TokenValidatorParameters

The TokenValidatorParameters class is a collection of configuration properties to use in validating the token,
which are populated by the STS operations using information collated from the request, or static configuration,
etc. The properties of the TokenValidatorParameters are:

• STSPropertiesMBean stsProperties - A configuration MBean that holds the configuration for the STS as a whole.

• Principal principal - The current client Principal object

• WebServiceContext webServiceContext - The current web service context object. This allows access to the
client request.

• KeyRequirements keyRequirements - A set of configuration properties relating to keys.

• TokenRequirements tokenRequirements - A set of configuration properties relating to the token.

• TokenStore tokenStore - A cache used to retrieve tokens.

• String realm - The realm to validate the token in (this should be the same as the realm passed to
"canHandleToken").

• ReceivedToken token - Represents the token that was received for validation.

If this looks complicated then remember that the STS will take care of populating all of these properties from the
request and some additional configuration. You only need to worry about the TokenValidatorParameters object
if you are creating your own TokenValidator implementation.

2.9.3. TokenValidatorResponse

The "validateToken" method returns an object of type TokenValidatorResponse. Similar to the
TokenValidatorParameters object, this just holds a collection of objects that is parsed by the STS operation to
construct a response to the client. The properties are:

• ReceivedToken token - Represents the token that was received for validation. If the token is determined
valid, then the ReceivedToken will be given a valid state ReceivedToken.STATE.VALID, otherwise
STATE.INVALID or STATE.EXPIRED

• Principal principal - A principal corresponding to the validated token.

• Map<String, Object> additionalProperties - Any additional properties associated with the validated token.

• String realm - The realm of the validated token.

2.9.4. The SCTValidator

Now that we've covered the TokenValidator interface, let's look at an implementation that is shipped with
the STS. The SCTValidator is used to validate a token known as a SecurityContextToken, that is defined

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/validator/TokenValidatorParameters.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/STSPropertiesMBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/KeyRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/TokenRequirements.java?view=markup
http://cxf.apache.org/javadoc/latest-2.6.x/org/apache/cxf/ws/security/tokenstore/TokenStore.html
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/validator/TokenValidatorResponse.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/validator/SCTValidator.java?view=markup

The X509TokenValidator

Talend ESB STS User Guide 13

in the WS-SecureConversation specification. The SCTProvider was covered in earlier in this chapter. A
SecurityContextToken essentially consists of a String Identifier which is associated with a particular secret key.
If a service provider receives a SOAP message with a digital signature which refers to a SecurityContextToken in
the KeyInfo of the signature, then the service provider knows that it must somehow obtain a secret key associated
with that particular Identifier to verify the signature.

One way to do this would be if the service provider shares a (secured) distributed cache with an STS instance.
An alternative solution would be for the service provider to send the SCT to an STS for validation, and to receive
a SAML token in response with the embedded (encrypted) secret key. The SCTValidator can accommodate this
latter scenario, albeit indirectly as will be explained shortly.

The SCTValidator can validate a SecurityContextToken in either of the following namespaces:

• http://schemas.xmlsoap.org/ws/2005/02/sc/sct

• http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512

The SCTValidator validates a received SecurityContextToken by checking to see whether it is stored in the cache.
Therefore it is a requirement to configure a cache for the STS if you want to validate SecurityContextTokens. If the
SecurityContextToken is stored in the cache (for example, by the SCTProvider), then the received SecurityToken
is taken to be valid. The secret associated with the SecurityContextToken is also retrieved from the cache, and
set as an "additional property" in the TokenValidatorResponse using the key "sct-validator-secret". If the cached
token has a stored principal, then this is also returned in the TokenValidatorResponse.

If you want to support the scenario of returning the secret key associated with the SecurityContextToken to the
client (of the STS), then it is possible to do so via token transformation. This is where the client sends an additional
Token Type (in this case for a SAML Token). After the token is validated, the SAMLTokenProvider is called with
the additional properties map obtained from the SCTValidator. The SAMLTokenProvider then has access to the
secret key via the "sct-validator-secret" tag, which it can insert into the Assertion using a custom AttributeProvider.

2.9.5. The X509TokenValidator

Another TokenValidator implementation that ships with the STS is the X509TokenValidator. This class
validates an X.509 V.3 certificate (received as a BinarySecurityToken). The BinarySecurityToken must use
Base-64 encoding. The received cert must be known (or trusted) by the STS crypto object, that is set on the
STSPropertiesMBean object. The X509TokenValidator has a single property that can be configured:

• void setValidator(Validator validator) - Set the WSS4J Validator instance to use to validate
the received certificate. The default is SignatureTrustValidator.

No proof-of-possession is done with the received certificate. The subject principal of the certificate is set on the
response, if validation is successful. Note that no caching is used in this TokenValidator implementation.

2.9.6. The UsernameTokenValidator

The UsernameTokenValidator is used to validate WS-Security UsernameTokens. Two properties can be set
directly on the UsernameTokenValidator:

• void setValidator(Validator validator) - Set the WSS4J Validator instance to use to validate
the received UsernameToken. The default is the UsernameTokenValidator (note that this is in WSS4J and not
the same as the UsernameTokenValidator in the STS!).

• void setUsernameTokenRealmCodec(UsernameTokenRealmCodec uTRC) - Set the
UsernameTokenRealmCodec instance to use to return a realm from a validated token.

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html#_Toc162064047
http://schemas.xmlsoap.org/ws/2005/02/sc/sct
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/validator/X509TokenValidator.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/validate/Validator.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/validate/SignatureTrustValidator.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/validator/UsernameTokenValidator.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/validate/Validator.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/validate/UsernameTokenValidator.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/realm/UsernameTokenRealmCodec.java?view=markup

Realms in the TokenValidators

14 Talend ESB STS User Guide

The UsernameToken is first checked to make sure that it is well-formed. If it has no password element then it
is rejected. If a cache is configured, then it sees if the UsernameToken has been previously stored in the cache
(searching by wsu:Id). If it is, the CXF STS checks the wsu:Id-independent hashcode of the UsernameToken, and
searches for the String representation of this hash in the TokenStore. If a SecurityToken is retrieved, a second
check that the stored hash of the SecurityToken matches the hash of the received token. Note that the CXF STS
does not have a UsernameTokenProvider as of yet, so for this use-case perhaps the cache is shared with a custom
TokenProvider.

If the token is not stored in the cache, then the WSS4J Validator instance is used to validate the received
UsernameToken. As stated above, the default implementation that is used is the UsernameTokenValidator in
WSS4J. This implementation uses a CallbackHandler to supply a password to validate the UsernameToken.
This CallbackHandler implementation is supplied by the STSPropertiesMBean object. WSS4J also ships with an
implementation that validates a UsernameToken via a JAAS LoginModule, which can be plugged in to the STS
UsernameTokenValidator. If validation is successful, then a principal is created from the received UsernameToken
and set on the response.

2.9.7. Realms in the TokenValidators

Recall that the TokenValidator interface has a method that takes a realm parameter:

• boolean canHandleToken(ReceivedToken validateTarget, String realm) - Whether
this TokenValidator implementation can validate the given token in the given realm

Realms are handled in a slightly different way in TokenValidators compared to TokenProviders. Recall that for
TokenProviders, the implementation is essentially asked whether it can provide a token in a given realm. For the
SCTProvider, the realm is ignored in this method. However, when creating a token, the SCTProvider will store
the given realm as a property associated with that token in the cache. The SAMLTokenProvider checks to see if
the given realm is null, and if it is not null then the realmMap must contain a key which matches the given realm.

There is a subtle distinction between the realm passed to "canHandleToken" for TokenValidators and the
realm returned after a token is validated as part of the TokenValidatorResponse object. The realm passed to
"canHandleToken" is the realm to validate the token in. So for example, you could have two TokenValidator
instances registered to validate the same token, but in different realms. All of the TokenValidator implementations
that ship with the STS ignore the realm as part of this method. However, the method signature gives the user the
option to validate tokens in different realms in a more flexible manner.

The realm that is returned as part of the TokenValidatorResponse is the realm that the validated token is in
(if any). This can be different to the realm the token was validated in. The X509TokenValidator ignores this
parameter altogether. The SCTValidator checks to see whether the SecurityToken that was stored in the cache
has a realm property, and if so sets this on the TokenValidatorResonse. The UsernameTokenValidator and
SAMLTokenValidator handle realms in a more sophisticated manner. Recall that the UsernameTokenValidator
has the following method:

• void setUsernameTokenRealmCodec(UsernameTokenRealmCodec uTRC) - Set the
UsernameTokenRealmCodec instance to use to return a realm from a validated token.

The UsernameTokenRealmCodec has a single method:

• String getRealmFromToken(UsernameToken usernameToken) - Get the realm associated with
the UsernameToken parameter.

No UsernameTokenRealmCodec implementation is set by default on the UsernameTokenValidator, hence no
realm is returned in TokenValidatorResponse. If an implemention is specified, then the UsernameTokenValidator
will retrieve a realm from the UsernameTokenRealmCodec implementation corresponding to the validated
UsernameToken. If a cache is configured, and the UsernameToken was already stored in the cache, then the realm
is compared to the realm of the cached token, stored under the tag org.apache.cxf.sts.token.realm.
If they do not match then validation fails.

http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/validate/UsernameTokenValidator.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/validate/JAASUsernameTokenValidator.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/realm/UsernameTokenRealmCodec.java?view=markup

The SAMLTokenValidator

Talend ESB STS User Guide 15

2.9.8. The SAMLTokenValidator

The SAMLTokenValidator is used to validate SAML (1.1 and 2.0) tokens. The following properties can be set
directly on the SAMLTokenValidator:

• void setValidator(Validator validator) - Set the WSS4J Validator instance to use to validate
the received certificate. The default is SignatureTrustValidator.

• void setSamlRealmCodec(SAMLRealmCodec samlRealmCodec) - Set the SAMLRealmCodec
instance to use to return a realm from a validated token.

• void setSubjectConstraints(List<String> subjectConstraints) - Set a list of Strings
corresponding to regular expression constraints on the subject DN of a certificate that was used to sign an
Assertion.

These methods are covered in more detail below. The Assertion is first checked to make sure that it is well-formed.
If a cache is defined, then the hashcode of the Assertion is checked against the hash of all assertions in the cache.
If a match is found in the cache, then the Assertion is taken to be valid. If a match is not found, then the Assertion
is validated.

2.9.8.1. Validating a received SAML Assertion

If the token is not stored in the cache then it must be validated. Firstly a check is performed to make sure that
the Assertion is signed, if it is not then it is rejected. The signature of the Assertion is then validated using the
Crypto object retrieved from the STSPropertiesMBean passed in the TokenValidatorParameters. Finally, trust is
verified in the certificate/public-key used to sign the Assertion. This is done using the Validator object that can
be configured via "setValidator". The default Validator is the WSS4J SignatureTrustValidator, which checks that
the received certificate is known (or trusted) by the STS Crypto object.

Recall that a List of Strings can be set on the SAMLTokenValidator via the "setSubjectConstraints" method. These
Strings correspond to regular expression constraints on the subject DN of a certificate that was used to sign an
Assertion. This provides additional flexibility to validate a received SAML Assertion. For example, the Assertion
could be signed by an entity that has a certificate issued by a particular CA, which in turn is trusted by the STS
Crypto object. However, one might want to restrict the list of "valid" entities who can sign a SAML Assertion.
This can be done by adding a list of regular expressions that match the Subject DN of all acceptable certificates
that might be used to sign a valid SAML Assertion. This matching is done by the CertConstraintsParser.

2.9.8.2. Realm handling in the SAMLTokenValidator

Recall that the SAMLTokenValidator has the following method:

• void setSamlRealmCodec(SAMLRealmCodec samlRealmCodec) - Set the SAMLRealmCodec
instance to use to return a realm from a validated token.

The SAMLRealmCodec has a single method:

• String getRealmFromToken(AssertionWrapper assertion) - Get the realm associated with
the (SAML Assertion) parameter.

No SAMLRealmCodec implementation is set by default on the SAMLTokenValidator, hence no realm is returned
in TokenValidatorResponse. If an implemention is specified, then the SAMLTokenValidator will retrieve a realm
from theSAMLRealmCodec implementation corresponding to the validated Assertion. If a cache is configured,
and the Assertion was already stored in the cache, then the realm is compared to the realm of the cached token,
stored under the tag "org.apache.cxf.sts.token.realm". If they do not match then validation fails.

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/validator/SAMLTokenValidator.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/validate/Validator.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/validate/SignatureTrustValidator.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/realm/SAMLRealmCodec.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/STSPropertiesMBean.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/validate/Validator.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/validate/SignatureTrustValidator.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/realm/CertConstraintsParser.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/realm/SAMLRealmCodec.java?view=markup

Token Renewal

16 Talend ESB STS User Guide

2.10. Token Renewal

2.10.1. The TokenRenewer interface

Security tokens are renewed in the STS via the TokenRenewer interface. It has the following methods:

• void setVerifyProofOfPossession(boolean verifyProofOfPossession) - A boolean
switch to enable or disable the proof of possession requirement.

• void setAllowRenewalAfterExpiry(boolean allowRenewalAfterExpiry) - A switch to
enable or disable the ability to renew tokens after they have expired.

• boolean canHandleToken(ReceivedToken renewTarget) - Whether this TokenRenewer
implementation can renew the given token.

• boolean canHandleToken(ReceivedToken renewTarget, String realm) - Whether this
TokenRenewer implementation can renew the given token in the given realm.

• TokenRenewerResponse renewToken(TokenRenewerParameters tokenParameters) - Renew the token using
the given parameters

A client can request that the STS renew a security token by invoking the "renew" operation and supplying a token
under the "RenewTarget" Element. Assuming that the client request is authenticated and well-formed, the STS
will first iterate through a list of TokenValidator implementations to see if they can "handle" the received token.
If they can, then the implementation is used to validate the received security token. If no TokenValidator is found
that can handle the RenewTarget that was received, then an exception is thrown. Note that this means that for
token renewal, it is necessary to configure both a TokenValidator and TokenRenewer implementation that can
handle the given token.

After the successful validation of a token, the state of the token is checked. If the state is not valid or expired, then
an exception is thrown. The STS then iterates through the configured list of TokenRenewer implementations to
see which can renew the given (validated) token. The token is then renewed and returned to the client.

The TokenRenewerParameters class is nothing more than a collection of configuration properties to use in
renewing the token, which are populated by the STS operations using information collated from the request, or
static configuration, etc. The TokenRenewerResponse class holds the results from the (successful) token renewal,
including the DOM representation of the renewed token, the token Id, the new lifetime of the renewed token, and
references to the renewed token.

2.10.1.1. The SAMLTokenRenewer

The SAMLTokenRenewer can renew valid or expired SAML 1.1 and SAML 2.0 tokens. The following properties
can be configured on the SAMLTokenRenewer directly:

• boolean signToken - Whether to sign the renewed token or not. The default is true.

• ConditionsProvider conditionsProvider - An object used to add a Conditions statement to the
token.

• Map<String, SAMLRealm> realmMap - A map of realms to SAMLRealm objects.

• long maxExpiry - how long a token is allowed to be expired (in seconds) before renewal. The default is
30 minutes.

The SAMLTokenRenewer first checks that the token it extracts from the TokenRenewerParameters is in an expired
or valid state, if not it throws an exception. It then retrieves the cached token that corresponds to the token to be

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/renewer/TokenRenewer.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/renewer/TokenRenewerResponse.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/renewer/TokenRenewerParameters.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/renewer/SAMLTokenRenewer.java?view=markup

The TokenRenewer interface

Talend ESB STS User Guide 17

renewed. A cache must be configured to use the SAMLTokenRenewer, and the token to be renewed must be in
the cache before renewal takes place, for reasons that will become clear in the next section.

2.10.1.2. Token validation

Before the received SAML token can be renewed, a number of validation steps (that are specific to renewing
SAML tokens) takes place. Two boolean properties are retrieved from the properties of the cached token:

• org.apache.cxf.sts.token.renewing.allow - Whether the token is allowed to be renewed or not.

• org.apache.cxf.sts.token.renewing.allow.after.expiry - Whether the token is allowed
to be renewed or not after it has expired.

These two properties are set in the SAMLTokenProvider based on a received <wst:Renewing/> element when
the user is requesting a SAML token via the issue binding. If a user omits a <wst:Renewing/> element, or sends
<wst:Renewing/> or <wst:Renewing Allow="true"/>, then the token is allowed to be renewed. However, only if
the user sends <wst:Renewing OK="true"/>, will the token be allowed to be renewed after expiry. This explains
why a TokenStore is required for token renewal, as without access to these two properties it is impossible for the
SAMLTokenRenewer to figure out whether the issuer of the token intended for the token to be renewed (after
expiry) or not.

If the state of the token is expired, and if the token is allowed to be renewed after expiry, a final check is done
against the boolean set via the setAllowRenewalAfterExpiry method of TokenRenewer. If this is set to
false (the default), then an exception is thrown. So to support token renewal after expiry, you must explicitly define
this behavior on the TokenRenewer implementation. Finally, a check is done on how long ago the SAML Token
expired. If it is greater than the value configured in the maxExpiry property (30 minutes by default), then an
exception is thrown.

The next validation step is to check proof of possession, if this is enabled (true by default). The Subject KeyInfo
of the Assertion must contain a PublicKey or X509Certificate that corresponds to either the client certificate if
TLS is used, or to the private key that was used to sign some part of the request. Finally, if an AppliesTo URI
is sent as part of the request, the SAMLTokenRenewer checks that the received Assertion contains at least one
AudienceRestrictionURI that matches that address, otherwise it throws an Exception.

2.10.1.3. Renewing the SAML Assertion

After the validation steps outlined above have passed, the token is renewed in the following way:

• A new ID is generated for the token.

• A new IssueInstant is set on the token.

• A new Conditions Element replaces the old Conditions Element of the token, using the configured
ConditionsProvider.

• The Assertion is (re)-signed if the signToken property is true.

The old token is removed from the cache, and the new token is added. Finally, the token is set on the
TokenRenewerResponse, along with the token Id, and Lifetime.

2.10.1.4. SAML Token Renewal in action

Finally, let's take a look at a system test in CXF that shows how to renew a SAML Token issued by an STS. The
wsdl of the service provider defines a number of endpoints which use the transport binding, with a (endorsing)

http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/advanced/src/test/resources/org/apache/cxf/systest/sts/renew/DoubleIt.wsdl?view=markup

Token Batch Processing

18 Talend ESB STS User Guide

supporting token requirement which has an IssuedToken policy that requires a SAML token. In other words, the
client must request a SAML token from an STS and send it to the service provider over TLS, and optionally use the
secret associated with the SAML token to sign the message Timestamp (if an EndorsingSupportingToken policy
is specified in the wsdl).

The STS spring configuration is available here. The SAMLTokenRenewer is configured with proof-of-possession
enabled, and tokens are allowed to be renewed after they have expired. Let's look at the test code and client
configuration. All of the tests follow the same pattern. The client requests a SAML Token from the STS (as per
the IssuedToken policy), with a TTL (time-to-live) value of 8 seconds. The client then uses this issued token to
make a successful request to the service provider. The test code then sleeps for 8 seconds to expire the token, and
tries to invoke on the service provider again. The IssuedTokenInterceptorProvider in the WS-Security runtime in
CXF recognizes that the token has expired, and sends it to the STS for renewal. The returned (renewed) token is
then sent to the service provider.

2.11. Token Batch Processing
The STS implementation in CXF is based on the STS Provider framework in the security runtime, which
is essentially an API that can be used to create your own STS implementation. The SEI (Service Endpoint
Implementation) contains the following method that can be used for batch processing:

• RequestSecurityTokenResponseCollectionType requestCollection(RequestSecurityTokenCollectionType
requestCollection)

This method can be used to execute batch processing for any of the core operations (issue/validate/renew/cancel).
To do this it is necessary to implement the RequestCollectionOperation interface, and to install it in the STS
Provider.

2.11.1. Batch Processing in the STS implementation

The STS ships with an implementation of the RequestCollectionOperation interface described above that can be
used to perform batch processing. The TokenRequestCollectionOperation is essentially a wrapper for the other
operations, and does no processing itself. It iterates through the request collection that was received, and checks
that each request has the same RequestType. If not then an exception is thrown. It then dispatches each request
to the appropriate operation. To support bulk processing for each individual operation, it is necessary to set the
appropriate implementation for that operation on the TokenRequestCollectionOperation, otherwise an exception
will be thrown.

2.11.2. Batch Processing example

Take a look at the following test to see how batch processing works in practice. In this test, the client requests two
tokens via the (batch) issue binding, a SAML 1.1 and a SAML 2.0 token. The client then validates both tokens
at the same time using the batch validate binding. The STSClient class used by the WS-Security runtime in CXF
does not currently support bulk processing. Therefore, the test uses a custom STSClient implementation for this
purpose.

The WSDL the STS uses two separate bindings for issue and validate, to cater for the fact that two separate
SOAP Actions must be used for bulk issue and validate for the same operation. The STS configuration is
available here. Note that the TokenRequestCollectionOperation is composed with the TokenIssueOperation and
TokenValidateOperation, to be able to bulk issue and validate security tokens:

http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/advanced/src/test/resources/org/apache/cxf/systest/sts/renew/cxf-sts-pop.xml?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/advanced/src/test/java/org/apache/cxf/systest/sts/renew/SAMLRenewTest.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/advanced/src/test/resources/org/apache/cxf/systest/sts/renew/cxf-client.xml?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/sts/provider/SecurityTokenService.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/sts/provider/operation/RequestCollectionOperation.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/sts/provider/SecurityTokenServiceProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/operation/TokenRequestCollectionOperation.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/advanced/src/test/java/org/apache/cxf/systest/sts/batch/SAMLBatchUnitTest.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/trust/STSClient.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/advanced/src/test/java/org/apache/cxf/systest/sts/batch/SimpleBatchSTSClient.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/advanced/src/test/resources/org/apache/cxf/systest/sts/batch/ws-trust-1.4-service.wsdl?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/advanced/src/test/resources/org/apache/cxf/systest/sts/batch/cxf-sts.xml?view=markup

Token Cancellation

Talend ESB STS User Guide 19

<bean
 class="org.apache.cxf.sts.operation.TokenRequestCollectionOperation"
 id="transportRequestCollectionDelegate">
 <property name="issueSingleOperation" ref="transportIssueDelegate">
 <property name="validateOperation" ref="transportValidateDelegate>
</bean>

2.12. Token Cancellation

2.12.1. The TokenCanceller interface

SecurityTokens are cancelled in the STS via the TokenCanceller interface. This interface is very similar to the
TokenProvider and TokenValidator interfaces. It contains three methods:

• void setVerifyProofOfPossession(boolean verifyProofOfPossession) - Whether to
enable or disable proof-of-possession verification.

• boolean canHandleToken(ReceivedToken cancelTarget) - Whether this TokenCanceller
implementation can cancel the given token

• TokenCancellerResponse cancelToken(TokenCancellerParameters
tokenParameters) - Cancel a token using the given parameters

A client can cancel a security token via the STS by invoking the "cancel" operation. Assuming that the client
request is authenticated and well-formed, the STS will iterate through a list of TokenCanceller implementations
to see if they can "handle" the received token. If they can, then the implementation is used to cancel the
received security token, and the cancellation result is returned to the client. The STS currently ships with a single
TokenCanceller implementation, which can cancel SecurityContextTokens that were issued by the STS. Before
we look at this implementation, let's look at the "cancelToken" operation in more detail. This method takes a
TokenCancellerParameters instance, and returns a TokenCancellerResponse object.

2.12.2. TokenCancellerParameters and
TokenCancellerResponse

The TokenCancellerParameters class is nothing more than a collection of configuration properties to use in
cancelling the token, which are populated by the STS operations using information collated from the request, or
static configuration, etc. The properties of the TokenCancellerParameters are:

• STSPropertiesMBean stsProperties - A configuration MBean that holds the configuration for the STS as a whole.

• Principal principal - The current client Principal object

• WebServiceContext webServiceContext - The current web service context object. This allows access to the
client request.

• KeyRequirements keyRequirements - A set of configuration properties relating to keys.

• TokenRequirements tokenRequirements - A set of configuration properties relating to the token.

• TokenStore tokenStore - A cache used to retrieve tokens.

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/canceller/TokenCanceller.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/canceller/TokenCancellerParameters.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/canceller/TokenCancellerResponse.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/STSPropertiesMBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/KeyRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/TokenRequirements.java?view=markup
http://cxf.apache.org/javadoc/latest-2.6.x/org/apache/cxf/ws/security/tokenstore/TokenStore.html

The SCTCanceller

20 Talend ESB STS User Guide

• ReceivedToken token - Represents the token that was received for cancellation.

The "cancelToken" method returns an object of type TokenCancellerResponse. Similar to the
TokenCancellerParameters object, this just holds a collection of objects that is parsed by the STS operation to
construct a response to the client. It currently only has a single property:

• ReceivedToken token - Represents the token that was received for cancellation. Its state will be
STATE.CANCELLED if token cancellation was successful.

2.12.3. The SCTCanceller

The STS ships with a single implementation of the TokenCanceller interface, namely the SCTCanceller.
The SCTCanceller is used to cancel a token known as a SecurityContextToken, that is defined in the
WS-SecureConversation specification. The SCTProvider and the SCTValidator were covered previously. A
SecurityContextToken essentially consists of a String Identifier which is associated with a particular secret key.
The SCTCanceller can cancel a SecurityContextToken in either of the following namespaces:

• http://schemas.xmlsoap.org/ws/2005/02/sc/sct

• http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512

Recall that the SCTValidator validates a received SecurityContextToken by checking to see whether it is
stored in the cache. Therefore it is a requirement to configure a cache for the STS if you want to validate
SecurityContextTokens. The same applies for the SCTCanceller. A received SecurityContextToken is successfully
cancelled only if it is stored in the cache and is removed from the cache without any errors. This generally implies
that the STS must have previously issued the SecurityContextToken and stored it in the cache, unless the STS is
sharing a distributed cache with other STS instances.

2.12.3.1. Enforcing proof-of-possession

Recall that the TokenCanceller interface has a method "setVerifyProofOfPossession" which defines whether
proof-of-possession is required or not to cancel a security token. The default value for the SCTCanceller is "true".
This means that for the client to successfully cancel a SecurityContextToken it must prove to the STS that it knows
the secret key associated with that SecurityContextToken. The client must do this by signing some portion of the
request with the same secret key that the SCTCanceller retrieves from the security token stored in the cache.

2.13. Token Caching
This section covers how security tokens are cached in the CXF WS-Security runtime and also in the STS.

2.13.1. CXF WS-Security runtime token caching

CXF caches tokens in the security runtime in the following circumstances:

• When the IssuedTokenInterceptorProvider is invoked to obtain an Issued token from an STS.

• When the STSTokenValidator is used to validate a received UsernameToken, BinarySecurityToken or SAML
Assertion to an STS.

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/canceller/TokenCancellerResponse.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/canceller/SCTCanceller.java?view=markup
http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html#_Toc162064047
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/trust/STSTokenValidator.java?view=markup

CXF WS-Security runtime token caching

Talend ESB STS User Guide 21

• When the SecureConversation protocol is used.

• When the WS-Trust SPNEGO protocol is used.

• When tokens are obtained from a Kerberos KDC.

In each of these use-cases, the retrieved token is cached to prevent repeated remote calls to obtain the desired
security token. There is no built-in support as yet to cache tokens in the WS-Security layer to prevent repeat
validation. Of course this could be easily done by wrapping the existing validators with a custom caching solution.

2.13.1.1. SecurityTokens

CXF defines a SecurityToken class which encapsulates all relevant information about a successful authentication
event in the security runtime (as defined above). In particular, it contains the following items (among others):

• A String identifier of the token. This could be a SAML Assertion Id, the Identifier element of a
SecurityContextToken, or the wsu:Id of a UsernameToken, etc.

• The DOM Element that represents that security token.

• Attached and Unattached reference elements for that token that might have been retrieved from an STS.

• A byte[] secret associated with the token.

• An expiration date after which the token is not valid.

• A String TokenType that categorizes the token.

• An X.509 Certificate associated with the token.

• The principal associated with the token.

• A hashcode that represents the security token (normally the hashcode of the underlying WSS4J object).

• An identifier of another SecurityToken that represents a transformed version of this token.

2.13.1.2. TokenStores

CXF defines a TokenStore interface for caching SecurityTokens in the WS-Security runtime module. Prior to CXF
2.6, a simple default HashMap based approach was used to cache security tokens. In CXF 2.6, Ehcache is used to
provide a suitable default TokenStore implementation to cache security tokens. Tokens are stored until the expiry
date of the token if it exists, provided it does not exceed the maximum storage time of 12 hours. If it exceeds this,
or if there is no expiry date provided in the security token, it is cached for the default storage time of 1 hour. If
the token is expired then it is not cached. This default storage time is configurable. Note that while Ehcache is a
compile time dependency of the WS-Security module in CXF, it can be safely excluded in which case CXF will
fall back to use the simple HashMap based cache, unless the user specifically wants to implement an alternative
TokenStore implementation and configure this instead.

Apache CXF 2.6 provides support for configuring caching via the following JAX-WS properties:

• "org.apache.cxf.ws.security.tokenstore.TokenStore" - The TokenStore instance to use to cache security tokens.
By default this uses the EHCacheTokenStore if Ehcache is available. Otherwise it uses the MemoryTokenStore.

• "ws-security.cache.config.file" - Set this property to point to a configuration file for the underlying caching
implementation. By default the cxf-ehcache.xml file in the CXF rt-ws-security module is used.

http://docs.oasis-open.org/ws-sx/ws-secureconversation/200512/ws-secureconversation-1.3-os.html
http://coheigea.blogspot.com/2012/02/ws-trust-spnego-support-in-apache-cxf.html
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/tokenstore/SecurityToken.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/tokenstore/TokenStore.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/tokenstore/SecurityToken.java?view=markup
http://ehcache.org/
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/tokenstore/EHCacheTokenStore.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/resources/cxf-ehcache.xml?view=markup

CXF STS token caching

22 Talend ESB STS User Guide

2.13.2. CXF STS token caching

A TokenStore instance can be set on any of the STS operations (see AbstractOperation), and it will be used
for caching in the token providers, validators, etc. The STS ships with two TokenStore implementations, a
DefaultInMemoryTokenStore which just wraps the EHCacheTokenStore discussed above, and an implementation
based on HazelCast.

Token caching works in different ways depending on where it is used. Both token providers (SAML and
SecurityContextTokens) that ship with the STS cache a successfully generated token. When a SAML or
SecurityContextToken (or UsernameToken) is received by the STS for validation, it will first check to see whether
the token is stored in the cache. If it is then validation is skipped. If it is not, then the TokenValidator will re-
validate the token, and store it in the cache if validation is successful. A slight caveat to this behaviour for SAML
Tokens is that token validation is only skipped if the token that is stored in the cache originally was signed, as this
signature value is used to check to see if the two SAML Tokens are equal. The TokenCanceller implementation
for cancelling SecurityContextTokens in the STS removes the token from the cache, if the token is stored in the
cache and proof-of-possession passes.

Finally, two significant changes in CXF 2.6.0 concerning caching in the STS relate to the length of time tokens
are valid for. Prior to CXF 2.6.0, SecurityContextTokens and SAML Tokens issued by the STS were valid for
a default (configurable) value of 5 minutes. In CXF 2.6.0, both tokens are now issued for a default value of 30
minutes, and are stored in the cache for this length of time as a result.

2.14. Generic Token Handling
This chapter so far has discussed how tokens are provided, validated, and cancelled in the STS. These operations
are (at least in theory) relatively independent of WS-Trust. For example, they could be used as an API to provide/
validate/process, etc. tokens. In this section we'll be exploring the larger picture of how this internal token handling
functionality works in the context of a client invocation. In this section we will cover some common functionality
that is used by all of the WS-Trust operations in the STS implementation.

2.14.1. AbstractOperation

Earlier in this chapter the STS provider framework in Apache CXF was introduced. A number of interfaces were
defined for each of the operations that can be invoked on the STS. Before looking at the implementations of
these interfaces that ship with the STS, we will look a base class that all of the operations extend, namely the
AbstractOperation class. This class defines a number of properties that are shared with any subclasses, and can
be accessed via set/get methods:

• STSPropertiesMBean stsProperties - A configuration MBean that holds the configuration for the STS as a whole,
such as information about the private key to use to sign issued tokens, etc.

• boolean encryptIssuedToken - Whether to encrypt an issued token or not. The default is false.

• List<ServiceMBean> services - A list of ServiceMBean objects, which correspond to "known" services.

• List<TokenProvider> - A list of TokenProvider implementations to use to issue tokens.

• boolean returnReferences - Whether to return SecurityTokenReference elements to the client or not, that point
to the issued token. The default is true.

• TokenStore tokenStore - A cache used to store/retrieve tokens.

• List<TokenValidator> tokenValidators - A list of TokenValidator implementations to use to validate tokens.

http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/tokenstore/TokenStore.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/operation/AbstractOperation.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/cache/DefaultInMemoryTokenStore.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/cache/HazelCastTokenStore.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/sts/provider/operation/
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/operation/AbstractOperation.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/STSPropertiesMBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/service/ServiceMBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/TokenProvider.java?view=markup
http://cxf.apache.org/javadoc/latest-2.6.x/org/apache/cxf/ws/security/tokenstore/TokenStore.html
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/validator/TokenValidator.java?view=markup

AbstractOperation

Talend ESB STS User Guide 23

• ClaimsManager claimsManager - An object that is used to handle claims.

Several of the properties refer to issuing tokens - this is because this functionality is shared between the issuing
and validating operations. At least one TokenProvider implementation must be configured, if the STS is to
support issuing a token. Some of these properties have been discussed previously, for example the TokenStore
cache covered earlier. This cache could be shared across a number of different operations, or else kept separate.
AbstractOperation also contains some common functionality to parse requests, encrypt tokens, create references
to return to the client, etc.

2.14.1.1. STSPropertiesMBean

The AbstractOperation object must be configured with an STSPropertiesMBean object. This is an interface that
encapsulates some configuration common to a number of different operations of the STS:

• void configureProperties() - load and process the properties

• void setCallbackHandler(CallbackHandler callbackHandler) - Set a CallbackHandler
object. This is used in the TokenProviders/TokenValidators to retrieve passwords for various purposes.

• void setSignatureCrypto(Crypto signatureCrypto) - Set a WSS4J Crypto object to use to
sign tokens, or validate signed requests, etc.

• void setSignatureUsername(String signatureUsername) - Set the default signature
username to use (e.g. corresponding to a keystore alias)

• void setEncryptionCrypto(Crypto encryptionCrypto) - Set a WSS4J Crypto object to use
to encrypt issued tokens.

• void setEncryptionUsername(String encryptionUsername) - Set the default encryption
username to use (e.g. corresponding to a keystore alias)

• void setIssuer(String issuer) - Set the default issuer name of the STS

• void setSignatureProperties(SignatureProperties signatureProperties) - Set the
SignatureProperties object corresponding to the STS.

• void setRealmParser(RealmParser realmParser) - Set the object used to define what realm
a request is in.

• void setIdentityMapper(IdentityMapper identityMapper) - Set the object used to map
identities across realms.

The STS ships with a single implementation of the STSPropertiesMBean interface - StaticSTSProperties. This
class has two additional methods:

• void setSignaturePropertiesFile(String signaturePropertiesFile)

• void setEncryptionPropertiesFile(String encryptionPropertiesFile)

If no Crypto objects are supplied to StaticSTSProperties, then it will try to locate a properties file using these
values, and create a WSS4J Crypto object internally from the properties that are parsed.

2.14.1.2. SignatureProperties

A SignatureProperties object can be defined on the STSPropertiesMBean. Note that this is unrelated to the
signaturePropertiesFile property of StaticSTSProperties. This class provides some configuration relating to the
signing of an issued token, as well as symmetric key generation. It has the following properties:

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/STSPropertiesMBean.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/components/crypto/Crypto.java?view=markup
http://svn.apache.org/viewvc/webservices/wss4j/trunk/src/main/java/org/apache/ws/security/components/crypto/Crypto.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/SignatureProperties.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/RealmParser.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/IdentityMapper.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/StaticSTSProperties.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/SignatureProperties.java?view=markup

Request Parsing

24 Talend ESB STS User Guide

• boolean useKeyValue - Whether to use a KeyValue or not to refer to a certificate in a signature. The default
is false.

• long keySize - The (default) key size to use when generating a symmetric key. The default is 256 bits.

• long minimumKeySize - The minimum key size to use when generating a symmetric key. The requestor can
specify a KeySize value to use. The default is 128 bits.

• long maximumKeySize - The maximum key size to use when generating a symmetric key. The requestor can
specify a KeySize value to use. The default is 512 bits.

• signatureAlgorithm - Signature algorithm preferred by the client. Default value is rsa-sha1

• acceptedSignatureAlgorithms - Alternative signature algorithms that may be used by the STS.

• c14nAlgorithm - Canonicalization algorithm (default c14n-excl-omit-comments) preferred by the client.

• acceptedC14nAlgorithms - Alternative canonicalization algorithms that may be used by the STS.

For example, when the client sends a "KeySize" element to the STS when requesting a SAML Token (and sending
a SymmetricKey KeyType URI), the SAMLTokenProvider will check that the requested keysize falls in between
the minimum and maximum key sizes defined above. If it does not, then the default key size is used.

2.14.2. Request Parsing

The first thing any of the AbstractOperation implementations do on receiving a request is to call some functionality
in AbstractOperation to parse the request. This parsing is done by the RequestParser object, which iterates
through the objects of the JAXB RequestSecurityTokenType. The request is parsed into two components,
TokenRequirements and KeyRequirements, which are available on the RequestParser object and are subsequently
passed to the desired TokenProvider/TokenValidator/etc objects.

2.14.2.1. TokenRequirements

The TokenRequirements class holds a set of properties that have been extracted and parsed by RequestParser.
These properties loosely relate to the token itself, rather than anything to do with keys. The properties that can
be set by RequestParser are:

• String tokenType - The desired TokenType URI. This is required if a token is to be issued.

• Element appliesTo - The AppliesTo element that was received in the request. This normally holds a URL that
indicates who the recipient of the issued token will be.

• String context - The context attribute of the request.

• ReceivedToken validateTarget - This object holds the contents of a received "ValidateTarget" element, i.e. a
token to validate.

• ReceivedToken onBehalfOf - This object holds the contents of a received "OnBehalfOf" element.

• ReceivedToken actAs - This object holds the contents of a received "ActAs" element.

• ReceivedToken cancelTarget - This object holds the contents of a received "CancelTarget" element, i.e. a token
to cancel.

• Lifetime lifetime - The requested lifetime of the issued token. This just holds created and expires Strings, that
are parsed from the request.

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/RequestParser.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/TokenRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/KeyRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/TokenRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/ReceivedToken.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/ReceivedToken.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/ReceivedToken.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/ReceivedToken.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/Lifetime.java?view=markup

The TokenIssueOperation

Talend ESB STS User Guide 25

• RequestClaimCollection claims - A collection of requested claims that are parsed from the request.

• Renewing renewing - Holds the wst:Renewing semantics that were received (if any) as part of the request.

The ReceivedToken class mentioned above parses a received token object, which can be a JAXBElement<?> or
a DOM Element. If it is a JAXBElement then it must be either a UsernameToken, SecurityTokenReference, or
BinarySecurityToken. If it is a reference to a security token in the security header of the request, then this token
is retrieved and set as the ReceivedToken instead.

2.14.2.2. KeyRequirements

The KeyRequirements class holds a set of properties that have been extracted and parsed by RequestParser. These
properties contain everything to do with key handling or creation. The properties that can be set by RequestParser
are:

• String authenticationType - An optional authentication type URI. This is currently not used in the STS.

• String keyType - The desired KeyType URI.

• long keySize - The requested KeySize to use when generating symmetric keys.

• String signatureAlgorithm - The requested signature algorithm to use when signing an issued token.

• String encryptionAlgorithm - The requested encryption algorithm to use when encrypting an issued token.

• String c14nAlgorithm - The requested canonicalization algorithm to use when signing an issued token.

• String computedKeyAlgorithm - The computed key algorithm to use when creating a symmetric key.

• String keywrapAlgorithm - The requested KeyWrap algorithm to use when encrypting a symmetric key.

• X509Certificate certificate - A certificate that has been extracted from a "UseKey" element, for use in the SAML
case when a PublicKey KeyType URI is specified.

• Entropy entropy - This object holds entropy information extracted from the client request for use in generating
a symmetric key. Only BinarySecret elements are currently supported.

2.14.2.3. SecondaryParameters

RequestParser also supports parsing a "SecondaryParameters" element that might be in the request. This could
be extracted from the WSDL of a service provider that specifies an IssuedToken policy by the client and sent
to the STS as part of the RequestSecurityToken request. Only KeySize, TokenType, KeyType and Claims child
elements are currently parsed.

2.14.3. The TokenIssueOperation

The TokenIssueOperation is an extension of AbstractOperation that is used to issue tokens. It implements the
IssueOperation and IssueSingleOperation interfaces in the STS provider framework.

Recall that AbstractOperation uses the RequestParser to parse a client request into TokenRequirements
and KeyRequirements objects. TokenIssueOperation populates a TokenProviderParameters object with values
extracted from the TokenRequirements and KeyRequirements objects. A number of different processing steps then

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/claims/RequestClaimCollection.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/KeyRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/Entropy.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/operation/TokenIssueOperation.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/sts/provider/operation/IssueOperation.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/sts/provider/operation/IssueSingleOperation.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/RequestParser.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/TokenRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/KeyRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/TokenProviderParameters.java?view=markup

The TokenIssueOperation

26 Talend ESB STS User Guide

occur before a TokenProvider implementation is used to retrieve the desired token, comprising of realm parsing,
claims handling, and AppliesTo parsing.

2.14.3.1. Realm Parsing

We have earlier shown how realms are used with TokenProviders to provide tokens, and also how they work
with TokenValidators to validate a given token. However, we did not cover how realms are defined in the first
place. Recall that the STSPropertiesMBean configuration object defined on AbstractOperation has a RealmParser
property. The RealmParser is an interface which defines a pluggable way of defining a realm for the current
request. It has a single method:

• String parseRealm(WebServiceContext context) - Return the realm of the current request
given a WebServiceContext object.

Therefore if you wish to issue tokens in multiple realms, it is necessary to create an implementation of the
RequestParser which will return a realm String given a context object. For example, different realms could be
returned based on the endpoint URL or a HTTP parameter. This realm will then get used to select a TokenProvider
implementation to use to issue a token of the desired type. It will also be used for token validation in a similar way.

2.14.3.2. AppliesTo parsing

An AppliesTo element contains an address that refers to the recipient of the issued token. If an AppliesTo element
was sent as part of the request then the CXF STS requires that it be explicitly handled. This is done by the list
of ServiceMBean objects that can be configured on AbstractOperation. The ServiceMBean interface represents a
service, and has the following methods (among others):

• boolean isAddressInEndpoints(String address) - Return true if the supplied address
corresponds to a known address for this service.

• void setEndpoints(List<String> endpoints) - Set the list of endpoint addresses that correspond
to this service.

The STS ships with a single implementation of this interface, the StaticService. For the normal use-case of handling
an AppliesTo element, the user creates a StaticService object and calls setEndpoints with a set of Strings that
correspond to a list of regular expressions that match the allowable set of token recipients (by address). The
TokenIssueOperation will extract the URL address from the EndpointReference child of the received AppliesTo
element, and then iterate through the list of ServiceMBean objects and ask each one whether the given address
is known to that ServiceMBean object. If an AppliesTo address is received, and no ServiceMBean is configured
that can deal with that URL, then an exception is thrown.

The ServiceMBean also defines a number of optional configuration options, such as the default KeyType and
TokenType Strings to use for that Service, if the client does not supply them. It also allows the user to set a
custom EncryptionProperties object, which defines a set of acceptable encryption algorithms to use to encrypt
issued tokens for that service.

2.14.3.3. Token creation and response

Once the TokenIssuerOperation has processed the client request, it iterates through the list of defined
TokenProvider implementations to see if each "can handle" the desired token type in the configured realm (if any).
If no TokenProvider is defined, or if no TokenProvider can handle the desired token type, then an exception is
thrown. Otherwise, a token is created, and a response object is constructed containing the following items:

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/STSPropertiesMBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/RealmParser.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/service/ServiceMBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/service/StaticService.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/service/EncryptionProperties.java?view=markup

The TokenIssueOperation

Talend ESB STS User Guide 27

• The context attribute (if any was specified).

• The Token Type.

• The requested token (possibly encrypted, depending on configuration).

• A number of references to that token (can be disabled by configuration).

• The received AppliesTo address (if any).

• The RequestedProofToken (if a Computed Key Algorithm was used).

• The Entropy generated by the STS (if any, can be encrypted).

• The lifetime of the generated token.

• The KeySize that was used (if any).

2.14.3.4. TokenIssueOperation Example

Finally, it's time to look at an example of how to spring-load the STS so that it can issue tokens. This particular
example uses a security policy that requires a UsernameToken over the symmetric binding. As the STS is a web
service, we first define an endpoint:

<jaxws:endpoint id="UTSTS"
 implementor="#utSTSProviderBean"
 address="http://.../SecurityTokenService/UT"
 wsdlLocation=".../ws-trust-1.4-service.wsdl"
 xmlns:ns1="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"
 serviceName="ns1:SecurityTokenService"
 endpointName="ns1:UT_Port">
 <jaxws:properties>
 <entry key="ws-security.callback-handler" value="..."/>

 <entry key="ws-security.signature.properties"
 value="stsKeystore.properties"/>
 </jaxws:properties>
</jaxws:endpoint>

The jaxws:properties are required to parse the incoming message. The CallbackHandler is used to validate the
UsernameToken and provide the password required to access the private key defined in the signature properties
parameter. The "implementor" of the jaxws:endpoint is the SecurityTokenServiceProvider class defined in the
STS provider framework:

<bean id="utSTSProviderBean"
class="org.apache.cxf.ws.security.sts.provider.SecurityTokenServiceProvider">
 <property name="issueOperation" ref="utIssueDelegate"/>

 ...
</bean>

This bean supports the Issue Operation via a TokenIssueOperation instance:

<bean id="utIssueDelegate"

http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/basic/src/test/resources/org/apache/cxf/systest/sts/deployment/cxf-ut.xml?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/basic/src/test/resources/org/apache/cxf/systest/sts/deployment/ws-trust-1.4-service.wsdl?view=markup

The TokenCancelOperation

28 Talend ESB STS User Guide

 class="org.apache.cxf.sts.operation.TokenIssueOperation">
 <property name="tokenProviders" ref="utSamlTokenProvider"/>
 <property name="services" ref="utService"/>

 <property name="stsProperties" ref="utSTSProperties"/>
</bean>

This TokenIssueOperation instance has a single TokenProvider configured to issue SAML Tokens (with a default
Subject and Attribute statement):

<bean id="utSamlTokenProvider"
 class="org.apache.cxf.sts.token.provider.SAMLTokenProvider">
</bean>

The TokenIssueOperation also refers to a single StaticService implementation, which in turn defines a single URL
expression to use to compare any received AppliesTo addresses:

<bean id="utService"
 class="org.apache.cxf.sts.service.StaticService">
 <property name="endpoints" ref="utEndpoints"/>
</bean>

<util:list id="utEndpoints">
 <value>http://localhost:(\d)*/(doubleit|metrowsp)/services/doubleit //
 (UT|.*symmetric.*|.*)</value>
</util:list>

Finally, the TokenIssueOperation is configured with a StaticSTSProperties object. This class contains properties
that define what private key to use to sign issued SAML tokens, as well as the Issuer name to use in the generated
token.

<bean id="utSTSProperties"
 class="org.apache.cxf.sts.StaticSTSProperties">
 <property name="signaturePropertiesFile" value="stsKeystore.properties"/>
 <property name="signatureUsername" value="mystskey"/>
 <property name="callbackHandlerClass" value="..."/>

 <property name="issuer" value="DoubleItSTSIssuer"/>
 ...
</bean>

2.14.4. The TokenCancelOperation

The TokenCancelOperation class is used to cancel tokens in the STS. It implements the CancelOperation interface
in the STS provider framework. In addition to the properties that it inherits from AbstractOperation, it has a single
property that can be configured:

• List<TokenCanceller> tokencancellers - A list of TokenCanceller implementations to use to cancel tokens.

Recall that AbstractOperation uses the RequestParser to parse a client request into TokenRequirements and
KeyRequirements objects. TokenCancelOperation first checks that a "CancelTarget" token was received and
successfully parsed (if so it will be stored in the TokenRequirements object). If no token was received then an
exception is thrown.

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/operation/TokenCancelOperation.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/sts/provider/operation/CancelOperation.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/canceller/TokenCanceller.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/RequestParser.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/TokenRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/KeyRequirements.java?view=markup

Claims Handling in the STS

Talend ESB STS User Guide 29

The TokenCancelOperation then populates a TokenCancellerParameters object with values extracted from
the TokenRequirements and KeyRequirements objects. It iterates through the list of defined TokenCanceller
implementations to see if any "can handle" the received token. If no TokenCanceller is defined, or if no
TokenCanceller can handle the received token, then an exception is thrown. Otherwise, the received token is
cancelled. If there is an error in cancelling the token, then an exception is also thrown. A response is constructed
with the context attribute (if applicable), and the cancelled token type.

2.15. Claims Handling in the STS
A typical scenario for WS-Trust is when the client requires a particular security token from an STS to access a
service provider. The service provider can let the client know what the requirements are for the security token in
an IssuedToken policy embedded in the WSDL of the service. In particular, the service provider can advertise the
claims that the security token must contain in the policy (either directly as a child element of IssuedToken, or else
as part of the RequestSecurityTokenTemplate). An example is contained in the STS systests:

<sp:RequestSecurityTokenTemplate>
 <t:TokenType>http://...#SAMLV1.1</t:TokenType>
 <t:KeyType>http://.../PublicKey</t:KeyType>
 <t:Claims Dialect="http://.../identity">

 <ic:ClaimType Uri="http://.../claims/role"/>
 </t:Claims>
</sp:RequestSecurityTokenTemplate>

This template specifies that a SAML 1.1 Assertion is required with an embedded X509 Certificate in the subject
of the Assertion. The issued Assertion must also contain a "role" claim. The template is sent verbatim by the client
to the STS when requesting a security token.

2.15.1. Parsing claims

The RequestParser object parses the client request into TokenRequirements and KeyRequirements objects.
As part of this processing it converts a received Claims element into a RequestClaimCollection object. The
RequestClaimCollection is just a list of RequestClaim objects, along with a dialect URI. The RequestClaim object
holds the claimType URI as well as a boolean indicating whether the claim is optional or not.

2.15.2. The ClaimsHandler

The ClaimsHandler is an interface that the user must implement to be able to "handle" a requested claim. It has
two methods:

• List<URI> getSupportedClaimTypes() - Return the list of ClaimType URIs that this ClaimHandler
object can handle.

• ClaimCollection retrieveClaimValues (Principal p, RequestClaimCollection
rcc) - Return the claim values associated with the requested claims (and client principal).

The ClaimCollection object that is returned is just a list of Claim objects. This object represents a Claim that has
been processed by a ClaimsHandler instance. It essentially contains a number of properties that the ClaimsHandler
implementation will set, e.g.:

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/canceller/TokenCancellerParameters.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/advanced/src/test/resources/org/apache/cxf/systest/sts/claims/DoubleIt.wsdl?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/RequestParser.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/claims/RequestClaimCollection.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/claims/RequestClaim.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/claims/ClaimCollection.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/claims/Claim.java?view=markup

The ClaimsManager

30 Talend ESB STS User Guide

• URI claimType - The claimtype URI as received from the client.

• String value - The claim value

Each Claim object in a ClaimCollection corresponds to a RequestClaim object in the RequestClaimCollection,
and contains the Claim value corresponding to the requested claim. The STS ships with a single ClaimsHandler
implementation, the LDAPClaimsHandler, which can retrieve claims from an LDAP store. A simpler example is
available in the unit tests.

2.15.3. The ClaimsManager

The ClaimsManager defined on AbstractOperation holds a list of ClaimsHandler objects. So to support claim
handling in the STS, it is necessary to implement one or more ClaimsHandler objects for whatever Claim
URIs you wish to support, and register them with a ClaimsManager instance, which will be configured on the
TokenIssueOperation object.

As detailed in the previous article, the TokenIssueOperation gets the realm of the current request, and does
some processing of the AppliesTo address, after the RequestParser has finished parsing the request. The
RequestClaimCollection object that has been constructed by the RequestParser is then processed. For each
RequestClaim in the collection, it checks to see whether the ClaimsManager has a ClaimsHandler implementation
registered that can "handle" that Claim (by checking the URIs). If it does not, and if the requested claim is not
optional, then an exception is thrown.

If a ClaimsHandler implementation is registered with the ClaimsManager that can handle the desired claim, then
the claims are passed through to the TokenProvider implementation, which is expected to be able to invoke the
relevant ClaimHandler object, and insert the processed Claim into the generated security token. How this is done
is entirely up to the user. For example, for the use-case given above of a SAML 1.1 token containing a "role"
claim, the user could implement a custom AttributeStatementProvider instance that evaluates the claim values (via
a custom ClaimsHandler implementation registered with the ClaimsManager) and constructs a set of Attributes
accordingly in an AttributeStatement. An example of how to do this is given in the CXF unit tests.

2.16. The TokenValidateOperation
TokenValidateOperation is an extension of AbstractOperation used to validate tokens in the STS. It implements
the ValidateOperation interface in the STS provider framework. For validation, the below property from
AbstractOperation can be configured:

• List<TokenValidator> tokenValidators - A list of TokenValidator implementations to use to validate tokens.

Recall that AbstractOperation uses the RequestParser to parse a client request into TokenRequirements and
KeyRequirements objects. TokenValidateOperation first checks that a "ValidateTarget" token was received and
successfully parsed (if so it will be stored in the TokenRequirements object). If no token was received then an
exception is thrown.

2.16.1. Token validation and response

TokenValidateOperation then populates a TokenValidatorParameters object with values extracted from the
TokenRequirements and KeyRequirements objects. It iterates through the list of defined TokenValidator
implementations to see if any "can handle" the received token. If no TokenValidator is defined, or if no
TokenValidator can handle the received token, then an exception is thrown. Otherwise, the received token is
validated. The TokenValidateOperation then checks to see whether token transformation is required.

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/claims/LdapClaimsHandler.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/test/java/org/apache/cxf/sts/common/CustomClaimsHandler.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/claims/ClaimsManager.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/claims/ClaimsHandler.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/provider/AttributeStatementProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/test/java/org/apache/cxf/sts/common/CustomAttributeProvider.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/operation/TokenValidateOperation.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/sts/provider/operation/ValidateOperation.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/validator/TokenValidator.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/RequestParser.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/TokenRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/request/KeyRequirements.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/token/validator/TokenValidatorParameters.java?view=markup

TokenValidateOperation example

Talend ESB STS User Guide 31

2.16.1.1. Token Transformation

If the received token is successfully validated, and if the client supplies a TokenType in the request that does
not correspond to the WS-Trust "status" namespace, then the TokenValidateOperation attempts to transform the
validated token into a token of the requested type. Token transformation works in a similar way to token issuing,
as detailed previously. A TokenProviderParameters object is constructed and the same processing steps (Realm
parsing, AppliesTo parsing) are followed as for token issuing.

One additional processing step occurs before the token is transformed. If the TokenValidatorResponse object
has a principal that was set by the TokenValidator implementation, then it is set as the principal of the
TokenProviderParameters object. However, it is possible that the token is being issued in a different realm to that
of the validated token, and the principal might also need to be transformed. Recall that the STSPropertiesMBean
configuration object defined on AbstractOperation has an IdentityMapper property. This interface is used to map
identities across realms. It has a single method:

• Principal mapPrincipal(String sourceRealm, Principal sourcePrincipal,
String targetRealm) - Map a principal from a source realm to a target realm

If the source realm is not null (the realm of the validated token as returned in TokenValidatorResponse), and if it
does not equal the target realm (as set by the RealmParser), then the identity mapper is used to map the principal
to the target realm and this is stored in TokenProviderParameters for use in token generation. After the (optional)
identity mapping step, TokenValidateOperation iterates through the TokenProvider list to find an implementation
that can "handle" the desired token type in the given (target) realm (if applicable). If no TokenProvider is defined,
or if no TokenProvider can handle the desired token type, then an exception is thrown.

2.16.1.2. Token response

After token validation has been performed, and after any optional token transformation steps, a response object
is constructed containing the following items:

• The context attribute (if any was specified).

• The received Token Type (if any was specified, or the "status" token type if validation was successful).

• Whether the received token was valid or not (status code & reason).

• If the received token was valid, and if token transformation successfully occurred:

• The transformed token.

• The lifetime of the transformed token.

• A number of references to that token (can be disabled by configuration).

2.16.2. TokenValidateOperation example

Finally, it's time to look at an example of how to spring-load the STS so that it can validate tokens. This particular
example uses a security policy that requires a UsernameToken over the transport binding (client auth is disabled).
As the STS is a web service, we first define an endpoint:

<jaxws:endpoint id="transportSTS"
 implementor="#transportSTSProviderBean"
 address="http://.../SecurityTokenService/Transport"
 wsdlLocation=".../ws-trust-1.4-service.wsdl"

http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/STSPropertiesMBean.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/IdentityMapper.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/sts-core/src/main/java/org/apache/cxf/sts/RealmParser.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/basic/src/test/resources/org/apache/cxf/systest/sts/deployment/cxf-transport.xml?view=markup

TokenValidateOperation example

32 Talend ESB STS User Guide

 xmlns:ns1="http://docs.oasis-open.org/ws-sx/ws-trust/200512/"
 serviceName="ns1:SecurityTokenService"
 endpointName="ns1:Transport_Port">
 <jaxws:properties>
 <entry key="ws-security.callback-handler" value="..."/>
 </jaxws:properties>

</jaxws:endpoint>

The CallbackHandler JAX-WS property is used to validate the UsernameToken. The "implementor" of the
jaxws:endpoint is the SecurityTokenServiceProvider class defined in the STS provider framework:

<bean id="transportSTSProviderBean"
 class="org.apache.cxf.ws.security.sts.provider. //
 SecurityTokenServiceProvider">
 ...
 <property name="validateOperation" ref="transportValidateDelegate"/>
</bean>

This bean supports the Validate Operation via a TokenValidateOperation instance:

<bean id="transportValidateDelegate"
 class="org.apache.cxf.sts.operation.TokenValidateOperation">
 <property name="tokenValidators" ref="transportTokenValidators"/>
 <property name="stsProperties" ref="transportSTSProperties"/>
</bean>

This TokenValidateOperation instance has a number of different TokenValidator instances configured:

<util:list id="transportTokenValidators">

 <ref bean="transportSamlTokenValidator"/>
 <ref bean="transportX509TokenValidator"/>
 <ref bean="transportUsernameTokenValidator"/>
</util:list>

<bean id="transportX509TokenValidator"
 class="org.apache.cxf.sts.token.validator.X509TokenValidator"/>

<bean id="transportUsernameTokenValidator"
 class="org.apache.cxf.sts.token.validator.UsernameTokenValidator"/>

<bean id="transportSamlTokenValidator"
 class="org.apache.cxf.sts.token.validator.SAMLTokenValidator"/>
</bean>

Finally the STSPropertiesMBean object that is used is given as follows:

<bean id="transportSTSProperties"
 class="org.apache.cxf.sts.StaticSTSProperties">
 <property name="signaturePropertiesFile" value="..."/>
 <property name="signatureUsername" value="mystskey"/>

 <property name="callbackHandlerClass" value="..."/>
 <property name="encryptionPropertiesFile" value="..."/>
 <property name="issuer" value="DoubleItSTSIssuer"/>
 <property name="encryptionUsername" value="myservicekey"/>
</bean>

Talend ESB STS User Guide

Chapter 3. Using STS with the Talend
Runtime
This chapter describes the deployment and configuration of STS with a Talend Runtime container, how to
configure the Data Services to use the STS. It also discusses creating keys and certificates for STS and clients.

We use the term <Talend.runtime.dir> for the directory where Talend Runtime is installed. This is
typically the full path of either Runtime_ESBSE or Talend-ESB-V5.1.x, depending on the version
of the software that is being used. Please substitute appropriately.

3.1. Deploying the STS into the Talend
Runtime container

For production use, the sample keys used here will need to be replaced with your project's own keys,
usually signed by a third-party CA.

To enable Security Token Service (STS) in the Talend Runtime, we need to deploy it into a Talend Runtime
container:

1. Replace the STS' sample keystore/truststore called stsstore.jks located in the <Talend.runtime.dir>/
container/etc/keystores folder with your own keystore. See Section 3.3, “Security Token Service (STS)
Configuration” for more information.

2. cd <Talend.runtime.dir>/container/bin directory, enter trun to start Talend Runtime, a Talend Runtime
container (Karaf) console window will open.

3. In the console, type features:install tesb-sts to install the Security Token Service component.

4. Type list | grep STS in the console. You should see the output:

Deploying the STS into a Servlet Container (Tomcat)

34 Talend ESB STS User Guide

 ID State Blueprint Spring Level Name
 [203] [Active] [] [started] [60] Apache
 CXF STS Core (2.5.0)
 Fragments: 204
 [204] [Resolved] [] [] [60] Talend ::
 ESB :: STS :: CONFIG (5.1.1)

The above shows that Security Token Service (STS) component is enabled in the Talend Runtime container.
The Fragment Bundle 204: Talend :: ESB :: STS :: CONFIG (5.1.1) provides the custom
configuration about the Security Token Service (STS), which will be described in Section 3.3, “Security
Token Service (STS) Configuration”.

3.2. Deploying the STS into a Servlet
Container (Tomcat)

For production use, the sample keys used here will need to be replaced with your project's own keys,
usually signed by a third-party CA.

To enable Security Token Service (STS) using a servlet container (here we are using Tomcat as an example)
follow the below steps:

1. Extract the <Talend.runtime.dir>/add-ons/sts/SecurityTokenService.war file and
replace the stsstore.jks STS sample keystore/truststore with your own keystore. Alter the
stsKeystore.properties file with any different configuration information based on your new keystore.
Recompress the extracted WAR into a new WAR file.

2. Deploy the new WAR file created in the previous step into the Tomcat container.

3. Start Tomcat and open a browser with the follow url: http://{tomcat}host:port/
SecurityTokenService/. You'll see several Security Token Services available, such as Username
Token service (UT), X.509 Token service, etc.

4. Enter URL: http://{tomcat host}:port/SecurityTokenService/UT?wsdl, the displayed
WSDL file will describe the details about the Security Token Service.

3.3. Security Token Service (STS)
Configuration
The Security Token Service provides the following methods as described in the below snippet, which is defined
in SecurityTokenService.war/WEB-INF/wsdl/ws-trust-1.4-service.wsdl

<wsdl:service name="SecurityTokenService">
 <wsdl:port name="UT_Port" binding="tns:UT_Binding">
 <soap:address location="http://localhost:8080/SecurityTokenService/UT"/>
 </wsdl:port>
 <wsdl:port name="X509_Port" binding="tns:X509_Binding">
 <soap:address location="http://localhost:8080/SecurityTokenService/X509"/>
 </wsdl:port>

Data Service Configuration for using STS

Talend ESB STS User Guide 35

 <wsdl:port name="Transport_Port" binding="tns:Transport_Binding">
 <soap:address location="/Transport"/>
 </wsdl:port>
 <wsdl:port name="UTEncrypted_Port" binding="tns:UTEncrypted_Binding">
 <soap:address location="/UTEncrypted"/>
 </wsdl:port>
</wsdl:service>

As above snippet shows, the Security Token Service can issue (or validate) UserName Token or X509 Token, etc.

In Talend Runtime container, the configuration of Security Token Service (STS) can be defined in the file:

<Talend.runtime.dir>/etc/org.talend.esb.sts.server.cfg

 stsServiceUrl=/SecurityTokenService/UT
 jaasContext=karaf
 signatureProperties=file:${tesb.home}/etc/keystores/stsKeystore.properties
 signatureUsername=mystskey
 bspCompliant=false

By default STS is configured to use JAAS interface to verify the user credentials and perform authentication.
As shown above, STS uses karaf JAAS Context which is the default context configured for Talend Runtime
container and uses PropertiesLoginModule of Karaf. This login module uses users.properties file located
in /etc/users.properties which contains a list of users and their passwords, hence the users which are
needed to be authenticated via the STS should be listed here. A different login module can be configured for the
STS by updating the jaasContext parameter in the above configuration. A Talend Runtime container comes
with several login modules that can be used to integrate into your environment, the modules are listed below:

• PropertiesLoginModule

• OsgiConfigLoginModule

• JDBCLoginModule

• LDAPLoginModule

The signatureProperties file, which is located in: /etc/keystores/
stsKeystore.properties, defines the signature configuration as shown below:

org.apache.ws.security.crypto.merlin.keystore.type=jks
org.apache.ws.security.crypto.merlin.keystore.password=stsspass
org.apache.ws.security.crypto.merlin.keystore.alias=mystskey
org.apache.ws.security.crypto.merlin.keystore.file=stsstore.jks

The keystore file name can be changed by altering its value in the stsKeystore.properties file. With the default
configuration as shown above, the Talend Runtime container will expect the STS' private key to have the alias
of mystskey, this can be changed by altering the alias and signatureUsername values in the two
configuration files listed above.

3.4. Data Service Configuration for using STS
In the Talend Runtime container, the configuration used by Data Service Consumers for using Security
Token Service (STS) can be defined in the file: <Talend.runtime.dir>/container/etc/
org.talend.esb.job.client.sts.cfg

 #STS endpoint configuration

Creating keys for the Security Token Service

36 Talend ESB STS User Guide

 sts.wsdl.location = \
 http://localhost:8040/services/SecurityTokenService/UT?wsdl
 sts.namespace = http://docs.oasis-open.org/ws-sx/ws-trust/200512/
 sts.service.name = SecurityTokenService
 sts.endpoint.name = UT_Port

 #STS properties configuration
 ws-security.sts.token.username = myclientkey
 ws-security.sts.token.usecert = true
 ws-security.is-bsp-compliant = false
 ws-security.sts.token.properties = \
 file:${tesb.home}/etc/keystores/clientKeystore.properties

The STS endpoint used by the consumer is defined by sts.wsdl.location. This configuration should be
changed in case the STS service is running on a different host and port. The keystore configuration described
above is used for signing the timestamp sent in the request by the consumer to the provider. The Talend ESB-
supplied sample keystores and certificates above are not meant for production use. Be sure to use your own keys
(with different passwords) and configure them as discussed below.

A Data Service consumer can use two types of authentication mechanisms: Username token and SAML token.

• When using Username token, the consumer sends the credentials as a part of the request to
the provider and authentication is performed on the provider side. The policy used by the
consumer for Username token authentication is defined in the file <Talend.runtime.dir>/etc/
org.talend.esb.job.token.policy.

• For SAML tokens, the consumer makes a SAML token issue request to the STS passing its credentials
and on successful authentication the STS issues a SAML token. This SAML token is sent as a part of
the request to the provider and the provider verifies the validity of the SAML token. The policy used by
the consumer for SAML token authentication is defined in the file <Talend.runtime.dir>/etc/
org.talend.esb.job.saml.policy.

When using Username tokens, a Data Service provider receives credentials from the consumer and performs
authentication locally. By default a Data Service provider is configured with JAAS authentication handler and
uses the default JAAS context karaf configured for the Talend Runtime container. The login module configured
for this context uses users.properties file located in /etc/users.properties which contains a list
of users and their passwords. Thus, the user which needs to be authenticated should be listed here.

In the case of a SAML token, the provider locally verifies the integrity of the token using
a certificate, the configuration for it is defined in the file <Talend.runtime.dir>/etc/
org.talend.esb.job.service.cfg.

 ws-security.signature.properties = \
 file:${tesb.home}/etc/keystores/serviceKeystore.properties
 ws-security.signature.username = myservicekey
 ws-security.signature.password = skpass

3.5. Creating keys for the Security Token
Service
This section describes how to create keys for the Security Token Service. We highly recommend that you use third-
party signed CA’s (certificate authorities) or create your own Certificate Authority, but the following instructions
can be used to create self-signed keys.

Using OpenSSL to create certificates

Talend ESB STS User Guide 37

3.5.1. Using OpenSSL to create certificates

First, create the keys.

Replace "<PW-Sk>", "<PW-Sk>","<PW-Cs>" and "<PW-Ck>" in the example below with your own
passwords.

3.5.1.1. Creating the service keystore

Note: given the rm commands below, it is probably best to create a new directory and navigate to it before running
these commands from a terminal window.

rm *.p12 *.pem *.jks *.cer
openssl req -x509 -days 3650 -newkey rsa:1024 -keyout servicekey.pem -out
 servicecert.pem -passout pass:<PW-Sk>

When running this openssl command, enter any geographic and company information desired, the key password in
passout, and a common name of your choice (perhaps servicecn for the service and clientcn for the client).

openssl pkcs12 -export -inkey servicekey.pem -in servicecert.pem -out
 service.p12 -name myservicekey -passin pass:<PW-Sk> -passout
 pass:<PW-Sk>

This creates a pkcs12 certificate. Note the <PW-Sk> value will be used both for the keystore and the private key
itself.

keytool -importkeystore -destkeystore servicestore.jks -deststorepass <PW-Sk>
 -deststoretype jks -srckeystore service.p12 -srcstorepass <PW-Sk>
 -srcstoretype pkcs12 # See Note 3

This places the certificate in a new JKS keystore. The keystore's password is changed here to <PW-Sk>, but the
private key's password retains the earlier value of <PW-Sk>. Also note we’re using Java 6 instead of Java 5 keytool
commands (see changes between the two.)

keytool -list -keystore servicestore.jks -storepass <PW-Sk> -v

The list command is just to show the keys presently in the keystore.

keytool -exportcert -alias myservicekey -storepass <PW-Sk> -keystore
 servicestore.jks -file service.cer
keytool -printcert -file service.cer
rm *.pem *.p12

3.5.1.2. Creating the client keystore

openssl req -x509 -days 3650 -newkey rsa:1024 -keyout clientkey.pem
 -out clientcert.pem -passout pass:<PW-Cs>
openssl pkcs12 -export -inkey clientkey.pem -in clientcert.pem
 -out client.p12
 -name myclientkey -passin pass:<PW-Cs> -passout pass: <PW-Ck>
keytool -importkeystore -destkeystore clientstore.jks -deststorepass <PW-Cs>
 -deststoretype jks -srckeystore client.p12
 -srcstorepass <PW-Ck>-srcstoretype pkcs12
keytool -list -keystore clientstore.jks -storepass <PW-Cs> -v

http://download.oracle.com/javase/6/docs/technotes/tools/solaris/keytool.html#Changes

Deploying and Using a Security Token Service (STS)

38 Talend ESB STS User Guide

keytool -exportcert -alias myclientkey -storepass <PW-Cs> -keystore
 clientstore.jks -file client.cer
keytool -printcert -file client.cer
rm *.pem *.p12

3.5.2. Deploying and Using a Security Token Service
(STS)

You have created the service and client keystores as in the previous section. Now create the STS keystore as
follows:

Replace <PW-Ts>, <PW-Tk> in the example below with your own passwords.

openssl req -x509 -days 3650 -newkey rsa:1024 -keyout stskey.pem -out
 stscert.pem -passout pass:<PW-Ts>
openssl pkcs12 -export -inkey stskey.pem -in stscert.pem -out sts.p12
 -name mystskey -passin pass:<PW-Ts> -passout pass:<PW-Tk>
keytool -importkeystore -destkeystore stsstore.jks -deststorepass <PW-Ts>
 -srckeystore sts.p12 -srcstorepass <PW-Tk> -srcstoretype pkcs12
keytool -list -keystore stsstore.jks -storepass <PW-Ts>
keytool -exportcert -alias mystskey -storepass <PW-Ts> -keystore
 stsstore.jks -file sts.cer
keytool -printcert -file sts.cer
rm *.pem *.p12

To fix any issues with fixed paths to the keystore and truststore locations within the WSDLs, the source code
download uses Maven resource filtering to allow for a relative path to the project base directory to be used instead.

Next, the service keystore will need to have the STS public key added so it trusts it, and vice-versa. Also, the
client will need to have the STS' and WSP's certificates added to its truststore, as it relies on symmetric binding
to encrypt the SOAP requests it makes to both:

keytool -keystore servicestore.jks -storepass <PW-Sk> -import -noprompt
 -trustcacerts -alias mystskey -file sts.cer
keytool -keystore stsstore.jks -storepass <PW-Ts> -import -noprompt
 -trustcacerts -alias myservicekey -file service.cer
keytool -keystore clientstore.jks -storepass <PW-Cs> -import -noprompt
 -trustcacerts -alias mystskey -file sts.cer
keytool -keystore clientstore.jks -storepass <PW-Cs> -import -noprompt
 -trustcacerts -alias myservicekey -file service.cer

If you plan on using X.509 authentication of the WSC to the STS (instead of UsernameToken), the former's public
key will need to be in the latter's truststore. This can be done with the following commands:

keytool -exportcert -alias myclientkey -storepass <PW-Cs> -keystore
 clientstore.jks -file client.cer
keytool -keystore stsstore.jks -storepass <PW-Ts> -import -noprompt
 -trustcacerts -alias myclientkey -file client.cer

Since the service does not directly trust the client (the purpose for our use of the STS to begin with), we will not
add the client's public certificate to the service's truststore as normally done with message-layer encryption.

Talend ESB STS User Guide

Chapter 4. Secure Token Service (STS) Client
Configuration

4.1. STS Client Behavior
A simple example of how a CXF client can obtain a security token from the STS is shown in the CXF's basic STS
system test "IssueUnitTest". This test starts an instance of the new CXF STS and obtains a number of different
security tokens, all done completely programmatically, i.e. with no Spring configuration. The STS instance that
is used for the test cases is configured with a number of different endpoints that use different security bindings
(defined in the wsdl of the STS). For the purposes of this test, the Transport binding is used:

<wsp:Policy wsu:Id="Transport_policy">
 <wsp:ExactlyOne>
 <wsp:All>
 <sp:TransportBinding
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
 <wsp:Policy>
 <sp:TransportToken>
 <wsp:Policy>
 <sp:HttpsToken RequireClientCertificate="false"/>
 </wsp:Policy>
 </sp:TransportToken>
 <sp:AlgorithmSuite>
 <wsp:Policy>
 <sp:Basic128 />
 </wsp:Policy>
 </sp:AlgorithmSuite>
 <sp:Layout>
 <wsp:Policy>

http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/basic/src/test/java/org/apache/cxf/systest/sts/issueunit/IssueUnitTest.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/services/sts/systests/basic/src/test/resources/org/apache/cxf/systest/sts/deployment/ws-trust-1.4-service.wsdl?view=markup

STS Client Behavior

40 Talend ESB STS User Guide

 <sp:Lax />
 </wsp:Policy>
 </sp:Layout>
 <sp:IncludeTimestamp />
 </wsp:Policy>
 </sp:TransportBinding>
 <sp:SignedSupportingTokens
xmlns:sp="http://docs.oasis-open.org/ws-sx/ws-securitypolicy/200702">
 <wsp:Policy>
 <sp:UsernameToken
 sp:IncludeToken=".../AlwaysToRecipient">
 <wsp:Policy>
 <sp:WssUsernameToken10 />
 </wsp:Policy>
 </sp:UsernameToken>
 </wsp:Policy>
 </sp:SignedSupportingTokens>
 ...
 </wsp:All>
 </wsp:ExactlyOne>
</wsp:Policy>

In other words, this security policy requires that a one-way TLS connection must be used to communicate with
the STS, and that authentication is performed via a Username Token in the SOAP header.

The object that communicates with an STS in CXF is the STSClient. Typically, the user constructs
an STSClient instance (normally via Spring), sets it with certain properties such as the WSDL location
of the STS, what service/port to use, various crypto properties, etc, and then stores this object on the
message context using the SecurityConstants tag "ws-security.sts.client". This object is then controlled by the
IssuedTokenInterceptorProvider in the ws-security runtime in CXF. This interceptor provider is triggered by the
"IssuedToken" policy assertion, which is typically in the WSDL of the service provider. This policy assertion
informs the client that it must obtain a particular security token from an STS and include it in the service request.
The IssuedTokenInterceptorProvider takes care of using the STSClient to get a Security Token from the STS, and
handles how long the security token should be cached, etc.

An example of a simple IssuedToken policy that might appear in the WSDL of a service provider is as follows:

<sp:IssuedToken sp:IncludeToken=".../AlwaysToRecipient">
 <sp:RequestSecurityTokenTemplate>
 <t:TokenType>
 http://docs.oasis-open.org/wss/oasis-wss-saml-token-profile-1.1#SAMLV2.0
 </t:TokenType>
 <t:KeyType>
 http://docs.oasis-open.org/ws-sx/ws-trust/200512/Bearer
 </t:KeyType>
 </sp:RequestSecurityTokenTemplate>
 ...
</sp:IssuedToken>

This policy states that the client should include a SAML 2.0 Assertion of subject confirmation method "Bearer"
in the request. The client must know how to communicate with an STS to obtain such a token. This is done by
providing the STSClient object with the appropriate information.

The IssueUnitTest referred to above uses the STSClient programmatically to obtain a security token. Let's look
at the "requestSecurityToken" method called by the tests. An STSClient is instantiated via the CXF bus, and the
WSDL location of the STS, plus service and port names are configured:

STSClient stsClient = new STSClient(bus);

http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/trust/STSClient.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/SecurityConstants.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/policy/interceptors/IssuedTokenInterceptorProvider.java?view=markup

Running the JAX-WS CXF WS-Trust Sample from Talend ESB

Talend ESB STS User Guide 41

stsClient.setWsdlLocation("https://.../SecurityTokenService/Transport?wsdl");
stsClient.setServiceName("{...}SecurityTokenService");
stsClient.setEndpointName("{...}Transport_Port");

A map is then populated with various properties and set on the STSClient. It is keyed with a different number of
SecurityConstants tags. A username is supplied for use as the "user" in the UsernameToken. A CallbackHandler
class is supplied to get the password to use in the UsernameToken. Compliance of the Basic Security Profile 1.1
is turned off, this is to prevent CXF throwing an exception when receiving a non-spec compliant response from
a non-CXF STS:

Map<String, Object> properties = new HashMap<String, Object>();
stsClient.setProperties(properties);
properties.put(SecurityConstants.USERNAME, "alice");
properties.put(
 SecurityConstants.CALLBACK_HANDLER,
 "org.apache.cxf.systest.sts.common.CommonCallbackHandler"
);
properties.put(SecurityConstants.IS_BSP_COMPLIANT, "false");

If the KeyType is a "PublicKey", then an X.509 Certificate is presented to the STS in the request to
embed in the generated SAML Assertion. The X.509 Certificate is obtained from the keystore defined in
"clientKeystore.properties", with the alias "myclientkey". Finally, the "useCertificateForConfirmationKeyInfo"
property of the STSClient means that the entire certificate is to be included in the request, instead of a KeyValue
(which is the default):

if (PUBLIC_KEY_KEYTYPE.equals(keyType)) {
 properties.put(SecurityConstants.STS_TOKEN_USERNAME, "myclientkey");
 properties.put(SecurityConstants.STS_TOKEN_PROPERTIES,
 "clientKeystore.properties");
 stsClient.setUseCertificateForConfirmationKeyInfo(true);
}

Finally, the token type is set on the STSClient (the type of token that is being requested), as well as the KeyType
(specific to a SAML Assertion), and a security token is requested, passing the endpoint address which is sent to
the STS in the "AppliesTo" element:

stsClient.setTokenType(tokenType);
stsClient.setKeyType(keyType);
return stsClient.requestSecurityToken(endpointAddress);

The returned SecurityToken object contains the received token as a DOM element, the ID of the received token,
any reference elements that were returned - which show how to reference the token, any secret associated with
the token, and the lifetime of the token.

4.2. Running the JAX-WS CXF WS-Trust
Sample from Talend ESB
Talend ESB includes a jaxws-cxf-sts sample under the examples folder of the distribution. The STS and
WSP portions of this example run on Apache Tomcat Version 7.

Running on Tomcat 6

If you would like to use Tomcat 6, as discussed in this sample's README file, some changes to this
sample are needed:

http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/SecurityConstants.java?view=markup
http://svn.apache.org/viewvc/cxf/trunk/rt/ws/security/src/main/java/org/apache/cxf/ws/security/tokenstore/SecurityToken.java?view=markup

Download Tomcat and configure Tomcat-Maven integration

42 Talend ESB STS User Guide

• In Tomcat 6's tomcat-users.xml file (discussed in the next section), instead of giving the tomcat user
the "manager-script" and "manager-gui" roles, give him the Tomcat 6-specific "manager" role.

• Use the -PTomcat6 setting when deploying either the STS or the Web Service Provider onto Tomcat

If not already done, configure Maven to be able to install and uninstall the WSP and the STS by following these
instructions:

4.2.1. Download Tomcat and configure Tomcat-Maven
integration

1. Download from http://tomcat.apache.org/download-70.cgi or http://tomcat.apache.org/download-60.cgi the
latest release version of Tomcat and extract the zip or tar.gz file into a new directory.

2. Have an environment variable $CATALINA_HOME point to your expanded Tomcat application directory,
e.g. for Linux (in your ~/.bashrc file): export CATALINA_HOME=/usr/myapps/tomcat-
<version>

3. In the CATALINA_HOME/conf/tomcat-users.xml file, we'll need to create a user with appropriate
manager permissions. Create a new user with the role of manager-script or give the default "tomcat" user the
manager-script role as shown below. This role allows for deploying web applications using scripting tools
such as the Tomcat Maven Plugin we're using in this tutorial. Although not necessary for Tomcat deployment,
The manager-gui role gives ability to access the browser-based Tomcat Manager HTML application, helpful
for a quick authentication check. Depending on your security needs, you may or may not wish to do this
in production.

<tomcat-users>
 ...other entries...
 <role rolename="manager-script"/>
 <role rolename="manager-gui"/>
 <user username="tomcat" password="????"
 roles="tomcat,manager-script,manager-gui"/>
</tomcat-users>

For production it is best to grant manager roles to another username besides the easy-to-guess default
"tomcat" user.

Change the "????" in user password line of tomcat-users configuration to another appropriate password and
save.

4. Start Tomcat from a console window: {prompt}% $CATALINA_HOME/bin/startup.sh

5. If you granted the user the manager-gui role, confirm that you can log into the manager webapp at http://
localhost:8080/manager/html using the username and password of the manager account.para

4.2.2. Configure Maven and Java Security Extension

1. Update (or create if not present) your Maven repository settings.xml file for Maven deployment plugin
authorization.

Go to the .m2/settings.xml file of your operating system home directory (for Microsoft Windows, usually
\Documents and Settings\<windows-user>; Linux would be /home/<user>) and add:

http://tomcat.apache.org/download-70.cgi
http://tomcat.apache.org/download-60.cgi

Deployment and running

Talend ESB STS User Guide 43

<settings>
...
 <servers>
 <server>
 <id>myTomcat</id>
 <username>tomcat</username>
 <password>(defined in tomcat-users.xml configuration)</password>
 </server>
 </servers>
...
</settings>

Where "tomcat" above is the name of the user you granted the managerial role(s) to in the previous section.

2. Check if the Java Security Extension installed:

To prevent the "Illegal key size or default parameters" exception, update your Java SDK by downloading
the Java(TM) Cryptography Extension (JCE) Unlimited Strength Jurisdiction Policy Files 6. Follow the
README within that download for instructions on upgrading your JDK to support 256-bit encryption.
(Another option is to reduce the encryption level of the sample to 128-bit by following the instructions in
this sample's README file.) You can download the policy files from http://www.oracle.com/technetwork/
java/javase/downloads/index.html.

4.2.3. Deployment and running

1. From the root jaxws-cxf-sts folder, run mvn clean install. If no errors, can then run mvn
tomcat:deploy (or tomcat:undeploy or tomcat:redeploy on subsequent runs as appropriate),
either from the same folder (to deploy the STS and WSP at the same time) or separately, one at a time, from
the war and sts folders.

2. Before proceeding to the next step, make sure you can view the following WSDLs: the CXF STS
WSDL located at: http://localhost:8080/DoubleItSTS/X509?wsdl and the CXF WSP at http://localhost:8080/
doubleit/services/doubleitUT?wsdl.

3. Navigate to the client folder and run mvn clean install exec:exec. You should see the results
of three web service calls, with the client using X.509 authentication with the STS to get the SAML Assertion.

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://localhost:8080/DoubleItSTS/X509?wsdl
http://localhost:8080/doubleit/services/doubleitUT?wsdl
http://localhost:8080/doubleit/services/doubleitUT?wsdl

Talend ESB STS User Guide

	Talend ESB STS
	Table of Contents
	Chapter 1. Introduction
	1.1. What is a Security Token Service?
	1.1.1. A sample request/response for issuing a Security Token

	1.2. The STS provider framework in Apache CXF

	Chapter 2. Security Token Service Architecture
	2.1. The TokenProvider Interface
	2.2. TokenProvider Parameters
	2.3. TokenProviderResponse
	2.4. The SCTProvider
	2.5. TokenProvider token caching
	2.6. The SAMLTokenProvider
	2.7. Realms in the Token Providers
	2.8. Populating SAML Tokens
	2.8.1. Configure a Conditions statement
	2.8.2. Configure a Subject
	2.8.3. Adding Attribute Statements
	2.8.4. Adding Authentication Statements
	2.8.5. Adding Authorization Decision Statements

	2.9. Token Validation
	2.9.1. The TokenValidator interface
	2.9.2. TokenValidatorParameters
	2.9.3. TokenValidatorResponse
	2.9.4. The SCTValidator
	2.9.5. The X509TokenValidator
	2.9.6. The UsernameTokenValidator
	2.9.7. Realms in the TokenValidators
	2.9.8. The SAMLTokenValidator
	2.9.8.1. Validating a received SAML Assertion
	2.9.8.2. Realm handling in the SAMLTokenValidator

	2.10. Token Renewal
	2.10.1. The TokenRenewer interface
	2.10.1.1. The SAMLTokenRenewer
	2.10.1.2. Token validation
	2.10.1.3. Renewing the SAML Assertion
	2.10.1.4. SAML Token Renewal in action

	2.11. Token Batch Processing
	2.11.1. Batch Processing in the STS implementation
	2.11.2. Batch Processing example

	2.12. Token Cancellation
	2.12.1. The TokenCanceller interface
	2.12.2. TokenCancellerParameters and TokenCancellerResponse
	2.12.3. The SCTCanceller
	2.12.3.1. Enforcing proof-of-possession

	2.13. Token Caching
	2.13.1. CXF WS-Security runtime token caching
	2.13.1.1. SecurityTokens
	2.13.1.2. TokenStores

	2.13.2. CXF STS token caching

	2.14. Generic Token Handling
	2.14.1. AbstractOperation
	2.14.1.1. STSPropertiesMBean
	2.14.1.2. SignatureProperties

	2.14.2. Request Parsing
	2.14.2.1. TokenRequirements
	2.14.2.2. KeyRequirements
	2.14.2.3. SecondaryParameters

	2.14.3. The TokenIssueOperation
	2.14.3.1. Realm Parsing
	2.14.3.2. AppliesTo parsing
	2.14.3.3. Token creation and response
	2.14.3.4. TokenIssueOperation Example

	2.14.4. The TokenCancelOperation

	2.15. Claims Handling in the STS
	2.15.1. Parsing claims
	2.15.2. The ClaimsHandler
	2.15.3. The ClaimsManager

	2.16. The TokenValidateOperation
	2.16.1. Token validation and response
	2.16.1.1. Token Transformation
	2.16.1.2. Token response

	2.16.2. TokenValidateOperation example

	Chapter 3. Using STS with the Talend Runtime
	3.1. Deploying the STS into the Talend Runtime container
	3.2. Deploying the STS into a Servlet Container (Tomcat)
	3.3. Security Token Service (STS) Configuration
	3.4. Data Service Configuration for using STS
	3.5. Creating keys for the Security Token Service
	3.5.1. Using OpenSSL to create certificates
	3.5.1.1. Creating the service keystore
	3.5.1.2. Creating the client keystore

	3.5.2. Deploying and Using a Security Token Service (STS)

	Chapter 4. Secure Token Service (STS) Client Configuration
	4.1. STS Client Behavior
	4.2. Running the JAX-WS CXF WS-Trust Sample from Talend ESB
	4.2.1. Download Tomcat and configure Tomcat-Maven integration
	4.2.2. Configure Maven and Java Security Extension
	4.2.3. Deployment and running

