
Talend Open Studio
Components
Reference Guide

5.2.1



Talend Open Studio Components

Adapted for v5.2.1. Supersedes previous Reference Guide releases.

Copyleft

This documentation is provided under the terms of the Creative Commons Public License (CCPL).

For more information about what you can and cannot do with this documentation in accordance with the CCPL,
please read: http://creativecommons.org/licenses/by-nc-sa/2.0/

Notices

All brands, product names, company names, trademarks and service marks are the properties of their respective
owners.

http://creativecommons.org/licenses/by-nc-sa/2.0/


Talend Open Studio Components Reference Guide

Table of Contents
Preface ..............................................  xix

General information . . . . . . . . . . . . . . . . . . . . . . . . . . .  xix
Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xix
Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xix
Typographical conventions . . . . . . . . . . . . . .  xix

Feedback and Support . . . . . . . . . . . . . . . . . . . . . . . .  xix
Big Data components .............................  1

tHiveClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2
tHiveClose properties . . . . . . . . . . . . . . . . . . . . .  2
Related scenario . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

tHiveConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
tHiveConnection properties . . . . . . . . . . . . . . .  3
Related scenario . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

tHiveRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5
tHiveRow properties . . . . . . . . . . . . . . . . . . . . .  5
Related scenarios . . . . . . . . . . . . . . . . . . . . . . . . .  7

Business components ..............................  9
tAlfrescoOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

tAlfrescoOutput Properties . . . . . . . . . . . . . . .  10
Scenario: Creating documents on an
Alfresco server . . . . . . . . . . . . . . . . . . . . . . . . . . .  14

tBonitaDeploy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20
tBonitaDeploy Properties . . . . . . . . . . . . . . . .  20
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . . .  21

tBonitaInstantiateProcess . . . . . . . . . . . . . . . . . . . . . .  22
tBonitaInstantiateProcess Properties . . . . .  22
Scenario 1: Executing a Bonita
process via a Talend Job . . . . . . . . . . . . . . . . .  24
Scenario 2: Outputting the process
instance UUID over the Row > Main
link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

tCentricCRMInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31
tCentricCRMInput Properties . . . . . . . . . . . .  31
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . . .  31

tCentricCRMOutput . . . . . . . . . . . . . . . . . . . . . . . . . . .  32
tCentricCRMOutput Properties . . . . . . . . . .  32
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . . .  32

tHL7Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33
tHL7Input Properties . . . . . . . . . . . . . . . . . . . . .  33
Scenario: Retrieving information
about patients and events from an
HL7 file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33

tHL7Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37
tHL7Output Properties . . . . . . . . . . . . . . . . . . .  37
Related scenario . . . . . . . . . . . . . . . . . . . . . . . . .  37

tMarketoInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  38
tMarketoInput Properties . . . . . . . . . . . . . . . .  38
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . . .  39

tMarketoListOperation . . . . . . . . . . . . . . . . . . . . . . . .  40
tMarketoListOperation Properties . . . . . . . .  40
Scenario: Adding a lead record to a
list in the Marketo DB . . . . . . . . . . . . . . . . . . .  41

tMarketoOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  45
tMarketoOutput Properties . . . . . . . . . . . . . . .  45
Scenario: Data transmission between
Marketo DB and an external system . . . . .  46

tMicrosoftCrmInput . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51
tMicrosoftCrmInput Properties . . . . . . . . . .  51
Scenario: Writing data in a
Microsoft CRM database and putting
conditions on columns to extract
specified rows . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52

tMicrosoftCrmOutput . . . . . . . . . . . . . . . . . . . . . . . . . .  58
tMicrosoftCrmOutput Properties . . . . . . . . .  58
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . . .  59

tMSAXInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60
tMSAXInput properties . . . . . . . . . . . . . . . . . .  60
Related scenarios . . . . . . . . . . . . . . . . . . . . . . . .  61

tMSAXOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62

tMSAXOutput properties . . . . . . . . . . . . . . . .  62
Scenario 1: Inserting data in a
defined table in a MicrosoftAX
server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63
Scenario 2: Deleting data from a
defined table in a MicrosoftAX
server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66

tOpenbravoERPInput . . . . . . . . . . . . . . . . . . . . . . . . . .  69
tOpenbravoERPInput properties . . . . . . . . .  69
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . . .  70

tOpenbravoERPOutput . . . . . . . . . . . . . . . . . . . . . . . .  71
tOpenbravoERPOutput properties . . . . . . .  71
Related scenario . . . . . . . . . . . . . . . . . . . . . . . . .  71

tSageX3Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72
tSageX3Input Properties . . . . . . . . . . . . . . . . .  72
Scenario: Using query key to extract
data from a given Sage X3 system . . . . . . .  73

tSageX3Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77
tSageX3Output Properties . . . . . . . . . . . . . . .  77
Scenario: Using a Sage X3 Web
service to insert data into a given
Sage X3 system . . . . . . . . . . . . . . . . . . . . . . . . . .  78

tSalesforceBulkExec . . . . . . . . . . . . . . . . . . . . . . . . . . . .  82
tSalesforceBulkExec Properties . . . . . . . . . .  82
Related Scenario: . . . . . . . . . . . . . . . . . . . . . . . .  83

tSalesforceConnection . . . . . . . . . . . . . . . . . . . . . . . . . .  84
tSalesforceConnection properties . . . . . . . .  84
Related scenario . . . . . . . . . . . . . . . . . . . . . . . . .  84

tSalesforceGetDeleted . . . . . . . . . . . . . . . . . . . . . . . . . .  85
tSalesforceGetDeleted properties . . . . . . . .  85
Scenario: Recovering deleted data
from the Salesforce server . . . . . . . . . . . . . . .  86

tSalesforceGetServerTimestamp . . . . . . . . . . . . . . .  88
tSalesforceGetServerTimestamp
properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88
Related scenarios . . . . . . . . . . . . . . . . . . . . . . . .  89

tSalesforceGetUpdated . . . . . . . . . . . . . . . . . . . . . . . . .  90
tSalesforceGetUpdated properties . . . . . . . .  90
Related scenarios . . . . . . . . . . . . . . . . . . . . . . . .  91

tSalesforceInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92
tSalesforceInput Properties . . . . . . . . . . . . . .  92
Scenario: Using queries to extract
data from a Salesforce database . . . . . . . . . .  93

tSalesforceOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  98
tSalesforceOutput Properties . . . . . . . . . . . . .  98
Scenario 1: Deleting data from the
Account object . . . . . . . . . . . . . . . . . . . . . . . . . . .  99
Scenario 2: Gathering erroneous data
while inserting data to a module at
Salesforce.com . . . . . . . . . . . . . . . . . . . . . . . . . .  101
Scenario 3: Inserting AccountIDs
from an Excel File to the Contact
Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  104

tSalesforceOutputBulk . . . . . . . . . . . . . . . . . . . . . . . .  109
tSalesforceOutputBulk Properties . . . . . .  109
Scenario: Inserting transformed bulk
data into your Salesforce.com . . . . . . . . . .  109

tSalesforceOutputBulkExec . . . . . . . . . . . . . . . . . .  114
tSalesforceOutputBulkExec
Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  114
Scenario: Inserting bulk data into
your Salesforce.com . . . . . . . . . . . . . . . . . . . .  115

tSAPBWInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  119
tSAPBWInput Properties . . . . . . . . . . . . . . .  119
Scenario: Reading data from SAP
BW database . . . . . . . . . . . . . . . . . . . . . . . . . . . .  120

tSAPCommit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  124
tSAPCommit Properties . . . . . . . . . . . . . . . .  124
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  124

tSAPConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  125
tSAPConnection properties . . . . . . . . . . . . .  125
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  125



Talend Open Studio Components

iv Talend Open Studio Components Reference Guide

tSAPInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  126
tSAPInput Properties . . . . . . . . . . . . . . . . . . .  126
Scenario 1: Retrieving metadata from
the SAP system . . . . . . . . . . . . . . . . . . . . . . . . .  127
Scenario 2: Reading data in
the different schemas of the
RFC_READ_TABLE function . . . . . . . . .  134

tSAPOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  140
tSAPOutput Properties . . . . . . . . . . . . . . . . .  140
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  141

tSAPRollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  142
tSAPRollback properties . . . . . . . . . . . . . . .  142
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  142

tSugarCRMInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  143
tSugarCRMInput Properties . . . . . . . . . . . .  143
Scenario: Extracting account data
from SugarCRM . . . . . . . . . . . . . . . . . . . . . . . .  143

tSugarCRMOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . .  146
tSugarCRMOutput Properties . . . . . . . . . .  146
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . .  146

tVtigerCRMInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  147
tVtigerCRMInput Properties . . . . . . . . . . . .  147
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . .  147

tVtigerCRMOutput . . . . . . . . . . . . . . . . . . . . . . . . . . .  148
tVtigerCRMOutput Properties . . . . . . . . . .  148
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . .  149

Business Intelligence components .........  151
tBarChart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  152

tBarChart properties . . . . . . . . . . . . . . . . . . . .  152
Scenario: Creating a bar chart from
the input data . . . . . . . . . . . . . . . . . . . . . . . . . . .  153

tDB2SCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  160
tDB2SCD properties . . . . . . . . . . . . . . . . . . . .  160
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  161

tDB2SCDELT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  162
tDB2SCDELT Properties . . . . . . . . . . . . . . .  162
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . .  163

tGreenplumSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  164
tGreenplumSCD Properties . . . . . . . . . . . . .  164
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  165

tInformixSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  166
tInformixSCD properties . . . . . . . . . . . . . . .  166
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  167

tIngresSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  168
tIngresSCD Properties . . . . . . . . . . . . . . . . . .  168
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  169

tJasperOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  170
tJasperOutput Properties . . . . . . . . . . . . . . . .  170
Scenario: Generating a report against
a .jrxml template . . . . . . . . . . . . . . . . . . . . . . . .  170

tJasperOutputExec . . . . . . . . . . . . . . . . . . . . . . . . . . . .  174
tJasperOutputExec Properties . . . . . . . . . . .  174
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . .  174

tLineChart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  175
tLineChart properties . . . . . . . . . . . . . . . . . . .  175
Scenario: Creating a line chart to
ease trend analysis . . . . . . . . . . . . . . . . . . . . . .  176

tMondrianInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  183
tMondrianInput Properties . . . . . . . . . . . . . .  183
Scenario: Cross-join tables . . . . . . . . . . . . .  183

tMSSqlSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  187
tMSSqlSCD Properties . . . . . . . . . . . . . . . . .  187
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  188

tMysqlSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  189
tMysqlSCD Properties . . . . . . . . . . . . . . . . . .  189
Scenario: Tracking changes using
Slowly Changing Dimensions (type 0
through type 3) . . . . . . . . . . . . . . . . . . . . . . . . .  192

tMysqlSCDELT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  200
tMysqlSCDELT Properties . . . . . . . . . . . . .  200
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . .  201

tOracleSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  202

tOracleSCD Properties . . . . . . . . . . . . . . . . .  202
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  203

tOracleSCDELT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  204
tOracleSCDELT Properties . . . . . . . . . . . . .  204
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . .  205

tPaloCheckElements . . . . . . . . . . . . . . . . . . . . . . . . . .  206
tPaloCheckElements Properties . . . . . . . . .  206
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  207

tPaloConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  208
tPaloConnection Properties . . . . . . . . . . . . .  208
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  208

tPaloCube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  209
tPaloCube Properties . . . . . . . . . . . . . . . . . . .  209
Scenario: Creating a cube in an
existing database . . . . . . . . . . . . . . . . . . . . . . . .  210

tPaloCubeList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  213
tPaloCubeList Properties . . . . . . . . . . . . . . .  213
Discovering the read-only output
schema of tPaloCubeList . . . . . . . . . . . . . . .  214
Scenario: Retrieving detailed cube
information from a given database . . . . . .  215

tPaloDatabase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  217
tPaloDatabase Properties . . . . . . . . . . . . . . .  217
Scenario: Creating a database . . . . . . . . . .  218

tPaloDatabaseList . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  220
tPaloDatabaseList Properties . . . . . . . . . . .  220
Discovering the read-only output
schema of tPaloDatabaseList . . . . . . . . . . .  221
Scenario: Retrieving detailed
database information from a given
Palo server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  221

tPaloDimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  224
tPaloDimension Properties . . . . . . . . . . . . .  224
Scenario: Creating a dimension with
elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  227

tPaloDimensionList . . . . . . . . . . . . . . . . . . . . . . . . . . .  232
tPaloDimensionList Properties . . . . . . . . .  232
Discovering the read-only output
schema of tPaloDimensionList . . . . . . . . .  233
Scenario: Retrieving detailed
dimension information from a given
database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  234

tPaloInputMulti . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  236
tPaloInputMulti Properties . . . . . . . . . . . . . .  236
Scenario: Retrieving dimension
elements from a given cube . . . . . . . . . . . .  237

tPaloOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  241
tPaloOutput Properties . . . . . . . . . . . . . . . . . .  241
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  242

tPaloOutputMulti . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  243
tPaloOutputMulti Properties . . . . . . . . . . . .  243
Scenario 1: Writing data into a given
cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  244
Scenario 2: Rejecting inflow data
when the elements to be written do
not exist in a given cube . . . . . . . . . . . . . . . .  247

tPaloRule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  251
tPaloRule Properties . . . . . . . . . . . . . . . . . . . .  251
Scenario: Creating a rule in a given
cube . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  252

tPaloRuleList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  255
tPaloRuleList Properties . . . . . . . . . . . . . . . .  255
Discovering the read-only output
schema of tPaloRuleList . . . . . . . . . . . . . . . .  256
Scenario: Retrieving detailed rule
information from a given cube . . . . . . . . .  256

tParAccelSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  259
tParAccelSCD Properties . . . . . . . . . . . . . . .  259
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  260

tPostgresPlusSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  261
tPostgresPlusSCD Properties . . . . . . . . . . .  261
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  262



Talend Open Studio Components

Talend Open Studio Components Reference Guide v

tPostgresPlusSCDELT . . . . . . . . . . . . . . . . . . . . . . . .  263
tPostgresPlusSCDELT Properties . . . . . .  263
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . .  264

tPostgresqlSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  265
tPostgresqlSCD Properties . . . . . . . . . . . . . .  265
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  266

tPostgresqlSCDELT . . . . . . . . . . . . . . . . . . . . . . . . . . .  267
tPostgresqlSCDELT Properties . . . . . . . . .  267
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . .  268

tSPSSInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  269
tSPSSInput properties . . . . . . . . . . . . . . . . . .  269
Scenario: Displaying the content of
an SPSS .sav file . . . . . . . . . . . . . . . . . . . . . . .  269

tSPSSOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  272
tSPSSOutput properties . . . . . . . . . . . . . . . . .  272
Scenario: Writing data in an .sav file . . .  272

tSPSSProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  275
tSPSSProperties properties . . . . . . . . . . . . .  275
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  275

tSPSSStructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  276
tSPSSStructure properties . . . . . . . . . . . . . .  276
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  276

tSybaseSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  277
tSybaseSCD properties . . . . . . . . . . . . . . . . .  277
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  278

tSybaseSCDELT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  279
tSybaseSCDELT Properties . . . . . . . . . . . .  279
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . .  280

Cloud components ..............................  281
tAmazonMysqlClose . . . . . . . . . . . . . . . . . . . . . . . . . .  282

tAmazonMysqlClose properties . . . . . . . .  282
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  282

tAmazonMysqlCommit . . . . . . . . . . . . . . . . . . . . . . .  283
tAmazonMysqlCommit Properties . . . . . .  283
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  283

tAmazonMysqlConnection . . . . . . . . . . . . . . . . . . . .  284
tAmazonMysqlConnection
Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  284
Scenario: Inserting data in mother/
daughter tables . . . . . . . . . . . . . . . . . . . . . . . . . .  285

tAmazonMysqlInput . . . . . . . . . . . . . . . . . . . . . . . . . .  289
tAmazonMysqlInput properties . . . . . . . . .  289
Scenario1: Writing columns from a
MySQL database to an output file . . . . . .  290

tAmazonMysqlOutput . . . . . . . . . . . . . . . . . . . . . . . .  294
tAmazonMysqlOutput properties . . . . . . .  294
Scenario 1: Adding a new column
and altering data in a DB table . . . . . . . . .  297
Scenario 2: Updating data in a
database table . . . . . . . . . . . . . . . . . . . . . . . . . . .  302
Scenario 3: Retrieve data in error
with a Reject link . . . . . . . . . . . . . . . . . . . . . . .  304

tAmazonMysqlRollback . . . . . . . . . . . . . . . . . . . . . .  310
tAmazonMysqlRollback properties . . . . .  310
Scenario: Rollback from inserting
data in mother/daughter tables . . . . . . . . . .  310

tAmazonMysqlRow . . . . . . . . . . . . . . . . . . . . . . . . . . .  312
tAmazonMysqlRow properties . . . . . . . . .  312
Scenario 1: Removing and
regenerating a MySQL table index . . . . .  313
Scenario 2: Using PreparedStatement
objects to query data . . . . . . . . . . . . . . . . . . .  315
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  319

tAmazonOracleClose . . . . . . . . . . . . . . . . . . . . . . . . . .  320
tAmazonOracleClose properties . . . . . . . .  320
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  320

tAmazonOracleCommit . . . . . . . . . . . . . . . . . . . . . . .  321
tAmazonOracleCommit Properties . . . . .  321
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  321

tAmazonOracleConnection . . . . . . . . . . . . . . . . . . .  322
tAmazonOracleConnection
Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  322

Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  323
tAmazonOracleInput . . . . . . . . . . . . . . . . . . . . . . . . . .  324

tAmazonOracleInput properties . . . . . . . .  324
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  325

tAmazonOracleOutput . . . . . . . . . . . . . . . . . . . . . . . .  326
tAmazonOracleOutput properties . . . . . . .  326
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  328

tAmazonOracleRollback . . . . . . . . . . . . . . . . . . . . . .  329
tAmazonOracleRollback properties . . . . .  329
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  329

tAmazonOracleRow . . . . . . . . . . . . . . . . . . . . . . . . . . .  330
tAmazonOracleRow properties . . . . . . . . .  330
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  331

tMarketoInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  332
tMarketoListOperation . . . . . . . . . . . . . . . . . . . . . . .  333
tMarketoOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  334
tSalesforceBulkExec . . . . . . . . . . . . . . . . . . . . . . . . . . .  335
tSalesforceConnection . . . . . . . . . . . . . . . . . . . . . . . . .  336
tSalesforceGetDeleted . . . . . . . . . . . . . . . . . . . . . . . . .  337
tSalesforceGetServerTimestamp . . . . . . . . . . . . .  338
tSalesforceGetUpdated . . . . . . . . . . . . . . . . . . . . . . . .  339
tSalesforceInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  340
tSalesforceOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  341
tSalesforceOutputBulk . . . . . . . . . . . . . . . . . . . . . . . .  342
tSalesforceOutputBulkExec . . . . . . . . . . . . . . . . . .  343
tSugarCRMInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  344
tSugarCRMOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . .  345

Custom Code components ...................  347
tGroovy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  348

tGroovy properties . . . . . . . . . . . . . . . . . . . . . .  348
Related Scenarios . . . . . . . . . . . . . . . . . . . . . . .  348

tGroovyFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  349
tGroovyFile properties . . . . . . . . . . . . . . . . . .  349
Scenario: Calling a file which
contains Groovy code . . . . . . . . . . . . . . . . . .  349

tJava . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  351
tJava properties . . . . . . . . . . . . . . . . . . . . . . . . .  351
Scenario: Printing out a variable
content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  351

tJavaFlex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  355
tJavaFlex properties . . . . . . . . . . . . . . . . . . . .  355
Scenario 1: Generating data flow . . . . . . .  355
Scenario 2: Processing rows of data
with tJavaFlex . . . . . . . . . . . . . . . . . . . . . . . . . .  358

tJavaRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  362
tJavaRow properties . . . . . . . . . . . . . . . . . . . .  362
Scenario: Transforming data line by
line using tJavaRow . . . . . . . . . . . . . . . . . . . .  362

tLibraryLoad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  366
tLibraryLoad properties . . . . . . . . . . . . . . . .  366
Scenario: Checking the format of an
e-mail addressl . . . . . . . . . . . . . . . . . . . . . . . . . .  366

tSetGlobalVar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  369
tSetGlobalVar properties . . . . . . . . . . . . . . .  369
Scenario: Printing out the content of
a global variable . . . . . . . . . . . . . . . . . . . . . . . .  369

Data Quality components ....................  371
tAddCRCRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  372

tAddCRCRow properties . . . . . . . . . . . . . . .  372
Scenario: Adding a surrogate key to
a file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  372

tChangeFileEncoding . . . . . . . . . . . . . . . . . . . . . . . . .  375
tExtractRegexFields . . . . . . . . . . . . . . . . . . . . . . . . . . .  376
tFuzzyMatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  377

tFuzzyMatch properties . . . . . . . . . . . . . . . . .  377
Scenario 1: Levenshtein distance of 0
in first names . . . . . . . . . . . . . . . . . . . . . . . . . . .  378
Scenario 2: Levenshtein distance of 1
or 2 in first names . . . . . . . . . . . . . . . . . . . . . .  379
Scenario 3: Metaphonic distance in
first name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  380

tIntervalMatch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  382



Talend Open Studio Components

vi Talend Open Studio Components Reference Guide

tIntervalMatch properties . . . . . . . . . . . . . . .  382
Scenario: Identifying Ip country . . . . . . . .  382

tReplaceList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  385
tReplaceList Properties . . . . . . . . . . . . . . . . .  385
Scenario: Replacement from a
reference file . . . . . . . . . . . . . . . . . . . . . . . . . . . .  386

tSchemaComplianceCheck . . . . . . . . . . . . . . . . . . .  389
tSchemaComplianceCheck
Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  389
Scenario: Validating data against
schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  390

tUniqRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  394
tUniqRow Properties . . . . . . . . . . . . . . . . . . .  394
Scenario 1: Deduplicating entries . . . . . . .  395

tUniservBTGeneric . . . . . . . . . . . . . . . . . . . . . . . . . . . .  398
tUniservBTGeneric properties . . . . . . . . . .  398
Scenario: Execution of a Job in the
Data Quality Service Hub Studio . . . . . . .  399

tUniservRTConvertName . . . . . . . . . . . . . . . . . . . . .  403
tUniservRTConvertName properties . . .  403
Scenario: Analysis of a name line
and assignment of the salutation . . . . . . . .  404

tUniservRTMailBulk . . . . . . . . . . . . . . . . . . . . . . . . . .  407
tUniservRTMailBulk properties . . . . . . . .  407
Scenario: Creating an index pool . . . . . . .  407

tUniservRTMailOutput . . . . . . . . . . . . . . . . . . . . . . .  411
tUniservRTMailOutput properties . . . . . .  411
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  412

tUniservRTMailSearch . . . . . . . . . . . . . . . . . . . . . . .  413
tUniservRTMailSearch properties . . . . . .  413
Scenario: Adding contacts to the
mailRetrieval index pool . . . . . . . . . . . . . . .  413

tUniservRTPost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  418
tUniservRTPost properties . . . . . . . . . . . . . .  418
Scenario 1: Checking and correcting
the postal code, city and street . . . . . . . . . .  419
Scenario 2: Checking and correcting
the postal code, city and street, as
well as rejecting the unfeasible . . . . . . . . .  422

Databases - traditional components .......  425
tAccessBulkExec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  426

tAccessBulkExec properties . . . . . . . . . . . .  426
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  427

tAccessCommit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  428
tAccessCommit Properties . . . . . . . . . . . . . .  428
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  428

tAccessConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  429
tAccessConnection Properties . . . . . . . . . .  429
Scenario: Inserting data in parent/
child tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  429

tAccessInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  433
tAccessInput properties . . . . . . . . . . . . . . . . .  433
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  434

tAccessOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  435
tAccessOutput properties . . . . . . . . . . . . . . .  435
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  437

tAccessOutputBulk . . . . . . . . . . . . . . . . . . . . . . . . . . . .  438
tAccessOutputBulk properties . . . . . . . . . .  438
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  438

tAccessOutputBulkExec . . . . . . . . . . . . . . . . . . . . . .  439
tAccessOutputBulkExec properties . . . . .  439
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  440

tAccessRollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  441
tAccessRollback properties . . . . . . . . . . . . .  441
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  441

tAccessRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  442
tAccessRow properties . . . . . . . . . . . . . . . . .  442
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  443

tAS400Close . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  444
tAS400Close properties . . . . . . . . . . . . . . . .  444
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  444

tAS400Commit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  445

tAS400Commit Properties . . . . . . . . . . . . . .  445
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  445

tAS400Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  446
tAS400Connection Properties . . . . . . . . . .  446
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  446

tAS400Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  448
tAS400Input properties . . . . . . . . . . . . . . . . .  448
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  449

tAS400LastInsertId . . . . . . . . . . . . . . . . . . . . . . . . . . .  450
tAS400LastInsertId properties . . . . . . . . . .  450
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  450

tAS400Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  451
tAS400Output properties . . . . . . . . . . . . . . .  451
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  453

tAS400Rollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  454
tAS400Rollback properties . . . . . . . . . . . . .  454
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  454

tAS400Row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  455
tAS400Row properties . . . . . . . . . . . . . . . . .  455
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  456

tDB2BulkExec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  457
tDB2BulkExec properties . . . . . . . . . . . . . .  457
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  458

tDB2Close . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  459
tDB2Close properties . . . . . . . . . . . . . . . . . . .  459
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  459

tDB2Commit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  460
tDB2Commit Properties . . . . . . . . . . . . . . . .  460
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  460

tDB2Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  461
tDB2Connection properties . . . . . . . . . . . . .  461
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  461

tDB2Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  463
tDB2Input properties . . . . . . . . . . . . . . . . . . .  463
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  464

tDB2Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  465
tDB2Output properties . . . . . . . . . . . . . . . . .  465
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  467

tDB2Rollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  468
tDB2Rollback properties . . . . . . . . . . . . . . .  468
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  468

tDB2Row . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  469
tDB2Row properties . . . . . . . . . . . . . . . . . . . .  469
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  470

tDB2SCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  471
tDB2SCDELT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  472
tDB2SP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  473

tDB2SP properties . . . . . . . . . . . . . . . . . . . . . .  473
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  474

tInformixBulkExec . . . . . . . . . . . . . . . . . . . . . . . . . . . .  475
tInformixBulkExec Properties . . . . . . . . . .  475
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  477

tInformixClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  478
tInformixClose properties . . . . . . . . . . . . . .  478
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  478

tInformixCommit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  479
tInformixCommit properties . . . . . . . . . . . .  479
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . .  479

tInformixConnection . . . . . . . . . . . . . . . . . . . . . . . . . .  480
tInformixConnection properties . . . . . . . .  480
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  481

tInformixInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  482
tInformixInput properties . . . . . . . . . . . . . . .  482
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  482

tInformixOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  483
tInformixOutput properties . . . . . . . . . . . . .  483
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  485

tInformixOutputBulk . . . . . . . . . . . . . . . . . . . . . . . . .  486
tInformixOutputBulk properties . . . . . . . .  486
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  487

tInformixOutputBulkExec . . . . . . . . . . . . . . . . . . . .  488
tInformixOutputBulkExec properties . . .  488



Talend Open Studio Components

Talend Open Studio Components Reference Guide vii

Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  490
tInformixRollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  491

tInformixRollback properties . . . . . . . . . . .  491
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . .  491

tInformixRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  492
tInformixRow properties . . . . . . . . . . . . . . .  492
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  493

tInformixSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  494
tInformixSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  495

tInformixSP properties . . . . . . . . . . . . . . . . .  495
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  496

tMSSqlBulkExec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  497
tMSSqlBulkExec properties . . . . . . . . . . . .  497
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  499

tMSSqlColumnList . . . . . . . . . . . . . . . . . . . . . . . . . . . .  500
tMSSqlColumnList Properties . . . . . . . . . .  500
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  500

tMSSqlClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  501
tMSSqlClose properties . . . . . . . . . . . . . . . .  501
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  501

tMSSqlCommit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  502
tMSSqlCommit properties . . . . . . . . . . . . . .  502
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  502

tMSSqlConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . .  503
tMSSqlConnection properties . . . . . . . . . .  503
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  503

tMSSqlInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  505
tMSSqlInput properties . . . . . . . . . . . . . . . . .  505
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  506

tMSSqlLastInsertId . . . . . . . . . . . . . . . . . . . . . . . . . . .  507
tMSSqlLastInsertId properties . . . . . . . . . .  507
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  507

tMSSqlOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  508
tMSSqlOutput properties . . . . . . . . . . . . . . .  508
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  511

tMSSqlOutputBulk . . . . . . . . . . . . . . . . . . . . . . . . . . . .  512
tMSSqlOutputBulk properties . . . . . . . . . .  512
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  512

tMSSqlOutputBulkExec . . . . . . . . . . . . . . . . . . . . . .  513
tMSSqlOutputBulkExec properties . . . . .  513
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  514

tMSSqlRollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  515
tMSSqlRollback properties . . . . . . . . . . . . .  515
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  515

tMSSqlRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  516
tMSSqlRow properties . . . . . . . . . . . . . . . . .  516
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  517

tMSSqlSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  518
tMSSqlSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  519

tMSSqlSP Properties . . . . . . . . . . . . . . . . . . .  519
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  520

tMSSqlTableList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  521
tMSSqlTableList Properties . . . . . . . . . . . .  521
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  521

tMysqlBulkExec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  522
tMysqlBulkExec properties . . . . . . . . . . . . .  522
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  523

tMysqlClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  524
tMysqlClose properties . . . . . . . . . . . . . . . . .  524
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  524

tMysqlColumnList . . . . . . . . . . . . . . . . . . . . . . . . . . . .  525
tMysqlColumnList Properties . . . . . . . . . .  525
Scenario: Iterating on a DB table and
listing its column names . . . . . . . . . . . . . . . .  525

tMysqlCommit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  528
tMysqlCommit Properties . . . . . . . . . . . . . .  528
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  528

tMysqlConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  529
tMysqlConnection Properties . . . . . . . . . . .  529
Scenario: Inserting data in mother/
daughter tables . . . . . . . . . . . . . . . . . . . . . . . . . .  529

tMysqlInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  533

tMysqlInput properties . . . . . . . . . . . . . . . . .  533
Scenario 1: Writing columns from a
MySQL database to an output file . . . . . .  534
Scenario 2: Using context parameters
when reading a table from a MySQL
database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  537

tMysqlLastInsertId . . . . . . . . . . . . . . . . . . . . . . . . . . . .  541
tMysqlLastInsertId properties . . . . . . . . . .  541
Scenario: Get the ID for the last
inserted record . . . . . . . . . . . . . . . . . . . . . . . . . .  541

tMysqlOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  546
tMysqlOutput properties . . . . . . . . . . . . . . . .  546
Scenario 1: Adding a new column
and altering data in a DB table . . . . . . . . .  549
Scenario 2: Updating data in a
database table . . . . . . . . . . . . . . . . . . . . . . . . . . .  553
Scenario 3: Retrieve data in error
with a Reject link . . . . . . . . . . . . . . . . . . . . . . .  556

tMysqlOutputBulk . . . . . . . . . . . . . . . . . . . . . . . . . . . .  562
tMysqlOutputBulk properties . . . . . . . . . . .  562
Scenario: Inserting transformed data
in MySQL database . . . . . . . . . . . . . . . . . . . .  563

tMysqlOutputBulkExec . . . . . . . . . . . . . . . . . . . . . . .  566
tMysqlOutputBulkExec properties . . . . . .  566
Scenario: Inserting data in MySQL
database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  567

tMysqlRollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  569
tMysqlRollback properties . . . . . . . . . . . . . .  569
Scenario: Rollback from inserting
data in mother/daughter tables . . . . . . . . . .  569

tMysqlRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  570
tMysqlRow properties . . . . . . . . . . . . . . . . . .  570
Scenario 1: Removing and
regenerating a MySQL table index . . . . .  572
Scenario 2: Using PreparedStatement
objects to query data . . . . . . . . . . . . . . . . . . .  573
Scenario 3: Combining two flows for
selective output . . . . . . . . . . . . . . . . . . . . . . . . .  577

tMysqlSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  583
tMysqlSCDELT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  584
tMysqlSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  585

tMysqlSP Properties . . . . . . . . . . . . . . . . . . . .  585
Scenario: Finding a State Label using
a stored procedure . . . . . . . . . . . . . . . . . . . . . .  586

tMysqlTableList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  589
tMysqlTableList Properties . . . . . . . . . . . . .  589
Scenario: Iterating on DB tables and
deleting their content using a user-
defined SQL template . . . . . . . . . . . . . . . . . .  589
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  593

tOracleBulkExec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  594
tOracleBulkExec properties . . . . . . . . . . . .  594
Scenario: Truncating and inserting
file data into Oracle DB . . . . . . . . . . . . . . . .  596

tOracleClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  599
tOracleClose properties . . . . . . . . . . . . . . . . .  599
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  599

tOracleCommit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  600
tOracleCommit Properties . . . . . . . . . . . . . .  600
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  600

tOracleConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . .  601
tOracleConnection Properties . . . . . . . . . . .  601
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  602

tOracleInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  603
tOracleInput properties . . . . . . . . . . . . . . . . .  603
Scenario 1: Using context parameters
when reading a table from an Oracle
database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  604
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  607

tOracleOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  608
tOracleOutput properties . . . . . . . . . . . . . . .  608
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  611



Talend Open Studio Components

viii Talend Open Studio Components Reference Guide

tOracleOutputBulk . . . . . . . . . . . . . . . . . . . . . . . . . . . .  612
tOracleOutputBulk properties . . . . . . . . . .  612
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  613

tOracleOutputBulkExec . . . . . . . . . . . . . . . . . . . . . .  614
tOracleOutputBulkExec properties . . . . .  614
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  616

tOracleRollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  617
tOracleRollback properties . . . . . . . . . . . . .  617
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  617

tOracleRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  618
tOracleRow properties . . . . . . . . . . . . . . . . . .  618
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  619

tOracleSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  621
tOracleSCDELT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  622
tOracleSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  623

tOracleSP Properties . . . . . . . . . . . . . . . . . . . .  623
Scenario: Checking number format
using a stored procedure . . . . . . . . . . . . . . . .  625

tOracleTableList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  628
tOracleTableList properties . . . . . . . . . . . . .  628
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  628

tPostgresqlBulkExec . . . . . . . . . . . . . . . . . . . . . . . . . .  629
tPostgresqlBulkExec properties . . . . . . . . .  629
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  630

tPostgresqlCommit . . . . . . . . . . . . . . . . . . . . . . . . . . . .  631
tPostgresqlCommit Properties . . . . . . . . . .  631
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  631

tPostgresqlClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  632
tPostgresqlClose properties . . . . . . . . . . . . .  632
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  632

tPostgresqlConnection . . . . . . . . . . . . . . . . . . . . . . . .  633
tPostgresqlConnection Properties . . . . . . .  633
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  633

tPostgresqlInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  634
tPostgresqlInput properties . . . . . . . . . . . . .  634
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  635

tPostgresqlOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  636
tPostgresqlOutput properties . . . . . . . . . . . .  636
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  638

tPostgresqlOutputBulk . . . . . . . . . . . . . . . . . . . . . . . .  639
tPostgresqlOutputBulk properties . . . . . . .  639
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  639

tPostgresqlOutputBulkExec . . . . . . . . . . . . . . . . . .  641
tPostgresqlOutputBulkExec
properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  641
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  642

tPostgresqlRollback . . . . . . . . . . . . . . . . . . . . . . . . . . .  643
tPostgresqlRollback properties . . . . . . . . .  643
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  643

tPostgresqlRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  644
tPostgresqlRow properties . . . . . . . . . . . . . .  644
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  645

tPostgresqlSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  646
tPostgresqlSCDELT . . . . . . . . . . . . . . . . . . . . . . . . . . .  647
tSybaseBulkExec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  648

tSybaseBulkExec Properties . . . . . . . . . . . .  648
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  650

tSybaseClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  651
tSybaseClose properties . . . . . . . . . . . . . . . .  651
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  651

tSybaseCommit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  652
tSybaseCommit Properties . . . . . . . . . . . . . .  652
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  652

tSybaseConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . .  653
tSybaseConnection Properties . . . . . . . . . .  653
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  653

tSybaseInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  654
tSybaseInput Properties . . . . . . . . . . . . . . . . .  654
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  655

tSybaseIQBulkExec . . . . . . . . . . . . . . . . . . . . . . . . . . .  656
tSybaseIQBulkExec Properties . . . . . . . . .  656
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  658

tSybaseIQOutputBulkExec . . . . . . . . . . . . . . . . . . .  659
tSybaseIQOutputBulkExec
properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  659
Scenario: Bulk-loading data to a
Sybase IQ 12 database . . . . . . . . . . . . . . . . . .  661
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  664

tSybaseOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  665
tSybaseOutput Properties . . . . . . . . . . . . . . .  665
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  667

tSybaseOutputBulk . . . . . . . . . . . . . . . . . . . . . . . . . . .  668
tSybaseOutputBulk properties . . . . . . . . . .  668
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  669

tSybaseOutputBulkExec . . . . . . . . . . . . . . . . . . . . . .  670
tSybaseOutputBulkExec properties . . . . .  670
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  671

tSybaseRollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  673
tSybaseRollback properties . . . . . . . . . . . . .  673
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  673

tSybaseRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  674
tSybaseRow Properties . . . . . . . . . . . . . . . . .  674
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  675

tSybaseSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  676
tSybaseSCDELT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  677
tSybaseSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  678

tSybaseSP properties . . . . . . . . . . . . . . . . . . .  678
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  679

Databases - appliance/datawarehouse
components .......................................  681

tGreenplumBulkExec . . . . . . . . . . . . . . . . . . . . . . . . .  682
tGreenplumBulkExec Properties . . . . . . . .  682
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  683

tGreenplumClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  684
tGreenplumClose properties . . . . . . . . . . . .  684
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  684

tGreenplumCommit . . . . . . . . . . . . . . . . . . . . . . . . . . .  685
tGreenplumCommit Properties . . . . . . . . .  685
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  685

tGreenplumConnection . . . . . . . . . . . . . . . . . . . . . . .  686
tGreenplumConnection properties . . . . . .  686
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  686

tGreenplumGPLoad . . . . . . . . . . . . . . . . . . . . . . . . . .  688
tGreenplumGPLoad properties . . . . . . . . .  688
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  691

tGreenplumInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  692
tGreenplumInput properties . . . . . . . . . . . .  692
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  693

tGreenplumOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . .  694
tGreenplumOutput Properties . . . . . . . . . . .  694
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  696

tGreenplumOutputBulk . . . . . . . . . . . . . . . . . . . . . .  697
tGreenplumOutputBulk properties . . . . . .  697
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  697

tGreenplumOutputBulkExec . . . . . . . . . . . . . . . . .  699
tGreenplumOutputBulkExec
properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  699
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  700

tGreenplumRollback . . . . . . . . . . . . . . . . . . . . . . . . . .  701
tGreenplumRollback properties . . . . . . . . .  701
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  701

tGreenplumRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  702
tGreenplumRow Properties . . . . . . . . . . . . .  702
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  703

tGreenplumSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  704
tIngresBulkExec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  705

tIngresBulkExec properties . . . . . . . . . . . . .  705
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  706

tIngresClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  707
tIngresClose properties . . . . . . . . . . . . . . . . .  707
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  707

tIngresCommit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  708
tIngresCommit Properties . . . . . . . . . . . . . .  708
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  708



Talend Open Studio Components

Talend Open Studio Components Reference Guide ix

tIngresConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  709
tIngresConnection Properties . . . . . . . . . . .  709
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  709

tIngresInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  710
tIngresInput properties . . . . . . . . . . . . . . . . . .  710
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  710

tIngresOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  712
tIngresOutput properties . . . . . . . . . . . . . . . .  712
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  713

tIngresOutputBulk . . . . . . . . . . . . . . . . . . . . . . . . . . . .  715
tIngresOutputBulk properties . . . . . . . . . . .  715
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  715

tIngresOutputBulkExec . . . . . . . . . . . . . . . . . . . . . . .  716
tIngresOutputBulkExec properties . . . . . .  716
Scenario: Loading data to a table in
the Ingres DBMS . . . . . . . . . . . . . . . . . . . . . . .  717
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  720

tIngresRollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  721
tIngresRollback properties . . . . . . . . . . . . . .  721
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  721

tIngresRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  722
tIngresRow properties . . . . . . . . . . . . . . . . . .  722
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  723

tIngresSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  724
tNetezzaBulkExec . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  725

tNetezzaBulkExec properties . . . . . . . . . . .  725
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  726

tNetezzaClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  727
tNetezzaClose properties . . . . . . . . . . . . . . .  727
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  727

tNetezzaCommit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  728
tNetezzaCommit Properties . . . . . . . . . . . . .  728
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  728

tNetezzaConnection . . . . . . . . . . . . . . . . . . . . . . . . . . .  729
tNetezzaConnection Properties . . . . . . . . .  729
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  729

tNetezzaInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  730
tNetezzaInput properties . . . . . . . . . . . . . . . .  730
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  731

tNetezzaNzLoad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  732
tNetezzaNzLoad properties . . . . . . . . . . . . .  732
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  736

tNetezzaOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  737
tNetezzaOutput properties . . . . . . . . . . . . . .  737
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  739

tNetezzaRollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  740
tNetezzaRollback properties . . . . . . . . . . . .  740
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  740

tNetezzaRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  741
tNetezzaRow properties . . . . . . . . . . . . . . . .  741
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  742

tParAccelBulkExec . . . . . . . . . . . . . . . . . . . . . . . . . . . .  743
tParAccelBulkExec Properties . . . . . . . . . .  743
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  744

tParAccelClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  745
tParAccelClose properties . . . . . . . . . . . . . .  745
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  745

tParAccelCommit . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  746
tParAccelCommit Properties . . . . . . . . . . .  746
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  746

tParAccelConnection . . . . . . . . . . . . . . . . . . . . . . . . . .  747
tParAccelConnection Properties . . . . . . . .  747
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  747

tParAccelInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  749
tParAccelInput properties . . . . . . . . . . . . . . .  749
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  750

tParAccelOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  751
tParAccelOutput Properties . . . . . . . . . . . . .  751
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  753

tParAccelOutputBulk . . . . . . . . . . . . . . . . . . . . . . . . .  754
tParAccelOutputBulk properties . . . . . . . .  754
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  754

tParAccelOutputBulkExec . . . . . . . . . . . . . . . . . . . .  756
tParAccelOutputBulkExec Properties
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  756
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  757

tParAccelRollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  758
tParAccelRollback properties . . . . . . . . . . .  758
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  758

tParAccelRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  759
tParAccelRow Properties . . . . . . . . . . . . . . .  759
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  760

tParAccelSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  761
tTeradataClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  762

tTeradataClose properties . . . . . . . . . . . . . . .  762
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  762

tTeradataCommit . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  763
tTeradataCommit Properties . . . . . . . . . . . .  763
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  763

tTeradataConnection . . . . . . . . . . . . . . . . . . . . . . . . . .  764
tTeradataConnection Properties . . . . . . . .  764
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  765

tTeradataFastExport . . . . . . . . . . . . . . . . . . . . . . . . . .  766
tTeradataFastExport Properties . . . . . . . . .  766
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  766

tTeradataFastLoad . . . . . . . . . . . . . . . . . . . . . . . . . . . .  767
tTeradataFastLoad Properties . . . . . . . . . . .  767
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  767

tTeradataFastLoadUtility . . . . . . . . . . . . . . . . . . . . .  768
tTeradataFastLoadUtility Properties . . . .  768
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  769

tTeradataInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  770
tTeradataInput Properties . . . . . . . . . . . . . . .  770
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  771

tTeradataMultiLoad . . . . . . . . . . . . . . . . . . . . . . . . . .  772
tTeradataMultiLoad Properties . . . . . . . . .  772
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  773

tTeradataOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  774
tTeradataOutput Properties . . . . . . . . . . . . .  774
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  776

tTeradataRollback . . . . . . . . . . . . . . . . . . . . . . . . . . . .  777
tTeradataRollback Properties . . . . . . . . . . .  777
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  777

tTeradataRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  778
tTeradataRow Properties . . . . . . . . . . . . . . .  778
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  779

tTeradataTPTUtility . . . . . . . . . . . . . . . . . . . . . . . . . .  780
tTeradataTPTUtility Properties . . . . . . . . .  780
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  781

tTeradataTPump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  782
tTeradataTPump Properties . . . . . . . . . . . . .  782
Scenario: Inserting data into a
Teradata database table . . . . . . . . . . . . . . . . .  783

tVectorWiseCommit . . . . . . . . . . . . . . . . . . . . . . . . . .  787
tVectorWiseCommit Properties . . . . . . . . .  787
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  787

tVectorWiseConnection . . . . . . . . . . . . . . . . . . . . . . .  788
tVectorWiseConnection Properties . . . . .  788
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  788

tVectorWiseInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  790
tVectorWiseInput Properties . . . . . . . . . . . .  790
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  791

tVectorWiseOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . .  792
tVectorWiseOutput Properties . . . . . . . . . .  792
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  794

tVectorWiseRollback . . . . . . . . . . . . . . . . . . . . . . . . . .  795
tVectorWiseRollback Properties . . . . . . . .  795
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  795

tVectorWiseRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  796
tVectorWiseRow Properties . . . . . . . . . . . .  796
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  797

tVerticaBulkExec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  798
tVerticaBulkExec Properties . . . . . . . . . . . .  798
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  799



Talend Open Studio Components

x Talend Open Studio Components Reference Guide

tVerticaClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  800
tVerticaClose properties . . . . . . . . . . . . . . . .  800
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  800

tVerticaCommit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  801
tVerticaCommit Properties . . . . . . . . . . . . .  801
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  801

tVerticaConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . .  802
tVerticaConnection Properties . . . . . . . . . .  802
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  802

tVerticaInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  803
tVerticaInput Properties . . . . . . . . . . . . . . . .  803
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  804

tVerticaOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  805
tVerticaOutput Properties . . . . . . . . . . . . . . .  805
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  807

tVerticaOutputBulk . . . . . . . . . . . . . . . . . . . . . . . . . . .  809
tVerticaOutputBulk Properties . . . . . . . . . .  809
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  809

tVerticaOutputBulkExec . . . . . . . . . . . . . . . . . . . . . .  811
tVerticaOutputBulkExec Properties . . . .  811
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  812

tVerticaRollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  813
tVerticaRollback Properties . . . . . . . . . . . .  813
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  813

tVerticaRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  814
tVerticaRow Properties . . . . . . . . . . . . . . . . .  814
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  815

Databases - other components ..............  817
tCreateTable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  818

tCreateTable Properties . . . . . . . . . . . . . . . . .  818
Scenario: Creating new table in a
Mysql Database . . . . . . . . . . . . . . . . . . . . . . . . .  820

tDBInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  822
tDBInput properties . . . . . . . . . . . . . . . . . . . . .  822
Scenario 1: Displaying selected data
from DB table . . . . . . . . . . . . . . . . . . . . . . . . . .  823
Scenario 2: Using StoreSQLQuery
variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  824

tDBOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  826
tDBOutput properties . . . . . . . . . . . . . . . . . . .  826
Scenario: Writing a row to a table
in the MySql database via an ODBC
connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  827

tDBSQLRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  830
tDBSQLRow properties . . . . . . . . . . . . . . . .  830
Scenario: Resetting a DB auto-
increment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  831

tEXAInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  833
tEXAInput properties . . . . . . . . . . . . . . . . . . .  833
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  834

tEXAOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  835
tEXAOutput properties . . . . . . . . . . . . . . . . .  835
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  836

tEXARow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  838
tEXARow properties . . . . . . . . . . . . . . . . . . .  838
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  839

tEXistConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  840
tEXistConnection properties . . . . . . . . . . . .  840
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  840

tEXistDelete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  841
tEXistDelete properties . . . . . . . . . . . . . . . . .  841
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  842

tEXistGet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  843
tEXistGet properties . . . . . . . . . . . . . . . . . . . .  843
Scenario: Retrieve resources from a
remote eXist DB server . . . . . . . . . . . . . . . . .  844

tEXistList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  846
tEXistList properties . . . . . . . . . . . . . . . . . . . .  846
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  847

tEXistPut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  848
tEXistPut properties . . . . . . . . . . . . . . . . . . . .  848
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  849

tEXistXQuery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  850
tEXistXQuery properties . . . . . . . . . . . . . . .  850
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  851

tEXistXUpdate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  852
tEXistXUpdate properties . . . . . . . . . . . . . .  852
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  853

tFirebirdClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  854
tFirebirdClose properties . . . . . . . . . . . . . . .  854
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  854

tFirebirdCommit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  855
tFirebirdCommit Properties . . . . . . . . . . . . .  855
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  855

tFirebirdConnection . . . . . . . . . . . . . . . . . . . . . . . . . .  856
tFirebirdConnection properties . . . . . . . . .  856
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  856

tFirebirdInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  857
tFirebirdInput properties . . . . . . . . . . . . . . . .  857
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  857

tFirebirdOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  858
tFirebirdOutput properties . . . . . . . . . . . . . .  858
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  859

tFirebirdRollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  860
tFirebirdRollback properties . . . . . . . . . . . .  860
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  860

tFirebirdRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  861
tFirebirdRow properties . . . . . . . . . . . . . . . .  861
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  862

tHiveClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  863
tHiveConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  864
tHiveRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  865
tHSQLDbInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  866

tHSQLDbInput properties . . . . . . . . . . . . . .  866
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  867

tHSQLDbOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  868
tHSQLDbOutput properties . . . . . . . . . . . .  868
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  871

tHSQLDbRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  872
tHSQLDbRow properties . . . . . . . . . . . . . . .  872
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  873

tInterbaseClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  874
tInterbaseClose properties . . . . . . . . . . . . . .  874
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  874

tInterbaseCommit . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  875
tInterbaseCommit Properties . . . . . . . . . . .  875
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  875

tInterbaseConnection . . . . . . . . . . . . . . . . . . . . . . . . .  876
tInterbaseConnection properties . . . . . . . .  876
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  876

tInterbaseInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  877
tInterbaseInput properties . . . . . . . . . . . . . . .  877
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  877

tInterbaseOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  879
tInterbaseOutput properties . . . . . . . . . . . . .  879
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  880

tInterbaseRollback . . . . . . . . . . . . . . . . . . . . . . . . . . . .  882
tInterbaseRollback properties . . . . . . . . . . .  882
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  882

tInterbaseRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  883
tInterbaseRow properties . . . . . . . . . . . . . . .  883
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  884

tJavaDBInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  885
tJavaDBInput properties . . . . . . . . . . . . . . . .  885
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  885

tJavaDBOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  887
tJavaDBOutput properties . . . . . . . . . . . . . .  887
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  888

tJavaDBRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  890
tJavaDBRow properties . . . . . . . . . . . . . . . .  890
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  891

tJDBCColumnList . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  892
tJDBCColumnList Properties . . . . . . . . . . .  892
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  892



Talend Open Studio Components

Talend Open Studio Components Reference Guide xi

tJDBCClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  893
tJDBCClose properties . . . . . . . . . . . . . . . . .  893
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  893

tJDBCCommit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  894
tJDBCCommit Properties . . . . . . . . . . . . . . .  894
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  894

tJDBCConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  895
tJDBCConnection Properties . . . . . . . . . . .  895
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  896

tJDBCInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  897
tJDBCInput properties . . . . . . . . . . . . . . . . . .  897
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  898

tJDBCOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  899
tJDBCOutput properties . . . . . . . . . . . . . . . .  899
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  901

tJDBCRollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  902
tJDBCRollback properties . . . . . . . . . . . . . .  902
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  902

tJDBCRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  903
tJDBCRow properties . . . . . . . . . . . . . . . . . .  903
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  904

tJDBCSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  905
tJDBCSP Properties . . . . . . . . . . . . . . . . . . . .  905
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  906

tJDBCTableList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  907
tJDBCTableList Properties . . . . . . . . . . . . .  907
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  907

tLDAPAttributesInput . . . . . . . . . . . . . . . . . . . . . . . .  908
tLDAPAttributesInput Properties . . . . . . .  908
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  909

tLDAPConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  910
tLDAPConnection Properties . . . . . . . . . . .  910
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  911

tLDAPInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  912
tLDAPInput Properties . . . . . . . . . . . . . . . . .  912
Scenario: Displaying LDAP
directory’s filtered content . . . . . . . . . . . . . .  913

tLDAPOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  916
tLDAPOutput Properties . . . . . . . . . . . . . . .  916
Scenario: Editing data in a LDAP
directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  917

tLDAPRenameEntry . . . . . . . . . . . . . . . . . . . . . . . . . .  920
tLDAPRenameEntry properties . . . . . . . . .  920
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  921

tMaxDBInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  922
tMaxDBInput properties . . . . . . . . . . . . . . . .  922
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  923

tMaxDBOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  924
tMaxDBOutput properties . . . . . . . . . . . . . .  924
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  925

tMaxDBRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  927
tMaxDBRow properties . . . . . . . . . . . . . . . .  927
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  928

tParseRecordSet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  929
tParseRecordSet properties . . . . . . . . . . . . .  929
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . .  929

tPostgresPlusBulkExec . . . . . . . . . . . . . . . . . . . . . . . .  930
tPostgresPlusBulkExec properties . . . . . .  930
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  931

tPostgresPlusClose . . . . . . . . . . . . . . . . . . . . . . . . . . . .  932
tPostgresPlusClose properties . . . . . . . . . .  932
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  932

tPostgresPlusCommit . . . . . . . . . . . . . . . . . . . . . . . . .  933
tPostgresPlusCommit Properties . . . . . . . .  933
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  933

tPostgresPlusConnection . . . . . . . . . . . . . . . . . . . . . .  934
tPostgresPlusConnection Properties . . . .  934
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  934

tPostgresPlusInput . . . . . . . . . . . . . . . . . . . . . . . . . . . .  936
tPostgresPlusInput properties . . . . . . . . . . .  936
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  937

tPostgresPlusOutput . . . . . . . . . . . . . . . . . . . . . . . . . .  938

tPostgresPlusOutput properties . . . . . . . . .  938
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  940

tPostgresPlusOutputBulk . . . . . . . . . . . . . . . . . . . . .  941
tPostgresPlusOutputBulk properties . . . .  941
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  941

tPostgresPlusOutputBulkExec . . . . . . . . . . . . . . . .  943
tPostgresPlusOutputBulkExec
properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  943
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  944

tPostgresPlusRollback . . . . . . . . . . . . . . . . . . . . . . . .  945
tPostgresPlusRollback properties . . . . . . .  945
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  945

tPostgresPlusRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  946
tPostgresPlusRow properties . . . . . . . . . . .  946
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  947

tPostgresPlusSCD . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  948
tPostgresPlusSCDELT . . . . . . . . . . . . . . . . . . . . . . . .  949
tSasInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  950

tSasInput properties . . . . . . . . . . . . . . . . . . . . .  950
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  951

tSasOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  952
tSasOutput properties . . . . . . . . . . . . . . . . . . .  952
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  953

tSQLiteClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  955
tSQLiteClose properties . . . . . . . . . . . . . . . .  955
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  955

tSQLiteCommit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  956
tSQLiteCommit Properties . . . . . . . . . . . . .  956
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  956

tSQLiteConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . .  957
SQLiteConnection properties . . . . . . . . . . .  957
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  957

tSQLiteInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  958
tSQLiteInput Properties . . . . . . . . . . . . . . . .  958
Scenario: Filtering SQlite data . . . . . . . . . .  959

tSQLiteOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  961
tSQLiteOutput Properties . . . . . . . . . . . . . . .  961
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . .  963

tSQLiteRollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  964
tSQLiteRollback properties . . . . . . . . . . . . .  964
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  964

tSQLiteRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  965
tSQLiteRow Properties . . . . . . . . . . . . . . . . .  965
Scenario: Updating SQLite rows . . . . . . .  966
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  968

DotNET components ...........................  969
tDotNETInstantiate . . . . . . . . . . . . . . . . . . . . . . . . . . .  970

tDotNETInstantiate properties . . . . . . . . . .  970
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  970

tDotNETRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  971
tDotNETRow properties . . . . . . . . . . . . . . . .  971
Scenario: Utilizing .NET in Talend . . . . .  972

ELT components ................................  977
tCombinedSQLAggregate . . . . . . . . . . . . . . . . . . . .  978

tCombinedSQLAggregate properties . . .  978
Scenario: Filtering and aggregating
table columns directly on the DBMS . . .  979

tCombinedSQLFilter . . . . . . . . . . . . . . . . . . . . . . . . . .  983
tCombinedSQLFilter Properties . . . . . . . .  983
Related Scenario . . . . . . . . . . . . . . . . . . . . . . . .  984

tCombinedSQLInput . . . . . . . . . . . . . . . . . . . . . . . . . .  985
tCombinedSQLInput properties . . . . . . . .  985
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  985

tCombinedSQLOutput . . . . . . . . . . . . . . . . . . . . . . . .  986
tCombinedSQLOutput properties . . . . . . .  986
Related scenario . . . . . . . . . . . . . . . . . . . . . . . .  986

tELTGreenplumInput . . . . . . . . . . . . . . . . . . . . . . . .  987
tELTGreenplumInput properties . . . . . . . .  987
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  987

tELTGreenplumMap . . . . . . . . . . . . . . . . . . . . . . . . .  988
tELTGreenplumMap properties . . . . . . . .  988



Talend Open Studio Components

xii Talend Open Studio Components Reference Guide

Scenario: Mapping data using a
simple implicit join . . . . . . . . . . . . . . . . . . . . .  989
Related scenario: . . . . . . . . . . . . . . . . . . . . . . .  995

tELTGreenplumOutput . . . . . . . . . . . . . . . . . . . . . . .  996
tELTGreenplumOutput properties . . . . . .  996
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  996

tELTJDBCInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  998
tELTJDBCInput properties . . . . . . . . . . . . .  998
Related scenarios . . . . . . . . . . . . . . . . . . . . . . .  998

tELTJDBCMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  999
tELTJDBCMap properties . . . . . . . . . . . . . .  999
Related scenario: . . . . . . . . . . . . . . . . . . . . . .  1000

tELTJDBCOutput . . . . . . . . . . . . . . . . . . . . . . . . . . .  1001
tELTJDBCOutput properties . . . . . . . . . .  1001
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1002

tELTMSSqlInput . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1003
tELTMSSqlInput properties . . . . . . . . . . .  1003
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1003

tELTMSSqlMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1004
tELTMSSqlMap properties . . . . . . . . . . . .  1004
Related scenario: . . . . . . . . . . . . . . . . . . . . . .  1005

tELTMSSqlOutput . . . . . . . . . . . . . . . . . . . . . . . . . .  1006
tELTMSSqlOutput properties . . . . . . . . .  1006
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1007

tELTMysqlInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1008
tELTMysqlInput properties . . . . . . . . . . .  1008
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1008

tELTMysqlMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1009
tELTMysqlMap properties . . . . . . . . . . . .  1009
Scenario 1: Aggregating table
columns and filtering . . . . . . . . . . . . . . . . . .  1011
Scenario 2: ELT using an Alias table . .  1015

tELTMysqlOutput . . . . . . . . . . . . . . . . . . . . . . . . . . .  1019
tELTMysqlOutput properties . . . . . . . . . .  1019
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1019

tELTNetezzaInput . . . . . . . . . . . . . . . . . . . . . . . . . . .  1021
tELTNetezzaInput properties . . . . . . . . . .  1021
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1021

tELTNetezzaMap . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1022
tELTNetezzaMap properties . . . . . . . . . .  1022
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1023

tELTNetezzaOutput . . . . . . . . . . . . . . . . . . . . . . . . .  1024
tELTNetezzaOutput properties . . . . . . . .  1024
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1024

tELTOracleInput . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1026
tELTOracleInput properties . . . . . . . . . . .  1026
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1026

tELTOracleMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1027
tELTOracleMap properties . . . . . . . . . . . .  1027
Scenario: Updating Oracle DB
entries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1029

tELTOracleOutput . . . . . . . . . . . . . . . . . . . . . . . . . .  1032
tELTOracleOutput properties . . . . . . . . .  1032
Scenario: Using the Oracle MERGE
function to update and add data
simultaneously . . . . . . . . . . . . . . . . . . . . . . . . .  1033

tELTPostgresqlInput . . . . . . . . . . . . . . . . . . . . . . . .  1038
tELTPostgresqlInput properties . . . . . . .  1038
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1038

tELTPostgresqlMap . . . . . . . . . . . . . . . . . . . . . . . . .  1039
tELTPostgresqlMap properties . . . . . . . .  1039
Related scenario: . . . . . . . . . . . . . . . . . . . . . .  1040

tELTPostgresqlOutput . . . . . . . . . . . . . . . . . . . . . .  1041
tELTPostgresqlOutput properties . . . . . .  1041
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1041

tELTSybaseInput . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1043
tELTSybaseInput properties . . . . . . . . . . .  1043
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1043

tELTSybaseMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1044
tELTSybaseMap properties . . . . . . . . . . .  1044
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1045

tELTSybaseOutput . . . . . . . . . . . . . . . . . . . . . . . . . .  1046

tELTSybaseOutput properties . . . . . . . . .  1046
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1047

tELTTeradataInput . . . . . . . . . . . . . . . . . . . . . . . . . .  1048
tELTTeradataInput properties . . . . . . . . .  1048
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1048

tELTTeradataMap . . . . . . . . . . . . . . . . . . . . . . . . . . .  1049
tELTTeradataMap properties . . . . . . . . . .  1049
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1050

tELTTeradataOutput . . . . . . . . . . . . . . . . . . . . . . . .  1051
tELTTeradataOutput properties . . . . . . .  1051
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1051

tSQLTemplateAggregate . . . . . . . . . . . . . . . . . . . .  1053
tSQLTemplateAggregate properties . . .  1053
Scenario: Filtering and aggregating
table columns directly on the DBMS . .  1054

tSQLTemplateCommit . . . . . . . . . . . . . . . . . . . . . .  1058
tSQLTemplateCommit properties . . . . .  1058
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1059

tSQLTemplateFilterColumns . . . . . . . . . . . . . . .  1060
tSQLTemplateFilterColumns
Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1060
Related Scenario . . . . . . . . . . . . . . . . . . . . . .  1061

tSQLTemplateFilterRows . . . . . . . . . . . . . . . . . . .  1062
tSQLTemplateFilterRows Properties . .  1062
Related Scenario . . . . . . . . . . . . . . . . . . . . . .  1063

tSQLTemplateMerge . . . . . . . . . . . . . . . . . . . . . . . .  1064
tSQLTemplateMerge properties . . . . . . .  1064
Scenario: Merging data directly on
the DBMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1065

tSQLTemplateRollback . . . . . . . . . . . . . . . . . . . . . .  1072
tSQLTemplateRollback properties . . . .  1072
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1072

ESB components ............................... 1073
tESBConsumer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1074

tESBConsumer properties . . . . . . . . . . . . .  1074
Scenario: Returning valid email . . . . . . .  1075

tESBProviderFault . . . . . . . . . . . . . . . . . . . . . . . . . . .  1082
tESBProviderFault properties . . . . . . . . .  1082
Scenario: Returning Fault message . . . .  1082

tESBProviderRequest . . . . . . . . . . . . . . . . . . . . . . . .  1092
tESBProviderRequest properties . . . . . .  1092
Scenario: Service sending a message
without expecting a response . . . . . . . . . .  1092

tESBProviderResponse . . . . . . . . . . . . . . . . . . . . . .  1102
tESBProviderResponse properties . . . . .  1102
Scenario: Returning Hello world
response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1102

tRESTClient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1112
tRESTClient properties . . . . . . . . . . . . . . . .  1112
Scenario: Sending and retrieving
data by interacting with a RESTful
service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1114

tRESTRequest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1119
tRESTRequest properties . . . . . . . . . . . . . .  1119
Scenario 1: REST service accepting
a HTTP request and sending a
response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1120
Scenario 2: Using URI Query
parameters to explore the data of a
database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1124

tRESTResponse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1133
tRESTResponse properties . . . . . . . . . . . .  1133
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1134

tRouteFault . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1135
tRouteFault properties . . . . . . . . . . . . . . . . .  1135
Scenario: Getting messages from
tRouteFault . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1135

tRouteInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1140
tRouteInput properties . . . . . . . . . . . . . . . . .  1140
Scenario: Getting messages from a
Route . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1140

tRouteOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1144



Talend Open Studio Components

Talend Open Studio Components Reference Guide xiii

tRouteOutput properties . . . . . . . . . . . . . . .  1144
Scenario: Getting messages from
tRouteOutput . . . . . . . . . . . . . . . . . . . . . . . . . .  1144

File components ...............................  1149
tAdvancedFileOutputXML . . . . . . . . . . . . . . . . . .  1150
tApacheLogInput . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1151

tApacheLogInput properties . . . . . . . . . . .  1151
Scenario: Reading an Apache access-
log file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1151

tCreateTemporaryFile . . . . . . . . . . . . . . . . . . . . . . .  1153
tCreateTemporaryFile properties . . . . . .  1153
Scenario: Creating a temporary file
and writing data in it . . . . . . . . . . . . . . . . . .  1153

tChangeFileEncoding . . . . . . . . . . . . . . . . . . . . . . . .  1157
tChangeFileEncoding Properties . . . . . .  1157
Scenario: Transforming the character
encoding of a file . . . . . . . . . . . . . . . . . . . . .  1157

tFileArchive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1159
tFileArchive properties . . . . . . . . . . . . . . . .  1159
Scenario: Zip files using a
tFileArchive . . . . . . . . . . . . . . . . . . . . . . . . . . .  1160

tFileCompare . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1162
tFileCompare properties . . . . . . . . . . . . . . .  1162
Scenario: Comparing unzipped files . . .  1163

tFileCopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1165
tFileCopy Properties . . . . . . . . . . . . . . . . . .  1165
Scenario: Restoring files from bin . . . . .  1166

tFileDelete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1167
tFileDelete Properties . . . . . . . . . . . . . . . . .  1167
Scenario: Deleting files . . . . . . . . . . . . . . .  1168

tFileExist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1170
tFileExist Properties . . . . . . . . . . . . . . . . . . .  1170
Scenario: Checking for the presence
of a file and creating it if it does not
exist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1170

tFileInputARFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1174
tFileInputARFF properties . . . . . . . . . . . .  1174
Scenario: Display the content of a
ARFF file . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1174

tFileInputDelimited . . . . . . . . . . . . . . . . . . . . . . . . . .  1178
tFileInputDelimited properties . . . . . . . .  1178
Scenario: Delimited file content
display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1179
Scenario 2: Reading data from a
remote file in streaming mode . . . . . . . . .  1181

tFileInputEBCDIC . . . . . . . . . . . . . . . . . . . . . . . . . . .  1185
tFileInputEBCDIC properties . . . . . . . . .  1185
Scenario: Extracting data from an
EBCDIC file and populating a
database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1186

tFileInputExcel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1191
tFileInputExcel properties . . . . . . . . . . . . .  1191
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1193

tFileInputFullRow . . . . . . . . . . . . . . . . . . . . . . . . . . .  1194
tFileInputFull Row properties . . . . . . . . .  1194
Scenario: Reading full rows in a
delimited file . . . . . . . . . . . . . . . . . . . . . . . . . .  1194

tFileInputJSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1197
tFileInputJSON properties . . . . . . . . . . . . .  1197
Scenario: Extracting data from the
fields of a JSON format file . . . . . . . . . . .  1198

tFileInputLDIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1200
tFileInputLDIF Properties . . . . . . . . . . . . .  1200
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1201

tFileInputMail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1202
tFileInputMail properties . . . . . . . . . . . . . .  1202
Scenario: Extracting key fields from
an email . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1202

tFileInputMSDelimited . . . . . . . . . . . . . . . . . . . . . .  1205
tFileInputMSDelimited properties . . . . .  1205
Scenario: Reading a multi structure
delimited file . . . . . . . . . . . . . . . . . . . . . . . . . .  1206

tFileInputMSPositional . . . . . . . . . . . . . . . . . . . . . .  1212
tFileInputMSPositional properties . . . . .  1212
Scenario: Reading data from a
positional file . . . . . . . . . . . . . . . . . . . . . . . . . .  1213

tFileInputMSXML . . . . . . . . . . . . . . . . . . . . . . . . . . .  1217
tFileInputMSXML Properties . . . . . . . . .  1217
Scenario: Reading a multi structure
XML file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1218

tFileInputPositional . . . . . . . . . . . . . . . . . . . . . . . . . .  1221
tFileInputPositional properties . . . . . . . .  1221
Scenario 1: From Positional to XML
file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1222
Scenario 2: Handling a positional file
based on a dynamic schema . . . . . . . . . . .  1226

tFileInputProperties . . . . . . . . . . . . . . . . . . . . . . . . .  1232
tFileInputProperties properties . . . . . . . .  1232
Scenario: Reading and matching
the keys and the values
of different .properties files and
outputting the results in a glossary . . . .  1232

tFileInputRegex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1236
tFileInputRegex properties . . . . . . . . . . . .  1236
Scenario: Regex to Positional file . . . . .  1237

tFileInputXML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1239
tFileList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1240

tFileList properties . . . . . . . . . . . . . . . . . . . .  1240
Scenario: Iterating on a file directory . .  1241

tFileOutputARFF . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1244
tFileOutputARFF properties . . . . . . . . . . .  1244
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1245

tFileOutputDelimited . . . . . . . . . . . . . . . . . . . . . . . .  1246
tFileOutputDelimited properties . . . . . . .  1246
Scenario 1: Writing data in a
delimited file . . . . . . . . . . . . . . . . . . . . . . . . . .  1247
Scenario 2: Utilizing Output Stream
to save filtered data to a local file . . . . .  1251

tFileOutputEBCDIC . . . . . . . . . . . . . . . . . . . . . . . . .  1254
tFileOutputEBCDIC properties . . . . . . . .  1254
Scenario: Creating an EBCDIC file
using two delimited files . . . . . . . . . . . . . .  1255

tFileOutputExcel . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1257
tFileOutputExcel Properties . . . . . . . . . . .  1257
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1258

tFileOutputJSON . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1259
tFileOutputJSON properties . . . . . . . . . . .  1259
Scenario: Writing a JSON structured
file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1259

tFileOutputLDIF . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1262
tFileOutputLDIF Properties . . . . . . . . . . .  1262
Scenario: Writing DB data into an
LDIF-type file . . . . . . . . . . . . . . . . . . . . . . . . .  1262

tFileOutputMSDelimited . . . . . . . . . . . . . . . . . . . .  1266
tFileOutputMSDelimited properties . . .  1266
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1266

tFileOutputMSPositional . . . . . . . . . . . . . . . . . . . .  1267
tFileOutputMSPositional properties . . .  1267
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1267

tFileOutputMSXML . . . . . . . . . . . . . . . . . . . . . . . . .  1268
tFileOutputMSXML Properties . . . . . . .  1268
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1273

tFileOutputPositional . . . . . . . . . . . . . . . . . . . . . . . .  1274
tFileOutputPositional Properties . . . . . . .  1274
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1275

tFileOutputProperties . . . . . . . . . . . . . . . . . . . . . . .  1276
tFileOutputProperties properties . . . . . . .  1276
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1276

tFileOutputXML . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1277
tFileProperties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1278

tFileProperties Properties . . . . . . . . . . . . . .  1278
Scenario: Displaying the properties
of a processed file . . . . . . . . . . . . . . . . . . . . .  1278

tFileRowCount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1280



Talend Open Studio Components

xiv Talend Open Studio Components Reference Guide

tFileRowCount properties . . . . . . . . . . . . .  1280
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1280

tFileTouch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1281
tFileTouch properties . . . . . . . . . . . . . . . . . .  1281
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1281

tFileUnarchive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1282
tFileUnarchive Properties . . . . . . . . . . . . .  1282
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1283

tGPGDecrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1284
tGPGDecrypt Properties . . . . . . . . . . . . . . .  1284
Scenario: Decrypt a GnuPG-
encrypted file and display its content . .  1284

tNamedPipeClose . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1287
tNamedPipeClose properties . . . . . . . . . .  1287
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1287

tNamedPipeOpen . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1288
tNamedPipeOpen properties . . . . . . . . . . .  1288
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1288

tNamedPipeOutput . . . . . . . . . . . . . . . . . . . . . . . . . .  1289
tNamedPipeOutput properties . . . . . . . . .  1289
Scenario: Writing and loading data
through a named-pipe . . . . . . . . . . . . . . . . .  1290

tPivotToColumnsDelimited . . . . . . . . . . . . . . . . . .  1295
tPivotToColumnsDelimited
Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1295
Scenario: Using a pivot column to
aggregate data . . . . . . . . . . . . . . . . . . . . . . . . .  1295

Internet components .........................  1299
tFileFetch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1300

tFileFetch properties . . . . . . . . . . . . . . . . . .  1300
Scenario 1: Fetching data through
HTTP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1301
Scenario 2: Reusing stored cookie to
fetch files through HTTP . . . . . . . . . . . . . .  1302
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1305

tFileInputJSON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1306
tFTPConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1307

tFTPConnection properties . . . . . . . . . . . .  1307
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1307

tFTPDelete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1308
tFTPDelete properties . . . . . . . . . . . . . . . . .  1308
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1308

tFTPFileExist . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1309
tFTPFileExist properties . . . . . . . . . . . . . .  1309
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1310

tFTPFileList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1311
tFTPFileList properties . . . . . . . . . . . . . . . .  1311
Scenario: Iterating on a remote
directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1312

tFTPFileProperties . . . . . . . . . . . . . . . . . . . . . . . . . . .  1315
tFTPFileProperties Properties . . . . . . . . .  1315
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1316

tFTPGet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1317
tFTPGet properties . . . . . . . . . . . . . . . . . . . .  1317
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1318

tFTPPut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1319
tFTPPut properties . . . . . . . . . . . . . . . . . . . .  1319
Scenario: Putting files on a remote
FTP server . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1320

tFTPRename . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1323
tFTPRename Properties . . . . . . . . . . . . . . .  1323
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1324

tFTPTruncate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1325
tFTPTruncate properties . . . . . . . . . . . . . . .  1325
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1326

tHttpRequest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1327
tHttpRequest properties . . . . . . . . . . . . . . .  1327
Scenario: Sending a HTTP request to
the server and saving the response
information to a local file . . . . . . . . . . . . .  1328

tJMSInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1330
tJMSInput properties . . . . . . . . . . . . . . . . . .  1330

Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1331
tJMSOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1332

tJMSOutput properties . . . . . . . . . . . . . . . .  1332
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1332

tMicrosoftMQInput . . . . . . . . . . . . . . . . . . . . . . . . . .  1333
tMicrosoftMQInput Properties . . . . . . . .  1333
Scenario: Writing and fetching
queuing messages from Microsoft
message queue . . . . . . . . . . . . . . . . . . . . . . . .  1333

tMicrosoftMQOutput . . . . . . . . . . . . . . . . . . . . . . . .  1338
tMicrosoftMQOutput Properties . . . . . . .  1338
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1338

tMomCommit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1339
tMomCommit Properties . . . . . . . . . . . . . .  1339
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1339

tMomConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1340
tMomConnection Properties . . . . . . . . . . .  1340
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1340

tMomInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1341
tMomInput Properties . . . . . . . . . . . . . . . . .  1341
Scenario 1: Asynchronous
communication via a MOM server . . . .  1343
Scenario 2: Transmitting XML files
via a MOM server . . . . . . . . . . . . . . . . . . . . .  1346

tMomMessageIdList . . . . . . . . . . . . . . . . . . . . . . . . .  1352
tMomMessageIdList Properties . . . . . . .  1352
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1352

tMomOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1353
tMomOutput Properties . . . . . . . . . . . . . . .  1353
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1355

tMomRollback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1356
tMolRollback properties . . . . . . . . . . . . . . .  1356
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1356

tPOP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1357
tPOP properties . . . . . . . . . . . . . . . . . . . . . . . .  1357
Scenario: Retrieving a selection of
email messages from an email server . .  1358

tREST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1360
tREST properties . . . . . . . . . . . . . . . . . . . . . .  1360
Scenario: Creating and retrieving
data by invoking REST Web service . .  1361

tRSSInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1363
tRSSInput Properties . . . . . . . . . . . . . . . . . .  1363
Scenario: Fetching frequently
updated blog entries. . . . . . . . . . . . . . . . . . .  1363

tRSSOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1365
tRSSOutput Properties . . . . . . . . . . . . . . . .  1365
Scenario 1: Creating an RSS flow
and storing files on an FTP server . . . . .  1366
Scenario 2: Creating an RSS flow
that contains metadata . . . . . . . . . . . . . . . . .  1370
Scenario 3: Creating an ATOM feed
XML file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1372

tSCPClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1376
tSCPClose Properties . . . . . . . . . . . . . . . . . .  1376
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1376

tSCPConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1377
tSCPConnection properties . . . . . . . . . . . .  1377
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1377

tSCPDelete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1378
tSCPDelete properties . . . . . . . . . . . . . . . . .  1378
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1378

tSCPFileExists . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1379
tSCPFileExists properties . . . . . . . . . . . . .  1379
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1379

tSCPFileList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1380
tSCPFileList properties . . . . . . . . . . . . . . . .  1380
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1380

tSCPGet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1381
tSCPGet properties . . . . . . . . . . . . . . . . . . . .  1381
Scenario: Getting files from a remote
SCP server . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1381



Talend Open Studio Components

Talend Open Studio Components Reference Guide xv

tSCPPut . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1383
tSCPPut properties . . . . . . . . . . . . . . . . . . . .  1383
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1383

tSCPRename . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1384
tSCPRename properties . . . . . . . . . . . . . . .  1384
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1384

tSCPTruncate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1385
tSCPRename properties . . . . . . . . . . . . . . .  1385
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1385

tSendMail . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1386
tSendMail Properties . . . . . . . . . . . . . . . . . .  1386
Scenario: Email on error . . . . . . . . . . . . . .  1387

tSetKerberosConfiguration . . . . . . . . . . . . . . . . . .  1389
tSetKerberosConfiguration
properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1389
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1389

tSetKeystore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1390
tSetKeystore properties . . . . . . . . . . . . . . . .  1390
Scenario: Extracting customer
information from a private WSDL
file . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1390

tSetProxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1395
tSetProxy properties . . . . . . . . . . . . . . . . . . .  1395
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1395

tSocketInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1396
tSocketInput properties . . . . . . . . . . . . . . . .  1396
Scenario: Passing on data to the
listening port . . . . . . . . . . . . . . . . . . . . . . . . . .  1396

tSocketOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1400
tSocketOutput properties . . . . . . . . . . . . . .  1400
Related Scenario . . . . . . . . . . . . . . . . . . . . . .  1400

tSOAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1401
tSOAP properties . . . . . . . . . . . . . . . . . . . . . .  1401
Scenario 1: Extracting the weather
information using a Web service . . . . . .  1402
Scenario 2: Using a SOAP message
from an XML file to get
weather information and saving the
information to an XML file . . . . . . . . . . .  1404

tWebService . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1408
tWebService properties . . . . . . . . . . . . . . . .  1408
Scenario: Extracting a name list
using a Web service . . . . . . . . . . . . . . . . . . .  1409

tWebServiceInput . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1415
tWebServiceInput Properties . . . . . . . . . .  1415
Scenario 1: Extracting images
through a Web service . . . . . . . . . . . . . . . .  1416
Scenario 2: Reading the data
published on a Web service using the
tWebServiceInput advanced features . .  1418

tXMLRPCInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1423
tXMLRPCInput Properties . . . . . . . . . . . .  1423
Scenario: Guessing the State name
from an XMLRPC . . . . . . . . . . . . . . . . . . . .  1423

Logs & Errors components ................  1425
tAssert . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1426

tAssert Properties . . . . . . . . . . . . . . . . . . . . . .  1426
Scenario: Setting up the assertive
condition for a Job execution . . . . . . . . . .  1426

tAssertCatcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1432
tAssertCatcher Properties . . . . . . . . . . . . .  1432
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1432

tChronometerStart . . . . . . . . . . . . . . . . . . . . . . . . . . .  1434
tChronometerStart Properties . . . . . . . . . .  1434
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1434

tChronometerStop . . . . . . . . . . . . . . . . . . . . . . . . . . .  1435
tChronometerStop Properties . . . . . . . . . .  1435
Scenario: Measuring the processing
time of a subjob and part of a subjob . .  1435

tDie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1439
tDie properties . . . . . . . . . . . . . . . . . . . . . . . . .  1439
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1439

tFlowMeter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1440
tFlowMeter Properties . . . . . . . . . . . . . . . . .  1440
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1440

tFlowMeterCatcher . . . . . . . . . . . . . . . . . . . . . . . . . .  1441
tFlowMeterCatcher Properties . . . . . . . . .  1441
Scenario: Catching flow metrics
from a Job . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1441

tLogCatcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1445
tLogCatcher properties . . . . . . . . . . . . . . . .  1445
Scenario 1: warning & log on entries . .  1445
Scenario 2: Log & kill a Job . . . . . . . . . .  1446

tLogRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1449
tLogRow properties . . . . . . . . . . . . . . . . . . .  1449
Scenario: Delimited file content
display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1450

tStatCatcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1451
tStatCatcher Properties . . . . . . . . . . . . . . . .  1451
Scenario: Displaying job stats log . . . . .  1451

tWarn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1454
tWarn Properties . . . . . . . . . . . . . . . . . . . . . .  1454
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1454

Misc group components .....................  1455
tAddLocationFromIP . . . . . . . . . . . . . . . . . . . . . . . .  1456

tAddLocationFromIP Properties . . . . . . .  1456
Scenario: Identifying a real-world
geographic location of an IP . . . . . . . . . .  1456

tBufferInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1459
tBufferInput properties . . . . . . . . . . . . . . . .  1459
Scenario: Retrieving bufferized data . .  1459

tBufferOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1462
tBufferOutput properties . . . . . . . . . . . . . .  1462
Scenario 1: Buffering data (Java) . . . . . .  1462
Scenario 2: Buffering output data on
the webapp server . . . . . . . . . . . . . . . . . . . . .  1464
Scenario 3: Calling a Job with
context variables from a browser . . . . . .  1467
Scenario 4: Calling a Job exported as
Webservice in another Job . . . . . . . . . . . .  1469

tContextDump . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1471
tContextDump properties . . . . . . . . . . . . . .  1471
Related Scenario . . . . . . . . . . . . . . . . . . . . . .  1471

tContextLoad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1472
tContextLoad properties . . . . . . . . . . . . . . .  1472
Scenario: Dynamic context use in
MySQL DB insert . . . . . . . . . . . . . . . . . . . . .  1473

tFixedFlowInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1475
tFixedFlowInput properties . . . . . . . . . . . .  1475
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1475

tMemorizeRows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1476
tMemorizeRows properties . . . . . . . . . . . .  1476
Scenario: Counting the occurrences
of different ages . . . . . . . . . . . . . . . . . . . . . . .  1477

tMsgBox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1482
tMsgBox properties . . . . . . . . . . . . . . . . . . .  1482
Scenario: ‘Hello world!’ type test . . . . .  1482

tRowGenerator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1484
tRowGenerator properties . . . . . . . . . . . . .  1484
Scenario: Generating random java
data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1485

Orchestration components .................  1489
tFileList . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1490
tFlowToIterate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1491

tFlowToIterate Properties . . . . . . . . . . . . .  1491
Scenario: Transforming data flow to
a list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1491

tForeach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1495
tForeach Properties . . . . . . . . . . . . . . . . . . . .  1495
Scenario: Iterating on a list and
retrieving the values . . . . . . . . . . . . . . . . . . .  1495

tInfiniteLoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1497
tInfiniteLoop Properties . . . . . . . . . . . . . . .  1497
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1497



Talend Open Studio Components

xvi Talend Open Studio Components Reference Guide

tIterateToFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1498
tIterateToFlow Properties . . . . . . . . . . . . .  1498
Scenario: Transforming a list of files
as data flow . . . . . . . . . . . . . . . . . . . . . . . . . . .  1498

tLoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1501
tLoop Properties . . . . . . . . . . . . . . . . . . . . . . .  1501
Scenario: Job execution in a loop . . . . .  1502

tPostjob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1504
tPostjob Properties . . . . . . . . . . . . . . . . . . . .  1504
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1504

tPrejob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1505
tPrejob Properties . . . . . . . . . . . . . . . . . . . . .  1505
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1505

tReplicate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1506
tReplicate Properties . . . . . . . . . . . . . . . . . .  1506
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1506

tRunJob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1507
tSleep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1508

tSleep Properties . . . . . . . . . . . . . . . . . . . . . .  1508
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1508

tUnite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1509
tUnite Properties . . . . . . . . . . . . . . . . . . . . . .  1509
Scenario: Iterate on files and merge
the content . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1510

tWaitForFile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1513
tWaitForFile properties . . . . . . . . . . . . . . . .  1513
Scenario: Waiting for a file to be
removed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1514

tWaitForSocket . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1517
tWaitForSocket properties . . . . . . . . . . . . .  1517
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1517

tWaitForSqlData . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1518
tWaitForSqlData properties . . . . . . . . . . .  1518
Scenario: Waiting for insertion of
rows in a table . . . . . . . . . . . . . . . . . . . . . . . .  1519

Processing components ......................  1523
tAggregateRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1524

tAggregateRow properties . . . . . . . . . . . . .  1524
Scenario 1: Aggregating values and
sorting data . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1525

tAggregateSortedRow . . . . . . . . . . . . . . . . . . . . . . .  1528
tAggregateSortedRow properties . . . . . .  1528
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1529

tConvertType . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1530
tConvertType properties . . . . . . . . . . . . . . .  1530
Scenario: Converting java types . . . . . . .  1530

tDenormalize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1535
tDenormalize Properties . . . . . . . . . . . . . . .  1535
Scenario 1: Denormalizing on one
column . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1535
Scenario 2: Denormalizing on
multiple columns . . . . . . . . . . . . . . . . . . . . . .  1537

tDenormalizeSortedRow . . . . . . . . . . . . . . . . . . . . .  1539
tDenormalizeSortedRow properties . . .  1539
Scenario: Regrouping sorted rows . . . . .  1539

tExternalSortRow . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1543
tExternalSortRow properties . . . . . . . . . .  1543
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1544

tExtractDelimitedFields . . . . . . . . . . . . . . . . . . . . .  1545
tExtractDelimitedFields properties . . . .  1545
Scenario: Extracting fields from a
comma-delimited file . . . . . . . . . . . . . . . . . .  1546

tExtractEBCDICFields . . . . . . . . . . . . . . . . . . . . . .  1549
tExtractEBCDICFields properties . . . . .  1549
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1549

tExtractPositionalFields . . . . . . . . . . . . . . . . . . . . .  1550
tExtractPositionalFields properties . . . .  1550
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1551

tExtractRegexFields . . . . . . . . . . . . . . . . . . . . . . . . .  1552
tExtractRegexFields properties . . . . . . . .  1552
Scenario: Extracting name, domain
and TLD from e-mail addresses . . . . . . .  1552

tExtractXMLField . . . . . . . . . . . . . . . . . . . . . . . . . . .  1555
tFilterColumns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1556

tFilterColumns Properties . . . . . . . . . . . . .  1556
Related Scenario . . . . . . . . . . . . . . . . . . . . . .  1556

tFilterRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1557
tFilterRow Properties . . . . . . . . . . . . . . . . . .  1557
Scenario: Filtering and searching a
list of names . . . . . . . . . . . . . . . . . . . . . . . . . . .  1557

tJoin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1560
tJoin properties . . . . . . . . . . . . . . . . . . . . . . . .  1560
Scenario 1: Doing an exact match on
two columns and outputting the main
and rejected data . . . . . . . . . . . . . . . . . . . . . .  1560

tMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1565
tMap properties . . . . . . . . . . . . . . . . . . . . . . . .  1565
Scenario 1: Mapping data using a
filter and a simple explicit join . . . . . . . .  1565
Scenario 2: Mapping data using inner
join rejections . . . . . . . . . . . . . . . . . . . . . . . . .  1569
Scenario 3: Cascading join mapping . .  1573
Scenario 4: Advanced mapping using
filters, explicit joins and rejections . . . .  1574
Scenario 5: Advanced mapping with
filters and different rejections . . . . . . . . .  1578
Scenario 6: Advanced mapping with
lookup reload at each row . . . . . . . . . . . . .  1581
Scenario 7: Mapping with join output
tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1587

tNormalize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1591
tNormalize Properties . . . . . . . . . . . . . . . . .  1591
Scenario: Normalizing data . . . . . . . . . . .  1591

tReplace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1595
tReplace Properties . . . . . . . . . . . . . . . . . . . .  1595
Scenario: multiple replacements and
column filtering . . . . . . . . . . . . . . . . . . . . . . .  1595

tSampleRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1599
tSampleRow properties . . . . . . . . . . . . . . . .  1599
Scenario: Filtering rows and groups
of rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1599

tSortRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1602
tSortRow properties . . . . . . . . . . . . . . . . . . .  1602
Scenario 1: Sorting entries . . . . . . . . . . . .  1602

tSplitRow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1605
tSplitRow properties . . . . . . . . . . . . . . . . . .  1605
Scenario 1: Splitting one row into
two rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1605

tWriteJSONField . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1609
tWriteJSONField properties . . . . . . . . . . .  1609
Related Scenarios . . . . . . . . . . . . . . . . . . . . .  1609

tXMLMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1610
tXMLMap properties . . . . . . . . . . . . . . . . . .  1610
Scenario 1: Mapping and
transforming XML data . . . . . . . . . . . . . . .  1610
Scenario 2: Launching a lookup
in a second XML flow to join
complementary data . . . . . . . . . . . . . . . . . . .  1615
Scenario 3: Mapping data using a
filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1620
Scenario 4: Catching the data
rejected by lookup and filter . . . . . . . . . .  1622
Scenario 5: Mapping data using a
group element . . . . . . . . . . . . . . . . . . . . . . . . .  1625
Scenario 6: classing the output data
with aggregate element . . . . . . . . . . . . . . . .  1629
Scenario 7: Restructuring products
data using multiple loop elements . . . . .  1632

System components ...........................  1641
tRunJob . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1642

tRunJob Properties . . . . . . . . . . . . . . . . . . . .  1642
Scenario: Executing a child Job . . . . . . .  1644

tSetEnv . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1648
tSetEnv Properties . . . . . . . . . . . . . . . . . . . . .  1648



Talend Open Studio Components

Talend Open Studio Components Reference Guide xvii

Scenario: Modifying a variable
during a Job execution . . . . . . . . . . . . . . . .  1648

tSSH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1651
tSSH Properties . . . . . . . . . . . . . . . . . . . . . . .  1651
Scenario: Remote system
information display via SSH . . . . . . . . . .  1652

tSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1654
tSystem Properties . . . . . . . . . . . . . . . . . . . . .  1654
Scenario: Echo ‘Hello World!’ . . . . . . . .  1655

Talend MDM components .................. 1657
tMDMBulkLoad . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1658

tMDMBulkLoad properties . . . . . . . . . . .  1658
Scenario: Loading records into a
business entity . . . . . . . . . . . . . . . . . . . . . . . . .  1661

tMDMClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1666
tMDMClose properties . . . . . . . . . . . . . . . .  1666
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1666

tMDMConnection . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1667
tMDMConnection properties . . . . . . . . . .  1667
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1667

tMDMDelete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1668
tMDMDelete properties . . . . . . . . . . . . . . .  1668
Scenario: Deleting master data from
an MDM Hub . . . . . . . . . . . . . . . . . . . . . . . . .  1669

tMDMInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1675
tMDMInput properties . . . . . . . . . . . . . . . .  1675
Scenario: Reading master data in an
MDM hub . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1676

tMDMOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1679
tMDMOutput properties . . . . . . . . . . . . . . .  1679
Scenario: Writing master data in an
MDM hub . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1681

tMDMReceive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1687
tMDMReceive properties . . . . . . . . . . . . .  1687
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1688

tMDMRouteRecord . . . . . . . . . . . . . . . . . . . . . . . . . .  1689
tMDMRouteRecord properties . . . . . . . .  1689
Scenario: Routing a record to Event
Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1690

tMDMSP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1698
tMDMSP Properties . . . . . . . . . . . . . . . . . . .  1698
Scenario: Executing a stored
procedure in the MDM Hub . . . . . . . . . . .  1699

tMDMTriggerInput . . . . . . . . . . . . . . . . . . . . . . . . . .  1704
tMDMTriggerInput properties . . . . . . . . .  1704
Scenario: Exchanging the event
information about an MDM record . . . .  1705

tMDMTriggerOutput . . . . . . . . . . . . . . . . . . . . . . . .  1717
tMDMTriggerOutput properties . . . . . . .  1717
Related scenario . . . . . . . . . . . . . . . . . . . . . . .  1718

tMDMViewSearch . . . . . . . . . . . . . . . . . . . . . . . . . . .  1719
tMDMViewSearch properties . . . . . . . . .  1719
Scenario: Retrieving records from an
MDM hub via an existing view . . . . . . .  1720

Technical components .......................  1725
tHashInput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1726

tHashInput Properties . . . . . . . . . . . . . . . . .  1726
Scenario 1: Reading data from the
cache memory for high-speed data
access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1726
Scenario 2: Clearing the memory
before loading data to it in case an
iterator exists in the same subjob . . . . . .  1730

tHashOutput . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1735
tHashOutput Properties . . . . . . . . . . . . . . . .  1735
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1735

XML components .............................  1737
tAdvancedFileOutputXML . . . . . . . . . . . . . . . . . .  1738

tAdvancedFileOutputXML
properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1738

Scenario: Creating an XML file
using a loop . . . . . . . . . . . . . . . . . . . . . . . . . . .  1744

tDTDValidator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1749
tDTDValidator Properties . . . . . . . . . . . . .  1749
Scenario: Validating XML files . . . . . . .  1749

tEDIFACTtoXML . . . . . . . . . . . . . . . . . . . . . . . . . . .  1752
tEDIFACTtoXML Properties . . . . . . . . .  1752
Scenario: From EDIFACT to XML . . .  1752

tExtractXMLField . . . . . . . . . . . . . . . . . . . . . . . . . . .  1755
tExtractXMLField properties . . . . . . . . . .  1755
Scenario 1: Extracting XML data
from a field in a database table . . . . . . . .  1756
Scenario 2: Extracting correct and
erroneous data from an XML field in
a delimited file . . . . . . . . . . . . . . . . . . . . . . . .  1758

tFileInputXML . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1762
tFileInputXML Properties . . . . . . . . . . . . .  1762
Scenario 1: Reading and extracting
data from an XML structure . . . . . . . . . . .  1764
Scenario 2: Extracting erroneous
XML data via a reject flow . . . . . . . . . . . .  1765

tFileOutputXML . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1769
tFileOutputXML properties . . . . . . . . . . .  1769
Related scenarios . . . . . . . . . . . . . . . . . . . . . .  1770

tWriteXMLField . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1771
tWriteXMLField properties . . . . . . . . . . .  1771
Scenario: Extracting the structure of
an XML file and inserting it into the
fields of a database table . . . . . . . . . . . . . .  1772

tXMLMap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1776
tXSDValidator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1777

tXSDValidator Properties . . . . . . . . . . . . .  1777
Scenario: Validating data flows
against an XSD file . . . . . . . . . . . . . . . . . . .  1777

tXSLT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1781
tXSLT Properties . . . . . . . . . . . . . . . . . . . . . .  1781
Scenario: Transforming XML to
html using an XSL stylesheet . . . . . . . . .  1781



Talend Open Studio Components Reference Guide



Talend Open Studio Components Reference Guide

Preface

General information

Purpose

This Reference Guide provides use cases and details about how to set parameters for the major
components found in the Palette of the Integration perspective of Talend Open Studio.

Information presented in this document applies to release 5.2.1.

Audience

This guide is for users and administrators of Talend Open Studio.

The layout of GUI screens provided in this document may vary slightly from your actual GUI.

Typographical conventions

This guide uses the following typographical conventions:

• text in bold: window and dialog box buttons and fields, keyboard keys, menus, and menu options,

• text in [bold]: window, wizard, and dialog box titles,

• text in courier: system parameters typed in by the user,

• text in italics: file, schema, column, row, and variable names referred to in all use cases, and also
names of the fields in the Basic and Advanced setting views referred to in the property table for
each component,

•
The  icon indicates an item that provides additional information about an important point. It is
also used to add comments related to a table or a figure,

•
The  icon indicates a message that gives information about the execution requirements or
recommendation type. It is also used to refer to situations or information the end-user needs to be
aware of or pay special attention to.

Feedback and Support
Your feedback is valuable. Do not hesitate to give your input, make suggestions or requests regarding
this documentation or product and find support from the Talend team, on Talend’s Forum website at:



Feedback and Support

xx Talend Open Studio Components Reference Guide

http://talendforge.org/forum

http://talendforge.org/forum


Talend Open Studio Components Reference Guide

Big Data components
This chapter details the main components that you can find in Big Data family of the Palette.

Using those components, you can connect, in the unified development environment provided by the Studio, to the
modules of the Hadoop distribution you are using and perform operations natively on the big data clusters.

The Big Data components create connections to various third-party tools used for transferring, storing or analyzing
big data, such as Sqoop, MongoDB and BigQuery and help you quickly load, extract, transform and process large
and diverse data sets.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.

Also, if you have any questions, concerns or general comments please take part in our product forums which can
be found at: http://www.talendforge.org/forum/index.php

http://www.talendforge.org/forum/index.php


tHiveClose

2 Talend Open Studio Components Reference Guide

tHiveClose

tHiveClose properties

Component Family Big Data / Hive

Function tHiveClose closes an active connection to a database.

Purpose This component closes connection to a Hive databases.

Basic settings Component list If there is more than one connection used in the Job, select
tHiveConnection from the list.

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at a component level.

Usage This component is generally used as an input component. It requires an output component.

Limitation n/a

Related scenario

This component is for use with tHiveConnection. It is generally used along with tHiveConnection as the latter
allows you to open a connection for the transaction which is underway.

For a scenario in which tHiveClose might be used, see section tMysqlConnection.



tHiveConnection

Talend Open Studio Components Reference Guide 3

tHiveConnection

tHiveConnection properties

Database Family Big Data / Hive

Function tHiveConnection opens a connection to a database in order that a transaction may be made.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Version Distribution Select the product you are using as the Hadoop distribution.

The options in the list vary depending on the component you are
using.

Hive version Select the version of the Hadoop distribution you are using.

Connection mode Select a connection mode from the list. The options vary depending
on the distribution you are using.

Host Database server IP address.

Port DB server listening port.

Database Fill this field with the name of the database.

This field is not available when you select Embedded
from the Connection mode list.

Username and Password DB user authentication data.

Hadoop properties Set Jobtracker URI Select this check box to indicate the location of the Hadoop
Jobtracker service to be used. For example, we assume that you have
chosen a machine called machine1 as the JobTracker, then set its
location as machine1:portnumber.

This property is required when the query you want to use is executed
in Windows and it is a Select query. For example, SELECT
your_column_name FROM your_table_name

You can keep this check box clear, when a query is executed in
Windows but does not require the Hadoop Map/Reduce framework,
for example, select * from your_table_name; however, setting
the exact value for this property does not provoke any issues with
the execution in that situation.

For further information about the Hadoop Map/Reduce framework,
see the Map/Reduce tutorial in the Hadoop documentation.

Set NameNode URI Select this check box to indicate the location of the NameNode of
the Hadoop cluster to be used.

This property is required when the query you want to use is executed
in Windows and it is a Select query. For example, SELECT
your_column_name FROM your_table_name



Related scenario

4 Talend Open Studio Components Reference Guide

You can keep this check box clear, when a query is executed in
Windows but does not require the Hadoop Map/Reduce framework,
for example, select * from your_table_name; however, setting
the exact value for this property does not provoke any issues with
the execution in that situation.

For further information about the Hadoop Map/Reduce framework,
see the Map/Reduce tutorial in the Hadoop documentation.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at a component level.

Usage This component is generally used with other Hive components, particularly tHiveClose.

If the Studio used to connect to a Hive database is operated on Windows, you must manually create
a file called tmp in the root of the disk where this Studio is installed.

Limitation n/a

Related scenario

For a scenario in which tHiveConnection, might be used, see section Scenario: Inserting data in mother/daughter
tables.



tHiveRow

Talend Open Studio Components Reference Guide 5

tHiveRow

tHiveRow properties

Component family Big Data / Hive

Function tHiveRow is the dedicated component for this database. It executes the HiveQL query stated in
the specified database. The row suffix means the component implements a flow in the Job design
although it does not provide output.

Purpose Depending on the nature of the query and the database, tHiveRow acts on the actual DB structure
or on the data (although without handling data). The SQLBuilder tool helps you write your HiveQL
statements easily.

Basic settings Property type Either Built-in or Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: No property data stored centrally.

Repository : Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tHiveConnection
component from the Component List to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Version Distribution Select the product you are using as the Hadoop distribution from the
drop-down list.

The options in the list vary depending on the component you are
using.

Hive version Select the version of the Hadoop distribution you are using.

Connection mode Select a connection mode from the list. The options vary depending
on the distribution you are using.

Host Database server IP address.

Port Listening port number of DB server.

Database Fill this field with the name of the database.



tHiveRow properties

6 Talend Open Studio Components Reference Guide

This field is not available when you select Embedded
from the Connection mode list.

Username and Password DB user authentication data.

Hadoop properties Set Jobtracker URI Select this check box to indicate the location of the Hadoop
Jobtracker service to be used. For example, we assume that you have
chosen a machine called machine1 as the JobTracker, then set its
location as machine1:portnumber.

This property is required when the query you want to use is executed
in Windows and it is a Select query. For example, SELECT
your_column_name FROM your_table_name

You can keep this check box clear, when a query is executed in
Windows but does not require the Hadoop Map/Reduce framework,
for example, select * from your_table_name; however, setting
the exact value for this property does not provoke any issues with
the execution in that situation.

For further information about the Hadoop Map/Reduce framework,
see the Map/Reduce tutorial in the Hadoop documentation.

Set NameNode URI Select this check box to indicate the location of the NameNode of
the Hadoop cluster to be used.

This property is required when the query you want to use is executed
in Windows and it is a Select query. For example, SELECT
your_column_name FROM your_table_name

You can keep this check box clear, when a query is executed in
Windows but does not require the Hadoop Map/Reduce framework,
for example, select * from your_table_name; however, setting
the exact value for this property does not provoke any issues with
the execution in that situation.

For further information about the Hadoop Map/Reduce framework,
see the Map/Reduce tutorial in the Hadoop documentation.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table Name Name of the table to be processed.

Query type Either Built-in or Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Guess Query Click the Guess Query button to generate the query which
corresponds to your table schema in the Query field.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

For further information about the Hive query language, see https://
cwiki.apache.org/Hive/languagemanual.html.

https://cwiki.apache.org/Hive/languagemanual.html
https://cwiki.apache.org/Hive/languagemanual.html


Related scenarios

Talend Open Studio Components Reference Guide 7

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Hadoop properties If you need to use custom configuration for the Hadoop of interest,
complete this table with the property or properties to be customized.
Then at runtime, the customized property or properties will override
those corresponding ones defined earlier for the same Hadoop.

For further information about the properties required by Hadoop, see
the Hadoop documentation.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Temporary path If you do not want to set the Jobtracker and the NameNode when you
execute the query select * from your_table_name, you need
to set this temporary path. For example, /C:/select_all in Windows.

Usage This component offers the benefit of flexible DB queries and covers all possible Hive QL queries.

If the Studio used to connect to a Hive database is operated on Windows, you must manually create
a file called tmp in the root of the disk where this Studio is installed.

Related scenarios

For related topics, see:

• section Scenario 3: Combining two flows for selective output

• section Scenario: Resetting a DB auto-increment

• section Scenario 1: Removing and regenerating a MySQL table index.



Talend Open Studio Components Reference Guide



Talend Open Studio Components Reference Guide

Business components
This chapter details the major components that you can find in Business group of the Palette in the Integration
perspective of the Talend Studio.

The Business component family groups connectors that covers specific Business needs, such as reading and writing
CRM, or ERP types of database and reading from or writing to an SAP system.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.



tAlfrescoOutput

10 Talend Open Studio Components Reference Guide

tAlfrescoOutput

tAlfrescoOutput Properties

Component family Business

Function Creates dematerialized documents in an Alfresco server where they are indexed under
meaningful models.

Purpose Allows to create and manage documents in an Alfresco server.

Basic settings URL Type in the URL to connect to the Alfresco Web application.

Login and Password Type in the user authentication data to the Alfresco server.

Base Type in the base path where to put the document, or

Select the Map... check box and then in the Column list, select
the target location column.

Note: When you type in the base name, make sure to use the
double backslash (\\) escape character.

Document Mode Select in the list the mode you want to use for the created
document.

Create only: creates a document if it does not exist.

Note that an error message will display if you try to create a
document that already exists

Create or update: creates a document if it does not exist or
updates the document if it exists.

Container Mode Select in the list the mode you want to use for the destination
folder in Alfresco.

Update only: updates a destination folder if the folder exists.

Note that an error message will display if you try to update a
document that does not exist

Create or update: creates a destination folder if it does not exist
or updates the destination folder if it exists.

Define Document Type Click the three-dot button to display the tAlfrescoOutput editor.
This editor enables you to:

- select the file where you defined the metadata according to
which you want to save the document in Alfresco

-define the type f the document

-select any of the aspects in the available aspects list of the model
file and click the plus button to add it in the list to the left.

Property Mapping Displays the parameters you set in the tAlfrescoOutput editor
and according to which the document will be created in the
Alfresco server.

Note that in the Property Mapping area, you can modify any of
the input schemas.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or remote in the Repository.



tAlfrescoOutput Properties

Talend Open Studio Components Reference Guide 11

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Result Log File Name Browse to the file where you want to save any logs related to the
Job execution.

Advanced settings Configure Target Location
Container

Allows to configure the (by default) type of containers (folders)

Select this check box to display new fields where you can modify
the container type to use your own created types based on the
father/child model.

Configure Permissions When selected, allows to manually configure access rights to
containers and documents.

Select the Inherit Permissions check box to synchronize access
rights between containers and documents.

Click the Plus button to add new lines to the Permissions list,
then you can assign roles to user or group columns.

Encoding Select the encoding type from the list or select Custom and define
it manually. This field is compulsory.

Association Target
Mapping

Allows to create new documents in Alfresco with associated links
towards other documents already existing in Alfresco, to facilitate
the navigation process for example.

To create associations:

1. Open the tAlfresco editor.

2. Click the Add button and select a model where you have
already defined aspects that contain associations.

3. Click the drop-down arrow at the top of the editor and select
the corresponding document type.

4. Click OK to close the editor and display the created
association in the Association Target Mapping list.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Usually used as an output component. An input component is required.

Limitation/Prerequisites To be able to use the tAlfrescoOutput component, few relevant resources need to be installed:
check the Installation Procedure sub section for more information.

Installation procedure

To be able to use tAlfrescoOutput in the Integration perspective of the Talend Studio, you need first to install
the Alfresco server with few relevant resources.

The below sub sections detail the prerequisite and the installation procedure.

Prerequisites

Start with the following operations:

1. Download the file alfresco-community-tomcat-2.1.0.zip

2. Unzip the file in an installation folder, for example:

C:\Program Files\Java\jdk1.6.0_27



tAlfrescoOutput Properties

12 Talend Open Studio Components Reference Guide

3. Install JDK 1.6.0+

4. Update the environment variable

JAVA_HOME (JAVA_HOME= C:\alfresco)

5. From the installation folder (C:\alfresco), launch the alfresco server using the script alf_start.bat

Make sure that the Alfresco server is launched correctly before start using the tAlfrescoOutput component.

Installing the Talend Alfresco module

Note that the talendalfresco_20081014.zip is provided with the tAlfrescoOutput component in the
Integration perspective of the Talend Studio.

To install the talendalfresco module:

1. From talendalfresco_20081014.zip and in the talendalfresco_20081014\alfresco folder, look for
the following jars: stax-api-1.0.1.jar, wstx-lgpl-3.2.7.jar, talendalfresco-client_1.0.jar,
and talendalfresco-alfresco_1.0.jar and move them to C:\alfresco\tomcat\webapps\alfresco
\WEB-INF\lib

2. Add the authentification filter of the commands to the web.xml file located in the path

C:\alfresco\tomcat\webapps\alfresco\WEB-INF
son WEB-INF/

following the model of the example provided in talendalfresco_20081014/alfresco folder of the zipped
file talendalfresco_20081014.zip

The following figures show the portion of lines (in blue) to add in the file web.xml alfresco.

Useful information for advanced use

Installing new types for Alfresco:



tAlfrescoOutput Properties

Talend Open Studio Components Reference Guide 13

From the package_jeu_test.zip and in the package_jeu_test/fichiers_conf_alfresco2.1 folder, look
for the following files: xml H76ModelCustom.xml (description of the model), web-client-config-custom.xml
(web interface of the model), and custom-model-context.xml (registration of the new model) and paste them
in the following folder: C:/alfresco/tomcat/shared/classes/alfresco/extension

Dates:

• The dates must be of the Talend date type java.util.Date.

• Columns without either mapping or default values, for example of the type Date, are written as empty strings.

• Solution: delete all columns without mapping or default values. Note that any modification of the type Alfresco
will put them back.

Content:

• Do not mix up between the file path which content you want to create in Alfresco and its target location in
Alfresco.

• Provide a URL! It can target various protocols, among which are file, HTTP and so on.

• For URLs referring to files on the file system, precede them by "file:" for Windows used locally, and by "file://"
for Windows on a network (which accepts as well "file: \ \") or for Linux.

• Do not double the backslash in the target base path (automatic escape), unless you type in the path in the basic
settings of the tAlfrescoOutput component, or doing concatenation in the tMap editor for example.

Multiple properties or associations:

• It is possible to create only one association by document if it is mapped to a string value, or one or more
associations by document if it is mapped to a list value (object).

• You can empty an association by mapping it to an empty list, which you can create, for example, by using new
java.util.ArrayList()in the tMap component.

However, it is impossible to delete an association.

Building List(object)with tAggregate:

• define the table of the relation n-n in a file, containing a name line for example (included in the input rows), and
a category line (that can be defined with its mapping in a third file).

• group by: input name, output name.

• operation: output categoryList, function list(object), input category. ATTENTION list (object) and non
simple list.

- References (documents and folders):

• References are created by mapping one or more existing reference nodes (xpath or namepath) using String
type or List(object).

• An error in the association or the property of the reference type does not prevent the creation of the node that
holds the reference.

• Properties of the reference type are created in the Basic Settings view.

• Associations are created in the Advanced Settings view.



Scenario: Creating documents on an Alfresco server

14 Talend Open Studio Components Reference Guide

Dematerialization, tAlfrescoOutput, and Enterprise Content
Management

Dematerialization is the process that convert documents held in physical form into electronic form, and thus helps
to move away from the use of physical documentation to the use of electronic Enterprise Content Management
(ECM) systems. The range of documents that can be managed with an Enterprise Content Management system
include just about everything from basic documents to stock certificates, for example.

Enterprises dematerialize their content via a manual document handling, done by man, or an automatic document
handling, machine-based.

Considering the varied nature of the content to be dematerialized, enterprises have to use varied technologies
to do it. Scanning paper documents, creating interfaces to capture electronic documents from other applications,
converting document images into machine-readable/editable text documents, and so on are examples of the
technologies available.

Furthermore, scanned documents and digital faxes are not readable texts. To convert them into machine-readable
characters, different character recognition technologies are used. Handwritten Character Recognition (HCR) and
Optical Mark Recognition (OMR) are two examples of such technologies.

Equally important as the content that is captured in various formats from numerous sources in the dematerialization
process is the supporting metadata that allows efficient identification of the content via specific queries.

Now how can this document content along with the related metadata be aggregated and indexed in an Enterprise
Content Management system so that it can be retrieved and managed in meaningful ways? Talend provides the
answer through the tAlfrescoOutput component.

The tAlfrescoOutput component allows you to stock and manage your electronic documents and the related
metadata on the Alfresco server, the leading open source enterprise content management system.

The following figure illustrates Talend’s role between the dematerialization process and the Enterprise Content
Management system (Alfresco).

Scenario: Creating documents on an Alfresco server
This Java scenario describes a two-component Job which aims at creating two document files with the related
metadata in an Alfresco server, the java-based Enterprise Control Management system.



Scenario: Creating documents on an Alfresco server

Talend Open Studio Components Reference Guide 15

Setting up your Job

1. Drop the tFileInputDelimited and tAlfrescoOutput components from the Palette onto the design
workspace.

2. Connect the two components together using a Main > Row connection.

Setting up the schema

1. In the design workspace, double-click tFileInputDelimited to display its basic settings.

2. Set the File Name path and all related properties. Note that if you have already stored your input schemas
locally in the Repository, you can simply drop the relevant file item from the Metadata folder onto the design
workspace and the delimited file settings will automatically display in the relevant fields in the component
Basic settings view.

For more information about metadata, see Setting up a File Delimited schema in Talend Open Studio User Guide.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-
in. For how to edit a Built-in schema, see Talend Open Studio User Guide.

In this scenario, the delimited file provides the metadata and path of two documents we want to create in the
Alfresco server. The input schema for the documents consists of four columns: file_name, destination_folder
name, source_path, and author.

And therefore the input schema of the delimited file will be as the following:



Scenario: Creating documents on an Alfresco server

16 Talend Open Studio Components Reference Guide

Setting up the connection to the Alfresco server

1. In the design workspace, double-click tAlfrescoOutput to display its basic settings.

2. In the Alfresco Server area, enter the Alfresco server URL and user authentication information in the
corresponding fields.

3. In the TargetLocation area, either type in the base name where to put the document in the server, or Select the
Map... check box and then in the Column list, select the target location column, destination_folder_name
in this scenario.



Scenario: Creating documents on an Alfresco server

Talend Open Studio Components Reference Guide 17

When you type in the base name, make sure to use the double backslash (\\) escape character.

4. In the Document Mode list, select the mode you want to use for the created documents.

5. In the Container Mode list, select the mode you want to use for the destination folder in Alfresco.

Defining the document

1. Click the Define Document Type three-dot button to open the tAlfrescoOutput editor.

2. Click the Add button to browse and select the xml file that holds the metadata according to which you want
to save the documents in Alfresco.

All available aspects in the selected model file display in the Available Aspects list.

You can browse for this model folder locally or on the network. After defining the aspects to use for the document to
be created in Alfresco, this model folder is not needed any more.

3. If needed, select in the Available Aspects list the aspect(s) to be included in the metadata to write in the
Alfresco server. In this scenario we want the author name to be part of the metadata registered in Alfresco.

4. Click the drop-down arrow at the top of the editor to select from the list the type to give to the created
document in Alfresco, Content in this scenario.



Scenario: Creating documents on an Alfresco server

18 Talend Open Studio Components Reference Guide

All the defined aspects used to select the metadata to write in the Alfresco server display in the Property
Mapping list in the Basic Settings view of tAlfrescoOutput, three aspects in this scenario, two basic for the
Content type (content and name) and an additional one (author).

Executing your Job

1. Click Sync columns to auto propagate all the columns of the delimited file.

If needed, click Edit schema to view the output data structure of tAlfrescoOutput.

2. Click the three-dot button next to the Result Log File Name field and browse to the file where you want to
save any logs after Job execution.

3. Save your Job, and press F6 to execute it.

The two documents are created in Alfresco using the metadata provided in the input schemas.



Scenario: Creating documents on an Alfresco server

Talend Open Studio Components Reference Guide 19



tBonitaDeploy

20 Talend Open Studio Components Reference Guide

tBonitaDeploy

tBonitaDeploy Properties

Component family Business/Bonita

Function This component configures any Bonita Runtime engine and deploys a specific Bonita process
(a .bar file exported from the Bonita solution) to this engine.

Purpose This component deploys a specific Bonita process to a Bonita Runtime.

Basic settings Bonita version Select a version number for the Bonita Runtime engine.

Bonita Runtime
Environment File

Browse to, or enter the path to the Bonita Runtime environment
file.

This field is displayed only when you select Bonita
version 5.3.1 from the Bonita version list.

Bonita Runtime Home Browse to, or enter the path to the Bonita Runtime environment
directory.

This field is displayed only when you select Bonita
version 5.6.1 from the Bonita version list.

Bonita Runtime Jaas File Browse to, or enter the path to the Bonita Runtime jaas file.

Bona Runtime logging file Browse to, or enter the path to the Bonita Runtime logging file.

Login Module Type in the name of login module for logging in Bonita Runtime
engine which is defined in the Bonita Runtime jaas file.

Business Archive Browse to, or enter the path to the Bonita process .bar file you
want to use.

User name Type in your user name used to log in Bonita studio.

Password Type in your password used to log in Bonita studio.

Die on error This check box is cleared by default, meaning to skip the row on
error and to complete the process for error-free rows.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Usually used as a stand-alone component.

This component works closely with the BPM elements. You need to subscribe to one of the
Talend solutions with BPM to effectively use this component; otherwise, you have to manually
download the Bonita solution you need to use.

Connections Outgoing links (from one component to another):

Trigger: Run if; On Component Ok; On Component Error, On
Subjob Ok, On Subjob Error.

Incoming links (from one component to another):

Trigger: Run if, On Component Ok, On Component Error, On
Subjob Ok, On Subjob Error

For further information regarding connections, see Connection
types in the Talend Open Studio User Guide.

Global Variables Process Definition UUID: Indicates the identifier number of the
process being deployed. This is available as a Flow variable.

Returns a string.



Related Scenario

Talend Open Studio Components Reference Guide 21

For further information about variables, see How to use a variable
in a Job in the Talend Open Studio User Guide.

Limitation The Bonita Runtime environment file, the Bonita Runtime jaas file and the Bonita Runtime
logging file must be all stored on the excution server of the Job using this component.

Related Scenario

For related topic, see section Scenario 1: Executing a Bonita process via a Talend Job.



tBonitaInstantiateProcess

22 Talend Open Studio Components Reference Guide

tBonitaInstantiateProcess

tBonitaInstantiateProcess Properties

Component family Business/Bonita

Function This component instantiates a process already deployed in a Bonita Runtime engine.

Purpose This component starts an instance for a specific process deployed in a Bonita Runtime engine.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

In this component the schema is related to the Module selected.

The ProcessInstanceUUID column is pre-defined in
the schema of this component, reserved for the
identifier number of the process instance being created.

Bonita Client Mode Select the client mode you want to use to instantiate a BPM
process.

For more information about all the Bonita client modes, see
Bonita's manuals.

URL Enter the URL of the Bonita Web application server you need to
access for the process instantiation.

This field is available only in the HTTP client mode.

Auth Username and Auth
Password

Enter the authentication details used to connect to the Bonita Web
application server as technical user.

The default authentication information is provided in these fields.
For further information about them, see Bonita's manuals.

These fields are available only in the HTTP client mode.

Bonita version Select the version number of the Bonita Runtime engine to be
used.

This field is available only in the Java client mode.

Bonita Runtime
Environment File

Browse to, or enter the path to the Bonita Runtime environment
file.

This field is available only in the Java client mode.

This field is displayed only when you select Bonita
version 5.3.1 from the Bonita version list.

Bonita Runtime Home Browse to, or enter the path to the Bonita Runtime environment
directory.

This field is displayed only when you select Bonita
version 5.6.1 from the Bonita version list.

Bonita Runtime Jaas File Browse to, or enter the path to the Bonita Runtime jaas file.

This field is available only in the Java client mode.

Bonita Runtime logging file Browse to, or enter the path to the Bonita Runtime logging file.

This field is available only in the Java client mode.



tBonitaInstantiateProcess Properties

Talend Open Studio Components Reference Guide 23

Use Process ID Select this check box to instantiate an existing process.

Once checked, the Process definition ID field is activated in
which you can enter the Definition ID of this process

This field is available only in the Java client mode.

The process definition ID is created when the process
is deployed into the Bonita Runtime engine.

Process Name and Process
Version

Enter the ID information of a specific process you want to
instantiate. This information is used to automatically generate the
ID of this process.

This field is available in both of the Java client mode and the
HTTP client mode.

User name Type in your user name used to instantiate this process.

This filed is available in both of the Java client mode and the
HTTP client mode.

Password Type in your password used to instantiate this process.

This field is available only in the Java client mode.

Die on error This check box is cleared by default, meaning to skip the row on
error and to complete the process for error-free rows.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Usually used as a stand-alone component or as an output component.

This component works closely with the BPM elements. You need to subscribe to one of the
Talend solutions with BPM to effectively use this component; otherwise, you have to manually
download the Bonita solution you need to use.

Connections Outgoing links (from one component to another):

Row: Main (providing the output parameters from this process)

Trigger: Run if; On Component Ok; On Component Error, On
Subjob Ok, On Subjob Error.

Incoming links (from one component to another):

Row: Main (providing the input parameters to this process)

Trigger: Run if, On Component Ok, On Component Error, On
Subjob Ok, On Subjob Error

For further information regarding connections, see Connection
types in the Talend Open Studio User Guide.

Global Variables Process Instance UUID: Indicates the identifier number of the
process instance being created. This is available as a Flow
variable and it can also be retrieved over the Row > Main output
link.

Returns a string.

For further information about variables, see How to use a variable
in a Job in the Talend Open Studio User Guide.

Limitation The Bonita Runtime environment file, the Bonita Runtime jaas file and the Bonita Runtime
logging file must be all stored on the execution server of the Job using this component.



Scenario 1: Executing a Bonita process via a Talend Job

24 Talend Open Studio Components Reference Guide

Scenario 1: Executing a Bonita process via a Talend
Job

This scenario describes a Job that deploys a Bonita process into the Bonita Runtime and executes this process,
in which a personnel request is treated.

The Job in this scenario uses three components.

• tBonitaDeploy: this component deploys a Bonita process into the Bonita Runtime.

• tFixedFlowInput: this component generates the schema used as execution parameters of this deployed process.

• tBonitaInstantiateProcess: this component executes this deployed process.

Before beginning to replicate this schema, prepare your Bonita.bar file. If you have not subscribed to one of the
Talend solutions with BPM, you need to manually export this file from the Bonita system and then deploy it into
the Bonita Runtime engine, using, for example, tBonitaDeploy as presented later in this scenario. In this scenario,
this file is TEST--4.0.bar. Once deployed, this process can be checked via the Bonita interface.

Setting up the Job

1. Drop tBonitaDeploy, tFixedFlowInput and tBonitaInstantiateProcess onto the design workspace.

2. Right-click tBonitaDeploy and connect tBonitaDeploy to tFixedFlowInput using a Trigger> On Subjob
Ok connection.

3. Right-click tFixedFlowInput and connect this component to tBonitaInstantiateProcess using a Row >
Main connection.



Scenario 1: Executing a Bonita process via a Talend Job

Talend Open Studio Components Reference Guide 25

Configuring the deployment of the process

To replicate this scenario, proceed as follows:

1. Double-click tBonitaDeploy to open its Basic settings view.

2. Select Bonita version 5.3.1 from the Bonita version list. The version you select should be in sync with the
version number of the Bonita Runtime engine you are using.

3. In the Bonita Runtime Configuration area, browse to the Bonita Runtime variable files. In the Bonita
Runtime Environment file field, browse to the bonita-environnement.xml file; in the Bonita Runtime Jaas
File field, browse to the jaas-standard.cfg file; in the Bonita Runtime Logging File field, browse to the
logging.properties file.

For users based on Bonita version 5.2.3, only the Bonita Runtime Jaas File field and the Bonita Runtime Logging
File field need to be filled.

For users based on Bonita version 5.6.1, in the Bonita Runtime Home field, browse to the Bonita Runtime
environment directory.



Scenario 1: Executing a Bonita process via a Talend Job

26 Talend Open Studio Components Reference Guide

4. In the Business Archive field, browse to the Bonita .bar file that is the process exported from your Bonita
system and will be deployed into the Bonita Runtime engine.

5. In the Username and the Password fields, type in your authentication information to connect to your Bonita.

Configuring the input flow

1. Double-click tFixedFlowInput to open its Basic settings view.

2. Click the three-dot button next to Edit schema to open the schema editor.

3. Click the plus button to add one row and rename it as Name.

This name is identical with the parameter set in Bonita to execute the same process. This way, Bonita can
recognize this column as valid parameter and read its value to instantiate this process.

4. Click OK.

5. In the Mode area of the Basic settings view, select the Use inline table option and click the plus button to
add one row in the table.



Scenario 1: Executing a Bonita process via a Talend Job

Talend Open Studio Components Reference Guide 27

6. In the inline table, click the added row and type in the person's name from your personnel between the
quotation marks: ychen, whose request will be treated by this deployed process.

Configuring the Basic settings of tBonitaInstantiateProcess

1. Double-click tBonitaInstantiateProcess to open its Basic settings view.

2. Select Bonita version 5.3.1 from the Bonita version list. The version you select should be in sync with the
version number of the Bonita Runtime engine you are using.

3. In the Bonita Runtime Configuration area, browse to the Bonita Runtime variable files. In the Bonita
Runtime Environment file field, browse to the bonita-environnement.xml file; in the Bonita Runtime Jaas
File field, browse to the jaas-standard.cfg file; in the Bonita Runtime Logging File field, browse to the
logging.properties file.

For users based on Bonita version 5.2.3, only the Bonita Runtime Jaas File field and the Bonita Runtime Logging
File field need to be filled.

For users based on Bonita version 5.6.1, in the Bonita Runtime Home field, browse to the Bonita Runtime
environment directory.



Scenario 1: Executing a Bonita process via a Talend Job

28 Talend Open Studio Components Reference Guide

4. Select the Use Process ID check box to activate the Process Definition Id field.

5. In the Process Definition Id field, click between the quotation marks and press Ctrl+space to open the auto-
completion drop-down list containing the available global variables for this Job.

6. Double-click the variable you need use to add it between the quotation marks. In this scenario, double-click
tBonitaDeploy_1_ProcessDefinitionUUID, which retrieves the process definition ID of the process being
deployed by tBonitaDeploy.

You can as well clear the Use Process ID check box to activate the Process name and the Process version fields and
enter the corresponding information in the two fields. tBonitaInstantiateProcess concatenates the process name and
the process version you type in to construct the process definition ID.

7. In the Username and Password fields, enter the username and password to connect to your Bonita.

Job Execution

Press F6 to run the Job.

This process is deployed into the Bonita Runtime and an instance is created for the personnel requests.



Scenario 2: Outputting the process instance UUID over the Row > Main link

Talend Open Studio Components Reference Guide 29

Scenario 2: Outputting the process instance UUID over
the Row > Main link

This scenario deploys a Bonita process into the Bonita Runtime, starts an instance and outputs the process instance
UUID via the Row > Main link.

Linking the components

1. Drop tBonitaDeploy, tBonitaInstantiateProcess and tLogRow onto the workspace.

2. Rename tBonitaDeploy as deploy_process, tBonitaInstantiateProcess as start_instance and tLogRow as
show_instance_uuid.

3. Link tBonitaDeploy to tBonitaInstantiateProcess using the OnSubjobOk trigger.

4. Link tBonitaInstantiateProcess to tLogRow using a Row > Main connection.

Configuring the components

1. Double-click tBonitaDeploy to open its Basic settings view.

2. In the Bonita Runtime Jaas File field, specify the path and name of the jaas file.

In the Bonita Runtime Logging File field, specify the path and name of the logging file.

In the Business Archive field, specify the path and name of the Bonita process.

3. In the Username and Password fields, enter the user authentication credentials.

4. Double-click tBonitaInstantiateProcess to open its Basic settings view.



Scenario 2: Outputting the process instance UUID over the Row > Main link

30 Talend Open Studio Components Reference Guide

5. In the Bonita Runtime Jaas File field, specify the path and name of the jaas file.

In the Bonita Runtime Logging File field, specify the path and name of the logging file.

6. In the Process Name and Process Version fields, enter the process information.

7. In the Username and Password fields, enter the user authentication credentials.

8. Double-click tLogRow to open its Basic settings view.

9. In the Mode area, select Table (print values in cells of a table for better display.

Executing the Job

1. Press Ctrl+S to save the Job.

2. Press F6 to run the Job.

As shown above, the instance is created and the UUID is output.



tCentricCRMInput

Talend Open Studio Components Reference Guide 31

tCentricCRMInput

tCentricCRMInput Properties

Component family Business/CentricCRM

Function Connects to a module of a Centric CRM database via the relevant Web service.

Purpose Allows to extract data from a Centric CRM DB based on a query.

Basic settings CentricCRM URL Type in the Web service URL to connect to the CentricCRM DB.

Module Select the relevant module in the list

Server Type in the IP address of the DB server.

UserID and Password Type in the Web service user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

In this component the schema is related to the Module selected.

Query condition Type in the query to select the data to be extracted.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Usually used as a Start component. An output component is required.

Limitation n/a

Related Scenario

No scenario is available for this component yet.



tCentricCRMOutput

32 Talend Open Studio Components Reference Guide

tCentricCRMOutput

tCentricCRMOutput Properties

Component family Business/CentricCRM

Function Writes data in a module of a CentricCRM database via the relevant Web service.

Purpose Allows to write data into a CentricCRM DB.

Basic settings CentricCRM URL Type in the Web service URL to connect to the CentricCRM DB.

Module Select the relevant module in the list

Server IP address of the DB server

UserID and Password Type in the Web service user authentication data.

Action Insert, Update or Delete the data in the CentricCRM module.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Used as an output component. An Input component is required.

Limitation n/a

Related Scenario

No scenario is available for this component yet.



tHL7Input

Talend Open Studio Components Reference Guide 33

tHL7Input

tHL7Input Properties

Component family Business > Healthcare /
Unstructured > HL7

Function tHL7Input reads an HL7 structured file and extracts data row by row.

Purpose Opens an HL7 structured file and reads it row by row to split them up into fields then sends the
fields as defined in the Schema to the next component, via a Row link.

Basic settings Property type Either Built-in or Repository:

Built-in: No property data stored centrally.

Repository: Select the Repository file where the properties are
stored. The fields that follow are completed automatically using
fetched data.

Click this icon to open a connection wizard and store the Excel
file connection parameters you set in the component Basic
settings view.

For more information about setting up and storing file connection
parameters, see Talend Open Studio User Guide.

Multi Schemas Editor The [Multi Schema Editor] helps you build and configure the
data flow in a multi-structured delimited file to associate one
schema per output.

Segment Lists Connection: The columns are automatically retrieved from the
input file. The column name is the segment name.

Column Mapping: The mapping in this array is retrieved from
the mapping you have done in the editor.

Not Validate HL7 Message Select this check box if you do not want to validate HL7
messages.

Advanced settings Advanced separator (for
numbers)

Select this check box to modify the separators to be used for the
numbers. Either:

Thousands separator

or

Decimal separator

Encoding Select the encoding type from the list or select Custom and define
it manually. This field is compulsory.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Usually used as a Start component. An output component is required.

Limitation n/a

Scenario: Retrieving information about patients and
events from an HL7 file
This scenario describes a four-component Job which retrieves information about patients and events from an HL7
file.



Scenario: Retrieving information about patients and events from an HL7 file

34 Talend Open Studio Components Reference Guide

Configuring the editor of tHL7Input

1. From the Palette, drop an tHL7Input and three tLogRow components onto the design workspace.

2. Double-click tHL7Input in order to open its editor.

3. In the File path field, click [Browse...] and browse the directory to select your HL7 file.

4. In the File Setting area, type in your segment Start character and your segment End character.

5. Under Segment(As Schema), in the Schema view area,select MSH.



Scenario: Retrieving information about patients and events from an HL7 file

Talend Open Studio Components Reference Guide 35

6. Drop the MSH-3(1)[HD] and MSH-7(1)[TS] segments from the Message View onto the Schema View.

7. Under Segment(As Schema), in the Schema view area,select EVN.

8. Drop the EVN-1(1)-1-1[ID] and EVN-2(1)-1-1[ST] segments from the Message View onto the Schema View.

9. Under Segment(As Schema), in the Schema view area,select PID.

10. Drag and drop the following segments from the Message View onto the Schema
View: PID-1(1)-1-1[SI], PID-5(1)-1-1[ST], PID-5(1)-2-1[ST], PID-5(1)-3-1[ST], PID-5(1)-4-1[ST],
PID-5(1)-5-1[ST], PID-5(1)-7-1[ID] and click Ok to close the editor.

If available, click the Auto map! button, located at the bottom left of the interface, to carry out the mapping operation
automatically.

Job Execution

1. Link tHL7Input to the three tLogRow components, using MSH, EVN and PID links respectively.

2. Save your Job and press F6 to execute it.



Scenario: Retrieving information about patients and events from an HL7 file

36 Talend Open Studio Components Reference Guide

The console displays the three tLogRow tables, which return different types of information. The first one give
the message header label and its date. The second table shows the information about the patient. The third one
displays the event ID and its date.



tHL7Output

Talend Open Studio Components Reference Guide 37

tHL7Output

tHL7Output Properties

Component family Business > Healthcare /
Unstructured > HL7

Function Writes an HL7 structured file and inserts the data row by row.

Purpose This component writes an HL7 structured file according to the HL7 standards.

Basic settings Property type Either Built-In or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where the properties are
stored. The fields that follow are completed automatically using
fetched data

Schema(s) Schema: Enter the node on which the data from the parent row
is to be stored. Parent row: The data flow source.

File Name/Output Stream Browse to where you want to store the file generated.

Configure HL7 Tree Opens the interface in which you can set up the HL7 mapping.

HL7 version Select your HL7 version from the list.

Advanced settings Create directory only if not
exists

This check box is selected by default. This creates a folder for the
output file if there isn't one already.

Encoding Select the encoding type from the list or select Custom and define
it manually. This field is compulsory.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Used as an output component. An Input component is required.

Limitation n/a

Related scenario

For a related use case, see section Scenario: Retrieving information about patients and events from an HL7 file.



tMarketoInput

38 Talend Open Studio Components Reference Guide

tMarketoInput

tMarketoInput Properties

Component family Business/Cloud

Function The tMarketoInput component retrieves data from a Marketo Web server.

Purpose The tMarketoInput component allows you to retrieve data from a Marketo DB on a Web server.

Basic settings Endpoint address The URL of the Marketo Web server for the SOAP API calls to.

Secret key Encrypted authentication code assigned by Marketo.

Contact Marketo Support via support@marketo.com to
get this information.

Client Access ID A user ID for the access to Marketo web service.

Contact Marketo Support via support@marketo.com to
get this information.

Operation Options in this list allow you to retrieve lead data from Marketo to
external systems.

getLead: This operation retrieves basic information of leads and
lead activities in Marketo DB.

getMultipleLeads: This operation retrieves lead records in batch.

getLeadActivities: This operation retrieves the history of activity
records for a single lead identified by the provided key.

getLeadChanges: This operation checks the changes on Lead data
in Marketo DB.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if you
make changes, the schema automatically becomes Built-in..

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: No property data is stored centrally.

Repository: Select the Repository file where Properties are stored.

Columns Mapping You can set the mapping conditions by making changes in Edit
Schema. By default, column names in Column fields are the same
as what they are in the schema.

Because some column names in Marketo database
may contain blank space, which is not allowed in
the component schema, you need to specify the
corresponding column fields in the Columns in Marketo
field. If the defined column names in schema are the same
as column names in Marketo database, it is not necessary
to set the columns mapping.

support@marketo.com
support@marketo.com


Related Scenario

Talend Open Studio Components Reference Guide 39

LeadKey type The data types of LeadKey supported by Marketo DB.

LeadKey value The value of LeadKey.

Set Include Types Select this check box to include the types of LeadActivity content
to be retrieved. Click the plus button under the Include Types area
to select in the list types to add.

This field is displayed only when you select
getLeadActivity or getLeadChanges from the
Operation list.

Set Exclude Types Select this check box to exclude the types of LeadActivity content
to be retrieved. Click the plus button under the Exclude Types area
to select in the list types to add.

This field is displayed only when you select
getLeadActivity or getLeadChanges from the
Operation list.

Last Updated At Type in the time of last update to retrieve only the data since the last
specified time. The time format is YYYY-MM-DD HH:MM:SS.

This field is displayed only when you select
getMultipleLeads from the Operation list.

Batch Size The maximum batch size in retrieving lead data in batch.

This field is displayed only when you select
getLeadActivity or getLeadChanges from the
Operation list.

Timeout (milliseconds) Type in the query timeout (in milliseconds) on the Marketo Web
service.

The Job will stop when Timeout exception error occurs.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Reject connection.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage This component is used as an input component, it requires an output component.

Limitation n/a

Related Scenario

For a related use case, see section Scenario: Data transmission between Marketo DB and an external system.



tMarketoListOperation

40 Talend Open Studio Components Reference Guide

tMarketoListOperation

tMarketoListOperation Properties

Component family Business/Cloud

Function The tMarketoListOperation component adds/removes one or more leads to/from a list in the
Marketo DB; It also verifies if one or more leads exist in a list in Marketo DB.

Purpose The tMarketoListOperation component allows you to add/remove one or more leads to/from
a list in the Marketo DB on a Web server. Also, you can verify the existence of one or more
leads in a list in the Marketo DB.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in..

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: No property data is stored centrally.

Repository: Select the Repository file where Properties are
stored.

Endpoint address The URL of the Marketo Web server for the SOAP API calls to.

Secret key Encrypted authentication code assigned by Marketo.

Contact Marketo Support via support@marketo.com
for further information.

Client Access ID A user ID for the access to Marketo web service.

Contact Marketo Support via support@marketo.com
for further information.

Operation Options in this list allow you carry out the adding/deletion one or
more leads to/from a list in the Marketo DB; Also you can verify
the existence of single or multiple leads in a list in the Marketo
DB.

addTo: This operation adds one or more leads to a list in the
Marketo DB.

isMemberOf: This operation checks the Marketo DB to judge
whether the specific leads exist in the list.

removeFrom: This operation removes one or more leads from a
list in the Marketo DB.

Add or remove multiple
leads

Select this check box to add multiple leads to or remove multiple
leads from a list in the Marketo DB.

This check box appears only when you select addTo
or removeFrom from the Operation list.

Timeout (milliseconds) Type in the query timeout (in milliseconds) on the Marketo Web
service.

support@marketo.com
support@marketo.com


Scenario: Adding a lead record to a list in the Marketo DB

Talend Open Studio Components Reference Guide 41

The Job will stop when Timeout exception error occurs.

Die on error This check box is selected by default. Clear the check box to skip
the row on error and complete the process for error-free rows. If
needed, you can retrieve the rows on error via a Row > Reject
connection.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is used as an intermediate component, it requires an input component and an
output component.

Limitation n/a

Scenario: Adding a lead record to a list in the Marketo
DB

The following scenario describes a three-component Job that adds a lead record into a list in the Marketo database.

Setting up the Job

1. Drop tMarketoListOperation, tFixedFlowInput and tLogRow onto the design workspace.

2. Connect tFixedFlowInput to tMarketoListOperation using a Row > Main connection.

3. Connect tMarketoListOperation to tLogRow using a Row > Main connection.

Configuring the input component

1. Double-click tFixedFlowInput to define the component properties in its Basic settings view.



Scenario: Adding a lead record to a list in the Marketo DB

42 Talend Open Studio Components Reference Guide

2. Click the three-dot button next to Edit schema to set the schema manually.

3. Click the plus button to add four columns: ListKeyType, ListKeyValue, LeadKeyType and LeadKeyValue.
Keep the settings as default. Then click OK to save the settings.

4. In the Mode area, select Use Inline Table.

5. Click the plus button to add a new line and fill the line with respective values. In this example, these values
are: MKTOLISTNAME for ListKeyType, bchenTestList for ListKeyValue, IDNUM for LeadKeyType and
308408 for LeadKeyValue.

Configuring tMarketoListOperation

1. Double-click tMarketoListOperation to define the component properties in its Basic settings view.



Scenario: Adding a lead record to a list in the Marketo DB

Talend Open Studio Components Reference Guide 43

2. Click the Sync columns button to retrieve the schema defined in tFixedFlowInput.

3. Type in 1 in the Number of rows field.

4. Fill the Endpoint address field with the URL of the Marketo Web server. In this example, it is https://na-
c.marketo.com/soap/mktows/1_5.

Note that the URL used in this scenario is for demonstration purpose only.

5. Fill the Secret key field with encrypted authentication code assigned by Marketo. In this example, it is
464407637703554044DD11AA2211998.

6. Fill the Client Access ID field with the user ID. In this example, it is mktodemo41_785133934D1A219.

7. From the Operation list, select addTo.

8. Type in the limit of query timeout in the Timeout field. In this example, use the default number: 60000.

Job Execution

1. Double-click tLogRow to define the component properties in its Basic settings view.

2. Click the Sync columns button to retrieve the schema defined in tMarketoListOperation.

3. In the Mode area, select Table.

4. Save your Job and press F6 to execute it.



Scenario: Adding a lead record to a list in the Marketo DB

44 Talend Open Studio Components Reference Guide

The result of adding a lead record to a list in Marketo DB is displayed on the Run console.



tMarketoOutput

Talend Open Studio Components Reference Guide 45

tMarketoOutput

tMarketoOutput Properties

Component family Business/Cloud

Function The tMarketoOutput component outputs data to a Marketo Web server.

Purpose The tMarketoOutput component allows you to write data into a Marketo DB on a Web server.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in..

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: No property data is stored centrally.

Repository: Select the Repository file where Properties are
stored.

Endpoint address The URL of the Marketo Web server for the SOAP API calls to.

Secret key Encrypted authentication code assigned by Marketo.

Contact Marketo Support via support@marketo.com to
get this information.

Client Access ID A user ID for the access to Marketo web service.

Contact Marketo Support via support@marketo.com to
get this information.

Operation Options in this list allow you to synchronize lead data between
Marketo and another external system.

syncLead: This operation requests an insert or update operation
for a lead record.

syncMultipleLeads: This operation requests an insert or update
operation for lead records in batch.

Columns Mapping You can set the mapping conditions by making changes in Edit
Schema. By default, column names in Column fields are the
same as what they are in the schema.

Because some column names in Marketo database
may contain blank space, which is not allowed in
the component schema, you need to specify the
corresponding column fields in the Columns in
Marketo field. If the defined column names in schema
are the same as column names in Marketo database, it
is not necessary to set the columns mapping.

De-duplicate lead record on
email address

Select this check box to de-duplicate and update lead records
using email address.

support@marketo.com
support@marketo.com


Scenario: Data transmission between Marketo DB and an external system

46 Talend Open Studio Components Reference Guide

Deselect this check box to create another lead which contains the
same email address.

This check box will be displayed only when you select
syncMultipleLeads from the Operation list.

Batch Size The maximum batch size in synchronizing lead data in batch.

This field will be displayed only when you select
syncMultipleLeads from the Operation list.

Timeout (milliseconds) Type in the query timeout (in milliseconds) on the Marketo Web
service.

The Job will stop when Timeout exception error occurs.

Die on error This check box is selected by default. Clear the check box to skip
the row on error and complete the process for error-free rows. If
needed, you can retrieve the rows on error via a Row > Reject
connection.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is used as an output component, it requires an input component.

Limitation n/a

Scenario: Data transmission between Marketo DB and
an external system

The following scenario describes a five-component Job that inserts Lead records into Marketo database and
retrieves these records from Marketo database to a local file. Upon completing the data accessing, the Job displays
the number of relevant API calls on the Run console.



Scenario: Data transmission between Marketo DB and an external system

Talend Open Studio Components Reference Guide 47

Setting up the Job

1. Drop tMarketoOutput, tMarketoInput, tFileInputDelimited, tFileOutputDelimited and tJava from the
Palette onto the design workspace.

2. Connect tFileInputDelimited to tMarketoOutput using a Row > Main connection.

3. Connect tMarketoInput to tFileOutputDelimited using a Row > Main connection.

4. Connect tFileInputDelimited to tMarketoInput using a Trigger > OnSubjectOk connection.

5. Connect tMarketoInput to tJava using a Trigger > OnSubjectOk connection.

Configuring tFileInputDelimited

1. Double-click tFileInputDelimited to define the component properties in its Basic settings view.

2. Click the three-dot button next to the File name/Stream field to select the source file for data insertion. In
this example, it is D:/SendData.csv.

3. Click the three-dot button next to Edit schema to set the schema manually.

4. Click the plus button to add four columns: Id, Email, ForeignSysPersonId and ForeignSysType. Set the Type
of Id to Integer and keep the rest as default. Then click OK to save the settings.



Scenario: Data transmission between Marketo DB and an external system

48 Talend Open Studio Components Reference Guide

5. Type in 1 in the Header field and keep the other settings as default.

Configuring tMarketoOutput

1. Double-click tMarketoOutput to define the component properties in its Basic settings view.

2. Click the Sync columns button to retrieve the schema defined in tFileInputDelimited and fill the Endpoint
address field with the URL of the Marketo Web server. In this example, it is https://na-c.marketo.com/soap/
demo/demo1.

Note that the URL used in this scenario is for demonstration purpose only.

3. Fill the Secret key field with encrypted authentication code assigned by Marketo. In this example, it is
1234567894DEMOONLY987654321.

4. Fill the Client Access ID field with the user ID. In this example, it is
mktodemo1_1234567894DEMOONLY987654321.

5. Select syncMultipleLeads from the Operation list and type in the limit of query timeout in the Timeout
field. In this example, use the default number: 600000.

Configuring tMarketoInput

1. Double-click tMarketoInput to define the component properties in its Basic settings view.



Scenario: Data transmission between Marketo DB and an external system

Talend Open Studio Components Reference Guide 49

2. From the Operation list, select getLead.

3. In Columns Mapping area, type in test@talend.com in Columns in Marketo column to set the Email
column.

Note that all the data used in this scenario is for demonstration purpose only.

4. From the LeadKey type list, select EMAIL and fill the LeadKey value field with test@talend.com.

5. Keep the rest of the settings as the corresponding settings in tMarketoOutput.

Configuring tFileOutputDelimited

1. Double-click tFileOutputDelimited to define the component properties in its Basic settings view.

2. Click the three-dot button next to the File name field to synchronize data to a local file. In this example, it
is D:/ReceiveData.csv.

3. Click the Sync columns button and keep the rest of the settings as default.



Scenario: Data transmission between Marketo DB and an external system

50 Talend Open Studio Components Reference Guide

Using Java scripts to count API calls

1. Double-click tJava to add code in its Basic settings view.

2. In the Code field, type in following code to count the number of API calls throughout the data operations:

System.out.println(("The Number of API calls for inserting
data to Marketo DB is:"));
System.out.println((Integer)globalMap.get("tMarketoOutput_1_NB_CALL"));
System.out.println(("The Number of API calls for data synchronization
from Marketo DB is:"));
System.out.println((Integer)globalMap.get("tMarketoInput_1_NB_CALL"));

Job execution

1. Save your Job.

2. Press F6 to execute it.

The inserted lead records in the Marketo DB are synchronized to D:/ReceiveData.csv.

The number of API calls throughout each data operation is displayed on the Run console.



tMicrosoftCrmInput

Talend Open Studio Components Reference Guide 51

tMicrosoftCrmInput

tMicrosoftCrmInput Properties

Component family Business / Microsoft CRM

Function Connects to an entity of Microsoft CRM database via the relevant webservice.

Purpose Allows to extract data from a Microsoft CRM DB based on conditions set on specific columns.

Basic settings Property type Either Built-in or Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties are
stored. The fields that come after are pre-filled in using the
fetched data.

Authentication Type List of authentication types that correspond to specific CRM
deployment models. For details, download White paper:
Microsoft Dynamics CRM Security Model.

Microsoft Webservice URL Type in the webservice URL to connect to the Microsoft CRM
DB.

(Available when On_Premise is selected from the
Authentication Type list.)

Organizename Enter the name of the user or organization, set by an
administrator, that needs to access the Microsoft CRM database.

Username and Password Type in the Webservice user authentication data.

Domain Type in the domain name of the server on which Microsoft CRM
is hosted.

(Available when On_Premise is selected from the
Authentication Type list.)

Host Type in the IP address of Microsoft CRM database server.

Port Listening port number of Microsoft CRM database server.

(Available when On_Premise is selected from the
Authentication Type list.)

Time out (seconds) Number of seconds for the port to listen before closing.

Entity Select the relevant entity in the list.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in..

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

If you make changes, the schema automatically
becomes built-in.

http://www.microsoft.com/en-us/download/details.aspx?id=12108
http://www.microsoft.com/en-us/download/details.aspx?id=12108


Scenario: Writing data in a Microsoft CRM database and putting conditions on columns to extract specified rows

52 Talend Open Studio Components Reference Guide

In this component the schema is related to the selected
entity.

Logical operators used to
combine conditions

In the case you want to combine the conditions you set on
columns, select the combine mode you want to use.

Conditions Click the plus button to add as many conditions as needed.

The conditions are performed one after the other for each row.

Input column: Click in the cell and select the column of the input
schema the condition is to be set on.

Operator: Click in the cell and select the operator to bind the
input column with the value.

Value: Type in the column value, between quotes if need be.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Usually used as a Start component. An output component is required.

Limitation n/a

Scenario: Writing data in a Microsoft CRM database
and putting conditions on columns to extract specified
rows

This scenario describes a four-component Job which aims at writing the data included in a delimited input file in
a custom entity in a MicrosoftCRM database. It then extracts specified rows to an output file using the conditions
set on certain input columns.

If you want to write in a CustomEntity in Microsoft CRM database, make sure to name the columns in accordance with the
naming rule set by Microsoft, that is "name_columnname" all in lower case.

Setting up the Job

1. Drop the following components from the Palette to the design workspace: tFileInputdelimited,
tFileOutputDelimited, tMicrosoftCrmInput, and tMicrosoftCrmOutput.

2. Connect tFileInputDelimited to tMicrosoftCrmOutput using a Row Main connection.



Scenario: Writing data in a Microsoft CRM database and putting conditions on columns to extract specified rows

Talend Open Studio Components Reference Guide 53

3. Connect tMicrosoftCrmIntput to tFileOutputDelimited using a Row Main connection.

4. Connect tFileInputDelimited to tMicrosoftCrmInput using OnSubjobOk connection.

Configuring tFileInputDelimited

1. Double-click tFileInputDelimited to display its Basic settings view and define its properties

2. Set the Property Type to Repository if you have stored the input file properties centrally in the Metadata
node in the Repository tree view. Otherwise, select Built-In and fill the fields that follow manually. In this
example, property is set to Built-In.

3. Click the three-dot button next to the File Name/Input Stream field and browse to the delimited file that
holds the input data. The input file in this example contains the following columns: new_id, new_status,
new_firstname, new_email, new_city, new_initial and new_zipcode.

4. In the Basic settings view, define the Row Separator allowing to identify the end of a row. Then define the
Field Separator used to delimit fields in a row.

5. If needed, define the header, footer and limit number of processed rows in the corresponding fields. In this
example, the header, footer and limits are not set.

6. Click Edit schema to open a dialog box where you can define the input schema you want to write in Microsoft
CRM database.



Scenario: Writing data in a Microsoft CRM database and putting conditions on columns to extract specified rows

54 Talend Open Studio Components Reference Guide

7. Click OK to close the dialog box.

Configuring tMicrosoftCrmOutput

1. Double-click tMicrosoftCrmOutput to display the component Basic settings view and define its properties.

2. Enter the Microsoft Web Service URL as well as the user name and password in the corresponding fields.

3. In the OrganizeName field, enter the name that is given the right to access the Microsoft CRM database.

4. In the Domain field, enter the domain name of the server on which Microsoft CRM is hosted, and then enter
the host IP address and the listening port number in the corresponding fields.

5. In the Action list, select the operation you want to carry on. In this example, we want to insert data in a
custom entity in Microsoft Crm.

6. In the Time out field, set the amount of time (in seconds) after which the Job will time out.

7. In the Entity list, select one among those offered. In this example, CustomEntity is selected.

If CustomEntity is selected, a Custom Entity Name field displays where you need to enter a name for the custom
entity.

The Schema is then automatically set according to the entity selected. If needed, click Edit schema to display
a dialog box where you can modify this schema and remove the columns that you do not need in the output.



Scenario: Writing data in a Microsoft CRM database and putting conditions on columns to extract specified rows

Talend Open Studio Components Reference Guide 55

8. Click Sync columns to retrieve the schema from the preceding component.

Configuring tMicrosoftCrmInput

1. Double-click tMicrosoftCrmInput to display the component Basic settings view and define its properties.

2. Set the Property Type to Repository if you have stored the input file properties centrally in the Metadata
node in the Repository tree view. Otherwise, select Built-In and fill the fields that follow manually. In this
example, property is set to Built-In.

3. Enter the Microsoft Web Service URL as well as the user name and password in the corresponding fields and
enter the name that is given the right to access the Microsoft CRM database in the OrganizeName field.

4. In the Domain field, enter the domain name of the server on which Microsoft CRM is hosted, and then enter
the host IP address and the listening port number in the corresponding fields.

5. In the Time out field, set the amount of time (in seconds) after which the Job will time out.



Scenario: Writing data in a Microsoft CRM database and putting conditions on columns to extract specified rows

56 Talend Open Studio Components Reference Guide

6. In the Entity list, select the one among those offered you want to connect to. In this example, CustomEntity
is selected.

7. The Schema is then automatically set according to the entity selected. But you can modify it according
to your needs. In this example, you should set the schema manually since you want to access a custom
entity. Copy the seven-column schema from tMicrosoftCrmOutput and paste it in the schema dialog box
in tMicrosoftCrmInput.

8. Click OK to close the dialog box. You will be prompted to propagate changes. Click Yes in the popup
message.

9. In the Basic settings view, select And or Or as the logical operator you want to use to combine the conditions
you set on the input columns. In this example, we want to set two conditions on two different input columns
and we use And as the logical operator.

10. In the Condition area, click the plus button to add as many lines as needed and then click in each line in
the Input column list and select the column you want to set condition on. In this example, we want to set
conditions on two columns, new-city and new_id. We want to extract all customer rows whose city is equal
to “New York” and whose id is greater than 2.

11. Click in each line in the Operator list and select the operator to bind the input column with its value, in this
example Equal is selected for new_city and Greater Than for new_id.

12. Click in each line in the Value list and set the column value, New York for new_city and 2 for new_id in this
example. You can use a fixed or a context value in this field.

Configuring tFileOutputDelimited

1. Double-click tFileOutputdelimited to display the component Basic settings view and define its properties.



Scenario: Writing data in a Microsoft CRM database and putting conditions on columns to extract specified rows

Talend Open Studio Components Reference Guide 57

2. Set Property Type to Built-In and then click the three-dot button next to the File Name field and browse
to the output file.

3. Set row and field separators in the corresponding fields.

4. Select the Append check box if you want to add the new rows at the end of the records.

5. Select the Include Header check box if the output file includes a header.

6. Click Sync columns to retrieve the schema from the preceding component.

Job execution

Save the Job and press F6 to execute it.

Only customers who live in New York city and those whose “id” is greater than 2 are listed in the output file
you stored locally.



tMicrosoftCrmOutput

58 Talend Open Studio Components Reference Guide

tMicrosoftCrmOutput

tMicrosoftCrmOutput Properties

Component family Business / Microsoft CRM

Function Writes in an entity of a Microsoft CRM database via the relevant webservice.

Purpose Allows to write data into a Microsoft CRM DB.

Basic settings Authentication Type List of authentication types that correspond to specific CRM
deployment models. For details, download White paper:
Microsoft Dynamics CRM Security Model.

Microsoft Webservice URL Type in the webservice URL to connect to the Microsoft CRM
DB.

(Available when On_Premise is selected from the
Authentication Type list.)

Organizename Enter the name of the organization that needs to access the
Microsoft CRM database

Username and Password Type in the Webservice user authentication data.

Domain Type in the domain name of the server that installs Microsoft
CRM server.

(Available when On_Premise is selected from the
Authentication Type list.)

Host Type in the IP address of Microsoft CRM database server.

Port Listening port number of Microsoft CRM database server.

(Available when On_Premise is selected from the
Authentication Type list.)

Action Select in the list the action you want to do on the CRM data.
Available actions are: insert, update, and delete.

Time out (seconds) Number of seconds for the port to listen before closing.

Entity Select the relevant entity in the list.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in..

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Lookup Type Mapping Add lines as needed to establish mappings between the source
and target tables. Select a lookup object from the Input column
drop down list and enter the keyword of the source tables in the
Type field.

Advanced settings Reuse Http Client Select this check box to retain the current connection or deselect
it to release the connection.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Used as an output component. An Input component is required.

http://www.microsoft.com/en-us/download/details.aspx?id=12108
http://www.microsoft.com/en-us/download/details.aspx?id=12108


Related Scenario

Talend Open Studio Components Reference Guide 59

Limitation n/a

Related Scenario

For a related use case, see section Scenario: Writing data in a Microsoft CRM database and putting conditions
on columns to extract specified rows.



tMSAXInput

60 Talend Open Studio Components Reference Guide

tMSAXInput

tMSAXInput properties

Component family Business/ Microsoft AX

Function tMSAXInput connects to a MicrosoftAX server.

Purpose This component allows to extract data from a MicrosoftAX server based on a query.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties are
stored. The fields that come after are pre-filled in using the
fetched data.

Business Connector Type Select the type of the business connector to be used. The type
may be:

• DCOM

• .NET

.Net type only. .NET Business Connector
Assembly Path

Browse to, or enter the path to the assembly file of your .NET
business connector.

Host Type in the IP address of the MicrosoftAX server.

When you are using the .NET business connector, the
relevant Job must be executed on the server where your
dynamics AX server is hosted. If your Studio edition
allows you to use a Jobserver to execute this Job, you
have to deploy this Jobserver on the host server of your
dynamics AX server.

.Net type only. Port Enter the number of the Port of the .NET connector to be used.

.Net type only. AOS Server Instance Enter the name of the computer that runs the instance of
Application Object Server (AOS) you need to connect to.

Domain Type in the domain name on which the MicrosoftAX server is
hosted.

User and Password Type in user authentication data.

.Net type only. Company Enter the name of the company.

.Net type only. Language Enter the display language you need to use.

.Net type only. Configuration File Specify the location of the file which provides the configuration
settings to be used.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Click Edit Schema to make changes to the schema.

If you make changes, the schema automatically
becomes built-in.

Table Name Name of the table to read.

Query Enter your SQL query paying particular attention to properly
sequence the fields in order to match the schema definition.



Related scenarios

Talend Open Studio Components Reference Guide 61

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is usually used as a start component. An output component is required.

Limitation n/a

Related scenarios

No scenario is available for this component yet.



tMSAXOutput

62 Talend Open Studio Components Reference Guide

tMSAXOutput

tMSAXOutput properties

Component family Business/ Microsoft AX

Function tMSAXOutput connects to a MicrosoftAX server.

Purpose This component allows to write data in a MicrosoftAX server.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties are
stored. The fields that come after are pre-filled in using the
fetched data.

Business Connector Type Select the type of the business connector to be used. The type
may be:

• DCOM

• .NET

.Net type only. .NET Business Connector
Assembly Path

Browse to, or enter the path to the assembly file of your .NET
business connector.

Host Type in the IP address of the MicrosoftAX server.

When you are using the .NET business connector, the
relevant Job must be executed on the server where your
dynamics AX server is hosted. If your Studio edition
allows you to use a Jobserver to execute this Job, you
have to deploy this Jobserver on the host server of your
dynamics AX server.

.Net type only. Port Enter the number of the Port of the .NET connector to be used.

.Net type only. AOS Server Instance Enter the name of the computer that runs the instance of
Application Object Server (AOS) you need to connect to.

Domain Type in the domain name on which the MicrosoftAX server is
hosted.

User and Password Type in user authentication data.

.Net type only. Company Enter the name of the company.

.Net type only. Language Enter the display language you need to use.

.Net type only. Configuration File Specify the location of the file which provides the configuration
settings to be used.

Table Name Name of the table you want to connect to and write/modify data
in.

Action  on data You can do any of the following operations on the data in a
MicrosoftAX server:

Insert: insert data.

Update: update data.

Insert or update: add data or update existing one.



Scenario 1: Inserting data in a defined table in a MicrosoftAX server

Talend Open Studio Components Reference Guide 63

Update or insert: update existing data or create it if it does not
exist.

Delete: delete data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Click Edit Schema to make changes to the schema.

if you make changes, the schema automatically
becomes built-in.

Die on error This check box is selected by default. Clear the check box to skip
the row on error and complete the process for error-free rows. If
needed, you can retrieve the rows on error via a Row > Rejects
link.

Additional Columns This option allows you to use Local expressions to perform
actions on columns. For example, you can alter values in columns
of the defined table.

When you update or delete data in a column, this option provides
you with other possibilities on WHERE statements through using
different operators from the Operator column.

Name: name of the schema column to be altered or inserted as
a new column.

Operator: select in the list the operator you want to use with the
WHERE statement.

This column is not available when you use Insert as
action on data.

Data type: type of data.

Local expression: Type in the Local statement to be executed
in order to alter or insert the relevant column data, for example
row1.[row name]. Or, press Ctrl + Space and select any of the
context variables available in the list.

Position: select in the list Before, After or Replace following
the action you want to perform on the reference column.

Reference column: type in a column of reference that the
component can use to place/replace the new/ altered column.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is used as an output component. An Input component is required.

Limitation n/a

Scenario 1: Inserting data in a defined table in a
MicrosoftAX server

Before being able to use this component, make sure that you install and launch the MicrosoftAX server correctly.

This Java scenario describes a two-component Job that uses tMSAXOutput to insert four columns in a defined
table in a MicrosoftAX server after it alters values in one of the inserted columns.



Scenario 1: Inserting data in a defined table in a MicrosoftAX server

64 Talend Open Studio Components Reference Guide

Setting up the Job

1. Drop tFixedFlowInput and tMSAXOutput from the Palette to the design workspace.

2. Connect the two components together using a Row > Main connection.

Configuring tFixedFlowInput

1. Double-click tFixedFlowInput to display its Basic settings view and define the component properties.

2. Set Schema type to Built-in and click the three-dot button next to Edit schema to display a dialog box where
you can define the input schema.

3. Click the plus button and add the input schema columns, three in this example: name, city and street.

4. Click OK to close the dialog box and accept propagating the changes when prompted by the system.

The three schema columns display automatically in the Values list.

5. Click in the Value column and enter a value for each of the input columns.

Configuring tMSAXOutput

1. Double-click tMSAXOutput to open its Basic settings view and define the component properties.



Scenario 1: Inserting data in a defined table in a MicrosoftAX server

Talend Open Studio Components Reference Guide 65

2. Set Property type to Built-in.

3. In the Host field, type in the IP address of the MicrosoftAX server and type in the domain name on which
the MicrosoftAX server is hosted in the Domain field.

4. Enter your username and password for the server in the corresponding fields and enter the name of the table
you want to write data in the Table Name field, ADDRESS in this example.

5. In the Action on data list, select the action you want to carry on, Insert in this example.

6. Click Sync columns to retrieve the schema from the preceding component.

In this example, we want to retrieve the three input columns: name, city and street and write the data included
in the three input columns in the MicrosoftAX server without any changes.

If needed, click the three-dot button next to Edit Schema to verify the retrieved schema.

7. In the Additional columns list, click the plus button to add one line where you can define parameters for the
new column to add to the row you want to write in the ADDRESS table.

8. Set a name, a data type, a position and a reference column in the corresponding columns for the line you added.

In this example, we want to add a new column we call “address” after the street column.

9. Click in the Local expression column and press Ctrl + space on your keyboard to open the context variable
list and select: StringHandling.UPCASE(row2.city)+"-"+row2.street. This expression will write the
city name initially capped followed by the street name to form the address of Bryant park. Thus the address
column in this example will contain the string: New York-Midtown Manhattan.

Job execution

• Save your Job and press F6 to execute it.

tMSAXOutput inserts in the ADDRESS table in the MicrosoftAX server a row that holds the three input
columns, name, city and street in addition to the new address column that combines the city name and the
street name.



Scenario 2: Deleting data from a defined table in a MicrosoftAX server

66 Talend Open Studio Components Reference Guide

Scenario 2: Deleting data from a defined table in a
MicrosoftAX server

Before being able to use this component, make sure that you install and launch the MicrosoftAX server correctly.

This Java scenario describes a two-component Job that uses tMSAXOutput to delete from a defined table in a
MicrosoftAX server all rows that do not match the data included in a key column.

In this example, the input schema we use is an address column that holds the following data: New York-Midtown
Manhattan. We want to delete from the MicrosoftAX server all addresses that are not identical with this one.

Setting up the Job

1. Drop tFixedFlowInput and tMSAXOutput from the Palette to the design workspace.

2. Connect the two components together using a Row > Main connection.

Configuring tFixedFlowInput

1. Double-click tFixedFlowInput to display its Basic settings view and define the component properties.

2. Set Schema type to Built-in and click the three-dot button next to Edit schema to display a dialog box where
you can define the input schema.

3. Click the plus button and add the input schema columns, address in this example.

4. Click OK to close the dialog box. The schema column displays automatically in the Values list.

5. Click in the Value column and enter a value for the input column.



Scenario 2: Deleting data from a defined table in a MicrosoftAX server

Talend Open Studio Components Reference Guide 67

Setting up the connection to the MicrosoftAX server

1. Double-click tMSAXOutput to open its Basic settings view and define the component properties.

2. Set Property type to Built-in.

3. In the Host field, type in the IP address of the MicrosoftAX server.

4. In the Domain field, type in the domain name on which the MicrosoftAX server is hosted.

5. Enter your username and password for the server in the corresponding fields.

6. In the Table Name field, enter the name of the table you want to delete data from, ADDRESS in this example.

Defining the action on data

1. In the Action on data list, select the action you want to carry on, Delete in this example.

2. Click Sync columns to retrieve the schema from the preceding component. In this example, we want to
retrieve the input column: address.

3. Click the three-dot button next to Edit Schema to open a dialog box where you can verify the retrieved
schema.



Scenario 2: Deleting data from a defined table in a MicrosoftAX server

68 Talend Open Studio Components Reference Guide

4. In the output schema, select the Key check box next to the column name you want to define as a key column,
and then click OK to validate your changes and close the dialog box.

When you select Delete as an action on data, you must always define the Reference column as a key column in order
for tMSAXOutput to delete rows based on this key column.

5. In the Additional columns list, click the plus button to add one line and define the parameters the component
will use as basis for the delete operation.

6. Set a name, an operator, a data type, a local expression, a position and a reference column in the corresponding
columns for the line you added.

In this example, we want to delete from the ADDRESS table in the MicrosoftAX server all rows in which
the address column is not equal to the address in the key address column and that reads as the following:
New York-Midtown Manhattan.

When you select Delete as an action on data, you must always set Position to Replace. Otherwise, all settings in the
Additional columns will not be taken into account when executing your Job.

Job execution

• Save your Job and press F6 to execute it.

tMSAXOutput deletes from the ADDRESS table in the MicrosoftAX server all rows where the address string
is not equal to the address in the key column.



tOpenbravoERPInput

Talend Open Studio Components Reference Guide 69

tOpenbravoERPInput

tOpenbravoERPInput properties

Component Family Business

Function tOpenbravoERPInput connects to an OpenbravoERP database entity via the appropriate Web
service.

Purpose This component allows you to extract data from OpenBravoERP database according to the
conditions defined in specific columns.

Basic settings Openbravo REST
WebService URL

Enter the URL of the Web service that allows you to connect to
the OpenbravoERP database.

Username et Password User authentication information.

Entity Select the appropriate entity from the drop-down list.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in..

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

If you make any changes, the schema will
automatically become built-in.

For this component, the schema corresponds to a
selected entity.

WHERE Clause Enter your WHERE clause.

Order by Select this check bow to define how to order the results (the
elements in the drop-down list depend on the entity selected)

Sort: Choose whether to organise the results in either Ascending
or Descending order.

First result Enter the row number you want to retrieve first.

Max result Enter the maximum number of results you want to retrieve.

Advanced settings Advanced separator (for
numbers)

Select this check box to modify the separators to be used for the
numbers. Either:

Thousands separator

or

Decimal separator

tStatCatcher Statistics Select this check box to collect the log data at a component level.

Utilisation This component is generally used as an input component. An output component is required.

Limitation n/a



Related Scenario

70 Talend Open Studio Components Reference Guide

Related Scenario

For a scenario in which tOpenbravoERPInput might be used, see section Scenario: Writing data in a Microsoft
CRM database and putting conditions on columns to extract specified rows



tOpenbravoERPOutput

Talend Open Studio Components Reference Guide 71

tOpenbravoERPOutput

tOpenbravoERPOutput properties

Component Family Business

Function tOpenbravoERPOutput writes an object in an OpenbravoERP database via the appropriate
Web service.

Purpose This component writes data in an OpenbravoERP database.

Basic settings Openbravo REST
Webservice URL

Enter the URL of the Web service that allows you to connect to
the OpenbravoERP database.

Username et Password User authentication information.

Action on data From the list, select the one of the following actions:

Update/Create

or

Remove

Use existing data file Select this check box if desired and then select the file by
browsing your directory.

Entity Select the appropriate entity from the drop-down list.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in..

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Note that if you modify the schema, it automatically built-in.

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at a component level.

Usage This component is used as an output component. It requires an input component.

Limitation n/a

Related scenario

For a scenario in which tOpenbravoERPOutput may be used, see section Scenario: Writing data in a Microsoft
CRM database and putting conditions on columns to extract specified rows.



tSageX3Input

72 Talend Open Studio Components Reference Guide

tSageX3Input

tSageX3Input Properties

Component family Business/Sage X3

Function This component leverages the Web service provided by a given Sage X3 Web server to extract
data from the Sage X3 system (the X3 server).

Purpose This component extracts data from a given Sage X3 system.

Basic settings Property type Either Built-in or Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: No property data stored centrally.

Repository: Select the repository file where properties are stored.
The fields that come after are pre-filled in using the fetched data.

Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema.

If you make any changes, the schema will
automatically become built-in.

Endpoint address Type in the address of the Web service provided by the given
Sage X3 Web server.

Username and Password Type in the Web service user authentication data that you have
defined for configuring the Sage X3 Web server.

Language Type in the name of the X3 language code used to start a
connection group.

Pool alias Type in the name of the connection pool that distributes the
received requests to available connections. This name was given
from the Sage X3 configuration console.

Request config Type in the configuration string if you want to retrieve the debug
or trace information. For example, the string could be:

RequestConfigDebug=“adxwss .trace.on=on”; If you
need use several strings, separate them with a &, for example,

RequestConfigDebug=“adxwss.trace

.on=on&adxwss.trace.size=16384”;

A third party tool is needed to retrieve this kind of
information.

Publication name Type in the publication name of the published object, list or sub-
program you want your Studio to access.

Mapping Complete this table to map the variable elements of the object,
the sub-program or the list set in the given Sage X3 Web server.
The columns to be completed include:

Column: the columns defined in the schema editor for this
component.Group ID: the identifier of each variable element
group. For example, a variable element group could represent
one of attributes of an object.Field name: the field name of each
variable element.



Scenario: Using query key to extract data from a given Sage X3 system

Talend Open Studio Components Reference Guide 73

Query condition Select this check box to set up the query condition(s). The
columns to be completed include:

Key: the names of the variable elements used as the key for data
extraction.

Value: the value of the given key field used to extract the
corresponding data.

Limit Type in a number to indicate the maximum row count of the data
to be extracted.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Usually used as a Start component. An output component is required.

Limitation n/a

Scenario: Using query key to extract data from a given
Sage X3 system

This scenario describes a two-component Job used to extract one row of data from a given Sage X3 system. The
object method is to be called, that means the variable elements of this object thus are attributes. The data used in
this scenario can be found in the example provided by Sage X3.

Setting up the Job

1. Drop the tSageX3Input component and the tLogRow components onto the workspace from Palette.

2. Connect the tSageX3Input component to the tLogRow component using a Row > Main link.

Configuring the schema of tSageX3Input

1. Double-click tSageX3Input to set its properties in the Basic Settings view.



Scenario: Using query key to extract data from a given Sage X3 system

74 Talend Open Studio Components Reference Guide

2. In the Schema field, select Built-In and click the three-dot button next to Edit schema to open the schema
editor.



Scenario: Using query key to extract data from a given Sage X3 system

Talend Open Studio Components Reference Guide 75

3. In this editor, click the plus button 12 times beneath the schema table to add 12 rows into this table.

4. Type in the names you want to use for each row. In this example, these rows are named after the publication
names of the object attributes set in the Sage X3 Web server. These columns are used to map the corresponding
attribute fields in the Sage X3 system.

5. In the Type column, click the IMG row to display its drop-down list.

6. From the drop-down list, select List as this attribute appears twice or even more and do the same to switch
the types of the TIT2NBLIG row, the ITMLNK row and the ZITMLNK row to List as well for the same reason.

7. Click OK to validate this change and accept the propagation prompted by a pop-up dialog box.

Configuring the connection to the Sage X3 Web server

1. In the Endpoint address field, type in the URL address of the Web service provided by the Sage X3 Web
server. In this example, it is http://10.42.20.168:28880/adxwsvc/services/CAdxWebServiceXmlCC

2. In the User field, type in the user name of the given Sage X3. In this example, it is ERP.

3. In the Language field, type in the name of the X3 language code used to start a connection group. In this
example, it is FRA.

4. In the Pool alias field, type in the name of connection pool to be used. In this example, this connection pool
is called TALEND.

5. In the Publication name field, type in the publication name of the object to be called. In this scenario, the
publication name is ITMDET.

Setting up the mapping and configuring the query condition

1. In the Group ID column and the Field name column of the Mapping table, type in values corresponding
to the attribute group IDs and the attribute publication names defined in the Sage X3 Web server. In this
example, the values are presented in the figure below.

In the Mapping table, the Column column has been filled automatically with the columns you created in the schema
editor.

2. Select the Query condition check box to activate the Conditions table.

3. Under the Conditions table, click the plus button to add one row into the table.



Scenario: Using query key to extract data from a given Sage X3 system

76 Talend Open Studio Components Reference Guide

4. In the Key column, type in the publication name associated with the object attribute you need to extract data
from.

5. In the Value column, type in the value of the attribute you have selected as the key of the data extraction. In
this scenario, it is CONTS00059, one of the product references.

Job execution

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

The results are displayed on the Run console:



tSageX3Output

Talend Open Studio Components Reference Guide 77

tSageX3Output

tSageX3Output Properties

Component family Business/Sage X3

Function This component connects to the Web service provided by a given Sage X3 Web server and
therefrom insert, update or delete data in the Sage X3 system (the X3 server).

Purpose This component writes data into a given Sage X3 system.

Basic settings Property type Either Built-in or Repository

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: No property data stored centrally.

Repository: Select the repository file where properties are stored.
The fields that come after are pre-filled in using the fetched data.

Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

If you make any changes, the schema will automatically
become built-in.

Endpoint address Type in the address of the Web service provided by the given Sage
X3 Web server.

Username and Password Type in the Web service user authentication data that you have
defined for configuring the Sage X3 Web server.

Language Type in the name of the X3 language code used to start a connection
group.

Pool alias Type in the name of the connection pool that distributes the received
requests to available connections. This name was given from the
Sage X3 configuration console.

Request config Type in the configuration string if you want to retrieve the debug
or trace information.

For example, the string could be:
"RequestConfigDebug=“adxwss.trace.on=on";

If you need use several strings, separate them with a &, for example,

RequestConfigDebug="adxwss.trace.on

=on&adxwss.trace.size=16384";

A third party tool is needed to retrieve this kind of
information.

Publication name Type in the publication name of the published object, list or sub-
program you want your Studio to access.

Action You can do any of the following operations on the data in a Sage
X3 system:

Insert: insert data



Scenario: Using a Sage X3 Web service to insert data into a given Sage X3 system

78 Talend Open Studio Components Reference Guide

Update: update data

Delete: delete data

Mapping Complete this table to map the variable elements of the object, the
list or the sub-program your Studio access. Only the elements you
need to conduct the data action of your interest on are selected and
typed in for the purpose of mapping. The columns to be completed
include:

Column: the columns defined in the schema editor for this
component.

Key: the variable element used as key for data insertion, update or
deletion. Select the corresponding check box if a variable element
is the key. Group ID: the identifier of each variable element group.
For example, a variable element group could represent one of
attributes of an object.Field name: the field name of each selected
variable element.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage Usually used as an output component. An input component is required.

Limitation n/a

Scenario: Using a Sage X3 Web service to insert data
into a given Sage X3 system

This scenario describes a two-component Job used to generate one row of data and insert the data into a given
Sage X3 system. You can find the data used in this scenario in the example provided by Sage X3. The Sage X3
Web service is used to access an object.

Setting up the Job

1. Drop the tFixedFlowInput and the tSageX3Output components onto the workspace from Palette.

2. Connect the tFixedFlowInput component to the tSageX3Output component using a Row > Main
connection.

Configuring the schema for the input data

1. Double-click the tFixedFlowInput component to set its Basic Settings in the Component view



Scenario: Using a Sage X3 Web service to insert data into a given Sage X3 system

Talend Open Studio Components Reference Guide 79

2. Click the three-dot button next to Edit schema to open the schema editor.

3. In the schema editor and then under the schema table, click the plus button four times to add four rows.

4. Click OK to validate this changes and then accept the propagation prompted by the pop-up dialog box. The
four rows appear automatically in the Values table of the Component view.

5. In the Values table within the Mode area, type in the values for each of the four rows in the Value column.
In this scenario, the values downward are:

CONTS00059, Screen 24\" standard 16/10, Screen 24\" standard 28/10, 2

.

These values in the Value column must be put between quotation marks.



Scenario: Using a Sage X3 Web service to insert data into a given Sage X3 system

80 Talend Open Studio Components Reference Guide

Setting up the connection to the Sage X3 Web server

1. Double-click tSageX3Output to set its properties from the Basic Settings view.

2. In the Endpoint address field, type in the URL address of the Web service provided by the Sage X3 Web
server. In this example, it is http://10.42.20.168:28880/adxwsvc/services/CAdxWebServiceXmlCC

3. In the User field, type in the user name of the given Sage X3. In this example, it is ERP.

4. In the Language field, type in the name of the X3 language code used to start a connection group. In this
example, it is FRA.

5. In the Pool alias field, type in the name of connection pool to be used. In this example, this connection pool
is called TALEND.

6. In the Publication name field, type in the publication name of the object to be called. In this scenario, the
publication name is ITMDET.

7. In the Action field, select insert from the drop-down list.

Setting up the mapping

1. In the Field name column of the Mapping table, type in the field names of the attributes the selected data
action is exercised on.

2. In the Group ID column of the Mapping table, type in values corresponding to group IDs of the selected
attributes. These IDs are defined in the Sage X3 Web server



Scenario: Using a Sage X3 Web service to insert data into a given Sage X3 system

Talend Open Studio Components Reference Guide 81

In the Mapping table, the Column column has been filled automatically with the columns retrieved from the schema
of the preceding component.

Job execution

Press CTRL+S to save your Job and press F6 to execute it.

To verify the data that you inserted in this scenario, you can use the tSageX3Input component to read the
concerned data from the Sage X3 server.

For further information about how to use the tSageX3Input component to read data, see section Scenario: Using
query key to extract data from a given Sage X3 system.



tSalesforceBulkExec

82 Talend Open Studio Components Reference Guide

tSalesforceBulkExec

tSalesforceBulkExec Properties
tSalesforceOutputBulk and tSalesforceBulkExec components are used together to output the needed file
and then execute intended actions on the file for your Salesforce.com. These two steps compose the
tSalesforceOutputBulkExec component, detailed in a separate section. The interest in having two separate
elements lies in the fact that it allows transformations to be carried out before the data loading.

Component family Business/Cloud

Function tSalesforceBulkExec executes the intended actions on the prepared bulk data.

Purpose As a dedicated component, tSalesforceBulkExec gains performance while carrying out the
intended data operations into your Salesforce.com.

Basic settings Use an existing connection Select this check box to use an established connection from
tSalesforceConnection. Once you select it, the Component list
field appears allowing you to choose the tSalesforceConnection
component to be used.

For more information on tSalesforceConnection, see section
tSalesforceConnection.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to use
an existing connection from the other level, you can use
Dynamic settings to share the intended connection. In
this case, make sure that the connection name is unique
and distinctive. For more information about Dynamic
settings, see your studio user guide.

Salesforce Webservice URL Type in the webservice URL to connect to the Salesforce DB.

Username and Password Type in the Webservice user authentication data.

Salesforce Version Type in the version of the Salesforce you are using.

Bulk file path Directory where are stored the bulk data you need to process.

Action You can do any of the following operations on the data of the
Salesforce object:

Insert: insert data.

Update: update data.

Upsert: update and insert data.

Upsert Key Column Specify the key column for the upsert operation.

Available when Upsert is selected from the Action list.

Module Select the relevant module in the list.

if you select the Use Custom module option, you
display the Custom Module Name field where you can
enter the name of the module you want to connect to.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.



Related Scenario:

Talend Open Studio Components Reference Guide 83

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Advanced settings Rows to commit Specify the number of lines per data batch to be processed.

Bytes to commit Specify the number of bytes per data batch to be processed.

Use Socks Proxy Select this check box if you want to use a proxy server. Once
selected, you need provide the connection parameters that are
host, port, username and password.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Used as an output component. An Input component is required.

Limitation The bulk data to be processed should be .csv format.

Related Scenario:

For a related scenario, see section Scenario: Inserting transformed bulk data into your Salesforce.com.



tSalesforceConnection

84 Talend Open Studio Components Reference Guide

tSalesforceConnection

tSalesforceConnection properties

Component family Business/Cloud

Function tSalesforceConnection opens a connection to a Salesforce system in order to carry out a
transaction.

Putpose The component enables connection to a Salesforce.

Basic settings Salesforce Webservice URL Enter the Webservice URL required to connect to the Salesforce
database.

Username et Password Enter your Web service authentication details.

Timeout (milliseconds) Type in the intended number of query timeout in Salesforce.com.

For salesforce bulk
component

Select this check box if you use bulk data processing components
from the salesforce family. Once selected; the Salesforce
Version field appears and therein you need to enter the Salesforce
version you are using.

For more information on these bulk data processing components,
see section tSalesforceOutputBulk, section tSalesforceBulkExec
and section tSalesforceOutputBulkExec.

Use Soap Compression Select this check box if you want to activate SOAP compression.

The compression of SOAP messages results in
increased performance levels.

Use Socks Proxy Select this check box if you want to use a proxy. Once selected,
you need type in the connection parameters in the fields which
appear. These parameters are the host, the port, the username and
the password of the Proxy you need to use.

Advanced settings Client ID Set the ID of the real user to differentiate between those who use
the same account and password to access the salesforce website.

tStatCatcher Statistics Select this check box to collect the log data at a component level.

Usage This component is normally used with Salesforce components..

Limitation n/a

Related scenario

For further information regarding the usage of tSalesforceConnection, see section tMysqlConnection.



tSalesforceGetDeleted

Talend Open Studio Components Reference Guide 85

tSalesforceGetDeleted

tSalesforceGetDeleted properties

Component family Business/Cloud

Function tSalesforceGetDeleted recovers deleted data from a Salesforce object over a given period of
time.

Purpose This component can collect the deleted data from a Salesforce object during a specific period
of time.

Basic settings Use an existing connection Select this check box to use an established connection from
tSalesforceConnection. Once you select it, the Component list
field appear allowing you to choose the tSalesforceConnection
component to be used.

For more information on tSalesforceConnection, see section
tSalesforceConnection.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to use
an existing connection from the other level, you can use
Dynamic settings to share the intended connection. In
this case, make sure that the connection name is unique
and distinctive. For more information about Dynamic
settings, see your studio user guide.

Salesforce Webservice URL Type in the webservice URL to connect to the Salesforce DB.

Username and Password Type in the Webservice user authentication data.

Timeout (milliseconds) Type in the intended number of query timeout in Salesforce.com.

Module Select the relevant module in the list.

If you select the Custom module option, you display
the Custom Module Name field where you can enter
the name of the module you want to connect to.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Start Date Type in between double quotes the date at which you want to
start the search. Use the following date format: “yyy-MM-dd
HH:mm:ss”.

You can do the search only on the past 30 days.

End Date Type in between double quotes the date at which you want
to end the search. Use the following date format:“yyy-MM-dd
HH:mm:ss”.

Advanced settings Use Soap Compression Select this check box to activate the SOAP compression.

The compression of SOAP messages optimizes system
performance.



Scenario: Recovering deleted data from the Salesforce server

86 Talend Open Studio Components Reference Guide

Client ID Set the ID of the real user to differentiate between those who use
the same account and password to access the Salesforce website.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage You can use this component as an output component. tSalesforceGetDeleted requires an input
component.

Limitation n/a

Scenario: Recovering deleted data from the Salesforce
server

This scenario describes a two-component Job that collects the deleted data over the past 5 days from the Salesforce
server.

Setting up the Job

1. Drop tSalesforceGetDeleted and tLogRow from the Palette onto the design workspace.

2. Connect the two components together using a Row > Main connection.

Setting up the connection to the Salesforce server

1. Double-click tSalesforceGetDeleted to display its Basic settings view and define the component properties.

2. In the Salesforce WebService URL filed, use the by-default URL of the Salesforce Web service or enter
the URL you want to access.

3. In the Username and Password fields, enter your login and password for the Web service.



Scenario: Recovering deleted data from the Salesforce server

Talend Open Studio Components Reference Guide 87

4. From the Module list, select the object you want to access, Account in this example.

Setting the search condition

1. From the Schema list, select Repository and then click the three-dot button to open a dialog box where you
can select the repository schema you want to use for this component. If you have not defined your schema
locally in the metadata, select Built-in from the Schema list and then click the three-dot button next to the
Edit schema field to open the dialog box where you can set the schema manually.

2. In the Start Date and End Date fields, enter respectively the start and end dates for collecting the deleted
data using the following date format: “yyyy-MM-dd HH:mm:ss”. You can collect deleted data over the past
30 days. In this example, we want to recover deleted data over the past 5 days.

Job execution

1. Double-click tLogRow to display its Basic settings view and define the component properties.

2. Click Sync columns to retrieve the schema from the preceding component.

3. In the Mode area, select Vertical to display the results in a tabular form on the console.

4. Press Ctrl+S to save your Job and press F6 to execute it.

Deleted data collected by the tSalesforceGetDeleted component is displayed in a tabular form on the console.



tSalesforceGetServerTimestamp

88 Talend Open Studio Components Reference Guide

tSalesforceGetServerTimestamp

tSalesforceGetServerTimestamp properties

Component family Business/Cloud

Function tSalesforceGetServerTimestamp retrieves the current date of the Salesforce server.

Purpose This component retrieves the current date of the Salesforce server presented in a timestamp
format.

Basic settings Use an existing connection Select this check box to use an established connection from
tSalesforceConnection. Once you select it, the Component list
field appear allowing you to choose the tSalesforceConnection
component to be used.

For more information on tSalesforceConnection, see section
tSalesforceConnection.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to use
an existing connection from the other level, you can use
Dynamic settings to share the intended connection. In
this case, make sure that the connection name is unique
and distinctive. For more information about Dynamic
settings, see your studio user guide.

Salesforce Webservice URL Type in the webservice URL to connect to the Salesforce DB.

Username and Password Type in the Webservice user authentication data.

Timeout (milliseconds) Type in the intended number of query timeout in Salesforce.com.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Advanced settings Use Socks Proxy Select this check box if you want to use a proxy server Once
selected, you need enter the connection parameters that are the
host, the port, the username and the passerword of the Proxy you
need to use.

Use Soap Compression Select this check box to activate the SOAP compression.

The compression of the SOAP messages optimizes
system performance.

Client ID Set the ID of the real user to differentiate between those who use
the same account and password to access the salesforce website.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage You can use this component as an output component. tSalesforceGetServerTimestamp
requires an input component.

Limitation n/a



Related scenarios

Talend Open Studio Components Reference Guide 89

Related scenarios

No scenario is available for this component yet.



tSalesforceGetUpdated

90 Talend Open Studio Components Reference Guide

tSalesforceGetUpdated

tSalesforceGetUpdated properties

Component family Business/Cloud

Function tSalesforceGetUpdated recovers updated data from a Salesforce object over a given period
of time.

Purpose This component can collect all updated data from a given Salesforce object during a specific
period of time.

Basic settings Use an existing connection Select this check box to use an established connection from
tSalesforceConnection. Once you select it, the Component list
field appear allowing you to choose the tSalesforceConnection
component to be used.

For more information on tSalesforceConnection, see section
tSalesforceConnection.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to use
an existing connection from the other level, you can use
Dynamic settings to share the intended connection. In
this case, make sure that the connection name is unique
and distinctive. For more information about Dynamic
settings, see your studio user guide.

Salesforce Webservice URL Type in the Web service URL to connect to the Salesforce DB.

Username and Password Type in the Web service user authentication data.

Timeout (milliseconds) Type in the intended number of query timeout in Salesforce.com.

Module Select the relevant module in the list.

if you select the Custom module option, you display
the Custom Module Name field where you can enter
the name of the module you want to connect to.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Start Date Type in between double quotes the date at which you want to
start the search. Use the following date format: “yyy-MM-dd
HH:mm:ss”.

You can do the search only on the past 30 days.

End Date Type in between double quotes the date at which you want
to end the search. Use the following date format:“yyy-MM-dd
HH:mm:ss”.

Advanced settings Use Soap Compression Select this check box to activate the SOAP compression.

The compression of SOAP messages optimizes system
performance.



Related scenarios

Talend Open Studio Components Reference Guide 91

Client ID Set the ID of the real user to differentiate between those who use
the same account and password to access the Salesforce website.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage You can use this component as an output component. tSalesforceGetUpdate requires an input
component.

Limitation n/a

Related scenarios

No scenario is available for this component yet.



tSalesforceInput

92 Talend Open Studio Components Reference Guide

tSalesforceInput

tSalesforceInput Properties

Component family Business/Cloud

Function tSalesforceInput connects to an object of a Salesforce database via the relevant Web service.

Purpose Allows to extract data from a Salesforce DB based on a query.

Basic settings Property type Either Built-in or Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: No property data stored centrally.

Repository: Select the repository file where properties are stored.
The fields that come after are pre-filled in using the fetched data.

Click this icon to open a connection wizard and store the Excel
file connection parameters you set in the component Basic
settings view.

For more information about setting up and storing file connection
parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box to use an established connection from
tSalesforceConnection. Once you select it, the Component list
field appear allowing you to choose the tSalesforceConnection
component to be used.

For more information on tSalesforceConnection, see section
tSalesforceConnection.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to use
an existing connection from the other level, you can use
Dynamic settings to share the intended connection. In
this case, make sure that the connection name is unique
and distinctive. For more information about Dynamic
settings, see your studio user guide.

Query mode Two options are available: Query and Bulk Query.

Salesforce Webservice URL Type in the Web service URL to connect to the Salesforce DB.

Username and Password Type in the Web service user authentication data.

Timeout (milliseconds) Type in the intended number of query timeout in Salesforce.com.

Available when Query is selected from the Query mode list.

Module Select the relevant module in the list.

If you select the Custom Module option, you display
the Custom Module Name field where you can enter
the name of the module you want to connect to.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in.



Scenario: Using queries to extract data from a Salesforce database

Talend Open Studio Components Reference Guide 93

In this component the schema is related to the Module selected.

To retrieve a column from a linked module it
is necessary to define the column in a particular
manner in the Edit schema view, otherwise the
relationship query will not work. The correct syntax is:
NameofCurrentModule_Nameof-

LinkedModule_NameofColumnof-

Interest

Query condition Type in the query to select the data to be extracted. Example:
account_name= ‘Talend’

Maunal input of SOQL
query

Select this check box to display the Query field where you can
manually enter the desired query.

Query all records (include
deleted records)

Select this check box to query all the records, including the
deletions.

Available when Query is selected from the Query mode list.

Advanced settings Batch Size Number of registrations in each processed batch.

Available when Query is selected from the Query mode list.

Use Socks Proxy Select this check box if you want to use a proxy server. Once
selected, you need enter the connection parameters that are the
host, the port, the username and the password of the Proxy you
need to use.

Normalize delimiter (for
child relationship)

Characters, strings or regular expressions used to normalize the
data that is collected by queries set on different hierarchical
Salesforce objects.

Available when Query is selected from the Query mode list.

Column name delimiter (for
child relationship)

Characters, strings or regular expressions used to separate the
name of the parent object from the name of the child object when
you use a query on the hierarchical relations among the different
Salesforce objects.

Available when Query is selected from the Query mode list.

Use Soap Compression Select this check box to activate the SOAP compression.

The compression of SOAP messages optimizes system
performance, in particular for the batch operations.

Output Http Trace Message Select this check box to output the HTTP trace message.

Available when Bulk Query is selected from the Query mode
list.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Client ID Set the ID of the real user to differentiate between those who use
the same account and password to access the Salesforce website.

Available when Query is selected from the Query mode list.

Usage Usually used as a Start component. An output component is required.

Limitation n/a

Scenario: Using queries to extract data from a
Salesforce database

This scenario describes a four-component Job used to extract specific sets of data from parent and child objects
in a Salesforce database.



Scenario: Using queries to extract data from a Salesforce database

94 Talend Open Studio Components Reference Guide

Setting up the Job

1. Drop two tSalesforceInput components and two tLogRow components onto the workspace.

2. Connect each tSalesforceInput component to a tLogRow component using a Row > Main connection for
each pair.

3. Connect tSalesforceInput_1 to tSalesforceInput_2 using an OnSubjobOk connection.

Setting up the connection to the Salesforce server for the parent
object

1. Double-click tSalesforceInput_1 to set its Basic Settings in the Component tab.

2. Enter the Salesforce WebService URL of the database you want to connect to in the corresponding field.

3. Enter your authentication information in the corresponding Username and Password fields.

4. Enter the desired query Timeout (milliseconds) limit.



Scenario: Using queries to extract data from a Salesforce database

Talend Open Studio Components Reference Guide 95

Setting the query and the schema for the parent object

1. Select the Module (salesforce object) you want to query.

2. Select the Manual input of SOQL Query check box and enter your query scripts in the enabled Query field.

The query scripts you enter should follow the SOQL syntax.

3. Select Built-In as the Schema and click [...] next to Edit schema to open the schema editor.

In this example, the IsWon and FiscalYear columns in the query are located in the Opportunity module
specified. The Name column is in a linked module called Account. To return a column from a linked module
the correct syntax is to enter the name of the linked module, followed by the period character, then the name
of the column of interest. Hence, the query required in this example is:

“SELECT IsWon, FiscalYear, Account.Name FROM Opportunity”.

4. Click the plus button to add a new column for the fields taken from the Name column in the Account module.

5. Name this column Opportunity_Account_Name and click OK to save the changes.

To retrieve a column from a linked module, it is necessary to define the column in a particular manner in the Edit
schema view. The correct syntax is: NameofCurrentModule_NameofLinkedModule_NameofColumnofInterest.
Hence, in this example, the column must be named: Opportunity_Account_Name. If this syntax is not respected then
the data from the linked table will not be returned.

Setting up the connection to the Salesforce server for the child
object

1. Double-click tSalesforceInput_2 to set its Basic settings in the Component tab.



Scenario: Using queries to extract data from a Salesforce database

96 Talend Open Studio Components Reference Guide

2. Enter the Salesforce WebService URL of the database you want to connect to in the corresponding field.

The query scripts you enter must follow the SOQL syntax.

3. Enter your authentication information in the corresponding Username and Password fields.

4. Enter the desired query Timeout (milliseconds) limit.

Setting the query and the schema for the child object

1. Select the Module (salesforce object) you want to query.

2. Select the Manual input of SOQL Query check box and enter your query scripts in the enabled Query field.

In this example we want to extract the Id and CaseNumber fields from the Case module as well as the Name
fields from the Account module. The query is therefore: .

“SELECT Id, CaseNumber, Account.Name FROM Case”

3. Select Built-In as the Schema and click [...] next to Edit schema to open the schema editor.

4. Click the plus button to add a new column for the fields taken from the Name column in the Account module.

5. Name this column Case_Account_Name and click OK to save the changes.



Scenario: Using queries to extract data from a Salesforce database

Talend Open Studio Components Reference Guide 97

Job execution

1. Click each tLogRow component and set their component properties in the Basic settings view as desired.

In this example, there is no need to modify the tLogRow settings.

2. Press Ctrl+S to save your Job and press F6 to execute it.

The results are displayed in the Run tab:



tSalesforceOutput

98 Talend Open Studio Components Reference Guide

tSalesforceOutput

tSalesforceOutput Properties

Component family Business/Cloud

Function tSalesforceoutput writes in an object of a Salesforce database via the relevant Web service.

Purpose Allows to write data into a Salesforce DB.

Basic settings Property type Either Built-in or Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: No property data is stored centrally.

Repository: Select the Repository file where Properties are
stored. The fields that follow are pre-filled in using fetched data.

Use an existing connection Select this check box to use an established connection from
tSalesforceConnection. Once you select it, the Component list
field appear allowing you to choose the tSalesforceConnection
component to be used.

For more information on tSalesforceConnection, see section
tSalesforceConnection.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to use
an existing connection from the other level, you can use
Dynamic settings to share the intended connection. In
this case, make sure that the connection name is unique
and distinctive. For more information about Dynamic
settings, see your studio user guide.

Salesforce Webservice URL Type in the Web service URL to connect to the Salesforce DB.

Username and Password Type in the Web service user authentication data.

Timeout (milliseconds) Type in the intended number of query timeout in Salesforce.com.

Action You can do any of the following operations on the data of the
Salesforce object:

Insert: insert data.

Update: update data.

Delete: delete data.

Upsert: update and insert data.

Upsert Key Column Specify the key column for the upsert operation.

Available when Upsert is selected from the Action list.

Module Select the relevant module in the list.

if you select the Use Custom module option, you
display the Custom Module Name field where you can
enter the name of the module you want to connect to.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.



Scenario 1: Deleting data from the Account object

Talend Open Studio Components Reference Guide 99

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Advanced settings Extended Output This check box is selected by default. It allows to transfer output
data in batches. You can specify the number of lines per batch in
the Rows to commit field.

Die on error This check box is selected by default. Clear the check box to skip
the row on error and complete the process for error-free rows. If
needed, you can retrieve the rows on error via a Row > Reject
link.

The Reject link is available only when you have
deselected the Extended Output and Die on error
check boxes.

Error logging file If you want to create a file that holds all error logs, click the three-
dot button next to this field and browse to the specified file to set
its access path and its name.

Use Socks Proxy Select this check box if you want to use a proxy server. Once
selected, you need enter the connection parameters that are the
host, the port, the username and the passerword of the Proxy you
need to use.

Ignore NULL fields values Select this check box to ignore NULL values in Update or Upsert
mode.

Use Soap Compression Select this check box to activate the SOAP compression.

The compression of SOAP messages optimizes system
performance.

Retrieve inserted ID Select this check box to allow Salesforce.com to return the
salesforce ID produced for a new row that is to be inserted. The ID
column is added to the processed data schema in Salesforce.com.

This option is available only when you have chosen
insert action yet not in batch mode, i.e. not in the
Extended Output option.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Client ID Set the ID of the real user to differentiate between those who use
the same account and password to access the salesforce website.

Relationship mapping for
upsert

Click the [+] button to add lines as needed and specify the external
ID fields in the input flow, the upsert module and the lookup
module as well as the lookup module.

Column name of Talend schema: external ID field in the input
flow.

Lookup field name: external ID field in the upsert module.

Module name: name of the lookup module.

External id name: external ID field in the lookup module.

Usage Used as an output component. An Input component is required.

Limitation n/a

Scenario 1: Deleting data from the Account object

This scenario describes a two-component Job that removes an entry from the Account object.



Scenario 1: Deleting data from the Account object

100 Talend Open Studio Components Reference Guide

Dragging and dropping as well as connecting the components

1. Drop tSalesforceInput and tSalesforceOutput from the Palette onto the design workspace.

2. Connect the two components together using a Row > Main link.

Configuring the components

Querying the content to be deleted

1. Double-click tSalesforceInput to display its Basic settings view and define the component properties.

2. From the Property Type list, select Repository if you have already stored the connection to the salesforce
server in the Metadata node of the Repository tree view. The property fields that follow are automatically
filled in. If you have not defined the server connection locally in the Repository, fill in the details manually
after selecting Built-in from the Property Type list.

For more information about how to create the salesforce metadata, see Talend Open Studio User Guide.

3. In the Salesforce WebService URL field, use the default URL of the Salesforce Web service or enter the
URL you want to access or select the Use an existing connection check box to use an established connection.

4. In the Username and Password fields, enter your login and password for the Web service.

5. Type in your intended query timeout in the Timeout (milliseconds) field. In this example, use the default
number.

6. From the Module list, select the object you want to access, Account in this example.

7. From the Schema list, select Repository and then click the three-dot button to open a dialog box where you
can select the repository schema you want to use for this component. If you have not defined your schema
locally in the metadata, select Built-in from the Schema list and then click the three-dot button next to the
Edit schema field to open the dialog box where you can set the schema manually.

8. In the Query Condition field, enter the query you want to apply. In this example, we want to retrieve the
clients whose names are sForce. To do this, we use the query: “name=’sForce’”.



Scenario 2: Gathering erroneous data while inserting data to a module at Salesforce.com

Talend Open Studio Components Reference Guide 101

9. For a more advanced query, select the Manual input of SOQL query and enter the query manually.

Deleting the queried contents

1. Double-click tSalesforceOutput to display its Basic settings view and define the component properties.

2. In the Salesforce WebService URL field, use the default URL of the Salesforce Web service or enter the
URL you want to access.

3. In the Username and Password fields, enter your login and password for the Web service.

4. Type in your intended query timeout in the Timeout (milliseconds) field. In this example, use the default
number.

5. From the Action list, select the operation you want to carry out. In this example we select Delete to delete
the sForce account selected in the previous component.

6. From the Module list, select the object you want to access, Account in this example.

7. Click Sync columns to retrieve the schema of the preceding component.

8. Press Ctrl+S to save your Job.

Executing the Job

• Press F6 to execute the Job.

Check the content of the Account object and verify that the sForce account(s) is/are deleted from the server.

Scenario 2: Gathering erroneous data while inserting
data to a module at Salesforce.com

In this scenario, data in a local file is inserted to the AdditionalNumber module. Meanwhile, erroneous data in
that file is collected via a Row > Reject link.

Dragging and dropping components and linking them together

1. Drag and drop the following components from the Palette onto the workspace: tFileInputDelimited,
tSalesforceOutput and two tLogRow components.



Scenario 2: Gathering erroneous data while inserting data to a module at Salesforce.com

102 Talend Open Studio Components Reference Guide

2. Rename tFileInputDelimited as DataToInsert, tSalesforceOutput as InsertToSalesforce, and the two
tLogRow components as DataInserted as well as DataRejected respectively.

3. Link DataToInsert to InsertToSalesforce using a Row > Main connection.

4. Link InsertToSalesforce to DataInserted using a Row > Main connection.

5. Link InsertToSalesforce to DataRejected using a Row > Reject connection.

Deselect the Extended Output and Die on error check boxes in the Advanced settings view of the
tSalesforceOutput component so that the Reject link is available .

Configuring the components

Configuring the data source

1. Double-click DataToInsert to open its Basic settings view in the Component tab.

2. In the Property Type drop-down list, select Built-In.

You can select Repository from the Property Type drop-down list to fill in the relevant fields automatically if the
relevant metadata has been stored in the Repository. For more information about Metadata, see the Talend Open
Studio User Guide.

3. In the File name/Stream field, type in the path of the source file, for example, E:/salesforceout.csv.

4. In the Header field, type in 1 to retrieve the column names. Keep the default settings for other fields.



Scenario 2: Gathering erroneous data while inserting data to a module at Salesforce.com

Talend Open Studio Components Reference Guide 103

Configuring the module for data insertion

1. Double-click InsertToSalesforce to open its Basic settings view in the Component tab.

2. In the Username field, enter your username, for example, cantoine@talend.com.

3. In the Password field, enter your password, for example, talendehmrEvHz2xZ8f2KlmTCymS0XU.

4. In the Action drop-down list, select insert.

5. In the Module drop-down list, select AdditionalNumber.

When linking the components earlier, the Extended Output and Die on error check boxes have been deselected in
the Advanced settings view so that the Reject link can appear.

6. Keep the default settings for other fields.

Configuring the console display

1. Double-click DataInserted to open its Basic settings view in the Component tab.

2. In the Mode area, select Table (print values in cells of a table) for a better view.

3. Perform the same operation for DataRejected.

4. Press Ctrl+S to save your Job.

Executing the Job

• Press F6 to run the Job and you can find the erroneous data (if any) is displayed in the Run view.



Scenario 3: Inserting AccountIDs from an Excel File to the Contact Module

104 Talend Open Studio Components Reference Guide

As shown above, there are two Call Center ID fields that have incorrect data.

Scenario 3: Inserting AccountIDs from an Excel File to
the Contact Module

In this scenario, the AccountIDs from an excel file are inserted to the Contact module at the www.salesforce.com
based on the matching of LastName and Name fields.

Dragging and dropping components

1. Drag and drop the following components from the Palette onto the workspace: tFileInputExcel,
tSalesforceIntput, tMap and tSalesforceOutput.

2. Rename tFileInputExcel as excel_source, tSalesforceIntput as load_salesforce_data, tMap as
match_and_output and tSalesforceOutput as insert_to_contact_module.

3. Link the components using a Row > Main connection.

Configuring the components

Configuring the source excel input

1. Double-click excel_source to open its Basic settings view in the Component tab.



Scenario 3: Inserting AccountIDs from an Excel File to the Contact Module

Talend Open Studio Components Reference Guide 105

2. Click the [...] button next to the File name/Stream field to select the source file.

The content looks like:

3. Select the All sheets check box to retrieve the data of the entire excel file.

4. Enter 1 in the Header field as the first line lists the column names.

5. Click the [...] button next to the Edit schema field to open the schema editor.

6. Click the [+] button to add three columns, i.e. AccountId, LastName and Name.

7. Click OK to close the editor. Keep other default settings as they are.

Configuring the destination module and the desired operation

1. Double-click insert_to_contact_module to open its Basic settings view in the Component tab.



Scenario 3: Inserting AccountIDs from an Excel File to the Contact Module

106 Talend Open Studio Components Reference Guide

2. In the Username and Password fields, enter your authentication credentials.

3. Select insert in the Action list and Contact in the Module list.

4. Click the [...] button next to Edit schema to open the schema editor.

5.
Click  to copy all the columns from the output table to the input table.

6. Click OK to close the editor.

Configuring the lookup source and establishing the mapping relations

1. Double-click load_salesforce_data to open its Basic settings view in the Component tab.



Scenario 3: Inserting AccountIDs from an Excel File to the Contact Module

Talend Open Studio Components Reference Guide 107

2. In the Username and Password fields, enter your authentication credentials.

3. In the Module list, select the Contact module to retrieve data.

4. Clear the Query Condition field.

5. Double-click match_and_output to open its map editor.

6. Select fields LastName and Name from the table row1 and drop them next to their counterparts in the table
row2. This way, data from the excel file will be checked against their counterparts in the Contact module.

7. Select fields LastName and AccountID from the table row1 and drop them next to their counterparts in the
table id. This way, qualified data from the excel file will be passed to their counterpart fields in the id table.

8. Click OK to close the map editor.



Scenario 3: Inserting AccountIDs from an Excel File to the Contact Module

108 Talend Open Studio Components Reference Guide

Executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 to run the Job.



tSalesforceOutputBulk

Talend Open Studio Components Reference Guide 109

tSalesforceOutputBulk

tSalesforceOutputBulk Properties

tSalesforceOutputBulk and tSalesforceBulkExec components are used together to output the needed file
and then execute intended actions on the file for your Salesforce.com. These two steps compose the
tSalesforceOutputBulkExec component, detailed in a separate section. The interest in having two separate
elements lies in the fact that it allows transformations to be carried out before the data loading.

Component family Business/Cloud

Function tSalesforceOutputBulk generates files in suitable format for bulk processing.

Purpose Prepares the file to be processed by tSalesforceBulkExec for executions in Salesforce.com.

Basic settings File Name Type in the directory where you store the generated file.

Append Select the check box to write new data at the end of the existing
data. Or the existing data will be overwritten.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Ignore NULL fields values Select this check box to ignore NULL values in Update or Upsert
mode.

Advanced settings Relationship mapping for
upsert

Click the [+] button to add lines as needed and specify the external
ID fields in the input flow, the upsert module and the lookup
module.

Column name of Talend schema: external ID field in the input
flow.

Lookup field name: external ID field in the upsert module.

External id name: external ID field in the lookup module.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is intended for the use along with tSalesforceBulkExec component. Used
together they gain performance while feeding or modifying information in Salesforce.com.

Limitation n/a

Scenario: Inserting transformed bulk data into your
Salesforce.com

This scenario describes a six-component Job that transforms .csv data suitable for bulk processing, load them in
Salesforce.com and then displays the Job execution results in the console.



Scenario: Inserting transformed bulk data into your Salesforce.com

110 Talend Open Studio Components Reference Guide

This Job is composed of two steps: preparing data by transformation and processing the transformed data.

Before starting this scenario, you need to prepare the input file which offers the data to be processed by the Job.
In this use case, this file is sforcebulk.txt, containing some customer information.

Then to create and execute this Job, operate as follows:

Setting up the Job

1. Drop tFileInputDelimited, tMap, tSalesforceOutputBulk, tSalesforceBulkExec and tLogRow from the
Palette onto the workspace of your studio.

2. Use a Row > Main connection to connect tFileInputDelimited to tMap, and Row > out1 from tMap to
tSalesforceOutputBulk.

3. Use a Row > Main connection and a Row > Reject connection to connect tSalesforceBulkExec respectively
to the two tLogRow components.

4. Use a Trigger > OnSubjobOk connection to connect tFileInputDelimited and tSalesforceBulkExec.

Configuring the input component

1. Double-click tFileInputDelimited to display its Basic settings view and define the component properties.



Scenario: Inserting transformed bulk data into your Salesforce.com

Talend Open Studio Components Reference Guide 111

2. From the Property Type list, select Repository if you have already stored the connection to the salesforce
server in the Metadata node of the Repository tree view. The property fields that follow are automatically
filled in. If you have not defined the server connection locally in the Repository, fill in the details manually
after selecting Built-in from the Property Type list.

For more information about how to create the delimited file metadata, see Talend Open Studio User Guide.

3. Next to the File name/Stream field, click the [...] button to browse to the input file you prepared for the
scenario, for example, sforcebulk.txt.

4. From the Schema list, select Repository and then click the three-dot button to open a dialog box where you
can select the repository schema you want to use for this component. If you have not defined your schema
locally in the metadata, select Built-in from the Schema list and then click the three-dot button next to the
Edit schema field to open the dialog box to set the schema manually. In this scenario, the schema is made
of four columns: Name, ParentId, Phone and Fax.

5. According to your input file to be used by the Job, set the other fields like Row Separator, Field Separator...

Setting up the mapping

1. Double-click the tMap component to open its editor and set the transformation.

2. Drop all columns from the input table to the output table.

3. Add .toUpperCase() behind the Name column.



Scenario: Inserting transformed bulk data into your Salesforce.com

112 Talend Open Studio Components Reference Guide

4. Click OK to validate the transformation.

Defining the output path

1. Double-click tSalesforceOutputBulk to display its Basic settings view and define the component properties.

2. In the File Name field, type in or browse to the directory where you want to store the generated .csv data
for bulk processing.

3. Click Sync columns to import the schema from its preceding component.

Setting up the connection to the Salesforce server

1. Double-click tSalesforceBulkExect to display its Basic settings view and define the component properties.

2. Use the by-default URL of the Salesforce Web service or enter the URL you want to access.

3. In the Username and Password fields, enter your username and password for the Web service.

4. In the Bulk file path field, browse to the directory where is stored the generated .csv file by
tSalesforceOutputBulk.

5. From the Action list, select the action you want to carry out on the prepared bulk data. In this use case, insert.

6. From the Module list, select the object you want to access, Account in this example.

7. From the Schema list, select Repository and then click the three-dot button to open a dialog box where you
can select the repository schema you want to use for this component. If you have not defined your schema
locally in the metadata, select Built-in from the Schema list and then click the three-dot button next to the
Edit schema field to open the dialog box to set the schema manually. In this example, edit it conforming
to the schema defined previously.



Scenario: Inserting transformed bulk data into your Salesforce.com

Talend Open Studio Components Reference Guide 113

Configuring the output component

1. Double-click tLogRow_1 to display its Basic settings view and define the component properties.

2. Click Sync columns to retrieve the schema from the preceding component.

3. Select Table mode to display the execution result.

4. Do the same with tLogRow_2.

Job execution

1. Press CTRL+S to save your Job.

2. Press F6 to execute it.

You can check the execution result on the Run console.

In the tLogRow_1 table, you can read the data inserted into your Salesforce.com.

In the tLogRow_2 table, you can read the rejected data due to the incompatibility with the Account objects
you have accessed.

All the customer names are written in upper case.



tSalesforceOutputBulkExec

114 Talend Open Studio Components Reference Guide

tSalesforceOutputBulkExec

tSalesforceOutputBulkExec Properties
tSalesforceOutputBulk and tSalesforceBulkExec components are used together to output the needed file
and then execute intended actions on the file for your Salesforce.com. These two steps compose the
tSalesforceOutputBulkExec component, detailed in a separate section. The interest in having two separate
elements lies in the fact that it allows transformations to be carried out before the data loading.

Component family Business/Cloud

Function tSalesforceOutputBulkExec executes the intended actions on the .csv bulk data for
Salesforce.com.

Purpose As a dedicated component, tSalesforceOutputBulkExec gains performance while carrying
out the intended data operations into your Salesforce.com.

Basic settings Use an existing connection Select this check box to use an established connection from
tSalesforceConnection. Once you select it, the Component list
field appear allowing you to choose the tSalesforceConnection
component to be used.

For more information on tSalesforceConnection, see section
tSalesforceConnection.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to use
an existing connection from the other level, you can use
Dynamic settings to share the intended connection. In
this case, make sure that the connection name is unique
and distinctive. For more information about Dynamic
settings, see your studio user guide.

Salesforce Webservice URL Type in the Web service URL to connect to the Salesforce DB.

Username and Password Type in the Web service user authentication data.

Salesforce Version Type in the version of the Salesforce you are using.

Bulk file path Directory where are stored the bulk data you need to process.

Action You can do any of the following operations on the data of the
Salesforce object:

Insert: insert data.

Update: update data.

Upsert: update and insert data.

Delete: delete data.

Upsert Key Column Specify the key column for the upsert operation.

Available when Upsert is selected from the Action list.

Module Select the relevant module in the list.

If you select the Use Custom module option, you
display the Custom Module Name field where you can
enter the name of the module you want to connect to.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.



Scenario: Inserting bulk data into your Salesforce.com

Talend Open Studio Components Reference Guide 115

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Advanced settings Rows to commit Specify the number of lines per data batch to be processed.

Bytes to commit Specify the number of bytes per data batch to be processed.

Concurrency mode The concurrency mode for the job.

Parallel: process batches in parallel mode.

Serial: process batches in serial mode.

Use Socks Proxy Select this check box if you want to use a proxy server. In this
case, you should fill in the proxy parameters in the Proxy host,
Proxy port, Proxy username and Proxy password fields which
appear beneath.

Ignore NULL fields values Select this check box to ignore NULL values in Update or Upsert
mode.

Relationship mapping for
upsert

Click the [+] button to add lines as needed and specify the external
ID fields in the input flow, the upsert module and the lookup
module.

Column name of Talend schema: external ID field in the input
flow.

Lookup field name: external ID field in the upsert module.

External id name: external ID field in the lookup module.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is mainly used when no particular transformation is required on the data to be
loaded into Salesforce.com.

Limitation The bulk data to be processed in Salesforce.com should be .csv format.

Scenario: Inserting bulk data into your Salesforce.com

This scenario describes a four-component Job that submits bulk data into Salesforce.com, executs your intended
actions on the data, and ends up with displaying the Job execution results for your reference.

Before starting this scenario, you need to prepare the input file which offers the data to be processed by the Job.
In this use case, this file is sforcebulk.txt, containing some customer information.

Then to create and execute this Job, operate as follows:



Scenario: Inserting bulk data into your Salesforce.com

116 Talend Open Studio Components Reference Guide

Setting up the Job

1. Drop tFileInputDelimited, tSalesforceOutputBulkExec, and tLogRow from the Palette onto the
workspace of your studio.

2. Use Row > Main connection to connect tFileInputDelimited to tSalesforceOutputBulkExec.

3. Use Row > Main and Row > Reject to connect tSalesforceOutputBulkExec respectively to the two
tLogRow components.

Setting the input data

1. Double-click tFileInputDelimited to display its Basic settings view and define the component properties.

2. From the Property Type list, select Repository if you have already stored the connection to the salesforce
server in the Metadata node of the Repository tree view. The property fields that follow are automatically
filled in. If you have not defined the server connection locally in the Repository, fill in the details manually
after selecting Built-in from the Property Type list.

For more information about how to create the delimited file metadata, see Talend Open Studio User Guide.

3. Next to the File name/Stream field, click the [...] button to browse to the input file you prepared for the
scenario, for example, sforcebulk.txt.

4. From the Schema list, select Repository and then click the three-dot button to open a dialog box where you
can select the repository schema you want to use for this component. If you have not defined your schema
locally in the metadata, select Built-in from the Schema list and then click the three-dot button next to the
Edit schema field to open the dialog box where you can set the schema manually. In this scenario, the schema
is made of four columns: Name, ParentId, Phone and Fax.

5. According to your input file to be used by the Job, set the other fields like Row Separator, Field Separator...

Setting up the connection to the Salesforce server

1. Double-click tSalesforceOutputBulkExec to display its Basic settings view and define the component
properties.



Scenario: Inserting bulk data into your Salesforce.com

Talend Open Studio Components Reference Guide 117

2. In Salesforce WebService URL field, use the by-default URL of the Salesforce Web service or enter the
URL you want to access.

3. In the Username and Password fields, enter your username and password for the Web service.

4. In the Bulk file path field, browse to the directory where you store the bulk .csv data to be processed.

The bulk file here to be processed must be in .csv format.

5. From the Action list, select the action you want to carry out on the prepared bulk data. In this use case, insert.

6. From the Module list, select the object you want to access, Account in this example.

7. From the Schema list, select Repository and then click the three-dot button to open a dialog box where you
can select the repository schema you want to use for this component. If you have not defined your schema
locally in the metadata, select Built-in from the Schema list and then click the three-dot button next to the
Edit schema field to open the dialog box where you can set the schema manually. In this example, edit it
conforming to the schema defined previously.

Job execution

1. Double-click tLogRow_1 to display its Basic settings view and define the component properties.

2. Click Sync columns to retrieve the schema from the preceding component.

3. Select Table mode to display the execution result.

4. Do the same with tLogRow_2.

5. Press CTRL+S to save your Job and press F6 to execute it.

On the console of the Run view, you can check the execution result.



Scenario: Inserting bulk data into your Salesforce.com

118 Talend Open Studio Components Reference Guide

In the tLogRow_1 table, you can read the data inserted into your Salesforce.com.

In the tLogRow_2 table, you can read the rejected data due to the incompatibility with the Account objects
you have accessed.

If you want to transform the input data before submitting them, you need to use tSalesforceOutputBulk and
tSalesforceBulkExec in cooperation to achieve this purpose. For further information on the use of the two
components, see section Scenario: Inserting transformed bulk data into your Salesforce.com.



tSAPBWInput

Talend Open Studio Components Reference Guide 119

tSAPBWInput

tSAPBWInput Properties

Component family Business

Function tSAPBWInput reads data from an SAP BW database using a JDBC API connection and
extracts fields based on an SQL query.

Purpose This component executes an SQL query with a strictly defined order which must correspond
to your schema definition. Then it passes on the field list to the next component via a Row >
Main connection.

Basic settings Property type Either Built-in or Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: No property data stored centrally.

Repository: Select the repository file where Properties are stored.
The fields that come after are pre-filled in using the fetched data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in.

JDBC URL Enter the JDBC URL of the database you want to
connect to. For example, enter: jdbc:jdbc4olap://server_address/
database_name to connect to an SAP BW database.

Username Enter the username for DB access authentication.

Password Enter the password for DB access authentication.

Table Name Type in the name of the DB table.

Query Type Either Built-in or Repository:

Built-in: No property data stored centrally.

Repository: Select the repository file where Properties are stored.
The fields that come after are pre-filled in using the fetched data.

Guess Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace
from all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

Clear Trim all the String/Char columns to enable
Trim columns in this field.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component supports SQL queries for SAP BW database using a JDBC connection.

Limitation n/a



Scenario: Reading data from SAP BW database

120 Talend Open Studio Components Reference Guide

Scenario: Reading data from SAP BW database

This scenario describes a two-component Job that reads data from an SAP BW database. The data is fetched and
displayed on the console.

Prior to setting up the Job, make sure the following prerequisites are met:

1. Copy the following .jar files which compose the jdbc4olap driver to your class path:

-activation.jar

-commons-codec.jar

-jdbc4olap.jar

-saaj-api.jar

-saaj-impl.jar

2. Make sure that you have the latest version of jdbc4olap driver. You can download the latest version of jdbc4olap
driver from jdbc4olap download section. For further information about the usage of jdbc4olap driver, see
jdbc4olap User Guide.

The procedure of this scenario requires 4 main steps detailed hereafter:

1. Set up the Job.

2. Set up the jdbc connection to the SAP BW server.

3. Set up a query.

4. Display the fetched data on the console.

Set up the Job

1. Drop a tSAPBWInput component and a tLogRow component from the Palette onto the workspace.

http://sourceforge.net/projects/jdbc4olap/
http://cdnetworks-kr-2.dl.sourceforge.net/project/jdbc4olap/Documentation/jdbc4olapUserGuide.pdf


Scenario: Reading data from SAP BW database

Talend Open Studio Components Reference Guide 121

2. Connect the tSAPBWInput component and the tLogRow component using a Row > Main connection.

Set up the jdbc connection to the SAP BW server

1. Double-click the tSAPBWInput component to open its Basic settings view and define the component
properties.

2. Fill the JDBC URL field with the URL of your jdbc4olap server.

Note that the URL displayed above is for demonstration only.

3. Fill the Username and Password fields with your username and password for the DB access authentication.

4. Click the three-dot button next to Edit schema to define the schema to be used.



Scenario: Reading data from SAP BW database

122 Talend Open Studio Components Reference Guide

5. Click the plus button to add new columns to the schema and set the data type for each column and click OK
to save the schema settings.

Set up a query

1. From the Basic settings view of tSAPBWInput, fill the Table Name field with the table name. In this
scenario, table name "Measures" is for demonstration only.

2. Fill the Query area with the query script. In this example, we use:

"SELECT 
T1.\"[0D_CO_CODE].[LEVEL01]\" AS company, 
T0.\"[Measures].[D68EEPGGHUMSZ92PIJARDZ0KA]\" AS amount 
FROM 
\"0D_DECU\".\"0D_DECU/PRE_QRY4\".\"[Measures]\" T0, 
\"0D_DECU\".\"0D_DECU/PRE_QRY4\".\"[0D_CO_CODE]\" T1 "

Due to the limitations of the supported SQL queries, the query scripts you use must be based on the grammar defined
in the jdbc4olap driver. For further information about this grammar, see jdbc4olap User Guide.

Display the fetched data on the console

1. Double-click the tLogRow component to open its Basic settings view and define the component properties.

2. Click Sync columns to retrieve the schema defined in the preceding component.

3. Select Table in the Mode area.

4. Press Ctrl+S to save your Job and press F6 to execute it.

http://cdnetworks-kr-2.dl.sourceforge.net/project/jdbc4olap/Documentation/jdbc4olapUserGuide.pdf


Scenario: Reading data from SAP BW database

Talend Open Studio Components Reference Guide 123

The data in the table "Measure" is fetched and displayed on the console.



tSAPCommit

124 Talend Open Studio Components Reference Guide

tSAPCommit

tSAPCommit Properties

This component is closely related to tSAPConnection and tSAPRollback. It usually does not make much sense
to use these components separately in a transaction.

Component family Business/SAP

Function Validates the data processed through the Job into the connected server.

Purpose Using a unique connection, this component commits a global transaction in one go instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings SAPConnection Component
list

Select the tSAPConnection component in the list if more than one
connection are planned for the current Job.

Release Connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row >Main connection to link
tSAPCommit to your Job, your data will be commited row
by row. In this case, do not select the Release connection
check box or your connection will be closed before the end
of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with SAP components, especially with tSAPConnection and
tSAPRollback components.

Limitation n/a

Related scenario

This component is closely related to tSAPConnection and tSAPRollback. It usually does not make much sense
to use one of these without using a tSAPConnection component to open a connection for the current transaction.

For tSAPCommit related scenario, see section Scenario: Inserting data in mother/daughter tables.



tSAPConnection

Talend Open Studio Components Reference Guide 125

tSAPConnection

tSAPConnection properties

Component family Business

Function tSAPConnection opens a connection to the SAP system for the current transaction.

Purpose tSAPConnection allows to commit a whole Job data in one go to the SAP system as one
transaction.

Basic settings Property type Either Built-in or Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: No property data is stored centrally.

Repository: Select the Repository file where Properties are
stored. The fields that follow are pre-filled in using fetched data.

Connection configuration Client type: enter your usual SAP connection.

Userid : enter user login.

Password: enter password.

Language: specify the language.

Host name: enter the IP address of the SAP system.

System number: enter the system number.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with other SAP components.

Limitation n/a

Related scenarios

For a related scenarios, see section Scenario 1: Retrieving metadata from the SAP system and section Scenario 2:
Reading data in the different schemas of the RFC_READ_TABLE function.



tSAPInput

126 Talend Open Studio Components Reference Guide

tSAPInput

tSAPInput Properties

Component family Business

Function tSAPInput connects to the SAP system using the system IP address.

Purpose tSAPInput allows to extract data from an SAP system at any level through calling RFC or
BAPI functions.

Basic settings Property type Either Built-in or Repository:

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties are
stored. The fields that come after are pre-filled in using the
fetched data.

Click this icon to open a connection wizard and store the Excel
file connection parameters you set in the component Basic
settings view.

For more information about setting up and storing file connection
parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box and click the relevant connection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to use
an existing connection from the other level, you can use
Dynamic settings to share the intended connection. In
this case, make sure that the connection name is unique
and distinctive. For more information about Dynamic
settings, see your studio user guide.

Connection configuration Client type: Enter your SAP usual connection code

Userid: Enter the user connection Id.

Password: Enter the password.

Language: Specify a language.

Host name Enter the SAP system IP address.

System number Enter the system number.

FunName Enter the name of the function you want to use to retrieve data.

Initialize input Set input parameters.

Parameter Value: Enter between inverted commas the value that
corresponds to the parameter you set in the Parameter Name
column.

Type: Select the type of the input entity to retrieve.

Table Name (Structure Name): Enter between inverted
commas the table name.



Scenario 1: Retrieving metadata from the SAP system

Talend Open Studio Components Reference Guide 127

Parameter Name: Enter between in,verted commas the name
of the field that corresponds to the table set in the Table Name
column.

When you need different parameter values using the
same parameter name, you should enter these values in
one row and delimit them with comma.

Outputs Configure the parameters of the output schema to select the data
to be extracted:

Schema: Enter the output schema name.

Type (for iterate): Select the type of the output entity you want
to have.

Table Name (Structure Name): Enter between inverted
commas the table name.

Mapping: Enter between inverted commas the name of the field
you want to retrieve data from.

You can set as many outgoing Main links used to
output data as schemas you added to this Outputs
table. This way, data can be grouped into different files.

Connections Outgoing links (from one component to another):

Row: Main, Iterate.

Trigger: Run if; On Component Ok; On Component Error, On
Subjob Ok, On Subjob Error.

Incoming links (from one component to another):

Row: Iterate

Trigger: Run if, On Component Ok, On Component Error, On
Subjob Ok, On Subjob Error

For further information regarding connections, see Talend Open
Studio User Guide.

Advanced settings Release Connection Clear this check box to continue to use the selected connection
once the component has performed its task.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Usually used as a Start component. An output component is required.

Limitation n/a

Scenario 1: Retrieving metadata from the SAP system

This scenario is for reference only. If you are using Talend Open Studio for Big Data, the property type and schema of a
component are always built-in, which means you have to configure the connection details and schemas manually.

Talend SAP components (tSAPInput and tSAPOutput) as well as the SAP wizard are based on a library validated
and provided by SAP (JCO) that allows the user to call functions and retrieve data from the SAP system at Table,
RFC or BAPI, levels.

This scenario uses the SAP wizard that leads a user through dialog steps to create SAP connection and call RFC and BAPI
functions. This SAP wizard is available only for users who have subscribed to one of the Talend solutions. Otherwise, you
need to drop the tSAPInput component from the Palette and set its basic settings manually.



Scenario 1: Retrieving metadata from the SAP system

128 Talend Open Studio Components Reference Guide

This scenario uses the SAP wizard to first create a connection to the SAP system, and then call a BAPI function
to retrieve the details of a company from the SAP system. It finally displays in Talend Open Studio the company
details stored in the SAP system.

The following figure shows the company detail parameters stored in the SAP system and that we want to read in
Talend Open Studio using the tSAPInput component.

Setting and configuring the SAP connection using wizard

Setting up the connection to the SAP system

1. Create a connection to the SAP system using the SAP connection wizard, in this scenario the SAP connection
is called sap and is saved in the Metadata node.

2. Call the BAPI function BAPI_COMPANY_GETDETAIL using the SAP wizard to access the BAPI HTML
document stored in the SAP system and see the company details.



Scenario 1: Retrieving metadata from the SAP system

Talend Open Studio Components Reference Guide 129

3. In the Name filter field, type in BAPI* and click the Search button to display all available BAPI functions.

4. Select BAPI_COMPANY_GETDETAIL to display the schema that describes the company details.

The three-tab view to the right of the wizard displays the metadata of the BAPI_COMPANY_GETDETAIL function
and allows you to set the necessary parameters.

The Document view displays the SAP html document about the BAPI_COMPANY_GETDETAIL function.

The Parameter view provides information about the input and output parameters required by the
BAPI_COMPANY_GETDETAIL function to return values.

Setting the input and output parameters using the wizard

1. In the Parameter view, click the Input tab to list the input parameter(s). In this scenario, there is only one
input parameter required by BAPI_COMPANY_GETDETAIL and it is called COMPANYID.

2. In the Parameter view, click the Output tab to list the output parameters returned by
BAPI_COMPANY_GETDETAIL. In this scenario, there are two output parameters: COMPANY_DETAIL and
RETURN.



Scenario 1: Retrieving metadata from the SAP system

130 Talend Open Studio Components Reference Guide

Each of these two “structure” parameters consists of numerous “single” parameters.

The Test it view allows you to add or delete input parameters according to the called function. In this scenario,
we want to retrieve the metadata of the COMPANY_DETAIL “structure” parameter that consists of 14 “single”
parameters.



Scenario 1: Retrieving metadata from the SAP system

Talend Open Studio Components Reference Guide 131

3. In the Value column of the COMPANYID line in the first table, enter “000001” to send back company data
corresponding to the value 000001.

4. In the Output type list at the bottom of the wizard, select output.table.

5. Click Launch at the bottom of the view to display the value of each “single” parameter returned by the
BAPI_COMPANY_GETDETAIL function.

6. Click Finish to close the wizard and create the connection.

The sap connection and the new schema BAI_COMPANY_GETDETAIL display under the SAP Connections
node in the Repository tree view.

Retrieving different schemas of the SAP functions

To retrieve the different schemas of the BAPI_COMPANY_GETDETAIL function, do the following:

1. Right-click BAPI_COMPANY_GETDETAIL in the Repository tree view and select Retrieve schema in
the contextual menu.

2. In the open dialog box, select the schemas you want to retrieve, COMPANY_DETAIL and RETURN in
this scenario.

3. Click Next to display the two selected schemas and then Finish to close the dialog box.

The two schemas display under the BAPI_COMPANY_GETDETAIL function in the Repository tree view.



Scenario 1: Retrieving metadata from the SAP system

132 Talend Open Studio Components Reference Guide

Retrieving the company metadata

To retrieve the company metadata that corresponds to the 000001 value and display it in Talend Open Studio,
do the following:

Setting up the Job

1. In the Repository tree view, drop the SAP connection you already created to the design workspace to open
a dialog box where you can select tSAPConnection from the component list and finally click OK to close
the dialog box. The tSAPConnection component holding the SAP connection, sap in this example, displays
on the design workspace.

2. Double-click tSAPConnection to display the Basic settings view and define the component properties.

If you store connection details in the Metadata node in the Repository tree view, the Repository mode is selected in
the Property Type list and the fields that follow are pre-filled. If not, you need to select Built-in as “property type”
and fill in the connection details manually.

3. In the Repository tree-view, expand Metadata and sap in succession and drop RFC_READ_TABLE to
the design workspace to open a component list.

4. Select tSAPInput from the component list and click OK.

5. Drop tFilterColumns and tLogRow from the Palette to the design workspace.

6. Connect tSAPConnection and tSAPInput using a Trigger > OnSubJobOk link

7. To connect tSAPInput and tLogRow, right-click tSAPInput and select Row >
row_COMPANY_DETAIL_1 and then click tLogRow.



Scenario 1: Retrieving metadata from the SAP system

Talend Open Studio Components Reference Guide 133

8. In the design workspace, double-click tSAPInput to display its Basic settings view and define the component
properties.

The basic setting parameters for the tSAPInput component display automatically since the schema is stored
in the Metadata node and the component is initialized by the SAP wizard.

9. Select the Use an existing connection check box and then in the Component List, select the relevant
tSAPConnection component, sap in this scenario.

In the Initialize input area, we can see the input parameter needed by the BAPI_COMPANY_GETDETAIL
function.

In the Outputs area, we can see all different schemas of the BAPI_COMPANY_GETDETAIL function, in
particular, COMPANY_DETAIL that we want to output.

Job execution

1. In the design workspace, double-click tLogRow to display the Basic settings view and define the component
properties. For more information about this component, see section tLogRow.

2. Press CTRL+S to save your Job and press F6 to execute it.



Scenario 2: Reading data in the different schemas of the RFC_READ_TABLE function

134 Talend Open Studio Components Reference Guide

The tSAPInput component retrieved from the SAP system the metadata of the COMPANY_DETAIL “structure”
parameter and tLogRow displayed the information on the console.

Scenario 2: Reading data in the different schemas of
the RFC_READ_TABLE function

This scenario is for reference only. If you are using Talend Open Studio for Big Data, the property type and schema of a
component are always built-in, which means you have to configure the connection details and schemas manually.

Talend SAP components (tSAPInput and tSAPOutput) as well as the SAP wizard are based on a library validated
and provided by SAP (JCO) that allows the user to call functions and retrieve data from the SAP system at Table,
RFC or BAPI, levels.

This scenario uses the SAP wizard that leads a user through dialog steps to create a SAP connection and call RFC and BAPI
functions. This SAP wizard is available only for users who have subscribed to one of the Talend solutions. Otherwise, you
need to drop the tSAPInput component from the Palette and set its basic settings manually.

This scenario uses the SAP wizard to first create a connection to the SAP system, and then call an RFC function to
directly read from the SAP system a table called SFLIGHT. It finally displays in Talend Open Studio the structure
of the SFLIGHT table stored in the SAP system.

Setting and configuring the SAP connection using wizard

Setting up the connection to the SAP system

1. Create a connection to the SAP system using the SAP connection wizard, in this scenario the SAP connection
is called sap.

2. Call the RFC_READ_TABLE RFC function using the SAP wizard to access the table in the SAP system and
see its structure.



Scenario 2: Reading data in the different schemas of the RFC_READ_TABLE function

Talend Open Studio Components Reference Guide 135

3. In the Name filter field, type in RFC* and click the Search button to display all available RFC functions.

4. Select RFC_READ_TABLE to display the schema that describe the table structure.

The three-tab view to the right of the wizard displays the metadata of the RFC_READ_TABLE function and allows
you to set the necessary parameters.

The Document view displays the SAP html document about the RFC_READ_TABLE function.

The Parameter view provides information about the parameters required by the RFC_READ_TABLE function
to return parameter values.

Setting the input and output parameters using the wizard

1. In the Parameter view, click the Table tab to show a description of the structure of the different tables of
the RFC_READ_TABLE function.



Scenario 2: Reading data in the different schemas of the RFC_READ_TABLE function

136 Talend Open Studio Components Reference Guide

The Test it view allows you to add or delete input parameters according to the called function. In this example,
we want to retrieve the structure of the SFLIGHT table and not any data.

2. In the Value column of the DELIMITER line, enter “;” as field separator.

3. In the Value column of the QUERY_TABLE line, enter SFLIGHT as the table to query.

4. In the Output type list at the bottom of the view, select output.table.

5. In the Constructure|Table list, select DATA.

6. Click Launch at the bottom of the view to display the parameter values returned by the RFC_READ_TABLE
function. In this example, the delimiter is “;” and the table to read is SFLIGHT.



Scenario 2: Reading data in the different schemas of the RFC_READ_TABLE function

Talend Open Studio Components Reference Guide 137

7. Click Finish to close the wizard and create the connection.

Retrieving the different schemas of the RFC_READ_TABLE function

The sap connection and the RFC_READ_TABLE function display under the SAPConnections node in the
Repository tree view.

To retrieve the different schemas of the RFC_READ_TABLE function, do the following:

1. In the Repository tree view, right-click RFC_READ_TABLE and select Retrieve schema in the contextual
menu. A dialog box displays.

2. Select in the list the schemas you want to retrieve, DATA, FIELDS and OPTIONS in this example.

3. Click Next to open a new view on the dialog box and display these different schemas.

4. Click Finish to validate your operation and close the dialog box.

The three schemas display under the RFC_READ_TABLE function in the Repository tree view.

Retrieving the data column names of the SFLIGHT table

In this example, we want to retrieve the data and column names of the SFLIGHT table and display them in Talend
Open Studio. To do that, proceed as the following:

Setting up the Job

1. In the Repository tree view, drop the RFC_READ_TABLE function of the sap connection to the design
workspace to open a dialog box where you can select tSAPInput from the component list and then click OK
to close the dialog box. The tSAPInput component displays on the design workspace.

2. Drop two tLogRow components from the Palette to the design workspace.

3. Right-click tSAPInput and select Row > row_DATA_1 and click the first tLogRow component.

4. Right-click tSAPInput and select Row > row_FIELDS_1 and click the second tLogRow components.



Scenario 2: Reading data in the different schemas of the RFC_READ_TABLE function

138 Talend Open Studio Components Reference Guide

In this example, we want to retrieve the FIELDS and DATA schemas and put them in two different output
flows.

5. In the design workspace, double-click tSAPInput to open the Basic settings view and display the component
properties.

The basic setting parameters for the tSAPInput component display automatically since the schema is stored in
the Metadata node and the component is initialized by the SAP wizard.

In the Initialize input area, we can see the input parameters necessary for the RFC_READ_TABLE function, the
field delimiter “;” and the table name “SFLIGHT”.

In the Outputs area, we can see the different schemas of the SFLIGHT table.



Scenario 2: Reading data in the different schemas of the RFC_READ_TABLE function

Talend Open Studio Components Reference Guide 139

Job execution

1. In the design workspace, double click each of the two tLogRow components to display the Basic settings
view and define the component properties. For more information on the properties of tLogRow, see section
tLogRow.

2. Press CTRL+S to save your Job and press F6 to execute it.

The tSAPInput component retrieves from the SAP system the column names of the SFLIGHT table as well as the
corresponding data. The tLogRow components display the information in a tabular form in the Console.



tSAPOutput

140 Talend Open Studio Components Reference Guide

tSAPOutput

tSAPOutput Properties

Component family Business

Function Writes to an SAP system.

Purpose Allows to write data into an SAP system.

Basic settings Property type Either Built-in or Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: No property data stored centrally.

Repository: Select the repository file where Properties are stored.
The fields that come after are pre-filled in using the fetched data.

Click this icon to open a connection wizard and store the Excel
file connection parameters you set in the component Basic
settings view.

For more information about setting up and storing file connection
parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box and click the relevant connection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to use
an existing connection from the other level, you can use
Dynamic settings to share the intended connection. In
this case, make sure that the connection name is unique
and distinctive. For more information about Dynamic
settings, see your studio user guide.

Connection configuration Client type: Enter your SAP usual connection code

Userid: Enter the user connection Id.

Password: Enter the password.

Language: Specify a language.

Host name Enter the SAP system IP address.

System number Enter the system number.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in.

FunName Enter the name of the function you want to use to write data.

Mapping Set the parameters to select the data to write to the SAP system.

Advanced settings Release Connection Clear this check box to continue to use the selected connection
once the component has performed its task.



Related scenario

Talend Open Studio Components Reference Guide 141

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Usually used as an output component. An input component is required.

Limitation n/a

Related scenario

For a related scenarios, see section Scenario 1: Retrieving metadata from the SAP system and section Scenario 2:
Reading data in the different schemas of the RFC_READ_TABLE function.



tSAPRollback

142 Talend Open Studio Components Reference Guide

tSAPRollback

tSAPRollback properties

This component is closely related to tSAPCommit and tSAPConnection. It usually does not make much sense
to use these components separately in a transaction.

Component family Business/SAP

Function tSAPRollback cancels the transaction commit in the connected SAP.

Purpose tSAPRollback avoids to commit only a fragment of a transaction.

Basic settings SAPConnection Component
list

Select the tSAPConnection component in the list if more than one
connection are planned for the current Job.

Release Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is intended to be used along with SAP components, especially with
tSAPConnection and tSAPCommit.

Limitation n/a

Related scenarios

For tSAPRollback related scenario, see section Scenario: Rollback from inserting data in mother/daughter tables.



tSugarCRMInput

Talend Open Studio Components Reference Guide 143

tSugarCRMInput

tSugarCRMInput Properties

Component family Business/Cloud

Function Connects to a Sugar CRM database module via the relevant webservice.

Purpose Allows you to extract data from a SugarCRM DB based on a query.

Basic settings SugarCRM Webservice
URL

Type in the webservice URL to connect to the SugarCRM DB.

Username and Password Type in the Webservice user authentication data.

Module Select the relevant module from the list

To use customized tables, select Use custom module
from the list. The Custom module package name
and Custom module name fields which appear are
automatically filled in with the relevant names.

Schema and Edit Schema A schema is a row description, i.e., it defines the number
of fields that will be processed and passed on to the next
component. The schema is either Built-in or stored remotely in
the Repositorymake changes to the schema. Note that if you
make changes, the schema automatically becomes Built-in.

In this component the schema is related to the Module selected.

Query condition Type in the query to select the data to be extracted. Example:
account_name= ‘Talend’

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage Usually used as a Start component. An output component is required.

Limitation n/a

Scenario: Extracting account data from SugarCRM

This scenario describes a two-component Job which extracts account information from a SugarCRM database and
writes it to an Excel output file.

Setting up the Job

1. Drop a tSugarCRMInput and a tFileOutputExcel component from the Palette onto the workspace.

2. Connect the input component to the output component using a Row > Main connection.



Scenario: Extracting account data from SugarCRM

144 Talend Open Studio Components Reference Guide

Configuring the input component

1. Double-click tSugarCRMInput to define the component properties in its Basic settings view.

2. Fill the SugarCRM WebService URL field with the connection inforamtion, and the Username and
Password fields with the authentication you have.

3. Select the Module from the list of modules offered. In this example, Accounts is selected.

The Schema is then automatically set according to the module selected. But you can change it and remove
the columns that you do not require in the output.

4. In the Query Condition field, type in the query you want to extract from the CRM. In this example:
“billing_address_city=’Sunnyvale’”.

Job execution

1. Double-click tFileOutputExcel to define the component properties in its Basic settings view.

2. Set the destination file name as well as the Sheet name and select the Include header check box.

3. Press CTRL+S to save your Job and press F6 to execute it.



Scenario: Extracting account data from SugarCRM

Talend Open Studio Components Reference Guide 145

The filtered data is output in the defined spreadsheet of the specified Excel file.



tSugarCRMOutput

146 Talend Open Studio Components Reference Guide

tSugarCRMOutput

tSugarCRMOutput Properties

Component family Business/Cloud

Function Writes in a Sugar CRM database module via the relevant webservice.

Purpose Allows you to write data into a SugarCRM DB.

Basic settings SugarCRM WebService
URL

Type in the webservice URL to connect to the SugarCRM DB.

Username and Password Type in the Webservice user authentication data.

Module Select the relevant module from the list

To use customized tables, select Use custom module
from the list. The Custom module package name
and Custom module name fields which appear are
automatically filled in with the relevant names.

Action Insert or Update the data in the SugarCRM module.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage Used as an output component. An Input component is required.

Limitation n/a

Related Scenario

No scenario is available for this component yet.



tVtigerCRMInput

Talend Open Studio Components Reference Guide 147

tVtigerCRMInput

tVtigerCRMInput Properties

Component family Business/VtigerCRM

Function Connects to a module of a VtigerCRM database.

Purpose Allows to extract data from a VtigerCRM DB.

Basic settings

Vtiger Version Select the version of the Vtiger Web Services you want to use (either Vtiger 5.0 or Vtiger 5.1)

Vtiger 5.0 Server Address Type in the IP address of the VtigerCRM server

Port Type in the Port number to access the server

Vtiger Path Type in the path to access the VtigerCRM server

Username and Password Type in the user authentication data.

Version Type in the version of VtigerCRM you are using.

Module Select the relevant module in the list

Method Select the relevant method in the list. The method specifies the
action you can carry out on the VtigerCRM module selected.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in.

In this component the schema is related to the Module selected.

Vtiger 5.1 Endpoint Type in the URL address of the invoked Web server.

Username Type in the user name to log in to the vTigerCRM..

Access key Type in the access key for the user name.

Query condition Type in the query to select the data to be extracted.

Manual input of SQL query Manually type in your query in the corresponding field.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Usually used as a Start component. An output component is required.

Limitation n/a

Related Scenario

No scenario is available for this component yet.



tVtigerCRMOutput

148 Talend Open Studio Components Reference Guide

tVtigerCRMOutput

tVtigerCRMOutput Properties

Component family Business/VtigerCRM

Function Writes data into a module of a VtigerCRM database.

Purpose Allows to write data from a VtigerCRM DB.

Basic settings

Vtiger Version Select the version of the Vtiger Web Services you want to use (either Vtiger 5.0 or Vtiger 5.1)

Vtiger 5.0 Server Address Type in the IP address of the VtigerCRM server.

Port Type in the Port number to access the server.

Vtiger Path Type in the path to access the server.

Username and Password Type in the user authentication data.

Version Type in the version of VtigerCRM you are using.

Module Select the relevant module in the list

Method Select the relevant method in the list. The method specifies the
action you can carry out on the VtigerCRM module selected.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in.

In this component the schema is related to the Module selected.

Vtiger 5.1 Endpoint Type in the URL address of the invoked Web server.

Username Type in the user name to log in to the VtigerCRM..

Access key Type in the access key for the user name.

Action Insert or Update the data in the SugarCRM module.

Module Select the relevant module in the list

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in.

In this component the schema is related to the Module selected.

Die on error This check box is clear by default to skip the row on error and
complete the process for error-free rows.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Used as an output component. An Input component is required.

Limitation n/a



Related Scenario

Talend Open Studio Components Reference Guide 149

Related Scenario

No scenario is available for this component yet.



Talend Open Studio Components Reference Guide



Talend Open Studio Components Reference Guide

Business Intelligence components
This chapter details the main components which belong to the Business Intelligence family in the Palette of the
Integration perspective of the Talend Studio.

The BI family groups connectors that cover needs such as reading or writing multidimensional or OLAP databases,
outputting Jasper reports, tracking DB changes in slow changing dimension tables and so on.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.



tBarChart

152 Talend Open Studio Components Reference Guide

tBarChart

tBarChart properties

Component family Business Intelligence/Charts

Function tBarChart reads data from an input flow and transforms the data into a bar chart in a PNG image
file.

Purpose tBarChart generates a bar chart from the input data to ease technical analysis.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either built-in or remotely stored in the Repository.

The schema of tBarChart contains three read-only
columns named series (string), category (string), and
value (integer) respectively, in a fixed order. The data
in any extra columns will be only passed to the next
component, if any, without being presented in the bar
chart.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Sync columns Click to synchronize the output file schema with the input file
schema. The Sync function only displays once the Row connection
is linked with the output component.

Generated image path Name and path of the output image file.

Chart title Enter the title of the bar chart to be generated.

Include legend Select this check box if you want the bar chart to include a legend,
indicating all series in different colors.

3Dimensions Select this check box to create an image with 3D effect. By default,
this check box is selected and the bars representing the series of
each category will be stacked one over another. If this check box
is cleared, a 2D image will be created, with the bars displayed one
besides another along the category axis.

Image width and Image
height

Enter the width and height of the image file, in pixels.

Category axis name and
Value axis name

Enter the category axis name and value axis name.

Foreground alpha Enter an integer in the range of 0 to 100 to define the transparency of
the image. The smaller the number you enter, the more transparent
the image will be.

Plot orientation Select the plot orientation of the bar chart: VERTICAL or
HORIZONTAL.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component is mainly used as Output component. It requires an Input component and Row
main link as input.



Scenario: Creating a bar chart from the input data

Talend Open Studio Components Reference Guide 153

Scenario: Creating a bar chart from the input data

This scenario describes a Job that reads source data from a CSV file and transforms the data into a bar chart
showing a comparison of several large cities. The input file is shown below:

City;Population(x1000);LandArea(km2);PopulationDensity(people/km2)
Beijing;10233;1418;7620
Moscow;10452;1081;9644
Seoul;10422;605;17215
Tokyo;8731;617;14151
Jakarta;8490;664;12738
New York;8310;789;10452

Because the input file has a different structure than the one required by the tBarChart component, this use case
uses the tMap component to adapt the source data to the three-column schema of tBarChart so that a temporary
CSV file can be created as the input to the tBarChart component.

You will usually use the tMap component to adjust the input schema in accordance with the schema structure of the
tBarChart component. For more information about how to use the tMap component, see Talend Open Studio User Guide
and section tMap.

To ensure correct generation of the temporary input file, a pre-treatment subjob is used to delete the temporary
file in case it already exists before the main Job is executed; as this temporary file serves this specific Job only, a
post-treatment subjob is used to deleted it after the main Job is executed.

Dropping and linking components

1. Drop the following components from the Palette to the design workspace: a tPrejob, a tPostjob, two
tFileDelete components, two tFileInputDelimited components, a tMap, three tFileOutputDelimited
components, and a tBarChart.

2. Connect the tPrejob component to one tFileDelete component using a Trigger > On Component Ok
connection, and connect the tPostjob component to the other tFileDelete component using the same type
of connection.

3. Connect the first tFileInputDelimited to the tMap component using a Row > Main connection.

4. Connect the tMap component to the first tFileOutputDelimited component using a Row > Main connection,
and name the connection Population.

5. Repeat the step above to connect the tMap component to the other two tFileOutputDelimited components
using Row > Main connections, and name the connections Area and Density respectively.

6. Connect the section tFileInputDelimited to the tBarChart component using a Row > Main connection.

7. Connect the first tFileInputDelimited component to the second tFileInputDelimited component using a
Trigger > On Subjob Ok connection.

8. Relabel the components to best describe their functionality.



Scenario: Creating a bar chart from the input data

154 Talend Open Studio Components Reference Guide

Reading the source data

1. Double-click the first tFileInputDelimited component, which is labelled Large_Cities, to display its Basic
settings view.

2. Fill in the File name field by browsing to the input file.

3. In the Header field, specify the number of header rows. In this use case, you have only one header row.

4. Click Edit schema to describe the data structure of the input file. In this use case, the input schema is made
of four columns: City, Population, Area, and Density. Upon defining the column names and data types, click
OK to close the schema dialog box.



Scenario: Creating a bar chart from the input data

Talend Open Studio Components Reference Guide 155

Adapting the source data to the tBarChart schema

1. Double-click the tMap to open the Map Editor.

You can see an input table on the input panel, row1 in this example, and three empty output tables, named
Population, Area, and Density on the output panel.

2. Use the Schema editor to add three columns to each output table: series (string), category (string), and value
(integer).

3. In the relevant Expression field of the output tables, enter the text to be presented in the legend area of the
bar chart, "Population (x1000 people)", "Land area (km2)", and "Population density (people/
km2)" respectively in this example.

4. Drop the City column of the input table onto the category column of each output table.

5. Drop the Population column of the input table onto the value column of the Population table.

6. Drop the Area column of the input table onto the value column of the Area table.

7. Drop the Density column of the input table onto the value column of the Density table.



Scenario: Creating a bar chart from the input data

156 Talend Open Studio Components Reference Guide

8. Click OK to save the mappings and close the Map Editor and propagate the output schemas to the output
components.

Generating the temporary input file

1. Double-click the first tFileOutputDelimited component to display its Basic settings view.

2. In the File Name field, define a temporary CSV file to send the mapped data flows to. In this use case, we
name this file Temp.csv. This file will be used as the input to the tBarChart component.

3. Select the Append check box.

4. Repeat the steps above to define the properties of the other two tFileOutputDelimited components, using
exactly the same settings as in the first tFileOutputDelimited component.

Note that the order of output flows from the tMap component is not necessarily the actual order of writing data to the
target file. To ensure the target file is correctly generated, delete the file by the same name if it already exists before
Job execution and select the Append check box in all the tFileOutputDelimited components in this step.



Scenario: Creating a bar chart from the input data

Talend Open Studio Components Reference Guide 157

Configuring bar chart generation

1. Double-click the second tFileInputDelimited component, which is labelled Temp_Input, to display its Basic
settings view.

2. Fill in the File name field with the path to the temporary input file generated by the tFileOutputDelimited
components. In this use case, the temporary input file to the tBarChart is Temp.csv.

3. Double-click the tBarChart component to display its Basic settings view.

4. In the Generated image path field, define the file path of the image file to be generated.

5. In the Chart title field, define a title for the bar chart.

6. Define the category and series axis names.

7. Define the size and transparency degree of the image if needed. In this use case, we simply use the default
settings.

8. Click Edit schema to open the schema dialog box.



Scenario: Creating a bar chart from the input data

158 Talend Open Studio Components Reference Guide

9. Copy all the columns from the output schema to the input schema by clicking the left-pointing double arrow
button. Then, click OK to close the schema dialog box.

Deleting the temporary file

As the tPrejob and tPostjob components simply trigger the connected subjobs and do not have any settings to
define, all you need to do is to define the properties of the two tFileDelete components.

1. Double-click the first tFileDelete component to display its Basic settings view.

2. Fill in the File name field with the path to the temporary input file.

If the Fail on error check box is selected while the pre-treatment subjob fails because of errors such as the file to
delete does not exist, this failure will prevent the main subjob from being launched. In this situation, you can clear
the Fail on error check box to avoid this interruption.

3. Specify the same file path in the other tFileDelete component.



Scenario: Creating a bar chart from the input data

Talend Open Studio Components Reference Guide 159

Executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 to launch it.

A bar chart is generated, showing a graphical comparison of the specified large cities.



tDB2SCD

160 Talend Open Studio Components Reference Guide

tDB2SCD

tDB2SCD properties
Component family Databases/DB2

Function tDB2SCD reflects and tracks changes in a dedicated DB2 SCD table.

Purpose tDB2SCD addresses Slowly Changing Dimension needs, reading regularly a source of data and
logging the changes into a dedicated SCD table

Basic settings Use an existing connection Select this check box and click the relevant DB connection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio User
Guide.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties are stored.
The following fields are pre-filled in using fetched data.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Table Schema Name of the DB schema.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.



Related scenarios

Talend Open Studio Components Reference Guide 161

SCD Editor The SCD editor helps to build and configure the data flow for slowly
changing dimension outputs.

For more information, see section SCD management methodologies.

Use memory saving Mode Select this check box to maximize system performance.

Die on error This check box is cleared by default, meaning to skip the row on
error and to complete the process for error-free rows.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component level.

Debug mode Select this check box to display each step during processing entries
in a database.

Usage This component is used as Output component. It requires an Input component and Row main link
as input.

Limitation n/a

Related scenarios

For related topics, see section tMysqlSCD.



tDB2SCDELT

162 Talend Open Studio Components Reference Guide

tDB2SCDELT

tDB2SCDELT Properties

Component family Databases/DB2

Function tDB2SCDELT reflects and tracks changes in a dedicated DB2 SCD table.

Purpose tDB2SCDELT addresses Slowly Changing Dimension needs through SQL queries (server-side
processing mode), and logs the changes into a dedicated DB2 SCD table.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally. Enter properties
manually.

Repository: Select the repository file where Properties are stored.
The fields that come after are pre-filled in using the fetched data.

Use an existing connection Select this check box and click the relevant tDB2Connection
component on the Component List to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio User
Guide.

Host The IP address of the database server.

Port Listening port number of database server.

Database Name of the database

Username and Password User authentication data for a dedicated database.

Source table Name of the input DB2 SCD table.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table Select to perform one of the following operations on the table
defined:

None: No action carried out on the table.

Drop and create table: The table is removed and created again

Create table: A new table gets created.



Related Scenario

Talend Open Studio Components Reference Guide 163

Create table if not exists: A table gets created if it does not exist.

Clear table: The table content is deleted. You have the possibility
to rollback the operation.

Truncate table: The table content is deleted. You don not have the
possibility to rollback the operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Surrogate Key Select the surrogate key column from the list.

Creation Select the method to be used for the surrogate key generation.

For more information regarding the creation methods, see section
SCD keys.

Source Keys Select one or more columns to be used as keys, to ensure the unicity
of incoming data.

Use SCD Type 1 fields Use type 1 if tracking changes is not necessary. SCD Type 1 should
be used for typos corrections for example. Select the columns of the
schema that will be checked for changes.

Use SCD Type 2 fields Use type 2 if changes need to be tracked down. SCD Type 2 should be
used to trace updates for example. Select the columns of the schema
that will be checked for changes.

Start date: Adds a column to your SCD schema to hold the start date
value. You can select one of the input schema columns as Start Date
in the SCD table.

End Date: Adds a column to your SCD schema to hold the end date
value for the record. When the record is currently active, the End
Date column shows a null value, or you can select Fixed Year value
and fill it in with a fictive year to avoid having a null value in the
End Date field.

Log Active Status: Adds a column to your SCD schema to hold the
true or false status value. This column helps to easily spot the active
record.

Log versions: Adds a column to your SCD schema to hold the
version number of the record.

Advanced settings Debug mode Select this check box to display each step during processing entries
in a database.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component is used as an output component. It requires an input component and Row main
link as input.

Limitation n/a

Related Scenario

For related topics, see section tDB2SCD and section tMysqlSCD.



tGreenplumSCD

164 Talend Open Studio Components Reference Guide

tGreenplumSCD

tGreenplumSCD Properties

Component family Databases/Greenplum

Function tGreenplumSCD reflects and tracks changes in a dedicated Greenplum SCD table.

Purpose tGreenplumSCD addresses Slowly Changing Dimension needs, reading regularly a source of data
and logging the changes into a dedicated SCD table

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties are stored.
The following fields are pre-filled in using fetched data.

Use an existing connection Select this check box and click the relevant DB connection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Connection type Select the relevant driver on the list.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the DB schema.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.



Related scenario

Talend Open Studio Components Reference Guide 165

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

SCD Editor The SCD editor helps to build and configure the data flow for slowly
changing dimension outputs.

For more information, see section SCD management methodologies.

Use memory saving Mode Select this check box to maximize system performance.

Die on error This check box is cleared by default, meaning to skip the row on
error and to complete the process for error-free rows.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component level.

Debug mode Select this check box to display each step during processing entries
in a database.

Usage This component is used as Output component. It requires an Input component and Row main link
as input.

Related scenario

For related scenarios, see section tMysqlSCD.



tInformixSCD

166 Talend Open Studio Components Reference Guide

tInformixSCD

tInformixSCD properties

Component family Databases/Business
Intelligence/Informix

Function tInformixSCD tracks and shows changes which have been made to Informix SCD dedicated tables.

Purpose tInformixSCD addresses Slowly Changing Dimension transformation needs, by regularly reading
a data source and listing the modifications in an SCD dedicated table.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties are stored.
The following fields are pre-filled in using fetched data

Use an existing connection Select this check box and click the relevant DB connection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address.

Port DB server listening port.

Database Name of the database.

Schema Name of the schema.

Username et Password User authentication information.

Instance Name of the Informix instance to be used. This information can
generally be found in the SQL hosts file.

Table Name of the table to be created

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.



Related scenario

Talend Open Studio Components Reference Guide 167

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

SCD Editor The SCD editor helps to build and configure the data flow for slowly
changing dimension outputs.

For more information, see section SCD management methodologies.

Use memory saving Mode Select this check box to improve system performance.

Use Transaction Select this check box when the database is configured in NO_LOG
mode.

Die on error This check box is cleared by default, meaning to skip the row on
error and to complete the process for error-free rows.

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at a component level.

Debug mode Select this check box to display each step of the process by which
data is written in the database.

Usage This component is an output component. Consequently, it requires an input component and a
connection of the Row > Main type.

Limitation n/a

Related scenario

For a scenario in which tInformixSCD might be used, see section tMysqlSCD.



tIngresSCD

168 Talend Open Studio Components Reference Guide

tIngresSCD

tIngresSCD Properties

Component family Databases/Ingress

Function tIngresSCD reflects and tracks changes in a dedicated Ingres SCD table.

Purpose tIngresSCD addresses Slowly Changing Dimension needs, reading regularly a source of data and
logging the changes into a dedicated SCD table

Basic settings Use an existing connection Select this check box and click the relevant DB connection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your Studio user guide.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties are stored.
The fields to follow are pre-filled in using fetched data.

Server Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

SCD Editor The SCD editor helps to build and configure the data flow for slowly
changing dimension outputs.



Related scenario

Talend Open Studio Components Reference Guide 169

For more information, see section SCD management methodologies.

Use memory saving Mode Select this check box to maximize system performance.

Die on error This check box is cleared by default, meaning to skip the row on
error and to complete the process for error-free rows.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component level.

Debug mode Select this check box to display each step during processing entries
in a database.

Usage This component is used as Output component. It requires an Input component and Row main link
as input.

Limitation n/a

Related scenario

For related scenarios, see section tMysqlSCD.



tJasperOutput

170 Talend Open Studio Components Reference Guide

tJasperOutput

tJasperOutput Properties

This component is closely related to Jaspersoft's report designer -- iReport. It reads and processes data from an
input flow to create a report against a .jrxml report template defined via iReport.

Component family Business Intelligence/Jasper

Function Reads and processes data from an input flow to create a report against a .jrxml report template
defined via iReport.

Purpose This component allows you to use Jaspersoft's iReport to create a report in rich formats.

Basic settings Jrxml file Report template file created via iReport.

Temp path Path of temporary files.

Destination path Path of the final report file.

File name/Stream Name of the final report.

Report type File type of the final report.

Schema and Edit schema A schema is a row description, i.e. it defines the number of fields to
be processed and passed on to the next component. The schema is
either built-in or remotely stored in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see the Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Sync columns Click to synchronize the output file schema with the input file
schema. The Sync function only displays once the Row connection
is linked with the output component.

iReport Edit the command to provide the path of iReport's execution file, e.g.
replacing __IREPORT_PATH__\ with E:\Program Files\Jaspersoft
\iReport-4.1.1\bin\, or giving the full path of the execution file such
as "E:\Program Files\Jaspersoft\iReport-4.1.1\bin\iReport.exe".

Launch Click to run iReport.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Specify Locale Select this check box to choose a locale from the Report Locale list.

The first line of the Report Locale list is empty. You can
click it to customize a locale.

Encoding Select an encoding mode from this list. You can select Custom from
the list to enter an encoding method in the field that appears.

Usage This component is closely related to Jaspersoft's report designer -- iReport. It reads and processes
data from an input flow to create a report against a .jrxml report template defined via iReport.

Limitation n/a

Scenario: Generating a report against a .jrxml template

The following Job reads data from a .csv file and creates a .pdf report based on an existing .jrxml report template.
Note that the template file should be created via Jaspersoft's iReport based on a file that shares the same schema
with the source .csv file of this job.



Scenario: Generating a report against a .jrxml template

Talend Open Studio Components Reference Guide 171

Setting up the Job

1. Drag and drop the following components from the Palette to the workspace: tFileInputDelimited and
tJasperOutput.

2. Connect tFileInputDelimited and tJasperOutput using a Row link.

Configuring the input component

1. Double-click the tFileInputDelimited component to display its Basic settings view.

2. Select Built-In from the Property Type drop-down list.

You can select Repository from the Property Type drop-down list to fill in the relevant fields automatically if the
relevant metadata has been stored locally in the Repository. For more information about Metadata, see the Talend
Open Studio User Guide.

3. Fill in the File name/Stream field to give the path and name of the source file, e.g. "C:/Documents and
Settings/Andy ZHANG/nom.csv".

4. Keep the default settings for the Row Separator and Field Separator fields. You can also change them as
needed.

5. Set 1 in the Header field and 0 in the Footer field. Leave the Limit field empty. You can also change them
as needed.

6. Select Built-In from the Schema drop-down list and click Edit schema to define the data structure of the
input file. In this case, the input file has 2 columns: Nom and Prenom.



Scenario: Generating a report against a .jrxml template

172 Talend Open Studio Components Reference Guide

Configuring the output component

1. Double-click tJasperOutput to display its Basic settings view.

2. Enter the full path of the report template file created via Jaspersoft's iReport in the Jrxml file field. You can
click the three-dot button to browse.

The schema of the file, which is used to create a .jrxml template file via iReport, should be the same as that of the
source file that is used to create the report.

3. Enter the path for the temporary files generated during the job execution in the Temp path field. You can
click the three-dot button to browse.

4. Enter the path for the final report file generated during the job execution in the Destination path field. You
can click the three-dot button to browse.

5. Enter the name for the final report file generated during the job execution in the File name/Stream field.

6. Select the format for the final report file generated during the job execution in the Report type field.

7. Click Sync columns to retrieve the schema from the previous component.

8. Enter the path of execution file of Jaspersoft's iReport in the iReport field, e.g. replacing
__IREPORT_PATH__\ with E:\Program Files\Jaspersoft\iReport-4.1.1\bin\. You can click the Launch
button to run iReport.

This step is not mandatory. Yet, this helps you conveniently access the iReport software for relevant operations, e.g.
creating a report template, etc.



Scenario: Generating a report against a .jrxml template

Talend Open Studio Components Reference Guide 173

Job execution

1. Press CTRL+S to save your Job.

2. Press F6 to execute it.

You can find the file out.pdf in the folder specified in the Destination path field.



tJasperOutputExec

174 Talend Open Studio Components Reference Guide

tJasperOutputExec

tJasperOutputExec Properties

This component is closely related to Jaspersoft's report designer -- iReport. It reads and processes data from
a source file to create a report against a .jrxml report template defined via iReport. This component offers a
performance gain as it functions as a combination of an input component and a tJasperOutput component. The
advantage of using two separate components is that data can be transformed before being used to generate a report
and the input sources can be various and rich.

Component family Business Intelligence/
Jasper

Function Reads and processes data from a source file to create a report against a .jrxml report template
defined via iReport.

Purpose This component allows you to use Jaspersoft's iReport to create a report in rich formats. It offers
a performance gain as it functions as a combination of an input component and a tJasperOutput
component.

Basic settings Jrxml file Report template file created via iReport.

Source file Name of the source file.

Record delimiter Delimiter of the records.

Destination path Path of the final report file.

Use Default Output Name Select this check box to use the default name for the report generated,
which takes the source file's name.

Output Name Name of the final report.

This field does not appear if the Use Default Output Name
box has been selected.

Report type File type of the final report.

iReport Edit the command to provide the path of iReport's execution file, e.g.
replacing __IREPORT_PATH__\ with E:\Program Files\Jaspersoft
\iReport-4.1.1\bin\, or giving the full path of the execution file such
as "E:\Program Files\Jaspersoft\iReport-4.1.1\bin\iReport.exe".

Launch Click to run iReport.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Specify Locale Select this check box to choose a locale from the Report Locale list.

The first line of the Report Locale list is empty. You can
click it to customize a locale.

Encoding Select an encoding mode from this list. You can select Custom from
the list to enter an encoding method in the field that appears.

Usage This component is closely related to Jaspersoft's report designer -- iReport. It reads and processes
data from a source file to create a report against a .jrxml report template defined via iReport.

Limitation n/a

Related Scenario

For related scenarios, see section Scenario: Generating a report against a .jrxml template.



tLineChart

Talend Open Studio Components Reference Guide 175

tLineChart

tLineChart properties

Component family Business Intelligence/Charts

Function tLineChart reads data from an input flow and transforms the data into a line chart in a PNG image
file.

Purpose tLineChart generates a line chart from the input data to ease technical analysis.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either built-in or remotely stored in the Repository.

The schema of tLineChart contains three read-only
columns named series (string), x (integer), and y (integer)
respectively, in a fixed order. The data in any extra
columns will be only passed to the next component, if any,
without being presented in the generated line chart.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Sync columns Click to synchronize the output file schema with the input file
schema. The Sync function only displays once the Row connection
is linked with the output component.

Generated image path Name and path of the output image file.

Chart title Enter the title of the line chart to be generated.

Domain axis label and
Range axis label

Enter the domain axis (X axis) and range axis (Y axis) labels.

Plot orientation Select the plot orientation of the range axis: Vertical or Horizontal.

Include legend Select this check box if you want your line chart to include a legend,
indicating the lines of different series in different colors.

Image width and Image
height

Enter the width and height of the image, in pixels.

Moving average Select this check box to show a moving average for each series
on your line chart. With this check box selected, the Period field
appears, letting you define a period of which you want to show the
moving average.

Lower bound and Upper
bound

Define the lowest and highest values to be displayed on the range
axis.

Chart background and Plot
background

Select the chart background color and the plot area background color.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is mainly used as Output component. It requires an Input component and Row
main link as input.



Scenario: Creating a line chart to ease trend analysis

176 Talend Open Studio Components Reference Guide

Scenario: Creating a line chart to ease trend analysis

This scenario describes a Job that reads data from a CSV file and transforms the data into a line chart to facilitate
trend analysis. The input file records how long (in minutes) per week a person watches different TV channels over
ten weeks, as shown below:

Week;TV_A;TV_B;TV_C
1;327;286;244
2;326;285;243
3;325;283;245
4;323;282;246
5;322;285;248
6;321;288;247
7;322;291;245
8;321;292;244
9;320;293;243
10;319;294;242

Because the input file has a different structure than required by the tLineChart component, this use case uses the
tMap component to adapt the source data to the three-column schema of tLineChart so that a temporary CSV
file can be created as the input to the tLineChart component.

You will usually use the tMap component to adjust the input schema in accordance with the schema structure of the
tLineChart component. For more information about how to use the tMap component, see Talend Open Studio User Guide
and section tMap.

To ensure correct generation of the temporary input file, a pre-treatment subjob is used to delete the temporary
file in case it already exists before the main Job is executed; as this temporary file serves this specific Job only, a
post-treatment subjob is used to deleted it after the main Job is executed.

Dropping and linking components

1. Drop the following components from the Palette to the design workspace: two tFileDelete components, two
tFileInputDelimited components, a tMap, three tFileOutputDelimited components, and a tLineChart.

2. Connect the first tFileInputDelimited to the tMap component using a Row > Main connection.

3. Connect the tMap component to the first tFileOutputDelimited component using a Row > Main connection,
and name the connection TV_A.

4. Repeat the step above to connect the tMap component to the other two tFileOutputDelimited components
using Row > Main connections, and name the connections TV_B and TV_C respectively.

5. Connect the section tFileInputDelimited to the tLineChart component using a Row > Main connection.
When questioned whether to get the schema from the target component, click Yes.

6. Connect the first tFileInputDelimited component to the second tFileInputDelimited component using a
Trigger > On Subjob Ok connection.

7. Connect the first tFileDelete component to the first tFileInputDelimited component, and then the second
tFileInputDelimited component to the second tFileDelete component, using Trigger > On Subjob Ok
connections.

8. Relabel the components to best describe their functionality.



Scenario: Creating a line chart to ease trend analysis

Talend Open Studio Components Reference Guide 177

Reading the source data

1. Double-click the first tFileInputDelimited component, which is labelled Source_data, to display its Basic
settings view.

2. Fill in the File name field by browsing to the input file.

3. Specify the header row. In this use case, the first row of the input file is the header row. And leave the other
parameters as they are.



Scenario: Creating a line chart to ease trend analysis

178 Talend Open Studio Components Reference Guide

4. Click Edit schema to describe the data structure of the input file. In this use case, the input schema is made
of four columns: Week, Mins_TVA, Mins_TVB, and Mins_TVC. Upon defining the column names and data
type, click OK to close the schema dialog box.

Adapting the source data to the tLineChart schema

1. Double-click the tMap to open the Map Editor.

You can see an input table on the input panel, row1 in this example, and three empty output tables, named
TV_A, TV_B, and TV_C on the output panel.

2. Use the Schema editor to add three columns to each output table: series (string), x (integer), and y (integer).

3. In the relevant Expression field of the output tables, enter the text to be presented in the legend area of the
line chart, TV A, TV B, and TV C respectively in this example.

4. Drop the Week column of the input table onto the x column of each output table.

5. Drop the Mins_TVA column of the input table onto the y column of the TV_A table.

6. Drop the Mins_TVB column of the input table onto the y column of the TV_B table.

7. Drop the Mins_TVC column of the input table onto the y column of the TV_C table.



Scenario: Creating a line chart to ease trend analysis

Talend Open Studio Components Reference Guide 179

8. Click OK to save the mappings and close the Map Editor and propagate the output schemas to the output
components.

Generating the temporary input file

1. Double-click the first tFileOutputDelimited component to display its Basic settings view.



Scenario: Creating a line chart to ease trend analysis

180 Talend Open Studio Components Reference Guide

2. In the File Name field, define a temporary CSV file to send the mapped data flows to. In this use case, we
name this file Temp.csv. This file will be used as the input to the tLineChart component.

3. Select the Append check box.

4. Repeat the steps above to define the properties of the other two tFileOutputDelimited components, using
exactly the same settings as in the first tFileOutputDelimited component.

Note that the order of output flows from the tMap component is not necessarily the actual order of writing data to the
target file. To ensure the target file is correctly generated, we need to delete the file by the same name if it already
exists before Job execution and select the Append check box in all the tFileOutputDelimited components in this step.

Configuring line chart generation

1. Double-click the second tFileInputDelimited component, which is labelled Temp_Input, to display its Basic
settings view.

2. Fill in the File name field with the path to the temporary input file generated by the tFileOutputDelimited
components. In this use case, the temporary input file to the tLineChart is Temp.csv.

3. Double-click the tLineChart component to display its Basic settings view.

4. Click Edit schema to open the schema dialog box.



Scenario: Creating a line chart to ease trend analysis

Talend Open Studio Components Reference Guide 181

5. Check that the input and output schemas are synchronized. If needed, copy all the columns from the output
schema to the input schema by clicking the left-pointing double arrow button. Then, click OK to close the
schema dialog box.

6. In the Generated image path field, define the path of the image file to be generated.

7. In the Chart title field, define a title for the line chart. In this use case, enter Average Weekly Viewing
(per person) as the chart title.

8. Define the domain (X) and range (Y) axis labels. In this use case, enter Week and Minutes respectively the
axis labels.

9. Define the image size, the moving average period, the lower and upper bounds, the chart background color,
and the background color of the plot area, as you prefer.

In this use case, we set the image size to 450 by 450, set the lower and upper bounds to 210 and 340
respectively, select light gray as the chart background color, and keep the rest settings are they are.

Deleting the temporary file

1. Double-click the first tFileDelete component to display its Basic settings view.



Scenario: Creating a line chart to ease trend analysis

182 Talend Open Studio Components Reference Guide

2. Fill in the File name field with the path to the temporary input file, and clear the Fail on error check box to
allow the main Job to be executed if the file to delete does not exist.

3. Specify the same file path in the other tFileDelete component.

Executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 to launch the Job.

A line chart is generated as defined, showing a graphical comparison of the average weekly viewing time and
the viewing trends of different TV channels over the past ten weeks.



tMondrianInput

Talend Open Studio Components Reference Guide 183

tMondrianInput

tMondrianInput Properties

Component family Business Intelligence/OLAP
Cube

Function tMondrianInput reads data from relational databases and produces multidimensional data sets
based on an MDX query.

Purpose tMondrianInput executes a multi-dimensional expression (MDX) query corresponding to the
dataset structure and schema definition. Then it passes on the multidimensional dataset obtained
to the next component via a Main row link.

Basic settings Mondrian Version Select the Mondrian version you are using.

DB type Select the relevant type of relational database

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties are stored.
The following fields are pre-filled in using fetched data.

Datasource Name and path of the file containing the data.

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either built-in or remotely stored in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Catalog Path to the catalog (structure of the data warehouse).

MDX Query Type in the MDX query paying particularly attention to properly
sequence the fields in order to match the schema definition and the
data warehouse structure.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component covers MDX queries for multi-dimensional datasets.

Scenario: Cross-join tables

This Job extracts multi-dimensional datasets from relational database tables stored in a MySQL base. The data are
retrieved using a multidimensional expression (MDX query). Obviously you need to have to know the structure
of your data, or at least have a structure description (catalog) as a reference for the dataset to be retrieved in the
various dimensions.



Scenario: Cross-join tables

184 Talend Open Studio Components Reference Guide

Setting up the Job

1. Drop tMondrianInput and tLogRow from the Palette to the design workspace.

2. Connect the Mondrian connector to the output component using a Row Main connection.

Setting up the DB connection

1. Double-click the tMondrianInput component to display its Basic settingsview.

2. In DB type field, select the relational database you are using with Mondrian.

3. Select the relevant Repository entry as Property type, if you store your DB connection details centrally. In
this example the properties are built-in.

4. Fill out the details of connection to your DB: Host, Port, Database name, User Name and Password.

5. Select the relevant Schema in the Repository if you store it centrally. In this example, the schema is to be
set (built-in).



Scenario: Cross-join tables

Talend Open Studio Components Reference Guide 185

Configuring the DB query

1. The relational database we want to query contains five columns: media, drink, unit_sales, store_cost and
store_sales.

2. The query aims at retrieving the unit_sales, store_cost and store_sales figures for various media / drink using
an MDX query such as in the example below:

3. Back on the Basic settings tab of the tMondrianInput component, set the Catalog path to the data
warehouse. This catalog describes the structure of the warehouse.

4. Then type in the MDX query such as:

"select
   {[Measures].[Unit Sales], [Measures].[Store Cost], [Measures].[Store
Sales]} on columns,
   CrossJoin(
     { [Promotion Media].[All Media].[Radio],
       [Promotion Media].[All Media].[TV],
       [Promotion Media].[All Media].[Sunday Paper],
       [Promotion Media].[All Media].[Street Handout] },
     [Product].[All Products].[Drink].children) on rows



Scenario: Cross-join tables

186 Talend Open Studio Components Reference Guide

 from Sales
 where ([Time].[1997])"

5. Eventually, select the Encoding type on the list.

Job execution

1. Select the tLogRow component and select the Print header check box to display the column names on the
console.

2. Then press F6 to run the Job.

The console shows the result of the unit_sales, store_cost and store_sales for each type of Drink (Beverages,
Dairy, Alcoholic beverages) crossed with each media (TV, Sunday Paper, Street handout) as shown previously
in a table form.



tMSSqlSCD

Talend Open Studio Components Reference Guide 187

tMSSqlSCD

tMSSqlSCD Properties

Component family Databases/MSSQL Server

Function tMSSqlSCD reflects and tracks changes in a dedicated MSSQL SCD table.

Purpose tMSqlSCD addresses Slowly Changing Dimension needs, reading regularly a source of data and
logging the changes into a dedicated SCD table

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties are stored.
The following fields are pre-filled in using fetched data.

Use an existing connection Select this check box and click the relevant DB connection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Server Database server IP address.

Port Listening port number of DB server.

Schema Name of the DB schema.

Database Name of the database.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.



Related scenario

188 Talend Open Studio Components Reference Guide

SCD Editor The SCD editor helps to build and configure the data flow for slowly
changing dimension outputs.

For more information, see section SCD management methodologies.

Use memory saving Mode Select this check box to maximize system performance.

Die on error This check box is cleared by default, meaning to skip the row on
error and to complete the process for error-free rows.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Debug mode Select this check box to display each step during processing entries
in a database.

Usage This component is used as Output component. It requires an Input component and Row main link
as input.

Limitation n/a

Related scenario

For related topics, see section tMysqlSCD.



tMysqlSCD

Talend Open Studio Components Reference Guide 189

tMysqlSCD

tMysqlSCD Properties

Component family Databases/MySQL

Function tMysqlSCD reflects and tracks changes in a dedicated MySQL SCD table.

Purpose tMysqlSCD addresses Slowly Changing Dimension needs, reading regularly a source of data and
logging the changes into a dedicated SCD table

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties are stored.
The following fields are pre-filled in using fetched data.

Use an existing connection Select this check box and click the relevant DB connection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

DB Version Select the Mysql version you are using.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.



tMysqlSCD Properties

190 Talend Open Studio Components Reference Guide

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

SCD Editor The SCD editor helps to build and configure the data flow for slowly
changing dimension outputs.

For more information, see section SCD management methodologies.

Use memory saving mode Select this check box to maximize system performance.

Die on error This check box is cleared by default, meaning to skip the row on
error and to complete the process for error-free rows.

Advanced settings Additional JDBC
Parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Debug mode Select this check box to display each step during processing entries
in a database.

Usage This component is used as Output component. It requires an Input component and Row main link
as input.

SCD management methodologies

Slowly Changing Dimensions (SCDs) are dimensions that have data that slowly changes. The SCD editor offers
the simplest method of building the data flow for the SCD outputs. In the SCD editor, you can map columns, select
surrogate key columns, and set column change attributes through combining SCD types.

The following figure illustrates an example of the SCD editor.



tMysqlSCD Properties

Talend Open Studio Components Reference Guide 191

SCD keys

You must choose one or more source keys columns from the incoming data to ensure its unicity.

You must set one surrogate key column in the dimension table and map it to an input column in the source table.
The value of the surrogate key links a record in the source to a record in the dimension table. The editor uses
this mapping to locate the record in the dimension table and to determine whether a record is new or changing.
The surrogate key is typically the primary key in the source, but it can be an alternate key as long as it uniquely
identifies a record and its value does not change.

Source keys: Drag one or more columns from the Unused panel to the Source keys panel to be used as the key(s)
that ensure the unicity of the incoming data.

Surrogate keys: Set the column where the generated surrogate key will be stored. A surrogate key can be generated
based on a method selected on the Creation list.

Creation: Select any of the below methods to be used for the key generation:

Auto increment: auto-incremental key.

Input field: key is provided in an input field.

When selected, you can drag the appropriate field from the Unused panel to the complement field.



Scenario: Tracking changes using Slowly Changing Dimensions (type 0 through type 3)

192 Talend Open Studio Components Reference Guide

Routine: from the complement field, you can press Ctrl+ Space to display the autocompletion list and select
the appropriate routine.

Table max +1: the maximum value from the SCD table is incremented to create a surrogate key.

DB Sequence: from the complement field, you can enter the name of the existing database sequence that will
automatically increment the column indicated in the name field.

This option is only available through the SCD Editor of the tOracleSCD component.

Combining SCD types

The Slowly Changing Dimensions support four types of changes: Type 0 through Type 3. You can apply any of
the SCD types to any column in a source table by a simple drag-and-drop operation.

Type 0: is not used frequently. Some dimension data may be overwritten and other may stay unchanged over time.
This is most appropriate when no effort has been made to deal with the changing dimension issues.

Type 1: no history is kept in the database. New data overwrites old data. Use this type if tracking changes is not
necessary. this is most appropriate when correcting certain typos, for example the spelling of a name.

Type2: the whole history is stored in the database. This type tracks historical data by inserting a new record in
the dimensional table with a separate key each time a change is made. This is most appropriate to track updates,
for example.

SCD Type 2 principle lies in the fact that a new record is added to the SCD table when changes are detected on the
columns defined. Note that although several changes may be made to the same record on various columns defined
as SCD Type 2, only one additional line tracks these changes in the SCD table.

The SCD schema in this type should include SCD-specific extra columns that hold standard log information such
as:

-start: adds a column to your SCD schema to hold the start date. You can select one of the input schema columns
as a start date in the SCD table.

-end: adds a column to your SCD schema to hold the end date value for a record. When the record is currently
active, the end date is NULL or you can select Fixed Year Value and fill in a fictive year to avoid having a null
value in the end date field.

-version: adds a column to your SCD schema to hold the version number of the record.

-active: adds a column to your SCD schema to hold the true or false status value. this column helps to easily
spot the active record.

Type 3: only the information about a previous value of a dimension is written into the database. This type tracks
changes using separate columns. This is most appropriate to track only the previous value of a changing column.

Scenario: Tracking changes using Slowly Changing
Dimensions (type 0 through type 3)

This five-component Java scenario describes a Job that tracks changes in four of the columns in a source delimited
file, writes changes and the history of changes in an SCD table, and displays error information on the Run console.



Scenario: Tracking changes using Slowly Changing Dimensions (type 0 through type 3)

Talend Open Studio Components Reference Guide 193

The source delimited file contains various personal details including firstname, lastname, address, city, company,
age, and status. An id column helps ensuring the unicity of the data.

We want any change in the marital status to overwrite the existing old status record. This type of change is
equivalent to an SCD Type 1.

We want to insert a new record in the dimensional table with a separate key each time a person changes his/her
company. This type of change is equivalent to an SCD Type 2.

We want to track only the previous city and previous address of a person. This type of change is equivalent to
an SCD Type 3.

To realize this kind of scenario, it is better to divide it into three main steps: defining the main flow of the Job,
setting up the SCD editor, and finally creating the relevant SCD table in the database.

Defining the main flow of the Job

1. Drop the following components from the Palette onto the design workspace: a tMysqlConnection, a
tFileInputDelimited, a tMysqlSCD, a tMysqlCommit, and two tLogRow components.

2. Connect the tFileInputDelimited, the first tLogRow, and the tMysqlSCD using the Row Main link. This
is the main flow of your Job.

3. Connect the tMysqlConnection to the tFileInputDelimited and tMysqlSCD to tMysqlCommit using the
OnComponntOk trigger.

4. Connect the tMysqlSCD to the second tLogRow using the Row Rejects link. Two columns, errorCode and
errorMessage, are added to the schema. This connection collects error information.



Scenario: Tracking changes using Slowly Changing Dimensions (type 0 through type 3)

194 Talend Open Studio Components Reference Guide

Configuring the DB connection and the input component

1. In the design workspace, double-click tMysqlConnection to display its Basic settings view and set the
database connection details. The tMysqlConnection component should be used to avoid setting several times
the same DB connection when multiple DB components are used.

If you have already stored the connection details locally in the Repository, drop the needed metadata item to the design
workspace and the database connection detail will automatically display in the relevant fields. For more information
about Metadata, see Talend Open Studio User Guide.

In this scenario, we want to connect to the SCD table where changes in the source delimited file will be
tracked down.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-
in. For how to edit a Built-in schema, see Talend Open Studio User Guide.

2. In the design workspace, double-click tFileInputDelimited to display its Basic settings view.

3. Click the three-dot button next to the File Name field to select the path to the source delimited file, dataset.csv
in this scenario, that contains the personal details.

4. Define the row and field separators used in the source file.

The File Name, Row separator, and Field separators are mandatory.

5. If needed, set Header, Footer, and Limit.

In this scenario, set Header to 1. Footer and limit for the number of processed rows are not set.

6. Click Edit schema to describe the data structure of the source delimited file.

In this scenario, the source schema is made of eight columns: id, firstName, lastName, address, city, company,
age, and status.



Scenario: Tracking changes using Slowly Changing Dimensions (type 0 through type 3)

Talend Open Studio Components Reference Guide 195

7. Define the basic settings for the first tLogRow in order to view the content of the source file with varying
attributes in cells of a table on the console before being processed through the SCD component.

Configuring tMysqlSCD and tMysqlCommit

1. In the design workspace, click the tMysqlSCD and select the Component tab to define its basic settings.

2. In the Basic settings view, select the Use an existing connection check box to reuse the connection details
defined on the tMysqlConnection properties.

3. In the Table field, enter the table name to be used to track changes.

4. If needed, click Sync columns to retrieve the output data structure from the tFileInputDelimited.

5. In the design workspace, double-click tMysqlCommit to define its basic settings.

6. Select the relevant connection on the Component list if more than one connection exists.

7. Define the basic settings of the second tLogRow in order to view reject information in cells of a table.



Scenario: Tracking changes using Slowly Changing Dimensions (type 0 through type 3)

196 Talend Open Studio Components Reference Guide

Setting up the SCD editor

1. Double-click the tMysqlSCD component in the design workspace or click the three-dot button next to the
SCD Editor in the component’s Basic settings view to open the SCD editor and build the data flow for
the SCD outputs.

All the columns from the preceding component are displayed in the Unused panel of the SCD editor. All
the other panels in the SCD editor are empty.

2. From the Unused list, drop the id column to the Source keys panel to use it as the key to ensure the unicity
of the incoming data.

3. In the Surrogate keys panel, enter a name for the surrogate key in the Name field, SK1 in this scenario.

4. From the Creation list, select the method to be used for the surrogate key generation, Auto-increment in
this scenario.

5. From the Unused list, drop the firstname and lastname columns to the Type 0 panel, changes in these two
columns do not interest us.

6. Drop the status column to the Type 1 panel. The new value will overwrite the old value.

7. Drop the company column to the Type 2 panel. Each time a person changes his/her company, a new record
will be inserted in the dimensional table with a separate key.

In the Versioning area:

- Define the start and end columns of your SCD table that will hold the start and end date values. The end
date is null for current records until a change is detected. Then the end date gets filled in and a new record
is added with no end date.

In this scenario, we select Fixed Year Value for the end column and fill in a fictive year to avoid having
a null value in the end date field.

- Select the version check box to hold the version number of the record.

- Select the active check box to spot the column that will hold the True or False status. True for the current
active record and False for the modified record.

8. Drop the address and city columns to the Type 3 panel to track only the information about the previous value
of the address and city.

For more information about SCD types, see section SCD management methodologies.



Scenario: Tracking changes using Slowly Changing Dimensions (type 0 through type 3)

Talend Open Studio Components Reference Guide 197

9. Click OK to validate your configuration and close the SCD editor.

Creating the SCD table

1. Click Edit schema to view the input and output data structures.

The SCD output schema should include the SCD-specific columns defined in the SCD editor to hold standard
log information.



Scenario: Tracking changes using Slowly Changing Dimensions (type 0 through type 3)

198 Talend Open Studio Components Reference Guide

If you adjust any of the input schema definitions, you need to check, and reconfigure if necessary, the output flow
definitions in the SCD editor to ensure that the output data structure is properly updated.

2. In the Basic settings view of the tMysqlSCD component, select Create table if not exists from the Action
on table list to avoid creating and defining the SCD table manually.

Job execution

Save your Job and press F6 to execute it.

The console shows the content of the input delimited file, and your SCD table is created in your database,
containing the initial dataset.

Janet gets divorced and moves to Adelanto at 355 Golf Rd. She works at Greenwood.

Adam gets married and moves to Belmont at 2505 Alisson ct. He works at Scoop.

Martin gets a new job at Phillips and Brothers.

Update the delimited file with the above information and press F6 to run your Job.

The console shows the updated personal information and the rejected data, and the SCD table shows the history of
valid changes made to the input file along with the status and version number. Because the name of Martin’s new
company exceeds the length of the column company defined in the schema, this change is directed to the reject
flow instead of being logged in the SCD table.



Scenario: Tracking changes using Slowly Changing Dimensions (type 0 through type 3)

Talend Open Studio Components Reference Guide 199



tMysqlSCDELT

200 Talend Open Studio Components Reference Guide

tMysqlSCDELT

tMysqlSCDELT Properties

Component family Databases/MySQL

Function tMysqlSCDELT reflects and tracks changes in a dedicated MySQL SCD table.

Purpose tMysqlSCDELT addresses Slowly Changing Dimension needs through SQL queries (server-side
processing mode), and logs the changes into a dedicated MySQL SCD table.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally. Enter properties
manually.

Repository: Select the repository file where Properties are stored.
The fields that come after are pre-filled in using the fetched data.

DB Version Select the Mysql version you are using.

Use an existing connection Select this check box and click the relevant tMySqlConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host The IP address of the database server.

Port Listening port number of database server.

Database Name of the database

Username and Password User authentication data for a dedicated database.

Source table Name of the input MySQL SCD table.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table Select to perform one of the following operations on the table
defined:

None: No action carried out on the table.

Drop and create the table: The table is removed and created again

Create a table: A new table gets created.



Related Scenario

Talend Open Studio Components Reference Guide 201

Create a table if not exists: A table gets created if it does not exist.

Clear a table: The table content is deleted. You have the possibility
to rollback the operation.

Truncate a table: The table content is deleted. You don not have the
possibility to rollback the operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Surrogate Key Select the surrogate key column from the list.

Creation Select the method to be used for the surrogate key generation.

For more information regarding the creation methods, see section
SCD keys.

Source Keys Select one or more columns to be used as keys, to ensure the unicity
of incoming data.

Use SCD Type 1 fields Use type 1 if tracking changes is not necessary. SCD Type 1 should
be used for typos corrections for example. Select the columns of the
schema that will be checked for changes.

Use SCD Type 2 fields Use type 2 if changes need to be tracked down. SCD Type 2 should be
used to trace updates for example. Select the columns of the schema
that will be checked for changes.

Start date: Adds a column to your SCD schema to hold the strat date
value. You can select one of the input schema columns as Start Date
in the SCD table.

End Date: Adds a column to your SCD schema to hold the end date
value for the record. When the record is currently active, the End
Date column shows a null value, or you can select Fixed Year value
and fill it in with a fictive year to avoid having a null value in the
End Date field.

Log Active Status: Adds a column to your SCD schema to hold the
true or false status value. This column helps to easily spot the active
record.

Log versions: Adds a column to your SCD schema to hold the
version number of the record.

Advanced settings Debug mode Select this check box to display each step during processing entries
in a database.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component is used as an output component. It requires an input component and Row main
link as input.

Related Scenario

For related topics, see: section tMysqlSCD and section Scenario: Tracking changes using Slowly Changing
Dimensions (type 0 through type 3).



tOracleSCD

202 Talend Open Studio Components Reference Guide

tOracleSCD

tOracleSCD Properties

Component family Databases/Oracle

Function tOracleSCD reflects and tracks changes in a dedicated Oracle SCD table.

Purpose tOracleSCD addresses Slowly Changing Dimension needs, reading regularly a source of data and
logging the changes into a dedicated SCD table

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties are stored.
The following fields are pre-filled in using fetched data.

Use an existing connection Select this check box and click the relevant DB connection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Connection type Select the relevant driver on the list.

DB Version Select the Oracle version you are using.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the DB schema.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time.

Action on table Select to perform one of the following operations on the table
defined:

- None: No action is carried out on the table.

- Create table: A new table is created.



Related scenario

Talend Open Studio Components Reference Guide 203

- Create table if not exists: A table is created if it does not exist.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

SCD Editor The SCD editor helps to build and configure the data flow for slowly
changing dimension outputs.

For more information, see section SCD management methodologies.

Use memory saving Mode Select this check box to maximize system performance.

Die on error This check box is cleared by default, meaning to skip the row on
error and to complete the process for error-free rows.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Debug mode Select this check box to display each step during processing entries
in a database.

Usage This component is used as Output component. It requires an Input component and Row main link
as input.

Related scenario

For related scenarios, see section tMysqlSCD.



tOracleSCDELT

204 Talend Open Studio Components Reference Guide

tOracleSCDELT

tOracleSCDELT Properties

Component family Databases/Oracle

Function tOracleSCDELT reflects and tracks changes in a dedicated Oracle SCD table.

Purpose tOracleSCDELT addresses Slowly Changing Dimension needs through SQL queries (server-side
processing mode), and logs the changes into a dedicated DB2 SCD table.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally. Enter properties
manually.

Repository: Select the repository file where Properties are stored.
The fields that come after are pre-filled in using the fetched data.

Use an existing connection Select this check box and click the relevant tOracleConnection
component on the Component List to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Connection type Select the relevant driver on the list.

DB Version Select the Oracle version you are using.

Host The IP address of the database server.

Port Listening port number of database server.

Database Name of the database

Username and Password User authentication data for a dedicated database.

Source table Name of the input DB2 SCD table.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table Select to perform one of the following operations on the table
defined:

None: No action carried out on the table.

Drop and create table: The table is removed and created again



Related Scenario

Talend Open Studio Components Reference Guide 205

Create table: A new table gets created.

Create table if not exists: A table gets created if it does not exist.

Clear table: The table content is deleted. You have the possibility
to rollback the operation.

Truncate table: The table content is deleted. You don not have the
possibility to rollback the operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Surrogate Key Select the surrogate key column from the list.

Creation Select the method to be used for the surrogate key generation.

For more information regarding the creation methods, see section
SCD keys.

Source Keys Select one or more columns to be used as keys, to ensure the unicity
of incoming data.

Use SCD Type 1 fields Use type 1 if tracking changes is not necessary. SCD Type 1 should
be used for typos corrections for example. Select the columns of the
schema that will be checked for changes.

Use SCD Type 2 fields Use type 2 if changes need to be tracked down. SCD Type 2 should be
used to trace updates for example. Select the columns of the schema
that will be checked for changes.

Start date: Adds a column to your SCD schema to hold the start date
value. You can select one of the input schema columns as Start Date
in the SCD table.

End Date: Adds a column to your SCD schema to hold the end date
value for the record. When the record is currently active, the End
Date column shows a null value, or you can select Fixed Year value
and fill it in with a fictive year to avoid having a null value in the
End Date field.

Log Active Status: Adds a column to your SCD schema to hold the
true or false status value. This column helps to easily spot the active
record.

Log versions: Adds a column to your SCD schema to hold the
version number of the record.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

Debug mode Select this check box to display each step during processing entries
in a database.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is used as an output component. It requires an input component and Row main
link as input.

Related Scenario

For related topics, see section tOracleSCD and section tMysqlSCD.



tPaloCheckElements

206 Talend Open Studio Components Reference Guide

tPaloCheckElements

tPaloCheckElements Properties

Component family Business Intelligence/Cube
OLAP/Palo

Function This component checks whether elements are present in an incoming data flow existing in a given
cube.

Purpose This component can be used along with tPaloOutputMulti. It checks if the elements from the
input stream exist in the given cube, before writing them. It can also define a default value to be
used for nonexistent elements.

Basic settings Use an existing connection Select this check box and choose the relevant DB connection
component from the Connection configuration list to use
predefined connection details.

When a Job contains a parent Job and a child Job,
Connection configuration only lists the connection
components on the same Job level, so if you need to
use an existing connection from another level, ensure
that the connection components available are sharing the
connection required.

For further information about sharing DB connections
across Job levels, refer to Use or register a shared
DB connection in the properties table of the relevant
connection component in Databases - traditional
components, Databases - appliance/datawarehouse
components, or Databases - other components.

Otherwise, you can deactivate the connection components
and use the component's Dynamic settings to define
the connection manually. In this case, ensure that the
connection name is not used elsewhere in the job, on any
level. For further information about Dynamic settings, see
your studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and Password Enter the Palo user authentication data.

Database Type in the name of the database in which the data is to be written.

Cube Type in the name of the cube in which the data should be written.

On element error Select what should happen if an element does not exist:

- Reject row: the corresponding row is rejected and placed in the
reject flow.

- Use default: the defined Default value is used.

- Stop: the entire process is interrupted.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.



Related scenario

Talend Open Studio Components Reference Guide 207

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Define the elements to be checked in the table provided.

- Column: shows the column(s) from the input schema. It is
completed automatically once a schema is retrieved or created.

- Element type: select the element type for the input column. Only
one column can be defined as Measure.

- Default: type in the default value to be used if you have selected
the Use default option in the On element error field.

Advanced settings tStat Catcher Statistics Select this check box to collect log data on the component level.

Usage This component requires an input component.

Connections Outgoing links (from one component to another):

Row: Main; Rejects

Trigger: Run if; On Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Main; Rejects

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation This component only works on Normal Palo cubes.

Related scenario

For a related scenario, see section Scenario 2: Rejecting inflow data when the elements to be written do not exist
in a given cube.



tPaloConnection

208 Talend Open Studio Components Reference Guide

tPaloConnection

tPaloConnection Properties

Component family Business Intelligence/Cube
OLAP/Palo

Function This component opens a connection to a Palo Server and keeps it open throughout the duration of
the process it is required for. Every other Palo component used in the process is able to use this
connection.

Purpose This component allows other components involved in a process to share its connection to a Palo
server for the duration of the process.

Basic settings Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and Password Enter the Palo user authentication data.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component is used along with Palo components to offer a shared connection to a Palo server.

Connections Outgoing links (from one component to another):

Trigger: Run if; On Subjob Ok; On Subjob Error; On Component
Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate

Trigger: Run if, On Subjob Ok, On Subjob Error, On Component
Ok, On Component Error.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation n/a

Related scenario

For related scenarios, see section Scenario: Creating a dimension with elements.



tPaloCube

Talend Open Studio Components Reference Guide 209

tPaloCube

tPaloCube Properties

Component family Business Intelligence/Cube
OLAP/Palo

Function This component creates, deletes or clears Palo cubes from existing dimensions in a Palo database.

Purpose This component performs operations on a given Palo cube.

Basic settings Use an existing connection Select this check box and choose the relevant DB connection
component from the Connection configuration list to reuse
predefined connection details.

When a Job contains a parent Job and a child Job,
Connection configuration only lists the connection
components on the same Job level, so if you need to
use an existing connection from another level, ensure
that the connection components available are sharing the
connection required.

For further information about sharing DB connections
across Job levels, refer to Use or register a shared
DB connection in the properties table of the relevant
connection component in Databases - traditional
components, Databases - appliance/datawarehouse
components, or Databases - other components.

Otherwise, you can deactivate the connection components
and use the component's Dynamic settings to define
the connection manually. In this case, ensure that the
connection name is not used elsewhere in the job, on any
level. For further information about Dynamic settings, see
your studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and Password Enter the Palo user authentication data.

Database Type in the name of the database in which the operation is to take
place.

Cube Type in the name of the cube where the operation is to take place.

Cube type From the drop-down list, select the type of cube on which the
operation is to be carried out:

- Normal: this is the normal and default type of cube.

- Attribut: an Attribute cube is created with a normal cube.

- User Info: User Info cubes can be created/modified with this
component.

Action on cube Select the operation you want to carry out on the cube defined:

- Create cube: the cube does not exist and will be created.

- Create cube if not exists: the cube is created if it does not exist.



Scenario: Creating a cube in an existing database

210 Talend Open Studio Components Reference Guide

- Delete cube if exists and create: the cube is deleted if it already
exists and a new one will be created.

- Delete cube: the cube is deleted from the database.

- Clear cube: the data is cleared from the cube.

Dimension list Add rows and enter the name of existing database dimension's to be
used in the cube. The order of the dimensions in the list determines
the order of the dimensions created.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage Can be used as a standalone component for dynamic cube creation with a defined dimension list.

Global Variables Cubename: Indicates the name of the cube processed. This is
available as an After variable.

Returns a String.

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Trigger: Run if; On Subjob Ok; On Subjob Error; On Component
Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate

Trigger: Run if; On Subjob Ok; On Subjob Error; On Component
Ok; On Component Error.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation The cube creation process does not create dimensions from scratch, so the dimensions to be used
in the cube must be created beforehand.

Scenario: Creating a cube in an existing database

The Job in this scenario creates a new two dimensional cube in the Palo demo database Biker.

To replicate this scenario, proceed as follows:

Configuring the tPaloCube component

1. Drop tPaloCube from the Palette onto the design workspace.



Scenario: Creating a cube in an existing database

Talend Open Studio Components Reference Guide 211

2. Double-click tPaloCube to open its Component view.

3. In the Host name field, type in the host name or the IP address of the host server, localhost for this example.

4. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

5. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

6. In the Database field, type in the database name in which you want to create the cube, Biker in this example.

7. In the Cube field, type in the name you want to use for the cube to be created, for example, bikerTalend.

8. In the Cube type field, select the Normal type from the drop-down list for the cube to be created, meaning
this cube will be normal and default.

9. In the Action on cube field, select the action to be performed. In this scenario, select Create cube.

10. Under the Dimension list table, click the plus button twice to add two rows into the table.

11. In the Dimension list table, type in the name for each newly added row to replace the default row name.
In this scenario, type in Months for the first row and Products for the second. These two dimensions exist
already in the Biker database where the new cube will be created.

Job execution

Press F6 to run the Job.

A new cube has been created in the Biker database and the two dimensions are added into this cube.



Scenario: Creating a cube in an existing database

212 Talend Open Studio Components Reference Guide



tPaloCubeList

Talend Open Studio Components Reference Guide 213

tPaloCubeList

tPaloCubeList Properties

Component family Business Intelligence/Cube
OLAP/Palo

Function This component retrieves a list of cube details from the given Palo database.

Purpose This component lists cube names, cube types, number of assigned dimensions, the number of filled
cells from the given database.

Basic settings Use an existing connection Select this check box and click the relevant DB connection
component on the Connection configuration to reuse the
connection details you already defined.

When a Job contains the parent Job and the child Job,
Connection configuration presents only the connection
components in the same Job level, so if you need to use an
existing connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For further information about how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For further information
about Dynamic settings, see your studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and Password Enter the Palo user authentication data.

Database Type in the name of the database whose cube details you want to
retrieve.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component can be used as a start component. It requires an output component.

Global Variables Number of cubes: indicates the number of the cubes processed from
the given database. This is available as an After variable.

Returns an Integer

Cube_ID: indicates the IDs of the cubes being processed from the
given database. This is available as a Flow variable.

Returns an Integer



Discovering the read-only output schema of tPaloCubeList

214 Talend Open Studio Components Reference Guide

Cubename: indicates the name of the cubes being processed from
the given database. This is available as an Flow variable.

Returns a String.

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Row: Main, Iterate;

Trigger: Run if; On Subjob Ok; On Subjob Error; On Component
Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate

Trigger: Run if; On Subjob Ok; On Subjob Error; On Component
Ok; On Component Error.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation The output schema is fixed and read-only.

Discovering the read-only output schema of
tPaloCubeList

The below table presents information related to the read-only schema of the tPaloCubeList component.

Column Type Description

Cube_id int Internal id of the cube.

Cube_name string Name of the cube.

Cube_dimensions int Number of dimensions inside the cube.

Cube_cells long Number of calculated cells inside the cube.

Cube_filled_cells long Number of filled cells inside the cube.

Cube_status int Status of the cube. It may be:

- 0: unloaded

- 1: loaded

- 2: changed

Cube_type int Type of the cube. It may be:

- 0: normal

- 1: system

- 2: attribute

- 3: user info

- 4. gpu type



Scenario: Retrieving detailed cube information from a given database

Talend Open Studio Components Reference Guide 215

Scenario: Retrieving detailed cube information from a
given database

The Job in this scenario retrieves detailed information of the cubes pertaining to the demo Palo database, Biker.

To replicate this scenario, proceed as follows:

Setting up the Job

1. Drop tPaloCubeList and tLogRow from the component Palette onto the design workspace.

2. Right-click tPaloCubeList to open the contextual menu.

3. From this menu, select Row > Main to link the two components.

Configuring the tPaloCube component

1. Double-click the tPaloCube component to open its Component view.

2. In the Host name field, type in the host name or the IP address of the host server, localhost for this example.

3. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

4. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

5. In the Database field, type in the database name in which you want to create the cube, Biker in this example.

Job execution

Press F6 to run the Job.



Scenario: Retrieving detailed cube information from a given database

216 Talend Open Studio Components Reference Guide

The cube details are retrieved from the Biker database and are listed in the console of the Run view.

For further information about how to inteprete the cube details listed in the console, see section Discovering the
read-only output schema of tPaloCubeList.



tPaloDatabase

Talend Open Studio Components Reference Guide 217

tPaloDatabase

tPaloDatabase Properties

Component family Business Intelligence/Cube
OLAP/Palo

Function This component creates, drops or recreates databases in a given Palo server.

Purpose This component manages the databases inside a Palo server.

Basic settings Use an existing connection Select this check box and click the relevant DB connection
component on the Connection configuration to reuse the
connection details you already defined.

When a Job contains the parent Job and the child Job,
Connection configuration presents only the connection
components in the same Job level, so if you need to use an
existing connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For further information about how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For further information
about Dynamic settings, see your studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and Password Enter the Palo user authentication data.

Database Type in the name of the database on which the given operation should
take place.

Action on database Select the operation you want to perform on the database of interest:

- Create database: the database does not exist and will be created.

- Create database if not exists: the database is created when it does
not exist.

- Delete database if exists and create: the database is deleted if exist
and a new one is then created.

- Delete database: the database is removed from the server

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component can be used in standalone for database management in a Palo server.



Scenario: Creating a database

218 Talend Open Studio Components Reference Guide

Global Variables Databasename: Indicates the name of the database being processed.
This is available as an After variable.

Returns a String.

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Trigger: Run if; On Subjob Ok; On Subjob Error; On Component
Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate

Trigger: Run if; On Subjob Ok; On Subjob Error; On Component
Ok; On Component Error

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation n/a

Scenario: Creating a database

The Job in this scenario creates a new database on a given Palo server.

To replicate this scenario, proceed as follows:

1. Drop tPaloDatabase from the component Palette onto the design workspace.

2. Double-click the tPaloDatabase component to open its Component view.

3. In the Host name field, type in the host name or the IP address of the host server, localhost for this example.



Scenario: Creating a database

Talend Open Studio Components Reference Guide 219

4. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

5. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

6. In the Database field, type in the database name in which you want to create the cube, talenddatabase in
this example.

7. In the Action on database field, select the action to be performed. In this scenario, select Create database
as the database to be created does not exist.

8. Press F6 to run the Job.

A new database is created on the given Palo server.



tPaloDatabaseList

220 Talend Open Studio Components Reference Guide

tPaloDatabaseList

tPaloDatabaseList Properties

Component family Business Intelligence/Cube
OLAP/Palo

Function This component retrieves a list of database details from the given Palo server.

Purpose This component lists database names, database types, number of cubes, number of dimensions,
database status and database id from a given Palo server.

Basic settings Use an existing connection Select this check box and click the relevant DB connection
component on the Connection configuration to reuse the
connection details you already defined.

When a Job contains the parent Job and the child Job,
Connection configuration presents only the connection
components in the same Job level, so if you need to use an
existing connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For further information about how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For further information
about Dynamic settings, see your studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and Password Enter the Palo user authentication data.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component can be used as a start component. It requires an output component.

Global Variables Number of databases: Indicates the number of the databases
processed. This is available as an After variable.

Returns a Integer.

Database_id: Indicates the id of the database being processed. This
is available as an Flow variable.

Returns a Long

Databasename: Indicates the name of the database processed. This
is available as an After variable.

Returns a String.



Discovering the read-only output schema of tPaloDatabaseList

Talend Open Studio Components Reference Guide 221

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Row: Main; Iterate

Trigger: Run if; On Subjob Ok; On Subjob Error; On Component
Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate

Trigger: Run if; On Subjob Ok; On Subjob Error; On Component
Ok; On Component Error.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation The output schema is fixed and read-only.

Discovering the read-only output schema of
tPaloDatabaseList

The below table presents information related to the read-only output schema of the tPaloDatabaseList component.

Database Type Description

Database_id long Internal ID of the database.

Database_name string Name of the database.

Database_dimensions int Number of dimensions inside the database.

Database_cubes int Number of cubes inside the database.

Database_status int Status of the database.

- 0 = unloaded

- 1 = loaded

- 2 = changed

Database_types int Type of the database.

- 0 =normal

- 1 =system

- 3 =user info

Scenario: Retrieving detailed database information
from a given Palo server

The Job in this scenario retrieves details of all of the databases from a given Palo server.



Scenario: Retrieving detailed database information from a given Palo server

222 Talend Open Studio Components Reference Guide

To replicate this scenario, proceed as follows:

Setting up the Job

1. Drop tPaloDatabaseList and tLogRow from the component Palette onto the design workspace.

2. Right-click tPaloDatabaseList to open the contextual menu.

3. From this menu, select Row > Main to link the two components.

Configuring the tPaloDatabaseList component

1. Double-click the tPaloDatabaseList component to open its Component view.

2. In the Host name field, type in the host name or the IP address of the host server, localhost for this example.

3. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

4. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

Job execution

Press F6 to run the Job.

Details of all of the databases in the Palo server are retrieved and listed in the console of the Run view.



Scenario: Retrieving detailed database information from a given Palo server

Talend Open Studio Components Reference Guide 223

For further information about the output schema, see section Discovering the read-only output schema of
tPaloDatabaseList.



tPaloDimension

224 Talend Open Studio Components Reference Guide

tPaloDimension

tPaloDimension Properties

Component family Business Intelligence/Cube
OLAP/Palo

Function This component creates, drops or recreates dimensions with or without dimension elements inside
a Palo database.

Purpose This component manages Palo dimensions, even elements inside a database

Basic settings Use an existing connection Select this check box and click the relevant DB connection
component on the Connection configuration to reuse the
connection details you already defined.

When a Job contains the parent Job and the child Job,
Connection configuration presents only the connection
components in the same Job level, so if you need to use an
existing connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For further information about how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For further information
about Dynamic settings, see your studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and Password Enter the Palo user authentication data.

Database Type in the name of the database in which the dimensions are
managed.

Dimension Type in the name of the dimension on which the given operation
should take place.

Action on dimension Select the operation you want to perform on the dimension of
interest:

- None: no action is taken on this dimension.

- Create dimension: the dimension does not exist and will be
created.

- Create dimension if not exists: this dimension is created only
when it does not exist.



tPaloDimension Properties

Talend Open Studio Components Reference Guide 225

- Delete dimension if exists and create: this dimension is deleted if
exist and then a new one will be created.

- Delete dimension: this dimension is removed from the database.

Create dimension elements Select this check box to activate the dimension management fields
and create dimension elements along with the creation of this
dimension.

The below fields are
available only when
the Create dimension
elements check box is
selected

Dimension type

Available only
when the action
on dimension is
None.

Select the type of the dimension to be created. The type may be:

- Normal

- User info

- System

- Attribute

Commit size Type in the number of elements which will be created before saving
them inside the dimension.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Consolidation type - None

With this option,
you activate the
corresponding
parameter fields to
be completed.

Select this check box to move directly the incoming elements into
the given dimension. With this option, you will not define any
consolidations or hierarchy.

Input Column: select a column from the drop-down list. The
columns in the drop-down list are those you defined for the schema.
The values from this selected column would be taken to process
dimension elements.

Element type: Select the type of elements. It may be:

- Numeric

- Text

Creation mode: Select creation mode for elements to be processed.
This mode may be:

- Add: add simply an element to the dimension.

- Force add: force the creation of this element. If exist this element
will be recreated.

- Update: updates this element if it exists.

- Add or Update: if this element does not exist, it will be created
otherwise it will be updated. This is the default option.

- Delete: delete this element from the dimension

Consolidation type - Normal

With this option,
you activate the
corresponding
parameter fields to
be completed.

Select this check box to create elements and consolidate them
inside the given dimension. This consolidation structures the created
elements in different levels.

Input Column: select a column from the drop-down list. The
columns in the drop-down list are those you defined for the schema.



tPaloDimension Properties

226 Talend Open Studio Components Reference Guide

The values from this selected column would be taken to process
dimension elements.

Element type: Select the type of elements. It may be:

- Numeric

- Text

Creation mode: Select creation mode for elements to be created.
This mode may be

- Add: add simply an element to the dimension.

- Force add: force the creation of this element. If the element exists,
it will be recreated.

- Update: updates this element if it exists.

- Add or Update: if this element does not exist, it will be created,
otherwise it will be updated. This is the default option.

Consolidation type - Self-
referenced

With this option,
you activate the
corresponding
parameter fields to
be completed.

Select this check box to create elements and structure them based on
a parent-child relationship. The input stream is responsible for the
grouping of the consolidation.

Element's type Select the type of elements. It may be:

- Numeric

- Text

Creation mode Select creation mode for elements to be created. This mode may be

- Add: add simply an element to the dimension.

- Force add: force the creation of this element. If exist this element
will be recreated.

- Update: update this element if it exists.

- Add or Update: if this element does not exist, it will be created
otherwise it will be updated. This is the default option.

Input Column: select a column from the drop-down list. The
columns in the drop-down list are those you defined for the schema.
The values from this selected column would be taken to process
dimension elements.

Hierarchy Element: select the type and the relationship of this input
column in the consolidation.

- Parent: set the input value as parent element.

- Child: relate the input value to the parent value and build the
consolidation.

- Factor: define the factor for this consolidation.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component can be used in standalone or as end component of a process.

Global Variables Dimensionname: Indicates the name of the dimension processed.
This is available as an After variable.

Returns a String.

For further information about variables, see Talend Open Studio
User Guide.



Scenario: Creating a dimension with elements

Talend Open Studio Components Reference Guide 227

Connections Outgoing links (from one component to another):

Trigger: Run if; On Subjob Ok; On Subjob Error; On Component
Ok; On Component Error.

Incoming links (from one component to another):

Row: Main; Iterate

Trigger: Run if; On Subjob Ok; On Subjob Error; On Component
Ok; On Component Error.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation Deletion of dimension elements is only possible with the consolidation type None. Only
consolidation type Self-Referenced allows the placing of an factor on this consolidation.

Scenario: Creating a dimension with elements

The Job in this scenario creates a date dimension with simple element hierarchy composed of three levels: Year,
Month, Date.

To replicate this scenario, proceed as follows:

Setting up the Job

1. Drop tPaloConnection, tRowGenerator, tMap, tPaloDimension from the component Palette onto the
design workspace.

2. Right-click tPaloConnection to open the contextual menu and select Trigger > On Subjob Ok to link it
to tRowGenerator.

3. Right-click tRowGenerator to open the contextual menu and select Row > Main to link it to tMap.

tRowGenerator is used to generate rows at random in order to simplify this process. In the real case, you can use one
of the other input components to load your actual data.

4. Right-click tMap to open the contextual menu and select Row > New output to link to tPaloDimension,
then name it as out1 in the dialog box that pops up.

Setting up the DB connection

1. Double-click the tPaloConnection component to open its Component view.



Scenario: Creating a dimension with elements

228 Talend Open Studio Components Reference Guide

2. In the Host name field, type in the host name or the IP address of the host server, localhost for this example.

3. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

4. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

Configuring the input component

1. Double-click tRowGenerator to open its editor.

2. On the upper part of the editor, click the plus button to add one column and rename it as random_date in
the Column column.

3. In the newly added row, select Date in the Type column and getRandomDate in the Functions column.

4. In the Function parameters view on the lower part of this editor, type in the new minimum date and
maximum date values in the Value column. In this example, the minimum is 2010-01-01, the maximum is
2010-12-31.

5. Click OK to validate your modifications and close the editor.

6. On the dialog box that pops up, click OK to propagate your changes.



Scenario: Creating a dimension with elements

Talend Open Studio Components Reference Guide 229

Configuration in the tMap editor

1. Double-click tMap to open its editor.

2. On the Schema editor view on the lower part of the tMap editor, under the out1 table, click the plus button
to add three rows.

3. In the Column column of the out1 table, type in the new names for the three newly added rows. They are
Year, Month, and Date. These rows are then added automatically into the out1 table on the upper part of
the tMap editor.

4. In the out1 table on the upper part of the tMap editor, click the Expression column in the Year row to locate
the cursor.

5. Press Ctrl+space to open the drop-down variable list.

6. Double-click TalendDate.formatDate to select it from the list. The expression to get the date displays in
the Year row under the Expression column. The expression is TalendDate.formatDate("yyyy-MM-dd
HH:mm:ss",myDate).

7. Replace the default expression with TalendDate.formatDate("yyyy",row1.random_date) .

8. Do the same for the Month row and the Date row to add this default expression and to
replace it with TalendDate.formatDate("MM",row1.random_date) for the Month row and with
TalendDate.formatDate("dd-MM-yyyy", row1.random_date) for the Date row.

9. Click OK to validate this modification and accept the propagation by clicking OK in the dialog box that
pops up.

Configuring the tPaloDimension component

1. On the workspace, double-click tPaloDimension to open its Component view.



Scenario: Creating a dimension with elements

230 Talend Open Studio Components Reference Guide

2. Select the Use an existing connection check box. Then tPaloConnection_1 displays automatically in the
Connection configuration field.

3. In the Database field, type in the database in which the new dimension is created, talendDatabase for this
scenario.

4. In the Dimension field, type in the name you want to use for the dimension to be created, for example, Date.

5. In the Action on dimension field, select the action to be performed. In this scenario, select Create dimension
if not exist.

6. Select the Create dimension elements check box.

7. In the Consolidation Type area, select the Normal check box.

8. Under the element hierarchy table in the Consolidation Type area, click the plus button to add three rows
into the table.

9. In the Input column column of the element hierarchy table, select Year from the drop-down list for the first
row, Month for the second and Date for the third. This determinates levels of elements from different columns
of the input schema.

Job execution

Press F6 to run the Job.

A new dimension is then created in your Palo database talendDatabase.



Scenario: Creating a dimension with elements

Talend Open Studio Components Reference Guide 231



tPaloDimensionList

232 Talend Open Studio Components Reference Guide

tPaloDimensionList

tPaloDimensionList Properties

Component family Business Intelligence/Cube
OLAP/Palo

Function This component retrieves a list of dimension details from the given Palo database.

Purpose This component lists dimension names, dimension types, number of dimension elements,
maximum dimension indent, maximum dimension depth, maximum dimension level, dimension
id from a given Palo server.

Basic settings Use an existing connection Select this check box and click the relevant DB connection
component on the Connection configuration to reuse the
connection details you already defined.

When a Job contains the parent Job and the child Job,
Connection configuration presents only the connection
components in the same Job level, so if you need to use
an existing connection from the other level, make sure
that the available connection components are sharing the
intended connection.

For further information about how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For further information
about Dynamic settings, see your studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and Password Enter the Palo user authentication data.

Database The name of the database where the dimensions of interest reside.

Retrieve cube dimensions Select this check box to retrieve dimension information from an
existing cube.

Cube

Available when
you select the
Retrieve cube
dimensions check
box.

Type in the name of the cube from which dimension information is
retrieved.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields to
be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.



Discovering the read-only output schema of tPaloDimensionList

Talend Open Studio Components Reference Guide 233

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component can be used in standalone or as start component of a process.

Global Variables Dimension name: Indicates the name of the dimension being
processed. This is available as an Flow variable.

Returns a String.

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Row: Main; Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error; On Component
Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate

Trigger: Run if; On Subjob Ok; On Subjob Error; On Component
Ok; On Component Error.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation The output schema is fixed and read-only.

Discovering the read-only output schema of
tPaloDimensionList

The below table presents information related to the read-only output schema of the tPaloDimensionList
component.

Database Type Description

Dimension_id long Internal ID of the dimension.

Dimension_name string Name of the dimension.

Dimension_attribute_cube string Name of the cube of attributes.

Dimension_rights_cube string Name of the cube of rights.

Dimension_elements int Number of the dimension elements

Dimension_max_level int Maximum level of the dimension

Dimension_max_indent int Maximum indent of the dimension

Dimension_max_depth int Maximum depth of the dimension

Dimension_type int Type of the dimension.

- 0 =normal

- 1 =system

- 2 =attribute

- 3 =user info



Scenario: Retrieving detailed dimension information from a given database

234 Talend Open Studio Components Reference Guide

Scenario: Retrieving detailed dimension information
from a given database

The Job in this scenario retrieves details of all of the dimensions from a given database.

To replicate this scenario, proceed as follows:

Setting up the Job

1. Drop tPaloDimensionList and tLogRow from the component Palette onto the design workspace.

2. Right-click tPaloDimensionList to open the contextual menu.

3. From this menu, select Row > Main to link the two components.

Configuring the tPaloDimensionList component

1. Double-click the tPaloDimensionList component to open its Component view.

2. In the Host name field, type in the host name or the IP address of the host server, localhost for this example.

3. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

4. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

5. In the Database field, type in the database name where the dimensions of interest reside, Biker in this example.

Job execution

Press F6 to run the Job.



Scenario: Retrieving detailed dimension information from a given database

Talend Open Studio Components Reference Guide 235

Details of all the dimensions in the Biker database are retrieved and listed in the console of the Run view.

For further information about the output schema, see section Discovering the read-only output schema of
tPaloDimensionList.



tPaloInputMulti

236 Talend Open Studio Components Reference Guide

tPaloInputMulti

tPaloInputMulti Properties

Component family Business Intelligence/Cube
OLAP/Palo

Function This component retrieves data (elements as well as values) from a Palo cube.

Purpose This component retrieves the stored or calculated values in combination with the element records
out of a cube.

Basic settings Use an existing connection Select this check box and click the relevant DB connection
component on the Connection configuration to reuse the
connection details you already defined.

When a Job contains the parent Job and the child Job,
Connection configuration presents only the connection
components in the same Job level, so if you need to use an
existing connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For further information about how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For further information
about Dynamic settings, see your studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and Password Enter the Palo user authentication data.

Database Type in the name of the database where the elements of interest
reside.

Cube Type in the name of the cube where the dimension elements to be
retrieved are stored.

Cube type Select the cube type from the drop-down list for the cube of concern.
This type may be:

- Normal

- Attribut

- System

- User Info



Scenario: Retrieving dimension elements from a given cube

Talend Open Studio Components Reference Guide 237

Commit size Type in the row count of each batch to be retrieved.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of
fields to be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository. The
MEASURE column and the TEXT column are read-only, but you
can add other columns aside.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Cube Query Complete this table with the query you want to use to retrieve data.
The columns to be filled are:

Column: the schema columns are added automatically to this
column once defined in the schema editor. The schema columns are
used to stored the retrieved dimension elements.

Dimensions: type in each of the dimension names of the cube from
which you want to retrieve dimension elements.

The dimension order listed in this column must be
consistent with the order given in the cube that stores these
dimensions.

Elements: type in the dimension elements from which data is
retrieved. If several elements are needed from one single dimension,
separate them with a coma.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component requires an output component.

Connections Outgoing links (from one component to another):

Row: Main

Trigger: Run if; On Subjob Ok; On Subjob Error; On Component
Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate

Trigger: Run if; On Subjob Ok; On Subjob Error; On Component
Ok; On Component Error.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation According to the architecture of OLAP-Systems only one single value (text or numeric) could be
retrieved from the cube. The MEASURE column and the TEXT column are fixed and read-only.

Scenario: Retrieving dimension elements from a given
cube

The Job in this scenario retrieves several dimension elements from a demo Palo cube Sales.

To replicate this scenario, proceed as follows:



Scenario: Retrieving dimension elements from a given cube

238 Talend Open Studio Components Reference Guide

Setting up the Job

1. Drop tPaloInputMulti and tLogRow from the component Palette onto the design workspace.

2. Right-click tPaloInputMulti to open its contextual menu.

3. In the menu, select Row > Main to connect tPaloInputMulti to tLogRow with a row link.

Setting up the DB connection

1. Double-click the tPaloInputMulti component to open its Component view.

2. In the Host name field, type in the host name or the IP address of the host server, localhost for this example.

3. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

4. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

Configuring the Cube Query

1. In the Database field, type in the database name in which the cube to be used is stored.

2. In the Cube field, type in the cube name in which the dimensions of interests are stored. In this scenario, it
is one of the demo cubes Sales.

3. In the Cube type field, select the Normal type from the drop-down list for the cube to be created, meaning
this cube will be normal and default.

4. Next to the Edit schema field, click the three-dot button to open the schema editor.



Scenario: Retrieving dimension elements from a given cube

Talend Open Studio Components Reference Guide 239

5. In the schema editor, click the plus button to add the rows of the schema to be edited. In this example, add
rows corresponding to all of the dimensions stored in the Sales cube: Products, Regions, Months, Years,
Datatypes, Measures. Type in them in the order given in this cube.

6. Click OK to validate this editing and accept the propagation of this change to the next component. Then
these columns are added automatically into the Column column of the Cube query table in the Component
view. If the order is not consistent with the one in the Sales cube, adapt it using the up and down arrows
under the schema table.

7. In the Dimensions column of the Cube query table, type in each of the dimension names stored in the Sales
cube regarding to each row in the Column column. In the Sales cube, the dimension names are: Products,
Regions, Months, Years, Datatypes, Measures.

8. In the Elements columns of the Cube query table, type in the dimension elements you want to retrieve
regarding to the dimensions they belong to. In this example, the elements to be retrieved are All Products,
Germany and Austria (Belonging to the same dimension Regions, these two elements are entered in the same
row and separated with a coma.), Jan, 2009, Actual, Turnover.

Job execution

1. Click tLogRow to open its Component view.

2. In the Mode area, select the Table (print values in cells of a table) check box to display the execution result
in a table.

3. Press F6 to run the Job.



Scenario: Retrieving dimension elements from a given cube

240 Talend Open Studio Components Reference Guide

The dimension elements and the corresponding Measure values display in the Run console.



tPaloOutput

Talend Open Studio Components Reference Guide 241

tPaloOutput

tPaloOutput Properties

Component family Business Intelligence/Cube
OLAP/Palo

Function This component writes one row of data (elements as well as values) into a Palo cube.

Purpose This component takes the input stream and writes it to a given Palo cube.

Basic settings Use an existing connection Select this check box and click the relevant DB connection
component on the Connection configuration to reuse the
connection details you already defined.

When a Job contains the parent Job and the child Job,
Connection configuration presents only the connection
components in the same Job level, so if you need to use an
existing connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For further information about how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are us-
ing, in Databases - traditional components, Databases
- appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For further information
about Dynamic settings, see your studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and Password Enter the Palo user authentication data.

Database Type in the name of the database where the cube of interest resides.

Cube Type in the name of the cube in which the incoming data is written.

Commit size Type in the row count of each batch to be written into the cube.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Column as Measure Select the column from the input stream which holds the Measure
or Text values.



Related scenario

242 Talend Open Studio Components Reference Guide

Create element if not exist Select this check box to create the element being processed if it does
not exist originally.

Save cube at process end Select this check box to save the cube you have written the data in
at the end of this process.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component requires an input component.

Global variable Number of lines: Indicates the number of the lines processed. This
is available as an After variable.

Returns a Integer.

Connections Outgoing links (from one component to another):

Row: Iterate

Trigger: Run if

Incoming links (from one component to another):

Row: Main; Reject

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation This component is able to write only one row of data into a cube.

Related scenario

For related topic, see section Scenario 1: Writing data into a given cube.



tPaloOutputMulti

Talend Open Studio Components Reference Guide 243

tPaloOutputMulti

tPaloOutputMulti Properties

Component family Business Intelligence/Cube
OLAP/Palo

Function This component writes data (elements as well as values) into a Palo cube.

Purpose This component takes the input stream and writes it to a given Palo cube.

Basic settings Use an existing connection Select this check box and click the relevant DB connection
component on the Connection configuration to reuse the
connection details you already defined.

When a Job contains the parent Job and the child Job,
Connection configuration presents only the connection
components in the same Job level, so if you need to use an
existing connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For further information about how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For further information
about Dynamic settings, see your studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and Password Enter the Palo user authentication data.

Database Type in the name of the database where the cube of interest resides.

Cube Type in the name of the cube in which the incoming data is written.

Cube type Select the cube type from the drop-down list for the cube of concern.
This type may be:

- Normal

- Attribut

- System

- User Info

Commit size Type in the row count of each batch to be written into the cube.



Scenario 1: Writing data into a given cube

244 Talend Open Studio Components Reference Guide

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Measure value Select the column from the input stream which holds the Measure
or Text values.

Splash mode Select the splash mode used to write data into a consolidated element.
The mode may be:

- Add: it writes values to the underlying elements.

- Default: it uses the default splash mode.

- Set: it simply sets or replaces the current value and make the
distribution based on the other values.

- Disable: it applies no splashing.

For further information about the Palo splash modes, see Palo’s user
guide.

Add values Select this check box to add new values to the current values for a
sum. Otherwise these new values will overwrite the current ones.

Use eventprocessor Select this checkbox to call the supervision server.

Die on error This check box is cleared by default, meaning to skip the row on
error and to complete the process for error-free rows.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component requires an input component.

Connections Outgoing links (from one component to another):

Row: Main

Trigger: Run if; On Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Main; Reject

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation Numeric measures are only be accepted as Double or String type. When the string type is used,
write the value to be processed between quotation marks.

Scenario 1: Writing data into a given cube

The Job in this scenario writes new values in the Sales cube given as demo in the Demo database installed with Palo.

To replicate this scenario, proceed as follows:



Scenario 1: Writing data into a given cube

Talend Open Studio Components Reference Guide 245

Setting up the Job

1. Drop tFixedFlowInput and tPaloOutputMulti from the component Palette onto the design workspace.

2. Right-click tFixedFlowInput to open its contextual menu.

3. In this menu, select Row > Main to connect this component to tPaloOutputMulti.

Configuring the input component

1. Double-click the tFixedFlowInput component to open its Component view.

2. Click the three-dot button to open the schema editor.

3. In the schema editor, click the plus button to add 7 rows and rename them respectively as Products, Regions,
Months, Years, Datatypes, Measures and Values. The order of these rows must be consistent with that of
the corresponding dimensions in the Sales cube and the type of the Value column where the measure value
resides is set to double/Double.



Scenario 1: Writing data into a given cube

246 Talend Open Studio Components Reference Guide

4. Click OK to validate the editing and accept the propagation prompted by the dialog box that pops up. Then
the schema column labels display automatically in the Value table under the Use single table check box,
in the Mode area.

5. In the Value table, type in values for each row in the Value column. In this example, these values are: Desktop
L, Germany, Jan, 2009, Actual, Turnover, 1234.56.

Configuring the output component

1. Double-click tPaloOutputMulti to open its Component view.

2. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

3. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

4. In the Database field, type in the database name in which you want to create the cube, Demo in this example.

5. In the Cube field, type in the name of the cube you want to write data in, for example, Sales.

6. In the Cube type field, select the Normal type from the drop-down list for the cube to be created, meaning
this cube will be normal and default.

7. In the Measure Value field, select the Measure element. In this scenario, select Value.

Job execution

Press F6 to run the Job.

The inflow data has been written into the Sales cube.



Scenario 2: Rejecting inflow data when the elements to be written do not exist in a given cube

Talend Open Studio Components Reference Guide 247

Scenario 2: Rejecting inflow data when the elements
to be written do not exist in a given cube

The Job in this scenario tries to write data into the Sales cube but as the elements of interest do not exist in this
cube, the inflow data is rejected.

To replicate this scenario, proceed as follows:

Setting up the Job

1. Drop tFixedFlowInput, tPaloCheckElements, tPaloOutputMulti and tLogRow from the component
Palette onto the design workspace.

2. Right-click tFixedFlowInput to open its contextual menu.

3. In this menu, select Row > Main to connect this component to tPaloCheckElements.

4. Do the same to connect tPaloOutputMulti using row link.

5. Right-click tPaloCheckElements to open its contextual menu.

6. In this menu, select Row > Reject to connect this component to tLogRow.

Configuring the input component

1. Double-click the tFixedFlowInput component to open its Component view.



Scenario 2: Rejecting inflow data when the elements to be written do not exist in a given cube

248 Talend Open Studio Components Reference Guide

2. Click the three-dot button to open the schema editor.

3. In the schema editor, click the plus button to add 7 rows and rename them respectively as Products, Regions,
Months, Years, Datatypes, Measures and Values. The order of these rows must be consistent with that of
the corresponding dimensions in the Sales cube and the type of the Value column where the measure value
resides is set to double/Double.

4. Click OK to validate the editing and accept the propagation prompted by the dialog box that pops up. Then
the schema column labels display automatically in the Value table under the Use single table check box,
in the Mode area.

5. In the Value table, type in values for each row in the Value column. In this example, these values are: Smart
Products, Germany, Jan, 2009, Actual, Turnover, 1234.56. The Smart Products element does not exist in
the Sales cube.

Configuring the tPaloCheckElements component

1. Double-click tPaloCheckElements to open its Component view.



Scenario 2: Rejecting inflow data when the elements to be written do not exist in a given cube

Talend Open Studio Components Reference Guide 249

2. In the Host name field, type in localhost.

3. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

4. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

5. In the Database field, type in the database name in which you want to create the cube, Demo in this example.

6. In the Cube field, type in the name of the cube you want to write data in, for example, Sales.

7. In the On Element error field, select Reject row from the drop-down list.

8. In the element table at the bottom of the Basic settings view, click the Element type column in the Value
row and select Measure from the drop down list.

Configuring the output component

1. Double-click tPaloOutputMulti to open its Component view.



Scenario 2: Rejecting inflow data when the elements to be written do not exist in a given cube

250 Talend Open Studio Components Reference Guide

2. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

3. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

4. In the Database field, type in the database name in which you want to create the cube, Demo in this example.

5. In the Cube field, type in the name of the cube you want to write data in, for example, Sales.

6. In the Cube type field, select the Normal type from the drop-down list for the cube to be created, meaning
this cube will be normal and default.

7. In the Measure Value field, select the Measure element. In this scenario, select Value.

Job execution

Press F6 to run the Job.

The data to be written is rejected and displayed in the console of the Run view. You can read that the error message
is Smart Products.



tPaloRule

Talend Open Studio Components Reference Guide 251

tPaloRule

tPaloRule Properties

Component family Business Intelligence/Cube
OLAP/Palo

Function This component creates or modifies rules in a given cube.

Purpose This component allows you to manage rules in a given cube.

Basic settings Use an existing connection Select this check box and click the relevant DB connection
component on the Connection configuration to reuse the
connection details you already defined.

When a Job contains the parent Job and the child Job,
Connection configuration presents only the connection
components in the same Job level, so if you need to use an
existing connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For further information about how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For further information
about Dynamic settings, see your studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and Password Enter the Palo user authentication data.

Database Type in the name of the database where the dimensions applying the
rules of interest reside.

Cube Type in the name of the cube whose dimension information is
retrieved.

Cube rules Complete this table to perform various actions on specific rules.

Definition: type in the rule to be applied.

External Id: type in the user-defined external ID.

Comment: type in comment for this rule.

Activated: select this check box to activate this rule.

Action: select the action to be performed from the drop-down list.

- Create: create this rule.



Scenario: Creating a rule in a given cube

252 Talend Open Studio Components Reference Guide

- Delete: delete this rule.

- Update: update this rule.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component can be used in standalone for rule creation, deletion or update.

Connections Outgoing links (from one component to another):

Trigger: Run if; On Subjob Ok; On Subjob Error; On Component
Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate

Trigger: Run if; On Subjob Ok; On Subjob Error; On Component
Ok; On Component Error.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation Update or deletion of a rule is available only when this rule has been created with external ID.

Scenario: Creating a rule in a given cube

The Job in this scenario creates a rule applied on dimensions of a given cube.

To replicate this scenario, proceed as follows:

Setting up the DB connection

1. Drop tPaloRule from the component Palette onto the design workspace.

2. Double-click the tPaloRule component to open its Component view.



Scenario: Creating a rule in a given cube

Talend Open Studio Components Reference Guide 253

3. In the Host name field, type in the host name or the IP address of the host server, localhost for this example.

4. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

5. In the Username field and the Password field, type in the authentication information. In this example, both
of them are admin.

6. In the Database field, type in the database name in which the dimensions applying the created rules reside,
Biker in this example.

7. In the Cube field, type in the name of the cube which the dimensions applying the created rules belong to,
for example, Orders.

Setting the Cube rules

1. Under the Cube rules table, click the plus button to add a new row.

2. In the Cube rules table, type in ['2009'] = 123 in the Definition column, OrderRule1 in the External
Id column and Palo Demo Rules in the Comment column.

3. In the Activated column, select the check box.

4. In the Action column, select Create from the drop-down list.

Job execution

Press F6 to run the Job.

The new rule has been created and the value of every 2009 element is 123.



Scenario: Creating a rule in a given cube

254 Talend Open Studio Components Reference Guide



tPaloRuleList

Talend Open Studio Components Reference Guide 255

tPaloRuleList

tPaloRuleList Properties

Component family Business Intelligence/Cube
OLAP/Palo

Function This component retrieves a list of rule details from the given Palo database.

Purpose This component lists all rules, formulas, comments, activation status, external IDs from a given
cube.

Basic settings Use an existing connection Select this check box and click the relevant DB connection
component on the Connection configuration to reuse the
connection details you already defined.

When a Job contains the parent Job and the child Job,
Connection configuration presents only the connection
components in the same Job level, so if you need to use an
existing connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For further information about how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For further information
about Dynamic settings, see your studio user guide.

Connection configuration

Unavailable when
using an existing
connection.

Host Name Enter the host name or the IP address of the host server.

Server Port Type in the listening port number of the Palo server.

Username and Password Enter the Palo user authentication data.

Database The name of the database where the cube of interest resides.

Cube Type in the name of the cube in which you want to retrieve the rule
information.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component level.



Discovering the read-only output schema of tPaloRuleList

256 Talend Open Studio Components Reference Guide

Usage This component can be used in standalone or as start component of a process.

Global Variables Number of rules: Indicates the number of the rules processed. This
is available as an After variable.

Returns a Integer.

External ruleID: Indicates the external IDs of the rules being
processed. This is available as a Flow variable.

Returns a String

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Row: Main; Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error; On Component
Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate

Trigger: Run if; On Subjob Ok; On Subjob Error; On Component
Ok; On Component Error.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation The output schema is fixed and read-only.

Discovering the read-only output schema of
tPaloRuleList

The following table presents information related to the read-only output schema of the tPaloRuleList component.

Database Type Description

rule_identifier long The internal identifier/id for this rule..

rule_definition string The formula of this rule. For further information about this formula,
see the Palo user guide.

rule_extern_id string The user-defined external id.

rule_comment string The user-edited comment on this rule.

rule_activated boolean Indicates if this rule had been activated or not.

Scenario: Retrieving detailed rule information from a
given cube

The Job in this scenario retrieves rule details applied on the dimensions of a given cube.



Scenario: Retrieving detailed rule information from a given cube

Talend Open Studio Components Reference Guide 257

To replicate this scenario, proceed as follows:

Setting up the Job

1. Drop tPaloRuleList and tLogRow from the component Palette onto the design workspace.

2. Right-click tPaloRuleList to open the contextual menu.

3. From this menu, select Row > Main to link the two components.

Configuring the tPaloRuleList component

1. Double-click the tPaloRuleList component to open its Component view.

2. In the Host name field, type in the host name or the IP address of the host server, localhost for this example.

3. In the Server Port field, type in the listening port number of the Palo server. In this scenario, it is 7777.

4. In the Username and Password fields, type in the authentication information. In this example, both of them
are admin.

5. In the Database field, type in the database name where the dimensions applying the rules of interest reside,
Biker in this example.

6. In the Cube field, type in the name of the cube which the rules of interest belong to.

Job execution

Press F6 to run the Job.

Details of all of the rules in the Orders cube are retrieved and listed in the console of the Run view.



Scenario: Retrieving detailed rule information from a given cube

258 Talend Open Studio Components Reference Guide

For further information about the output schema, see section Discovering the read-only output schema of
tPaloRuleList.



tParAccelSCD

Talend Open Studio Components Reference Guide 259

tParAccelSCD

tParAccelSCD Properties

Component family Databases/ParAccel

Function tParAccelSCD reflects and tracks changes in a dedicated ParAccel SCD table.

Purpose tParAccelSCD addresses Slowly Changing Dimension needs, reading regularly a source of data
and logging the changes into a dedicated SCD table

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties are stored.
The following fields are pre-filled in using fetched data.

Use an existing connection Select this check box and click the relevant DB connection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Connection type Select the relevant driver on the list.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the DB schema.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.



Related scenario

260 Talend Open Studio Components Reference Guide

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

SCD Editor The SCD editor helps to build and configure the data flow for slowly
changing dimension outputs.

For more information, see section SCD management methodologies.

Use memory saving Mode Select this check box to maximize system performance.

Die on error This check box is cleared by default, meaning to skip the row on
error and to complete the process for error-free rows.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component level.

Debug mode Select this check box to display each step during processing entries
in a database.

Usage This component is used as Output component. It requires an Input component and Row main link
as input.

Limitation n/a

Related scenario

For related scenarios, see section tMysqlSCD.



tPostgresPlusSCD

Talend Open Studio Components Reference Guide 261

tPostgresPlusSCD

tPostgresPlusSCD Properties
Component family Databases/PostgresPlus

Server

Function tPostgresPlusSCD reflects and tracks changes in a dedicated MSSQL SCD table.

Purpose tPostgresPlusSCD addresses Slowly Changing Dimension needs, reading regularly a source of
data and logging the changes into a dedicated SCD table

Basic settings Use an existing connection Select this check box and click the relevant DB connection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties are stored.
The following fields are pre-filled in using fetched data.

Server Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the DB schema.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.



Related scenario

262 Talend Open Studio Components Reference Guide

SCD Editor The SCD editor helps to build and configure the data flow for slowly
changing dimension outputs.

For more information, see section SCD management methodologies.

Use memory saving Mode Select this check box to maximize system performance.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Debug mode Select this check box to display each step during processing entries
in a database.

Usage This component is used as Output component. It requires an Input component and Row main link
as input.

Related scenario

For related topics, see section tMysqlSCD.



tPostgresPlusSCDELT

Talend Open Studio Components Reference Guide 263

tPostgresPlusSCDELT

tPostgresPlusSCDELT Properties

Component family Databases/Postgresql

Function tPostgresPlusSCDELT reflects and tracks changes in a dedicated Oracle SCD table.

Purpose tPostgresPlusSCDELT addresses Slowly Changing Dimension needs through SQL queries
(server-side processing mode), and logs the changes into a dedicated PostgresPlus SCD table.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally. Enter properties
manually.

Repository: Select the repository file where Properties are stored.
The fields that come after are pre-filled in using the fetched data.

Use an existing connection Select this check box and click the relevant
tPostgresPlusConnection component on the Component List to
reuse the connection details you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host The IP address of the database server.

Port Listening port number of database server.

Database Name of the database.

Schema Exact name of the schema

Username and Password User authentication data for a dedicated database.

Source table Name of the input DB2 SCD table.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table Select to perform one of the following operations on the table
defined:

None: No action carried out on the table.

Drop and create table: The table is removed and created again

Create table: A new table gets created.



Related Scenario

264 Talend Open Studio Components Reference Guide

Create table if not exists: A table gets created if it does not exist.

Clear table: The table content is deleted. You have the possibility
to rollback the operation.

Truncate table: The table content is deleted. You don not have the
possibility to rollback the operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Surrogate Key Select the surrogate key column from the list.

Creation Select the method to be used for the surrogate key generation.

For more information regarding the creation methods, see section
SCD keys.

Source Keys Select one or more columns to be used as keys, to ensure the unicity
of incoming data.

Use SCD Type 1 fields Use type 1 if tracking changes is not necessary. SCD Type 1 should
be used for typos corrections for example. Select the columns of the
schema that will be checked for changes.

Use SCD Type 2 fields Use type 2 if changes need to be tracked down. SCD Type 2 should be
used to trace updates for example. Select the columns of the schema
that will be checked for changes.

Start date: Adds a column to your SCD schema to hold the start date
value. You can select one of the input schema columns as Start Date
in the SCD table.

End Date: Adds a column to your SCD schema to hold the end date
value for the record. When the record is currently active, the End
Date column shows a null value, or you can select Fixed Year value
and fill it in with a fictive year to avoid having a null value in the
End Date field.

Log Active Status: Adds a column to your SCD schema to hold the
true or false status value. This column helps to easily spot the active
record.

Log versions: Adds a column to your SCD schema to hold the
version number of the record.

Advanced settings Debug mode Select this check box to display each step during processing entries
in a database.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is used as an output component. It requires an input component and Row main
link as input.

Related Scenario

For related topics, see section tMysqlSCD.



tPostgresqlSCD

Talend Open Studio Components Reference Guide 265

tPostgresqlSCD

tPostgresqlSCD Properties

Component family Databases/Postgresql Server

Function tPostgresqlSCD reflects and tracks changes in a dedicated Postrgesql SCD table.

Purpose tPostgresqlSCD addresses Slowly Changing Dimension needs, reading regularly a source of data
and logging the changes into a dedicated SCD table

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties are stored.
The following fields are pre-filled in using fetched data.

Use an existing connection Select this check box and click the relevant DB connection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the DB schema.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.



Related scenario

266 Talend Open Studio Components Reference Guide

SCD Editor The SCD editor helps to build and configure the data flow for slowly
changing dimension outputs.

For more information, see section SCD management methodologies.

Use memory saving Mode Select this check box to maximize system performance.

Die on error This check box is cleared by default, meaning to skip the row on
error and to complete the process for error-free rows.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Debug mode Select this check box to display each step during processing entries
in a database.

Usage This component is used as Output component. It requires an Input component and Row main link
as input.

Related scenario

For related topics, see section tMysqlSCD.



tPostgresqlSCDELT

Talend Open Studio Components Reference Guide 267

tPostgresqlSCDELT

tPostgresqlSCDELT Properties

Component family Databases/Postgresql

Function tPostgresqlSCDELT reflects and tracks changes in a dedicated Postgresql SCD table.

Purpose tPostgresqlSCDELT addresses Slowly Changing Dimension needs through SQL queries (server-
side processing mode), and logs the changes into a dedicated DB2 SCD table.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally. Enter properties
manually.

Repository: Select the repository file where Properties are stored.
The fields that come after are pre-filled in using the fetched data.

Use an existing connection Select this check box and click the relevant tPostgresqlConnection
component on the Component List to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host The IP address of the database server.

Port Listening port number of database server.

Database Name of the database

Username and Password User authentication data for a dedicated database.

Source table Name of the input DB2 SCD table.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table Select to perform one of the following operations on the table
defined:

None: No action carried out on the table.

Drop and create table: The table is removed and created again

Create table: A new table gets created.



Related Scenario

268 Talend Open Studio Components Reference Guide

Create table if not exists: A table gets created if it does not exist.

Clear table: The table content is deleted. You have the possibility
to rollback the operation.

Truncate table: The table content is deleted. You don not have the
possibility to rollback the operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Surrogate Key Select the surrogate key column from the list.

Creation Select the method to be used for the surrogate key generation.

For more information regarding the creation methods, see section
SCD keys.

Source Keys Select one or more columns to be used as keys, to ensure the unicity
of incoming data.

Use SCD Type 1 fields Use type 1 if tracking changes is not necessary. SCD Type 1 should
be used for typos corrections for example. Select the columns of the
schema that will be checked for changes.

Use SCD Type 2 fields Use type 2 if changes need to be tracked down. SCD Type 2 should be
used to trace updates for example. Select the columns of the schema
that will be checked for changes.

Start date: Adds a column to your SCD schema to hold the start date
value. You can select one of the input schema columns as Start Date
in the SCD table.

End Date: Adds a column to your SCD schema to hold the end date
value for the record. When the record is currently active, the End
Date column shows a null value, or you can select Fixed Year value
and fill it in with a fictive year to avoid having a null value in the
End Date field.

Log Active Status: Adds a column to your SCD schema to hold the
true or false status value. This column helps to easily spot the active
record.

Log versions: Adds a column to your SCD schema to hold the
version number of the record.

Advanced settings Debug mode Select this check box to display each step during processing entries
in a database.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component is used as an output component. It requires an input component and Row main
link as input.

Related Scenario

For related topics, see section tMysqlSCD.



tSPSSInput

Talend Open Studio Components Reference Guide 269

tSPSSInput

Before being able to benefit from all functional objectives of the SPSS components, make sure to do the following: -If you
have already installed SPSS, add the path to the SPSS directory as the following: SET PATH=%PATH%;<DR>:\program
\SPSS, or -If you have not installed SPSS, you must copy the SPSS IO “spssio32.dll” lib from the SPSS installation CD and
paste it in Talend root directory.

tSPSSInput properties

Component family Business Intelligence

Function tSPSSInput reads data from an SPSS .sav file.

Purpose tSPSSInput addresses SPSS .sav data to write it for example in another file.

Basic settings Sync schema Click this button to synchronize with the columns of the input
SPSS .sav file.

Schema and Edit Schema The schema metadata in this component is retrieved directly from
the input SPSS .sav file and thus is read-only.

You can click Edit schema to view the retrieved metadata.

Filename Name or path of the SPSS .sav file to be read.

Translate labels Select this check box to translate the labels of the stored values.

If you select this check box, you need to retrieve the
metadata again.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is used as a start component. It requires an output flow.

Scenario: Displaying the content of an SPSS .sav file

The following scenario creates a two-component Job, which aims at reading each row of a .sav file and displaying
the output on the log console.

Setting up the Job

1. Drop a tSPSSInput component and a tLogRow component from the Palette onto the design workspace.

2. Right-click on tPSSInput and connect it to tLogRow using a Main Row link.



Scenario: Displaying the content of an SPSS .sav file

270 Talend Open Studio Components Reference Guide

Configuring the input component

1. Click tSPSSInput to display its Basic settings view and define the component properties.

2. Click the three-dot button next to the Filename field and browse to the SPSS .sav file you want to read.

3. Click the three-dot button next to Sync schema. A message opens up prompting you to accept retrieving the
schema from the defined SPSS file.

4. Click Yes to close the message and proceed to the next step.

5. If required, click the three-dot button next to Edit schema to view the pre-defined data structure of the source
SPSS file.

6. Click OK to close the dialog box.

Job execution

Save the Job and press F6 to execute it.

The SPSS file is read row by row and the extracted fields are displayed on the log console.



Scenario: Displaying the content of an SPSS .sav file

Talend Open Studio Components Reference Guide 271

Translating the stored values

To translate the stored values, complete the following:

1. In the Basic settings view, select the Translate label check box.

2. Click Sync Schema a second time to retrieve the schema after translation.

A message opens up prompting you to accept retrieving the schema from the defined SPSS file.

3. Click Yes to close the message and proceed to the next step.

A second message opens up prompting you to accept propagating the changes.

4. Click Yes to close the message and proceed to the next step.

5. Save the Job and press F6 to execute it.

The SPSS file is read row by row and the extracted fields are displayed on the log console after translating the
stored values.



tSPSSOutput

272 Talend Open Studio Components Reference Guide

tSPSSOutput

Before being able to benefit from all functional objectives of the SPSS components, make sure to do the following: -If you
have already installed SPSS, add the path to the SPSS directory as the following: SET PATH=%PATH%;<DR>:\program
\SPSS, or -If you have not installed SPSS, you must copy the SPSS IO "spssio32.dll" lib from the SPSS installation CD and
paste it in Talend root directory.

tSPSSOutput properties

Component family Business Intelligence

Function tSPSSOutput writes data entries in an .sav file.

Purpose tSPSSOutput writes or appends data to an SPSS .sav file. It creates SPSS files on the fly and
overwrites existing ones.

Basic settings Sync schema Click this button to synchronize with the columns of the SPSS .sav
file.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Filename Name or path of the SPSS .sav file to be written.

Write Type Select an operation from the list:

Write: simply writes the new data.

Append: writes the new data at the end of the existing data.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component can not be used as start component. It requires an input flow

Scenario: Writing data in an .sav file

This Java scenario describes a very simple Job that writes data entries in an .sav file.

Setting up the Job

1. Drop a tRowGenerator component and a tSPSSOutput component from the Palette onto the design
workspace.

2. Right-click on tRowGenerator and connect it to tSPSSOutput using a Main Row link.



Scenario: Writing data in an .sav file

Talend Open Studio Components Reference Guide 273

Configuring the input component

1. In the design workspace, double click tRowGenerator to display its Basic Settings view and open its editor.
Here you can define your schema.

2. Click the plus button to add the columns you want to write in the .sav file.

3. Define the schema and set the parameters to the columns.

Make sure to define the length of your columns. Otherwise, an error message will display when building your Job.

4. Click OK to validate your schema and close the editor.

Configuring the output component

1. Click tSPSSOutput to display its Basic settings view and define the component properties.



Scenario: Writing data in an .sav file

274 Talend Open Studio Components Reference Guide

2. Click the three-dot button next to the Filename field and browse to the SPSS .sav file in which you want
to write data.

3. Click the three-dot button next to Sync columns to synchronize columns with the previous component. In
this example, the schema to be inserted in the .sav file consists of the two columns: id and country.

4. If required, click Edit schema to view/edit the defined schema.

5. From the Write Type list, select Write or Append to simply write the input data in the .sav file or add it
to the end of the .sav file.

Job execution

Save the Job and press F6 to execute it.

The data generated by the tRowGenerator component is written in the defined .sav file.



tSPSSProperties

Talend Open Studio Components Reference Guide 275

tSPSSProperties

In order to benefit from all of the functional objectives of the SPSS components, do the following: -If you have already
installed SPSS, add the path to the SPSS directory as the following: SET PATH=%PATH%;<DR>:\program\SPSS, or -If
you have not installed SPSS, you must copy the SPSS IO "spssio32.dll" lib from the SPSS installation CD and paste it in
the Talend root directory.

tSPSSProperties properties

Component family Business Intelligence

Function tSPSSProperties describes the properties of a defined SPSS .sav file.

Purpose tSPSSProperties allows you to obtain information about the main properties of a defined
SPSS .sav file.

Basic settings Schema and Edit Schema The schema metadata in this component is predefined and thus read-
only. You can click Edit schema to view the predefined metadata.

A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Filename Name or path of the .sav file to be processed.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage Use this component as a start component. It needs an output flow.

Related scenarios

For related topics, see:

• section Scenario: Reading master data in an MDM hub.

• section Scenario: Writing data in an .sav file.



tSPSSStructure

276 Talend Open Studio Components Reference Guide

tSPSSStructure

Before being able to benefit from all functional objectives of the SPSS components, make sure to do the following: -If you
have already installed SPSS, add the path to the SPSS directory as the following: SET PATH=%PATH%;<DR>:\program
\SPSS, or -If you have not installed SPSS, you must copy the SPSS IO "spssio32.dll" lib from the SPSS installation CD and
paste it in Talend root directory.

tSPSSStructure properties

Component family Business Intelligence

Function tSPSSStructure retrieves information about the variables inside .sav files.

Purpose tSPSSStructure addresses variables inside .sav files. You can use this component in combination with
tFileList to gather information about existing *.sav files to further analyze or check the findings.

Basic settings Schema and Edit Schema The schema metadata in this component is predefined and thus read-
only. It is based on the internal SPSS convention. You can click Edit
schema to view the predefined metadata.

A schema is a row description, i.e., it defines the number of fields to be
processed and passed on to the next component. The schema is either
Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the Repository,
hence can be reused. Related topic: see Talend Open Studio User Guide.

Filename Name or path of the .sav file to be processed.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage Use this component as a start component. It needs an output flow.

Related scenarios

For related topics, see:

• section Scenario: Reading master data in an MDM hub.

• section Scenario: Writing data in an .sav file.



tSybaseSCD

Talend Open Studio Components Reference Guide 277

tSybaseSCD

tSybaseSCD properties

Component family Databases/Sybase

Function tSybaseSCD reflects and tracks changes in a dedicated Sybase SCD table.

Purpose tSybaseSCD addresses Slowly Changing Dimension needs, reading regularly a source of data and
logging the changes into a dedicated SCD table

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties are stored.
The following fields are pre-filled in using fetched data.

Use an existing connection Select this check box and click the relevant DB connection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

SCD Editor The SCD editor helps to build and configure the data flow for slowly
changing dimension outputs.



Related scenarios

278 Talend Open Studio Components Reference Guide

For more information, see section SCD management methodologies.

Use memory saving Mode Select this check box to maximize system performance.

Die on error This check box is cleared by default, meaning to skip the row on
error and to complete the process for error-free rows.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Debug mode Select this check box to display each step during processing entries
in a database.

Usage This component is used as Output component. It requires an Input component and Row main link
as input.

Limitation n/a

Related scenarios

For related topics, see section tMysqlSCD.



tSybaseSCDELT

Talend Open Studio Components Reference Guide 279

tSybaseSCDELT

tSybaseSCDELT Properties

Component family Databases/Sybase

Function tSybaseSCDELT reflects and tracks changes in a dedicated Sybase SCD table.

Purpose tSybaselSCDELT addresses Slowly Changing Dimension needs through SQL queries (server-side
processing mode), and logs the changes into a dedicated Sybase SCD table.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally. Enter properties
manually.

Repository: Select the repository file where Properties are stored.
The fields that come after are pre-filled in using the fetched data.

Use an existing connection Select this check box and click the relevant tSybaseConnection
component on the Component List to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host The IP address of the database server.

Port Listening port number of database server.

Database Name of the database

Username and Password User authentication data for a dedicated database.

Source table Name of the input Sybase SCD table.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table Select to perform one of the following operations on the table
defined:

None: No action carried out on the table.

Drop and create table: The table is removed and created again

Create table: A new table gets created.



Related Scenario

280 Talend Open Studio Components Reference Guide

Create table if not exists: A table gets created if it does not exist.

Clear table: The table content is deleted. You have the possibility
to rollback the operation.

Truncate table: The table content is deleted. You don not have the
possibility to rollback the operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Surrogate Key Select the surrogate key column from the list.

Creation Select the method to be used for the surrogate key generation.

For more information regarding the creation methods, see section
SCD keys.

Source Keys Select one or more columns to be used as keys, to ensure the unicity
of incoming data.

Use SCD Type 1 fields Use type 1 if tracking changes is not necessary. SCD Type 1 should
be used for typos corrections for example. Select the columns of the
schema that will be checked for changes.

Use SCD Type 2 fields Use type 2 if changes need to be tracked down. SCD Type 2 should be
used to trace updates for example. Select the columns of the schema
that will be checked for changes.

Start date: Adds a column to your SCD schema to hold the start date
value. You can select one of the input schema columns as Start Date
in the SCD table.

End Date: Adds a column to your SCD schema to hold the end date
value for the record. When the record is currently active, the End
Date column shows a null value, or you can select Fixed Year value
and fill it in with a fictive year to avoid having a null value in the
End Date field.

Log Active Status: Adds a column to your SCD schema to hold the
true or false status value. This column helps to easily spot the active
record.

Log versions: Adds a column to your SCD schema to hold the
version number of the record.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

Debug mode Select this check box to display each step during processing entries
in a database.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component is used as an output component. It requires an input component and Row main
link as input.

Limitation n/a

Related Scenario

For related topics, see section tMysqlSCD and section Scenario: Tracking changes using Slowly Changing
Dimensions (type 0 through type 3).



Talend Open Studio Components Reference Guide

Cloud components
This chapter details the main components which you can find in the Cloud family of the Palette in the Integration
perspective of the Talend Studio.

Private and public cloud databases, data services and SaaS-based applications (CRM, HR, ERP, etc.) are springing
up alongside on-premise applications and databases that have been the mainstay of corporate IT. The resulting
hybrid IT environments have more sources, of more diverse types, which require more modes of integration, and
more effort on data quality and consistency across sources.

The Cloud family comprises the most popular database connectors adapted to Cloud and SaaS applications and
technologies.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.



tAmazonMysqlClose

282 Talend Open Studio Components Reference Guide

tAmazonMysqlClose

tAmazonMysqlClose properties

Function tAmazonMysqlClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tAmazonMysqlConnection component in the list if more
than one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with AmazonMysql components, especially with
tAmazonMysqlConnection and tAmazonMysqlCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tAmazonMysqlCommit

Talend Open Studio Components Reference Guide 283

tAmazonMysqlCommit

tAmazonMysqlCommit Properties

This component is closely related to tAmazonMysqlConnection and tAmazonMysqlRollback. It usually doesn’t
make much sense to use these components independently in a transaction.

Component family Cloud/AmazonRDS/
MySQL

Function Validates the data processed through the job into the connected DB

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the tAmazonMysqlConnection component in the list if more
than one connection are planned for the current job.

Close Connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to link
tAmazonMysqlCommit to your Job, your data will be
commited row by row. In this case, do not select the Close
connection check box or your connection will be closed
before the end of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with AmazonMysql components, especially with
tAmazonMysqlConnection and tAmazonMysqlRollback components.

Limitation n/a

Related scenario

This component is closely related to tAmazonMysqlConnection and tAmazonMysqlRollback. It usually doesn’t
make much sense to use one of these without using a tAmazonMysqlConnection component to open a connection
for the current transaction.

For tAmazonMysqlCommit related scenario, see section Scenario: Inserting data in mother/daughter tables.



tAmazonMysqlConnection

284 Talend Open Studio Components Reference Guide

tAmazonMysqlConnection

tAmazonMysqlConnection Properties

This component is closely related to tAmazonMysqlCommit and tAmazonMysqlRollback. It usually doesn’t
make much sense to use one of these without using a tAmazonMysqlConnection component to open a connection
for the current transaction.

Component family Cloud/AmazonRDS/
MySQL

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

DB Version MySQL 5 is available.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating.

Username and Password DB user authentication data.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Advanced settings Auto Commit Select this check box to automatically commit a transaction when it
is completed.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with AmazonMysql components, especially with
tAmazonMysqlCommit and tAmazonMysqlRollback components.

Limitation n/a



Scenario: Inserting data in mother/daughter tables

Talend Open Studio Components Reference Guide 285

Scenario: Inserting data in mother/daughter tables

The following Job is dedicated to advanced database users, who want to carry out multiple table insertions using
a parent table id to feed a child table. As a prerequisite to this Job, follow the steps described below to create the
relevant tables using an engine such as innodb.

Setting up the Job

1. In a command line editor, connect to your Mysql server. Once connected to the relevant database, type in the
following command to create the parent table: create table f1090_mum(id int not null auto_increment, name
varchar(10), primary key(id)) engine=innodb.

2. Then create the second table: create table baby (id_baby int not null, years int) engine=innodb.

Back into Talend Open Studio, the Job requires seven components including tAmazonMysqlConnection
and tAmazonMysqlCommit.

3. Drag and drop the following components from the Palette: tFileList, tFileInputDelimited, tMap,
tAmazonMysqlOutput (x2).

4. Connect the tFileList component to the input file component using an Iterate link as the name of the file to
be processed will be dynamically filled in from the tFileList directory using a global variable.

5. Connect the tFileInputDelimited component to the tMap and dispatch the flow between the two output
AmazonMysql DB components. Use a Row link for each for these connections representing the main data
flow.

6. Set the tFileList component properties, such as the directory name where files will be fetched from.

7. Add a tAmazonMysqlConnection component and connect it to the starter component of this job, in this
example, the tFileList component using an OnComponentOk link to define the execution order.

Setting up the DB connection

In the tAmazonMysqlConnection Component view, set the connection details manually or fetch them from the
Repository if you centrally stored them as a Metadata DB connection entry. For more information about Metadata,
see Talend Open Studio User Guide.



Scenario: Inserting data in mother/daughter tables

286 Talend Open Studio Components Reference Guide

Configuring the input component

1. On the tFileInputDelimited component’s Basic settings panel, press Ctrl+Space bar to access the variable
list. Set the File Name field to the global variable: tFileList_1.CURRENT_FILEPATH

2. Set the rest of the fields as usual, defining the row and field separators according to your file structure. Then
set the schema manually through the Edit schema feature or select the schema from the Repository. Make
sure the data type is correctly set, in accordance with the nature of the data processed.

Configuring the tMap component

1. In the tMap Output area, add two output tables, one called mum for the parent table, the second called baby,
for the child table.

2. Drag the Name column from the Input area, and drop it to the mum table. Drag the Years column from the
Input area and drop it to the baby table.

Make sure the mum table is on the top of the baby table as the order is determining for the flow sequence
hence the DB insert to perform correctly.

3. Then connect the output row link to distribute correctly the flow to the relevant DB output component.

Configuring the output component

1. In each of the tAmazonMysqlOutput components’ Basic settings panel, select the Use an existing
connection check box to retrieve the tAmazonMysqlConnection details.



Scenario: Inserting data in mother/daughter tables

Talend Open Studio Components Reference Guide 287

2. Set the Table name making sure it corresponds to the correct table, in this example either f1090_mum or
f1090_baby.

There is no action on the table as they are already created.

3. Select Insert as Action on data for both output components. Click on Sync columns to retrieve the schema
set in the tMap.

4. Go to the Advanced settings panel of each of the tAmazonMysqlOutput components. Notice that the
Commit every field will get overridden by the tAmazonMysqlCommit.

5. In the Additional columns area of the DB output component corresponding to the child table (f1090_baby),
set the id_baby column so that it reuses the id from the parent table. In the SQL expression field type in:
'(Select Last_Insert_id())'.

The position is Before and the Reference column is years.

Configuring the tAmazonMysqlCommit component

1. Add the tAmazonMysqlCommit component to the design workspace and connect it from the tFileList
component using a OnComponentOk connection in order for the Job to terminate with the transaction
commit.

2. On the tAmazonMysqlCommit Component view, select in the list the connection to be used.

Job execution

Save your Job and press F6 to execute it.



Scenario: Inserting data in mother/daughter tables

288 Talend Open Studio Components Reference Guide

The parent table id has been reused to feed the id_baby column.



tAmazonMysqlInput

Talend Open Studio Components Reference Guide 289

tAmazonMysqlInput

tAmazonMysqlInput properties

Component family Cloud/AmazonRDS/
MySQL

Function tAmazonMysqlInput reads a database and extracts fields based on a query.

Purpose tAmazonMysqlInput executes a DB query with a strictly defined order which must correspond to the
schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are stored. The
fields that follow are completed automatically using the data retrieved.

DB Version MySQL 5 is available.

Use an existing
connection

Select this check box when using a configured tAmazonMysqlConnection
component.

When a Job contains the parent Job and the child Job, Component
list presents only the connection components in the same Job level, so
if you need to use an existing connection from the other level, make
sure that the available connection components are sharing the intended
connection.

For more information on how to share a DB connection across Job
levels, see Use or register a shared DB connection in any database
connection component corresponding to the database you are using.

Otherwise, you can as well deactivate the connection components
and use Dynamic settings of the component to specify the intended
connection manually. In this case, make sure the connection name is
unique and distinctive all over through the two Job levels. For more
information about Dynamic settings, see your studio user guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number of fields to be processed
and passed on to the next component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this component only.
Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the Repository, hence can
be reused. Related topic: see Talend Open Studio User Guide.

Table Name Name of the table to be read.

Query type and Query Enter your DB query paying particularly attention to properly sequence the fields
in order to match the schema definition.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you are creating.
This option is not available if you have selected the Use an existing connection
check box in the Basic settings.



Scenario1: Writing columns from a MySQL database to an output file

290 Talend Open Studio Components Reference Guide

When you need to handle data of the time-stamp type 0000-00-00
00:00:00 using this component, set the parameter as:

noDatetimeStringSync=true&zeroDa-

teTimeBehavior=convertToNull.

Enable stream Select this check box to enables streaming over buffering which allows the code
to read from a large table without consuming a large amount of memory in order
to optimize the performance.

Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from all the
String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

Deselect Trim all the String/Char columns to enable Trim columns
in this field.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL queries for Mysql databases.

Scenario1: Writing columns from a MySQL database to
an output file

In this scenario we will read certain columns from a MySQL database, and then write them to a table in a local
output file.

Setting up the Job

1. Drop tAmazonMysqlInput and tFileOutputDelimited from the Palette onto the workspace.

2. Link tAmazonMysqlInput to tFileOutputDelimited using a Row > Main connection.

Configuring the input component

1. Double-click tAmazonMysqlInput to open its Basic Settings view in the Component tab.



Scenario1: Writing columns from a MySQL database to an output file

Talend Open Studio Components Reference Guide 291

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-
in. For how to edit a Built-in schema, see Talend Open Studio User Guide.

2. From the Property Type list, select Repository if you have already stored the connection to database in the
Metadata node of the Repository tree view. The property fields that follow are automatically filled in.

For more information about how to store a database connection, see Talend Open Studio User Guide.

If you have not defined the database connection locally in the Repository, fill in the details manually after
selecting Built-in from the Property Type list.

3. Set the Schema as Built-in and click Edit schema to define the desired schema.

The schema editor opens:

4. Click the [+] button to add the rows that you will use to define the schema, four columns in this example
id, first_name, city and salary.

5. Under Column, click in the fields to enter the corresponding column names.

6. Click the field under Type to define the type of data. Click OK to close the schema editor.



Scenario1: Writing columns from a MySQL database to an output file

292 Talend Open Studio Components Reference Guide

7. Next to the Table Name field, click the [...] button to select the database table of interest.

A dialog box displays a tree diagram of all the tables in the selected database:

8. Click the table of interest and then click OK to close the dialog box.

9. Set the Query Type to Built-In. In the Query box, enter the query required to retrieve the desired columns
from the table.

Configuring the output component

1. Double-click tFileOutputDelimited to set its Basic Settings in the Component tab.

2. Next to the File Name field, click the [...] button to browse your directory to where you want to save the
output file, then enter a name for the file.

3. Select the Include Header check box to retrieve the column names as well as the data.

Job execution

Save the Job and press F6 to run it.

The output file is written with the desired column names and corresponding data, retrieved from the database:



Scenario1: Writing columns from a MySQL database to an output file

Talend Open Studio Components Reference Guide 293

The Job can also be run in the Traces Debug mode, which allows you to view the rows as they are being written to the
output file, in the workspace.



tAmazonMysqlOutput

294 Talend Open Studio Components Reference Guide

tAmazonMysqlOutput

tAmazonMysqlOutput properties

Component family Cloud/AmazonRDS/
MySQL

Function tAmazonMysqlOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tAmazonMysqlOutput executes the action defined on the table and/or on the data contained in
the table, based on the flow incoming from the preceding component in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

DB Version MySQL 5 is available.

Use an existing connection Select this check box when using a configured
tAmazonMysqlConnection component.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create table: The table is removed and created again.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does not exist.



tAmazonMysqlOutput properties

Talend Open Studio Components Reference Guide 295

Drop table if exists and create: The table is removed if it already
exists and created again.

Clear table: The table content is deleted.

Truncate table: The table content is quickly deleted. However, you
will not be able to rollback the operation.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, the job
stops.

Update: Make changes to existing entries.

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or creates them if they do
not exist.

Delete: Remove entries corresponding to the input flow.

Replace: Add new entries to the table. If an old row in the table has
the same value as a new row for a PRIMARY KEY or a UNIQUE
index, the old row is deleted before the new row is inserted.

Insert or update on duplicate key or unique index: Add entries
if the inserted value does not exist or update entries if the inserted
value already exists and there is a risk of violating a unique index
or primary key.

Insert Ignore: Add only new rows to prevent duplicate key errors.

You must specify at least one column as a primary key
on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the update and delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next
to the column name on which you want to base the update
operation. Do the same in the Key in delete column for the
deletion operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row in error and complete the process for error-free rows. If needed,
you can retrieve the rows in error via a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

You can press Ctrl+Space to access a list of predefined
global variables.

Extend Insert Select this check box to carry out a bulk insert of a defined set of lines
instead of inserting lines one by one. The gain in system performance
is considerable.



tAmazonMysqlOutput properties

296 Talend Open Studio Components Reference Guide

Number of rows per insert: enter the number of rows to be inserted
per operation. Note that the higher the value specidied, the lower
performance levels shall be due to the increase in memory demands.

This option is not compatible with the Reject link. You
should therefore clear the check box if you are using a Row
> Rejects link with this component.

If you are using this component with tMysqlLastInsertID,
ensure that the Extend Insert check box in Advanced
Settings is not selected. Extend Insert allows for batch
loading, however, if the check box is selected, only the ID
of the last line of the last batch will be returned.

Use batch size Select this check box to activate the batch mode for data processing.
In the Batch Size field that appears when this check box is selected,
you can type in the number you need to define the batch size to be
processed.

This check box is available only when you have selected,
the Update or the Delete option in the Action on data
field.

Commit every Number of rows to be included in the batch before it is committed
to the DB. This option ensures transaction quality (but not rollback)
and, above all, a higher performance level.

Additional Columns This option is not available if you have just created the DB table
(even if you delete it beforehand). This option allows you to call SQL
functions to perform actions on columns, provided that these are not
insert, update or delete actions, or actions that require pre-processing.

Name: Type in the name of the schema column to be altered or
inserted.

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the data in the corrsponding column.

Position: Select Before, Replace or After, depending on the action
to be performed on the reference column.

Reference column: Type in a reference column that
tAmazonMysqlOutput can use to locate or replace the new column,
or the column to be modified.

Use field options Select this check box to customize a request, particularly if multiple
actions are being carried out on the data.

Use Hint Options Select this check box to activate the hint configuration area which
helps you optimize a query’s execution. In this area, parameters are:

- HINT: specify the hint you need, using the syntax

 /*+ */.

- POSITION: specify where you put the hint in a SQL statement.

- SQL STMT: select the SQL statement you need to use.

Enable debug mode Select this check box to display each step involved in the process of
writing data in the database.

Use duplicate key update
mode insert

Updates the values of the columns specified, in the event of duplicate
primary keys.:

Column: Between double quotation marks, enter the name of the
column to be updated.

Value: Enter the action you want to carry out on the column.

To use this option you must first of all select the Insert
mode in the Action on data list found in the Basic Settings
view.

tStatCatcher Statistics Select this check box to collect log data at the component level.



Scenario 1: Adding a new column and altering data in a DB table

Talend Open Studio Components Reference Guide 297

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a MySQL database. It also allows you to create a reject flow using a
Row > Rejects link to filter data in error. For an example of tAmazonMysqlOutput in use, see
section Scenario 3: Retrieve data in error with a Reject link.

Scenario 1: Adding a new column and altering data in
a DB table

This Java scenario is a three-component Job that aims at creating random data using a tRowGenerator, duplicating
a column to be altered using the tMap component, and eventually altering the data to be inserted based on an SQL
expression using the tAmazonMysqlOutput component.

Setting up the Job

1. Drop the following components from the Palette onto the design workspace: tRowGenerator, tMap and
tAmazonMySQLOutput.

2. Connect tRowGenerator, tMap, and tAmazonMysqlOutput using the Row Main link.

Configuring the input component

1. In the design workspace, select tRowGenerator to display its Basic settings view.

2. Click the Edit schema three-dot button to define the data to pass on to the tMap component, two columns
in this scenario, name and random_date.



Scenario 1: Adding a new column and altering data in a DB table

298 Talend Open Studio Components Reference Guide

3. Click OK to close the dialog box.

4. Click the RowGenerator Editor three-dot button to open the editor and define the data to be generated.

5. Click in the corresponding Functions fields and select a function for each of the two columns, getFirstName
for the first column and getrandomDate for the second column.

6. In the Number of Rows for Rowgenerator field, enter 10 to generate ten first name rows and click Ok to
close the editor.

Configuring the tMap component

1. Double-click the tMap component to open the Map editor. The Map editor opens displaying the input
metadata of the tRowGenerator component.



Scenario 1: Adding a new column and altering data in a DB table

Talend Open Studio Components Reference Guide 299

2. In the Schema editor panel of the Map editor, click the [+] button of the output table to add two rows and
define the first as random_date and the second as random_date1.

In this scenario, we want to duplicate the random_date column and adapt the schema in order to alter the
data in the output component.

3. In the Map editor, drag the random_date row from the input table to the random_date and random_date1
rows in the output table.



Scenario 1: Adding a new column and altering data in a DB table

300 Talend Open Studio Components Reference Guide

4. Click OK to close the editor.

Configuring the output component

1. In the design workspace, double-click the tAmazonMysqlOutput component to display its Basic settings
view and set its parameters.

2. Set Property Type to Repository and then click the [...] button to open the [Repository content] dialog
box and select the correct DB connection. The connection details display automatically in the corresponding
fields.

If you have not stored the DB connection details in the Metadata entry in the Repository, select Built-in on the
property type list and set the connection detail manually.

3. Click the [...] button next to the Table field and select the table to be altered, Dates in this scenario.

4. On the Action on table list, select Drop table if exists and create, select Insert on the Action on data list.

5. If needed, click Sync columns to synchronize with the columns coming from the tMap component.



Scenario 1: Adding a new column and altering data in a DB table

Talend Open Studio Components Reference Guide 301

6. Click the Advanced settings tab to display the corresponding view and set the advanced parameters.

7. In the Additional Columns area, set the alteration to be performed on columns.

In this scenario, the One_month_later column replaces random_date_1. Also, the data itself gets altered using
an SQL expression that adds one month to the randomly picked-up date of the random_date_1 column. ex:
2007-08-12 becomes 2007-09-12.

-Enter One_Month_Later in the Name cell.

-In the SQL expression cell, enter the relevant addition script to be performed, “adddate(Random_date,
interval 1 month)” in this scenario.

-Select Replace on the Position list.

-Enter Random_date1 on the Reference column list.

For this job we duplicated the random_date_1 column in the DB table before replacing one instance of it with the
One_Month_Later column. The aim of this workaround was to be able to view upfront the modification performed.

Job execution

Save your Job and press F6 to execute it.

The new One_month_later column replaces the random_date1 column in the DB table and adds one month to
each of the randomly generated dates.

Related topic: see section tDBOutput properties.



Scenario 2: Updating data in a database table

302 Talend Open Studio Components Reference Guide

Scenario 2: Updating data in a database table

This Java scenario describes a two-component Job that updates data in a MySQL table according to that in a
delimited file.

Setting up the Job

• Drop tFileInputDelimited and tAmazonMysqlOutput from the Palette onto the design workspace. Connect
the two components together using a Row Main link.

Configuring the input component

1. Double-click tFileInputDelimited to display its Basic settings view and define the component properties.

2. From the Property Type list, select Repository if you have already stored the metadata of the delimited
file in the Metadata node in the Repository tree view. Otherwise, select Built-In to define manually the
metadata of the delimited file.

For more information about storing metadata, see Talend Open Studio User Guide.

3. In the File Name field, click the [...] button and browse to the source delimited file that contains the
modifications to propagate in the MySQL table.

In this example, we use the customer_update file that holds four columns: id, CustomerName,
CustomerAddress and idState. Some of the data in these four columns is different from that in the MySQL
table.



Scenario 2: Updating data in a database table

Talend Open Studio Components Reference Guide 303

4. Define the row and field separators used in the source file in the corresponding fields. If needed, set Header,
Footer and Limit.

In this example, Header is set to 1 since the first row holds the names of columns, therefore it should be
ignored. Also, the number of processed lines is limited to 2000.

5. Select Built in from the Schema list then click the [...] button next to Edit Schema to open a dialog box
where you can describe the data structure of the source delimited file that you want to pass to the component
that follows.

6. Select the Key check box(es) next to the column name(s) you want to define as key column(s).

It is necessary to define at least one column as a key column for the Job to be executed correctly. Otherwise, the Job
is automatically interrupted and an error message displays on the console.

Configuring the output component

1. In the design workspace, double-click tAmazonMysqlOutput to open its Basic settings view where you
can define its properties.

2. Click Sync columns to retrieve the schema of the preceding component. If needed, click the [...] button next
to Edit schema to open a dialog box where you can check the retrieved schema.



Scenario 3: Retrieve data in error with a Reject link

304 Talend Open Studio Components Reference Guide

3. From the Property Type list, select Repository if you have already stored the connection metadata in the
Metadata node in the Repository tree view. Otherwise, select Built-In to define manually the connection
information.

For more information about storing metadata, see see Talend Open Studio User Guide.

4. In the Table field, enter the name of the table to update.

5. From the Action on table list, select the operation you want to perform, None in this example since the table
already exists.

6. From the Action on data list, select the operation you want to perform on the data, Update in this example.

Job execution

Save your Job and press F6 to execute it.

Using your DB browser, you can verify if the MySQL table, customers, has been modified according to the
delimited file.

In the above example, the database table has always the four columns id, CustomerName, CustomerAddress and
idState, but certain fields have been modified according to the data in the delimited file used.

Scenario 3: Retrieve data in error with a Reject link

This scenario describes a four-component Job that carries out migration from a customer file to a MySQL database
table and redirects data in error towards a CSV file using a Reject link.



Scenario 3: Retrieve data in error with a Reject link

Talend Open Studio Components Reference Guide 305

Setting up the Job

1. In the Repository, select the customer file metadata that you want to migrate and drop it onto the workspace.
In the [Components] dialog box, select tFileInputDelimited and click OK. The component properties will
be filled in automatically.

If you have not stored the information about your customer file under the Metadata node in the Repository,
drop a tFileInputDelimited component from the family File > Input, in the Palette, and fill in its properties
manually in the Component tab.

2. From the Palette, drop a tMap from the Processing family onto the workspace.

3. In the Repository, expand the Metadata node, followed by the Db Connections node and select the
connection required to migrate your data to the appropriate database. Drop it onto the workspace. In the
[Components] dialog box, select tAmazonMysqlOutput and click OK. The database connection properties
will be automatically filled in. For more information, see Talend Open Studio User Guide.

If you have not stored the database connection details under the Db Connections node in the Repository,
drop a tAmazonMysqlOutput from the Databases family in the Palette and fill in its properties manually
in the Component tab.

4. From the Palette, select a tFileOutputDelimited from the File > Output family, and drop it onto the
workspace.

5. Link the customers component to the tMap component, and the tMap and Localhost with a Row Main
link. Name this second link out.

6. Link the Localhost to the tFileOutputDelimited using a Row > Reject link.

Configuring the input component

1. Double-click the customers component to display the Component view.



Scenario 3: Retrieve data in error with a Reject link

306 Talend Open Studio Components Reference Guide

2. In the Property Type list, select Repository and click the [...] button in order to select the metadata containing
the connection to your file. You can also select the Built-in mode and fill in the fields manually.

3. Click the [...] button next to the File Name field, and fill in the path and the name of the file you want to use.

4. In the Row and Field Separator fields, type in between inverted commas the row and field separator used
in the file.

5. In the Header, Footer and Limit fields, type in the number of headers and footers to ignore, and the number
of rows to which processing should be limited.

6. In the Schema list, select Repository and click the [...] button in order to select the schema of your file, if
it is stored under the Metadata node in the Repository. You can also click the [...] button next to the Edit
schema field, and set the schema manually.

The schema is as follows:

Configuring the tMap component

1. Double-click the tMap component to open its editor.



Scenario 3: Retrieve data in error with a Reject link

Talend Open Studio Components Reference Guide 307

2. Select the id, CustomerName, CustomerAddress, idSate, id2, RegTime and RegisterTime columns on the table
on the left and drop them on the out table, on the right.

3. In the Schema editor area, at the bottom of the tMap editor, in the right table, change the length of the
CustomerName column to 28 to create an error. Thus, any data for which the length is greater than 28 will
create errors, retrieved with the Reject link.

4. Click OK. In the workspace, double-click the output Localhost component to display its Component  view.



Scenario 3: Retrieve data in error with a Reject link

308 Talend Open Studio Components Reference Guide

5. In the Property Type list, select Repository and click the [...] button to select the connection to the database
metadata. The connection details will be automatically filled in. You can also select the Built-in mode and
set the fields manually.

6. In the Table field, type in the name of the table to be created. In this scenario, we call it customers_data.
In the Action on data list, select the Create table option. Click the Sync columns button to retrieve the
schema from the previous component.

Make sure the Die on error check box isn’t selected, so that the Job can be executed despite the error you
just created.

7. Click the Advanced settings tab of the Component view to set the advanced parameters of the component.

8. Deselect the Extend Insert check box which enables you to insert rows in batch, because this option is not
compatible with the Reject link.

Configuring the output component

1. Double-click the tFileOutputDelimited component to set its properties in the Component view.

2. Click the [...] button next to the File Name field to fill in the path and name of the output file. Click the Sync
columns button to retrieve the schema of the previous component.

Job execution

Save your Job and press F6 to execute it.



Scenario 3: Retrieve data in error with a Reject link

Talend Open Studio Components Reference Guide 309

The data in error are sent to the delimited file, as well as the error type met. Here, we have: Data truncation.



tAmazonMysqlRollback

310 Talend Open Studio Components Reference Guide

tAmazonMysqlRollback

tAmazonMysqlRollback properties

This component is closely related to tAmazonMysqlCommit and tAmazonMysqlConnection. It usually does
not make much sense to use these components independently in a transaction.

Component family Cloud/AmazonRDS/Mysql

Function Cancel the transaction commit in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tAmazonMysqlConnection component in the list if more
than one connection are planned for the current job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with AmazonMysql components, especially with
tAmazonMysqlConnection and tAmazonMysqlCommit components.

Limitation n/a

Scenario: Rollback from inserting data in mother/
daughter tables

Based on section Scenario: Inserting data in mother/daughter tables, insert a rollback function in order to prevent
unwanted commit.

1. Drag and drop a tAmazonMysqlRollback to the design workspace and connect it to the Start component.



Scenario: Rollback from inserting data in mother/daughter tables

Talend Open Studio Components Reference Guide 311

2. Set the Rollback unique field on the relevant DB connection.

This complementary element to the Job ensures that the transaction will not be partly committed.



tAmazonMysqlRow

312 Talend Open Studio Components Reference Guide

tAmazonMysqlRow

tAmazonMysqlRow properties

Component family Cloud/Amazon/MySQL

Function tAmazonMysqlRow is the specific component for this database query. It executes the SQL query
stated in the specified database. The row suffix means the component implements a flow in the job
design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tAmazonMysqlRow acts on the actual DB
structure or on the data (although without handling data). The SQLBuilder tool helps you write
easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

DB Version MySQL 5 is available.

Use an existing connection Select this check box and click the relevant
tAmazonMysqlConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table Name Name of the table to be processed.



Scenario 1: Removing and regenerating a MySQL table index

Talend Open Studio Components Reference Guide 313

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Guess Query Click the Guess Query button to generate the query which
corresponds to your table schema in the Query field.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

Propagate QUERY’s
recordset

Select this check box to insert the result of the query in a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Use PreparedStatement Select this checkbox if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Scenario 1: Removing and regenerating a MySQL table
index

This scenario describes a four-component job that removes a table index, applies a select insert action onto a table
then regenerates the index.



Scenario 1: Removing and regenerating a MySQL table index

314 Talend Open Studio Components Reference Guide

Setting up the Job

1. Select and drop the following components onto the design workspace: tAmazonMysqlRow (x2),
tRowGenerator, and tAmazonMysqlOutput.

2. Connect tRowGenerator to tAmazonMysqlOutput.

3. Using a OnComponentOk connections, link the first tAmazonMysqlRow to tRowGenerator and
tRowGenerator to the second tAmazonMysqlRow.

Configuring the tAmazonMysqlRow component

1. Select the tAmazonMysqlRow to fill in the DB Basic settings.

2. In Property type as well in Schema, select the relevant DB entry in the list.

The DB connection details and the table schema are accordingly filled in.

3. Propagate the properties and schema details onto the other components of the Job.

4. The query being stored in the Metadata area of the Repository, you can also select Repository in the Query
type field and the relevant query entry.

5. If you didn’t store your query in the Repository, type in the following SQL statement to alter the database
entries: drop index <index_name> on <table_name>

6. Select the second tAmazonMysqlRow component, check the DB properties and schema.

7. Type in the SQL statement to recreate an index on the table using the following statement: create index
<index_name> on <table_name> (<column_name>)

The tRowGenerator component is used to generate automatically the columns to be added to the DB output
table defined.

Configuring the output component

1. Select the tAmazonMysqlOutput component and fill in the DB connection properties> either from the
Repository, or manually for this specific use only. The table to be fed is named: comprehensive.



Scenario 2: Using PreparedStatement objects to query data

Talend Open Studio Components Reference Guide 315

2. The schema should be automatically inherited from the data flow coming from the tRowGenerator. Edit the
schema to check its structure and check that it corresponds to the schema expected on the DB table specified.

3. The Action on table is None and the Action on data is Insert.

Job execution

Press F6 to run the job.

If you manage to watch the action on DB data, you can notice that the index is dropped at the start of the job and
recreated at the end of the insert action.

Related topics: section tDBSQLRow properties.

Scenario 2: Using PreparedStatement objects to query
data

This scenario describes a four component job which allows you to link a table column with a client file. The
MySQL table contains a list of all the American States along with the State ID, while the file contains the customer
information including the ID of the State in which they live. We want to retrieve the name of the State for each
client, using an SQL query. In order to process a large volume of data quickly, we use a PreparedStatement object
which means that the query is executed only once rather than against each row in turn. Then each row is sentas
a parameter.

For this scenario, we use a file and a database for which we have already stored the connection and properties
in the Rerpository metadata. For further information concerning the creation of metadata in delimited files, the
creation of database connection metadata and the usage of metadata, see Talend Open Studio User Guide.

Configuring the input component

1. In the Repository, expand the Metadata and File delimited nodes. Select the metadata which corresponds
to the client file you want to use in the Job.

Here, we are using the customers metadata.

2. Slide the metadata onto the workspace and double-click tFileInputDelimited in the Components dialog box
so that the tFileInputDelimited component is created with the parameters already set.



Scenario 2: Using PreparedStatement objects to query data

316 Talend Open Studio Components Reference Guide

3. In the Schema list, select Built-in so that you can modify the component’s schema. Then click on [...] next
to the Edit schema field to add a column into which the name of the State will be inserted.

4. Click on the [+] button to add a column to the schema. Rename this column LabelStateRecordSet and select
Object from the Type list. Click OK to save your modifications.

5. From the Palette, select the tAmazonMysqlRow, tParseRecordSet and tFileOutputDelimited components
and drop them onto the workspace. Connect the four components using Row > Main type links.

Setting up the DB connection

1. Double-click tAmazonMysqlRow to set its properties in the Basic settings tab of the Component view.



Scenario 2: Using PreparedStatement objects to query data

Talend Open Studio Components Reference Guide 317

2. In the Property Type list, select Repository and click on the [...] button to select a database connection from
the metadata in the Repository. The DB Version, Host, Port, Database, Username and Password fields are
completed automatically. If you are using the Built-in mode, complete these fields manually.

3. From the Schema list, select Built-in to set the schema properties manually and add the LabelStateRecordSet
column, or click directly on the Sync columns button to retrieve the schemma from the preceding component.

4. In the Query field, enter the SQL query you want to use. Here, we want to retrieve the names of the American
States from the LabelState column of the MySQL table, us_state:

"SELECT LabelState
FROM us_state WHERE idState=?"

The question mark, “?”, represents the parameter to be set in the Advanced settings tab.

Configuring the Advanced settings of tAmazonMysqlRow

1. Click Advanced settings to set the component's advanced properties.

2. Select the Propagate QUERY’s recordset check box and select the LabelStateRecordSet column from the
use column list to insert the query results in that column.



Scenario 2: Using PreparedStatement objects to query data

318 Talend Open Studio Components Reference Guide

3. Select the Use PreparedStatement check box and define the parameter used in the query in the Set
PreparedStatement Parameters table. Click on the [+] button to add a parameter.

4. In the Parameter Index cell, enter the parameter position in the SQL instruction. Enter “1” as we are only
using one parameter in this example.

5. In the Parameter Type cell, enter the type of parameter. Here, the parameter is a whole number, hence,
select Int from the list.

6. In the Parameter Value cell, enter the parameter value. Here, we want to retrieve the name of the State based
on the State ID for every client in the input file. Hence, enter “row1.idState”.

Configuring the tParseRecordSet component

1. Double-click tParseRecordSet to set its properties in the Basic settings tab of the Component view.

2. From the Prev. Comp. Column list, select the preceding components column for analysis. In this example,
select LabelStateRecordSet.

3. Click on the Sync columns button to retrieve the schema from the preceding component. The Attribute table
is automatically completed with the schema columns.

4. In the Attribute table, in the Value field which corresponds to the LabelStateRecordSet, enter the name of
the column containing the State names to be retrieved and matched with each client, within double quotation
marks. In this example, enter “LabelState”.

Configuring the output component

1. Double-click tFileOutputDelimited to set its properties in the Basic settings tab of the Component view.



Related scenarios

Talend Open Studio Components Reference Guide 319

2. In the File Name field, enter the access path and name of the output file. Click Sync columns to retrieve the
schema from the preceding component.

Job execution

Save your Job and press F6 to run it.

A column containing the name of the American State corrresponding to each client is added to the file.

Related scenarios

For a related scenario, see:

• section Scenario 3: Combining two flows for selective output



tAmazonOracleClose

320 Talend Open Studio Components Reference Guide

tAmazonOracleClose

tAmazonOracleClose properties

Function tAmazonOracleClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tAmazonOracleConnection component in the list if more
than one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with AmazonOracle components, especially with
tAmazonOracleConnection and tAmazonOracleCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tAmazonOracleCommit

Talend Open Studio Components Reference Guide 321

tAmazonOracleCommit

tAmazonOracleCommit Properties

This component is closely related to tAmazonOracleConnection and tAmazonOracleRollback. It usually
doesn’t make much sense to use these components independently in a transaction.

Component family Cloud/AmazonRDS/Oracle

Function Validates the data processed through the job into the connected DB

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the tAmazonOracleConnection component in the list if more
than one connection are planned for the current job.

Close Connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to link
tAmazonOracleCommit to your Job, your data will be
commited row by row. In this case, do not select the Close
connection check box or your connection will be closed
before the end of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with AmazonOracle components, especially with
tAmazonOracleConnection and tAmazonOracleRollback components.

Limitation n/a

Related scenario

This component is closely related to tAmazonOracleConnection and tAmazonOracleRollback. It usually
doesn’t make much sense to use one of these without using a tAmazonOracleConnection component to open a
connection for the current transaction.

For tAmazonOracleCommit related scenario, see section tMysqlConnection



tAmazonOracleConnection

322 Talend Open Studio Components Reference Guide

tAmazonOracleConnection

tAmazonOracleConnection Properties

This component is closely related to tAmazonOracleCommit and tAmazonOracleRollback. It usually doesn’t
make much sense to use one of these without using a tAmazonOracleConnection component to open a connection
for the current transaction.

Component family Cloud/AmazonRDS/Oracle

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Connection type Drop-down list of available drivers:

Oracle SID: Select this connection type to uniquely identify a
particular database on a system.

DB Version Oracle 11-5 is available.

Use tns file Select this check box to use the metadata of a context included in
a tns file.

One tns file may have many contexts.

TNS File: Enter the path to the tns file manually or browse to the file
by clicking the three-dot button next to the filed.

Select a DB Connection in Tns File: Click the three-dot button to
display all the contexts held in the tns file and select the desired one.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the schema.

Username and Password DB user authentication data.

Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating.

You can set the encoding parameters through this field.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.



Related scenario

Talend Open Studio Components Reference Guide 323

Shared DB Connection Name: set or type in the shared connection
name.

Usage This component is to be used along with AmazonOracle components, especially with
tAmazonOracleCommit and tAmazonOracleRollback components.

Limitation n/a

Related scenario

This component is closely related to tAmazonOracleCommit and tAmazonOracleRollback. It usually doesn’t
make much sense to use one of these without using a tAmazonOracleConnection component to open a connection
for the current transaction.

For tAmazonOracleConnection related scenario, see section tMysqlConnection



tAmazonOracleInput

324 Talend Open Studio Components Reference Guide

tAmazonOracleInput

tAmazonOracleInput properties

Component family Cloud/AmazonRDS/Oracle

Function tAmazonOracleInput reads a database and extracts fields based on a query.

Purpose tAmazonOracleInput executes a DB query with a strictly defined order which must correspond
to the schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Connection type Drop-down list of available drivers:

Oracle SID: Select this connection type to uniquely identify a
particular database on a system.

DB Version Select the Oracle version in use.

Use an existing connection Select this check box when using a configured
tAmazonOracleConnection component.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Oracle schema Oracle schema name.

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.



Related scenarios

Talend Open Studio Components Reference Guide 325

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table name Database table name.

Query type and Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Use cursor When selected, helps to decide the row set to work with at a time and
thus optimize performance.

Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

Usage This component covers all possible SQL queries for Oracle databases.

Limitation n/a

Related scenarios

For related scenarios, see:

• section Scenario 1: Displaying selected data from DB table.

• section Scenario 2: Using StoreSQLQuery variable.

• section Scenario: Dynamic context use in MySQL DB insert.



tAmazonOracleOutput

326 Talend Open Studio Components Reference Guide

tAmazonOracleOutput

tAmazonOracleOutput properties

Component family Cloud/AmazonRDS/Oracle

Function tAmazonOracleOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tAmazonOracleOutput executes the action defined on the table and/or on the data contained in
the table, based on the flow incoming from the preceding component in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box when using a tAmazonOracleConnection
component. When you deselect it, a check box appears (selected by
default and followed by a field) in the Advanced settings, Batch
Size, which enables you to define the number of lines in each
processed batch.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Connection type Drop-down list of available drivers:

Oracle SID: Select this connection type to uniquely identify a
particular database on a system.

DB Version Select the Oracle version in use.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and Password DB user authentication data.

Oracle schema Name of the Oracle schema.

Table Name of the table to be written. Note that only one table can be
written at a time.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.



tAmazonOracleOutput properties

Talend Open Studio Components Reference Guide 327

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the Update and Delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next to
the column names you want to use as a base for the Update
operation. Do the same in the Key in delete column for the
Delete operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

You can press Ctrl+Space to access a list of predefined
global variables.

Override any existing
NLS_LANG environment
variable

Select this check box to override variables already set for a NLS
language environment.

Commit every Enter the number of rows to be completed before committing batches
of rows together into the DB. This option ensures transaction quality
(but not rollback) and, above all, better performance at execution.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.



Related scenarios

328 Talend Open Studio Components Reference Guide

Name: Type in the name of the schema column to be altered or
inserted as new column.

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.

Use Hint Options Select this check box to activate the hint configuration area which
helps you optimize a query’s execution. In this area, parameters are:

- HINT: specify the hint you need, using the syntax

 /*+ */.

- POSITION: specify where you put the hint in a SQL statement.

- SQL STMT: select the SQL statement you need to use.

Convert columns and table
to uppercase

Select this check box to set the names of columns and table in upper
case.

Enable debug mode Select this check box to display each step during processing entries
in a database.

Use Batch Size When selected, enables you to define the number of lines in each
processed batch.

This option is available only when you do not Use an
existing connection in Basic settings.

Support null in “SQL
WHERE” statement

Select this check box to validate null in “SQL WHERE” statement.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a Oracle database. It also allows you to create a reject flow using a Row
> Rejects link to filter data in error. For such an example, see section Scenario 3: Retrieve data
in error with a Reject link.

Limitation n/a

Related scenarios

For tAmazonOracleOutput related topics, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection.

• section Scenario 1: Adding a new column and altering data in a DB table.



tAmazonOracleRollback

Talend Open Studio Components Reference Guide 329

tAmazonOracleRollback

tAmazonOracleRollback properties

This component is closely related to tAmazonOracleCommit and tAmazonOracleConnection. It usually
doesn’t make much sense to use these components independently in a transaction.

Component family Cloud/AmazonRDS/Oracle

Function Cancel the transaction commit in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tAmazonOracleConnection component in the list if more
than one connection are planned for the current job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with AmazonOracle components, especially with
tAmazonOracleConnection and tAmazonOracleCommit components.

Limitation n/a

Related scenario

This component is closely related to tAmazonOracleConnection and tAmazonOracleCommit. It usually
doesn’t make much sense to use one of these without using a tAmazonOracleConnection component to open a
connection for the current transaction.

For tAmazonOracleRollback related scenario, see section tMysqlRollback.



tAmazonOracleRow

330 Talend Open Studio Components Reference Guide

tAmazonOracleRow

tAmazonOracleRow properties

Component family Cloud/AmazonRDS/Oracle

Function tAmazonOracleRow is the specific component for this database query. It executes the SQL query
stated onto the specified database. The row suffix means the component implements a flow in the
job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tAmazonOracleRow acts on the actual
DB structure or on the data (although without handling data). The SQLBuilder tool helps you write
easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant
tAmazonOracleConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Connection type Drop-down list of available drivers.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Query type Either Built-in or Repository.



Related scenarios

Talend Open Studio Components Reference Guide 331

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Use PreparedStatement Select this checkbox if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Related scenarios

For related topics, see:

• section Scenario 3: Combining two flows for selective output

• section Scenario: Resetting a DB auto-increment.

• section Scenario 1: Removing and regenerating a MySQL table index.



tMarketoInput

332 Talend Open Studio Components Reference Guide

tMarketoInput

tMarketoInput belongs to two component families: Business and Cloud. For more information on it, see section
tMarketoInput.



tMarketoListOperation

Talend Open Studio Components Reference Guide 333

tMarketoListOperation

tMarketoListOperation belongs to two component families: Business and Cloud. For more information on it,
see section tMarketoListOperation.



tMarketoOutput

334 Talend Open Studio Components Reference Guide

tMarketoOutput

tMarketoOutput belongs to two component families: Business and Cloud. For more information on it, see section
tMarketoOutput.



tSalesforceBulkExec

Talend Open Studio Components Reference Guide 335

tSalesforceBulkExec

tSalesforceBulkExec belongs to two component families: Business and Cloud. For more information on it, see
section tSalesforceBulkExec.



tSalesforceConnection

336 Talend Open Studio Components Reference Guide

tSalesforceConnection

tSalesforceConnection belongs to two component families: Business and Cloud. For more information on it, see
section tSalesforceConnection.



tSalesforceGetDeleted

Talend Open Studio Components Reference Guide 337

tSalesforceGetDeleted

tSalesforceGetDeleted belongs to two component families: Business and Cloud. For more information on it, see
section tSalesforceGetDeleted.



tSalesforceGetServerTimestamp

338 Talend Open Studio Components Reference Guide

tSalesforceGetServerTimestamp

tDB2SCD belongs to two component families: Business and Cloud. For more information on it, see section
tSalesforceGetServerTimestamp.



tSalesforceGetUpdated

Talend Open Studio Components Reference Guide 339

tSalesforceGetUpdated

tSalesforceGetUpdated belongs to two component families: Business and Cloud. For more information on it, see
section tSalesforceGetUpdated.



tSalesforceInput

340 Talend Open Studio Components Reference Guide

tSalesforceInput

tSalesforceInput belongs to two component families: Business and Cloud. For more information on it, see section
tSalesforceInput.



tSalesforceOutput

Talend Open Studio Components Reference Guide 341

tSalesforceOutput

tSalesforceOutput belongs to two component families: Business and Cloud. For more information on it, see
section tSalesforceOutput.



tSalesforceOutputBulk

342 Talend Open Studio Components Reference Guide

tSalesforceOutputBulk

tSalesforceOutputBulk belongs to two component families: Business and Cloud. For more information on it, see
section tSalesforceOutputBulk.



tSalesforceOutputBulkExec

Talend Open Studio Components Reference Guide 343

tSalesforceOutputBulkExec

tSalesforceOutputBulkExec belongs to two component families: Business and Cloud. For more information on
it, see section tSalesforceOutputBulkExec.



tSugarCRMInput

344 Talend Open Studio Components Reference Guide

tSugarCRMInput

tSugarCRMInput belongs to two component families: Business and Cloud. For more information on it, see
section tSugarCRMInput.



tSugarCRMOutput

Talend Open Studio Components Reference Guide 345

tSugarCRMOutput

tSugarCRMOutput belongs to two component families: Business and Cloud. For more information on it, see
section tSugarCRMOutput.



Talend Open Studio Components Reference Guide



Talend Open Studio Components Reference Guide

Custom Code components
This chapter details the major components which belong to the Custom Code family in the Palette of the
Integration perspective of the Talend Studio.

The Custom Code components enable you to create codes for specific needs, quickly and efficiently.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.



tGroovy

348 Talend Open Studio Components Reference Guide

tGroovy

tGroovy properties

Component Family Custom Code

Function tGroovy allows you to enter customized code which you can integrate in the Talend programme.
The code is run only once.

Purpose tGroovy broadens the functionality if the Talend Job, using the Groovy language which is a
simplified Java syntax.

Basic settings Groovy Script Enter the Groovy code youo want to run.

Variables This table has two columns.

Name: Name of the variable called in the code..

Value: Value associated with the variable.

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at component level.

Usage This component can be used alone or as a subjob along with one other component.

Limitation Knowledge of the Groovy language is required.

Related Scenarios

• For a scenario using the Groovy code, see section Scenario: Calling a file which contains Groovy code.

• For a functional example, see section Scenario: Printing out a variable content



tGroovyFile

Talend Open Studio Components Reference Guide 349

tGroovyFile

tGroovyFile properties

Component Family Custom Code

Function tGroovyFile allows you to call an existing Groovy script.

Purpose tGroovyFile broadens the functionaility of Talend Jobs using the Groovy language which is a
simplified Java syntax.

Basic settings Groovy File Name and path of the file containing the Groovy code.

Variables This table contains two columns.

Name: Name of the variable called in the code.

Value: Value associated with this variable.

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at component level.

Usage This component can be used alone or as a sub-job along with another component.

Limitation Knowledge of the Groovy language is required.

Scenario: Calling a file which contains Groovy code

This scenario uses tGroovyFile, on its own. The Job calls a file containing Groovy code in order to display the
file information in the Console. Below, is an example of the information displayed:

Setting up the Job

Open the Custom_Code folder in the Palette and drop a tGroovyFile component onto the workspace.

Configuring the tGroovyFile component

1. Double-click the component to display the Component view.

2. In the Groovy File field, enter the path to the file containing the Groovy code, or browse to the file in your
directory.

3. In the Variables table, add a line by clicking the [+] button.



Scenario: Calling a file which contains Groovy code

350 Talend Open Studio Components Reference Guide

4. In the Name column, enter “age”, then in the Value column, enter 50, as in the screenshot.

Job execution

Press F6 to save and run the Job.

The Console displays the information contained in the input file, to which the variable result is added.



tJava

Talend Open Studio Components Reference Guide 351

tJava

tJava properties

Component family Custom Code

Function tJava enables you to enter personalized code in order to integrate it in Talend program. You
can execute this code only once.

Purpose tJava makes it possible to extend the functionalities of a Talend Job through using Java
commands.

Basic settings Code Type in the Java code you want to execute according to the task
you need to perform. For further information about Java functions
syntax specific to Talend, see Talend Open Studio Online Help
(Help Contents > Developer Guide > API Reference).

For a complete Java reference, check http://docs.oracle.com/
javaee/6/api/

Advanced settings Import Enter the Java code that helps to import, if necessary, external
libraries used in the Main code box of the Basic settings view.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is generally used as a one-component subjob.

Limitation You should know Java language.

Scenario: Printing out a variable content

The following scenario is a simple demo of the extended application of the tJava component. The Job aims at
printing out the number of lines being processed using a Java command and the global variable provided in Talend
Open Studio.

Setting up the Job

1. Select and drop the following components from the Palette onto the design workspace: tFileInputDelimited,
tFileOutputExcel, tJava.

http://docs.oracle.com/javaee/6/api/
http://docs.oracle.com/javaee/6/api/


Scenario: Printing out a variable content

352 Talend Open Studio Components Reference Guide

2. Connect the tFileInputDelimited to the tFileOutputExcel using a Row Main connection. The content
from a delimited txt file will be passed on through the connection to an xls-type of file without further
transformation.

3. Then connect the tFileInputDelimited component to the tJava component using a Trigger > On Subjob
Ok link. This link sets a sequence ordering tJava to be executed at the end of the main process.

Configuring the input component

1. Set the Basic settings of the tFileInputDelimited component.

2. Define the path to the input file in the File name field.

The input file used in this example is a simple text file made of two columns: Names and their respective
Emails.

3. Click the Edit Schema button, and set the two-column schema. Then click OK to close the dialog box.

4. When prompted, click OK to accept the propagation, so that the tFileOutputExcel component gets
automatically set with the input schema.

Configuring the output component

Set the output file to receive the input content without changes. If the file does not exist already, it will get created.



Scenario: Printing out a variable content

Talend Open Studio Components Reference Guide 353

In this example, the Sheet name is Email and the Include Header box is selected.

Configuring the tJava component

1. Then select the tJava component to set the Java command to execute.

2. In the Code area, type in the following command:

String var = "Nb of line processed: ";
var = var + globalMap.get("tFileInputDelimited_1_NB_LINE");
System.out.println(var);

In this use case, we use the NB_Line variable. To access the global variable list, press Ctrl + Space bar on
your keyboard and select the relevant global parameter.

Job execution

Save your Job and press F6 to execute it.



Scenario: Printing out a variable content

354 Talend Open Studio Components Reference Guide

The content gets passed on to the Excel file defined and the Number of lines processed are displayed on the Run
console.



tJavaFlex

Talend Open Studio Components Reference Guide 355

tJavaFlex

tJavaFlex properties

Component family Custom Code

Function tJavaFlex enables you to enter personalized code in order to integrate it in Talend program.
With tJavaFlex, you can enter the three java-code parts (start, main and end) that constitute a
kind of component dedicated to do a desired operation.

Objective tJava makes it possible to extend the functionalities of a Talend Job through using Java
commands.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in.

Click Sync columns to retrieve the schema from the previous
component in the Job.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Data Auto Propagate Select this check box to automatically propagate the data to the
component that follows.

Start code Enter the Java code that will be called during the initialization
phase.

Main code Enter the Java code to be applied for each line in the data flow.

End code Enter the Java code that will be called during the closing phase.

Advanced settings Import Enter the Java code that helps to import, if necessary, external
libraries used in the Main code box of the Basic settings view.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
job level as well as at each component level.

Usage You can use this component as a start, intermediate or output component. You can as well use
it as a one-component subjob.

Limitation You should know the Java language.

Scenario 1: Generating data flow

This scenario describes a two-components Job that generates a three-line data flow describing different personal
titles (Miss, Mrs, and Mr) and displaying them on the console.



Scenario 1: Generating data flow

356 Talend Open Studio Components Reference Guide

Setting up the Job

1. Drop tJavaFlex and tLogRow from the Palette onto the design workspace.

2. Connect the components together using a Row > Main link.

Configuring the tJavaFlex component

1. Double-click tJavaFlex to display its Basic settings view and define its properties.

2. Click the three-dot button next to Edit schema to open the corresponding dialog box where you can define
the data structure to pass to the component that follows.

3. Click the [+] button to add two columns: key and value and then set their types to Integer and String
respectively.



Scenario 1: Generating data flow

Talend Open Studio Components Reference Guide 357

4. Click OK to validate your changes and close the dialog box.

5. In the Basic settings view of tJavaFlex, select the Data Auto Propagate check box to automatically
propagate data to the component that follows.

In this example, we do not want to do any transformation on the retrieved data.

6. In the Start code field, enter the code to be executed in the initialization phase.

In this example, the code indicates the initialization of tJavaFlex by displaying the START message and sets
up the loop and the variables to be used afterwards in the Java code:

System.out.println("## START\n#");
String [] valueArray = {"Miss", "Mrs", "Mr"};

for (int i=0;i<valueArray.length;i++) {

7. In the Main code field, enter the code you want to apply on each of the data rows.

In this example, we want to display each key with its value:

row1.key = i;
row1.value = valueArray[i];

In the Main code field, "row1" corresponds to the name of the link that comes out of tJavaFlex. If you rename this
link, you have to modify the code of this field accordingly.

8. In the End code field, enter the code that will be executed in the closing phase.

In this example, the brace (curly bracket) closes the loop and the code indicates the end of the execution of
tJavaFlex by displaying the END message:

}
System.out.println("#\n## END");

9. If needed, double-click tLogRow and in its Basic settings view, click the [...] button next to Edit schema
to make sure that the schema has been correctly propagated.



Scenario 2: Processing rows of data with tJavaFlex

358 Talend Open Studio Components Reference Guide

Saving and executing the Job

1. Save your Job by pressing Ctrl+S.

2. Execute the Job by pressing F6 or clicking Run on the Run tab.

The three personal titles are displayed on the console along with their corresponding keys.

Scenario 2: Processing rows of data with tJavaFlex

This scenario describes a two-component Job that generates random data and then collects that data and does some
transformation on it line by line using Java code through the tJavaFlex component.

Setting up the Job

1. Drop tRowGenerator and tJavaFlex from the Palette onto the design workspace.

2. Connect the components together using a Row Main link.

Configuring the input component

1. Double-click tRowGenerator to display its Basic settings view and the [RowGenerator Editor] dialog box
where you can define the component properties.



Scenario 2: Processing rows of data with tJavaFlex

Talend Open Studio Components Reference Guide 359

2. Click the plus button to add four columns: number, txt, date and flag.

3. Define the schema and set the parameters to the four columns according to the above capture.

4. In the Functions column, select the three-dot function [...] for each of the defined columns.

5. In the Parameters column, enter 10 different parameters for each of the defined columns. These 10
parameters corresponds to the data that will be randomly generated when executing tRowGenerator.

6. Click OK to validate your changes and close the editor.

Configuring the tJavaFlex component

1. Double-click tJavaFlex to display its Basic settings view and define the components properties.

2. Click Sync columns to retrieve the schema from the preceding component.

3. In the Start code field, enter the code to be executed in the initialization phase.

In this example, the code indicates the initialization of the tJavaFlex component by displaying the START
message and defining the variable to be used afterwards in the Java code:

System.out.println("## START\n#");



Scenario 2: Processing rows of data with tJavaFlex

360 Talend Open Studio Components Reference Guide

int i = 0;

4. In the Main code field, enter the code to be applied on each line of data.

In this example, we want to show the number of each line starting from 0 and then the number and the random
text transformed to upper case and finally the random date set in the editor of tRowGenerator. Then, we
create a condition to show if the status is true or false and we increment the number of the line:

System.out.print(" row" + i + ":");
System.out.print("# number:" + row1.number);
System.out.print (" | txt:" + row1.txt.toUpperCase());
System.out.print(" | date:" + row1.date);
if(row1.flag) System.out.println(" | flag: true");
else  System.out.println(" | flag: false");

i++;

In the Main code field, "row1" corresponds to the name of the link that connects to tJavaFlex. If you rename this
link, you have to modify the code.

5. In the End code field, enter the code that will be executed in the closing phase.

In this example, the code indicates the end of the execution of tJavaFlex by displaying the END message:

System.out.println("#\n## END");

Saving and executing the Job

1. Save your Job by pressing Ctrl+S.

2. Execute the Job by pressing F6 or clicking Run on the Run tab.



Scenario 2: Processing rows of data with tJavaFlex

Talend Open Studio Components Reference Guide 361

The console displays the randomly generated data that was modified by the java command set through
tJavaFlex.



tJavaRow

362 Talend Open Studio Components Reference Guide

tJavaRow

tJavaRow properties

Component Family Custom Code

Function tJavaRow allows you to enter customized code which you can integrate in a Talend programme.
With tJavaRow, you can enter the Java code to be applied to each row of the flow.

Purpose tJavaRow allows you to broaden the functionality of Talend Jobs, using the Java language.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in.

Click Sync columns to retrieve the schema from the previous
component in the Job.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Code Enter the Java code to be applied to each line of the data flow.

Advanced settings Import Enter the Java code required to import, if required, the external
library used in the Main code field of the Basic settings tab.

tStatCatcher Statistics Select this check box to collect the log data at a component level..

Usage This component is used as an intermediary between two other components. It must be linked to
both an input and an output component.

Limitation Knowledge of Java language is necessary.

Scenario: Transforming data line by line using
tJavaRow

In this scenario, the information of a few cities read from an input delimited file is transformed using Java code
through the tJavaRow component and printed on the console.



Scenario: Transforming data line by line using tJavaRow

Talend Open Studio Components Reference Guide 363

Setting up the Job

1. Drop a tFileInputDelimited component and a tJavaRow component from the Palette onto the design
workspace, and label them to better identify their roles in the Job.

2. Connect the two components using a Row > Main connection.

Configuring the components

1. Double-click the tFileInputDelimited component to display its Basic settings view in the Component tab.

2. In the File name/Stream field, type in the path to the input file in double quotation marks, or browse to the
path by clicking the [...] button, and define the first line of the file as the header.

In this example, the input file has the following content:

City;Population;LandArea;PopDensity
Beijing;10233000;1418;7620
Moscow;10452000;1081;9644
Seoul;10422000;605;17215
Tokyo;8731000;617;14151
New York;8310000;789;10452

3. Click the [...] button next to Edit schema to open the [Schema] dialog box, and define the data structure of
the input file. Then, click OK to validate the schema setting and close the dialog box.



Scenario: Transforming data line by line using tJavaRow

364 Talend Open Studio Components Reference Guide

4. Double-click the tJavaRow component to display its Basic settings view in the Component tab.

5. Click Sync columns to make sure that the schema is correctly retrieved from the preceding component.

6. In the Code field, enter the code to be applied on each line of data based on the defined schema columns.

In this example, we want to transform the city names to upper case, group digits of numbers larger than 1000
using the thousands separator for ease of reading, and print the data on the console:

System.out.print("\n" + row1.City.toUpperCase() + ":");
System.out.print("\n  - Population: " 
+ FormatterUtils.format_Number(String.valueOf(row1.Population), ',', '.')
+ " people");
System.out.print("\n  - Land area: " 
+ FormatterUtils.format_Number(String.valueOf(row1.LandArea), ',', '.') 
+ " km2");
System.out.print("\n  - Population density: " 
+ FormatterUtils.format_Number(String.valueOf(row1.PopDensity), ',', '.') 
+ " people/km2\n");

In the Code field, "row1" refers to the name of the link that connects to tJavaRow. If you rename the link, you have
to modify the code.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.



Scenario: Transforming data line by line using tJavaRow

Talend Open Studio Components Reference Guide 365

The city information is transformed by the Java code set through tJavaRow and displayed on the console.



tLibraryLoad

366 Talend Open Studio Components Reference Guide

tLibraryLoad

tLibraryLoad properties

Famille de composant Custom Code

Function tLibraryLoad allows you to import a library.

Purpose tLibraryLoad allows you to load useable Java libraries in a Job.

Basic settings Library Select the library you want to import from the list, or click on the
[...] button to browse to the library in your directory.

Advanced settings Dynamic Libs Lib Paths: Enter the access path to your library, between double
quotation marks.

Import Enter the Java code required to import, if required, the external
library used in the Main code field of the Basic settings tab.

tStatCatcher Statistics Select this check box to collect the log data at component level.

Usage This component may be used alone, although it is more logical to use it as part of a Job.

Limitation n/a

Scenario: Checking the format of an e-mail addressl

This scenario uses two components, a tLibraryLoad and a tJava. The goal of this scenario is to check the format
of an e-mail address and verify whether the format is valid or not.

Setting up the Job

1. In the Palette, open the Custom_Code folder, and slide a tLibraryLoad and tJava component onto the
workspace.

2. Connect tLibraryLoad to tJava using a Trigger > OnSubjobOk link.



Scenario: Checking the format of an e-mail addressl

Talend Open Studio Components Reference Guide 367

Configuring the tLibraryLoad component

1. Double-click on tLibraryLoad to display its Basic settings. From the Library list, select jakarta-
oro-2.0.8.jar.

2. In the Import field of the Advanced settings tab, type import org.apache.oro.text.regex.*;

Configuring the tJava component

1. Double-click on tJava to display its Component view.

2. In the Basic settings tab, enter your code, as in the screenshot below. The code allows you to check whether
the character string pertains to an e-mail address, based on the regular expression: "^[\\w_.-]+@[\\w_.-]+
\\.[\\w]+$".

Job execution

Press F6 to save and run the Job.



Scenario: Checking the format of an e-mail addressl

368 Talend Open Studio Components Reference Guide

The Console displays the boolean false. Hence, the e-mail address is not valid as the format is incorrect.



tSetGlobalVar

Talend Open Studio Components Reference Guide 369

tSetGlobalVar

tSetGlobalVar properties

Component family Custom Code

Function tSetGlobalVar allows you to define and set global variables in GUI.

Purpose tSetGlobalVar facilitates the process of defining global variables.

Basic settings Variables This table contains two columns.

Key: Name of the variable to be called in the code.

Value: Value assigned to this variable.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is generally used as a one-component subjob.

Limitation Knowledge of Java language is required.

Scenario: Printing out the content of a global variable

This scenario is a simple Job that prints out the value of a global variable defined in the tSetGlobalVar component.

Setting up the Job

1. Drop the following components from the Palette onto the design workspace: tSetGlobalVar and tJava.

2. Connect the tSetGlobalVar component to the tJava component using a Trigger > OnSubjobOk connection.

Configuring the tSetGlobalVar component

1. Double-click the tSetGlobalVar component to display its Basic settings view.



Scenario: Printing out the content of a global variable

370 Talend Open Studio Components Reference Guide

2. Click the plus button to add a line in the Variables table, and fill the Key and Value fields with K1 and
20 respectively.

3. Then double-click the tJava component to display its Basic settings view.

4. In the Code area, type in the following lines:

String foo = "bar";
String K1;
String Result = "The value is:";

Result = Result + globalMap.get("K1");

System.out.println(Result);

In this use case, we use the Result variable. To access the global variable list, press Ctrl + Space bar on your
keyboard and select the relevant global parameter.

Job execution

Save your Job and press F6 to execute it.

The content of global variable K1 is displayed on the console.



Talend Open Studio Components Reference Guide

Data Quality components
This chapter details the main components that you can find in the Data Quality family of the Palette in the
Integration perspective of the Talend Studio.

The Data Quality family comprises dedicated components that help you improve the quality of your data. These
components covers various needs such as narrow down filtering the unique row, calculating CRC, finding data
based on fuzzy matching, and so on.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.



tAddCRCRow

372 Talend Open Studio Components Reference Guide

tAddCRCRow

tAddCRCRow properties

Component family Data Quality

Function tAddCRCRow calculates a surrogate key based on one or several columns and adds it to the
defined schema.

Purpose Providing a unique ID helps improving the quality of processed data.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or remote in the Repository. In this
component, a new CRC column is automatically added.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
designs. Related topic: see Talend Open Studio User Guide.

Implication Select the check box facing the relevant columns to be used for the
surrogate key checksum.

Advanced Settings CRC type Select a CRC type in the list. The longer the CRC, the least overlap
you will have.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component is an intermediary step. It requires an input flow as well as an output.

Limitation n/a

Scenario: Adding a surrogate key to a file
This scenario describes a Job adding a surrogate key to a delimited file schema.

Setting up the Job

1. Drop the following components: tFileInputDelimited, tAddCRCRow and tLogRow.

2. Connect them using a Main row connection.

Configuring the input component

1. In the tFileInputDelimited Component view, set the File Name path and all related properties in case these
are not stored in the Repository.



Scenario: Adding a surrogate key to a file

Talend Open Studio Components Reference Guide 373

2. Create the schema through the Edit Schema button, if the schema is not stored already in the Repository.
Remember to set the data type column and for more information on the Date pattern to be filled in, visit http://
docs.oracle.com/javase/6/docs/api/index.html.

Configuring the tAddCRCRow component

1. In the tAddCRCRow Component view, select the check boxes of the input flow columns to be used to
calculate the CRC.

Notice that a CRC column (read-only) has been added at the end of the schema.

2. Select CRC32 as CRC Type to get a longer surrogate key.

3. In the Basic settings view of tLogRow, select the Print values in cells of a table option to display the output
data in a table on the Console.

Job execution

Then save your Job and press F6 to execute it.

http://docs.oracle.com/javase/6/docs/api/index.html
http://docs.oracle.com/javase/6/docs/api/index.html


Scenario: Adding a surrogate key to a file

374 Talend Open Studio Components Reference Guide

An additional CRC Column has been added to the schema calculated on all previously selected columns (in this
case all columns of the schema).



tChangeFileEncoding

Talend Open Studio Components Reference Guide 375

tChangeFileEncoding

tChangeFileEncoding component belongs to two component families: Data Quality and File. For more
information about tChangeFileEncoding, see section tChangeFileEncoding.



tExtractRegexFields

376 Talend Open Studio Components Reference Guide

tExtractRegexFields

tExtractRegexFields belongs to two component families: Data Quality and Processing. For more information on
tExtractRegexFields, see section tExtractRegexFields.



tFuzzyMatch

Talend Open Studio Components Reference Guide 377

tFuzzyMatch

tFuzzyMatch properties

Component family Data Quality

Function Compares a column from the main flow with a reference column from the lookup flow and
outputs the main flow data displaying the distance

Purpose Helps ensuring the data quality of any source data against a reference data source.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Two read-only columns, Value and Match are added to the output
schema automatically.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job
designs. Related topic: see Talend Open Studio User Guide.

Matching type Select the relevant matching algorithm among:

Levenshtein: Based on the edit distance theory. It calculates the
number of insertion, deletion or substitution required for an entry
to match the reference entry.

Metaphone: Based on a phonetic algorithm for indexing entries
by their pronunciation. It first loads the phonetics of all entries of
the lookup reference and checks all entries of the main flow against
the entries of the reference flow.

Double Metaphone: a new version of the Metaphone phonetic
algorithm, that produces more accurate results than the original
algorithm. It can return both a primary and a secondary code for
a string. This accounts for some ambiguous cases as well as for
multiple variants of surnames with common ancestry.

Min distance (Levenshtein only) Set the minimum number of changes allowed to
match the reference. If set to 0, only perfect matches are returned.

Max distance (Levenshtein only) Set the maximum number of changes allowed
to match the reference.

Matching column Select the column of the main flow that needs to be checked against
the reference (lookup) key column

Unique matching Select this check box if you want to get the best match possible, in
case several matches are available.

Matching item separator In case several matches are available, all of them are displayed
unless the unique match box is selected. Define the delimiter
between all matches.

Usage This component is not startable (green background) and it requires two input components and
an output component.



Scenario 1: Levenshtein distance of 0 in first names

378 Talend Open Studio Components Reference Guide

Scenario 1: Levenshtein distance of 0 in first names

This scenario describes a four-component Job aiming at checking the edit distance between the First Name column
of an input file with the data of the reference input file. The output of this Levenshtein type check is displayed
along with the content of the main flow on a table

• Drag and drop the following components from the Palette to the design workspace: tFileInputDelimited (x2),
tFuzzyMatch, tFileOutputDelimited.

• Define the first tFileInputDelimited Basic settings. Browse the system to the input file to be analyzed and most
importantly set the schema to be used for the flow to be checked.

• In the schema, set the Type of data in the Java version, especially if you are in Built-in mode.

• Link the defined input to the tFuzzyMatch using a Main row link.

• Define the second tFileInputDelimited component the same way.

Make sure the reference column is set as key column in the schema of the lookup flow.

• Then connect the second input component to the tFuzzyMatch using a main row (which displays as a Lookup
row on the design workspace).

• Select the tFuzzyMatch Basic settings.

• The Schema should match the Main input flow schema in order for the main flow to be checked against the
reference.

• Note that two columns, Value and Matching, are added to the output schema. These are standard matching
information and are read-only.

• Select the method to be used to check the incoming data. In this scenario, Levenshtein is the Matching type
to be used.



Scenario 2: Levenshtein distance of 1 or 2 in first names

Talend Open Studio Components Reference Guide 379

• Then set the distance. In this method, the distance is the number of char changes (insertion, deletion or
substitution) that needs to be carried out in order for the entry to fully match the reference.

• In this use case, we want the distance be of 0 for the min. or for the max. This means only the exact matches
will be output.

• Also, clear the Case sensitive check box.

• And select the column of the main flow schema that will be selected. In this example, the first name.

• No need to select the Unique matching check box nor hence the separator.

• Link the tFuzzyMatch to the standard output tLogRow. No other parameters than the display delimiter is to
be set for this scenario.

• Save the Job and press F6 to execute the Job.

As the edit distance has been set to 0 (min and max), the output shows the result of a regular join between the main
flow and the lookup (reference) flow, hence only full matches with Value of 0 are displayed.

A more obvious example is with a minimum distance of 1 and a max. distance of 2, see section Scenario 2:
Levenshtein distance of 1 or 2 in first names

Scenario 2: Levenshtein distance of 1 or 2 in first
names

This scenario is based on the scenario 1 described above. Only the min and max distance settings in tFuzzyMatch
component get modified, which will change the output displayed.



Scenario 3: Metaphonic distance in first name

380 Talend Open Studio Components Reference Guide

• In the Component view of the tFuzzyMatch, change the min distance from 0 to 1. This excludes straight away
the exact matches (which would show a distance of 0).

• Change also the max distance to 2 as the max distance cannot be lower than the min distance. The output will
provide all matching entries showing a discrepancy of 2 characters at most.

• No other change of the setting is required.

• Make sure the Matching item separator is defined, as several references might be matching the main flow
entry.

• Save the new Job and press F6 to run it.

As the edit distance has been set to 2, some entries of the main flow match several reference entries.

You can also use another method, the metaphone, to assess the distance between the main flow and the reference,

Scenario 3: Metaphonic distance in first name

This scenario is based on the scenario 1 described above.



Scenario 3: Metaphonic distance in first name

Talend Open Studio Components Reference Guide 381

• Change the Matching type to Metaphone. There is no min nor max distance to set as the matching method is
based on the discrepancies with the phonetics of the reference.

• Save the Job and press F6. The phonetics value is displayed along with the possible matches.



tIntervalMatch

382 Talend Open Studio Components Reference Guide

tIntervalMatch

tIntervalMatch properties

Component family Data Quality

Function tIntervalMatch receives a main flow and aggregates it based on join to a lookup flow (Java).
Then it matches a specified value to a range of values and returns related information.

Purpose Helps to return a value based on a Join relation.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job
flowcharts. Related topic: see Talend Open Studio User Guide.

Search column Select the main flow column containing the values to be matched
to a range of values

Column (LOOKUP) Select the lookup flow column containing the values to be returned
when the Join is ok.

Lookup Column min/
bounds strictly (min)

Select the column containing the min value of the tange. Select the
check box if the boundary is strict.

Lookup Column max/
bounds strictly (max)

Select the column containing the max value of the tange. Select the
check box if the boundary is strict.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component handles flow of data therefore it requires input and output, hence is defined as
an intermediary step.

Limitation n/a

Scenario: Identifying Ip country

In this Job, a incoming main flow provides 2 columns: Documents and IP dummy values. A second file used as
lookup flow in Java contains a list of sorted IP ranges and their corresponding country. This Job aims at retrieving
each document’s country from their IP value, in other words, creating a Join between the main flow and the lookup
flow.



Scenario: Identifying Ip country

Talend Open Studio Components Reference Guide 383

The Job requires one extra tFileInputDelimited, a tIntervalMatch and a tLogRow.

• Drop the components onto the design workspace.

• Set the basic settings of the tFileInputDelimited component.

• The schema is made of two columns, respectively Document and IP

• Set the Type column on String for the Document column and Integer for the IP column.

• Set now the second tFileInputDelimited properties.

• Don’t forget to define the Type of data.

• Propagate the schema from the incoming main flow to the tIntervalMatch component.



Scenario: Identifying Ip country

384 Talend Open Studio Components Reference Guide

• Note that the output schema from the tIntervalMatch component is read-only and is made of the input schema
plus an extra Lookup column which will output the requested lookup data.

• Set the other properties of the tIntervalMatch component.

• Set the tIntervalMatch other properties such as the min and max column corresponding to the range bounds.

• In the Column Lookup field, select the column where are the values to be returned.

• In the Search column field, select the main flow column containing the values to be matched to the range values.

• The tLogRow component does not require any specific setting for this Job.

Following result is displayed:

Only requested values (country) are included in the output.



tReplaceList

Talend Open Studio Components Reference Guide 385

tReplaceList

tReplaceList Properties

Component family Data Quality

Function Carries out a Search and Replace operation in the input columns defined based on an external
lookup.

Purpose Helps to cleanse all files before further processing.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Two read-only columns, Value and Match are added to the output
schema automatically.

The data Type defined in the schemas must be consistent,
ie., an integer can only be replaced by another integer
using an integer as a look up field. Values of one type
cannot be replaced by values of another type.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job
designs. Related topic: see Talend Open Studio User Guide.

Lookup search column Type in the position number of the column to be searched in the
lookup schema.

0: first column read

1: second column read

n: position number of the column in the schema read.

In order to ensure the uniqueness of values being
searched, make sure this column is marked as Key in
your lookup schema.

Lookup replacement column Type in the position number of the column where the replacement
values are stored.

0: first column read

1: second column read

n: position number of the column in the schema read

Column options Select the columns of the main flow where the replacement is to
be carried out.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage tReplaceList is an intermediary component. It requires an input flow and an output component.



Scenario: Replacement from a reference file

386 Talend Open Studio Components Reference Guide

Scenario: Replacement from a reference file

If you are using Talend Open Studio for Big Data, only the Built-in mode is available for the property and schema.

The following Job searches and replaces a list of countries with their corresponding codes. The relevant codes
are taken from a reference file placed as lookup flow in the Job. The main flow is replicated and both outputs are
displayed on the console, in order to show the main flow before and after replacement.

• Drop the following components from the Palette to the design workspace: tMysqlInput, tFileInputDelimited,
tReplicate, tReplaceList and tLogRow (x2). Note that if your input schemas are stored in the Repository, you
can simply drag and drop the relevant node from the Repository’s Metadata Manager onto the design workspace
to retrieve automatically the input components’ setting. For more information, see Talend Open Studio User
Guide.

• Connect the components using Main Row connections via a right-click on each component. Notice that the
main row coming from the reference flow (tFileInputDelimited) is called a lookup row.

• Select the tMysqlInput component and set the input flow parameters.

• The input schema is made of two columns: Names, States. The column States gathered the name of the United
States of America which are to be replaced by their respective code.

• In the Query field, make sure the State column is included in the Select statement. In this use case, all columns
are selected.

• Check the tReplicate component setting. The schema is simply duplicated into two identical flows, but no
change to the schema can be made.



Scenario: Replacement from a reference file

Talend Open Studio Components Reference Guide 387

• Then double-click on the tFileInputDelimited component, to set the reference file.

• The file includes two columns: Postal, State where Postal provides the zipcode corresponding to the name given
in the respective row of the State column.

• The fields are delimited by semicolons and rows are separated by carriage returns.

• Edit the lookup flow schema.

• Make sure the lookup search column (in this use case: State) is a key, in order to ensure the uniqueness of the
values being searched.

• Select the tReplaceList and set the operation to carry out.

• The schema is retrieved from the previous component of the main flow.

• In Lookup search index field, type in the position index of the column being searched. In this use case, State
is the second column of the lookup input file, therefore type in 1 in this field.

• In Lookup replacement index field, fill in the position number of the column containing the replacement
values, in this example: Postal for the State codes.

• In the Column options table, select the States column as in this use case, the State names are to be replaced
with their corresponding code.



Scenario: Replacement from a reference file

388 Talend Open Studio Components Reference Guide

• In both tLogRow components, select the Print values in table cells check box for a better readability of the
outputs.

• Save the Job and press F6 to execute it.

The first flow output shows the States column with full state names as it comes from the main input flow.

The second flow output shows the States column after the State column names have been replaced with their
respective codes.



tSchemaComplianceCheck

Talend Open Studio Components Reference Guide 389

tSchemaComplianceCheck

tSchemaComplianceCheck Properties

Component family Data Quality

Function Validates all input rows against a reference schema or check types, nullability, length of rows against
reference values. The validation can be carried out in full or partly.

Purpose Helps to ensure the data quality of any source data against a reference data source.

Basic settings Base Schema and Edit schema A schema is a row description, i.e., it defines the number of fields that
will be processed and passed on to the next component. The schema is
either built-in or remote in the Repository.

Describe the structure and nature of your data to be processed as it is.

If you are using Talend Open Studio for Big Data, only the Built-in
mode is available.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the Repository,
hence can be reused in various projects and Job designs. Related topic:
see Talend Open Studio User Guide.

Check all columns from
schema

Select this option to carry out all checks on all columns against the base
schema.

Custom defined Select this option to carry out particular checks on particular columns.
When this option is selected, the Checked Columns table shows.

Checked Columns In this table, define what checks are to be carried out on which columns.

Column: Displays the columns names.

Type: Select the type of data each column is supposed to contain. This
validation is mandatory for all columns.

Date pattern: Define the expected date format for each column with
the data type of Date.

Nullable: Select the check box in an individual column to define the
column to be nullable, that is, to allow empty rows in this column to go
to the output flow regardless of the base schema definition. To define
all columns to be nullable, select the check box in the table header.

Undefined or empty: Select the check box in an individual column
to reject empty rows in this column while the column is not nullable
in the base schema definition. To carry out this verification on all the
columns, select the check box in the table header.

Max length: Select the check box in an individual column to verify
the data length of the column against the length definition of the base
schema. To carry out this verification on all the columns, select the
check box in the table header.

Use another schema for
compliance check

Define a reference schema as you expect the data to be, in order to reject
the non-compliant data.

It can be restrictive on data type, null values, and/or length.

Trim the excess content of
column when length checking
chosen and the length is
greater than defined length

With any of the three modes of tSchemaComplianceCheck, select this
check box to truncate the data that exceeds the length specified rather
than reject it.

This option is applicable only on data of String type.



Scenario: Validating data against schema

390 Talend Open Studio Components Reference Guide

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Use Fastest Date Check Select this check box to perform a fast date format check using the
TalendDate.isDate() method of the TalendDate system routine if Date
pattern is not defined. For more information about routines, see Talend
Open Studio User Guide.

Treat all empty string as
NULL

Select this check box to treat any empty fields in any columns as null
values, instead of empty strings.

By default, this check box is selected. When it is cleared, the Choose
Column(s) table shows to let you select individual columns.

Usage This component is an intermediary step in the flow allowing to exclude from the main flow the non-
compliant data. This component cannot be a start component as it requires an input flow. It also requires
at least one output component to gather the validated flow, and possibly a second output component
for rejected data using Rejects link. For more information, see Talend Open Studio User Guide.

Scenario: Validating data against schema

This very basic scenario shows how to check the type, nullability and length of an incoming flow against a defined
reference schema. The incoming flow comes from a simple CSV file that contains heterogeneous data including
wrong data type, data exceeding the maximum length, wrong ID and null values in non-nullable columns, as
shown below:

Upon validation, the valid rows and the rejected rows are displayed respectively in two tables on the Run console.

• Drop the following components: a tFileInputDelimited, a tSchemaComplianceCheck, and two tLogRow
components from the Palette to the design workspace.

• Connect the tFileInputDelimited component to the tSchemaComplianceCheck component using a Row >
Main connection.

• Connect the tSchemaComplianceCheck component to the first tLogRow component using a Row > Main
connection. This output flow will gather the valid data.



Scenario: Validating data against schema

Talend Open Studio Components Reference Guide 391

• Connect the tSchemaComplianceCheck component to the second tLogRow component using a Row > Rejects
connection. This second output flow will gather the non-compliant data.

• Select the Rejects connection, and notice that the schema passed to the second tLogRow contains two more
columns: ErrorCode and ErrorMessage. These two read-only columns provide information about the rejected
data to ease error handling and troubleshooting if needed.

• Double-click the tFileInputDelimited component to display its Basic settings view.

• Fill in the File name field by browsing to the input file.

• Specify the header row. In this use case, the first row of the input file is the header row.

• Leave the other parameters as they are.

• Click Edit schema to describe the data structure of the input file. In this use case, the schema is made of five
columns: ID, Name, BirthDate, State, and City.

• Leave the Type field as permissive as possible. You will define the actual type of the data in the
tSchemaComplianceCheck component.

• Fill the Length field for the Name, State and City columns with 7, 10 and 10 respectively.

• Click OK to propagate the schema and close the schema dialog box.

• Double-click the tSchemaComplianceCheck component to display its Basic settings view, wherein you will
define most of the validation parameters.



Scenario: Validating data against schema

392 Talend Open Studio Components Reference Guide

• Select the Custom defined option in the Mode area to perform custom defined checks.

In this example, we use the Checked columns table to set the validation parameters. However, you can also
select the Check all columns from schema check box if you want to perform all the checks (type, nullability
and length) on all the columns against the base schema, or select the Use another schema for compliance
check option and define a new schema as the expected structure of the data.

• In the Checked Columns table, define the checks to be performed. In this use case:

- The type of the ID column should be Int.

- The length of the Name, State and City columns should be checked.

- The type of the BirthDate column should be Date, and the expected date pattern is dd-MM-yyyy.

- All the columns should be checked for null values, so clear the Nullable check box for all the columns.

To send rows containing fields exceeding the defined maximum length to the reject flow, make sure that the Trim the excess
content of column when length checking chosen and the length is greater than defined length check box is cleared.

• In the Advanced settings view of the tSchemaComplianceCheck component, select the Treat all empty
string as NULL option to sent any rows containing empty fields to the reject flow.

• To view the validation result in tables on the Run console, double-click each tLogRow component and select
the Table option in the Basic settings view.

• Save your Job and press F6 to launch it.

Two tables are displayed on the console, showing the valid data and rejected data respectively.



Scenario: Validating data against schema

Talend Open Studio Components Reference Guide 393



tUniqRow

394 Talend Open Studio Components Reference Guide

tUniqRow

tUniqRow Properties

Component family Data Quality

Function Compares entries and sorts out duplicate entries from the input flow.

Purpose Ensures data quality of input or output flow in a Job.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the number of fields that
will be processed and passed on to the next component. The schema
is either built-in or remote in the Repository.

If you are using Talend Open Studio for Big Data, only the Built-in
mode is available.

Click Edit Schema to make changes to the schema. Note that if you
make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job
flowcharts. Related topic: see Talend Open Studio User Guide.

Unique key In this area, select one or more columns to carry out deduplication on
the particular column(s)

- Select the Key attribute check box to carry out deduplication on
all the columns

- Select the Case sensitive check box to differentiate upper case and
lower case

Advanced settings Only once each duplicated key Select this check box if you want to have only the first duplicated
entry in the column(s) defined as key(s) sent to the output flow for
duplicates.

Use of disk (suitable for
processing large row set)

Select this check box to enable generating temporary files on the hard
disk when processing a large amount of data. This helps to prevent
Job execution failure caused by memory overflow. With this check
box selected, you need also to define:

- Buffer size in memory: Select the number of rows that can be
buffered in the memory before a temporary file is to be generated on
the hard disk.

- Directory for temp files: Set the location where the temporary files
should be stored.

Make sure that you specify an existing directory for
temporary files; otherwise your Job execution will fail.

tStatCatcher Statistics Select this check box to gather the job processing metadata at a job
level as well as at each component level.

Usage This component handles flow of data therefore it requires input and output, hence is defined as an
intermediary step.

Limitation n/a



Scenario 1: Deduplicating entries

Talend Open Studio Components Reference Guide 395

Scenario 1: Deduplicating entries

In this five-component Job, we will sort entries on an input name list, find out duplicated names, and display the
unique names and the duplicated names on the Run console.

Setting up the Job

1. Drop a tFileInputDelimited, a tSortRow, a tUniqRow, and two tLogRow components from the Palette to
the design workspace, and name the components as shown above.

2. Connect the tFileInputDelimited component, the tSortRow component, and the tUniqRow component
using Row > Main connections.

3. Connect the tUniqRow component and the first tLogRow component using a Main > Uniques connection.

4. Connect the tUniqRow component and the second tLogRow component using a Main > Duplicates
connection.

Configuring the components

1. Double-click the tFileInputDelimited component to display its Basic settings view.

2. Click the [...] button next to the File Name field to browse to your input file.

3. Define the header and footer rows. In this use case, the first row of the input file is the header row.

4. Click Edit schema to define the schema for this component. In this use case, the input file has five columns:
Id, FirstName, LastName, Age, and City. Then click OK to propagate the schema and close the schema editor.



Scenario 1: Deduplicating entries

396 Talend Open Studio Components Reference Guide

5. Double-click the tSortRow component to display its Basic settings view.

6. To rearrange the entries in the alphabetic order of the names, add two rows in the Criteria table by clicking
the plus button, select the FirstName and LastName columns under Schema column, select alpha as the
sorting type, and select the sorting order.

7. Double-click the tUniqRow component to display its Basic settings view.

8. In the Unique key area, select the columns on which you want deduplication to be carried out. In this use
case, you will sort out duplicated names.

9. In the Basic settings view of each of the tLogRow components, select the Table option to view the Job
execution result in table mode.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Run the Job by pressing F6 or clicking the Run button on the Run tab.

The unique names and duplicated names are displayed in different tables on the Run console.



Scenario 1: Deduplicating entries

Talend Open Studio Components Reference Guide 397



tUniservBTGeneric

398 Talend Open Studio Components Reference Guide

tUniservBTGeneric

This component will be available in the Palette of the studio on the condition that you have subscribed to the relevant edition
of Data Quality Service Hub Studio.

tUniservBTGeneric properties

Component family Data quality

Function tUniservBTGeneric enables the execution of a processing created with the Uniserv product DQ
Batch Suite.

Purpose tUniservBTGeneric sends the data to the DQ Batch Suite and starts the specified DQ Batch
Suite job. When the job execution is finished, the results are returned to the Data Quality Service
Hub Studio for further processing.

Basic settings Schema and Edit schema A schema is a row description, i.e. it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Click Retrieve Schema to create a schema for the components that
matches the input and output fields in the DQ Batch Suite job.

Host name Host on which the Master Server of DQ Batch Suite runs, between
double quotation marks.

Port Port number on which the DQ Batch Suite server runs, between
double quotation marks.

Client Server Name of the client server of the DQ Batch Suite, between double
quotation marks.

User name User name for the registration on the DQ Batch Suite server. The
stated user must have the right to execute the DQ Batch Suite job.

Password Password of the stated user.

Job directory Directory in the DQ Batch Suite, in which the job is saved.

Job name Name of the DQ Batch Suite job that is to be executed.

Job file path File path under which the DQ Batch Suite job to be executed will
be saved. The path to the file must be stated absolutely.

Advanced settings Temporary directory Directory in which the temporary files created during job execution
are to be saved.

Input Parameters These parameters must correspond to the parameters in the
function Input (tab "Format") of the DQ Batch Suite job.

File location: State whether the input file is saved in the pool or
the local job directory.

Directory: If the File location = Pool, it means the directory is
related to the pool directory. If the File location = Job, "input" must
be specified here.

File name: Name of the delimiter file which has been generated
by tUniservBTGeneric and is to be transferred to the DQ Batch
Suite. The file name must correspond to the file name which is
defined in the function Input of the DQ Batch Suite job.

No. of header rec.: 0 = no header record, 1 = header record in the
input file.

Field separator: Field separator defined in the function Input of
the DQ Batch Suite job.



Scenario: Execution of a Job in the Data Quality Service Hub Studio

Talend Open Studio Components Reference Guide 399

Output Parameters These parameters must correspond to the parameters in the
function Output (tab "Format") of the DQ Batch Suite job.

File location: State whether the output file is to be saved in the
pool or the local job directory.

Directory: If the File location = Pool, it means the directory is
related to the pool directory. If the File location = Job, "output"
must be specified here.

File name: Name of the output file in the delimiter format, which is
created by the DQ Batch Suite job. The file name must correspond
to the file name defined in the function Output of the DQ Batch
Suite job.

No. of header rec.: 0 = no header record, 1 = header record in the
output file.

Field separator: Field separator defined in the function Output
of the DQ Batch Suite job.

Usage tUniservBTGeneric sends data to DQ Batch Suite and starts the specified DQ Batch Suite job.
When the execution is finished, the output data of the job is returned to Data Quality Service
Hub Studio for further processing.

Limitation To use tUniservBTGeneric, the Uniserv software DQ Batch Suite must be installed.

Please note the following:

• The job must be configured and executable in the DQ Batch Suite.

• The user must have the authority to execute the DQ Batch Suite job.

• The DQ Batch Suite job may only have one line.

• The files defined in the functions Input and Output must possess the record format
delimiter.

• Input and output data must be provided in the UTF-8 character set.

Scenario: Execution of a Job in the Data Quality
Service Hub Studio

This scenario describes a DQ Batch Suite job which execution results are processed in the Data Quality Service
Hub Studio. The input source for the job is provided by the Data Quality Service Hub Studio.

The job was completely defined in the DQ Batch Suite and saved under the name "BTGeneric_Sample". In the
function Input, the file "btinput.csv" was specified as the input file saved in the job directory and all fields were
assigned. The file is not yet existent physically as it will only be provided by the Data Quality Service Hub Studio,
so that the job cannot yet run.

In the Data Quality Service Hub Studio, the input source (here a table from an Oracle database) for this scenario
was already saved in the Repository, so that all schema metadata is available.

1. In the Repository view, expand the Metadata node and the directory in which you saved the source. Then
drag this source into the design workspace.

The dialog box below appears.



Scenario: Execution of a Job in the Data Quality Service Hub Studio

400 Talend Open Studio Components Reference Guide

2. Select tOracleInput and then click OK to close the dialog box.

The component is displayed in the workspace. The table used in this scenario is called LOCATIONS.

3. Drag the following components from the Palette into the design workspace: two tMap components,
tOracleOutput and tUniservBTGeneric.

4. Connect the components via Row > Main.

During the process, accept the schema from tUniservBTGeneric by clicking Yes in the validation window.

5. Double-click tUniservBTGeneric to open its Basic Settings view.



Scenario: Execution of a Job in the Data Quality Service Hub Studio

Talend Open Studio Components Reference Guide 401

6. Enter the connection data for the DQ Batch Suite job. Note that the absolute path must be entered in the field
Job File Path.

7. Click Retrieve Schema to automatically create a schema for tUniservBTGeneric from the input and output
definitions of the DQ Batch Suite job and automatically fill in the fields in the Advanced Settings.

8. Check the details in the Advanced Settings view. The definitions for input and output must be defined exactly
the same as the DQ Batch Suite job. If necessary, adapt the path for the temporary files.

9. Double-click tMap_1 to open the schema mapping window. On the left is the structure of the input source,
on the right is the schema of tUniservBTGeneric (and thus the input for the DQ Batch Suite job). At the
bottom is the Schema Editor, where you can find the attributes of the individual columns and edit them.

10. Assign the columns of the input source to the respective columns of tUniservBTGeneric. For this purpose,
select a column of the input source and drag it onto the appropriate column on the right side.



Scenario: Execution of a Job in the Data Quality Service Hub Studio

402 Talend Open Studio Components Reference Guide

Click OK to close the dialog box.

11. Then define how to process the execution results of the job, including which components will be used.

12. Before starting the Job, make sure that all path details are correct, the server of the DQ Batch Suite is running
and that you are able to access the job.



tUniservRTConvertName

Talend Open Studio Components Reference Guide 403

tUniservRTConvertName

This component will be available in the Palette of the studio on the condition that you have subscribed to the relevant edition
of Data Quality Service Hub Studio.

tUniservRTConvertName properties

Component family Data quality

Function tUniservRTConvertName analyzes the name line against the context. For individual persons,
it divides the name line into segments (name, first name, title, name prefixes, name suffixes,
etc.) and creates the address key.

The component recognizes company or institution addresses and is able to provide the form of
the organization separately. It also divides lines that contain information on several persons to
separate lines and is able to recognize certain patterns that do not belong to the name information
in the name line (customer number, handling notes, etc.) and remove them or move them to
special memo fields.

Purpose tUniservRTConvertName provides the basis for a uniform structuring and population of person
and company names in the database as well as the personalized salutation.

Basic settings Schema and Edit schema A schema is a row description, i.e. it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Host name Server host name between double quotation marks.

Port Listening port number of the server between double quotation
marks.

Service The service type/name is "cname_d" by default. Enter a new
name if necessary (e.g. due to service suffix), between double
quotation marks. Available services:

Germany "cname_d"

Italy "cname_i"

Austria "cname_a"

Netherlands "cname_nl"

Switzerland "cname_ch"

Belgium "cname_b"

France "cname_f"

Spain "cname_e"

Use rejects Select this option to separately output data sets from a certain
result class of the onward name analysis. Enter the respective
result class in the field if result class is greater or equal to.

If this option is not selected, the sets are still output via the Main
connection even if the analysis failed.

If the option is selected, but the Rejects connection is not
established, the sets are simply sorted out when the analysis failed.

Advanced settings Analysis Configuration For detailed information, please refer to the Uniserv user manual
convert-name.

Output Configuration For detailed information, please refer to the Uniserv user manual
convert-name.



Scenario: Analysis of a name line and assignment of the salutation

404 Talend Open Studio Components Reference Guide

Configuration of not
recognized input

For detailed information, please refer to the Uniserv user manual
convert-name.

Configuration of free fields For detailed information, please refer to the Uniserv user manual
convert-name.

Cache Configuration For detailed information, please refer to the Uniserv user manual
convert-name.

Usage tUniservRTConvertName provides the basis for a uniform structuring and population of person
and company names in the database as well as the personalized salutation.

Limitation To use tUniservRTConvertName, the Uniserv software convert-name must be installed.

Scenario: Analysis of a name line and assignment of
the salutation

This scenario describes a batch job that analyzes the person names in a file and assigns them a salutation.

The input file for this scenario is already saved in the Repository, so that all schema metadata is available.

Please observe that the data from the input source must all be related to the same country.

1. In the Repository view, expand the Metadata node and the directory in which the file is saved. Then drag
this file into the design workspace.

The dialog box below appears.

2. Select tFileInputDelimited and then click OK to close the dialog box.

The component is displayed in the workspace. The file used in this scenario is called SampleAddresses..

3. Drag the following components from the Palette into the design workspace: two tMap components,
tUniservRTConvertName, and tFileOutputDelimited..

4. Connect the components via Row > Main.



Scenario: Analysis of a name line and assignment of the salutation

Talend Open Studio Components Reference Guide 405

During the process, accept the schema from tUniservRTConvertName by clicking Yes in the validation
window.

5. Double-click tMap_1 to open the schema mapping window. On the left is the structure of the input file, on
the right is the schema of tUniservRTConvertName. At the bottom lies the Schema Editor, where you can
find the attributes of the individual columns and edit them.

6. Assign the columns of the input source to the respective columns of tUniservRTConvertName. For this
purpose, select a column of the input source and drag it onto the appropriate column on the right side. If
fields from the input file are to be passed on to the output file, like the address fields or IDs, you have to
define additional fields.

7. Click OK to close the dialog box.

8. Double-click tUniservRTConvertName to open its Basic Settings view.



Scenario: Analysis of a name line and assignment of the salutation

406 Talend Open Studio Components Reference Guide

9. Fill in the server information and specify the country-specific service.

10. Double-click tMap_3 to open the mapping window. On the left is the schema of tUniservRTConvertName
and on the right is the schema of the output file.

11. Click OK to close the window.

12. Double-click tFileOutputDelimited and enter the details for the output file.



tUniservRTMailBulk

Talend Open Studio Components Reference Guide 407

tUniservRTMailBulk

This component will be available in the Palette of the studio on the condition that you have subscribed to the relevant edition
of Data Quality Service Hub Studio.

tUniservRTMailBulk properties

Component family Data quality

Function tUniservRTMailBulk creates an index pool for mailRetrieval with predefined input data.

Purpose tUniservRTMailBulk prepares the index pool for duplicate search.

Basic settings Schema and Edit schema A schema is a row description, i.e. it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Host name Server host name between double quotation marks.

Port Listening port number of the server between double quotation
marks.

Service The service name is "mail" by default. Enter a new name if
necessary (e.g. due to service suffix), between double quotation
marks.

Advanced settings Uniserv Parameters For detailed information, please refer to the Uniserv user manual
mailRetrieval.

tStatCatcher Statistics Select this check box to collect log data at the Job and the
component levels.

Usage tUniservRTMailBulk prepares the index pool for duplicate search.

Limitation To use tUniservRTMailBulk, the Uniserv software mailRetrieval must be installed.

An input component and a map are needed to read the address from the database or a file. The
component does not have an output connection.

Scenario: Creating an index pool

This scenario describes a batch job that loads the address list of an SQL database into the index pool.

The database for this scenario is already saved in the Repository, so that all schema metadata is available.

1. In the Repository view, expand the Metadata node and the directory in which the database is saved. Then
drag this database into the design workspace.

The dialog box below appears.



Scenario: Creating an index pool

408 Talend Open Studio Components Reference Guide

2. Select tMysqlInput and then click OK to close the dialog box.

The component is then displayed in the workspace.

3. Drag the following components from the Palette into the design workspace: tMap and
tUniservRTMailBulk.

4. Connect the components via Row > Main.

During the process, accept the schema from tUniservRTMailBulk by clicking Yes in the validation window.

5. Double-click tMap_1 to open the schema mapping window. On the left is the schema of the database file and
on the right is the schema of tUniservRTMailBulk. At the bottom is displayed the Schema Editor, where
you can find the attributes of the individual columns and edit them.



Scenario: Creating an index pool

Talend Open Studio Components Reference Guide 409

6. Assign the columns of the input source to the respective columns of tUniservRTMailBulk. For this purpose,
select a column of the input source and drag it onto the appropriate column on the right side. The meaning
of the individual arguments is described in the Uniserv user manual mailRetrieval.

7. Click OK to close the window.

8. Double-click tUniservRTMailBulk to open its Basic Settings view.

9. Fill in the server information and specify the service.

10. Select Advanced Settings to adapt the server parameters.



Scenario: Creating an index pool

410 Talend Open Studio Components Reference Guide



tUniservRTMailOutput

Talend Open Studio Components Reference Guide 411

tUniservRTMailOutput

This component will be available in the Palette of the studio on the condition that you have subscribed to the relevant edition
of Data Quality Service Hub Studio.

tUniservRTMailOutput properties

Component family Data Quality

Function tUniservRTMailOutput updates the index pool that is used for duplicate search..

Purpose tUniservRTMailOutput keeps the index pool synchronized.

Basic settings Schema and Edit schema A schema is a row description, i.e. it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Host name Server host name between double quotation marks.

Port Listening port number of the server between double quotation
marks.

Service The service name is "mail" by default. Enter a new name if
necessary (e.g. due to service suffix), between double quotation
marks.

Action on data Operations that can be made on the index pool.

Insert: inserts a new record in the index pool. This request will fail
if the record with the given reference already exists in the index
pool.

Update: updates an existing record in the index pool. This request
will fail if the record with the given reference does not exist in
the index pool.

Insert or update: inserts a new record in the index pool. If the
record with the given reference already exists, an update would
be made.

Update or insert: updates the record with the given reference. If
the record does not exist in the index pool, a new record would
be inserted.

Delete: deletes the record with the given reference from the index
pool.

Advanced settings Uniserv Parameters For detailed information, please refer to the Uniserv user manual
mailRetrieval.

tStatCatcher Statistics Select this check box to collect log data at the Job and the
component levels.

Usage tUniservRTMailOutput updates the index pool and passes the input set on. The output is
amended by the status of the operation. If the operation fails, an error message will be displayed.

Limitation To use tUniservRTMailOutput, the Uniserv software mailRetrieval must be installed.

Before the first use of tUniservRTMailOutput, an index pool must be created. You
can create the index pool with tUniservRTMailBulk.



Related scenarios

412 Talend Open Studio Components Reference Guide

Related scenarios

For a related scenario, see section Scenario: Adding contacts to the mailRetrieval index pool.



tUniservRTMailSearch

Talend Open Studio Components Reference Guide 413

tUniservRTMailSearch

This component will be available in the Palette of the studio on the condition that you have subscribed to the relevant edition
of Data Quality Service Hub Studio.

tUniservRTMailSearch properties

Component family Data quality

Function tUniservRTMailSearch searches for similar data based on the given input record.

Purpose tUniservRTMailSearch searches for duplicate values and adds additional data to each record.

Basic settings Schema and Edit schema A schema is a row description, i.e. it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Host name Server host name between double quotation marks.

Port Listening port number of the server between double quotation
marks.

Service The service name is "mail" by default. Enter a new name if
necessary (e.g. due to service suffix), between double quotation
marks.

Maximum of displayed
duplicates (0 = All)

Enter the maximum number of duplicates to be displayed in the
Run view. The default value is 0, which means that all duplicates
will be displayed (up to 1000 duplicates can be displayed).

Use rejects Select this check box to set parameters based on which duplicate
records should be added to the reject flow. Then set the:

Element: Duplicate count.

Operator: <, <=, =, >=, >.

Value: Enter the number manually.

Advanced settings Uniserv Parameters For detailed information, please refer to the Uniserv user manual
mailRetrieval.

tStatCatcher Statistics Select this check box to collect log data at the Job and the
component levels.

Usage tUniservRTMailSearch requires an input component and one or more output components.

Limitation To use tUniservRTMailSearch, the Uniserv software mailRetrieval must be installed.

Before the first use of tUniservRTMailSearch, an index pool must be created. You
can create the index pool with tUniservRTMailBulk.

Scenario: Adding contacts to the mailRetrieval index
pool

This scenario describes a batch job that adds contacts to the index pool of mailRetrieval. Before the addition, it
must be checked whether these contacts already exist.



Scenario: Adding contacts to the mailRetrieval index pool

414 Talend Open Studio Components Reference Guide

The input file for this scenario is already saved in the Repository, so that all schema metadata is available.

Please note that the data from the input source must be related to the same country.

Dropping and connecting the components

1. In the Repository view, expand the Metadata node and the directory in which the file is saved. Then drag
this file into the design workspace.

The dialog box below appears.

2. Select tFileInputDelimited and then click OK to close the dialog box.

The component is displayed in the workspace.

3. Drag the following components from the Palette into the design workspace: two tMap components,
tUniservRTMailSearch and tUniservRTMailOutput .

4. Connect the components via Row > Main.

During the process, accept the schema from tUniservRTMailSearch by clicking Yes in the validation
window.



Scenario: Adding contacts to the mailRetrieval index pool

Talend Open Studio Components Reference Guide 415

Configuring the components

1. Double-click tMap_1 to open the schema mapping window. On the left is the structure of the input file and
on the right is the schema of tUniservRTMailSearch. At the bottom lies the Schema Editor, where you can
find the attributes of the individual columns and edit them.

2. Assign the columns of the input file to the respective columns of tUniservRTMailSearch. For this purpose,
select a column of the input source and drag it onto the appropriate column on the right side.

3. When your input list contains a reference ID, you should adopt it. In order to do so, create a new column
IN_DBREF in the Schema Editor and connect it with your reference ID.

Click OK to close the window.

4. Double-click tUniservRTMailSearch to open its Basic settings view.



Scenario: Adding contacts to the mailRetrieval index pool

416 Talend Open Studio Components Reference Guide

5. Under Maximum of displayed "duplicates", enter 0 to display all the duplicates.

Select Define rejects to open the rejects definition window.

6. Click the [+] button to insert a new line in the window. Select Duplicate count under the element column,
> under the operator column, and 0 under the value column. So all the existing contacts are disqualified and
only the new contact will be added to the index pool.

7. Enter the Advanced settings view and check the parameters. Reasonable parameters are preset. Detailed
information can be found in the manual mailRetrieval.

8. Double-click tMap_3 to open schema mapping window. On the left is the schema of tUniservRTMailSearch
and on the right is the schema of tUniservRTMailOutput.

9. Click Auto map! to assign the fields automatically.

10. The only field that must be assigned manually is the reference ID. In order to do so, drag OUT-DBREF from
the left side onto the field IN_DBREF on the right side.



Scenario: Adding contacts to the mailRetrieval index pool

Talend Open Studio Components Reference Guide 417

Click OK to close the dialog box.

11. Double-click tUniservRTMailOutput to open the Basic settings view.

From the Action on Data list, select Insert or update. This way, all new contacts are added to the index pool.



tUniservRTPost

418 Talend Open Studio Components Reference Guide

tUniservRTPost

This component will be available in the Palette of the studio on the condition that you have subscribed to the relevant edition
of Data Quality Service Hub Studio.

tUniservRTPost properties

Component family Data quality

Function tUniservRTPost provides postal validation and correction of addresses, which is critical to
improving the quality of addresses. This way, you will be more successful in personalized one-
on-one marketing, reducing costs and increasing the efficiency and cost-effectiveness of address
management in all the applications.

Purpose tUniservRTPost helps to improve the addresses quality, which is extremely important for CRM
and e-business as it is directly related to postage and advertising costs.

Basic settings Schema and Edit schema A schema is a row description, i.e. it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Host name Server host name between double quotation marks.

Port Listening port number of the server between double quotation
marks.

Service The service name is "post" by default. Enter a new name if
necessary (e.g. due to service suffix), between double quotation
marks.

Use rejects Select this check box to collect faulty addresses via the rejects
connection. Usually they are the addresses with the post result
class 5. Valid values for the result class are 1-5. The value must
be between double quotation marks.

If this check box is not selected, the faulty addresses are output
via the Main connection.

If the check box is selected but the rejects connection is not
created, the faulty addresses are simply rejected.

Use File for ambiguous
results

Select the check box to define a file for writing the selection list
to it.

When an address cannot be corrected unambiguously, a selection
list is created.

This list can be further processed via the AMBIGUITY
connection. All potential candidate results then run via this
connection. The schema of this connection is preinitialized with
the arguments of the dissolved selection list of the service 'post'.

Advanced settings Uniserv Parameters Select this check box to define the corresponding parameters.
For detailed information, please refer to the Uniserv user manual
International Postal Framework.

tStatCatcher Statistics Select this check box to collect log data at the Job and the
component levels.

“Full address” selection list Select the check box Display to show all the columns. Or, select
the check box next to a particular column to show it alone.

This option controls the content of the file for ambiguous
addresses. Only selected columns would be written into the file.

Usage tUniservRTPost requires an input set. Its postal validation will then be checked. In case of an
unambiguous result, the corrected set will be output via the Main connection. If the address is



Scenario 1: Checking and correcting the postal code, city and street

Talend Open Studio Components Reference Guide 419

ambiguous, the potential candidates will be output via the Ambiguity connection. If an address
was not found, it will be passed on via the Reject connection.

Limitation To use tUniservRTPost, the Uniserv software International Postal Framework and the required
post servers must be installed.

Scenario 1: Checking and correcting the postal code,
city and street

This scenario describes a batch job that checks and corrects the addresses and postal codes from a file.

The input file for this scenario is already saved in the Repository, so that all schema metadata is available.

1. In the Repository view, expand the Metadata node and the directory in which the file is saved. Then drag
this file into the design workspace.

The dialog box below appears.

2. Select tFileInputDelimited and click OK to close the dialog box.

The component is displayed in the workspace. The file used in this scenario is called SampleAddresses. It
contains address data that comes with a country code. The street and house number are saved together in the
street field, while postal code and city are respectively saved in separate fields.

3. Drag the following components from the Palette into the design workspace: two tMap components,
tUniservRTPost and tFileOutputDelimited .

4. Connect the components via Row > Main.



Scenario 1: Checking and correcting the postal code, city and street

420 Talend Open Studio Components Reference Guide

5. During the process, accept the schema from tUniservRTPost by clicking Yes in the validation window.

6. Double-click tMap_1 to open the schema mapping window. On the left is the structure of the input file and
on the right is the schema of tUniservRTPost. At the bottom is displayed the Schema Editor, where you
can find the attributes of the individual columns and edit them.

7. Assign the columns of the input file to the respective columns of tUniservRTPost. For this purpose, select a
column of the input source and drag it onto the appropriate column on the right side. If fields from the input
file are to be passed on to the output file, e.g. the names or the IDs, additional fields must be defined.

When assigning the fields, note that street and house number can either be saved together in the street column or
respectively in separate fields. If your data list does not have a country code but the addresses are from the same
country, the relevant ISO-country code should be manually entered between double quotation marks in the column
IN_COUNTRY. If you have an international data list without country code, just leave the column IN_COUNTRY empty.
For detailed information, please refer to the Uniserv user manual International Postal Framework.

8. Click OK to close the window.



Scenario 1: Checking and correcting the postal code, city and street

Talend Open Studio Components Reference Guide 421

9. Double-click tUniservRTPost and enter its Advanced settings view.

10. Change the parameters and field lengths if necessary and select the output fields.

Make sure sufficient field length is defined. For detailed information, please refer to the Uniserv user manual
International Postal Framework.

11. Double-click tMap_3 to open schema mapping window. On the left is the schema of tUniservRTPost and
on the right is the schema of the output file.



Scenario 2: Checking and correcting the postal code, city and street, as well as rejecting the unfeasible

422 Talend Open Studio Components Reference Guide

12. Click OK to close the dialog box.

13. Double-click tFileOutputDelimited to enter the details for the output file.

Scenario 2: Checking and correcting the postal code,
city and street, as well as rejecting the unfeasible

This scenario is closely related to the one above. But the difference is that, the addresses that cannot be assigned
are written into a separate file for manual checking. Additionally, to write ambiguous addresses in a separate file,
the procedure is the same as described here.

1. Create a job as described in the previous scenario.

2. Drag the following additional components from the Palette into the design workspace: tMap and
tFileOutputDelimited.

3. Double-click tUniservRTPost to open its Basic settings view.

4. Select the Use rejects check box and enter "5" in the field if result class greater or equals to. This is the
result class from the check of postal codes in addresses, which contain too few or unfeasible data.



Scenario 2: Checking and correcting the postal code, city and street, as well as rejecting the unfeasible

Talend Open Studio Components Reference Guide 423

5. Connect tUniservRTPost with tMap_5 via Row > Rejects.

6. Connect tMap with tFileOutputDelimited via Row > Main.

7. Define the fields for the output file in the mapping window.



Talend Open Studio Components Reference Guide



Talend Open Studio Components Reference Guide

Databases - traditional components
This chapter describes connectors for the most popular and traditional databases. These connectors cover various
needs, including: opening connections, reading and writing tables, committing transactions as a whole, as well as
performing rollback for error handling. Over 40 RDBMS are supported. These components can be found in the
Databases family in the Palette in the Integration perspective of the Talend Studio.

Other types of database connectors, such as connectors for Appliance/DW databases and database management,
are documented in Databases - appliance/datawarehouse components and Databases - other components.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.



tAccessBulkExec

426 Talend Open Studio Components Reference Guide

tAccessBulkExec

tAccessBulkExec properties

The tAccessOutputBulk and tAccessBulkExec components are generally used together to output data to a
delimited file and then to perform various actions on the file in an Access database, in a two step process. These two
steps are fused together in the tAccessOutputBulkExec component, detailed in a separate section. The advantage
of using a two step process is that it makes it possible to carry out transformations on the data before loading it
in the database.

Component family Databases/Access

Function This component executes an Insert action on the data provided.

Purpose As a dedicated component, tAccessBulkExec offers gains in performance when carrying out Insert
operations in an Access database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data is stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and select the appropriate tAccessConnection
component from the Component list if you want to re-use
connection parameters that you have already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio User
Guide.

DB version Select the version of your database.

Database Type in the directory where your database is stored.

Username and Password DB user authentication data.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create table: The table is removed and created again.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does not exist.



Related scenarios

Talend Open Studio Components Reference Guide 427

Clear table: The table content is deleted.

Table Name of the table to be written. Note that only one table can be
written at a time and that the table must exist already for the insert
operation to succeed.

Local filename Browse to the delimited file to be loaded into your database.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

Include header Select this check box to include the column header.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with tAccessOutputBulk component. Used together, they can
offer gains in performance while feeding an Access database.

Related scenarios

For use cases in relation with tAccessBulkExec, see the following scenarios:

• section Scenario: Inserting transformed data in MySQL database

• section Scenario: Inserting data in MySQL database



tAccessCommit

428 Talend Open Studio Components Reference Guide

tAccessCommit

tAccessCommit Properties

This component is closely related to tAccessConnection and tAccessRollback. It usually doesn’t make much
sense to use these components independently in a transaction.

Component family Databases/Access

Function Validates the data processed through the Job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the tAccessConnection component in the list if more than one
connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to link
tAccessCommit to your Job, your data will be commited
row by row. In this case, do not select the Close connection
check box or your connection will be closed before the end
of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Access components, especially with tAccessConnection
and tAccessRollback components.

Limitation n/a

Related scenario

This component is closely related to tAccessConnection and tAccessRollback. It usually does not make much
sense to use one of these without using a tAccessConnection component to open a connection for the current
transaction.

For tAccessCommit related scenario, see section tMysqlConnection



tAccessConnection

Talend Open Studio Components Reference Guide 429

tAccessConnection

tAccessConnection Properties

This component is closely related to tAccessCommit, tAccessInput and tAccessOutput. It usually does not make
much sense to use one of these without using a tAccessConnection component to open a connection for the current
transaction.

Component family Databases/Access

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

DB Version Access 2003 or later versions.

Database Name of the database.

Username and Password DB user authentication data.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating.

Usage This component is to be used along with Access components, especially with tAccessCommit and
tAccessOutput components.

Limitation n/a

Scenario: Inserting data in parent/child tables

The following Job is dedicated to advanced database users, who want to carry out multiple table insertions using
a parent table Table1 to generate two child tables: Name and Birthday.

• In Access 2007, create an Access database named Database1.

• Once the Access database is created, create a table named Table1 with two column headings: Name and Birthday.



Scenario: Inserting data in parent/child tables

430 Talend Open Studio Components Reference Guide

Back into Talend Open Studio, the Job requires twelve components including tAccessConnection,
tAccessCommit, tAccessInput, tAccessOutput and tAccessClose.

• Drop the following components from the Palette to the design workspace: tFileList, tFileInputDelimited,
tMap, tAccessOutput (x2), tAccessInput (x2), tAccessCommit, tAccessClose and tLogRow (x2).

• Connect the tFileList component to the input file component using an Iterate link. Thus, the name of the file
to be processed will be dynamically filled in from the tFileList directory using a global variable.

• Connect the tFileInputDelimited component to the tMap component and dispatch the flow between the two
output Access components. Use a Row link for each of these connections representing the main data flow.

• Set the tFileList component properties, such as the directory where files will be fetched from.

• Add a tAccessConnection component and connect it to the starter component of this Job. In this example, the
tFileList component uses an OnComponentOk link to define the execution order.

• In the tAccessConnection Component view, set the connection details manually or fetch them from the
Repository if you centrally store them as a Metadata DB connection entry. For more information about
Metadata, see Talend Open Studio User Guide.

• In the tFileInputDelimited component’s Basic settings view, press Ctrl+Space bar to access the variable list.
Set the File Name field to the global variable: tFileList_1.CURRENT_FILEPATH. For more information about
using variables, see Talend Open Studio User Guide.

• Set the rest of the fields as usual, defining the row and field separators according to your file structure.



Scenario: Inserting data in parent/child tables

Talend Open Studio Components Reference Guide 431

• Then set the schema manually through the Edit schema dialog box or select the schema from the Repository.
Make sure the data type is correctly set, in accordance with the nature of the data processed.

• In the tMap Output area, add two output tables, one called Name for the Name table, the second called Birthday,
for the Birthday table. For more information about the tMap component, see Talend Open Studio User Guide.

• Drag the Name column from the Input area, and drop it to the Name table.

• Drag the Birthday column from the Input area, and drop it to the Birthday table.

• Then connect the output row links to distribute the flow correctly to the relevant DB output components.

• In each of the tAccessOutput components’ Basic settings view, select the Use an existing connection check
box to retrieve the tAccessConnection details.

• Set the Table name making sure it corresponds to the correct table, in this example either Name or Birthday.

• There is no action on the table as they are already created.

• Select Insert as Action on data for both output components.

• Click on Sync columns to retrieve the schema set in the tMap.

• Then connect the first tAccessOutput component to the first tAccessInput component using an
OnComponentOk link.

• In each of the tAccessInput components’ Basic settings view, select the Use an existing connection check
box to retrieve the distributed data flow. Then set the schema manually through Edit schema dialog box.

• Then set the Table Name accordingly. In tAccessInput_1, this will be Name.

• Click on the Guess Query.

• Connect each tAccessInput component to tLogRow component with a Row > Main link. In each of the
tLogRow components’ basic settings view, select Table in the Mode field.

• Add the tAccessCommit component below the tFileList component in the design workspace and connect them
together using an OnComponentOk link in order to terminate the Job with the transaction commit.

• In the basic settings view of tAccessCommit component and from the Component list, select the connection
to be used, tAccessConnection_1 in this scenario.

• Save your Job and press F6 to execute it.



Scenario: Inserting data in parent/child tables

432 Talend Open Studio Components Reference Guide

The parent table Table1 is reused to generate the Name table and Birthday table.



tAccessInput

Talend Open Studio Components Reference Guide 433

tAccessInput

tAccessInput properties
Component family Databases/Access

Function tAccessInput reads a database and extracts fields based on a query.

Purpose tAccessInput executes a DB query with a strictly defined statement which must correspond to
the schema definition. Then it passes on the field list to the next component via a Row > Main
connection.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box and select the appropriate tAccessConnection
component from the Component list if you want to re-use
connection parameters that you have already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio User
Guide.

DB Version Select the version of Access that you are using.

Database Name of the database.

Username and Password DB user authentication data.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.



Related scenarios

434 Talend Open Studio Components Reference Guide

Query type and Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

Usage This component offers the flexibility benefit of the DB query and covers all possible SQL queries.

Related scenarios

For related topics, see the tDBInput scenarios:

• section Scenario 1: Displaying selected data from DB table.

• section Scenario 2: Using StoreSQLQuery variable.

Related topic in description of section tContextLoad.



tAccessOutput

Talend Open Studio Components Reference Guide 435

tAccessOutput

tAccessOutput properties

Component family Databases/Access

Function tAccessOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tAccessOutput executes the action defined on the table and/or on the data contained in the table,
based on the flow incoming from the preceding component in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box and select the appropriate tAccessConnection
component from the Component list if you want to re-use
connection parameters that you have already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio User
Guide.

DB Version Select the version of Access that you are using.

Database Name of the database

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.



tAccessOutput properties

436 Talend Open Studio Components Reference Guide

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, Job
stops.

Update: Make changes to existing entries.

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing.

Delete: Remove entries corresponding to the input flow.

You must specify at least one column as a primary key
on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the update and delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next
to the column name on which you want to base the update
operation. Do the same in the Key in delete column for the
deletion operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

You can press Ctrl+Space to access a list of predefined
global variables.

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and, above all, better performance at executions.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.



Related scenarios

Talend Open Studio Components Reference Guide 437

tStatCatcher Statistics Select this check box to collect log data at the component level.

Use field options Select this check box to customize a request, especially when there
is double action on data.

Enable debug mode Select this check box to display each step during processing entries
in a database.

Support null in “SQL
WHERE” statement

Select this check box if you want to deal with the Null values
contained in a DB table.

Make sure the Nullable check box is selected for the
corresponding columns in the schema.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a Access database. It also allows you to create a reject flow using a Row
> Rejects link to filSchemaSchemater data in error. For an example of tMySqlOutput in use, see
section Scenario 3: Retrieve data in error with a Reject link.

Related scenarios

For related topics, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection

• section Scenario 1: Adding a new column and altering data in a DB table.



tAccessOutputBulk

438 Talend Open Studio Components Reference Guide

tAccessOutputBulk

tAccessOutputBulk properties

The tAccessOutputBulk and tAccessBulkExec components are generally used together to output data to a
delimited file and then to perform various actions on the file in an Access database, in a two step process. These two
steps are fused together in the tAccessOutputBulkExec component, detailed in a separate section. The advantage
of using a two step process is that it makes it possible to carry out transformations on the data before loading it
in the database.

Component family Databases/Access

Function tAccessOutputBulk writes a delimited file.

Purpose tAccessOutputBulk prepares the file which contains the data used to feed the Access database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Create directory if not exists Select this check box to create the as yet non-existant file directory
that specified in the File name field.

Append Select this check box to add any new rows to the end of the file

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job designs.
Related topic: see Talend Open Studio User Guide.

Advanced settings Include header Select this check box to include the column header in the file.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with tAccessBulkExec component. Used together they offer
gains in performance while feeding an Access database.

Related scenarios

For use cases in relation with tAccessOutputBulk, see the following scenarios:

• section Scenario: Inserting transformed data in MySQL database

• section Scenario: Inserting data in MySQL database



tAccessOutputBulkExec

Talend Open Studio Components Reference Guide 439

tAccessOutputBulkExec

tAccessOutputBulkExec properties

The tAccessOutputBulk and tAccessBulkExec components are generally used together to output data to a
delimited file and then to perform various actions on the file in an Access database, in a two step process. These
two steps are fused together in tAccessOutputBulkExec.

Component family Databases/Access

Function The tAccessOutputBulkExec component executes an Insert action on the data provided.

Purpose As a dedicated component, it improves performance during Insert operations in an Access database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and select the appropriate tAccessConnection
component from the Component list if you want to re-use
connection parameters that you have already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio User
Guide.

DB Version Select the version of Access that you are using.

DB name Name of the database

Username and Password DB user authentication data.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if doesn’t exist: The table is created if it does not
already exist.

Clear a table: The table content is deleted.



Related scenarios

440 Talend Open Studio Components Reference Guide

Table Name of the table to be written.

Note that only one table can be written at a time and that the
table must already exist for the insert operation to succeed

FileName Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Create directory if not exists Select this check box to create the as yet non existant file directory
specified in the File name field.

Append Select this check box to append new rows to the end of the file.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

You can press Ctrl+Space to access a list of predefined
global variables.

Include header Select this check box to include the column header to the file.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to collect the log data at the component level.

Usage This component is mainly used when no particular transformation is required on the data to be
loaded in the database.

Limitation n/a

Related scenarios

For use cases in relation with tAccessOutputBulkExec, see the following scenarios:

• section Scenario: Inserting data in MySQL database

• section Scenario: Inserting transformed data in MySQL database



tAccessRollback

Talend Open Studio Components Reference Guide 441

tAccessRollback

tAccessRollback properties

This component is closely related to tAccessConnection and tAccessCommit components. It usually does not
make much sense to use these components independently in a transaction.

Component family Databases/Access

Function tAccessRollback cancels the transaction committed in the connected DB.

Purpose Avoids involuntary commitment of part of a transaction.

Basic settings Component list Select the tAccessConnection component in the list if more than one
connection are planned for the current Job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Access components, especially with tAccessConnection
and tAccessCommit.

Limitation n/a

Related scenarios

For tAccessRollback related scenario, see tMysqlRollback.



tAccessRow

442 Talend Open Studio Components Reference Guide

tAccessRow

tAccessRow properties

Component family Databases/Access

Function tAccessRow is the specific component for this database query. It executes the SQL query stated
onto the specified database. The row suffix means the component implements a flow in the job
design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tAccessRow acts on the actual DB structure
or on the data (although without handling data). The SQLBuilder tool helps you write easily your
SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and select the appropriate tAccessConnection
component from the Component list if you want to re-use
connection parameters that you have already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio User
Guide.

DB Version Select the Access database version that you are using.

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table Name Name of the source table where changes made to data should be
captured.

Query type The query can be Built-in for a particular Job, or for commonly used
query, it can be stored in the Repository to ease the query reuse.



Related scenarios

Talend Open Studio Components Reference Guide 443

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

Use PreparedStatement Select this check box if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Related scenarios

For related topics, see:

• section Scenario: Resetting a DB auto-increment

• section Scenario 1: Removing and regenerating a MySQL table index.



tAS400Close

444 Talend Open Studio Components Reference Guide

tAS400Close

tAS400Close properties

Component family Databases/AS400

Function tAS400Close closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tAS400Connection component in the list if more than one
connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with AS400 components, especially with tAS400Connection
and tAS400Commit.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tAS400Commit

Talend Open Studio Components Reference Guide 445

tAS400Commit

tAS400Commit Properties

This component is closely related to tAS400Connection and tAS400Rollback. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/AS400

Function Validates the data processed through the Job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the tAS400Connection component in the list if more than one
connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to link
tAS400Commit to your Job, your data will be commited
row by row. In this case, do not select the Close connection
check box or your connection will be closed before the end
of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with AS400 components, especially with tAS400Connection
and tAS400Rollback components.

Limitation n/a

Related scenario

This component is closely related to tAS400Connection and tAS400Rollback. It usually does not make much
sense to use one of these without using a tAS400Connection component to open a connection for the current
transaction.

For tAS400Commit related scenario, see section tMysqlConnection



tAS400Connection

446 Talend Open Studio Components Reference Guide

tAS400Connection

tAS400Connection Properties

This component is closely related to tAS400Commit and tAS400Rollback. It usually does not make much sense
to use one of the components without using a tAS400Connection component to open a connection for the current
transaction.

Component family Databases/AS400

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

DB Version Select the AS400 version in use

Host Database server IP address

Database Name of the database

Username and Password DB user authentication data.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

Auto commit Select this check box to automatically commit a transaction when it
is completed.

tStatCatcher Statistics Select this check box to gather the job processing metadata at a Job
level as well as at each component level.

Usage This component is to be used along with AS400components, especially with tAS400Commit and
tAS400Rollback components.

Limitation n/a

Related scenario

This component is closely related to tAS400Commit and tAS400Rollback. It usually does not make much sense
to use one of these without using a tAS400Connection component to open a connection for the current transaction.



Related scenario

Talend Open Studio Components Reference Guide 447

For tAS400Connection related scenario, see section tMysqlConnection



tAS400Input

448 Talend Open Studio Components Reference Guide

tAS400Input

tAS400Input properties

Component family Databases/AS400

Function tAS400Input reads a database and extracts fields based on a query.

Purpose tAS400SInput executes a DB query with a strictly defined statement which must correspond to
the schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Use an existing connection Select this check box and click the relevant tAS400Connection
component on the Component list to reuse the connection details you
already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio User
Guide.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

DB Version Select the AS 400 version in use

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.



Related scenarios

Talend Open Studio Components Reference Guide 449

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Query type and Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Related scenarios

For related topic, see tDBInput scenarios:

• section Scenario 1: Displaying selected data from DB table

• section Scenario 2: Using StoreSQLQuery variable.

•

Related topic in tContextLoad, see section Scenario: Dynamic context use in MySQL DB insert.



tAS400LastInsertId

450 Talend Open Studio Components Reference Guide

tAS400LastInsertId

tAS400LastInsertId properties

Component family Databases

Function tAS400LastInsertId fetches the last inserted ID from a selected AS400 Connection.

Purpose tAS400LastInsertId obtains the primary key value of the record that was last inserted in an AS400
table by a user.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: You create and store the schema locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: You have already created the schema and stored it in the
Repository. You can reuse it in various projects and job flow charts.
Related topic: see Talend Open Studio User Guide.

Component list Select the relevant tAS400Connection component in the list if more
than one connection is planned for the current job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used as an intermediary component.

Limitation n/a

Related scenario

For a related scenario, see section Scenario: Get the ID for the last inserted record.



tAS400Output

Talend Open Studio Components Reference Guide 451

tAS400Output

tAS400Output properties

Component family Databases/DB2

Function tAS400Output writes, updates, makes changes or suppresses entries in a database.

Purpose tAS400Output executes the action defined on the table and/or on the data contained in the table,
based on the flow incoming from the preceding component in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

DB Version Select the AS400 version in use

Use an existing connection Select this check box and click the relevant tAS400Connection
component on the Component list to reuse the connection details you
already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio User
Guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.



tAS400Output properties

452 Talend Open Studio Components Reference Guide

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, Job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the Update and Delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next to
the column names you want to use as a base for the Update
operation. Do the same in the Key in delete column for the
Delete operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Use commit control Select this check box to have access to the Commit every field where
you can define the commit operation.

Commit every: Enter the number of rows to be completed before
committing batches of rows together into the DB. This option
ensures transaction quality (but not rollback) and, above all, better
performance at execution.

Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

You can press Ctrl+Space to access a list of predefined
global variables.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.



Related scenarios

Talend Open Studio Components Reference Guide 453

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.

Enable debug mode Select this check box to display each step during processing entries
in a database.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a AS400 database. It also allows you to create a reject flow using a
Row > Rejects link to filter data in error. For an example of tMySqlOutput in use, see section
Scenario 3: Retrieve data in error with a Reject link.

Related scenarios

For related topics, see

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection.

• section Scenario 1: Adding a new column and altering data in a DB table.



tAS400Rollback

454 Talend Open Studio Components Reference Guide

tAS400Rollback

tAS400Rollback properties

This component is closely related to tAS400Commit and tAS400Connection. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/AS400

Function tAS400Rollback cancels the transaction committed in the connected DB.

Purpose Avoids involuntary commitment of part of a transaction.

Basic settings Component list Select the tAS400Connection component in the list if more than one
connection are planned for the current Job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with AS400 components, especially with tAS400Connection
and tAS400Commit.

Limitation n/a

Related scenarios

For tAS400Rollback related scenario, see section Scenario: Rollback from inserting data in mother/daughter
tables.



tAS400Row

Talend Open Studio Components Reference Guide 455

tAS400Row

tAS400Row properties

Component family Databases/AS400

Function tAS400Row is the specific component for this database query. It executes the SQL query stated
onto the specified database. The row suffix means the component implements a flow in the job
design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tAS400Row acts on the actual DB structure
or on the data (although without handling data). The SQLBuilder tool helps you write easily your
SQL statements.

Basic settings Use an existing connection Select this check box and click the relevant tAS400Connection
component on the Component list to reuse the connection details you
already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio User
Guide.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

DB Version Select the AS400 version in use

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.



Related scenarios

456 Talend Open Studio Components Reference Guide

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Additional JDBC
Parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Use PreparedStatement Select this check box if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Related scenarios

For related topics, see:

• section Scenario 3: Combining two flows for selective output

• section Scenario: Resetting a DB auto-increment

• section Scenario 1: Removing and regenerating a MySQL table index.



tDB2BulkExec

Talend Open Studio Components Reference Guide 457

tDB2BulkExec

tDB2BulkExec properties

Component family Databases/DB2

Function tDB2BulkExec executes the Insert action on the data provided.

Purpose As a dedicated component, tDB2BulkExec allows gains in performance during Insert operations
to a DB2 database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tDB2Connection
component on the Component List to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Table Schema Name of the DB schema.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create table: The table is removed and created again.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does not exist.



Related scenarios

458 Talend Open Studio Components Reference Guide

Drop table if exists and create: The table is removed if it already
exists and created again.

Clear table: The table content is deleted.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: You create the schema and store it locally for this
component only. Related topic: see Talend Open Studio User Guide.

Repository: You have already created the schema and stored it in
the Repository, hence can reuse it. Related topic: see Talend Open
Studio User Guide.

Data file Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, Job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

Advanced settings Field terminated by Character, string or regular expression to separate fields.

Date Format Use this field to define the way months and days are ordered.

Time Format Use this field to define the way hours, minutes and seconds are
ordered.

Timestamp Format Use this field to define the way date and time are ordered.

Remove load pending When the box is ticked, tables blocked in "pending" status following
a bulk load are de-blocked.

Load options Click + to add data loading options:

Parameter: select a loading parameter from the list.

Value: enter a value for the parameter selected.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This dedicated component offers performance and flexibility of DB2 query handling.

Limitation n/a

Related scenarios

For tDB2BulkExec related topics, see:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Truncating and inserting file data into Oracle DB.



tDB2Close

Talend Open Studio Components Reference Guide 459

tDB2Close

tDB2Close properties

Component family Databases/DB2

Function tDB2Close closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tDB2Connection component in the list if more than one
connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with DB2 components, especially with tDB2Connection and
tDB2Commit.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tDB2Commit

460 Talend Open Studio Components Reference Guide

tDB2Commit

tDB2Commit Properties

This component is closely related to tDB2Connection and tDB2Rollback. It usually doesn’t make much sense
to use these components independently in a transaction.

Component family Databases/DB2

Function Validates the data processed through the Job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the tDB2Connection component in the list if more than one
connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to link
tDB2Commit to your Job, your data will be commited row
by row. In this case, do not select the Close connection
check box or your connection will be closed before the end
of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with DB2 components, especially with tDB2Connection and
tDB2Rollback components.

Limitation n/a

Related scenario

This component is closely related to tDB2Connection and tDB2Rollback. It usually doesn’t make much sense
to use one of these without using a tDB2Connection component to open a connection for the current transaction.

For tDB2Commit related scenario, see section tMysqlConnection



tDB2Connection

Talend Open Studio Components Reference Guide 461

tDB2Connection

tDB2Connection properties

This component is closely related to tDB2Commit and tDB2Rollback. It usually does not make much sense to
use one of these without using a tDB2Connection to open a connection for the current transaction.

Component family Databases/DB2

Function tDB2Connection opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host name Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Table Schema Name of the schema.

Username and Password DB user authentication data.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Advanced settings Auto commit Select this check box to automatically commit a transaction when it
is completed.

tStatCatcher Statistics Select this check box to gather the job processing metadata at a Job
level as well as at each component level.

Usage This component is to be used along with DB2 components, especially with tDB2Commit and
tDB2Rollback.

Limitation n/a

Related scenarios

This component is closely related to tDB2Commit and tDB2Rollback. It usually does not make much sense to
use one of these without using a tDB2Connection component to open a connection for the current transaction.



Related scenarios

462 Talend Open Studio Components Reference Guide

For tDB2Connection related scenario, see section tMysqlConnection



tDB2Input

Talend Open Studio Components Reference Guide 463

tDB2Input

tDB2Input properties

Component family Databases/DB2

Function tDB2Input reads a database and extracts fields based on a query.

Purpose tDB2Input executes a DB query with a strictly defined order which must correspond to the schema
definition. Then it passes on the field list to the next component via a Main row link.

If double quotes exist in the column names of a table, the double quotation marks cannot
be retrieved when retrieving the column. Therefore, it is recommended not to use double
quotes in column names in a DB2 database table.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box and click the relevant tDB2Connection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Name of the schema.

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.



Related scenarios

464 Talend Open Studio Components Reference Guide

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table name Select the source table where to capture any changes made on data.

Query type and Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL queries for DB2 databases.

Limitation n/a

Related scenarios

For related topics, see the tDBInput scenarios:

• section Scenario 1: Displaying selected data from DB table.

• section Scenario 2: Using StoreSQLQuery variable.

See also the related topic in section Scenario: Dynamic context use in MySQL DB insert.



tDB2Output

Talend Open Studio Components Reference Guide 465

tDB2Output

tDB2Output properties

Component family Databases/DB2

Function tDB2Output writes, updates, makes changes or suppresses entries in a database.

Purpose tDB2Output executes the action defined on the table and/or on the data contained in the table,
based on the flow incoming from the preceding component in the Job.

Basic settings Use an existing connection Select this check box and click the relevant tDB2Connection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connention
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Table schema Name of the DB schema.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

Default: No operation is carried out.

Drop and create a table: The table is removed and created again.



tDB2Output properties

466 Talend Open Studio Components Reference Guide

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, Job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

You must specify at least one column as a primary key
on which the Update and Delete operations are based.
You can do that by clicking Edit Schema  and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the update and delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next
to the column name on which you want to base the update
operation. Do the same in the Key in delete column for the
deletion operation

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before committing batches
of rows together into the DB. This option ensures transaction quality
(but not rollback) and, above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.

Convert columns and table
names to uppercase

Select this check box to uppercase the names of the columns and the
name of the table.



Related scenarios

Talend Open Studio Components Reference Guide 467

Enable debug mode Select this check box to display each step during processing entries
in a database.

Support null in “SQL
WHERE” statement

Select this check box if you want to deal with the Null values
contained in a DB table.

Make sure the Nullable check box is selected for the
corresponding columns in the schema.

Use batch size Select this check box to activate the batch mode for data processing.
In the Batch Size field that appears when this check box is selected,
you can type in the number you need to define the batch size to be
processed.

This check box is available only when you have selected
the Insert, the Update or the Delete option in the Action
on data field.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a DB2 database. It also allows you to create a reject flow using a Row >
Rejects link to filter data in error. For an example of tMySqlOutput in use, see section Scenario 3:
Retrieve data in error with a Reject link.

Limitation n/a

Related scenarios

For tDB2Output related topics, see

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection

• section Scenario 1: Adding a new column and altering data in a DB table.



tDB2Rollback

468 Talend Open Studio Components Reference Guide

tDB2Rollback

tDB2Rollback properties

This component is closely related to tDB2Commit and tDB2Connection. It usually does not make much sense
to use these components independently in a transaction.

Component family Databases/DB2

Function tDB2Rollback cancels the transaction committed in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tDB2Connection component in the list if more than one
connection are planned for the current Job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with DB2 components, especially with tDB2Connection and
tDB2Commit.

Limitation n/a

Related scenarios

For tDB2Rollback related scenario, see section Scenario: Rollback from inserting data in mother/daughter tables
of the tMysqlRollback.



tDB2Row

Talend Open Studio Components Reference Guide 469

tDB2Row

tDB2Row properties
Component family Databases/DB2

Function tDB2Row is the specific component for this database query. It executes the SQL query stated onto
the specified database. The row suffix means the component implements a flow in the job design
although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tDB2Row acts on the actual DB structure
or on the data (although without handling data). The SQLBuilder tool helps you write easily your
SQL statements.

Basic settings Use an existing connection Select this check box and click the relevant tDB2Connection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder



Related scenarios

470 Talend Open Studio Components Reference Guide

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

Use PreparedStatement Select this checkbox if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Limitation n/a

Related scenarios

For tDB2Row related topics, see:

• section Scenario 3: Combining two flows for selective output

• section Scenario: Resetting a DB auto-increment

• section Scenario 1: Removing and regenerating a MySQL table index.



tDB2SCD

Talend Open Studio Components Reference Guide 471

tDB2SCD

tDB2SCD belongs to two component families: Business Intelligence and Databases. For more information on it,
see section tDB2SCD.



tDB2SCDELT

472 Talend Open Studio Components Reference Guide

tDB2SCDELT

tDB2SCDELT belongs to two component families: Business Intelligence and Databases. For more information
on it, see section tDB2SCDELT.



tDB2SP

Talend Open Studio Components Reference Guide 473

tDB2SP

tDB2SP properties

Component family Databases/DB2

Function tDB2SP calls the database stored procedure.

Purpose tDB2SP offers a convenient way to centralize multiple or complex queries in a database and call
them easily.

Basic settings Use an existing connection Select this check box and click the relevant tDB2Connection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

SP Name Type in the exact name of the Stored Procedure

Is Function / Return result in Check this box, if a value only is to be returned.

Select on the list the schema column, the value to be returned is based
on.



Related scenarios

474 Talend Open Studio Components Reference Guide

Parameters Click the Plus button and select the various Schema Columns that
will be required by the procedures. Note that the SP schema can hold
more columns than there are parameters used in the procedure.

Select the Type of parameter:

IN: Input parameter

OUT: Output parameter/return value

IN OUT: Input parameters is to be returned as value, likely after
modification through the procedure (function).

RECORDSET: Input parameters is to be returned as a set of values,
rather than single value.

Check the section tPostgresqlCommit component if you
want to analyze a set of records from a database table or
DB query and return single records.

Advanced settings tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component is used as intermediary component. It can be used as start component but only
input parameters are thus allowed.

Limitation n/a

Related scenarios

For related topic, see section Scenario: Executing a stored procedure in the MDM Hub.

Check section tPostgresqlCommit as well if you want to analyze a set of records from a database table or DB
query and return single records.



tInformixBulkExec

Talend Open Studio Components Reference Guide 475

tInformixBulkExec

tInformixBulkExec Properties

tInformixOutputBulk and tInformixBulkExec are generally used together in a two step process. In the first step,
an output file is generated. In the second step, this file is used in the INSERT operation used to feed a database.
These two steps are fused together in the tInformixOutputBulkExec component, detailed in another section. The
advantage of using two components is that data can be transformed before it is loaded in the database.

Component Family Databases/Informix

Function tInformixBulkExec executes Insert operations on the data supplied.

Purpose tInformixBulkExec is a dedicated component which improves performance during Insert
operations in Informix databases.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Execution Platform Select the operating system you are using.

Use an existing connection Select this check box and click the relevant tInformixBulkExec
component on the Component List to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address.

Port DB server listening port.

Database Name of the database.

Schema Name of the schema.

Username et Password DB user authentication data.

Instance Name of the Informix instance to be used. This information can
generally be found in the SQL hosts file.

Table Name of the table to be written. Note that only one table can be
written at a time.

Action on table On the table defined, you can perform one of the following
operations:



tInformixBulkExec Properties

476 Talend Open Studio Components Reference Guide

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job designs.
Related topic: see Talend Open Studio User Guide.

Informix Directory Indicate the access path to your Informix directory.

Data file Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Action on data On the data of the table defined, you can perform the following
operations:

Insert: Add new data to the table. If duplicates are found, the job
stops.

Update: Update the existing table data.

Insert or update: Add data or update the existing data.

Update or insert : Update the existing entries or create them if they
do not already exist.

Delete: Delete the entry data which corresponds to the input flow.

You must specify at least one key upon which the Update
and Delete operations are to be based. It is possible
to define the columns which should be used as the key
from the schema, from both the Basic Settings and the
Advanced Settings, to optimise these operations.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

Field terminated by Character, string or regular expression which separates the fields.

Set DBMONEY Select this check box to define the decimal separator in the Decimal
separator field.

Set DBDATE Select the date format that you want to apply.

Rows Before Commit Enter the numbere of rows to be processed before the commit.

Bad Rows Before Abort Enter the number of rows in error at which point the Job should stop.

tStat Catcher Statistics Select this check box to colelct the log data at component level.

Output Where the output should go.

Usage This component offers database query flexibility and covers all possible DB2 queries which may
be required.

Limitation n/a



Related scenario

Talend Open Studio Components Reference Guide 477

Related scenario

For a scenario in which tInformixBulkExec might be used, see:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Truncating and inserting file data into Oracle DB.



tInformixClose

478 Talend Open Studio Components Reference Guide

tInformixClose

tInformixClose properties

Component Family Databases/Informix

Function tInformixClose closes an active connection to a database.

Purpose This component closes connection to Informix databases.

Basic settings Component list If there is more than one connection used in the Job, select
tInformixConnection from the list.

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at a component level.

Usage This component is generally used as an input component. It requires an output component.

Limitation n/a

Related scenario

This component is for use with tInformixConnection and tInformixRollback. They are generally used along
with tInformixConnection as the latter allows you to open a connection for the transaction which is underway.

To see a scenario in which tInformixClose might be used, see section tMysqlConnection.



tInformixCommit

Talend Open Studio Components Reference Guide 479

tInformixCommit

tInformixCommit properties

This component is closely related to tInformixConnection and tInformixRollback. They are generally used to
execute transactions together.

Component Family Databases/Informix

Function tInformixCommit validates data processed in a job from a connected database.

Purpose Using a single connection, make a global commit just once instead of commiting every row or
batch of rows separately. This improves performance.

Basic settings Component list If there is more than one connection in the Job, select
tInformixConnection from the list.

Close connection This check box is selected by default. It means that the database
conenction will be closed once the commit has been made. Clear the
check box to continue using the connection once the component has
completed its task.

If you are using a Row > Main type connection to
link tInformixCommit to your Job, your data will be
committed row by row. If this is the case, do not select this
check bx otherwise the conenction will be closed before
the commit of your first row is finalized.

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at a component level.

Usage This component is generally used along with Informix components, particularly
tInformixConnection and tInformixRollback.

Limitation n/a

Related Scenario

This component is for use with tInformixConnection and tInformixRollback. They are generally used along
with tInformixConnection as the latter allows you to open a connection for the transaction which is underway

To see a scenario in which tInformixCommit might be used, see section tMysqlConnection.



tInformixConnection

480 Talend Open Studio Components Reference Guide

tInformixConnection

tInformixConnection properties

This component is closely related to tInformixCommit and tInformixRollback. They are generally used along
with tInformixConnection, with tInformixConnection opening the connection for the transaction.

Database Family Databases/Informix

Function tInformixConnection opens a connection to a database in order that a transaction may be made.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address.

Port DB server listening port.

Database Name of the database.

Schema Name of the schema

Username et Password DB user authentication data.

Instance Name of the Informix instance to be used. This information can
generally be found in the SQL hosts file.

Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Advanced settings Use Transaction Clear this check box when the database is configured in NO_LOG.
mode. If the check box is selected, you can choose whether to
activate the Auto Commit option.

tStatCatcher Statistics Select this check box to collect the log data at a component level.

Usage This component is generally used with other Informix components, particularly tInformixCommit
and tInformixRollback.

Limitation n/a



Related scenario

Talend Open Studio Components Reference Guide 481

Related scenario

For a scenario in which the tInformixConnection, might be used, see section Scenario: Inserting data in mother/
daughter tables.



tInformixInput

482 Talend Open Studio Components Reference Guide

tInformixInput

tInformixInput properties

Component family Databases/Informix

Function tInformixInput reads a database and extracts fields based on a query.

Purpose tInformixInput executes a DB query with a strictly defined order which must correspond to the
schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

DB server Name of the database server

Username and Password DB user authentication data.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Query type and Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Usage This component covers all possible SQL queries for DB2 databases.

Limitation n/a

Related scenarios

For related topics, see the tDBInput scenarios:

• section Scenario 1: Displaying selected data from DB table.

• section Scenario 2: Using StoreSQLQuery variable.

See also scenario for tContextLoad: section Scenario: Dynamic context use in MySQL DB insert.



tInformixOutput

Talend Open Studio Components Reference Guide 483

tInformixOutput

tInformixOutput properties

Component family Databases/Informix

Function tInformixOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tInformixOutput executes the action defined on the table and/or on the data contained in the table,
based on the flow incoming from the preceding component in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

DB server Name of the database server

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, Job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.



tInformixOutput properties

484 Talend Open Studio Components Reference Guide

You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the Update and Delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next to
the column names you want to use as a base for the Update
operation. Do the same in the Key in delete column for the
Delete operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

sYou can press Ctrl+Space to access a list of predefined
global variables.

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and, above all, better performance at executions.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.

Enable debug mode Select this check box to display each step during processing entries
in a database.

Use Batch Size When selected, enables you to define the number of lines in each
processed batch.

Optimize the batch insertion Ensure the check box is selected, to optimize the insertion of batches
of data.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a Informix database. It also allows you to create a reject flow using a
Row > Rejects link to filter data in error. For an example of tMySqlOutput in use, see section
Scenario 3: Retrieve data in error with a Reject link.

Limitation n/a



Related scenarios

Talend Open Studio Components Reference Guide 485

Related scenarios

For tInformixOutput related topics, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection.

• section Scenario 1: Adding a new column and altering data in a DB table.



tInformixOutputBulk

486 Talend Open Studio Components Reference Guide

tInformixOutputBulk

tInformixOutputBulk properties

tInformixOutputBulk and tInformixBulkExec are generally used together in a two step process. In the first step,
an output file is generated. In the second step, this file is used in the INSERT operation used to feed a database.
These two steps are fused together in the tInformixOutputBulkExec component, detailed in another section. The
advantage of using two components is that data can be transformed before it is loaded in the database.

Component family Databases/Informix

Function Writes a file composed of columns, based on a defined delimiter and on Informix standards.

Purpose Prepares the file to be used as a parmameter in the INSERT query used to feed Informix
databases.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using
the data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to append new rows to the end of the file.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job
designs. Related topic: see Talend Open Studio User Guide.

Advanced settings Row separator String (ex: “\n”on Unix) to distinguish rows.

Field separator Character, string or regular expression used to separate fields

Set DBMONEY Select this box if you want to define the decimal separator in the
corresponding field.

Set DBDATE Select the date format that you want to apply.

Create directory if not exists This check box is selected automatically. The option allows you
to create a folder for the output file if it doesn’t already exist.

Custom the flush buffer size Select this box in order to customize the memory size used to
store the data temporarily. In the Row number field enter the
number of rows at which point the memory should be freed.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is generally used along with tInformixBulkExec. Together, they improve
performance levels when adding data to an Informix database.

Limitation n/a



Related scenario

Talend Open Studio Components Reference Guide 487

Related scenario

For a scenario in which tInformixOutputBulk might be used, see:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.



tInformixOutputBulkExec

488 Talend Open Studio Components Reference Guide

tInformixOutputBulkExec

tInformixOutputBulkExec properties
tInformixOutputBulk and tInformixBulkExec are generally used together in a two step process. In the first step,
an output file is generated. In the second step, this file is used in the INSERT operation used to feed a database.
These two steps are fused together in the tInformixOutputBulkExec component.

Component Family Databases/Informix

Function tInformixOutputBulkExec carries out Insert operations using the data provided.

Purpose tInformixOutputBulkExec is a dedicated componant which improves performance during Insert
operations in Informix databases.

Basic settings Property Type Either Built-in or Repository.

No properties stored centrally

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Execution platform Select the operating system you are using.

Use an existing connection Select the check box and choose the appropriate
tInformixConnection component from the list to use pre-defined
connection parameters.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio User
Guide.

Host Database server IP address.

Port DB server listening port.

Database Name of the database.

Schema Name of the schema.

Username et Password DB user authentication data.

Instance Name of the Informix instance to be used. This information can
generally be found in the SQL hosts file.

Table Name of the table to be written. Note that only one table can be
written at a time and the table must already exist for the insert
operation to be authorised.

Action on table On the table defined, you can perform one of the following
operations:



tInformixOutputBulkExec properties

Talend Open Studio Components Reference Guide 489

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User Guide.

Repository: You have already created the schema and stored it in the
Repository. You can reuse it in various projects and job flowcharts.
Related topic: see Talend Open Studio User Guide.

Informix Directory Indicate the access path to your Informix directory.

Data file Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add rows to the end of the file.

Action on data Select the operation you want to perform:

Bulk insert Bulk update The details asked will be different
according to the action chosen.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

You can press Ctrl+Space to access a list of predefined
global variables.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Fields terminated by Character, string or regular expression used to separate the fields

Set DBMONEY Select this check box to define the decimal separator used in the
corresponding field.

Set DBDATE Select the date format you want to apply.

Rows Before Commit Enter the number of rows to be processed before the commit.

Bad Rows Before Abort Enter the number of rows in error at which point the Job should stop.

Create directory if not exists This check box is selected by default. It creates a directory to hold
the output table if required.

Custom the flush buffer size Select this box in order to customize the memory size used to store
the data temporarily. In the Row number field enter the number of
rows at which point the memory should be freed.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to collect the log data at a component level.

Output Where the output should go.

Usage This component is generally used when no particular transformation is required on the data to be
inserted in the database.

Limitation n/a



Related scenario

490 Talend Open Studio Components Reference Guide

Related scenario

For a scenario in which tInformixOutputBulkExec might be used, see:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.



tInformixRollback

Talend Open Studio Components Reference Guide 491

tInformixRollback

tInformixRollback properties

This component is closely related to tInformixCommit and tInformixConnection. They are generally used
together to execute transactions.

Famille de composant Databases/Informix

Function tInformixRollback cancels transactions in connected databases.

Purpose This component prevents involuntary transaction commits.

Basic settings Component list Select the tInformixConnection component from the list if you plan
to add more than one connection to the Job.

Close Connection Clear this checkbox if you want to continue to use the connection
once the component has completed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at a component level.

Usage This component must be used with other Informix components, particularly tInformixConnection
and tInformixCommit.

Limitation n/a

Related Scenario

For a scenario in which tInformixRollback might be used, see section Scenario: Rollback from inserting data
in mother/daughter tables.



tInformixRow

492 Talend Open Studio Components Reference Guide

tInformixRow

tInformixRow properties
Component family Databases/Informix

Function tInformixRow is the specific component for this database query. It executes the SQL query stated
onto the specified database. The row suffix means the component implements a flow in the job
design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tInformixRow acts on the actual DB
structure or on the data (although without handling data). The SQLBuilder tool helps you write
easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tInformixConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder.



Related scenarios

Talend Open Studio Components Reference Guide 493

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Use PreparedStatement Select this check box if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Limitation n/a

Related scenarios

For related topics, see:

• section Scenario 3: Combining two flows for selective output

• section Scenario: Resetting a DB auto-increment.

• section Scenario 1: Removing and regenerating a MySQL table index.



tInformixSCD

494 Talend Open Studio Components Reference Guide

tInformixSCD

The tInformixSCD component belongs to two different families: Business Intelligence and Databases. For
further information, see section tInformixSCD.



tInformixSP

Talend Open Studio Components Reference Guide 495

tInformixSP

tInformixSP properties

Component Family Databases/Informix

Function tInformixSP calls procedures stored in a database.

Purpose tInformixSP allows you to centralise multiple and complex queries in a database and enables you
to call them more easily.

Basic settings Property type Either Built-in or Repository.

Built-in: No properties stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select the check box and choose the appropriate
tInformixConnection component from the list to use pre-defined
connection parameters.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the schema.

Username et Password User authentication information.

Instance Name of the Informix instance to be used. This information can
generally be found in the SQL hosts file.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: You have already created the schema and stored it in the
Repository. You can reuse it in various projects and job flowcharts.
Related topic: see Talend Open Studio User Guide.

SP Name Enter the exact name of the stored procedure (SP).



Related scenario

496 Talend Open Studio Components Reference Guide

Is Function / Return result in Select this check box if only one value must be returned.

From the list, select the the schema column upon which the value to
be obtained is based.

Parameters Click the Plus button and select the various Schema Columns that
will be required by the procedures. Note that the SP schema can hold
more columns than there are parameters used in the procedure.

Select the Type of parameter:

IN: Input parameter

OUT: Output parameter/return value

IN OUT: Input parameters is to be returned as value, likely after
modification through the procedure (function).

RECORDSET: Input parameters is to be returned as a set of values,
rather than single value.

Check section tPostgresqlCommit, if you want to analyze
a set of records from a database table or DB query and
return single records.

Use Transaction Clear this check box if the database is configured in the NO_LOG
mode.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

tStatCatcher Statistics Select this check box to collect log data at a component level.

Usage This is an intermediary component. It can also be used as an entry component. In this case, only
the entry parameters are authorized.

Limitation The stored procedure syntax must correspond to that of the database.

Related scenario

For a scenario in which tInformixSP may be used, see:

• section Scenario: Executing a stored procedure in the MDM Hub.

• section Scenario: Checking number format using a stored procedure.

Also, see section tPostgresqlCommit if you want to analyse a set of records in a table or SQL query.



tMSSqlBulkExec

Talend Open Studio Components Reference Guide 497

tMSSqlBulkExec

tMSSqlBulkExec properties
The tMSSqlOutputBulk and tMSSqlBulkExec components are used together in a two step process. In the first
step, an output file is generated. In the second step, this file is used in the INSERT operation used to feed a database.
These two steps are fused together in the tMSSqlOutputBulkExec component, detailed in a separate section. The
advantage of using a two step process is that the data can be transformed before it is loaded in the database.

Component family Databases/MSSql

Function Executes the Insert action on the provided data.

Purpose As a dedicated component, tMSSqlBulkExec offers gains in performance while carrying out the
Insert operations to a MSSql database

Basic settings Property type Either Built-in or Repository.

Built-in: No property data is stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tMSSqlConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the schema.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time and that the table must exist for the insert operation
to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create table: The table is removed and created again.



tMSSqlBulkExec properties

498 Talend Open Studio Components Reference Guide

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does not exist.

Clear table: The table content is deleted.

Truncate table: The table content is deleted. You do not have the
possibility to rollback the operation.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Remote File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Advanced settings Action Select the action to be carried out

Bulk insert Bulk update Bcp query out Depending on the action
selected, the requied information varies.

Bulk insert & Bulk update Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

Fields terminated Character, string or regular expression to separate fields.

Rows terminated Character, string or regular expression to separate rows.

First row Type in the number of the row where the action should start

Code page This value can be any of the followings:

OEM (by default value)

ACP RAW User-defined

Data file type Select the type of data being handled.

Output Select the type of output for the standard output of the MSSql
database:

to console,

to global variable.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Bcp query out Fields terminated Character, string or regular expression to separate fields.

Rows terminated Character, string or regular expression to separate rows.

Data file type Select the type of data being handled.

Output Select the type of output to pass the processed data onto:

to console: data is viewed in the Log view.

to global variable: data is put in output variable linked to a tsystem
component

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with tMSSqlOutputBulk component. Used together, they can
offer gains in performance while feeding a MSSql database.

Limitation n/a



Related scenarios

Talend Open Studio Components Reference Guide 499

Related scenarios

For use cases in relation with tMSSqlBulkExec, see the following scenarios:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.



tMSSqlColumnList

500 Talend Open Studio Components Reference Guide

tMSSqlColumnList

tMSSqlColumnList Properties

Component family Databases/MS SQL

Function Iterates on all columns of a given table through a defined MS SQL connection.

Purpose Lists all column names of a given MSSql table.

Basic settings Component list Select the tMSSqlConnection component in the list if more than one
connection are planned for the current job.

Table name Enter the name of the tabe.

Usage This component is to be used along with MSSql components, especially with tMSSqlConnection.

Limitation n/a

Related scenario

For tMSSqlColumnList related scenario, see section Scenario: Iterating on a DB table and listing its column
names.



tMSSqlClose

Talend Open Studio Components Reference Guide 501

tMSSqlClose

tMSSqlClose properties

Component family Databases/MSSql

Function tMssqlClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tMssqlConnection component in the list if more than one
connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with tMssql components, especially with tMssqlConnection
and tMssqlCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tMSSqlCommit

502 Talend Open Studio Components Reference Guide

tMSSqlCommit

tMSSqlCommit properties

This component is closely related to tMSSqlConnection and tMSSqlRollback. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/MSSql

Function tMSSqlCommit validates the data processed through the job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the tMSSqlConnection component in the list if more than one
connection are planned for the current Job.

Close connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to link
tMSSqlCommit to your Job, your data will be commited
row by row. In this case, do not select the Close connection
check box or your connection will be closed before the end
of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing metadata at a job
level as well as at each component level.

Usage This component is to be used along with Mssql components, especially with tMSSqlConnection
and tMSSqlRollback components.

Limitation n/a

Related scenarios

This component is closely related to tMSSqlConnection and tMSSqlRollback. It usually does not make much
sense to use one of these without using a tMSSqlConnection component to open a connection for the current
transaction.

For a tMSSqlCommit related scenario, see section Scenario: Inserting data in mother/daughter tables.



tMSSqlConnection

Talend Open Studio Components Reference Guide 503

tMSSqlConnection

tMSSqlConnection properties

This component is closely related to tMSSqlCommit and tMSSqlRollback. Both components are usually used
with a tMSSqlConnection component to open a connection for the current transaction.

Component family Databases/MSSQL

Function tMSSqlConnection opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address.

Port Listening port number of DB server.

Schema Schema name.

Database Name of the database.

Username and Password DB user authentication data.

Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Advanced settings Auto commit Select this check box to automatically commit a transaction when it
is completed.

tStatCatcher Statistics Select this check box to gather the job processing metadata at a Job
level as well as at each component level.

Usage This component is to be used along with MSSql components, especially with tMSSqlCommit and
tMSSqlRollback.

Limitation n/a

Related scenarios

This component is closely related to tMSSqlCommit and tMSSqlRollback. It usually does not make much sense
to use one if these without using a tMSSqlConnection component to open a connection for the current transaction.



Related scenarios

504 Talend Open Studio Components Reference Guide

For tMSSqlConnection related scenario, see section Scenario: Inserting data in mother/daughter tables.



tMSSqlInput

Talend Open Studio Components Reference Guide 505

tMSSqlInput

tMSSqlInput properties

Component family Databases/MS SQL Server

Function tMSSqlInput reads a database and extracts fields based on a query.

Purpose tMSSqlInput executes a DB query with a strictly defined order which must correspond to the
schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box and click the relevant tMSSqlConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the schema.

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.



Related scenarios

506 Talend Open Studio Components Reference Guide

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Query type and Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL queries for MS SQL server databases.

Limitation n/a

Related scenarios

Related topics in tDBInput scenarios:

• section Scenario 1: Displaying selected data from DB table

• section Scenario 2: Using StoreSQLQuery variable.

For related topic in tContextLoad, see section Scenario: Dynamic context use in MySQL DB insert.



tMSSqlLastInsertId

Talend Open Studio Components Reference Guide 507

tMSSqlLastInsertId

tMSSqlLastInsertId properties

Component Family Databases/MS SQL server

Function tMSSqlLastInsertId displays the last IDs added to a table from a MSSql specified connection.

Purpose tMSSqlLastInsertId enables you to retrieve the last primary keys added by a user to a MSSql table.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Component list Select the tMSSqlConnection component on the Component list to
reuse the connection details you already defined, if there are more
than one component in this list.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Limitation n/a

Related scenario

For a related scenario, see section Scenario: Get the ID for the last inserted record



tMSSqlOutput

508 Talend Open Studio Components Reference Guide

tMSSqlOutput

tMSSqlOutput properties

Component family Databases/MS SQL server

Function tMSSqlOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tMSSqlOutput executes the action defined on the table and/or on the data contained in the table,
based on the flow incoming from the preceding component in the job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box and click the relevant tMSSqlConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Schema Name of the schema.

Database Name of the database

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

Default: No operation is carried out.

Drop and create a table: The table is removed and created again.



tMSSqlOutput properties

Talend Open Studio Components Reference Guide 509

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Truncate table: The table content is deleted. You do not have the
possibility to rollback the operation.

Turn on identity insert Select this check box to use your own sequence for the identity value
of the inserted records (instead of having the SQL Server pick the
next sequential value).

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, job
stops.

Single Insert Query: Add entries to the table in a batch

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

Insert if not exist : Add new entries to the table if they do not exist.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the Update and Delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next to
the column names you want to use as a base for the Update
operation. Do the same in the Key in delete column for the
Delete operation.

Specify identity field Select this check box to specify the identity field, which is made up
of an automatically incrementing identification number. When this
check box is selected, three other fields display:

Identity field: select the column you want to define as the identity
field from the list.

Start value: type in a start value, used for the very first row loaded
into the table.

Step: type in an incremental value, added to the value of the previous
row that was loaded.

You can also specify the identity field from the schema of
the component. To do so, set the DB Type of the relevant
column to INT IDENTITY.

When the Specify identity field check box is selected, the
INT IDENTITY DB Type in the schema is ignored.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.



tMSSqlOutput properties

510 Talend Open Studio Components Reference Guide

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

You can press Ctrl+Space to access a list of predefined
global variables.

Commit every Enter the number of rows to be completed before committing batches
of rows together into the DB. This option ensures transaction quality
(but not rollback) and, above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.

Ignore date validation Select this check box to ignore the date validation and insert the data
directly into the database for the data types of DATE, DATETIME,
DATETIME2 and DATETIMEOFFSET.

Enable debug mode Select this check box to display each step during processing entries
in a database.

Support null in “SQL
WHERE” statement

Select this check box if you want to deal with the Null values
contained in a DB table.

Make sure that the Nullable check box is selected for the
corresponding columns in the schema.

Use batch size Select this check box to activate the batch mode for data processing.
In the Batch Size field that appears when this check box is selected,
you can type in the number you need to define the batch size to be
processed.

This check box is available only when you have selected
the Insert, the Update, the Single Insert Query or the
Delete option in the Action on data field.

If you are using the MS Sql Server 2008 version, make sure
that the Batch Size is less than or equal to 2000 parameter
markers divided by the number of columns in the schema.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a MSSql database. It also allows you to create a reject flow using a
Row > Rejects link to filter data in error. For an example of tMySqlOutput in use, see section
Scenario 3: Retrieve data in error with a Reject link.

Limitation n/a



Related scenarios

Talend Open Studio Components Reference Guide 511

Related scenarios

For tMSSqlOutput related topics, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection.

• section Scenario 1: Adding a new column and altering data in a DB table.



tMSSqlOutputBulk

512 Talend Open Studio Components Reference Guide

tMSSqlOutputBulk

tMSSqlOutputBulk properties

The tMSSqlOutputBulk and tMSSqlBulkExec components are used together in a two step process. In the first
step, an output file is generated. In the second step, this file is used in the INSERT operation used to feed a database.
These two steps are fused together in the tMSSqlOutputBulkExec component, detailed in a separate section. The
advantage of using a two step process is that the data can be transformed before it is loaded in the database.

Component family Databases/MSSql

Function Writes a file with columns based on the defined delimiter and the MSSql standards.

Purpose Prepares the file to be used as parameter in the INSERT query to feed the MSSql database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using
the data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end of the records.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job
designs. Related topic: see Talend Open Studio User Guide.

Advanced settings Row separator String (ex: “\n”on Unix) to distinguish rows.

Field separator Character, string or regular expression to separate fields.

Include header Select this check to include the column header.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStaCatcher statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with tMSSqlBulkExec component. Used together they
offer gains in performance while feeding a MSSql database.

Related scenarios

For use cases in relation with tMSSqlOutputBulk, see the following scenarios:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.



tMSSqlOutputBulkExec

Talend Open Studio Components Reference Guide 513

tMSSqlOutputBulkExec

tMSSqlOutputBulkExec properties

The tMSSqlOutputBulk and tMSSqlBulkExec components are used together in a two step process. In the first
step, an output file is generated. In the second step, this file is used in the INSERT operation used to feed a database.
These two steps are fused together in the tMSSqlOutputBulkExec component.

Component family Databases/MSSql

Function Executes actions on the provided data provided.

Purpose As a dedicated component, it allows gains in performance during Insert operations to a MSSql
database.

Basic settings Action Select the action to be carried out

Bulk insert  Bulk update

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tMSSqlConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

DB name Name of the database

Schema Name of the schema.

Username and Password DB user authentication data.

Table Name of the table to be written.

Note that only one table can be written at a time and that the table
must exist for the insert operation to succeed.

Action on table On the table defined, you can perform one of the following
operations:



Related scenarios

514 Talend Open Studio Components Reference Guide

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Truncate table: The table content is deleted. You do not have the
possibility to rollback the operation.

Clear a table: The table content is deleted. You have the possibility
to rollback the operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: You create and store the schema locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: You have already created the schema and stored it in the
Repository. You can reuse it in various projects and job flowcharts.
Related topic: see Talend Open Studio User Guide.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end of the records

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

You can press Ctrl+Space to access a list of predefined
global variables.

Field separator Character, string or regular expression to separate fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

First row Type in the number of the row where the action should start.

Include header Select this check box to include the column header.

Code page OEM code pages used to map a specific set of characters to
numerical code point values.

Data file type Select the type of data being handled.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStaCatcher statistics Select this check box to collect log data at the component level.

Usage This component is mainly used when no particular transformation is required on the data to be
loaded onto the database.

Limitation n/a

Related scenarios

For use cases in relation with tMSSqlOutputBulkExec, see the following scenarios:

• section Scenario: Inserting transformed data in MySQL database

• section Scenario: Inserting data in MySQL database



tMSSqlRollback

Talend Open Studio Components Reference Guide 515

tMSSqlRollback

tMSSqlRollback properties

This component is closely related to tMSSqlCommit and tMSSqlConnection. It usually doesn’t make much
sense to use these components independently in a transaction.

Component family Databases

Function Cancel the transaction commit in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tMSSqlConnection component in the list if more than one
connection are planned for the current job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with MSSql components, especially with tMSSqlConnection
and tMSSqlCommit components.

Limitation n/a

Related scenario

For tMSSqlRollback related scenario, see section Scenario: Rollback from inserting data in mother/daughter
tables.



tMSSqlRow

516 Talend Open Studio Components Reference Guide

tMSSqlRow

tMSSqlRow properties

Component family Databases/DB2

Function tMSSqlRow is the specific component for this database query. It executes the SQL query stated
onto the specified database. The row suffix means the component implements a flow in the job
design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tMSSqlRow acts on the actual DB structure
or on the data (although without handling data). The SQLBuilder tool helps you write easily your
SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tMSSqlConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Name of the schema.

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table name Name of the table to be used.



Related scenarios

Talend Open Studio Components Reference Guide 517

Turn on identity insert Select this check box to use your own sequence for the identity value
of the inserted records (instead of having the SQL Server pick the
next sequential value).

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Guess Query Click the Guess Query button to generate the query which
corresponds to your table schema in the Query field.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Use PreparedStatement Select this checkbox if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Limitation n/a

Related scenarios

For related topics, see:

• section Scenario 3: Combining two flows for selective output

• section Scenario: Resetting a DB auto-increment.

• section Scenario 1: Removing and regenerating a MySQL table index.



tMSSqlSCD

518 Talend Open Studio Components Reference Guide

tMSSqlSCD

tMSSqlSCD belongs to two component families: Business Intelligence and Databases. For more information on
it, see section tMSSqlSCD.



tMSSqlSP

Talend Open Studio Components Reference Guide 519

tMSSqlSP

tMSSqlSP Properties

Component family Databases/MSSql

Function tMSSqlSP calls the database stored procedure.

Purpose tMSSqlSP offers a convenient way to centralize multiple or complex queries in a database and
call them easily.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tMSSqlConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the schema.

Username and Password DB user authentication data.

Schema and Edit Schema In SP principle, the schema is an input parameter.

A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

SP Name Type in the exact name of the Stored Procedure

Is Function / Return result in Select this check box, if only a value is to be returned.



Related scenario

520 Talend Open Studio Components Reference Guide

Select on the list the schema column, the value to be returned is based
on.

Parameters Click the Plus button and select the various Schema Columns that
will be required by the procedures. Note that the SP schema can hold
more columns than there are paramaters used in the procedure.

Select the Type of parameter:

IN: Input parameter

OUT: Output parameter/return value

IN OUT: Input parameters is to be returned as value, likely after
modification through the procedure (function).

RECORDSET: Input parameters is to be returned as a set of values,
rather than single value.

Check section tPostgresqlCommit, if you want to analyze
a set of records from a database table or DB query and
return single records.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is used as intermediary component. It can be used as start component but only
input parameters are thus allowed.

Limitation The Stored Procedures syntax should match the Database syntax.

Related scenario

For related scenarios, see:

• section Scenario: Executing a stored procedure in the MDM Hub.

• section Scenario: Checking number format using a stored procedure.

Check as well section tPostgresqlCommit to analyze a set of records from a database table or DB query and return
single records.



tMSSqlTableList

Talend Open Studio Components Reference Guide 521

tMSSqlTableList

tMSSqlTableList Properties

Component family Databases/MS SQL

Function Iterates on a set of table names through a defined MS SQL connection.

Purpose Lists the names of a given set of MSSql tables using a select statement based on a Where clause.

Basic settings Component list Select the tMSSqlConnection component in the list if more than one
connection are planned for the current job.

Where clause for table name
selection

Enter the Where clause to identify the tables to iterate on.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with MSSql components, especially with tMSSqlConnection.

Limitation n/a

Related scenario

For tMSSqlTableList related scenario, see section Scenario: Iterating on a DB table and listing its column names.



tMysqlBulkExec

522 Talend Open Studio Components Reference Guide

tMysqlBulkExec

tMysqlBulkExec properties

The tMysqlOutputBulk and tMysqlBulkExec components are used together in a two step process. In the first
step, an output file is generated. In the second step, this file is used in the INSERT statement used to feed a database.
These two steps are fused together in the tMysqlOutputBulkExec component, detailed in a separate section. The
advantage of using two separate steps is that the data can be transformed before it is loaded in the database.

Component family Databases/Mysql

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, tMysqlBulkExec offers gains in performance while carrying out the
Insert operations to a Mysql database

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

DB Version Select the version of My SQL that you are using.

Use an existing connection Select this check box when using a configured tMysqlConnection
component.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create table: The table is removed and created again.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does not exist.



Related scenarios

Talend Open Studio Components Reference Guide 523

Truncate table: The table content is deleted. You do not have the
possibility to rollback the operation.

Clear table: The table content is deleted. You have the possibility
to rollback the operation.

Table Name of the table to be written. Note that only one table can be
written at a time and that the table must exist for the insert operation
to succeed.

Local file Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guides.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

Lines terminated by Character or sequence of characters used to separate lines.

Fields terminated by Character, string or regular expression to separate fields.

Enclosed by Character used to enclose text.

Action on data On the data of the table defined, you can perform:

Insert records in table: Add new records to the table.

Update records in table: Make changes to existing records.

Replace records in table: Replace existing records with new ones.
Ignore records in table: Ignore the existing records, or insert the
new ones.

Records contain NULL
value

Check this box if you want to retrieve the null values from the input
data flow. If you do not check this box, the null values from the input
data flow will be considered as empty fields in the output data flow.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with tMysqlOutputBulk component. Used together, they can
offer gains in performance while feeding a Mysql database.

Limitation n/a

Related scenarios

For use cases in relation with tMysqlBulkExec, see the following scenarios:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.

• section Scenario: Truncating and inserting file data into Oracle DB.



tMysqlClose

524 Talend Open Studio Components Reference Guide

tMysqlClose

tMysqlClose properties

Function tMysqlClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tMysqlConnection component in the list if more than one
connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Mysql components, especially with tMysqlConnection
and tMysqlCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tMysqlColumnList

Talend Open Studio Components Reference Guide 525

tMysqlColumnList

tMysqlColumnList Properties

Component family Databases/MySQL

Function Iterates on all columns of a given table through a defined Mysql connection.

Purpose Lists all column names of a given Mysql table.

Basic settings Component list Select the tMysqlConnection component in the list if more than one
connection are planned for the current job.

Table name Enter the name of the table.

Usage This component is to be used along with Mysql components, especially with tMysqlConnection.

Limitation n/a

Scenario: Iterating on a DB table and listing its column
names

The following Java scenario creates a five-component job that iterates on a given table name from a Mysql database
using a Where clause and lists all column names present in the table.

• Drop the following components from the Palette onto the design workspace: tMysqlConnection,
tMysqlTableList, tMysqlColumnList, tFixedFlowInput, and tLogRow.

• Connect tMysqlConnection to tMysqlTableList using an OnSubjobOk link.

• Connect tMysqlTableList, tMysqlColumnList, and tFixedFlowInput using Iterate links.

• Connect tFixedFlowInput to tLogRow using a Row Main link.

• In the design workspace, select tMysqlConnection and click the Component tab to define its basic settings.

• In the Basic settings view, set the database connection details manually or select them from the context variable
list, through a Ctrl+Space click in the corresponding field if you have stored them locally as Metadata DB
connection entries.



Scenario: Iterating on a DB table and listing its column names

526 Talend Open Studio Components Reference Guide

For more information about Metadata, see Talend Open Studio User Guide.

In this example, we want to connect to a Mysql database called customers.

• In the design workspace, select tMysqlTableList and click the Component tab to define its basic settings.

• On the Component list, select the relevant Mysql connection component if more than one connection is used.

• Enter a Where clause using the right syntax in the corresponding field to iterate on the table name(s) you want
to list on the console.

In this scenario, the table we want to iterate on is called customer.

• In the design workspace, select tMysqlColumnList and click the Component tab to define its basic settings.

• On the Component list, select the relevant Mysql connection component if more than one connection is used.

• In the Table name field, enter the name of the DB table you want to list its column names.

In this scenario, we want to list the columns present in the DB table called customer.

• In the design workspace, select tFixedFlowInput and click the Component tab to define its basic settings.

• Set the Schema to Built-In and click the three-dot [...] button next to Edit Schema to define the data you want
to use as input. In this scenario, the schema is made of two columns, the first for the table name and the second
for the column name.



Scenario: Iterating on a DB table and listing its column names

Talend Open Studio Components Reference Guide 527

• Click OK to close the dialog box, and accept propagating the changes when prompted by the system. The
defined columns display in the Values panel of the Basic settings view.

• Click in the Value cell for each of the two defined columns and press Ctrl+Space to access the global variable
list.

• From the global variable list, select ((String)globalMap.get("tMysqlTableList_1_CURRENT_TABLE")) and
((String)globalMap.get("tMysqlColumnList_1_COLUMN_NAME")) for the TableName and ColumnName
respectively.

• In the design workspace, select tLogRow.

• Click the Component tab and define the basic settings for tLogRow as needed.

• Save your job and press F6 to execute it.

The name of the DB table is displayed on the console along with all its column names.



tMysqlCommit

528 Talend Open Studio Components Reference Guide

tMysqlCommit

tMysqlCommit Properties

This component is closely related to tMysqlConnection and tMysqlRollback. It usually doesn’t make much
sense to use these components independently in a transaction.

Component family Databases/MySQL

Function Validates the data processed through the job into the connected DB

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the tMysqlConnection component in the list if more than one
connection are planned for the current job.

Close Connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to link
tMysqlCommit to your Job, your data will be commited
row by row. In this case, do not select the Close connection
check box or your connection will be closed before the end
of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Mysql components, especially with tMysqlConnection
and tMysqlRollback components.

Limitation n/a

Related scenario

This component is closely related to tMysqlConnection and tMysqlRollback. It usually doesn’t make much sense
to use one of these without using a tMysqlConnection component to open a connection for the current transaction.

For tMysqlCommit related scenario, see section Scenario: Inserting data in mother/daughter tables.



tMysqlConnection

Talend Open Studio Components Reference Guide 529

tMysqlConnection

tMysqlConnection Properties

This component is closely related to tMysqlCommit and tMysqlRollback. It usually doesn’t make much sense to
use one of these without using a tMysqlConnection component to open a connection for the current transaction.

Component family Databases/MySQL

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating.

Username and Password DB user authentication data.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Specify a data source alias Select this check box and specify the alias of a data source created on
the Talend Runtime side to use the shared connection pool defined
in the data source configuration. This option works only when you
deploy and run your Job in Talend Runtime.

Usage This component is to be used along with Mysql components, especially with tMysqlCommit and
tMysqlRollback components.

Limitation n/a

Scenario: Inserting data in mother/daughter tables

The following Job is dedicated to advanced database users, who want to carry out multiple table insertions using
a parent table id to feed a child table. As a prerequisite to this Job, follow the steps described below to create the
relevant tables using an engine such as innodb.



Scenario: Inserting data in mother/daughter tables

530 Talend Open Studio Components Reference Guide

• In a command line editor, connect to your Mysql server.

• Once connected to the relevant database, type in the following command to create the parent table: create table
f1090_mum(id int not null auto_increment, name varchar(10), primary key(id)) engine=innodb;

• Then create the second table: create table baby (id_baby int not null, years int) engine=innodb;

Back in Talend Open Studio, the Job requires seven components including tMysqlConnection and
tMysqlCommit.

• Drag and drop the following components from the Palette: tFileList, tFileInputDelimited, tMap,
tMysqlOutput (x2).

• Connect the tFileList component to the input file component using an Iterate link as the name of the file to be
processed will be dynamically filled in from the tFileList directory using a global variable.

• Connect the tFileInputDelimited component to the tMap and dispatch the flow between the two output Mysql
DB components. Use a Row link for each for these connections representing the main data flow.

• Set the tFileList component properties, such as the directory. name where files will be fetched from.

• Add a tMysqlConnection component and connect it to the starter component of this job, in this example, the
tFileList component using an OnComponentOk link to define the execution order.

• In the tMysqlConnection Component view, set the connection details manually or fetch them from the
Repository if you centrally stored them as a Metadata DB connection entry. For more information about
Metadata, see Talend Open Studio User Guide.

• On the tFileInputDelimited component’s Basic settings panel, press Ctrl+Space bar to access the variable
list. Set the File Name field to the global variable: tFileList_1.CURRENT_FILEPATH



Scenario: Inserting data in mother/daughter tables

Talend Open Studio Components Reference Guide 531

• Set the rest of the fields as usual, defining the row and field separators according to your file structure.

• Then set the schema manually through the Edit schema feature or select the schema from the Repository. In
Java version, make sure the data type is correctly set, in accordance with the nature of the data processed.

• In the tMap Output area, add two output tables, one called mum for the parent table, the second called baby,
for the child table.

• Drag the Name column from the Input area, and drop it to the mum table.

• Drag the Years column from the Input area and drop it to the baby table.

• Make sure the mum table is on the top of the baby table as the order is determining for the flow sequence hence
the DB insert to perform correctly.

• Then connect the output row link to distribute correctly the flow to the relevant DB output component.

• In each of the tMysqlOutput components’ Basic settings panel, select the Use an existing connection check
box to retrieve the tMysqlConnection details.

• Set the Table name making sure it corresponds to the correct table, in this example either f1090_mum or
f1090_baby.

• There is no action on the table as they are already created.

• Select Insert as Action on data for both output components.

• Click on Sync columns to retrieve the schema set in the tMap.

• In the Additional columns area of the DB output component corresponding to the child table (f1090_baby),
set the id_baby column so that it reuses the id from the parent table.

• In the SQL expression field type in: '(Select Last_Insert_id())'



Scenario: Inserting data in mother/daughter tables

532 Talend Open Studio Components Reference Guide

• The position is Before and the Reference column is years.

• Add the tMysqlCommit component to the design workspace and connect it from the tFileList component using
a OnComponentOk connection in order for the Job to terminate with the transaction commit.

• On the tMysqlCommit Component view, select in the list the connection to be used.

• Save your Job and press F6 to execute it.

The parent table id has been reused to feed the id_baby column.



tMysqlInput

Talend Open Studio Components Reference Guide 533

tMysqlInput

tMysqlInput properties

Component family Databases/MySQL

Function tMysqlInput reads a database and extracts fields based on a query.

Purpose tMysqlInput executes a DB query with a strictly defined order which must correspond to the schema
definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are stored. The
fields that follow are completed automatically using the data retrieved.

Click this icon to open a database connection wizard and store the database
connection parameters you set in the component Basic settings view.

For more information about setting up and storing database connection
parameters, see Talend Open Studio User Guide.

Use an existing
connection

Select this check box when using a configured tMysqlConnection component.

When a Job contains the parent Job and the child Job, Component
list presents only the connection components in the same Job level, so
if you need to use an existing connection from the other level, make
sure that the available connection components are sharing the intended
connection.

For more information on how to share a DB connection across Job
levels, see Use or register a shared DB connection in any database
connection component corresponding to the database you are using.

Otherwise, you can as well deactivate the connection components
and use Dynamic settings of the component to specify the intended
connection manually. In this case, make sure the connection name is
unique and distinctive all over through the two Job levels. For more
information about Dynamic settings, see your studio user guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and
Password

DB user authentication data.

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number of fields to be processed
and passed on to the next component. The schema is either Built-in or stored
remotely in the Repository.

Built-in: The schema is created and stored locally for this component only.
Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the Repository, hence can
be reused. Related topic: see Talend Open Studio User Guide.

Table Name Name of the table to be read.

Query type and Query Enter your DB query paying particularly attention to properly sequence the fields
in order to match the schema definition.

Specify a data source
alias

Select this check box and specify the alias of a data source created on the
Talend Runtime side to use the shared connection pool defined in the data source



Scenario 1: Writing columns from a MySQL database to an output file

534 Talend Open Studio Components Reference Guide

configuration. This option works only when you deploy and run your Job in
Talend Runtime.

If you use the component's own DB configuration, your data source
connection will be closed at the end of the component. To prevent this
from happening, use a shared DB connection with the data source alias
specified.

This check box is not available when the Use an existing connection check box
is selected.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you are creating.
This option is not available if you have selected the Use an existing connection
check box in the Basic settings.

When you need to handle data of the time-stamp type 0000-00-00
00:00:00 using this component, set the parameter as:

noDatetimeStringSync=true&zeroDa-

teTimeBehavior=convertToNull.

Enable stream Select this check box to enables streaming over buffering which allows the code
to read from a large table without consuming a large amount of memory in order
to optimize the performance.

Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from all the
String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

Clear Trim all the String/Char columns to enable Trim columns in
this field.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL queries for Mysql databases.

Scenario 1: Writing columns from a MySQL database
to an output file

In this scenario we will read certain columns from a MySQL database, and then write them to a table in a local
output file.

Dragging and dropping components and linking them together

1. Drop tMysqlInput and tFileOutputDelimited from the Palette onto the workspace.

2. Link tMysqlInput to tFileOutputDelimited using a Row > Main connection.

Configuring the components

1. Double-click tMysqlInput to open its Basic Settings view in the Component tab.



Scenario 1: Writing columns from a MySQL database to an output file

Talend Open Studio Components Reference Guide 535

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-
in. For how to edit a Built-in schema, see Talend Open Studio User Guide.

2. From the Property Type list, select Repository if you have already stored the connection to database in the
Metadata node of the Repository tree view. The property fields that follow are automatically filled in.

For more information about how to store a database connection, see Talend Open Studio User Guide.

If you have not defined the database connection locally in the Repository, fill in the details manually after
selecting Built-in from the Property Type list.

3. Set the Schema as Built-in and click Edit schema to define the desired schema.

The schema editor opens:

4. Click the [+] button to add the rows that you will use to define the schema, four columns in this example
id, first_name, city and salary.

Under Column, click in the fields to enter the corresponding column names.

Click the field under Type to define the type of data.



Scenario 1: Writing columns from a MySQL database to an output file

536 Talend Open Studio Components Reference Guide

Click OK to close the schema editor.

5. Next to the Table Name field, click the [...] button to select the database table of interest.

A dialog box displays a tree diagram of all the tables in the selected database:

6. Click the table of interest and then click OK to close the dialog box.

7. Set the Query Type as Built-In.

8. In the Query box, enter the query required to retrieve the desired columns from the table.

9. Double-click tFileOutputDelimited to set its Basic settings in the Component tab.

10. Next to the File Name field, click the [...] button to browse your directory to where you want to save the
output file, then enter a name for the file.

Select the Include Header check box to retrieve the column names as well as the data.

11. Save the Job.

Executing the Job

The results below can be found after F6 is pressed to run the Job.



Scenario 2: Using context parameters when reading a table from a MySQL database

Talend Open Studio Components Reference Guide 537

As shown above, the output file is written with the desired column names and corresponding data, retrieved from
the database:

The Job can also be run in the Traces Debug mode, which allows you to view the rows as they are being written to the
output file, in the workspace.

Scenario 2: Using context parameters when reading a
table from a MySQL database
In this scenario, we will read a table from a MySQL database, using a context parameter to refer to the table name.

Dragging and dropping components and linking them together

1. Drop tMysqlInput and tLogRow from the Palette onto the workspace.

2. Link tMysqlInput to tLogRow using a Row > Main connection.

Configuring the components

1. Double-click tMysqlInput to open its Basic Settings view in the Component tab.



Scenario 2: Using context parameters when reading a table from a MySQL database

538 Talend Open Studio Components Reference Guide

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-
in. For how to edit a Built-in schema, see Talend Open Studio User Guide.

2. From the Property Type list, select Repository if you have already stored the connection to database in the
Metadata node of the Repository tree view. The property fields that follow are automatically filled in.

For more information about how to store a database connection, see Talend Open Studio User Guide.

If you have not defined the database connection in the Repository, fill in the details manually after selecting
Built-in from the Property Type list.

3. Set the Schema as Built-In and click Edit schema to define the desired schema.

The schema editor opens:

4. Click the [+] button to add the rows that you will use to define the schema, seven columns in this example:
id, first_name, last_name, city, state, date_of_birth and salary.

Under Column, click the fields to enter the corresponding column names.

Click the fields under Type to define the type of data.

Click OK to close the schema editor.

5. Put the cursor in the Table Name field and press F5 for context parameter setting.



Scenario 2: Using context parameters when reading a table from a MySQL database

Talend Open Studio Components Reference Guide 539

For more information about context settings, see Talend Open Studio User Guide.

6. Keep the default setting in the Name field and type in the name of the database table in the Default value
field, employees in this case.

7. Click Finish to validate the setting.

The context parameter context.TABLE automatically appears in the Table Name field.

8. In the Query type list, select Built-In. Then, click Guess Query to get the query statement.

In this use case, we want to read the records with the salary above 8000. Therefore, we add a Where clause
and the final query statement is as follows:

"SELECT 
  "+context.TABLE+".`id`, 
  "+context.TABLE+".`first_name`, 
  "+context.TABLE+".`last_name`, 
  "+context.TABLE+".`city`, 
  "+context.TABLE+".`state`, 
  "+context.TABLE+".`date_of_birth`, 
  "+context.TABLE+".`salary`
FROM "+context.TABLE+"
WHERE
  "+context.TABLE+".`salary` > 8000"

9. Double-click tLogRow to set its Basic Settings in the Component tab.



Scenario 2: Using context parameters when reading a table from a MySQL database

540 Talend Open Studio Components Reference Guide

10. In the Mode area, select Table (print values in cells of a table) for a better display of the results.

11. Save the Job.

Executing the Job

The results below can be found after F6 is pressed to run the Job.

As shown above, the records with the salary greater than 8000 are retrieved.



tMysqlLastInsertId

Talend Open Studio Components Reference Guide 541

tMysqlLastInsertId

tMysqlLastInsertId properties

Component family Databases

Function tMysqlLastInsertId fetches the last inserted ID from a selected MySQL Connection.

Purpose tMysqlLastInsertId obtains the primary key value of the record that was last inserted in a Mysql
table by a user.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: You create and store the schema locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: You have already created the schema and stored it in the
Repository. You can reuse it in various projects and job flow charts.
Related topic: see Talend Open Studio User Guide.

Component list Select the relevant tMysqlConnection component in the list if more
than one connection is planned for the current job.

Usage This component is to be used as an intermediary component.

If you use this component with tMySqlOutput, verify that the Extend Insert check box
in the Advanced Settings tab is not selected. Extend Insert allows you to make a batch
insertion, however, if the check box is selected, only the ID of the last line in the last
batch will be returned.

Limitation n/a

Scenario: Get the ID for the last inserted record

The following Java scenario creates a job that opens a connection to Mysql database, writes the defined data into
the database, and finally fetches the last inserted ID on the existing connection.

• Drop the following components from the Palette onto the design workspace: tMySqlConnection,
tMySqlCommit, tFileInputDelimited, tMySqlOutput, tMysqlLastInsertId, and tLogRow.

• Connect tMySqlConnection to tFileInputDelimited using an OnSubjobOk link.

• Connect tFileInputDelimited to tMySqlCommit using an OnSubjobOk link.

• Connect tFileInputdelimited to the three other components using Row Main links.



Scenario: Get the ID for the last inserted record

542 Talend Open Studio Components Reference Guide

• In the design workspace, select tMysqlConnection.

• Click the Component tab to define the basic settings for tMysqlConnection.

• In the Basic settings view, set the connection details manually or select them from the context variable list,
through a Ctrl+Space click in the corresponding field if you stored them locally as Metadata DB connection
entries. For more information about Metadata, see Talend Open Studio User Guide.

• In the design workspace, select tMysqlCommit and click the Component tab to define its basic settings.

• On the Component List, select the relevant tMysqlConnection if more than one connection is used.

• In the design workspace, select tFileInputDelimited.

• Click the Component tab to define the basic settings of tFileInputDelimited.



Scenario: Get the ID for the last inserted record

Talend Open Studio Components Reference Guide 543

• Fill in a path to the processed file in the File Name field. The file used in this example is Customers.

• Define the Row separator that allow to identify the end of a row. Then define the Field separator used to
delimit fields in a row.

• Set the header, the footer and the number of processed rows as necessary. In this scenario, we have one header.

• Click the three-dot button next to Edit Schema to define the data to pass on to the next component.

Related topics: see Talend Open Studio User Guide.

In this scenario, the schema consists of two columns, name and age. The first holds three employees’ names and
the second holds the corresponding age for each.

• In the design workspace, select tMySqlOutput.

• Click the Component tab to define the basic settings of tMySqlOuptput.

• Select the Use an existing connection check box.

• In the Table field, enter the name of the table where to write the employees’ list, in this example: employee.

• Select relevant actions on the Action on table and Action on data lists. In this example, no action is carried
out on table, and the action carried out on data is Insert.

• Click Sync columns to synchronize columns with the previous component. In this example, the schema to be
inserted into the MySql database table consists of the two columns name and age.



Scenario: Get the ID for the last inserted record

544 Talend Open Studio Components Reference Guide

• In the design workspace, select tMySqlLastInsertId.

• Click the Component tab to define the basic settings of tMySqlLastInserId.

• On the Component List, select the relevant tMysqlConnection, if more than one connection is used.

• Click Sync columns to synchronize columns with the previous component. In the output schema of
tMySqlLastInsertId, you can see the read-only column last_insert_id that will fetch the last inserted ID on
the existing connection.

You can select the data type Long from the Type drop-down list in case of a huge number of entries.

• In the design workspace, select tLogRow and click the Component tab to define its basic settings. For more
information, see section tLogRow.

• Save your job and press F6 to execute it.



Scenario: Get the ID for the last inserted record

Talend Open Studio Components Reference Guide 545

tMysqlLastInsertId fetched the last inserted ID for each line on the existing connection.



tMysqlOutput

546 Talend Open Studio Components Reference Guide

tMysqlOutput

tMysqlOutput properties

Component family Databases/MySQL

Function tMysqlOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tMysqlOutput executes the action defined on the table and/or on the data contained in the table,
based on the flow incoming from the preceding component in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

DB Version Select the MySQL version you are using.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box when using a configured tMysqlConnection
component.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

Default: No operation is carried out.

Drop and create a table: The table is removed and created again.



tMysqlOutput properties

Talend Open Studio Components Reference Guide 547

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Truncate table: The table content is quickly deleted. However, you
will not be able to rollback the operation.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, the job
stops.

Update: Make changes to existing entries.

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or creates them if they do
not exist.

Delete: Remove entries corresponding to the input flow.

Replace: Add new entries to the table. If an old row in the table has
the same value as a new row for a PRIMARY KEY or a UNIQUE
index, the old row is deleted before the new row is inserted.

Insert or update on duplicate key or unique index: Add entries
if the inserted value does not exist or update entries if the inserted
value already exists and there is a risk of violating a unique index
or primary key.

Insert Ignore: Add only new rows to prevent duplicate key errors.

You must specify at least one column as a primary key
on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the update and delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next
to the column name on which you want to base the update
operation. Do the same in the Key in delete column for the
deletion operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row in error and complete the process for error-free rows. If needed,
you can retrieve the rows in error via a Row > Rejects link.

Specify a data source alias Select this check box and specify the alias of a data source created on
the Talend Runtime side to use the shared connection pool defined
in the data source configuration. This option works only when you
deploy and run your Job in Talend Runtime.

If you use the component's own DB configuration, your
data source connection will be closed at the end of the



tMysqlOutput properties

548 Talend Open Studio Components Reference Guide

component. To prevent this from happening, use a shared
DB connection with the data source alias specified.

This check box is not available when the Use an existing connection
check box is selected.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

You can press Ctrl+Space to access a list of predefined
global variables.

Extend Insert Select this check box to carry out a bulk insert of a defined set of lines
instead of inserting lines one by one. The gain in system performance
is considerable.

Number of rows per insert: enter the number of rows to be inserted
per operation. Note that the higher the value specified, the lower
performance levels shall be due to the increase in memory demands.

This option is not compatible with the Reject link. You
should therefore clear the check box if you are using a Row
> Rejects link with this component.

If you are using this component with tMysqlLastInsertID,
ensure that the Extend Insert check box in Advanced
Settings is not selected. Extend Insert allows for batch
loading, however, if the check box is selected, only the ID
of the last line of the last batch will be returned.

Use batch size Select this check box to activate the batch mode for data processing.
In the Batch Size field that appears when this check box is selected,
you can type in the number you need to define the batch size to be
processed.

This check box is available only when you have selected,
the Update or the Delete option in the Action on data
field.

Commit every Number of rows to be included in the batch before it is committed
to the DB. This option ensures transaction quality (but not rollback)
and, above all, a higher performance level.

Additional Columns This option is not available if you have just created the DB table
(even if you delete it beforehand). This option allows you to call SQL
functions to perform actions on columns, provided that these are not
insert, update or delete actions, or actions that require pre-processing.

Name: Type in the name of the schema column to be altered or
inserted.

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the data in the corrsponding column.

Position: Select Before, Replace or After, depending on the action
to be performed on the reference column.

Reference column: Type in a reference column that tMySqlOutput
can use to locate or replace the new column, or the column to be
modified.

Use field options Select this check box to customize a request, particularly if multiple
actions are being carried out on the data.

Use Hint Options Select this check box to activate the hint configuration area which
helps you optimize a query’s execution. In this area, parameters are:

- HINT: specify the hint you need, using the syntax /*+ */.

- POSITION: specify where you put the hint in a SQL statement.

- SQL STMT: select the SQL statement you need to use.



Scenario 1: Adding a new column and altering data in a DB table

Talend Open Studio Components Reference Guide 549

Enable debug mode Select this check box to display each step involved in the process of
writing data in the database.

Use duplicate key update
mode insert

Updates the values of the columns specified, in the event of duplicate
primary keys.:

Column: Between double quotation marks, enter the name of the
column to be updated.

Value: Enter the action you want to carry out on the column.

To use this option you must first of all select the Insert
mode in the Action on data list found in the Basic Settings
view.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a MySQL database. It also allows you to create a reject flow using a
Row > Rejects link to filter data in error. For an example of tMySqlOutput in use, see section
Scenario 3: Retrieve data in error with a Reject link.

Scenario 1: Adding a new column and altering data in
a DB table

This Java scenario is a three-component job that aims at creating random data using a tRowGenerator, duplicating
a column to be altered using the tMap component, and eventually altering the data to be inserted based on an SQL
expression using the tMysqlOutput component.

• Drop the following components from the Palette onto the design workspace: tRowGenerator, tMap and
tMySQLOutput.

• Connect tRowGenerator, tMap, and tMysqlOutput using the Row Main link.

• In the design workspace, select tRowGenerator to display its Basic settings view.

• Click the Edit schema three-dot button to define the data to pass on to the tMap component, two columns in
this scenario, name and random_date.



Scenario 1: Adding a new column and altering data in a DB table

550 Talend Open Studio Components Reference Guide

• Click OK to close the dialog box.

• Click the RowGenerator Editor three-dot button to open the editor and define the data to be generated.

• Click in the corresponding Functions fields and select a function for each of the two columns, getFirstName
for the first column and getrandomDate for the second column.

• In the Number of Rows for Rowgenerator field, enter 10 to generate ten first name rows and click Ok to
close the editor.

• Double-click the tMap component to open the Map editor. The Map editor opens displaying the input metadata
of the tRowGenerator component.



Scenario 1: Adding a new column and altering data in a DB table

Talend Open Studio Components Reference Guide 551

• In the Schema editor panel of the Map editor, click the plus button of the output table to add two rows and
define the first as random_date and the second as random_date1.

In this scenario, we want to duplicate the random_date column and adapt the schema in order to alter the data
in the output component.

• In the Map editor, drag the random_date row from the input table to the random_date and random_date1 rows
in the output table.

• Click OK to close the editor.

• In the design workspace, double-click the tMysqlOutput component to display its Basic settings view and set
its parameters.



Scenario 1: Adding a new column and altering data in a DB table

552 Talend Open Studio Components Reference Guide

• Set Property Type to Repository and then click the three-dot button to open the [Repository content] dialog
box and select the correct DB connection. The connection details display automatically in the corresponding
fields.

If you have not stored the DB connection details in the Metadata entry in the Repository, select Built-in on the property
type list and set the connection detail manually.

• Click the three-dot button next to the Table field and select the table to be altered, Dates in this scenario.

• On the Action on table list, select Drop table if exists and create, select Insert on the Action on data list.

• If needed, click Sync columns to synchronize with the columns coming from the tMap component.

• Click the Advanced settings tab to display the corresponding view and set the advanced parameters.

• In the Additional Columns area, set the alteration to be performed on columns.

In this scenario, the One_month_later column replaces random_date_1. Also, the data itself gets altered using
an SQL expression that adds one month to the randomly picked-up date of the random_date_1 column. ex:
2007-08-12 becomes 2007-09-12.

-Enter One_Month_Later in the Name cell.

-In the SQL expression cell, enter the relevant addition script to be performed, “adddate(Random_date,
interval 1 month)” in this scenario.

-Select Replace on the Position list.



Scenario 2: Updating data in a database table

Talend Open Studio Components Reference Guide 553

-Enter Random_date1 on the Reference column list.

For this job we duplicated the random_date_1 column in the DB table before replacing one instance of it with the
One_Month_Later column. The aim of this workaround was to be able to view upfront the modification performed.

• Save your job and press F6 to execute it.

The new One_month_later column replaces the random_date1 column in the DB table and adds one month to
each of the randomly generated dates.

Related topic: see section tDBOutput properties.

Scenario 2: Updating data in a database table

This Java scenario describes a two-component Job that updates data in a MySQL table according to that in a
delimited file.

• Drop tFileInputDelimited and tMysqlOutput from the Palette onto the design workspace.

• Connect the two components together using a Row Main link.

• Double-click tFileInputDelimited to display its Basic settings view and define the component properties.

• From the Property Type list, select Repository if you have already stored the metadata of the delimited file
in the Metadata node in the Repository tree view. Otherwise, select Built-In to define manually the metadata
of the delimited file.

For more information about storing metadata, see Talend Open Studio User Guide.



Scenario 2: Updating data in a database table

554 Talend Open Studio Components Reference Guide

• In the File Name field, click the three-dot button and browse to the source delimited file that contains the
modifications to propagate in the MySQL table.

In this example, we use the customer_update file that holds four columns: id, CustomerName, CustomerAddress
and idState. Some of the data in these four columns is different from that in the MySQL table.

• Define the row and field separators used in the source file in the corresponding fields.

• If needed, set Header, Footer and Limit.

In this example, Header is set to 1 since the first row holds the names of columns, therefore it should be ignored.
Also, the number of processed lines is limited to 2000.

• Click the three-dot button next to Edit Schema to open a dialog box where you can describe the data structure
of the source delimited file that you want to pass to the component that follows.

• Select the Key check box(es) next to the column name(s) you want to define as key column(s).



Scenario 2: Updating data in a database table

Talend Open Studio Components Reference Guide 555

It is necessary to define at least one column as a key column for the Job to be executed correctly. Otherwise, the Job is
automatically interrupted and an error message displays on the console.

• In the design workspace, double-click tMysqlOutput to open its Basic settings view where you can define
its properties.

• Click Sync columns to retrieve the schema of the preceding component. If needed, click the three-dot button
next to Edit schema to open a dialog box where you can check the retrieved schema.

• From the Property Type list, select Repository if you have already stored the connection metadata in the
Metadata node in the Repository tree view. Otherwise, select Built-In to define manually the connection
information.

For more information about storing metadata, see Talend Open Studio User Guide.

• Fill in the database connection information in the corresponding fields.

• In the Table field, enter the name of the table to update.

• From the Action on table list, select the operation you want to perform, None in this example since the table
already exists.

• From the Action on data list, select the operation you want to perform on the data, Update in this example.

• Save your Job and press F6 to execute it.



Scenario 3: Retrieve data in error with a Reject link

556 Talend Open Studio Components Reference Guide

Using you DB browser, you can verify if the MySQL table, customers, has been modified according to the
delimited file.

In the above example, the database table has always the four columns id, CustomerName, CustomerAddress and
idState, but certain fields have been modified according to the data in the delimited file used.

Scenario 3: Retrieve data in error with a Reject link

This scenario describes a four-component Job that carries out migration from a customer file to a MySQL database
table and redirects data in error towards a CSV file using a Reject link.

• In the Repository, select the customer file metadata that you want to migrate and drop it onto the workspace.
In the [Components] dialog box, select tFileInputDelimited and click OK. The component properties will be
filled in automatically.

• If you have not stored the information about your customer file under the Metadata node in the Repository.
Drop a tFileInputDelimited component from the family File > Input, in the Palette, and fill in its properties
manually in the Component tab.



Scenario 3: Retrieve data in error with a Reject link

Talend Open Studio Components Reference Guide 557

• From the Palette, drop a tMap from the Processing family onto the workspace.

• In the Repository, expand the Metadata node, followed by the Db Connections node and select the connection
required to migrate your data to the appropriate database. Drop it onto the workspace. In the [Components]
dialog box, select tMysqlOutput and click OK. The database connection properties will be automatically filled
in.

• If you have not stored the database connection details under the Db Connections node in the Repository, drop
a tMysqlOutput from the Databases family in the Palette and fill in its properties manually in the Component
tab.

For more information, see Talend Open Studio User Guide.

• From the Palette, select a tFileOutputDelimited from the File > Output family, and drop it onto the workspace.

• Link the customers component to the tMap component, and the tMap and Localhost with a Row Main link.
Name this second link out.

• Link the Localhost to the tFileOutputDelimited using a Row > Reject link.

• Double-click the customers component to display the Component view.

• In the Property Type list, select Repository and click the [...] button  in order to select the metadata containing
the connection to your file. You can also select the Built-in mode and fill in the fields manually.

• Click the [...] button next to the File Name field, and fill in the path and the name of the file you want to use.

• In the Row and Field Separator fields, type in between inverted commas the row and field separator used in
the file.

• In the Header, Footer and Limit fields, type in the number of headers and footers to ignore, and the number
of rows to which processing should be limited.

• In the Schema list, select Repository and click the [...] button in order to select the schema of your file, if it is
stored under the Metadata node in the Repository. You can also click the [...] button next to the Edit schema
field, and set the schema manually.

The schema is as follows:



Scenario 3: Retrieve data in error with a Reject link

558 Talend Open Studio Components Reference Guide

• Double-click the tMap component to open its editor.

• Select the id, CustomerName, CustomerAddress, idSate, id2, RegTime and RegisterTime columns on the table
on the left and drop them on the out table, on the right.



Scenario 3: Retrieve data in error with a Reject link

Talend Open Studio Components Reference Guide 559

• In the Schema editor area, at the bottom of the tMap editor, in the right table, change the length of the
CustomerName column to 28 to create an error. Thus, any data for which the length is greater than 28 will
create errors, retrieved with the Reject link.

• Click OK.

• In the workspace, double-click the output Localhost component to display its Component  view.

• In the Property Type list, select Repository and click the [...] button to select the connection to the database
metadata. The connection details will be automatically filled in. You can also select the Built-in mode and set
the fields manually.

• In the Table field, type in the name of the table to be created. In this scenario, we call it customers_data.

• In the Action on data list, select the Create table option.

• Click the Sync columns button to retrieve the schema from the previous component.

• Make sure the Die on error check box isn’t selected, so that the Job can be executed despite the error you
just created.

• Click the Advanced settings tab of the Component view to set the advanced parameters of the component.



Scenario 3: Retrieve data in error with a Reject link

560 Talend Open Studio Components Reference Guide

• Deselect the Extend Insert check box which enables you to insert rows in batch, because this option is not
compatible with the Reject link.

• Double-click the tFileOutputDelimited component to set its properties in the Component view.

• Click the [...] button next to the File Name field to fill in the path and name of the output file.

• Click the Sync columns button to retrieve the schema of the previous component.

• Save your Job and press F6 to execute it.



Scenario 3: Retrieve data in error with a Reject link

Talend Open Studio Components Reference Guide 561

The data in error are sent to the delimited file, as well as the error type met. Here, we have: Data truncation.



tMysqlOutputBulk

562 Talend Open Studio Components Reference Guide

tMysqlOutputBulk

tMysqlOutputBulk properties

The tMysqlOutputBulk and tMysqlBulkExec components are used together in a two step process. In the first
step, an output file is generated. In the second step, this file is used in the INSERT statement used to feed a database.
These two steps are fused together in the tMysqlOutputBulkExec component, detailed in a separate section. The
advantage of using two separate steps is that the data can be transformed before it is loaded in the database.

Component family Databases/MySQL

Function Writes a file with columns based on the defined delimiter and the MySql standards

Purpose Prepares the file to be used as parameter in the INSERT query to feed the MySQL database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using
the data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end of the file

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job
designs. Related topic: see Talend Open Studio User Guide.

Advanced settings Row separator String (ex: "\n" on Unix) to distinguish rows.

Field separator Character, string or regular expression to separate fields.

Text enclosure Character used to enclose the text.

Create directory if does not
exist

This check box is selected by default. It creates a directory to hold
the output table if required.

Custom the flush buffer size Customize the amount of memory used to temporarily store
output data. In the Row number field, enter the number of rows
after which the memory is to be freed again.

Records contain NULL
value

This check box is selected by default. It allows you to take
account of NULL value fields. If you clear the check box, the
NULL values will automatically be replaced with empty values.

Check disk space Select the this check box to throw an exception during execution
if the disk is full.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to collect the log data at the component
level.

Usage This component is to be used along with tMySQlBulkExec component. Used together they
offer gains in performance while feeding a MySQL database.



Scenario: Inserting transformed data in MySQL database

Talend Open Studio Components Reference Guide 563

Limitation n/a

Scenario: Inserting transformed data in MySQL
database

This scenario describes a four-component job which aims at fueling a database with data contained in a file,
including transformed data. Two steps are required in this job, first step is to create the file, that will then be used
in the second step. The first step includes a tranformation phase of the data included in the file.

Dropping and linking components

1. Drag and drop a tRowGenerator, a tMap, a tMysqlOutputBulk as well as a tMysqlBulkExec component.

2. Connect the main flow using row Main links.

3. And connect the start component (tRowgenerator in this example) to the tMysqlBulkExec using a trigger
connection, of type OnComponentOk.

Configuring the components

1. A tRowGenerator is used to generate random data. Double-click on the tRowGenerator component to
launch the editor.

2. Define the schema of the rows to be generated and the nature of data to generate. In this example, the clients
file to be produced will contain the following columns: ID, First Name, Last Name, Address, City which all
are defined as string data but the ID that is of integer type.



Scenario: Inserting transformed data in MySQL database

564 Talend Open Studio Components Reference Guide

Some schema information don’t necessarily need to be displayed. To hide them away, click on Columns list
button next to the toolbar, and uncheck the relevant entries, such as Precision or Parameters.

Use the plus button to add as many columns to your schema definition.

Click the Refresh button to preview the first generated row of your output.

3. Then select the tMap component to set the transformation.

4. Drag and drop all columns from the input table to the output table.

5. Apply the transformation on the LastName column by adding .toUpperCase() in its expression field.

Then, click OK to validate the transformation.

6. Double-click on the tMysqlOutputBulk component.

7. Define the name of the file to be produced in File Name field. If the delimited file information is stored in
the Repository, select it in Property Type field, to retrieve relevant data. In this use case the file name is
clients.txt.

The schema is propagated from the tMap component, if you accepted it when prompted.

8. In this example, don’t include the header information as the table should already contain it.

9. Click OK to validate the output.



Scenario: Inserting transformed data in MySQL database

Talend Open Studio Components Reference Guide 565

10. Then double-click on the tMysqlBulkExec component to set the INSERT query to be executed.

11. Define the database connection details. We recommend you to store this type of information in the
Repository, so that you can retrieve them at any time for any Job.

12. Set the table to be filled in with the collected data, in the Table field.

13. Fill in the column delimiters in the Field terminated by area.

14. Make sure the encoding corresponds to the data encoding.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

The clients database table is filled with data from the file including upper-case last name as transformed in
the job.

For simple Insert operations that don’t include any transformations, the use of tMysqlOutputBulkExec allows
you to skip a step in the process and thus improves performance.

Related topic: section tMysqlOutputBulkExec properties



tMysqlOutputBulkExec

566 Talend Open Studio Components Reference Guide

tMysqlOutputBulkExec

tMysqlOutputBulkExec properties

The tMysqlOutputBulk and tMysqlBulkExec components are used together in a two step process. In the first
step, an output file is generated. In the second step, this file is used in the INSERT statement used to feed a
database. These two steps are fused together in the tMysqlOutputBulkExec component.

Component family Databases/MySQL

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, it improves performance during Insert operations to a MySQL database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

DB Version Select the version of MySQL that you are using.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

tCreateTable can be
used as a substitute for
this function.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if doesn’t exist: The table is created if it does not
already exist.

Clear a table: The table content is deleted.

Table Name of the table to be written.

Note that only one table can be written at a time and that the
table must already exist for the insert operation to succeed

Local FileName Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select the check box for this option to append new rows to the end
of the file.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

You can press Ctrl+Space to access a list of predefined
global variables.



Scenario: Inserting data in MySQL database

Talend Open Studio Components Reference Guide 567

Row separator String (ex: “\n”on Unix) to distinguish rows.

Field separator Character, string or regular expression to separate fields.

Escape char Character of the row to be escaped

Text enclosure Character used to enclose the text.

Create directory if does not
exist

This check box is selected by default. It creates a directory to hold
the output table if required.

Custom the flush buffer size Customize the amount of memory used to temporarily store output
data. In the Row number field, enter the number of rows after which
the memory is to be freed again.

Action on data On the data of the table defined, you can carry out the following
opertaions:

Insert records in table: Add new records to the table.

Update records in table: Make changes to existing records.

Replace records in table: Replace existing records with new one.
Ignore records in table: Ignore existing records or insert the new
ones.

Records contain NULL
value

This check box is selected by default. It allows you to take account
of NULL value fields. If you clear the check box, the NULL values
will automatically be replaced with empty values.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to collect the log data at the component level.

Usage This component is mainly used when no particular transformation is required on the data to be
loaded onto the database.

Limitation n/a

Scenario: Inserting data in MySQL database

This scenario describes a two-component Job which carries out the same operation as the one described for section
tMysqlOutputBulk properties and section tMysqlBulkExec properties, although no data is transformed.

• Drop a tRowGenerator and a tMysqlOutputBulkExec component from the Palette to the design workspace.

• Connect the components using a link such as Row > Main.

• Set the tRowGenerator parameters the same way as in section Scenario: Inserting transformed data in MySQL
database. The schema is made of four columns including: ID, First Name, Last Name, Address and City.

• In the workspace, double-click the tMysqlOutputBulkExec to display the Component view and set the
properties.



Scenario: Inserting data in MySQL database

568 Talend Open Studio Components Reference Guide

• Define the database connection details in the corresponding fields, if necessary. Consult the recommendations
detailed in section Scenario: Inserting transformed data in MySQL database, concerning the conservation of
connection details in the Repository, under the Metadata node. In the component view, select Repository in
the Property Type field and then select the appropriate connection in the adjacent field. The following fields
will be filled in automatically.

For further information, see Talend Open Studio User Guide.

• In the Action on table field, select the None option as you want to insert the data into a table which already
exists.

• In the Table field, enter the name of the table you want to populate, the name being clients in this example.

• In the Local filename field, indicate the access path and the name of the file which contains the data to be added
to the table. In this example, the file is clients.txt.

• Click on the Advanced settings tab to define the component’s advanced parameters.

• In the Action on data list, select the Insert records in table to insert the new data in the table.

• Press F6 to run the Job.

The result should be pretty much the same as in section Scenario: Inserting transformed data in MySQL database,
but the data might differ as these are regenerated randomly everytime the Job is run.



tMysqlRollback

Talend Open Studio Components Reference Guide 569

tMysqlRollback

tMysqlRollback properties

This component is closely related to tMysqlCommit and tMysqlConnection. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases

Function Cancel the transaction commit in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tMysqlConnection component in the list if more than one
connection are planned for the current job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Mysql components, especially with tMysqlConnection
and tMysqlCommit components.

Limitation n/a

Scenario: Rollback from inserting data in mother/
daughter tables

Based on section Scenario: Inserting data in mother/daughter tables, insert a rollback function in order to prevent
unwanted commit.

• Drag and drop a tMysqlRollback to the design workspace and connect it to the Start component.

• Set the Rollback unique field on the relevant DB connection.

This complementary element to the job ensures that the transaction will not be partly committed.



tMysqlRow

570 Talend Open Studio Components Reference Guide

tMysqlRow

tMysqlRow properties

Component family Databases/MySQL

Function tMysqlRow is the specific component for this database query. It executes the SQL query stated in
the specified database. The row suffix means the component implements a flow in the job design
although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tMysqlRow acts on the actual DB structure
or on the data (although without handling data). The SQLBuilder tool helps you write easily your
SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

DB Version Select the MySQL version that you are using.

Use an existing connection Select this check box and click the relevant tMysqlConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table Name Name of the table to be processed.



tMysqlRow properties

Talend Open Studio Components Reference Guide 571

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Guess Query Click the Guess Query button to generate the query which
corresponds to your table schema in the Query field.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Specify a data source alias Select this check box and specify the alias of a data source created on
the Talend Runtime side to use the shared connection pool defined
in the data source configuration. This option works only when you
deploy and run your Job in Talend Runtime.

If you use the component's own DB configuration, your
data source connection will be closed at the end of the
component. To prevent this from happening, use a shared
DB connection with the data source alias specified.

This check box is not available when the Use an existing connection
check box is selected.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

Propagate QUERY’s
recordset

Select this check box to insert the result of the query in a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Use PreparedStatement Select this checkbox if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.



Scenario 1: Removing and regenerating a MySQL table index

572 Talend Open Studio Components Reference Guide

Scenario 1: Removing and regenerating a MySQL table
index

This scenario describes a four-component job that removes a table index, applies a select insert action onto a table
then regenerates the index.

Linking the components

1. Select and drop the following components onto the design workspace: tMysqlRow (x2), tRowGenerator,
and tMysqlOutput.

2. Link the first tMysqlRow to tRowGenerator using an OnComponentOk connection.

3. Link tRowGenerator to tMysqlOutput using a Row > Main connection.

4. Link tRowGenerator to the second tMysqlRow using an OnSubjobOk connection.

Configuring the components

1. Select the tMysqlRow to fill in the DB Basic settings.

2. In Property type as well in Schema, select the relevant DB entry in the list.

The DB connection details and the table schema are accordingly filled in.

3.

4. Propagate the properties and schema details onto the other components of the Job.

The query being stored in the Metadata area of the Repository, you can also select Repository in the Query
type field and the relevant query entry.

5. If you didn’t store your query in the Repository, type in the following SQL statement to alter the database
entries: drop index <index_name> on <table_name>

6. Select the second tMysqlRow component, check the DB properties and schema.

7. Type in the SQL statement to recreate an index on the table using the following statement: create index
<index_name> on <table_name> (<column_name>)



Scenario 2: Using PreparedStatement objects to query data

Talend Open Studio Components Reference Guide 573

The tRowGenerator component is used to generate automatically the columns to be added to the DB output
table defined.

8. Select the tMysqlOutput component and fill in the DB connection properties either from the Repository or
manually the DB connection details are specific for this use only. The table to be fed is named: comprehensive.

9. The schema should be automatically inherited from the data flow coming from the tLogRow. Edit the schema
to check its structure and check that it corresponds to the schema expected on the DB table specified.

The Action on table is None and the Action on data is Insert.

No additional Columns is required for this job.

Executing the Job

1. Press Ctrl+S to save the Job.

2. Press F6 to run the job.

If you manage to watch the action on DB data, you can notice that the index is dropped at the start of the
job and recreated at the end of the insert action.

Related topics: section tDBSQLRow properties.

Scenario 2: Using PreparedStatement objects to query
data

This scenario describes a four component job which allows you to link a table column with a client file. The
MySQL table contains a list of all the American States along with the State ID, while the file contains the customer
information including the ID of the State in which they live. We want to retrieve the name of the State for each
client, using an SQL query. In order to process a large volume of data quickly, we use a PreparedStatement object
which means that the query is executed only once rather than against each row in turn. Then each row is sent as a
parameter. Note that PreparedStatement object can also be used in avoiding SQL injection.

For this scenario, we use a file and a database for which we have already stored the connection and properties
in the Rerpository metadata. For further information concerning the creation of metadata in delimited files, the
creation of database connection metadata and the usage of metadata, see Talend Open Studio User Guide.

Linking the components

1. In the Repository, expand the Metadata and File delimited nodes.

2. Select the metadata which corresponds to the client file and slide the metadata onto the workspace. Here, we
are using the customers metadata.

3. Double-click tFileInputDelimited in the Components dialog box to add tFileInputDelimited to the
workspace, with the relevant fields filled by the metadata file.

4. Drop tMysqlRow, tParseRecordSet and tFileOutputDelimited onto the workspace.

5. Link tFileInputDelimited to tMysqlRow using a Row > Main connection.



Scenario 2: Using PreparedStatement objects to query data

574 Talend Open Studio Components Reference Guide

6. Link tMysqlRow to tParseRecordSet using a Row > Main connection.

7. Link tParseRecordSet to tFileOutputDelimited using a Row > Main connection.

Configuring the components

1. Double-click tFileInputDelimited to open its Basic settings view.

2. In the Schema list, select Built-in so that you can modify the component’s schema. Then click on [...] next
to the Edit schema field to add a column into which the name of the State will be inserted.



Scenario 2: Using PreparedStatement objects to query data

Talend Open Studio Components Reference Guide 575

3. Click on the [+] button to add a column to the schema. Rename this column LabelStateRecordSet and select
Object from the Type list. Click OK to save your modifications.

From the Palette, select the tMysqlRow, tParseRecordSet and tFileOutputDelimited components and drop
them onto the workspace.

4. Double click tMysqlRow to set its properties in the Basic settings tab of the Component view.

5. In the Property Type list, select Repository and click on the [...] button to select a database connection from
the metadata in the Repository. The DB Version, Host, Port, Database, Username and Password fields are
completed automatically. If you are using the Built-in mode, complete these fields manually.

6. From the Schema list, select Built-in to set the schema properties manually and add the LabelStateRecordSet
column, or click directly on the Sync columns button to retrieve the schemma from the preceding component.

7. In the Query field, enter the SQL query you want to use. Here, we want to retrieve the names of the American
States from the LabelState column of the MySQL table, us_state: "SELECT LabelState FROM us_state
WHERE idState=?".

The question mark, “?”, represents the parameter to be set in the Advanced settings tab.

8. Click Advanced settings to set the components advanced properties.



Scenario 2: Using PreparedStatement objects to query data

576 Talend Open Studio Components Reference Guide

9. Select the Propagate QUERY’s recordset check box and select the LabelStateRecordSet column from the
use column list to insert the query results in that column.

Select the Use PreparedStatement check box and define the parameter used in the query in the Set
PreparedStatement Parameters table.

Click on the [+] button to add a parameter.

In the Parameter Index cell, enter the parameter position in the SQL instruction. Enter “1” as we are only
using one parameter in this example.

In the Parameter Type cell, enter the type of parameter. Here, the parameter is a whole number, hence,
select Int from the list.

In the Parameter Value cell, enter the parameter value. Here, we want to retrieve the name of the State based
on the State ID for every client in the input file. Hence, enter “row1.idState”.

10. Double click tParseRecordSet to set its properties in the Basic settings tab of the Component view.



Scenario 3: Combining two flows for selective output

Talend Open Studio Components Reference Guide 577

11. From the Prev. Comp. Column list, select the preceding components column for analysis. In this example,
select LabelStateRecordSet.

Click on the Sync columns button to retrieve the schema from the preceding component. The Attribute table
is automatically completed with the schema columns.

In the Attribute table, in the Value field which corresponds to the LabelStateRecordSet, enter the name of
the column containing the State names to be retrieved and matched with each client, within double quotation
marks. In this example, enter “LabelState”.

12. Double click tFileOutputDelimited to set its properties in the Basic settings tab of the Component view.

13. In the File Name field, enter the access path and name of the output file.

Click Sync columns to retrieve the schema from the preceding component.

Executing the Job

1. Press Ctrl+S to save the Job.

2. Press F6 to run it.

A column containing the name of the American State corrresponding to each client is added to the file.

Scenario 3: Combining two flows for selective output

In this scenario, a flow generated by tFixedFlowInput is combined with a flow from the Mysql database. The
source flow contains id and age fields while the Mysql table contains id and name. We want to retrieve the age
data of the source flow and combine it with the id and name records from the Mysql table based on id matching.
One thing that is worth noting is that the input schema is different from the output one at tMysqlRow in the Job.



Scenario 3: Combining two flows for selective output

578 Talend Open Studio Components Reference Guide

Linking the components

1. Drop tFixedFlowInput, tMysqlRow, tParseRecordSet and tLogRow onto the workspace.

2. Rename tFixedFlowInput as source_flow, tMysqlRow as insert_recordset, tParseRecordSet as
parse_recordset and tLogRow as show_combined_flow.

3. Link tFixedFlowInput to tMysqlRow using a Row > Main connection.

4. Link tMysqlRow to tParseRecordSet using a Row > Main connection.

5. Link tParseRecordSet to tLogRow using a Row > Main connection.

Configuring the components

1. Double-click tFixedFlowInput to open its Basic settings view.

2. Select Use Inline Content (delimited file) in the Mode area.

In the Content field, enter the data to be transferred:

1;30
2;20

3. Double-click the [...] button next to Edit schema to open the schema editor.



Scenario 3: Combining two flows for selective output

Talend Open Studio Components Reference Guide 579

Click the [+] button to add two columns, namely id and age, with the type of Integer.

Click Ok to close the editor.

4. Double-click tMysqlRow to open its Basic settings view.

5. In the Host and Port fields, enter the connection details.

In the Database field, enter the database name.

In the Username and Password fields, enter the authentication details.

In the Query field, enter the SQL query to retrieve the id and name data from the Mysql table employee:
"select id, name from employee WHERE id=?".

The question mark, “?”, represents the parameter to be set in the Advanced settings tab.

6. Click the [...] button next to Edit schema to open the schema editor.



Scenario 3: Combining two flows for selective output

580 Talend Open Studio Components Reference Guide

7. Click the [+] button to add two columns in the right part, namely recordset and age, with the type of Object
and Integer. Note that recordset is intended to hold the query results of the Mysql table, namely the id and
name fields.

Click OK to close the editor.

8. Click the Advanced settings tab for further setup.

9. Select the Propagate QUERY's recordset check box and choose recordset from the use column list to insert
the query results in that column.

Select the Use PreparedStatement check box and define the parameter used in the query in the Set
PreparedStatement Parameters table.

10. Click on the [+] button to add a line.

In the Parameter Index cell, enter the parameter position in the SQL instruction. Enter “1” as we are only
using one parameter in this example.

In the Parameter Type cell, enter the type of parameter. Here, the parameter is an integer. Hence, select
Int from the list.

In the Parameter Value cell, enter the parameter value. Here, we want to retrieve the id and name from the
employee table based on the id value from the source flow. Hence, enter row3.id.

11. Double-click tParseRecordSet to open its Basic settings view.



Scenario 3: Combining two flows for selective output

Talend Open Studio Components Reference Guide 581

From the Prev. Comp. Column list, select the column to parse, namely recordset.

12. Click the [...] button next to Edit schema to open the schema editor.

Click the [+] button to add three columns in the right part, namely id, name and age, with the type of Integer,
String and Integer. Note that the id and name fields are intended to hold the parsed data of recordset.

Click OK to close the editor.

In the Attribute table, in the Value fields which correspond to id and name, enter the name of the column
in the Mysql table to be retrieved, namely "id" and "name".

13. Double-click tLogRow to open its Basic settings view.

In the Mode area, select Table (print values in cells of a table for better display.



Scenario 3: Combining two flows for selective output

582 Talend Open Studio Components Reference Guide

Executing the Job

1. Press Ctrl+S to save the Job.

2. Press F6 to run the Job.



tMysqlSCD

Talend Open Studio Components Reference Guide 583

tMysqlSCD

tMysqlSCD belongs to two component families: Business Intelligence and Databases. For more information on
it, see section tMysqlSCD.



tMysqlSCDELT

584 Talend Open Studio Components Reference Guide

tMysqlSCDELT

tMysqlSCDELT belongs to two component families: Business Intelligence and Databases. For more information
on it, see section tMysqlSCDELT.



tMysqlSP

Talend Open Studio Components Reference Guide 585

tMysqlSP

tMysqlSP Properties

Component family Databases/Mysql

Function tMysqlSP calls the database stored procedure.

Purpose tMysqlSP offers a convenient way to centralize multiple or complex queries in a database and call
them easily.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

SP Name Type in the exact name of the Stored Procedure

Is Function / Return result in Select this check box, if a value only is to be returned.

Select on the list the schema column, the value to be returned is based
on.

Parameters Click the Plus button and select the various Schema Columns that
will be required by the procedures. Note that the SP schema can hold
more columns than there are paramaters used in the procedure.

Select the Type of parameter:

IN: Input parameter

OUT: Output parameter/return value

IN OUT: Input parameters is to be returned as value, likely after
modification through the procedure (function).

RECORDSET: Input parameters is to be returned as a set of values,
rather than single value.

Check the tPostgresqlCommit component if you want to
analyze a set of records from a database table or DB query
and return single records.

Usage This component is used as intermediary component. It can be used as start component but only
input parameters are thus allowed.

Limitation The Stored Procedures syntax should match the Database syntax.



Scenario: Finding a State Label using a stored procedure

586 Talend Open Studio Components Reference Guide

Scenario: Finding a State Label using a stored
procedure

The following job aims at finding the State labels matching the odd State IDs in a Mysql two-column table. A
stored procedure is used to carry out this operation.

• Drag and drop the following components used in this example: tRowGenerator, tMysqlSP, tLogRow.

• Connect the components using the Row Main link.

• The tRowGenerator is used to generate the odd id number. Double-click on the component to launch the editor.

• Click on the Plus button to add a column to the schema to generate.

• Select the Key check box and define the Type to Int.

• The Length equals to 2 digits max.

• Use the preset function called sequence but customize the Parameters in the lower part of the window.



Scenario: Finding a State Label using a stored procedure

Talend Open Studio Components Reference Guide 587

• Change the Value of step from 1 to 2 for this example, still starting from 1.

• Set the Number of generated rows to 25 in order for all the odd State id (of 50 states) to be generated.

• Click OK to validate the configuration.

• Then select the tMysqlSP component and define its properties.

• Set the Property type field to Repository and select the relevant entry on the list. The connection details get
filled in automatically.

• Else, set manually the connection information.

• Click Sync Column to retrieve the generated schema from the preceding component.

• Then click Edit Schema and add an extra column to hold the State Label to be output, in addition to the ID.



Scenario: Finding a State Label using a stored procedure

588 Talend Open Studio Components Reference Guide

• Type in the name of the procedure in the SP Name field as it is called in the Database. In this example, getstate.
The procedure to be executed states as follows:

DROP PROCEDURE
IF EXISTS `talend`.`getstate` $$
CREATE DEFINER=`root`@`localhost` PROCEDURE `getstate`(IN pid INT, OUT
pstate VARCHAR(50))
BEGIN
SELECT LabelState INTO pstate FROM us_states WHERE idState = pid;
END $$

• In the Parameters area, click the plus button to add a line to the table.

• Set the Column field to ID, and the Type field to IN as it will be given as input parameter to the procedure.

• Add a second line and set the Column field to State and the Type to Out as this is the output parameter to
be returned.

• Eventually, set the tLogRow component properties.

• Synchronize the schema with the preceding component.

• And select the Print values in cells of a table check box for reading convenience.

• Then save your Job and execute it.

The output shows the state labels corresponding to the odd state ids as defined in the procedure.

Check the tPostgresqlCommit component if you want to analyze a set of records from a database table or DB query and
return single records.



tMysqlTableList

Talend Open Studio Components Reference Guide 589

tMysqlTableList

tMysqlTableList Properties

Component family Databases/MySQL

Function Iterates on a set of table names through a defined Mysql connection.

Purpose Lists the names of a given set of Mysql tables using a select statement based on a Where clause.

Basic settings Component list Select the tMysqlConnection component in the list if more than one
connection are planned for the current job.

Where clause for table name
selection

Enter the Where clause to identify the tables to iterate on.

Usage This component is to be used along with Mysql components, especially with tMysqlConnection.

Limitation n/a

Scenario: Iterating on DB tables and deleting their
content using a user-defined SQL template

The following Java scenario creates a three-component job that iterates on given table names from a MySQL
database using a WHERE clause. It then deletes the content of the tables directly on the DBMS using a user-
defined SQL template.

For advanced use, start with creating a connection to the database that contains the tables you want to empty of
their content.

• In the Repository tree view, expand Metadata and right click DB Connections to create a connection to the
relevant database and to store the connection information locally.

For more information about Metadata, see Talend Open Studio User Guide.

Otherwise, drop a tMySQLConnection component in the design workspace and fill the connection details
manually.

• Drop the database connection you created from the Repository onto the design workspace.

The [Components] dialog box displays.

• Select tMysqlConnection and click OK.

The tMysqlConnection components displays on the design workspace with all connection details automatically
filled in its Basic settings view.

• Drop the following two components from the Palette onto the design workspace: tMysqlTableList and tELT.

• Connect tMysqlConnection to tMysqlTableList using an OnSubjobOk link.



Scenario: Iterating on DB tables and deleting their content using a user-defined SQL template

590 Talend Open Studio Components Reference Guide

• Connect tMysqlTableList to tELT using an Iterate link.

• If needed, double-click tMysqlConnection to display its Basic settings view and verify the connection details.

In this example, we want to connect to a MySQL database called examples.

• In the design workspace, double-click tMysqlTableList to display its Basic settings view and define its settings.

• On the Component list, select the relevant MySQL connection component if more than one connection is used.

• Enter a WHERE clause using the right syntax in the corresponding field to iterate on the table name(s) you
want to delete the content of.

In this scenario, we want the job to iterate on all the tables which names start with “ex”.

• In the design workspace, double-click tELT to display its Basic settings view and define its settings.

• In Database Name, enter the name of the database containing the tables you want to process.

• On the Component list, select the relevant MySQL connection component if more than one connection is used.



Scenario: Iterating on DB tables and deleting their content using a user-defined SQL template

Talend Open Studio Components Reference Guide 591

• Click in the Table name field and press Ctrl+Space to access the global variable list.

• From the global variable list, select ((String)globalMap.get("tMysqlTableList_1_CURRENT_TABLE")).

To create the user-defined SQL template:

• In the Repository tree view, expand SQL Templates and MySQL in succession.

• Right-click UserDefined and select Create SQLTemplate from the drop-down list.

The New SQLTemplate wizard opens.



Scenario: Iterating on DB tables and deleting their content using a user-defined SQL template

592 Talend Open Studio Components Reference Guide

• Enter a name for the new SQL template and fill in the other fields If needed and then click Finish to close
the wizard.

An SQL pattern editor opens on the design workspace.

• Delete the existing code and enter the code necessary to carry out the desired action, deleting the content of all
tables which names start with “ex” in this example.

In the SQL template code, you must use the correct variable name attached to the table name parameter (“__TABLE-
NAME__” in this example). To display the variable name used, put your pointer in the Table Name field in the basic settings
of the tELT component.

• Press Ctrl+S to save the new user-defined SQL template.

The next step is to add the new user-defined SQL template to the SQL template list in the tELT component.

To add the user-defined SQL template to the SQL template list:

• In the Component view of tELT, click the SQL Templates tab to display the SQLTemplate List.

• Click the Add button and add two SQL template lines.

• Click in the first line to display a drop-down arrow and then click the arrow to display the SQL template list.



Related scenario

Talend Open Studio Components Reference Guide 593

• Select in the list the user-defined SQL template you already created.

• Make sure that the SQL template in the second line is Commit.

• Save your job and press F6 to execute it.

All tables in the MySQL examples database which names begin with “ex” are emptied from their content.

Related scenario

For tMysqlTableList related scenario, see section Scenario: Iterating on a DB table and listing its column names.



tOracleBulkExec

594 Talend Open Studio Components Reference Guide

tOracleBulkExec

tOracleBulkExec properties

The tOracleOutputBulk and tOracleBulkExec components are used together in a two step process. In the first
step, an output file is generated. In the second step, this file is used in the INSERT operation used to feed a database.
These two steps are fused together in the tOracleOutputBulkExec component, detailed in a separate section. The
advantage of using two separate steps is that the data can be transformed before it is loaded in the database.

Component family Databases/Oracle

Function tOracleBulkExec inserts, appends, replaces or truncate data in an Oracle database.

Purpose As a dedicated component, it allows gains in performance during operations performed on data
of an Oracle database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box when you are using the component
tOracleConnection.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Connection type Drop-down list of available drivers

DB Version Select the Oracle version in use

Host IP address of the database server

Port Port number listening the database server

Database Database name.

Schema Schema name.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.



tOracleBulkExec properties

Talend Open Studio Components Reference Guide 595

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if doesn’t exist: The table is created if it does not
exist.

Clear a table: The table content is deleted.

Truncate table: The table content is deleted. You do not have the
possibility to rollback the operation.

Data file name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Action on data On the data of the table defined, you can perform:

Insert: Inserts rows to an empty table. If duplicates are found, Job
stops.

Update: Update the existing data of the table.

Append: Adds rows to the existing data of the table

Replace: Overwrites some rows of the table

Truncate: Drops table entries and inserts new input flow data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Advanced settings Advanced separator (for
number)

Select this check box to change the separator used for the numbers.

Use existing control file Select this check box if you use a control file (.ctl) and specify its
path in the .ctl file name field.

Record format Define the record format:

Default: format parameters are set by default.

Stream: set Record terminator.

Fixed: set the Record length.

Variable: set the Field size of the record length.

Specify .ctl file’s INTO
TABLE clause manually

Select this check box to manually fill in the INTO TABLE clause
of the control file.

Fields terminated by Character, string or regular expression to separate fields:

None: no separator is used.

Whitespace: the separator used is a space.

EOF (used for loading LOBs from lobfile): the separator used is
an EOF character (End Of File).

Other terminator: Set another terminator in the Field terminator
field.

Use fields enclosure Select this check box if you want to use enclosing characters for the
text:

Fields enclosure (left part): character delimiting the left of the field.

Field enclosure (right part): character delimiting the right of the
field.

Use schema’s Date Pattern
to load Date field

Select this check box to use the date pattern of the schema in the
date field.

Specify field condition Select this check box to define data loading condition.

Preserve blanks Select this check box to preserve the blanks.



Scenario: Truncating and inserting file data into Oracle DB

596 Talend Open Studio Components Reference Guide

Trailing null columns Select this check box to load null columns.

Load options Click + to add data loading options:

Parameter: select a loading parameter from the list.

Value: enter a value for the parameter selected.

NLS Language In the list, select the language used for the data that are not used in
Unicode.

Set Parameter
NLS_TERRITORY

Select this check box to modify the territory conventions used for
day and weeks numbering. Your OS value is the default value used.

Encoding Select the encoding type from the list or select Custom and define it
manually. This field is compulsory for database data handling.

Output Select the type of output for the standard output of the Oracle
database:

to console,

to global variable.

Convert columns and table
names to uppercase

Select this check box to uppercase the names of the columns and the
name of the table.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This dedicated component offers performance and flexibility of Oracle DB query handling.

Scenario: Truncating and inserting file data into
Oracle DB

This scenario describes how to truncate the content of an Oracle DB and load an input file content. The related job
is composed of three components that respectively creates the content, output this content into a file to be loaded
onto the Oracle database after the DB table has been truncated.

• Drop the following components: tOracleInput, tFileOutputDelimited, tOracleBulkExec from the Palette to
the design workspace

• Connect the tOracleInput with the tFileOutputDelimited using a row main link.

• And connect the tOracleInput to the tOracleBulkExec using a OnSubjobOk trigger link.

• Define the Oracle connection details. We recommend you to store the DB connection details in the Metadata
repository in order to retrieve them easily at any time in any job.



Scenario: Truncating and inserting file data into Oracle DB

Talend Open Studio Components Reference Guide 597

• Define the schema, if it isn’t stored either in the Repository. In this example, the schema is as follows:
ID_Contract, ID_Client, Contract_type, Contract_Value.

• Define the tFileOutputDelimited component parameters, including output File Name, Row separator and
Fields delimiter.

• Then double-click on the tOracleBulkExec to define the DB feeding properties.

• In the Property Type, select Repository mode if you stored the database connection details under the Metadata
node of the Repository or select Built-in mode to define them manually. In this scenario, we use the Built-
in mode.

• Thus, set the connection parameters in the following fields: Host, Port, Database, Schema, Username, and
Password.



Scenario: Truncating and inserting file data into Oracle DB

598 Talend Open Studio Components Reference Guide

• Fill in the name of the Table to be fed and the Action on data to be carried out, in this use case: insert.

• In the Schema field, select Built-in mode, and click [...] button next to the Edit schema field to describe the
structure of the data to be passed on to the next component.

• Click the Advanced settings view to configure the advanced settings of the component.

• Select the Use an existing control file check box if you want to use a control file (.ctl) storing the status of
the physical structure of the database. Or, fill in the following fields manually: Record format, Specify .ctl
file’s INTO TABLE clause manually, Field terminated by, Use field enclosure, Use schema’s Date Pattern
to load Date field, Specify field condition, Preserve blanks, Trailing null columns, Load options, NLS
Language et Set Parameter NLS_TERRITORY according to your database.

• Define the Encoding as in preceding steps.

• For this scenario, in the Output field, select to console to output the standard output f the database to the console.

Press F6 to run the job. The log output displays in the Run tab and the table is fed with the parameter file data.

Related topic: see section Scenario: Inserting data in MySQL database.



tOracleClose

Talend Open Studio Components Reference Guide 599

tOracleClose

tOracleClose properties

Function tOracleClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tOracleConnection component in the list if more than one
connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Oracle components, especially with tOracleConnection
and tOracleCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tOracleCommit

600 Talend Open Studio Components Reference Guide

tOracleCommit

tOracleCommit Properties

This component is closely related to tOracleConnection and tOracleRollback. It usually doesn’t make much
sense to use these components independently in a transaction.

Component family Databases/Oracle

Function Validates the data processed through the job into the connected DB

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the tOracleConnection component in the list if more than one
connection are planned for the current job.

Close Connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to link
tOracleCommit to your Job, your data will be commited
row by row. In this case, do not select the Close connection
check box or your connection will be closed before the end
of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Oracle components, especially with tOracleConnection
and tOracleRollback components.

Limitation n/a

Related scenario

This component is closely related to tOracleConnection and tOracleRollback. It usually doesn’t make much
sense to use one of these without using a tOracleConnection component to open a connection for the current
transaction.

For tOracleCommit related scenario, see section tMysqlConnection



tOracleConnection

Talend Open Studio Components Reference Guide 601

tOracleConnection

tOracleConnection Properties
This component is closely related to tOracleCommit and tOracleRollback. It usually doesn’t make much sense
to use one of these without using a tOracleConnection component to open a connection for the current transaction.

Component family Databases/Oracle

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Connection type Drop-down list of available drivers:

Oracle OCI: Select this connection type to use Oracle Call Interface
with a set of C-language software APIs that provide an interface to
the Oracle database.

Oracle RAC: Select this connection type to access a clustered
database.

Oracle Service Name: Select this connection type to use the TNS
alias that you give when you connect to the remote database.

WALLET: Select this connection type to store credentials in an
Oracle wallet.

Oracle SID: Select this connection type to uniquely identify a
particular database on a system.

DB Version Select the Oracle version in use.

Use tns file Select this check box to use the metadata of a context included in
a tns file.

One tns file may have many contexts.

TNS File: Enter the path to the tns file manually or browse to the file
by clicking the three-dot button next to the filed.

Select a DB Connection in Tns File: Click the three-dot button to
display all the contexts held in the tns file and select the desired one.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the schema.

Username and Password DB user authentication data.

Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating.

You can set the encoding parameters through this field.



Related scenario

602 Talend Open Studio Components Reference Guide

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Specify a data source alias Select this check box and specify the alias of a data source created on
the Talend Runtime side to use the shared connection pool defined
in the data source configuration. This option works only when you
deploy and run your Job in Talend Runtime.

Usage This component is to be used along with Oracle components, especially with tOracleCommit and
tOracleRollback components.

Limitation n/a

Related scenario

This component is closely related to tOracleCommit and tOracleRollback. It usually doesn’t make much sense
to use one of these without using a tOracleConnection component to open a connection for the current transaction.

For tOracleConnection related scenario, see section tMysqlConnection



tOracleInput

Talend Open Studio Components Reference Guide 603

tOracleInput

tOracleInput properties
Component family Databases/Oracle

Function tOracleInput reads a database and extracts fields based on a query.

Purpose tOracleInput executes a DB query with a strictly defined order which must correspond to the
schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box when using a configured tOracleConnection
component.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Connection type Drop-down list of available drivers:

Oracle OCI: Select this connection type to use Oracle Call Interface
with a set of C-language software APIs that provide an interface to
the Oracle database.

Oracle RAC: Select this connection type to access a clustered
database.

Oracle Service Name: Select this connection type to use the TNS
alias that you give when you connect to the remote database.

WALLET: Select this connection type to store credentials in an
Oracle wallet.

Oracle SID: Select this connection type to uniquely identify a
particular database on a system.



Scenario 1: Using context parameters when reading a table from an Oracle database

604 Talend Open Studio Components Reference Guide

DB Version Select the Oracle version in use.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Oracle schema Oracle schema name.

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table name Database table name.

Query type and Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Specify a data source alias Select this check box and specify the alias of a data source created on
the Talend Runtime side to use the shared connection pool defined
in the data source configuration. This option works only when you
deploy and run your Job in Talend Runtime.

If you use the component's own DB configuration, your
data source connection will be closed at the end of the
component. To prevent this from happening, use a shared
DB connection with the data source alias specified.

This check box is not available when the Use an existing connection
check box is selected.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Use cursor When selected, helps to decide the row set to work with at a time and
thus optimize performance.

Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

No null values Check this box to improve the performance if there are no null values.

Usage This component covers all possible SQL queries for Oracle databases.

Limitation n/a

Scenario 1: Using context parameters when reading a
table from an Oracle database

In this scenario, we will read a table from an Oracle database, using a context parameter to refer to the table name.

Dragging and dropping components and linking them together

1. Drop tOracleInput and tLogRow from the Palette onto the workspace.

2. Link tOracleInput to tLogRow using a Row > Main connection.



Scenario 1: Using context parameters when reading a table from an Oracle database

Talend Open Studio Components Reference Guide 605

Configuring the components

1. Double-click tOracleInput to open its Basic Settings view in the Component tab.

2. In the Host field, enter the Oracle database serverse's IP address, "192.168.0.19" in this example.

In the Port field, enter the port number, "1521" in this example.

In the Database field, enter the database name, "talend" in this example.

In the Oracle schema field, enter the Oracle schema name, "TALEND" in this example.

In the Username and Password fields, enter the authentication details, respectively "talend" and "oracle"
in this example.

3. Set the Schema as Built-In and click Edit schema to define the desired schema.

The schema editor opens:



Scenario 1: Using context parameters when reading a table from an Oracle database

606 Talend Open Studio Components Reference Guide

4. Click the [+] button to add the rows that you will use to define the schema, three columns in this example:
id, name and age.

Under Column, click the fields to enter the corresponding column names.

Click the fields under Type to define the type of data.

Click OK to close the schema editor.

5. Put the cursor in the Table Name field and press F5 for context parameter setting.

For more information about context settings, see Talend Open Studio User Guide.

6. Keep the default setting in the Name field and type in the name of the database table in the Default value
field, staff in this use case.

7. Click Finish to validate the setting.



Related scenarios

Talend Open Studio Components Reference Guide 607

The context parameter context.TABLE automatically appears in the Table Name field.

8. In the Query type list, select Built-In. Then, click Guess Query to get the query statement.

"SELECT 
  TALEND."+context.TABLE+".id, 
  TALEND."+context.TABLE+".name, 
  TALEND."+context.TABLE+".age
FROM TALEND."+context.TABLE

9. Double-click tLogRow to set its Basic Settings in the Component tab.

10. In the Mode area, select Table (print values in cells of a table) for a better display of the results.

11. Save the Job.

Executing the Job

The results below can be found after F6 is pressed to run the Job.

Related scenarios

For related scenarios, see:

• section Scenario 1: Displaying selected data from DB table.

• section Scenario 2: Using StoreSQLQuery variable.

• section Scenario: Dynamic context use in MySQL DB insert.



tOracleOutput

608 Talend Open Studio Components Reference Guide

tOracleOutput

tOracleOutput properties

Component family Databases/Oracle

Function tOracleOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tOracleOutput executes the action defined on the table and/or on the data contained in the table,
based on the flow incoming from the preceding component in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box when using a tOracleConnection component.
When you deselect it, a check box appears (selected by default and
followed by a field) in the Advanced settings, Batch Size, which
enables you to define the number of lines in each processed batch.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Connection type Drop-down list of available drivers:

Oracle OCI: Select this connection type to use Oracle Call Interface
with a set of C-language software APIs that provide an interface to
the Oracle database.

Oracle RAC: Select this connection type to access a clustered
database.

Oracle Service Name: Select this connection type to use the TNS
alias that you give when you connect to the remote database.

WALLET: Select this connection type to store credentials in an
Oracle wallet.



tOracleOutput properties

Talend Open Studio Components Reference Guide 609

Oracle SID: Select this connection type to uniquely identify a
particular database on a system.

DB Version Select the Oracle version in use.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the Update and Delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next to
the column names you want to use as a base for the Update
operation. Do the same in the Key in delete column for the
Delete operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Specify a data source alias Select this check box and specify the alias of a data source created on
the Talend Runtime side to use the shared connection pool defined



tOracleOutput properties

610 Talend Open Studio Components Reference Guide

in the data source configuration. This option works only when you
deploy and run your Job in Talend Runtime.

If you use the component's own DB configuration, your
data source connection will be closed at the end of the
component. To prevent this from happening, use a shared
DB connection with the data source alias specified.

This check box is not available when the Use an existing connection
check box is selected.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

You can press Ctrl+Space to access a list of predefined
global variables.

Commit every Enter the number of rows to be completed before committing batches
of rows together into the DB. This option ensures transaction quality
(but not rollback) and, above all, better performance at execution.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column.

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.

Use Hint Options Select this check box to activate the hint configuration area which
helps you optimize a query’s execution. In this area, parameters are:

- HINT: specify the hint you need, using the syntax /*+ */. -
POSITION: specify where you put the hint in a SQL statement.

- SQL STMT: select the SQL statement you need to use.

Convert columns and table
to uppercase

Select this check box to set the names of columns and table in upper
case.

Enable debug mode Select this check box to display each step during processing entries
in a database.

Use Batch Size When selected, enables you to define the number of lines in each
processed batch.

This option is available only when you do not Use an
existing connection in Basic settings.

Support null in “SQL
WHERE” statement

Select this check box to validate null in “SQL WHERE” statement.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a Oracle database. It also allows you to create a reject flow using a
Row > Rejects link to filter data in error. For an example of tMysqlOutput in use, see section
Scenario 3: Retrieve data in error with a Reject link.

Limitation n/a



Related scenarios

Talend Open Studio Components Reference Guide 611

Related scenarios

For tOracleOutput related topics, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection.

• section Scenario 1: Adding a new column and altering data in a DB table.



tOracleOutputBulk

612 Talend Open Studio Components Reference Guide

tOracleOutputBulk

tOracleOutputBulk properties

The tOracleOutputBulk and tOracleBulkExec components are used together in a two step process. In the first
step, an output file is generated. In the second step, this file is used in the INSERT operation used to feed a database.
These two steps are fused together in the tOracleOutputBulkExec component, detailed in a separate section. The
advantage of using two separate steps is that the data can be transformed before it is loaded in the database.

Component family Databases/Oracle

Function Writes a file with columns based on the defined delimiter and the Oracle standards

Purpose Prepares the file to be used as parameter in the INSERT query to feed the Oracle database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using
the data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end of the file

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job
designs. Related topic: see Talend Open Studio User Guide.

Advanced settings Advanced separator (for
number)

Select this check box to change data separators for numbers:

Thousands separator: define separators you want to use for
thousands.

Decimal separator: define separators you want to use for
decimals.

Field separator Character, string or regular expression to separate fields.

Row separator String (ex: “\n”on Unix) to separate rows.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Bulk file parameters Set the parameters Buffer Size and StringBuilder Size for a
performance gain according to the memory size.

tStatCatcher Statistics Select this check box to gather the job processing metadata at a
job level as well as at each component level.

Usage This component is to be used along with tOracleBulkExec component. Used together they
offer gains in performance while feeding a Oracle database.



Related scenarios

Talend Open Studio Components Reference Guide 613

Related scenarios

For use cases in relation with tOracleOutputBulk, see the following scenarios:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.

• section Scenario: Truncating and inserting file data into Oracle DB.



tOracleOutputBulkExec

614 Talend Open Studio Components Reference Guide

tOracleOutputBulkExec

tOracleOutputBulkExec properties
The tOracleOutputBulk and tOracleBulkExec components are used together in a two step process. In the first
step, an output file is generated. In the second step, this file is used in the INSERT operation used to feed a database.
These two steps are fused together in the tOracleOutputBulkExec component.

Component family Databases/Oracle

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert operations to an Oracle
database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tOracleConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Connection type List of available drivers

DB Version Select the Oracle version in use

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Name of the schema.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time and that the table must exist for the insert operation
to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operations is carried out.



tOracleOutputBulkExec properties

Talend Open Studio Components Reference Guide 615

Drop and create the table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create table if doesn’t exist: The table is created if does not exist.

Clear a table: The table content is deleted.

Truncate table: The table content is deleted. You do not have the
possibility to rollback the operation.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Create directory if not exists This check box is selected by default. It creates a directory to hold
the output table if required.

Append Select this check box to add the new rows at the end of the file.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Truncate: Remove all entries from table.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Field separator Character, string or regular expression to separate fields.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Advanced settings Advanced separator (for
number)

Select this check box to change data separators for numbers:

Thousands separator: define separators you want to use for
thousands.

Decimal separator: define separators you want to use for decimals.

Use existing control file Select this check box and browse to the .ctl control file you want to
use.

Field separator Character, string or regular expression to separate fields.

Row separator String (ex: “\n”on Unix) to separate rows.

Specify .ctl file’s INTO
TABLE clause manually

Select this check box to enter manually the INTO TABLE clause of
the control file directly into the code.

Use schema’s Date Pattern
to load Date field

Select this check box to use the date model indicated in the schema
for dates.

Specify field condition Select this check box to define a condition for loading data.

Preserve blanks Select this check box to preserve blank spaces.

Trailing null columns Select this check box to load data with all empty columns.

Load options Click + to add data loading options:

Parameter: select a loading parameter from the list.

Value: enter a value for the parameter selected.

NLS Language From the drop-down list, select the language for your data if the data
is not in Unicode.

Set Parameter
NLS_TERRITORY

Select this check box to modify the conventions used for date and
time formats. The default value is that of the operating system.



Related scenarios

616 Talend Open Studio Components Reference Guide

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Set Oracle Encoding Type Select this check box to type in the characterset next to the Oracle
Encoding Type field.

Output Select the type of output for the standard output of the Oracle
database:

to console,

to global variable.

Convert columns and table
names to uppercase

Select this check box to put columns and table names in upper case.

Bulk file parameters Set the parameters Buffer Size and StringBuilder Size for a
performance gain according to the memory size.

tStatCatcher Statistics Select this check box to gather the job processing metadata at a job
level as well as at each component level.

Usage This component is mainly used when no particular transformation is required on the data to be
loaded onto the database.

Limitation n/a

Related scenarios

For use cases in relation with tOracleOutputBulkExec, see the following scenarios:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.

• section Scenario: Truncating and inserting file data into Oracle DB.



tOracleRollback

Talend Open Studio Components Reference Guide 617

tOracleRollback

tOracleRollback properties

This component is closely related to tOracleCommit and tOracleConnection. It usually doesn’t make much
sense to use these components independently in a transaction.

Component family Databases

Function Cancel the transaction commit in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tOracleConnection component in the list if more than one
connection are planned for the current job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Oracle components, especially with tOracleConnection
and tOracleCommit components.

Limitation n/a

Related scenario

This component is closely related to tOracleConnection and tOracleCommit. It usually doesn’t make much
sense to use one of these without using a tOracleConnection component to open a connection for the current
transaction.

For tOracleRollback related scenario, see section tMysqlRollback



tOracleRow

618 Talend Open Studio Components Reference Guide

tOracleRow

tOracleRow properties

Component family Databases/Oracle

Function tOracleRow is the specific component for this database query. It executes the SQL query stated
onto the specified database. The row suffix means the component implements a flow in the job
design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tOracleRow acts on the actual DB structure
or on the data (although without handling data). The SQLBuilder tool helps you write easily your
SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tOracleConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Connection type Drop-down list of available drivers.

DB Version Select the Oracle version in use.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.



Related scenarios

Talend Open Studio Components Reference Guide 619

Query type Either Built-in or Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Specify a data source alias Select this check box and specify the alias of a data source created on
the Talend Runtime side to use the shared connection pool defined
in the data source configuration. This option works only when you
deploy and run your Job in Talend Runtime.

If you use the component's own DB configuration, your
data source connection will be closed at the end of the
component. To prevent this from happening, use a shared
DB connection with the data source alias specified.

This check box is not available when the Use an existing connection
check box is selected.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Use PreparedStatement Select this checkbox if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased.
You can also use PreparedStatement to avoid SQL
injection. For a detailed scenario of utilizing this feature,
see section Scenario 2: Using PreparedStatement objects
to query data.

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Related scenarios

For related topics, see:



Related scenarios

620 Talend Open Studio Components Reference Guide

• section Scenario 3: Combining two flows for selective output

• section Scenario: Resetting a DB auto-increment.

• section Scenario 1: Removing and regenerating a MySQL table index.

• section Scenario 2: Using PreparedStatement objects to query data.



tOracleSCD

Talend Open Studio Components Reference Guide 621

tOracleSCD

tOracleSCD belongs to two component families: Business Intelligence and Databases. For more information on
it, see section tOracleSCD.



tOracleSCDELT

622 Talend Open Studio Components Reference Guide

tOracleSCDELT

tOracleSCDELT belongs to two component families: Business Intelligence and Databases. For more information
on it, see section tOracleSCDELT.



tOracleSP

Talend Open Studio Components Reference Guide 623

tOracleSP

tOracleSP Properties

Component family Databases/Oracle

Function tOracleSP calls the database stored procedure.

Purpose tOracleSP offers a convenient way to centralize multiple or complex queries in a database and
call them easily.

Basic settings Use an existing connection Select this check box to use an established connection from
tOracleConnection. Once you select it, the Component list field
appears allowing you to choose the tOracleConnection component
to be used from those already established on the studio workspace.

For more information on tOracleConnection, see section
tOracleConnection.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Connection type Drop-down list of available drivers.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

DB Version Select the Oracle version in use

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Name of the schema.

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.



tOracleSP Properties

624 Talend Open Studio Components Reference Guide

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

SP Name Type in the exact name of the Stored Procedure (or Function)

Is Function / Return result in Select this check box, if the stored procedure is a function and one
value only is to be returned.

Select on the list the schema column, the value to be returned is based
on.

Parameters Click the Plus button and select the various Schema Columns that
will be required by the procedures. Note that the SP schema can hold
more columns than there are parameters used in the procedure.

Select the Type of parameter:

IN: Input parameter

OUT: Output parameter/return value

IN OUT: Input parameter is to be returned as value, likely after
modification through the procedure (function).

RECORDSET: Input parameters is to be returned as a set of values,
rather than single value.

Check the tPostgresqlCommit component if you want to
analyze a set of records from a database table or DB query
and return single records.

The Custom Type is used when a Schema Column you want to
use is user-defined. Two Custom Type columns are available in the
Parameters table. In the first Custom Type column:

- Select the check box in the Custom Type column when the
corresponding Schema Column you want to use is of user-defined
type.

- If all listed Schema Columns in the Parameters table are of
custom type, you can select the check box before Custom Type once
for them all.

Select a database type from the DB Type list to map the source
database type to the target database type:

- Auto-Mapping: Map the source database type to the target
database type automatically.(default)

- CLOB: Character large object

- BLOB: Binary large object

- DECIMAL: Decimal numeric object

- NUMERIC: Character 0 to 9

In the second Custom Type column, you can precise what the
custom type is. The type may be:

- STRUCT: used for one element.

- ARRAY: used for a collection of elements.

In the Custom name column, specify the name of the custom type
that you have given to this type.

When an OUT parameter uses the custom type, make sure
that its corresponding Schema Column has chosen the
Object type in the schema table.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.



Scenario: Checking number format using a stored procedure

Talend Open Studio Components Reference Guide 625

NLS Language In the list, select the language used for the data that are not used in
Unicode.

NLS Territory Select the conventions used for date and time formats. The default
value is that of the operating system.

tStatCatcher Statistics Select this check box to gather the job processing metadata at a Job
level as well as at each component level.

Usage This component is used as intermediary component. It can be used as start component but only
input parameters are thus allowed.

Limitation The Stored Procedures syntax should match the Database syntax.

When the parameters set in this component are of Custom Type, the tJava family components
should be placed before the component in order for users to define values for the custom-type
parameters, or after the component so as to read and output the Out-type custom parameters.

Scenario: Checking number format using a stored
procedure

The following job aims at connecting to an Oracle Database containing Social Security Numbers and their holders’
name, calling a stored procedure that checks the SSN format of against a standard ###-##-#### format. Then the
verification output results, 1 for valid format and 0 for wrong format get displayed onto the execution console.

• Drag and drop the following components from the Palette: tOracleConnection, tOracleInput, tOracleSP and
tLogRow.

• Link the tOracleConnection to the tOracleInput using a Then Run connection as no data is handled here.

• And connect the other components using a Row Main link as rows are to be passed on as parameter to the SP
component and to the console.

• In the tOracleConnection, define the details of connection to the relevant Database. You will then be able to
reuse this information in all other DB-related components.

• Then select the tOracleInput and define its properties.



Scenario: Checking number format using a stored procedure

626 Talend Open Studio Components Reference Guide

• Select the Use an existing connection check box and select the tOracleConnection component in the list in
order to reuse the connection details that you already set.

• Select Repository as Property type as the Oracle schema is defined in the DB Oracle connection entry of the
Repository. If you haven’t recorded the Oracle DB details in the Repository, then fill in the Schema name
manually.

• Then select Repository as Schema, and retrieve the relevant schema corresponding to your Oracle DB table.

• In this example, the SSN table has a four-column schema that includes ID, NAME, CITY and SSNUMBER.

• In the Query field, type in the following Select query or select it in the list, if you stored it in the Repository.

select ID, NAME, CITY, SSNUMBER from SSN

• Then select the tOracleSP and define its Basic settings.

• Like for the tOracleInput component, select Repository in the Property type field and select the Use an
existing connection check box, then select the relevant entries in the respective list.

• The schema used for the tOracleSP slightly differs from the input schema. Indeed, an extra column (SSN_Valid)
is added to the Input schema. This column will hold the format validity status (1 or 0) produced by the procedure.

• In the SP Name field, type in the exact name of the stored procedure (or function) as called in the Database.
In this use case, the stored procedure name is is_ssn.

• The basic function used in this particular example is as follows:

CREATE OR REPLACE FUNCTION is_ssn(string_in VARCHAR2)



Scenario: Checking number format using a stored procedure

Talend Open Studio Components Reference Guide 627

RETURN PLS_INTEGER
IS
-- validating ###-##-#### format
BEGIN
  IF TRANSLATE(string_in, '0123456789A', 'AAAAAAAAAAB') =
     'AAA-AA-AAAA' THEN
    RETURN 1;
  END IF;
  RETURN 0;
END is_ssn;
/

• As a return value is expected in this use case, the procedure acts as a function, so select the Is function check box.

• The only return value expected is based on the ssn_valid column, hence select the relevant list entry.

• In the Parameters area, define the input and output parameters used in the procedure. In this use case, only the
SSNumber column from the schema is used in the procedure.

• Click the plus sign to add a line to the table and select the relevant column (SSNumber) and type (IN).

• Then select the tLogRow component and click Sync Column to make sure the schema is passed on from the
preceding tOracleSP component.

• Select the Print values in cells of a table check box to facilitate the output reading.

• Then save your job and press F6 to run it.

On the console, you can read the output results. All input schema columns are displayed eventhough they are not
used as parameters in the stored procedure.

The final column shows the expected return value, i.e. whether the SS Number checked is valid or not.

Check the tPostgresqlCommit component if you want to analyze a set of records from a database table or DB query and
return single records.



tOracleTableList

628 Talend Open Studio Components Reference Guide

tOracleTableList

tOracleTableList properties

Component family Databases/Oracle

Function tOracleTableList iterates on a set of tables through a defined Oracle connection.

Purpose This component lists the names of specified Oracle tables using a SELECT statement based on a
WHERE clause.

Basic settings Component list Select the tOracleConnection component in the list if more than one
connection is planned for the current Job.

Where clause for table name
selection

Enter the WHERE clause that will be used to identify the tables to
iterate on.

Usage This component is to be used along with other Oracle components, especially with
tOracleConnection.

Limitation n/a

Related scenarios

For a tOracleTablerList related scenario, see section Scenario: Iterating on DB tables and deleting their content
using a user-defined SQL template.



tPostgresqlBulkExec

Talend Open Studio Components Reference Guide 629

tPostgresqlBulkExec

tPostgresqlBulkExec properties

tPostgresqlOutputBulk and tPostgresqlBulkExec components are used together to first output the file
that will be then used as parameter to execute the SQL query stated. These two steps compose the
tPostgresqlOutputBulkExec component, detailed in a separate section. The interest in having two separate
elements lies in the fact that it allows transformations to be carried out before the data loading in the database.

Component family Databases/Postgresql

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, tPostgresqlBulkExec offers gains in performance while carrying out
the Insert operations to a Postgresql database

Basic settings Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tPostgrresqlConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database.

Schema Name of the schema.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time and that the table must exist for the insert operation
to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.



Related scenarios

630 Talend Open Studio Components Reference Guide

Drop and create table: The table is removed and created again.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does not exist.

Clear table: The table content is deleted.

Truncate table: The table content is deleted. You don not have the
possibility to rollback the operation.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component.The schema is
either Built-in or stored remotely in the Repository

Advanced settings Action on data On the data of the table defined, you can perform:

Bulk Insert: Add multiple entries to the table. If duplicates are
found, job stops.

Bulk Update: Make simultaneous changes to multiple entries.

Copy the OID for each row Retrieve the ID item for each row.

Contains a header line with
the names of each column in
the file

Specify that the table contains header.

File type Select the type of file being handled.

Null string String displayed to indicate that the value is null..

Fields terminated by Character, string or regular expression to separate fields.

Escape char Character of the row to be escaped.

Text enclosure Character used to enclose text.

Activate
standard_conforming_string

Activate the variable.

Force not null for columns Define the columns nullability

Force not null: Select the check box next to the column you want
to define as not null.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with tPostgresqlOutputBulk component. Used together, they
can offer gains in performance while feeding a Postgresql database.

Limitation n/a

Related scenarios

For use cases in relation with tPostgresqlBulkExec, see the following scenarios:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.

• section Scenario: Truncating and inserting file data into Oracle DB.



tPostgresqlCommit

Talend Open Studio Components Reference Guide 631

tPostgresqlCommit

tPostgresqlCommit Properties

This component is closely related to tPostgresqlCommit and tPostgresqlRollback. It usually does not make
much sense to use these components independently in a transaction.

Function Validates the data processed through the job into the connected DB

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the tPostgresqlConnection component in the list if more than
one connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to
link tPostgresqlCommit to your Job, your data will be
commited row by row. In this case, do not select the Close
connection check box or your connection will be closed
before the end of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Postgresql components, especially with
tPostgresqlConnection and tPostgresqlRollback components.

Limitation n/a

Related scenario

This component is closely related to tPostgresqlConnection and tPostgresqlRollback. It usually does not make
much sense to use one of these without using a tPostgresqlConnection component to open a connection for the
current transaction.

For tPostgresqlCommit related scenario, see section Scenario: Inserting data in mother/daughter tables.



tPostgresqlClose

632 Talend Open Studio Components Reference Guide

tPostgresqlClose

tPostgresqlClose properties

Component family Databases/Postgresql

Function tPostgresqlClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tPostgresqlConnection component in the list if more than
one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Postgresql components, especially with
tPostgresqlConnection and tPostgresqlCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tPostgresqlConnection

Talend Open Studio Components Reference Guide 633

tPostgresqlConnection

tPostgresqlConnection Properties

This component is closely related to tPostgresqlCommit and tPostgresqlRollback. It usually doesn’t make much
sense to use one of these without using a tPostgresqlConnection component to open a connection for the current
transaction.

Component family Databases/Postgresql

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Exact name of the schema

Username and Password DB user authentication data.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Usage This component is to be used along with Postgresql components, especially with
tPostgresqlCommit and tPostgresqlRollback components.

Limitation n/a

Related scenario

This component is closely related to tPostgresqlCommit and tPostgresqlRollback. It usually doesn’t make much
sense to use one of these without using a tPostgresqlConnection component to open a connection for the current
transaction.

For tPostgresqlConnection related scenario, see section tMysqlConnection



tPostgresqlInput

634 Talend Open Studio Components Reference Guide

tPostgresqlInput

tPostgresqlInput properties

Component family Databases/ PostgreSQL

Function tPostgresqlInput reads a database and extracts fields based on a query.

Purpose tPostgresqlInput executes a DB query with a strictly defined order which must correspond to the
schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box when using a configured
tPostgresqlConnection component.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Exact name of the schema.

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.



Related scenarios

Talend Open Studio Components Reference Guide 635

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table name Name of the table to be read.

Query type and Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Advanced settings Use cursor When selected, helps to decide the row set to work with at a time and
thus optimize performance.

Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL queries for Postgresql databases.

Limitation n/a

Related scenarios

For related scenarios, see:

• section Scenario 1: Displaying selected data from DB table.

• section Scenario 2: Using StoreSQLQuery variable.

• section Scenario: Dynamic context use in MySQL DB insert.



tPostgresqlOutput

636 Talend Open Studio Components Reference Guide

tPostgresqlOutput

tPostgresqlOutput properties

Component family Databases/Postgresql

Function tPostgresqlOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tPostgresqlOutput executes the action defined on the table and/or on the data contained in the
table, based on the flow incoming from the preceding component in the job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box when using a configured
tPostgresqlConnection component.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to use
an existing connection from the other level, make sure
that the available connection components are sharing the
intended connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared DB
connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Exact name of the schema.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.



tPostgresqlOutput properties

Talend Open Studio Components Reference Guide 637

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if already
exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a
primary key on which the Update and Delete operations
are based. You can do that by clicking Edit Schema
and selecting the check box(es) next to the column(s)
you want to set as primary key(s). For an advanced
use, click the Advanced settings view where you can
simultaneously define primary keys for the Update and
Delete operations. To do that: Select the Use field options
check box and then in the Key in update column, select
the check boxes next to the column names you want to use
as a base for the Update operation. Do the same in the
Key in delete column for the Delete operation.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is cleared by default, meaning to skip the row on
error and to complete the process for error-free rows.

Advanced settings Commit every Enter the number of rows to be completed before committing
batches of rows together into the DB. This option ensures
transaction quality (but not rollback) and, above all, better
performance at execution.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete
actions, or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in
order to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to
be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use save point Select this check box to use savepoints in the transaction. This
check box will not be available if you select:



Related scenarios

638 Talend Open Studio Components Reference Guide

• the Die on error check box in the Basic settings view, or

• the Use Batch Size check box in the Advanced settings view.

This check box will not work if you:

• type in 0 in the Commit every field, or

• select the Use an existing connection check box in the Basic
settings view while the Auto Commit mode is activated in the
database connection component.

Use field options Select this check box to customize a request, especially when there
is double action on data.

Enable debug mode Select this check box to display each step during processing entries
in a database.

Support null in “SQL
WHERE” statement

Select this check box if you want to deal with the Null values
contained in a DB table.

Ensure that the Nullable check box is selected for the
corresponding columns in the schema.

Use Batch Size Select this check box to activate the batch mode for data processing.
In the Batch Size field that appears when this check box is selected,
you can type in the number you need to define the batch size to be
processed.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a Postgresql database. It also allows you to create a reject flow using
a Row > Rejects link to filter data in error. For an example of tMySqlOutput in use, see section
Scenario 3: Retrieve data in error with a Reject link.

Limitation n/a

Related scenarios

For tPostgresqlOutput related topics, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection.

• section Scenario 1: Adding a new column and altering data in a DB table.



tPostgresqlOutputBulk

Talend Open Studio Components Reference Guide 639

tPostgresqlOutputBulk

tPostgresqlOutputBulk properties

The tPostgresqlOutputBulk and tPostgresqlBulkExec components are generally used together as part of a two
step process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in the tPostgresqlOutputBulkExec component,
detailed in a separate section. The advantage of having two separate steps is that it makes it possible to transform
data before it is loaded in the database.

Component family Databases/Postgresql

Function Writes a file with columns based on the defined delimiter and the Postgresql standards

Purpose Prepares the file to be used as parameters in the INSERT query to feed the Postgresql database.

Basic settings Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using
the data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end of the file

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job
designs. Related topic: see Talend Open Studio User Guide.

Advanced settings Row separator String (ex: “\n”on Unix) to distinguish rows.

Field separator Character, string or regular expression to separate fields.

Include header Select this check box to include the column header to the file.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with tPostgresqlBulkExec component. Used together they
offer gains in performance while feeding a Postgresql database.

Related scenarios

For use cases in relation with tPostgresqlOutputBulk, see the following scenarios:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.



Related scenarios

640 Talend Open Studio Components Reference Guide

• section Scenario: Truncating and inserting file data into Oracle DB.



tPostgresqlOutputBulkExec

Talend Open Studio Components Reference Guide 641

tPostgresqlOutputBulkExec

tPostgresqlOutputBulkExec properties

The tPostgresqlOutputBulk and tPostgresqlBulkExec components are generally used together as part of a two
step process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in the tPostgresqlOutputBulkExec component.

Component family Databases/Postgresql

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert operations to a Postgresql
database.

Basic settings Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Name of the schema.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time and that the table must exist for the insert operation
to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if already
exists and created again.

Clear a table: The table content is deleted.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job designs.
Related topic: see Talend Open Studio User Guide.

Advanced settings Action on data On the data of the table defined, you can perform:



Related scenarios

642 Talend Open Studio Components Reference Guide

Bulk Insert: Add multiple entries to the table. If duplicates are
found, job stops.

Bulk Update: Make simultaneous changes to multiple entries.

Copy the OID for each row Retrieve the ID item for each row.

Contains a header line with
the names of each column in
the file

Specify that the table contains header.

Encoding Select the encoding from the list or select CUSTOM and define it
manually. This field is compulsory for DB data handling.

File type Select the type of file being handled.

Null string String displayed to indicate that the value is null..

Row separator String (ex: “\n”on Unix) to distinguish rows.

Fields terminated by Character, string or regular expression to separate fields.

Escape char Character of the row to be escaped.

Text enclosure Character used to enclose text.

Activate
standard_conforming_string

Activate the variable.

Force not null for columns Define the columns nullability

Force not null:: Select the check box next to the column you want
to define as not null.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is mainly used when no particular tranformation is required on the data to be
loaded onto the database.

Related scenarios

For use cases in relation with tPostgresqlOutputBulkExec, see the following scenarios:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.

• section Scenario: Truncating and inserting file data into Oracle DB.



tPostgresqlRollback

Talend Open Studio Components Reference Guide 643

tPostgresqlRollback

tPostgresqlRollback properties

This component is closely related to tPostgresqlCommit and tPostgresqlConnection. It usually does not make
much sense to use these components independently in a transaction.

Component family Databases

Function Cancel the transaction commit in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tPostgresqlConnection component in the list if more than
one connection are planned for the current Job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Postgresql components, especially with
tPostgresqlConnection and tPostgresqlCommit components.

Limitation n/a

Related scenario

This component is closely related to tPostgresqlConnection and tPostgresqlCommit. It usually does not make
much sense to use one of them without using a tPostgresqlConnection component to open a connection for the
current transaction.

For tPostgresqlRollback related scenario, see section tMysqlRollback



tPostgresqlRow

644 Talend Open Studio Components Reference Guide

tPostgresqlRow

tPostgresqlRow properties

Component family Databases/Postgresql

Function tPostgresqlRow is the specific component for the database query. It executes the SQL query stated
onto the specified database. The row suffix means the component implements a flow in the job
design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tPostgresqlRow acts on the actual DB
structure or on the data (although without handling data). The SQLBuilder tool helps you write
easily your SQL statements.

Basic settings Property type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tPostgresqlConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Name of the schema.

Username and Password DB user authentication data.

Schema using CDC and Edit
Schema

A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Query type Either Built-in or Repository



Related scenarios

Talend Open Studio Components Reference Guide 645

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Use PreparedStatement Select this checkbox if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all possible SQL queries.

Related scenarios

For related topics, see:

• section Scenario 3: Combining two flows for selective output

• section Scenario: Resetting a DB auto-increment.

• section Scenario 1: Removing and regenerating a MySQL table index.



tPostgresqlSCD

646 Talend Open Studio Components Reference Guide

tPostgresqlSCD

tPostgresqlSCD belongs to two component families: Business Intelligence and Databases. For more information
on it, see section tPostgresqlSCD.



tPostgresqlSCDELT

Talend Open Studio Components Reference Guide 647

tPostgresqlSCDELT

tPostgresqlSCDELT belongs to two component families: Business Intelligence and Databases. For more
information on it, see section tPostgresqlSCDELT.



tSybaseBulkExec

648 Talend Open Studio Components Reference Guide

tSybaseBulkExec

tSybaseBulkExec Properties

The tSybaseOutputBulk and tSybaseBulkExec components are generally used together as parts of a two step
process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in the tSybaseOutputBulkExec component, detailed
in a separate section. The advantage of using two separate components is that the data can be transformed before
it is loaded in the database.

Component family Databases

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert operations to a Sybase
database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tSybaseConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Server Database server IP address

Port Listening port number of DB server.

Database Database name

Username and Password DB user authentication data.

Bcp Utility Name of the utility to be used to copy data over to the Sybase server.

Server IP address of the database server for the Bcp utility connection.

Batch size Number of lines in each processed batch.

Table Name of the table to be written. Note that only one table can be
written at a time and that the table must exist for the insert operation
to succeed.



tSybaseBulkExec Properties

Talend Open Studio Components Reference Guide 649

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Clear a table: The table content is deleted.

Truncate table: The table content is deleted. You do not have the
possibility to rollback the operation.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: You create and store the schema locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: You have already created and stored the schema in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Advanced settings Use an interface file Select this check box to specify an interface file in the field Interface
file.

Additional JDBC
parameters

Specify additional connection properties in the existing DB
connection, to allow specific character set support. E.G.:
CHARSET=KANJISJIS_OS to get support of Japanese characters.

Action on data On the data of the table defined, you can perform:

Bulk Insert: Add multiple entries to the table. If duplicates are
found, Job stops.

Bulk Update: Make simultaneous changes to multiple entries.

Field Terminator Character, string or regular expression to separate fields.

With the row/field separators compliant with the Sybase
syntax, this component allows for the use of Sybase-
orientated characters, such as \x09.

Row Terminator String (ex: “\n” in Unix) to separate lines.

Head row Number of head lines to be ignored in the beginning of a file.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Output Select the type of output for the standard output of the Sybase
database:

to console,

to global variable.

tStataCatcher statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage This component is mainly used when no particular transformation is required on the data to be
loaded onto the database.

Limitation As opposed to the Oracle dedicated bulk component, no action on data is possible using this Sybase
dedicated component.



Related scenarios

650 Talend Open Studio Components Reference Guide

Related scenarios

For tSybaseBulkExec related topics, see:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Truncating and inserting file data into Oracle DB.



tSybaseClose

Talend Open Studio Components Reference Guide 651

tSybaseClose

tSybaseClose properties

Function tSybaseClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tSybaseConnection component in the list if more than
one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Sybase components, especially with tSybaseConnection
and tSybaseCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tSybaseCommit

652 Talend Open Studio Components Reference Guide

tSybaseCommit

tSybaseCommit Properties

This component is closely related to tSybaseConnection and tSybaseRollback. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/Sybase

Function tSybaseCommit validates the data processed through the Job into the connected DB

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the tSybaseConnection component in the list if more than
one connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to link
tSybaseCommit to your Job, your data will be commited
row by row. In this case, do not select the Close connection
check box or your connection will be closed before the end
of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Sybase components, especially with tSybaseConnection
and tSybaseRollback.

Limitation n/a

Related scenario

This component is closely related to tSybaseConnection and tSybaseRollback. It usually does not make much
sense to use one of these without using a tSybaseConnection component to open a connection for the current
transaction.

For tSybaseCommit related scenario, see section Scenario: Inserting data in mother/daughter tables.



tSybaseConnection

Talend Open Studio Components Reference Guide 653

tSybaseConnection

tSybaseConnection Properties

This component is closely related to tSybaseCommit and tSybaseRollback. It usually does not make much sense
to use one of these without using a tSybaseConnection component to open a connection for the current transaction.

Component family Databases/Sybase

Function tSybaseConnection opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database.

Username and Password DB user authentication data.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Usage This component is to be used along with Sybase components, especially with tSybaseCommit and
tSybaseRollback.

Limitation n/a

Related scenarios

For a tSybaseConnection related scenario, see section Scenario: Inserting data in mother/daughter tables.



tSybaseInput

654 Talend Open Studio Components Reference Guide

tSybaseInput

tSybaseInput Properties

Component family Databases/Sybase

Function tSybaseInput reads a database and extracts fields based on a query.

Purpose tSybaseInput executes a DB query with a strictly defined order which must correspond to the
schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box and click the relevant tSybaseConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Server Database server IP address

Port Listening port number of DB server.

Database Name of the database

Sybase Schema Exact name of the Sybase schema.

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.



Related scenarios

Talend Open Studio Components Reference Guide 655

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table Name Name of the table to read.

Query type and Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL queries for Sybase databases.

Limitation n/a

Related scenarios

For related topics, see:

• section Scenario 1: Displaying selected data from DB table.

• section Scenario 2: Using StoreSQLQuery variable.

• section Scenario: Dynamic context use in MySQL DB insert.



tSybaseIQBulkExec

656 Talend Open Studio Components Reference Guide

tSybaseIQBulkExec

tSybaseIQBulkExec Properties

Component family Databases/Sybase IQ

Function tSybaseIQBulkExec uploads a bulk file in a Sybase IQ database.

Purpose As a dedicated component, it allows gains in performance during Insert operations to a Sybase
IQ database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

DB Version The available Sybase versions are:

- Sybase IQ 12;

- Sybase IQ 15.

• For Sybase IQ 12, the file to be bulk-loaded must be
located on the same machine as the Sybase IQ 12 server.

• For Sybase IQ 15, the file to be bulk-loaded can be
located on a remote machine. However, this means
certain setup on the Sybase IQ 15 server. For details,
see Sybase IQ client-side load support enhancements.

The Sybase IQ 15 version is connected to via ODBC
while the Sybase IQ 12 version is via JDBC, so the fields
to be completed on the Basic settings view vary slightly
between the alternative versions.

Use an existing connection

Sybase IQ 12 only.

Select this check box and click the relevant tSybaseConnection
component on the Component List to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc00787.0480/html/etl_nfg/CHDEIAJG.htm


tSybaseIQBulkExec Properties

Talend Open Studio Components Reference Guide 657

Sybase IQ 12 only.

Port

Sybase IQ 12 only.

Listening port number of DB server.

Data Source

Sybase IQ 15 only.

Select the type of the data source to be used and complete the
corresponding DSN information in the field alongside. The available
types are:

- DSN;

- FILEDSN.

When the FILEDSN type is used, a three-dot button appears next
to the Data Source field to allow you to browse to the data source
file of interest.

Database Database name

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time and that the table must exist for the insert operation
to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create table: The table is removed and created again.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does not exist.

Clear table: The table content is deleted.

Truncate table: The table content is deleted. You do not have the
possibility to rollback the operation.

Local filename Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: You create and store the schema locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: You have already created and stored the schema in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Advanced settings Additional JDBC
Parameters

Specify additional connection properties in the existing DB
connection, to allow specific character set support.

Lines terminated by Character or sequence of characters used to separate lines.

Field Terminated by Character, string or regular expression to separate fields.

With the row/field separators compliant with the Sybase
syntax, this component allows the use of Sybase-oriented
separators, such as \x09.

Use enclosed quotes Select this check box to use data enclosure characters.

Use fixed length Select this check box to set a fixed width for data lines.

tStatCatcher Statistics Select this check box to gather the job processing metadata at a job
level as well as at each component level.

Usage This dedicated component offers performance and flexibility of Sybase IQ DB query handling.



Related scenarios

658 Talend Open Studio Components Reference Guide

Limitation As opposed to the Oracle dedicated bulk component, no action on data is possible using this Sybase
dedicated component.

The jodbc.jar also needs to be installed separately in the Modules view of the Integration
perspective in your studio. For details, see How to install external modules in Talend Open Studio
User Guide.

The DBMS's Client application should be installed on the same machine as your studio
for successful bulk operations.

Related scenarios

For tSybaseIQBulkExec related topics, see:

• section Scenario: Bulk-loading data to a Sybase IQ 12 database.

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Truncating and inserting file data into Oracle DB.



tSybaseIQOutputBulkExec

Talend Open Studio Components Reference Guide 659

tSybaseIQOutputBulkExec

tSybaseIQOutputBulkExec properties

Component family Databases/Sybase IQ

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert operations to a Sybase IQ
database.

Basic settings Property type Either Built-in or Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

DB Version The available Sybase versions are:

- Sybase IQ 12;

- Sybase IQ 15.

• For Sybase IQ 12, the file to be bulk-loaded must be
located on the same machine as the Sybase IQ 12
server.

• For Sybase IQ 15, the file to be bulk-loaded can be
located on a remote machine. However, this means
certain setup on the Sybase IQ 15 server. For details,
see Sybase IQ client-side load support enhancements.

The Sybase IQ 15 version is connected to via ODBC
while the Sybase IQ 12 version is via JDBC, so the fields
to be completed on the Basic settings view vary slightly
between the alternative versions.

Use an existing connection

Sybase IQ 12 only.

Select this check box and click the relevant tSybaseConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive

http://infocenter.sybase.com/help/index.jsp?topic=/com.sybase.infocenter.dc00787.0480/html/etl_nfg/CHDEIAJG.htm


tSybaseIQOutputBulkExec properties

660 Talend Open Studio Components Reference Guide

all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host

Sybase IQ 12 only.

Database server IP address.

Port

Sybase IQ 12 only.

Listening port number of DB server.

Data Source

Sybase IQ 15 only.

Select the type of the data source to be used and complete the
corresponding DSN information in the field alongside. The available
types are:

- DSN;

- FILEDSN.

When the FILEDSN type is used, a three-dot button appears next
to the Data Source field to allow you to browse to the data source
file of interest.

Database Name of the database

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time and that the table must exist for the insert operation
to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Clear a table: The table content is deleted.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append the file select this check box to add the new rows at the end of the records.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields to
be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: You create and store the schema locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: You have already created and stored the schema in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Advanced settings Additional JDBC Parameters Specify additional connection properties in the existing DB
connection, to allow specific character set support.

Fields terminated by Character, string or regular expression to separate fields.

As a combination of tSybaseOutputBulk and
tSybaseIQBulkExec, this component does not allow
the use of Sybase-oriented row/field separators, such
as \x09. To achieve the desired effect (for example,
displaying fields in the tabular form), you need to use
tSybaseOutputBulk and tSybaseIQBulkExec together to



Scenario: Bulk-loading data to a Sybase IQ 12 database

Talend Open Studio Components Reference Guide 661

replace tSybaseIQOutputBulkExec, with \t used in the
former component and \x09 used in the latter.

Lines terminated by Character or sequence of characters used to separate lines.

Use enclose quotes Select this check box to use data enclosure characters.

Include Head Select this heck box to include the column header.

Encoding Select the encoding type from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is mainly used when no particular transformation is required on the data to be loaded
onto the database.

Limitation The jodbc.jar also needs to be installed separately in the Modules view of the Integration perspective
in your studio. For details, see How to install external modules in Talend Open Studio User Guide.

The DBMS's Client application should be installed on the same machine as your studio for
successful bulk operations.

Scenario: Bulk-loading data to a Sybase IQ 12
database

This scenario saves data from a tRowGenerator to a file and then bulk-loads the data to a Sybase IQ 12 database.

Linking the components

1. Drop tRowGenerator and tSybaseIQOutputBulkExec onto the workspace.

2. Link tRowGenerator to tSybaseIQOutputBulkExec using a Row > Main connection.

Configuring the components

1. Double-click tRowGenerator to open its schema editor.



Scenario: Bulk-loading data to a Sybase IQ 12 database

662 Talend Open Studio Components Reference Guide

2. Click the [+] button to add two columns, namely id and name.

3. Select the type for id and name, respectively int and String.

4. Set the length for id and name, respectively 4 and 30.

5. Select the function for id and name, respectively Numeric.sequence and
TalendDataGenerator.getFirstName.

6. Click Ok to close the editor and click Yes on the pop-up below to propagate changes:

7. Double-click tSybaseIQOutputBulkExec to open its Basic settings view.



Scenario: Bulk-loading data to a Sybase IQ 12 database

Talend Open Studio Components Reference Guide 663

8. In the Host and Port fields, enter the connection details.

9. In the Database field, enter the database name.

10. In the Username and Password fields, enter the authentication credentials.

11. In the Table field, enter the table name.

12. In the Action on table list, select Create table if not exists.

13. In the Filename field, enter the full path of the file to hold the data.

Executing the Job

1. Press Ctrl+S to save the Job.

2. Press F6 to run the Job.

3. In the Sybase Central console, open the table staff to check the data:



Related scenarios

664 Talend Open Studio Components Reference Guide

As shown above, the table is created with data inserted.

Related scenarios

For use cases in relation with tSybaseIQOutputBulkExec, see the following scenarios:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.

• section Scenario: Truncating and inserting file data into Oracle DB.



tSybaseOutput

Talend Open Studio Components Reference Guide 665

tSybaseOutput

tSybaseOutput Properties

Component family Databases/Sybase

Function tSybaseOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tSybaseOutput executes the action defined on the table and/or on the data contained in the table,
based on the flow incoming from the preceding component in the job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tSybaseConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Server Database server IP address

Port Listening port number of DB server.

Database Name of the database

Sybase Schema Exact name of the Sybase schema.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

Default: No operation is carried out.

Drop and create a table: The table is removed and created again.



tSybaseOutput Properties

666 Talend Open Studio Components Reference Guide

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Truncate table: The table content is deleted. You do not have the
possibility to rollback the operation.

Turn on identity insert Select this check box to use your own sequence for the identity value
of the inserted records (instead of having the SQL Server pick the
next sequential value).

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the Update and Delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next to
the column names you want to use as a base for the Update
operation. Do the same in the Key in delete column for the
Delete operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before committing batches
of rows together into the DB. This option ensures transaction quality
(but not rollback) and, above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.



Related scenarios

Talend Open Studio Components Reference Guide 667

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.

Enable debug mode Select this check box to display each step during processing entries
in a database.

Use batch size Select this check box to activate the batch mode for data processing.
In the Batch Size field that appears when this check box is selected,
you can type in the number you need to define the batch size to be
processed.

This check box is available only when you have selected
the Insert, the Update or the Delete option in the Action
on data field.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a Sybase database. It also allows you to create a reject flow using a
Row > Rejects link to filter data in error. For an example of tMySqlOutput in use, see section
Scenario 3: Retrieve data in error with a Reject link.

Limitation n/a

Related scenarios

For use cases in relation with tSybaseOutput, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection.

• section Scenario 1: Adding a new column and altering data in a DB table.



tSybaseOutputBulk

668 Talend Open Studio Components Reference Guide

tSybaseOutputBulk

tSybaseOutputBulk properties

The tSybaseOutputBulk and tSybaseBulkExec components are generally used together as parts of a two step
process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in the tSybaseOutputBulkExec component, detailed
in a separate section. The advantage of using two separate components is that the data can be transformed before
it is loaded in the database.

Component family Databases/Sybase

Function Writes a file with columns based on the defined delimiter and the Sybase standards

Purpose Prepares the file to be used as parameter in the INSERT query to feed the Sybase database.

Basic settings Property type Either Built-in or Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using
the data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end of the file.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created and stored the schema in
the Repository, hence can be reused in various projects and job
designs. Related topic: see Talend Open Studio User Guide.

Advanced settings Row separator String (ex: “\n”on Unix) to distinguish rows.

Field separator Character, string or regular expression to separate fields.

Fully in line with the Java syntax, this component
does not allow the use of Sybase-orientated row/field
separators, such as \x09.

Include header Select this check box to include the column header in the file.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to collect log data at the component level

Usage This component is to be used along with tSybaseBulkExec component. Used together they
offer gains in performance while feeding a Sybase database.



Related scenarios

Talend Open Studio Components Reference Guide 669

Related scenarios

For use cases in relation with tSybaseOutputBulk, see the following scenarios:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.

• section Scenario: Truncating and inserting file data into Oracle DB.



tSybaseOutputBulkExec

670 Talend Open Studio Components Reference Guide

tSybaseOutputBulkExec

tSybaseOutputBulkExec properties
The tSybaseOutputBulk and tSybaseBulkExec components are generally used together as parts of a two step
process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in the tSybaseOutputBulkExec component.

Component family Databases/Sybase

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert operations to a Sybase
database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tSybaseConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Server Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Bcp utility Name of the utility to be used to copy data over to the Sybase server.

Batch row number Number of lines in each processed batch.

Table Name of the table to be written. Note that only one table can be
written at a time and that the table must exist for the insert operation
to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.



Related scenarios

Talend Open Studio Components Reference Guide 671

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Clear a table: The table content is deleted.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end of the records.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: You create and store the schema locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: You have already created and stored the schema in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Advanced settings Use an interface file Select this check box to specify an interface file in the field Interface
file.

Additional JDBC
parameters

Specify additional connection properties in the existing DB
connection, to allow specific character set support. E.G.:
CHARSET=KANJISJIS_OS to get support of Japanese characters.

Action on data On the data of the table defined, you can perform:

Bulk Insert: Add multiple entries to the table. If duplicates are
found, job stops.

Bulk Update: Make simultaneous changes to multiple entries.

Field terminator Character, string or regular expression to separate fields.

As a combination of tSybaseOutputBulk and
tSybaseBulkExec, this component does not allow the
use of Sybase-oriented row/field separators, such as
\x09. To achieve the desired effect (for example,
displaying fields in the tabular form), you need to use
tSybaseOutputBulk and tSybaseBulkExec together to
replace tSybaseOutputBulkExec, with \t used in the
former component and \x09 used in the latter.

DB Row terminator String (ex: “\n”on Unix) to distinguish rows in the DB.

First row NO. of file Type in the number of the file row where the action should start at.

FILE Row terminator Character, string or regular expression to separate fields in a file.

Include Head Select this heck box to include the column header.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Output Select the type of output for the standard output of the Sybase
database:

to console,

to global variable.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is mainly used when no particular transformation is required on the data to be
loaded onto the database.

Limitation n/a

Related scenarios

For use cases in relation with tSybaseOutputBulkExec, see the following scenarios:



Related scenarios

672 Talend Open Studio Components Reference Guide

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.

• section Scenario: Truncating and inserting file data into Oracle DB.



tSybaseRollback

Talend Open Studio Components Reference Guide 673

tSybaseRollback

tSybaseRollback properties

This component is closely related to tSybaseCommit and tSybaseConnection. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/Sybase

Function tSybaseRollback cancels the transaction committed in the connected DB.

Purpose This component avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tSybaseConnection component in the list if more than
one connection are planned for the current job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Sybase components, especially with tSybaseConnection
and tSybaseCommit.

Limitation n/a

Related scenarios

For tSybaseRollback related scenario, see section Scenario: Rollback from inserting data in mother/daughter
tables.



tSybaseRow

674 Talend Open Studio Components Reference Guide

tSybaseRow

tSybaseRow Properties

Component family Databases/Sybase

Function tSybaseRow is the specific component for this database query. It executes the SQL query stated
onto the specified database. The row suffix means the component implements a flow in the job
design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tSybaseRow acts on the actual DB structure
or on the data (although without handling data). The SQLBuilder tool helps you write easily your
SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tSybaseConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Server Database server IP address

Port Listening port number of DB server.

Database Name of the database

Sybase Schema Exact name of the sybase schema.

Username and Password DB user authentication data.

Table Name Name of the table to be processed.

Turn on identity insert Select this check box to use your own sequence for the identity value
of the inserted records (instead of having the SQL Server pick the
next sequential value).

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.



Related scenarios

Talend Open Studio Components Reference Guide 675

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Use PreparedStatement Select this checkbox if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Limitation n/a

Related scenarios

For tSybaseRow related topics, see:

• section Scenario 3: Combining two flows for selective output .

• section Scenario: Resetting a DB auto-increment.

• section Scenario 1: Removing and regenerating a MySQL table index.



tSybaseSCD

676 Talend Open Studio Components Reference Guide

tSybaseSCD

tSybaseSCD belongs to two component families: Business Intelligence and Databases. For more information on
it, see section tSybaseSCD.



tSybaseSCDELT

Talend Open Studio Components Reference Guide 677

tSybaseSCDELT

tSybaseSCDELT belongs to two component families: Business Intelligence and Databases. For more information
on it, see section tSybaseSCDELT.



tSybaseSP

678 Talend Open Studio Components Reference Guide

tSybaseSP

tSybaseSP properties

Component family Databases/Sybase

Function tSybaseSP calls the database stored procedure.

Purpose tSybaseSP offers a convenient way to centralize multiple or complex queries in a database and
call them easily.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tSybaseConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

SP Name Type in the exact name of the Stored Procedure

Is Function / Return result in Select this check box, if a value is to be returned.

Select on the list the schema column, the value to be returned is based
on.



Related scenarios

Talend Open Studio Components Reference Guide 679

Timeout Interval Maximum waiting time for the results of the stored procedure.

Parameters Click the Plus button and select the various Schema Columns that
will be required by the procedures. Note that the SP schema can hold
more columns than there are parameters used in the procedure.

Select the Type of parameter:

IN: Input parameter

OUT: Output parameter/return value

IN OUT: Input parameters is to be returned as value, likely after
modification through the procedure (function).

RECORDSET: Input parameters is to be returned as a set of values,
rather than single value.

Check the tPostgresqlCommit component if you want to
analyze a set of records from a database table or DB query
and return single records.

Advanced settings Additional JDBC
Parameters

Fill in additional connection properties for the DB connection you
are creating. This option is available when the checkbox Use an
existing connection is not selected in the Basic settings.

Use Multiple SELECT
Procedure

Select this check box to use procedures which contain multiple
SELECT statements.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage This component is used as intermediary component. It can be used as start component but only
input parameters are thus allowed.

Limitation The Stored Procedures syntax should match the Database syntax.

Related scenarios

For related topic, see section Scenario: Finding a State Label using a stored procedure.

Check section tMysqlConnection as well if you want to analyze a set of records from a database table or DB query
and return single records.



Talend Open Studio Components Reference Guide



Talend Open Studio Components Reference Guide

Databases - appliance/datawarehouse
components
This chapter describes connectors for specific databases oriented to the processing of large volume of data.
These connectors cover various needs, including: opening connections, reading and writing tables, committing
transactions as a whole, and performing rollback for error handling. These components can be found in the Palette
of the Integration perspective of the Talend Studio.

Other types of database connectors, such as connectors for traditional databases and database management, are
documented in Databases - traditional components and Databases - other components.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.



tGreenplumBulkExec

682 Talend Open Studio Components Reference Guide

tGreenplumBulkExec

tGreenplumBulkExec Properties

The tGreenplumOutputBulk and tGreenplumBulkExec components are used together in a two step process.
In the first step, an output file is generated. In the second step, this file is used in the INSERT statement used to
feed a database. These two steps are fused together in the tGreenplumOutputBulkExec component, detailed in
a separate section. The advantage using a two step process is that it makes it possible to transform data before
it is loaded in the database.

Component Family Databases/Greenplum

Function tGreenplumBulkExec performs an Insert action on the data.

Purpose tGreenplumBulkExec is a component which is specifically designed to improve performance
when loading data in ParAccel database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box if you use a configured
tGreenplumConnection.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Exact name of the schema.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.



Related scenarios

Talend Open Studio Components Reference Guide 683

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Filename Path and name of the file to be processed.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Advanced settings Action on data Select the operation you want to perform:

Bulk insert Bulk update The details asked will be different
according to the action chosen.

Copy the OID for each row Retrieve the ID item for each row.

Contains a header line with
the names of each column in
the file

Specify that the table contains header.

File type Select the file type to process.

Null string String displayed to indicate that the value is null.

Fields terminated by Character, string or regular expression to separate fields.

Escape char Character of the row to be escaped

Text enclosure Character used to enclose text.

Force not null for columns Define the columns nullability

Force not null:: Select the check box next to the column you want
to define as not null.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component is generally used with a tGreenplumOutputBulk component. Used together they
offer gains in performance while feeding a Greenplum database.

Related scenarios

For more information about tGreenplumBulkExec, see:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.

• section Scenario: Truncating and inserting file data into Oracle DB.



tGreenplumClose

684 Talend Open Studio Components Reference Guide

tGreenplumClose

tGreenplumClose properties

Component family Databases/Greenplum

Function tGreenplumClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tGreenplumConnection component in the list if more
than one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Greenplum components, especially with
tGreenplumConnection and tGreenplumCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tGreenplumCommit

Talend Open Studio Components Reference Guide 685

tGreenplumCommit

tGreenplumCommit Properties

This component is closely related to tGreenplumConnection and tGreenplumRollback. It usually doesn’t make
much sense to use these components independently in a transaction.

Component family Databases/Greenplum

Function Validates the data processed through the Job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the tGreenplumConnection component in the list if more
than one connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to link
tGreenplumCommit to your Job, your data will be
commited row by row. In this case, do not select the Close
connection check box or your connection will be closed
before the end of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Greenplum components, especially with
tGreenplumConnection and tGreenplumRollback components.

Limitation n/a

Related scenarios

This component is closely related to tGreenplumConnection and tGreenplumRollback. It usually doesn’t make
much sense to use one of these without using a tGreenplumConnection component to open a connection for the
current transaction.

For tGreenplumCommit related scenarios, see:

• section Scenario: Mapping data using a simple implicit join.

• section tMysqlConnection.



tGreenplumConnection

686 Talend Open Studio Components Reference Guide

tGreenplumConnection

tGreenplumConnection properties

This component is closely related to tGreenplumCommit and tGreenplumRollback. It usually does not make
much sense to use one of these without using a tGreenplumConnection to open a connection for the current
transaction.

Component family Databases/Greenplum

Function tGreenplumConnection opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Exact name of the schema.

Username and Password DB user authentication data.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Advanced settings Auto commit Select this check box to automatically commit a transaction when it
is completed.

tStatCatcher Statistics Select this check box to gather the job processing metadata at a Job
level as well as at each component level.

Usage This component is to be used along with Greenplum components, especially with
tGreenplumCommit and tGreenplumRollback.

Limitation n/a

Related scenarios

This component is closely related to tGreenplumCommit and tGreenplumRollback. It usually does not make
much sense to use one of these without using a tGreenplumConnection component to open a connection for the
current transaction.



Related scenarios

Talend Open Studio Components Reference Guide 687

For tGreenplumConnection related scenarios, see:

• section Scenario: Mapping data using a simple implicit join.

• section tMysqlConnection.



tGreenplumGPLoad

688 Talend Open Studio Components Reference Guide

tGreenplumGPLoad

This component invokes Greenplum's gpload utility to insert records into a Greenplum database. This component
can be used either in standalone mode, loading from an existing data file, or connected to an input flow to load
data from the connected component.

tGreenplumGPLoad properties

Component family Databases/Greenplum

Function tGreenplumGPLoad inserts data into a Greenplum database table using Greenplum's gpload
utility.

Purpose This component is used to bulk load data into a Greenplum table either from an existing data file,
an input flow, or directly from a data flow in streaming mode through a named-pipe.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address.

Port Listening port number of the DB server.

Database Name of the Greenplum database.

Schema Exact name of the schema.

Username and Password DB user authentication data.

Table Name of the table into which the data is to be inserted.

Action on table On the table defined, you can perform one of the following
operations before loading the data:

None: No operation is carried out.

Clear table: The table content is deleted before the data is loaded.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does not exist.

Drop and create table: The table is removed and created again.

Drop table if exists and create: The table is removed if it already
exists and created again.

Truncate table: The table content is deleted. You do not have the
possibility to rollback the operation.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, Job
stops.

Update: Make changes to existing entries.

Merge: Updates or adds data to the table.

It is necessary to specify at least one column as a primary
key on which the Update and Merge operations are
based. You can do that by clicking Edit Schema and
selecting the check box(es) next to the column(s) you



tGreenplumGPLoad properties

Talend Open Studio Components Reference Guide 689

want to set as primary key(s). To define the Update/
Merge options, select in the Match Column column the
check boxes corresponding to the column names that
you want to use as a base for the Update and Merge
operations, and select in the Update Column column the
check boxes corresponding to the column names that you
want to update. To define the Update condition, type in the
condition that will be used to update the data.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Data file Full path to the data file to be used. If this component is used in
standalone mode, this is the name of an existing data file to be loaded
into the database. If this component is connected with an input flow,
this is the name of the file to be generated and written with the
incoming data to later be used with gpload to load into the database.
This field is hidden when the Use named-pipe check box is selected.

Use named-pipe Select this check box to use a named-pipe. This option is only
applicable when the component is connected with an input flow.
When this check box is selected, no data file is generated and the data
is transferred to gpload through a named-pipe. This option greatly
improves performance in both Linux and Windows.

This component on named-pipe mode uses a JNI interface
to create and write to a named-pipe on any Windows
platform. Therefore the path to the associated JNI DLL
must be configured inside the java library path. The
component comes with two DLLs for both 32 and 64 bit
operating systems that are automatically provided in the
Studio with the component.

Named-pipe name Specify a name for the named-pipe to be used. Ensure that the name
entered is valid.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Use existing control file
(YAML formatted)

Select this check box to provide a control file to be used with the
gpload utility instead of specifying all the options explicitly in the
component. When this check box is selected, Data file and the other
gpload related options no longer apply. Refer to Greenplum's gpload
manual for details on creating a control file.

Control file Enter the path to the control file to be used, between double quotation
marks, or click [...] and browse to the control file. This option is
passed on to the gpload utility via the -f argument.

CSV mode Select this check box to include CSV specific parameters such as
Escape char and Text enclosure.

Field separator Character, string, or regular expression used to separate fields.

This is gpload's delim argument. The default value is |. To
improve performance, use the default value.

Escape char Character of the row to be escaped.

Text enclosure Character used to enclose text.

Header (skips the first row of
data file)

Select this check box to skip the first row of the data file.

Additional options Set the gpload arguments in the corresponding table. Click [+] as
many times as required to add arguments to the table. Click the
Parameter field and choose among the arguments from the list.



tGreenplumGPLoad properties

690 Talend Open Studio Components Reference Guide

Then click the corresponding Value field and enter a value between
quotation marks.

LOCAL_HOSTNAME: The host name or IP address of the local
machine on which gpload is running. If this machine is configured
with multiple network interface cards (NICs), you can specify the
host name or IP of each individual NIC to allow network traffic to
use all NICs simultaneously. By default, the local machine’s primary
host name or IP is used.

PORT (gpfdist port): The specific port number that the gpfdist
file distribution program should use. You can also specify a
PORT_RANGE to select an available port from the specified range.
If both PORT and PORT_RANGE are defined, then PORT takes
precedence. If neither PORT or PORT_RANGE is defined, an
available port between 8000 and 9000 is selected by default. If
multiple host names are declared in LOCAL_HOSTNAME, this
port number is used for all hosts. This configuration is desired if you
want to use all NICs to load the same file or set of files in a given
directory location.

PORT_RANGE: Can be used instead of PORT (gpfdist port) to
specify a range of port numbers from which gpload can choose
an available port for this instance of the gpfdist file distribution
program.

NULL_AS: The string that represents a null value. The default is \N
(backslash-N) in TEXT mode, and an empty value with no quotation
marks in CSV mode. Any source data item that matches this string
will be considered a null value.

FORCE_NOT_NULL: In CSV mode, processes each specified
column as though it were quoted and hence not a NULL value.
For the default null string in CSV mode (nothing between two
delimiters), this causes missing values to be evaluated as zero-length
strings.

ERROR_LIMIT (2 or higher): Enables single row error isolation
mode for this load operation. When enabled and the error limit
count is not reached on any Greenplum segment instance during
input processing, all good rows will be loaded and input rows that
have format errors will be discarded or logged to the table specified
in ERROR_TABLE if available. When the error limit is reached,
input rows that have format errors will cause the load operation
to abort. Note that single row error isolation only applies to data
rows with format errors, for example, extra or missing attributes,
attributes of a wrong data type, or invalid client encoding sequences.
Constraint errors, such as primary key violations, will still cause
the load operation to abort if encountered. When this option is not
enabled, the load operation will abort on the first error encountered.

ERROR_TABLE: When ERROR_LIMIT is declared, specifies an
error table where rows with formatting errors will be logged when
running in single row error isolation mode. You can then examine
this error table to see error rows that were not loaded (if any).

Log file Browse to or enter the access path to the log file in your directory.

Encoding Define the encoding type manually in the field.

Specify gpload path Select this check box to specify the full path to the gpload executable.
You must check this option if the gpload path is not specified in the
PATH environment variable.

Full path to gpload
executable

Full path to the gpload executable on the machine in use. It is
advisable to specify the gpload path in the PATH environment
variable instead of selecting this option.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is mainly used when no particular transformation is required on the data to be
loaded on to the database.

This component can be used as a standalone or an output component.

Limitation n/a



Related scenario

Talend Open Studio Components Reference Guide 691

Related scenario

For a related use case, see section Scenario: Inserting data in MySQL database.



tGreenplumInput

692 Talend Open Studio Components Reference Guide

tGreenplumInput

tGreenplumInput properties

Component family Databases/Greenplum

Function tGreenplumInput reads a database and extracts fields based on a query.

Purpose tGreenplumInput executes a DB query with a strictly defined order which must correspond to the
schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Exact name of the schema.

Username and Password DB user authentication data.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Query type and Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Guess Query Click the Guess Query button to generate the query which
corresponds to your table schema in the Query field.

Guess schema Click the Guess schema button to retrieve the table schema.

Advanced settings Use cursor When selected, helps to decide the row set to work with at a time and
thus optimize performance.

Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL queries for FireBird databases.



Related scenarios

Talend Open Studio Components Reference Guide 693

Related scenarios

For related topics, see the tDBInput scenarios:

• section Scenario: Mapping data using a simple implicit join.

• section Scenario 1: Displaying selected data from DB table.

• section Scenario 2: Using StoreSQLQuery variable.

See also related topic: section Scenario: Dynamic context use in MySQL DB insert.



tGreenplumOutput

694 Talend Open Studio Components Reference Guide

tGreenplumOutput

tGreenplumOutput Properties

Component Family Databases/Greenplum

Function tGreenplumOutput writes, updates, modifies or deletes the data in a database.

Purpose tGreenplumOutput executes the action defined on the table and/or on the data of a table, according
to the input flow form the previous component.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box if you use a configured
tGreenplumConnection.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.



tGreenplumOutput Properties

Talend Open Studio Components Reference Guide 695

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, Job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the Update and Delete operations.
To do that: Select the Use field options check box and then
in the Key in update column , select the check boxes next to
the column names you want to use as a base for the Update
operation. Do the same in the Key in delete column for the
Delete operation.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before committing batches
of rows together into the DB. This option ensures transaction quality
(but not rollback) and, above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL queries for Greenplum databases. It allows you to carry
out actions on a table or on the data of a table in a Greenplum database. It enables you to create a



Related scenarios

696 Talend Open Studio Components Reference Guide

reject flow, with a Row > Rejects link filtering the data in error. For a usage example, see section
Scenario 3: Retrieve data in error with a Reject link.

Related scenarios

For related scenarios, see:

• section Scenario: Mapping data using a simple implicit join.

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection.

• section Scenario 1: Adding a new column and altering data in a DB table.



tGreenplumOutputBulk

Talend Open Studio Components Reference Guide 697

tGreenplumOutputBulk

tGreenplumOutputBulk properties

The tGreenplumOutputBulk and tGreenplumBulkExec components are used together in a two step process.
In the first step, an output file is generated. In the second step, this file is used in the INSERT operation used to
feed a database. These two steps are fused together in the tGreenplumOutputBulkExec component, detailed in
a separate section. The advantage of using a two step process is that it makes it possible to transform data before
it is loaded in the database.

Component family Databases/Greenplum

Function Writes a file with columns based on the defined delimiter and the Greenplum standards

Purpose Prepares the file to be used as parameter in the INSERT query to feed the Greenplum database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using
the data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end of the records

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job
designs. Related topic: see Talend Open Studio User Guide.

Advanced settings Row separator String (ex: “\n”on Unix) to distinguish rows.

Field separator Character, string or regular expression to separate fields.

Include header Select this check to include the column header.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStaCatcher statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with tGreenplumBulkExec component. Used together
they offer gains in performance while feeding a Greenplum database.

Related scenarios

For use cases in relation with tGreenplumOutputBulk, see the following scenarios:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.



Related scenarios

698 Talend Open Studio Components Reference Guide



tGreenplumOutputBulkExec

Talend Open Studio Components Reference Guide 699

tGreenplumOutputBulkExec

tGreenplumOutputBulkExec properties

The tGreenplumOutputBulk and tGreenplumBulkExec components are used together in a two step process. In
the first step, an output file is generated. In the second step, this file is used in the INSERT operation used to feed
a database. These two steps are fused together in the tGreenplumOutputBulkExec component.

Component family Databases/Greenplum

Function Executes the action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert operations to a Greenplum
database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address.

Port Listening port number of DB server.

Database name Name of the database.

Schema Exact name of the schema.

Username and Password DB user authentication data.

Table Name of the table to be written.

Note that only one table can be written at a time and that the table
must exist for the insert operation to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Clear a table: The table content is deleted. You have the possibility
to rollback the operation.

File Name Name of the file to be processed.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: You create and store the schema locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: You have already created the schema and stored it in the
Repository. You can reuse it in various projects and job flowcharts.
Related topic: see Talend Open Studio User Guide.

Advanced settings Action on data Select the operation you want to perform:

Bulk insert Bulk update The details asked will be different
according to the action chosen.



Related scenarios

700 Talend Open Studio Components Reference Guide

Copy the OID for each row Retrieve the ID item for each row.

Contains a header line with
the names of each column in
the file

Specify that the table contains header.

File type Select the file type to process.

Null string String displayed to indicate that the value is null.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Fields terminated by Character, string or regular expression to separate fields.

Escape char Character of the row to be escaped

Text enclosure Character used to enclose text.

Force not null for columns Define the columns nullability

Force not null: Select the check box next to the column you want
to define as not null.

tStatCatcherStatistics Select this check box to collect log data at the component level.

Usage This component is mainly used when no particular transformation is required on the data to be
loaded onto the database.

Limitation n/a

Related scenarios

For use cases in relation with tGreenplumOutputBulkExec, see the following scenarios:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.



tGreenplumRollback

Talend Open Studio Components Reference Guide 701

tGreenplumRollback

tGreenplumRollback properties

This component is closely related to tGreenplumCommit and tGreenplumConnection. It usually does not make
much sense to use these components independently in a transaction.

Component family Databases/Greenplum

Function tGreenplumRollback cancels the transaction committed in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tGreenplumConnection component in the list if more
than one connection are planned for the current Job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Greenplum components, especially with
tGreenplumConnection and tGreenplumCommit.

Limitation n/a

Related scenarios

For tGreenplumRollback related scenario, see section Scenario: Rollback from inserting data in mother/daughter
tables.



tGreenplumRow

702 Talend Open Studio Components Reference Guide

tGreenplumRow

tGreenplumRow Properties

Component Family Databases/Greenplum

Function tGreenplumRow is the specific component for this database query. It executes the SQL query
stated onto the specified database. The row suffix means the component implements a flow in the
job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tGreenplumRow acts on the actual DB
structure or on the data (although without handling data). The SQLBuilder tool helps you write
easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tFirebirdConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Exact name of the schema.

Username et Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table Name Name of the table to be read.



Related scenarios

Talend Open Studio Components Reference Guide 703

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder.

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Guess Query Click the Guess Query button to generate the query which
corresponds to your table schema in the Query field.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Use PreparedStatement Select this checkbox if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the represented by “?” in the SQL instruction of the
Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Related scenarios

For a related scenario, see:

• section Scenario 3: Combining two flows for selective output

• section Scenario: Resetting a DB auto-increment.

• section Scenario 1: Removing and regenerating a MySQL table index.



tGreenplumSCD

704 Talend Open Studio Components Reference Guide

tGreenplumSCD

tGreenplumSCD belongs to two component families: Business Intelligence and Databases. For more information
on it, see section tGreenplumSCD.



tIngresBulkExec

Talend Open Studio Components Reference Guide 705

tIngresBulkExec

tIngresBulkExec properties

tIngresOutputBulk and tIngresBulkExec are generally used together in a two step process. In the first step, an
output file is generated. In the second step, this file is used in the INSERT operation used to feed a database.
These two steps are fused together in the tIngresOutputBulkExec component, detailed in another section. The
advantage of using two components is that data can be transformed before it is loaded in the database.

Component family Databases/Ingres

Function Executes the Insert action on the data provided.

Purpose Inserts data in bulk to a table in the Ingres DBMS for performance gain.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Table Name of the table to be filled.

VNode Name of the virtual node.

Database Name of the database.

Action on table Actions that can be taken on the table defined:

None: No operation made to the table.

Truncate: Delete all the rows in the table and release the file space
back to the operating system.

File name Path and name of the file to be processed.

Schema and Edit Schema A schema is a row description, i.e. it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

Delete Working Files After Use Select this check box to delete the files that are created during the
execution.

Advanced settings Field Separator Character, string or regular expression to separate fields.

Row Separator String (ex: “\n”on Unix) to separate rows

Null Indicator Value of the null indicator.

Session User User of the defined session (the connection to the database).

Rollback Enable or disable rollback.

On Error Policy of error handling:

Continue: Continue the execution.

Terminate: Terminate the execution.

Reject Row File Path and name of the file that holds the rejected rows.

Available when Continue is selected from the On Error list.

Error Count Number of errors to trigger the termination of the execution.

Available when Terminate is selected from the On Error list.

Allocation Number of pages initially allocated to the table or index.



Related scenarios

706 Talend Open Studio Components Reference Guide

Extend Number of pages by which a table or index grows.

Fill Factor Specify the percentage (from 1 to 100) of each primary data page
that must be filled with rows, under ideal conditions. For example,
if you specify a fillfactor of 40, the DBMS Server fills 40% of each
of the primary data pages in the restructured table with rows.

Min Pages/Max Pages Specify the minimum/maximum number of primary pages a hash
table must have. The Min. pages and Max. pages must be at least 1.

Leaf Fill A bulk copy from can specify a leaffill value. This clause specifies
the percentage (from 1 to 100) of each B-tree leaf page that must
be filled with rows during the copy. This clause can be used only
on tables with a B-tree storage structure.

Non Leaf Fill A bulk copy from can specify a nonleaffill value. This clause
specifies the percentage (from 1 to 100) of each B-tree non-leaf
index page that must be filled with rows during the copy. This
clause can be used only on tables with a B-tree storage structure.

Row Estimate Specify the estimated number of rows to be copied from a file to a
table during a bulk copy operation.

Trailing WhiteSpace Selected by default, this check box is designed to trim the trailing
white spaces and applies only to such data types as VARCHAR,
NVARCHAR and TEXT.

Encoding List of the encoding schemes.

Output Where to output the error message:

to console: Message output to the console.

to global variable: Message output to the global variable.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage Deployed along with tIngresOutputBulk, tIngresBulkExec feeds the given data in bulk to the
Ingres database for performance gain.

Limitation n/a

Related scenarios

For related topics, see:

• section Scenario: Loading data to a table in the Ingres DBMS



tIngresClose

Talend Open Studio Components Reference Guide 707

tIngresClose

tIngresClose properties

Component family Databases/Ingres

Function tIngresClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tIngresConnection component in the list if more than one
connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Ingres components, especially with tIngresConnection
and tIngresCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tIngresCommit

708 Talend Open Studio Components Reference Guide

tIngresCommit

tIngresCommit Properties

This component is closely related to tIngresConnection and tIngresRollback. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/Ingres

Function Validates the data processed through the Job into the connected DB

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the tIngresConnection component in the list if more than one
connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to link
tIngresCommit to your Job, your data will be commited
row by row. In this case, do not select the Close connection
check box or your connection will be closed before the end
of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Ingres components, especially with tIngresConnection
and tIngresRollback.

Limitation n/a

Related scenario

For tIngresCommit related scenario, see section Scenario: Inserting data in mother/daughter tables.



tIngresConnection

Talend Open Studio Components Reference Guide 709

tIngresConnection

tIngresConnection Properties

This component is closely related to tIngresCommit and tIngresRollback. It usually does not make much sense
to use one of these without using a tIngresConnection component to open a connection for the current transaction.

Component family Databases/Ingres

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Server Database server IP address.

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Usage This component is to be used along with Ingres components, especially with tIngresCommit and
tIngresRollback.

Limitation n/a

Related scenarios

For tIngresConnection related scenario, see section Scenario: Loading data to a table in the Ingres DBMS.



tIngresInput

710 Talend Open Studio Components Reference Guide

tIngresInput

tIngresInput properties

Component family Databases/Ingres

Function tIngresInput reads a database and extracts fields based on a query.

Purpose tIngresInput executes a DB query with a strictly defined order which must correspond to the
schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Server Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Query type and Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL queries for Ingres databases.

Limitation n/a

Related scenarios

For related topics, see the tDBInput scenarios:

• section Scenario 1: Displaying selected data from DB table



Related scenarios

Talend Open Studio Components Reference Guide 711

• section Scenario 2: Using StoreSQLQuery variable.

See also the scenario for tContextLoad: section Scenario: Dynamic context use in MySQL DB insert.



tIngresOutput

712 Talend Open Studio Components Reference Guide

tIngresOutput

tIngresOutput properties

Component family Databases/Ingres

Function tIngresOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tIngresOutput executes the action defined on the table and/or on the data contained in the table,
based on the flow incoming from the preceding component in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, Job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.



Related scenarios

Talend Open Studio Components Reference Guide 713

You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the Update and Delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next to
the column names you want to use as a base for the Update
operation. Do the same in the Key in delete column for the
Delete operation.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before committing batches
of rows together into the DB. This option ensures transaction quality
(but not rollback) and, above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.

Enable debug mode Select this check box to display each step during processing entries
in a database.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a Ingres database. It also allows you to create a reject flow using a
Row > Rejects link to filter data in error. For an example of tMySqlOutput in use, see section
Scenario 3: Retrieve data in error with a Reject link.

Limitation n/a

Related scenarios

For related topics, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection

• section Scenario 1: Adding a new column and altering data in a DB table.



Related scenarios

714 Talend Open Studio Components Reference Guide



tIngresOutputBulk

Talend Open Studio Components Reference Guide 715

tIngresOutputBulk

tIngresOutputBulk properties

tIngresOutputBulk and tIngresBulkExec are generally used together in a two step process. In the first step, an
output file is generated. In the second step, this file is used in the INSERT operation used to feed a database. These
two steps are fused together in the tIngresOutputBulkExec component.

Component family Databases/Ingres

Function Prepares a file with the schema defined and the data coming from the preceding component.

Purpose Prepares the file whose data is inserted in bulk to the Ingres DBMS for performance gain.

Basic settings Property Type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

File Name Path and name of the file that will hold the incoming data.

Append the File Select this check box to add the new rows at the end of the file.

Schema and Edit Schema A schema is a row description, i.e. it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

Advanced settings Field Separator Character, string or regular expression to separate fields.

Row Separator String (ex: “\n”on Unix) to separate rows.

Include Header Select this check box to include the column header in the file.

Encoding List of encoding schemes.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage Deployed along with tIngresBulkExec, tIngresOutputBulk is intended to save the incoming
data to a file, whose data is then inserted in bulk to an Ingres database by tIngresBulkExec for
performance gain.

Limitation n/a

Related scenarios

For related topics, see:

• section Scenario: Loading data to a table in the Ingres DBMS,



tIngresOutputBulkExec

716 Talend Open Studio Components Reference Guide

tIngresOutputBulkExec

tIngresOutputBulkExec properties
tIngresOutputBulk and tIngresBulkExec are generally used together in a two step process. In the first step, an
output file is generated. In the second step, this file is used in the INSERT operation used to feed a database. These
two steps are fused together in the tIngresOutputBulkExec component.

Component family Databases/Ingres

Function Prepares an output file and uses it to feed a table in the Ingres DBMS.

Purpose Inserts data in bulk to a table in the Ingres DBMS for performance gain.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Table Name of the table to be filled.

VNode Name of the virtual node.

Database Name of the database.

Action on table Actions that can be taken on the table defined:

None: No operation made to the table.

Truncate: Delete all the rows in the table and release the file space
back to the operating system.

File name Path and name of the file that will hold the incoming data.

Schema and Edit Schema A schema is a row description, i.e. it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

Delete Working Files After
Use

Select this check box to delete the files that are created during the
execution.

Advanced settings Field Separator Character, string or regular expression to separate fields.

Row Separator String (ex: “\n”on Unix) to separate rows

On Error Policy of error handling:

Continue: Continue the execution.

Terminate: Terminate the execution.

Reject Row File Path and name of the file that holds the rejected rows.

Available when Continue is selected from the On Error list.

Error Count Number of errors to trigger the termination of the execution.

Available when Terminate is selected from the On Error list.

Rollback Enable or disable rollback.

Null Indicator Value of the null indicator.

Session User User of the defined session (the connection to the database).

Allocation Number of pages initially allocated to the table or index.

Extend Number of pages by which a table or index grows.

Fill Factor Specify the percentage (from 1 to 100) of each primary data page
that must be filled with rows, under ideal conditions. For example,



Scenario: Loading data to a table in the Ingres DBMS

Talend Open Studio Components Reference Guide 717

if you specify a fillfactor of 40, the DBMS Server fills 40% of each
of the primary data pages in the restructured table with rows.

Min Pages/Max Pages Specify the minimum/maximum number of primary pages a hash
table must have. The Min. pages and Max. pages must be at least 1.

Leaf Fill A bulk copy from can specify a leaffill value. This clause specifies
the percentage (from 1 to 100) of each B-tree leaf page that must
be filled with rows during the copy. This clause can be used only
on tables with a B-tree storage structure.

Non Leaf Fill A bulk copy from can specify a nonleaffill value. This clause
specifies the percentage (from 1 to 100) of each B-tree non-leaf
index page that must be filled with rows during the copy. This
clause can be used only on tables with a B-tree storage structure.

Row Estimate Specify the estimated number of rows to be copied from a file to a
table during a bulk copy operation.

Trailing WhiteSpace Selected by default, this check box is designed to trim the trailing
white spaces and applies only to such data types as VARCHAR,
NVARCHAR and TEXT.

Output Where to output the error message:

to console: Message output to the console.

to global variable: Message output to the global variable.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage Usually deployed along with tIngresConnection or tIngresRow, tIngresOutputBulkExec
prepares an output file and feeds its data in bulk to the Ingres DBMS for performance gain.

Limitation n/a

Scenario: Loading data to a table in the Ingres DBMS

In this scenario, a tIngresOutputBulkExec component is deployed to prepare an output file with the employee
data from a .csv file and then use that output file to feed a table in an Ingres database.

Dragging and dropping components

1. Drop tIngresConnection, tFileInputDelimited and tIngresOutputBulkExec from the Palette onto the
workspace.

2. Rename tIngresOutputBulkExec as save_a_copy_and_load_to_DB.

3. Link tIngresConnection to tFileInputDelimited using an OnSubjobOk trigger.

4. Link tFileInputDelimited to tIngresOutputBulkExec using a Row > Main connection.

Configuring the components

1. Double-click tIngresConnection to open its Basic settings view in the Component tab.



Scenario: Loading data to a table in the Ingres DBMS

718 Talend Open Studio Components Reference Guide

2. In the Server field, enter the address of the server where the Ingres DBMS resides, for example "localhost".

Keep the default settings of the Port field.

3. In the Database field, enter the name of the Ingres database, for example "research".

4. In the Username and Password fields, enter the authentication credentials.

A context variable is used for the password here. For more information on context variables, see Talend Open
Studio User Guide.

5. Double-click tFileInputDelimited to open its Basic settings view in the Component tab.

6. Select the source file by clicking the [...] button next to the File name/Stream field.

7. Click the [...] button next to the Edit schema field to open the schema editor.



Scenario: Loading data to a table in the Ingres DBMS

Talend Open Studio Components Reference Guide 719

8. Click the [+] button to add four columns, for example name, age, job and dept, with the data type as string,
Integer, string and string respectively.

Click OK to close the schema editor.

Click Yes on the pop-up window that asks whether to propagate the changes to the subsequent component.

Leave other default settings unchanged.

9. Double-click tIngresOutputBulkExec to open its Basic settings view in the Component tab.

10. In the Table field, enter the name of the table for data insertion.

11. In the VNode and Database fields, enter the names of the VNode and the database.

12. In the File Name field, enter the full path of the file that will hold the data of the source file.

Executing the Job

1. Press Ctrl+S to save the Job.

2. Press F6 to run the Job.

As shown above, the employee data is written to the table employee in the database research on the node
talendbj. Meanwhile, the output file employee_research.csv has been generated at C:/Users/talend/Desktop.



Related scenarios

720 Talend Open Studio Components Reference Guide

Related scenarios

For related topics, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection,

• section Scenario 1: Adding a new column and altering data in a DB table.



tIngresRollback

Talend Open Studio Components Reference Guide 721

tIngresRollback

tIngresRollback properties

This component is closely related to tIngresCommit and tIngresConnection. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/Ingres

Function tIngresRollback cancels the transaction committed in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tIngresConnection component in the list if more than one
connection are planned for the current Job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Ingres components, especially with tIngresConnection
and tIngresCommit.

Limitation n/a

Related scenarios

For tIngresRollback related scenario, see section Scenario: Rollback from inserting data in mother/daughter
tables.



tIngresRow

722 Talend Open Studio Components Reference Guide

tIngresRow

tIngresRow properties

Component family Databases/Ingres

Function tIngresRow is the specific component for this database query. It executes the SQL query stated
onto the specified database. The row suffix means the component implements a flow in the job
design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tIngresRow acts on the actual DB structure
or on the data (although without handling data). The SQLBuilder tool helps you write easily your
SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced Settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

Use PreparedStatement Select this checkbox if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.



Related scenarios

Talend Open Studio Components Reference Guide 723

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Limitation n/a

Related scenarios

For related topics, see:

• section Scenario: Resetting a DB auto-increment.

• section Scenario 1: Removing and regenerating a MySQL table index.



tIngresSCD

724 Talend Open Studio Components Reference Guide

tIngresSCD

tIngresSCD belongs to two component families: Business Intelligence and Databases. For more information on
it, see section tIngresSCD.



tNetezzaBulkExec

Talend Open Studio Components Reference Guide 725

tNetezzaBulkExec

tNetezzaBulkExec properties

Component family Databases/Netezza

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, tNetezzaBulkExec offers gains in performance while carrying out the
Insert operations to a Netezza database

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box when you are using the component
tNetezzaConnection.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time and that the table must exist for the insert operation
to succeed.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.



Related scenarios

726 Talend Open Studio Components Reference Guide

Advanced settings Field Separator Character, string or regular expression to separate fields.

Require quotes (“) around
data files

Select this check box to use data enclosure characters.

Row Separator String (ex: “\n”on Unix) to distinguish rows.

Escape character Character of the row to be escaped.

Date format / Date delimiter Use Date format to distinguish the way years, months and days are
represented in a string. Use Date delimiter to specify the separator
between date values.

Time format/ Time delimiter Use Time format to distinguish the time is represented in a string.
Use Time delimiter to specify the separator between time values.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Max Errors Enter the maximum error limit that will not stop the process.

Skip Rows Enter the number of rows to be skipped.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is mainly used when non particular transformation is required on the data to be
loaded on to the database.

Limitation n/a

Related scenarios

For use cases in relation with tNetezzaBulkExec, see the following scenarios:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.

• section Scenario: Truncating and inserting file data into Oracle DB.



tNetezzaClose

Talend Open Studio Components Reference Guide 727

tNetezzaClose

tNetezzaClose properties

Component family Databases/Netezza

Function tNetezzaClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tNetezzaConnection component in the list if more than
one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Netezza components, especially with
tNetezzaConnection and tNetezzaCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tNetezzaCommit

728 Talend Open Studio Components Reference Guide

tNetezzaCommit

tNetezzaCommit Properties

This component is closely related to tNetezzaConnection and tNetezzaRollback. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/Netezza

Function tNetezzaCommit validates the data processed through the Job into the connected DB

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the tNetezzaConnection component in the list if more than
one connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to link
tNetezzaCommit to your Job, your data will be commited
row by row. In this case, do not select the Close connection
check box or your connection will be closed before the end
of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Netezza components, especially with
tNetezzaConnection and tNetezzaRollback.

Limitation n/a

Related scenario

This component is closely related to tNetezzaConnection and tNetezzaRollback. It usually does not make much
sense to use one of these without using a tNetezzaConnection component to open a connection for the current
transaction.

For tNetezzaCommit related scenario, see section Scenario: Inserting data in mother/daughter tables.



tNetezzaConnection

Talend Open Studio Components Reference Guide 729

tNetezzaConnection

tNetezzaConnection Properties

This component is closely related to tNetezzaCommit and tNetezzaRollback. It usually does not make much
sense to use one of these without using a tNetezzaConnection component to open a connection for the current
transaction.

Component family Databases/Netezza

Function tNetezzaConnection opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Additional JDBC
Parameters

Specify additional connection properties for the DB connection you
are creating.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Usage This component is to be used along with Netezza components, especially with tNetezzaCommit
and tNetezzaRollback.

Limitation n/a

Related scenarios

For a tNetezzaConnection related scenario, see section Scenario: Inserting data in mother/daughter tables.



tNetezzaInput

730 Talend Open Studio Components Reference Guide

tNetezzaInput

tNetezzaInput properties

Component family Databases/Netezza

Function tNetezzaInput reads a database and extracts fields based on a query.

Purpose tNetezzaInput executes a DB query with a strictly defined order which must correspond to the
schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box when using a tNetezzaConnection component.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.



Related scenarios

Talend Open Studio Components Reference Guide 731

Table Name Name of the table to be read.

Query type and Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Advanced settings Use cursor When selected, helps to decide the row set to work with at a time and
thus optimize performance.

Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL queries for Netezza databases.

Limitiation n/a

Related scenarios

Related scenarios for tNetezzaInput are:

• section Scenario 1: Displaying selected data from DB table.

• section Scenario 2: Using StoreSQLQuery variable.

• section Scenario: Dynamic context use in MySQL DB insert.



tNetezzaNzLoad

732 Talend Open Studio Components Reference Guide

tNetezzaNzLoad

This component invokes Netezza's nzload utility to insert records into a Netezza database. This component can
be used either in standalone mode, loading from an existing data file; or connected to an input row to load data
from the connected component.

tNetezzaNzLoad properties

Component family Databases/Netezza

Function tNetezzaNzLoad inserts data into a Netezza database table using Netezza's nzload utility.

Purpose To bulk load data into a Netezza table either from an existing data file, an input flow, or directly
from a data flow in streaming mode through a named-pipe.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address.

Port Listening port number of the DB server.

Database Name of the Netezza database.

Username and Password DB user authentication data.

Table Name of the table into which the data is to be inserted.

Action on table On the table defined, you can perform one of the following
operations before loading the data:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create table if not exists: The table is created if it does not exist.

Drop table if exists and create: The table is removed if it already
exists and created again.

Clear table: The table content is deleted before the data is loaded.

Truncate table: executes a truncate statement prior to loading the
data to clear the entire content of the table.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Data file Full path to the data file to be used. If this component is used on its
own (not connected to another component with input flow) then this
is the name of an existing data file to be loaded into the database. If
it is connected, with an input flow to another component; this is the
name of the file to be generated and written with the incoming data
to later be used with nzload to load into the database.



tNetezzaNzLoad properties

Talend Open Studio Components Reference Guide 733

Use named-pipe Select this check box to use a named-pipe instead of a data file. This
option can only be used when the component is connected with an
input flow to another component. When the check box is selected,
no data file is generated and the data is transferred to nzload through
a named-pipe. This option greatly improves performance in both
Linux and Windows.

This component on named-pipe mode uses a JNI interface
to create and write to a named-pipe on any Windows
platform. Therefore the path to the associated JNI DLL
must be configured inside the java library path. The
component comes with two DLLs for both 32 and 64 bit
operating systems that are automatically provided in the
Studio with the component.

Named-pipe name Specify a name for the named-pipe to be used. Ensure that the name
entered is valid.

Advanced settings Use existing control file Select this check box to provide a control file to be used with the
nzload utility instead of specifying all the options explicitly in the
component. When this check box is selected, Data file and the other
nzload related options no longer apply. Please refer to Netezza's
nzload manual for details on creating a control file.

Control file Enter the path to the control file to be used, between double quotation
marks, or click [...] and browse to the control file. This option is
passed on to the nzload utility via the -cf argument.

Field separator Character, string or regular expression used to separate fields.

This is nzload's delim argument. If you do not use the
Wrap quotes around fields option, you must make sure
that the delimiter is not included in the data that's inserted
to the database. The default value is \t or TAB. To improve
performance, use the default value.

Wrap quotes around fields This option is only applied to columns of String, Byte, Byte[], Char,
and Object types. Select either:

None: do not wrap column values in quotation marks.

Single quote: wrap column values in single quotation marks.

Double quote: wrap column values in double quotation marks.

If using the Single quote or Double quoteoption, it is
necessary to use \ as the Escape char.

Advanced options Set the nzload arguments in the corresponding table. Click [+] as
many times as required to add arguments to the table. Click the
Parameter field and choose among the arguments from the list.
Then click the corresponding Value field and enter a value between
quotation marks.

Parameter -If Name of the log file to generate. The logs will be appended if the
log file already exists. If the parameter is not specified, the default
name for the log file is '<table_name>.<db_name>.nzlog'. And
it's generated under the current working directory where the job is
running.

-bf Name of the bad file to generate. The bad file contains all the
records that could not be loaded due to an internal Netezza error.
The records will be appended if the bad file already exists. If the
parameter is not specified, the default name for the bad file is
'<table_name>.<db_name>.nzbad'. And it's generated under the
current working directory where the job is running.

-ouputDir Directory path to where the log and the bad file are generated. If the
parameter is not specified the files are generated under the current
directory where the job is currently running.



tNetezzaNzLoad properties

734 Talend Open Studio Components Reference Guide

-logFileSize Maximum size for the log file. The value is in MB. The default value
is 2000 or 2GB. To save hard disk space, specify a smaller amount
if your job runs often.

-compress Specify this option if the data file is compressed. Valid values are
"TRUE" or "FALSE". Default value if "FALSE".

This option is only valid if this component is used by itself
and not connected to another component via an input flow.

-skipRows <n> Number of rows to skip from the beginning of the data file. Set the
value to "1" if you like to skip the header row from the data file. The
default value is "0".

This option should only be used if this component is used
by itself and not connected to another component via an
input flow.

-maxRows <n> Maximum number of rows to load from the data file.

This option should only be used if this component is used
by itself and not connected to another component via an
input flow.

-maxErrors Maximum number of error records to allow before terminating the
load process. The default value is "1".

-ignoreZero Binary zero bytes in the input data will generate errors. Set this option
to "NO" to generate error or to "YES" to ignore zero bytes. The
default value is "NO".

-requireQuotes This option requires all the values to be wrapped in quotes. The
default value is "FALSE".

This option currently does not work with input flow. Use
this option only in standalone mode with an existing file.

-nullValue <token> Specify the token to indicate a null value in the data file. The default
value is "NULL". To improve slightly performance you can set this
value to an empty field by specifying the value as single quotes: "\'\'".

-fillRecord Treat missing trailing input fields as null. You do not need to specify
a value for this option in the value field of the table. This option is
not turned on by default, therefore input fields must match exactly
all the columns of the table by default.

Trailing input fields must be nullable in the database.

-ctrlChar Accept control chars in char/varchar fields (must escape NUL, CR
and LF). You do not need to specify a value for this option in the
value field of the table. This option is turned off by default.

-ctInString Accept un-escaped CR in char/varchar fields (LF becomes only end
of row). You do not need to specify a value for this option in the
value field of the table. This option is turned off by default.

-truncString Truncate any string value that exceeds its declared char/varchar
storage. You do not need to specify a value for this option in the
value field of the table. This option is turned off by default.

-dateStyle Specify the date format in which the input data is written in.
Valid values are: "YMD", "Y2MD", "DMY", "DMY2", "MDY",
"MDY2", "MONDY", "MONDY2". The default value is "YMD".

The date format of the column in the component's schema
must match the value specified here. For example if you
want to load a DATE column, specify the date format in the
component schema as "yyyy-MM-dd" and the -dateStyle
option as "YMD".



tNetezzaNzLoad properties

Talend Open Studio Components Reference Guide 735

For more description on loading date and time fields, see section
Loading DATE, TIME and TIMESTAMP columns.

-dateDelim Delimiter character between date parts. The default value is "-" for
all date styles except for "MONDY[2]" which is " " (empty space).

The date format of the column in the component's schema
must match the value specified here.

-y2Base First year expressible using two digit year (Y2) dateStyle.

-timeStyle Specify the time format in which the input data is written in.
Valid values are: "24HOUR" and "12HOUR". The default value is
"24HOUR". For slightly better performance you should keep the
default value.

The time format of the column in the component's schema
must match the value specified here. For example if you
want to load a TIME column, specify the date format in
the component schema as "HH:mm:ss" and the -timeStyle
option as "24HOUR".

For more description on loading date and time fields, see section
Loading DATE, TIME and TIMESTAMP columns.

-timeDelim Delimiter character between time parts. The default value is ":".

The time format of the column in the component's schema
must match the value specified here.

-timeRoundNanos Allow but round non-zero digits with smaller than microsecond
resolution.

-boolStyle Specify the format in which Boolean data is written in the data. The
valid values are: "1_0", "T_F", "Y_N", "TRUE_FALSE", "YES".
The default value is "1_0". For slightly better performance keep the
default value.

-allowRelay Allow load to continue after one or more SPU reset or failed over.
The default behaviour is not allowed.

-allowRelay <n> Specify number of allowable continuation of a load. Default value
is "1".

Encoding Select the encoding type from the list.

Specify nzload path Select this check box to specify the full path to the nzload executable.
You must check this option if the nzload path is not specified in the
PATH environment variable.

Full path to nzload
executable

Full path to the nzload executable on the machine in use. It is
advisable to specify the nzload path in the PATH environment
variable instead of selecting this option.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is mainly used when non particular transformation is required on the data to be
loaded ont to the database.

This component can be used as a standalone or an output component.

Limitation n/a

Loading DATE, TIME and TIMESTAMP columns

When this component is used with an input flow, the date format specified inside the component's schema must
match the value specified for -dateStyle, -dateDelim, -timeStyle, and -timeDelim options. Please refer to following
examples:

DB Type Schema date format -dateStyle -dateDelim -timeStyle -timeDelim

DATE "yyyy-MM-dd" "YMD" "-" n/a n/a



Related scenario

736 Talend Open Studio Components Reference Guide

DB Type Schema date format -dateStyle -dateDelim -timeStyle -timeDelim

TIME "HH:mm:ss" n/a n/a "24HOUR" ":"

TIMESTAMP "yyyy-MM-dd HH:mm:ss" "YMD" "-" "24HOUR" ":"

Related scenario

For a related use case, see section Scenario: Inserting data in MySQL database.



tNetezzaOutput

Talend Open Studio Components Reference Guide 737

tNetezzaOutput

tNetezzaOutput properties

Component family Databases/Netezza

Function tNetezzaOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tNetezzaOutput executes the action defined on the table and/or on the data contained in the table,
based on the flow incoming from the preceding component in the designed Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box when using a tNetezzaConnection component.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

Default: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.



tNetezzaOutput properties

738 Talend Open Studio Components Reference Guide

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the Update and Delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next to
the column names you want to use as a base for the Update
operation. Do the same in the Key in delete column for the
Delete operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

You can press Ctrl+Space to access a list of predefined
global variables.

Use batch size Select this check box to activate the batch mode for data processing.
In the Batch Size field that appears when this check box is selected,
you can type in the number you need to define the batch size to be
processed.

This check box is available only when you have selected
the Insert, Update or the Delete option in the Action on
data list.

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and, above all, better performance at executions.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.



Related scenarios

Talend Open Studio Components Reference Guide 739

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a Netezza database. It also allows you to create a reject flow using a
Row > Rejects link to filter data in error. For an example of tMySqlOutput in use, see section
Scenario 3: Retrieve data in error with a Reject link.

Limitation n/a

Related scenarios

For tNetezzaOutput related topics, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection.

• section Scenario 1: Adding a new column and altering data in a DB table.



tNetezzaRollback

740 Talend Open Studio Components Reference Guide

tNetezzaRollback

tNetezzaRollback properties

This component is closely related to tNetezzaCommit and tNetezzaConnection. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/Netezza

Function tNetezzaRollback cancels the transaction committed in the connected DB.

Purpose This component avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tNetezzaConnection component in the list if more than
one connection are planned for the current job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Netezza components, especially with
tNetezzaConnection and tNetezzaCommit.

Limitation n/a

Related scenarios

For tNetezzaRollback related scenario, see section Scenario: Rollback from inserting data in mother/daughter
tables.



tNetezzaRow

Talend Open Studio Components Reference Guide 741

tNetezzaRow

tNetezzaRow properties

Component family Databases/Netezza

Function tNetezzaRow is the specific component for this database query. It executes the SQL query stated
onto the specified database. The row suffix means that the component implements a flow in the
job design although it does not provide output.

Purpose Depending on the nature of the query and the database, tNetezzaRow acts on the actual DB
structure or on the data (although without handling data). The SQLBuilder tool helps you write
easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tNetezzaConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table Name Enter the name of the table to be processed.

Query type Either Built-in or Repository.



Related scenarios

742 Talend Open Studio Components Reference Guide

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Use PreparedStatement Select this checkbox if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Limitation n/a

Related scenarios

For related scenarios, see:

• section Scenario 3: Combining two flows for selective output

• section Scenario 1: Removing and regenerating a MySQL table index



tParAccelBulkExec

Talend Open Studio Components Reference Guide 743

tParAccelBulkExec

tParAccelBulkExec Properties

The tParAccelOutputBulk and tParAccelBulkExec components are generally used together in a two step
process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in the tParAccelOutputBulkExec component, detailed
in a different section. The advantage of using two separate steps is that the data can be transformed before it is
loaded in the database.

Component Family Databases/ParAccel

Function tParAccelBulkExec performs an Insert action on the data.

Purpose tParAccelBulkExec is a component which is specifically designed to improve performance when
loading data in ParAccel database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box if you use a configured tParAccelConnection.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address.

Port Listening port number of the DB server.

Database Database name.

Schema Exact name of the schema.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.



Related scenarios

744 Talend Open Studio Components Reference Guide

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if already
exists and created again.

Clear a table: The table content is deleted.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Advanced settings Copy mode Select the copy mode you want to use from either:

Basic: Standard mode, without optimisation.

Parallel: Allows you to use several internal ParAccel APIs in order
to optimise loading speed.

Filename Name and path of the file to be processed.

File Type Select the file type from the list.

Field Layout Select the field layout from the list.

Field separator Character, string or regular expression to separate fields.

Explicit IDs The ID is already present in the file to be loaded or will be set by
the database.

Remove Quotes Select this check box to remove quotation marks from the file to be
loaded.

Max. Errors Type in the maximum number of errors before your Job stops.

Date Format Type in the date format to be used.

Time/Timestamp Format Enter the date and hour format to be used.

Additional COPY Options Enter the specific, customized ParAccel option that you want to use.

Log file Browse to or enter the access path to the log file in your directory.

Logging level Select the information type you want to record in your log file.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL database queries. It allows you to carry out actions on a
table or on the data of a table in a ParAccel database. It enables you to create a reject flow, with a
Row > Reject link filtering the data in error. For a usage example, see section Scenario 3: Retrieve
data in error with a Reject link.

Limitation n/a

Related scenarios

For a related scenario, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection.

• section Scenario 1: Adding a new column and altering data in a DB table.



tParAccelClose

Talend Open Studio Components Reference Guide 745

tParAccelClose

tParAccelClose properties

Component family Databases/ParAccel

Function tParAccelClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tParAccelConnection component in the list if more than
one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with ParAccel components, especially with
tParAccelConnection and tParAccelCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tParAccelCommit

746 Talend Open Studio Components Reference Guide

tParAccelCommit

tParAccelCommit Properties

This component is closely related to tParAccelConnection and tParAccelRollback. It usually doesn’t make much
sense to use these components independently in a transaction.

Component family Databases/ParAccel

Function Validates the data processed through the job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the tParAccelConnection component in the list if more than
one connection are planned for the current job.

Close Connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to link
tParAccelCommit to your Job, your data will be commited
row by row. In this case, do not select the Close connection
check box or your connection will be closed before the end
of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with ParAccel components, especially with
tParAccelConnection and tParAccelRollback components.

Limitation n/a

Related scenario

This component is closely related to tParAccelConnection and tParAccelRollback. It usually does not make
much sense to use one of these without using a tParAccelConnection component to open a connection for the
current transaction.

For tParAccelCommit related scenario, see section tMysqlConnection



tParAccelConnection

Talend Open Studio Components Reference Guide 747

tParAccelConnection

tParAccelConnection Properties

This component is closely related to tParAccelCommit and tParAccelRollback. It usually doesn’t make much
sense to use one of these without using a tParAccelConnection component to open a connection for the current
transaction.

Component family Databases/ParAccel

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Name of the schema

Username and Password DB user authentication data.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Advanced settings Auto commit Select this check box to automatically commit a transaction when it
is completed.

tStatCatcher Statistics Select this check box to gather the job processing metadata at a Job
level as well as at each component level.

Usage This component is to be used along with ParAccel components, especially with tParAccelCommit
and tParAccelRollback components.

Limitation n/a

Related scenario

This component is closely related to tParAccelCommit and tParAccelRollback. It usually does not make much
sense to use one of these without using a tParAccelConnection component to open a connection for the current
transaction.



Related scenario

748 Talend Open Studio Components Reference Guide

For tParAccelConnection related scenario, see section tMysqlConnection



tParAccelInput

Talend Open Studio Components Reference Guide 749

tParAccelInput

tParAccelInput properties

Component family Databases/ ParAccel

Function tParAccelInput reads a database and extracts fields based on a query.

Purpose tParAccelInput executes a DB query with a strictly defined order which must correspond to the
schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box when using a configured
tParAccelConnection component.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address.

Port Listening port number of the DB server.

Database Name of the database

Schema Exact name of the schema

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.



Related scenarios

750 Talend Open Studio Components Reference Guide

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table name Name of the table to be read.

Query type and Query Enter your DB query paying particularly attention to sequence the
fields properly in order to match the schema definition.

Guess Query Click the Guess Query button to generate the query which
corresponds to your table schema in the Query field.

Guess schema Click the Guess schema button to retrieve the table schema.

Advanced settings Use cursor When selected, helps to decide the row set to work with at a time and
thus optimize performance.

Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL queries for ParAccel databases.

Related scenarios

For related scenarios, see:

• section Scenario 1: Displaying selected data from DB table.

• section Scenario 2: Using StoreSQLQuery variable.



tParAccelOutput

Talend Open Studio Components Reference Guide 751

tParAccelOutput

tParAccelOutput Properties

Component Family Databases/ParAccel

Function tParAccelOutput writes, updates, modifies or deletes the data in a database.

Purpose tParAccelOutput executes the action defined on the table and/or on the data of a table, according
to the input flow form the previous component.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box if you use a configured tParAccelConnection.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address.

Port Listening port number of the DB server.

Database Database name.

Schema Exact name of the schema.

Username et Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.



tParAccelOutput Properties

752 Talend Open Studio Components Reference Guide

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if already
exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the Update and Delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next to
the column names you want to use as a base for the Update
operation. Do the same in the Key in delete column for the
Delete operation.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before committing batches
of rows together into the DB. This option ensures transaction quality
(but not rollback) and, above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL database queries. It allows you to carry out actions on a
table or on the data of a table in a ParAccel database. It enables you to create a reject flow, with a



Related scenarios

Talend Open Studio Components Reference Guide 753

Row > Rejects link filtering the data in error. For a usage example, see section Scenario 3: Retrieve
data in error with a Reject link.

Limitation n/a

Related scenarios

For a related scenario, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection.

• section Scenario 1: Adding a new column and altering data in a DB table.



tParAccelOutputBulk

754 Talend Open Studio Components Reference Guide

tParAccelOutputBulk

tParAccelOutputBulk properties

The tParAccelOutputBulk and tParAccelBulkExec components are generally used together in a two step
process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in the tParAccelOutputBulkExec component, detailed
in a different section. The advantage of using two separate steps is that the data can be transformed before it is
loaded in the database.

Component family Databases/ParAccel

Function Writes a file with columns based on the defined delimiter and the ParAccel standards

Purpose Prepares the file to be used as parameter in the INSERT query to feed the ParAccel database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using
the data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end of the file

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job
designs. Related topic: see Talend Open Studio User Guide.

Advanced settings Row separator String (ex: “\n”on Unix) to distinguish rows.

Field separator Character, string or regular expression to separate fields.

Include header Select this check box to include the column header.

Encoding Select the encoding type from the list or select Custom and define
it manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with tParAccelBulkExec component. Used together they
offer gains in performance while feeding a ParAccel database.

Related scenarios

For use cases in relation with tParAccelOutputBulk, see the following scenarios:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.



Related scenarios

Talend Open Studio Components Reference Guide 755

• section Scenario: Truncating and inserting file data into Oracle DB.



tParAccelOutputBulkExec

756 Talend Open Studio Components Reference Guide

tParAccelOutputBulkExec

tParAccelOutputBulkExec Properties

The tParAccelOutputBulk and tParAccelBulkExec components are generally used together in a two step
process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in tParAccelOutputBulkExec.

Component Family Databases/ParAccel

Function tParAccelOutputBulkExec performs an Insert action on the data.

Purpose tParAccelOutputBulkExec is a component which is specifically designed to improve
performance when loading data in ParAccel database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address.

Port Listening port number of the DB server.

Database Database name.

Schema Exact name of the schema.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if already
exists and created again.

Clear a table: The table content is deleted.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Copy mode Select the copy mode you want to use from either:

Basic: Standard mode, without optimisation.

Parallel: Allows you to use several internal ParAccel APIs in order
to optimise loading speed.



Related scenarios

Talend Open Studio Components Reference Guide 757

Filename Name and path of the file to be processed.

Advanced settings File Type Select the file type from the list.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Fields terminated by Character, string or regular expression to separate fields.

Append Select this check box to add the new rows at the end of the file.

Explicit IDs The ID is already present in the file to be loaded or will be set by
the database.

Remove Quotes Select this check box to remove quotation marks from the file to be
loaded.

Max. Errors Type in the maximum number of errors before your Job stops.

Date Format Type in the date format to be used.

Time/Timestamp Format Enter the date and hour format to be used.

Additional COPY Options Enter the specific, customized ParAccel option that you want to use.

Log file Browse to or enter the access path to the log file in your directory.

Logging level Select the information type you want to record in your log file.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL database queries. It allows you to carry out actions on a
table or on the data of a table in a ParAccel database. It enables you to create a reject flow, with a
Row > Reject link filtering the data in error. For a usage example, see section Scenario 3: Retrieve
data in error with a Reject link.

Related scenarios

For a related scenario, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection.

• section Scenario 1: Adding a new column and altering data in a DB table.



tParAccelRollback

758 Talend Open Studio Components Reference Guide

tParAccelRollback

tParAccelRollback properties

This component is closely related to tParAccelCommit and tParAccelConnection. It usually doesn’t make much
sense to use these components independently in a transaction.

Component family Databases

Function Cancel the transaction commit in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tParAccelConnection component in the list if more than
one connection are planned for the current job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with ParAccel components, especially with
tParAccelConnection and tParAccelCommit components.

Limitation n/a

Related scenario

This component is closely related to tParAccelConnection and tParAccelCommit. It usually doesn’t make much
sense to use one of them without using a tParAccelConnection component to open a connection for the current
transaction.

For tParAccelRollback related scenario, see section tMysqlRollback.



tParAccelRow

Talend Open Studio Components Reference Guide 759

tParAccelRow

tParAccelRow Properties

Component Family Databases/ParAccel

Function tParAccelRow is the specific component for this database query. It executes the SQL query stated
onto the specified database. The row suffix means the component implements a flow in the job
design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tParAccelRow acts on the actual DB
structure or on the data (although without handling data). The SQLBuilder tool helps you write
easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tFirebirdConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Exact name of the schema.

Username et Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table Name Name of the table to be read.



Related scenarios

760 Talend Open Studio Components Reference Guide

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder.

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Guess Query Click the Guess Query button to generate the query which
corresponds to your table schema in the Query field.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Use PreparedStatement Select this checkbox if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all possible SQL queries.

Limitation n/a

Related scenarios

For a related scenario, see:

• section Scenario 3: Combining two flows for selective output

• section Scenario: Resetting a DB auto-increment.

• section Scenario 1: Removing and regenerating a MySQL table index.



tParAccelSCD

Talend Open Studio Components Reference Guide 761

tParAccelSCD

tParAccelSCD belongs to two component families: Business Intelligence and Databases. For more information
on it, see section tParAccelSCD.



tTeradataClose

762 Talend Open Studio Components Reference Guide

tTeradataClose

tTeradataClose properties

Component family Databases/Teradata

Function tTeradataClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tTeradataConnection component in the list if more than
one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Teradata components, especially with
tTeradataConnection and tTeradataCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tTeradataCommit

Talend Open Studio Components Reference Guide 763

tTeradataCommit

tTeradataCommit Properties

This component is closely related to tTeradataConnection and tTeradataRollback. It usually does not make
much sense to use these components independently in a transaction.

Component family Databases/Teradata

Function tTeradataCommit validates the data processed through the Job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the tTeradataConnection component in the list if more than
one connection are planned for the current job.

Close connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to link
tTeradataCommit to your Job, your data will be commited
row by row. In this case, do not select the Close connection
check box or your connection will be closed before the end
of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Teradata components, especially with
tTeradataConnection and tTeradataRollback components.

Limitation n/a

Related scenario

This component is closely related to tTeradataConnection and tTeradataRollback. It usually does not make
much sense to use one of these without using a tTeradataConnection component to open a connection for the
current transaction.

For tTeradataCommit related scenario, see section tVerticaConnection



tTeradataConnection

764 Talend Open Studio Components Reference Guide

tTeradataConnection

tTeradataConnection Properties

This component is closely related to tTeradataCommit and tTeradataRollback. It usually doesn’t make much
sense to use one of these without using a tTeradataConnection component to open a connection for the current
transaction.

Component family Databases/Teradata

Function tTeradataConnection opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address.

Database Name of the database.

Username and Password DB user authentication data.

Additional JDBC
parameters

Specify additional connection properties in the existing DB
connection, to allow specific character set support. E.G.:
CHARSET=KANJISJIS_OS to get support of Japanese characters.

You can set the encoding parameters through this field.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Advanced settings Auto commit Select this check box to automatically commit a transaction when it
is completed.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Utilisation This component is to be used along with Teradata components, especially with tTeradataCommit
and tTeradataRollback components.

Limitation n/a



Related scenario

Talend Open Studio Components Reference Guide 765

Related scenario

This component is closely related to tTeradataCommit and tTeradataRollback. It usually doesn’t make much
sense to use one of these without using a tTeradataConnection component to open a connection for the current
transaction.

For tTeradataConnection related scenario, see section tMysqlConnection.



tTeradataFastExport

766 Talend Open Studio Components Reference Guide

tTeradataFastExport

tTeradataFastExport Properties

Component Family Databases/Teradata

Function tTeradataFastExport exports rapidly voluminous data batches from a Teradata table or view.

Purpose tTeradataFastExport exports data batches from a Teradata table to a cutsomer system or to a
smaller database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Execution platform Select the Operating System type you use.

Host Server name or IP.

Database name Database name.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Use query Select this check box to enter the SQL statement in the Query box.

Log database Log database name.

Log table Log table name.

Script generated folder Browse your directory and select the destination of the file which
will be created.

Exported file Name and path to the file which will be created.

Field separator Character, string or regular expression to separate fields.

Error file Browse your directory and select the destination of the file where the
error messages will be recorded.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all possible SQL queries.

Related scenario

No scenario is available for this component yet.



tTeradataFastLoad

Talend Open Studio Components Reference Guide 767

tTeradataFastLoad

tTeradataFastLoad Properties

Component Family Databases/Teradata

Function tTeradataFastLoad reads a database and extracts fields using queries.

Purpose tTeradataFastLoad executes a database query according to a strict order which must be the same
as the one in the schema. The retrieve list of fields is then transfered to the next component, using
a connexion flow (Main row).

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address.

Database Database name.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time.

Execute Batch every Number of rows per batch to be loaded.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Advanced settings  Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all possible SQL queries.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tTeradataFastLoadUtility

768 Talend Open Studio Components Reference Guide

tTeradataFastLoadUtility

tTeradataFastLoadUtility Properties

Component Family Databases/Teradata

Function tTeradataFastLoadUtility reads a database and extracts fields using queries.

Purpose tTeradataFastLoadUtility executes a database query according to a strict order which must be the
same as the one in the schema. The retrieve list of fields is then transfered to the next component,
using a connexion flow (Main row).

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Execution platform Select the Operating System type you use.

Host Host name or IP address of the database server.

Database name Database name.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Script generated folder Browse your directory and select the destination of the file which
will be created.

Load file Browse your directory and select the file from which you want to
load data.

Field separator Character, string or regular expression to separate fields.

Error file Browse your directory and select the destination of the file where the
error messages will be recorded.

Advanced settings Define character set Specify the character encoding you need use for your system.

Check point Enter the check point value.

Error files Enter the file name where the error messages are stored. By default,
the code ERRORFILES table_ERR1, table_ERR2 is entered,
meaning that the two tables table_ERR1 and table_ERR2 are used to
record the error messages.

Return fastload error Select this check box to specify the exit code number to indicate the
point at which an error message should display in the console.

ERRLIMIT Enter the limit number of errors detected during the loading phase.
Processing stops when the limit is reached.

The default error limit value is 1000000.

For more information, see Teradata FastLoad Reference
documentation.



Related scenario

Talend Open Studio Components Reference Guide 769

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Related scenario

For related topic, see section Scenario: Inserting data into a Teradata database table.



tTeradataInput

770 Talend Open Studio Components Reference Guide

tTeradataInput

tTeradataInput Properties

Component family Databases/Teradata

Function tTeradataInput reads a database and extracts fields based on a query.

Purpose tTeradataInput executes a DB query with a strictly defined order which must correspond to the
schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tTeradataConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.



Related scenarios

Talend Open Studio Components Reference Guide 771

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Query type and Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Advanced settings Additional JDBC
parameters

Specify additional connection properties in the existing DB
connection, to allow specific character set support. E.G.:
CHARSET=KANJISJIS_OS to get support of Japanese characters.

Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL queries for Teradata databases.

Limitation n/a

Related scenarios

For related scenarios, see:

• section Scenario 1: Displaying selected data from DB table.

• section Scenario 2: Using StoreSQLQuery variable.

• section Scenario: Dynamic context use in MySQL DB insert.



tTeradataMultiLoad

772 Talend Open Studio Components Reference Guide

tTeradataMultiLoad

tTeradataMultiLoad Properties

Component Family Databases/Teradata

Function tTeradataMultiLoad reads a database and extracts fields using queries.

Purpose tTeradataMultiLoad executes a database query according to a strict order which must be the same
as the one in the schema. The retrieve list of fields is then transfered to the next component, using
a connexion flow (Main row).

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Execution platform Select the Operating System type you use.

Host Host name or IP address of the database server.

Database name Database name.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see see Talend Open
Studio User Guide.

Script generated folder Browse your directory and select the destination of the file which
will be created.

Action to data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to set as
primary key(s).

Where condition in case
Delete

Type in a condition, which, once verified, will delete the row.

Load file Browse your directory and select the file from which you want to
load data.

Field separator Character, string or regular expression to separate fields.



Related scenario

Talend Open Studio Components Reference Guide 773

Error file Browse your directory and select the destination of the file where the
error messages will be recorded.

Advanced settings Define Log table This check box is selected to define a log table you want to use
in place of the default one that is the database table you defined
in Basic settings. The syntax required to define the log table is
databasename.logtablename.

BEGIN LOAD This field allows you to define your BEGIN LOAD command to
initiate or restart a load task. You can specify the number of sessions
to use, the error limit, any other parameters needed to execute the
task.

For more information, see Teradata MultiLoad Reference
documentation.

Return mload error Select this check box to specify the exit code number to indicate the
point at which an error message should display in the console.

Define character set Specify the character encoding you need use for your system

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Related scenario

For related topic, see section Scenario: Inserting data into a Teradata database table.



tTeradataOutput

774 Talend Open Studio Components Reference Guide

tTeradataOutput

tTeradataOutput Properties

Component family Databases/Teradata

Function tTeradataOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tTeradataOutput executes the action defined on the table and/or on the data contained in the table,
based on the flow incoming from the preceding component in the job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tTeradataConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.



tTeradataOutput Properties

Talend Open Studio Components Reference Guide 775

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and ceate: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Create This is not visible by default, until you choose to create a table from
the Action on table drop-down list. The table to be created may be:

- SET TABLE: tables which do not allow to duplicate

- MULTI SET TABLE: tables allowing duplicate rows.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the Update and Delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next to
the column names you want to use as a base for the Update
operation. Do the same in the Key in delete column for the
Delete operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

This is intended to allow specific character set support. E.G.:
CHARSET=KANJISJIS_OS to get support of Japanese characters.

You can press Ctrl+Space to access a list of predefined
global variables.

Commit every Enter the number of rows to be completed before committing batches
of rows together into the DB. This option ensures transaction quality
(but not rollback) and, above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform



Related scenarios

776 Talend Open Studio Components Reference Guide

actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.

Enable debug mode Select this check box to display each step during processing entries
in a database.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Use Batch Size When selected, enables you to define the number of lines in each
processed batch.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a Teradata database. It also allows you to create a reject flow using a
Row > Rejects link to filter data in error. For an example of tMySqlOutput in use, see section
Scenario 3: Retrieve data in error with a Reject link.

Limitation n/a

Related scenarios

For related topics, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection

• section Scenario 1: Adding a new column and altering data in a DB table.



tTeradataRollback

Talend Open Studio Components Reference Guide 777

tTeradataRollback

tTeradataRollback Properties

This component is closely related to tTeradataCommit and tTeradataConnection. It usually doesn’t make much
sense to use these components independently in a transaction.

Component family Databases/Teradata

Function tTeradataRollback cancels the transaction commit in the connected DB.

Purpose tTeradataRollback avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the TeradataConnection component in the list if more than
one connection are planned for the current job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Teradata components, especially with
tTeradataConnection and tTeradataCommit components.

Limitation n/a

Related scenario

For tTeradataRollback related scenario, see section Scenario: Rollback from inserting data in mother/daughter
tables.



tTeradataRow

778 Talend Open Studio Components Reference Guide

tTeradataRow

tTeradataRow Properties
Component family Databases/Teradata

Function tTeradataRow is the specific component for this database query. It executes the SQL query stated
onto the specified database. The row suffix means the component implements a flow in the job
design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tTeradataRow acts on the actual DB
structure or on the data (although without handling data). The SQLBuilder tool helps you write
easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tTeradataConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of the DB server.

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder



Related scenarios

Talend Open Studio Components Reference Guide 779

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

This is intended to allow specific character set support. E.G.:
CHARSET=KANJISJIS_OS to get support of Japanese characters.

Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Use PreparedStatement Select this checkbox if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Limitation n/a

Related scenarios

For related topics, see:

• section Scenario 3: Combining two flows for selective output .

• section Scenario: Resetting a DB auto-increment.

• section Scenario 1: Removing and regenerating a MySQL table index.



tTeradataTPTUtility

780 Talend Open Studio Components Reference Guide

tTeradataTPTUtility

tTeradataTPTUtility Properties

Component Family Databases/Teradata

Function tTeradataTPTUtility combines the utilities of tTeradataFastLoad, tTeradataMultiLoad,
tTeradataTPump, and tTeradataFastExport into one comprehensive utility.

Purpose tTeradataTPTUtility allows you to insert data to load data into and delete data from any accessible
table in the Teradata Database or from any other data stores for which an access operator or an
access module exists.

Basic settings Property type Either Built-in or Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Filename Browse your directory and select the file to save the output data.

Append Select this check box to append the work table to the path set in the
Filename field.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to set as
primary key(s).

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Execution platform Select the Operating System type you use.

TDPID Teradata director program identifier. It can be either the name or the
IP address of the Teradata Database system being accessed.

If you do not specify a TDPID, the system will use the
name of Teradata database as the default TDPID. The
customized TDPID can be up to 256 characters and can



Related scenario

Talend Open Studio Components Reference Guide 781

be a domain server name. For further information about
TDPID, see Teradata Parallel Transporter Reference.

Database name Fill this field with the name of the Teradata database.

Load Operator A consumer operator that functions similarly to tTeradataFastLoad
to load data from data streams and inserts data into individual rows
of a target table in the Teradata database.

Data Connector Functions as either a file reader to read from flat files or access
modules or a file writer to write to flat files or access modules.

For further information about flat file, see Flat file
database.

Job Name Name of a Teradata Parallel Transporter Job which is defined using
Teradata tbuild command.

If you do not specify a Job name, the default is the user
name followed by a hyphen and a generated TPT Job
sequence number as follows:

<user name>-<job sequence number>

For further information about Teradata commands, see
Teradata Parallel Transporter Reference.

Layout Name(schema) A schema for the data to be interchanged.

Username and Password The Teradata database username and the Teradata database password
associated with the username for Teradata database authentication.

Table Name of the table to be written into the Teradata database. Note that
only one table can be written at a time.

Script generated folder Browse your directory and select the destination of the file which
will be created.

Where condition in case
Delete

Type in script as a condition, which, once verified, will delete the
row.

Error file Browse your directory and select the destination of the file where the
error messages will be recorded.

 Advanced settings Row seperator Character, string or regular expression to separate rows.

Field seperator Character, string or regular expression to separate fields.

Include header Select this check box to include the column header to the file.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Define Log table This check box is selected to define a log table you want to use in
place of the default one that is the database table you defined in Basic
settings followed by "_log". The syntax required to define the log
table is logtablename.

Return mload error Select this check box to specify the exit code number to indicate
the point at which an error message should display in the console.
For further information about this error, see Teradata MultiLoad
Reference.

Define character set Specify the character encoding to be used in your system.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries. For
further information about the usage of this component, see Teradata Parallel Transporter Reference.

Related scenario

For related topic, see section Scenario: Inserting data into a Teradata database table.

http://developer.teradata.com/sites/all/files/documentation/linked_docs/html/online/B035-2436-088A/wwhelp/wwhimpl/js/html/wwhelp.htm
http://en.wikipedia.org/wiki/Flat_file_database#Flat_files
http://en.wikipedia.org/wiki/Flat_file_database#Flat_files
http://developer.teradata.com/sites/all/files/documentation/linked_docs/html/online/B035-2436-088A/wwhelp/wwhimpl/js/html/wwhelp.htm
https://developer.teradata.com/tools/reference/teradata-multiload-reference/13-10
https://developer.teradata.com/tools/reference/teradata-multiload-reference/13-10
http://developer.teradata.com/sites/all/files/documentation/linked_docs/html/online/B035-2436-088A/wwhelp/wwhimpl/js/html/wwhelp.htm


tTeradataTPump

782 Talend Open Studio Components Reference Guide

tTeradataTPump

tTeradataTPump Properties

Component Family Databases/Teradata

Function tTeradataTPump reads a database and extracts fields using queries.

Purpose tTeradataTPump executes a database query according to a strict order which must be the same
as the one in the schema. The retrieve list of fields is then transfered to the next component, using
a connexion flow (Main row).

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Execution platform Select the Operating System type you use.

Host Host name or IP address of the database server.

Database name Database name.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Script generated folder Browse your directory and select the destination of the file which
will be created.

Action to data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to set as
primary key(s).

Where condition in case
Delete

Type in a condition, which, once verified, will delete the row.

Load file Browse your directory and select the file from which you want to
load data.

Field separator Character, string or regular expression to separate fields.



Scenario: Inserting data into a Teradata database table

Talend Open Studio Components Reference Guide 783

Error file Browse your directory and select the destination of the file where the
error messages will be recorded.

Advanced settings Define Log table This check box is selected to define a log table you want to use
in place of the default one that is the database table you defined
in Basic settings. The syntax required to define the log table is
databasename.logtablename.

BEGIN LOAD This field allows you to define your BEGIN LOAD command to
initiate or restart a TPump task. You can specify the number of
sessions to use, the error limit and any other parameters needed to
execute the task. The default value is:

SESSIONS 8 PACK 600 ARRAYSUPPORT ON CHECKPOINT 60

TENACITY 2 ERRLIMIT 1000.

For more information, see Teradata Parallel Data Pump Reference
documentation.

Return tpump error Select this check box to specify the exit code number to indicate the
point at which an error message should display in the console.

Define character set Specify the character encoding you need use for your system

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Scenario: Inserting data into a Teradata database table

In this scenario, you create a Job using tTeradataTPump to insert customer data into a Teradata database table
and specify the exit code to be displayed in the event of an exception error.

Three components are used in this Job:

• tRowGenerator: generates rows as required using random customer data taken from a list.

• tFileOutputDelimited: outputs the customer data into a delimited file.

• tTeradataTPump: inserts the customer data into the Teradata database table in the Tpump mode.

Dropping components

1. Drop the required components: tRowGenerator, tFileOutputDelimited and tTeradataTPump from the
Palette onto the design workspace.

2. Link tRowGenerator to tFileOutputDelimited using a Row > Main connection.

3. Link tRowGenerator to tTeradataTPump using a Trigger > On SubjobOk connection.



Scenario: Inserting data into a Teradata database table

784 Talend Open Studio Components Reference Guide

Configuring the components

1. Double click tRowGenerator to open the tRowGenerator Editor window.

In the tRowGenerator Editor window, define the data to be generated. For this Job, the schema is composed
of two columns: ID and Name.

Enter the Number of Rows for RowGenerator to generate.

2. Double click tFileOutputDelimited to define its properties in the Component view.

3. Next to File Name, browse to the output file or enter a name for the output file to be created.

4. Between double quotation marks, enter the delimiters to be used next to Row Separator and Field Separator.



Scenario: Inserting data into a Teradata database table

Talend Open Studio Components Reference Guide 785

Click Edit schema and check that the schema matches the input schema. If need be, click Sync Columns.

5. Double click tTeradataTPump to open its Component view.

In the Basic settings tab of the Component view, define the tTeradataTPump parameters. I

6. Enter the Database name, User name and Password in accordance with your database authentication
information.

7. Specify the Table into which you want to insert the customer data. In this scenario, it is called mytable.

8. In the Script generated folder field, browse to the folder in which you want to store the script files generated.

9. In the Load file field, browse to the file which contains the customer data.

10. In the Error file field, browse to the file in which you want to log the error information.

11. In the Action on data field, select Insert.



Scenario: Inserting data into a Teradata database table

786 Talend Open Studio Components Reference Guide

Executing the Job

1. Press F6 to execute the Job.

2. The Run view console reads as follows:

3. Double-click the tTeradataTPump component to go back to its Component view.

4. On the Advanced settings tab, select the Return tpump error check box and type in the exit code number
to indicate the point at which an error message should be displayed in the console. In this example, enter the
number 4 and use the default values for the other parameters.

5. Press F6 to run the Job.

6. The Run view console reads as follows:

An exception error occurs and TPump returned exit code 12 is displayed. If you need to view detailed
information about the exception error, you can open the log file stored in the directory you specified in the
Error file field in the Basic settings tab of the Component view.



tVectorWiseCommit

Talend Open Studio Components Reference Guide 787

tVectorWiseCommit

tVectorWiseCommit Properties

This component is closely related to tVectorWiseConnection and tVectorWiseRollback. It usually doesn’t make
much sense to use these components independently in a transaction.

Component family Databases/VectorWise

Function tVectorWiseCommit validates the data processed in a Job into the connected DB.

Purpose Using a single connection, this component commits a global transaction in one go instead of doing
so on every row or every batch. This provides a gain in performance

Basic settings Component list Select the tVectorWiseConnection component from the list if more
than one connection is planned for the current job.

Close connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to link
tVectorWiseCommit to your Job, your data will be
commited row by row. In this case, do not select the Close
connection check box or your connection will be closed
before the end of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is generally used with other VectorWise components, notably
tVectorWiseConnection and tVectorWiseRollback.

Limitation n/a

Related scenario

This component is closely related to tVectorWiseConnection and tVectorWiseRollback. It usually doesn’t make
much sense to use one of these without using a tVectorWiseConnection component to open a connection for
the current transaction.

For a tVectorWiseCommit related scenario, see section tVerticaConnection.



tVectorWiseConnection

788 Talend Open Studio Components Reference Guide

tVectorWiseConnection

tVectorWiseConnection Properties

This component is closely related to tVectorWiseCommit and tVectorWiseRollback. It usually doesn’t make
much sense to use one of these without using a tVectorWiseConnection component to open a connection for
the current transaction.

Component family Databases/VectorWise

Function tVectorWiseConnection opens a connection to a database for a transaction to be carried out.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties are stored.
The fields that follow are completed automatically using the data
retrieved.

Server Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username et Password Authentication information of the database user.

Use or register a shared DB
Connection

Select this check box to share your connection or retrieve a
connection shared by a parent or child Job. This allows you to
share one single DB connection among several DB connection
components from different Job levels that can be either parent or
child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Advanced settings Auto Commit Select this check box to commit a transaction automatically upon
completion.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with VectorWise components, particularly
tVectorWiseCommit and tVectorWiseRollback.

Limitation n/a

Related scenario

This component is closely related to tVectorWiseCommit and tVectorWiseRollback. It usually doesn’t make
much sense to use one of these without using a tVectorWiseConnection component to open a connection for
the current transaction.



Related scenario

Talend Open Studio Components Reference Guide 789

For a tVectorWiseConnection related scenario, see section tMysqlConnection.



tVectorWiseInput

790 Talend Open Studio Components Reference Guide

tVectorWiseInput

tVectorWiseInput Properties

Component family Databases/VectorWise

Function tVectorWiseInput reads a database and extracts fields based on a query.

Purpose tVectorWiseInput executes a DB query with a strictly defined order which must correspond to
the schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where Properties are stored.
The fields that follow are completed automatically using the data
retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box when using a configured
tVectorWiseConnection component.

When a Job contains the parent Job and the child Job, the
Component list only presents the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For further information about how to share a DB con-
nection across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can deactivate the connection components
and use the Dynamic settings of the component to specify
the connection manually. In this case, enssure that the
connection name is unique and distinctive throughout the
two Job levels. For further information about Dynamic
settings, see your studio user guide.

Server Database server IP address.

Port Listening port number of the DB server.

Database Name of the database.

Username a Password Authentication information of the database user.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.



Related scenario

Talend Open Studio Components Reference Guide 791

Table name Name of the table to be read.

Query type and Query Enter your DB query, ensuring that the field order matches the order
in the schema.

Guess Query Click this button to generate a query that corresponds to your table
schema in the Query field.

Guess schema Click this button to retrieve the schema from the table.

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Define columns from which to remove leading and trailing
whitespace.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possibile SQL queries forVertica databases.

Limitation n/a

Related scenario

For tVectorWiseInput related scenarios, see:

• section Scenario 1: Displaying selected data from DB table.

• section Scenario 2: Using StoreSQLQuery variable.

• section Scenario: Dynamic context use in MySQL DB insert.



tVectorWiseOutput

792 Talend Open Studio Components Reference Guide

tVectorWiseOutput

tVectorWiseOutput Properties

Component family Databases/VectorWise

Function tVectorWiseOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tVectorWiseOutput executes the action defined on the table and/or on the data contained in the
table, based on the flow incoming from the preceding component in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box when using a configured tVerticaConnection
component.

When a Job contains the parent Job and the child Job, the
Component list only presents the connection components
of the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can deactivate the connection components
and use Dynamic settings of the component to specify
the intended connection manually. In this case, make sure
the connection name is unique and distinctive throughout
the two Job levels. For more information about Dynamic
settings, see your studio user guide.

Host Database server IP address.

Port Listening port number of the DB server.

Database Name of the database.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.



tVectorWiseOutput Properties

Talend Open Studio Components Reference Guide 793

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the Update and Delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next to
the column names you want to use as a base for the Update
operation. Do the same in the Key in delete column for the
Delete operation.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and, above all, better performance at executions.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column.

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.

Enable debug mode Select this check box to display each step during processing entries
in a database.



Related scenario

794 Talend Open Studio Components Reference Guide

Support null in “SQL
WHERE” statement

Select this check box if you want to deal with the Null values
contained in a DB table.

Ensure that the Nullable check box is selected for the
corresponding columns in the schema.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a Vertica database. It also allows you to create a reject flow using a
Row > Rejects link to filter data in error. For an example of tMySqlOutput in use, see section
Scenario 3: Retrieve data in error with a Reject link.

Limitation n/a

Related scenario

For tVectorWiseOutput related topics, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection.

• section Scenario 1: Adding a new column and altering data in a DB table.



tVectorWiseRollback

Talend Open Studio Components Reference Guide 795

tVectorWiseRollback

tVectorWiseRollback Properties

This component is closely related to tVectorWiseCommit and tVectorWiseConnection. It usually doesn’t make
much sense to use these components independently in a transaction.

Component family Databases/VectorWise

Function tVectorWiseRollback cancels transactions commited to the DB connected.

Purpose This component prevents involuntary commits.

Basic settings Component list Select the tVectorWiseConnection component from the list if more
than one connection is planned for the current job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Teradata components, especially with
tVectorWiseConnection and tVectorWiseCommit components.

Limitation n/a

Related scenario

For a tVectorWiseRollback related scenario, see section Scenario: Rollback from inserting data in mother/
daughter tables.



tVectorWiseRow

796 Talend Open Studio Components Reference Guide

tVectorWiseRow

tVectorWiseRow Properties

Component family Databases/VectorWise

Function tVectorWiseRow is the specific component for this database query. It executes the SQL query
stated in the specified database. The row suffix means the component implements a flow in the job
design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tVectorWiseRow acts on the actual DB
structure or on the data (although without handling data). The SQLBuilder tool helps you write
your SQL statements easily.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties are stored.
The fields that follow after are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant
tVectorWiseConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child Job, the
Component list only presents the connection components
of the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For further information about how to share a DB
connection across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address.

Port Listening port number of the DB server.

Database Name of the database.

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table Name Name of the table to be processed.

Query type Either Built-in or Repository.



Related scenario

Talend Open Studio Components Reference Guide 797

Built-in: Fill in the query statement manually or build it graphically
using the SQLBuilder.

Repository: Select the relevant query stored in the Repository. The
Query field is filled in accordingly.

Guess Query Click this button to generate a query that corresponds to your table
schema in the Query field.

Query Enter your DB query taking care to sequence the fields properly in
order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Use PreparedStatement Select this checkbox if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Limitation n/a

Related scenario

For related topics, see:

• section Scenario 3: Combining two flows for selective output

• section Scenario: Resetting a DB auto-increment.

• section Scenario 1: Removing and regenerating a MySQL table index.



tVerticaBulkExec

798 Talend Open Studio Components Reference Guide

tVerticaBulkExec

tVerticaBulkExec Properties

The tVerticaOutputBulk and tVerticaBulkExec components are generally used together as parts of a two step
process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in the tVerticaOutputBulkExec component, detailed
in a separate section. The advantage of using two separate components is that the data can be transformed before
it is loaded in the database.

Component family Databases/Vertica

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, tVerticaBulkExec offers gains in performance while carrying out the
Insert operations to a Mysql database

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box when using a configured tVerticaConnection
component.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create table: The table is removed and created again.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does not exist.



Related scenarios

Talend Open Studio Components Reference Guide 799

Clear table: The table content is deleted. You have the possibility
to rollback the operation.

Table Name of the table to be written. Note that only one table can be
written at a time and that the table must exist for the insert operation
to succeed.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Remote Filename Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Advanced settings Write to ROS (Read
Optimized Store)

Select this check box to store the data in a physical storage area,
in order to optimize the reading, as the data is compressed and pre-
sorted.

Exit job if no row was loaded The Job automatically stops if no row has been loaded.

Fields terminated by Character, string or regular expression to separate fields.

Null string String displayed to indicate that the value is null.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with tVerticaOutputBulk component. Used together, they
can offer gains in performance while feeding a Vertica database.

Limitation n/a

Related scenarios

For related topics, see:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.

• section Scenario: Truncating and inserting file data into Oracle DB.



tVerticaClose

800 Talend Open Studio Components Reference Guide

tVerticaClose

tVerticaClose properties

Component family Databases/Vertica

Function tVerticaClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tVerticaConnection component in the list if more than
one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Vertica components, especially with tVerticaConnection
and tVerticaCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tVerticaCommit

Talend Open Studio Components Reference Guide 801

tVerticaCommit

tVerticaCommit Properties

This component is closely related to tVerticaConnection and tVerticaRollback. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/Vertica

Function tVerticaConnection validates the data processed through the Job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the tVerticaConnection component in the list if more than
one connection are planned for the current job.

Close connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to link
tVerticaCommit to your Job, your data will be commited
row by row. In this case, do not select the Close connection
check box or your connection will be closed before the end
of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Mysql components, especially with tVerticaConnection
and tVerticaRollback components.

Limitation n/a

Related scenario

This component is closely related to tVerticaConnection and tVerticaRollback. It usually does not make much
sense to use one of these without using a tVerticaConnection component to open a connection for the current
transaction.

For tVerticaCommit related scenario, see section tVerticaConnection



tVerticaConnection

802 Talend Open Studio Components Reference Guide

tVerticaConnection

tVerticaConnection Properties

This component is closely related to tVerticaCommit and tVerticaRollback. It usually does not make much
sense to use one of these without using a tVerticaConnection component to open a connection for the current
transaction.

Component family Databases/Vertica

Function tVerticaConnection opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

DB Version Select the version of Vertica you are using from the list.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Utilisation This component is to be used along with Vertica components, especially with tVerticaCommit
and tVerticaRollback components.

Limitation n/a

Related scenario

This component is closely related to tVerticaCommit and tVerticaRollback. It usually does not make much
sense to use one of these without using a tVerticaConnection component to open a connection for the current
transaction.

For tVerticaConnection related scenario, see section tMysqlConnection.



tVerticaInput

Talend Open Studio Components Reference Guide 803

tVerticaInput

tVerticaInput Properties

Component family Databases/Vertica

Function tVerticaInput reads a database and extracts fields based on a query.

Purpose tVerticaInput executes a DB query with a strictly defined order which must correspond to the
schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where Properties are stored.
The fields that come after are pre-filled in using the fetched data.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

DB Version Select the version of Vertica you are using from the list.

Use an existing connection Select this check box when using a configured tVerticaConnection
component.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.



Related scenarios

804 Talend Open Studio Components Reference Guide

Table Name Name of the table to be read.

Query type and Query Enter your DB query, ensuring that the field order matches the order
in the schema.

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL queries for Vertica databases.

Limitation n/a

Related scenarios

For related scenarios, see:

• section Scenario 1: Displaying selected data from DB table.

• section Scenario 2: Using StoreSQLQuery variable.

• section Scenario: Dynamic context use in MySQL DB insert.



tVerticaOutput

Talend Open Studio Components Reference Guide 805

tVerticaOutput

tVerticaOutput Properties

Component family Databases/Vertica

Function tVerticaOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tVerticaOutput executes the action defined on the table and/or on the data contained in the table,
based on the flow incoming from the preceding component in the job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

DB Version Select the version of Vertica you are using from the list.

Use an existing connection Select this check box when using a configured tVerticaConnection
component.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time.

Action on table On the table defined, you can perform one of the following
operations:

Default: No operation is carried out.

Drop and create table: The table is removed and created again.



tVerticaOutput Properties

806 Talend Open Studio Components Reference Guide

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does not exist.

Drop table if exists and create: The table is removed if it already
exists and created again.

Clear table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

Copy: Read data from a text file and insert tuples of entries into
the WOS (Write Optimized Store) or directly into the ROS (Read
Optimized Store). This option is ideal for bulk loading. For further
information, see your Vertica SQL Reference Manual.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to set as
primary key(s). For an advanced use, click the Advanced
settings view where you can simultaneously define primary
keys for the Update and Delete operations. To do that:
Select the Use field options check box and then in the
Key in update column, select the check boxes next to the
column names you want to use as a base for the Update
operation. Do the same in the Key in delete column for the
Delete operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and, above all, better performance at executions.

Copy parameters

This area is available
only when the Action
on data is Copy. For
further details about
the Copy parameters,
see your Vertica SQL
Reference Manual.

Abort on error Select this check box to stop the Copy operation on data if a row is
rejected and rolls back this operation. Thus no data is loaded.

Maximum rejects Type in a number to set the REJECTMAX command used by Vertica,
which indicates the upper limit on the number of logical records to
be rejected before a load fails. If not specified or if value is 0, an
unlimited number of rejections are allowed.



Related scenarios

Talend Open Studio Components Reference Guide 807

No commit Select this check box to prevent the current transaction from
committing automatically.

Exception file Type in the path to, or browse to the file in which messages are
written indicating the input line number and the reason for each
rejected data record.

Exception file node Type in the node of the exception file. If not specified, operations
default to the query’s initiator node.

Rejected data file Type in the path to, or browse to the file in which to write rejected
rows. This file can then be edited to resolve problems and reloaded.

Rejected data file node Type in the node of the rejected data file. If not specified, operations
default to the query’s initiator node.

Use batch mode Select this check box to activate the batch mode for data processing.
In the Batch Size field that appears when this check box is selected,
you can type in the number you need to define the batch size to be
processed.

This check box is available only when you have selected
the Insert, the Update, the Delete or the Copy option in
the Action on data field.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.

Enable debug mode Select this check box to display each step during processing entries
in a database.

Support null in "SQL
WHERE" statement

Select this check box to allow for the Null value in the "SQL
WHERE" statement.

Create projection when
create table

Select this check box to create a projection for a table to be created.

This check box is available only when you have selected
the table creation related option in the Action on table
field.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a Vertica database. It also allows you to create a reject flow using a
Row > Rejects link to filter data in error. For an example of tMySqlOutput in use, see section
Scenario 3: Retrieve data in error with a Reject link.

Limitation n/a

Related scenarios

For tVerticaOutput related topics, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection



Related scenarios

808 Talend Open Studio Components Reference Guide

• section Scenario 1: Adding a new column and altering data in a DB table.



tVerticaOutputBulk

Talend Open Studio Components Reference Guide 809

tVerticaOutputBulk

tVerticaOutputBulk Properties

The tVerticaOutputBulk and tVerticaBulkExec components are generally used together as parts of a two step
process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in the tVerticaOutputBulkExec component, detailed
in a separate section. The advantage of using two separate components is that the data can be transformed before
it is loaded in the database.

Component family Databases/Vertica

Function tVerticaBulkOutputExec writes a file with columns based on the defined delimiter and the
Vertica standards.

Purpose tVerticaBulkOutputExec prepares the file to be used as parameter in the INSERT query to
feed the Vertica database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using
the data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end of the file.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job
designs. Related topic: see Talend Open Studio User Guide.

Advanced settings Row separator String (ex: “\n”on Unix) to distinguish rows.

Field separator Character, string or regular expression to separate fields.

Include header Select this check box to include the column header to the file.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Utilisation This component is to be used along with tVerticaBulkExec. Used together, they offer gains
in performance while feeding a Vertica database.

Related scenarios

For use cases in relation with tVerticaOutputBulk, see the following scenarios:

• section Scenario: Inserting transformed data in MySQL database.



Related scenarios

810 Talend Open Studio Components Reference Guide

• section Scenario: Inserting data in MySQL database.



tVerticaOutputBulkExec

Talend Open Studio Components Reference Guide 811

tVerticaOutputBulkExec

tVerticaOutputBulkExec Properties

The tVerticaOutputBulk and tVerticaBulkExec components are generally used together as parts of a two step
process. In the first step, an output file is generated. In the second step, this file is used in the INSERT operation
used to feed a database. These two steps are fused together in the tVerticaOutputBulkExec component.

Component family Databases/Vertica

Function tVerticaOutputBulkExec executes the Insert action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert operations to a Vertica
database.

Basic settings Property Type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

DB Version Select the version of Vertica you are using from the list.

Host Database server IP address.

Port Listening port number of DB server.

DB Name Name of the database

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time and that the table must exist for the insert operation
to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Clear a table: The table content is deleted.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job designs.
Related topic: see Talend Open Studio User Guide.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Append Select this check box to add the new rows at the end of the file

Advanced settings Write to ROS (Read
Optimized Store)

Select this check box to store the data in a physical storage area,
in order to optimize the reading, as the data is compressed and pre-
sorted.



Related scenarios

812 Talend Open Studio Components Reference Guide

Exit job if no row was loaded The Job automatically stops if no row has been loaded.

Field Separator Character, string or regular expression to separate fields.

Null string String displayed to indicate that the value is null.

Include header Select this check box to include the column header to the file.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is mainly used when no particular transformation is required on the data to be
loaded onto the database.

Limitation n/a

Related scenarios

For use cases in relation with tVerticaOutputBulkExec, see the following scenarios:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.



tVerticaRollback

Talend Open Studio Components Reference Guide 813

tVerticaRollback

tVerticaRollback Properties

This component is closely related to tVerticaCommit and tVerticaConnection. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/Vertica

Function tVerticaRollback cancels the transaction commit in the connected DB.

Purpose tVerticaRollback avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the VerticaConnection component in the list if more than one
connection are planned for the current job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Mysql components, especially with tVerticaConnection
and tVerticaCommit components.

Limitation n/a

Related scenario

For tVerticaRollback related scenario, see section Scenario: Rollback from inserting data in mother/daughter
tables.



tVerticaRow

814 Talend Open Studio Components Reference Guide

tVerticaRow

tVerticaRow Properties

Component family Databases/Vertica

Function tVerticaRow is the specific component for this database query. It executes the SQL query stated
onto the specified database. The row suffix means the component implements a flow in the job
design although it does not provide output.

Purpose Depending on the nature of the query and the database, tVerticaRow acts on the actual DB structure
or on the data (although without handling data). The SQLBuilder tool helps you write easily your
SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

DB Version Select the version of Vertica you are using from the list.

Use an existing connection Select this check box and click the relevant tVerticaConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table name Name of the table to be processed.

Query type Either Built-in or Repository.



Related scenario

Talend Open Studio Components Reference Guide 815

Built-in: Fill in the query statement manually or build it graphically
using the SQLBuilder.

Repository: Select the relevant query stored in the Repository. The
Query field is filled in accordingly.

Query Enter your DB query taking care to sequence the fields properly in
order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Use PreparedStatement Select this check box if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Limitation n/a

Related scenario

For related topics, see:

• section Scenario 3: Combining two flows for selective output

• section Scenario: Resetting a DB auto-increment.

• section Scenario 1: Removing and regenerating a MySQL table index.



Talend Open Studio Components Reference Guide



Talend Open Studio Components Reference Guide

Databases - other components
This chapter describes connectors that give access to a variety of databases and provide tools for database
management. These connectors cover various needs, including: opening connections, reading and writing tables,
committing transactions as a whole, as well as performing rollback for error handling. These components can be
found in the Databases family in the Palette in the Integration perspective of the Talend Studio.

Other types of database connectors, such as connectors for traditional and appliance/DW databases, are
documented in Databases - traditional components and Databases - appliance/datawarehouse components.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.



tCreateTable

818 Talend Open Studio Components Reference Guide

tCreateTable

tCreateTable Properties

Component family Databases

Function tCreateTable creates, drops and creates and clears the specified table.

Purpose This specific component helps create or drop any database table

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Database Type Select the DBMS type from the list. The component properties may
differ slightly according to the database type selected from the list.

DB Version Select the database version in use.

Table Action Select the action to be carried out on the database among:

Create table: when you know already that the table doesn’t exist.

Create table if not exists: when you don’t know whether the table
is already created or not

Drop table if exits and create: when you want to drop an existing
table and create it again.

Use an existing connection Select this check box in case you use a database
connection component, for example: tMysqlConnection or
tOracleConnection, etc.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address.

Port Listening port number of the DB server.

Database name Name of the database.

Schema Name of the schema.

(DB2, Greenplum, Informix, Oracle, PostgresPlus, Postgresql,
Vertica)

Username and Password DB user authentication data.



tCreateTable Properties

Talend Open Studio Components Reference Guide 819

Table name Type in between quotes a name for the newly created table.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various Jobs and projects. Related
topic: see Talend Open Studio User Guide.

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing metadata at a Job
level as well as at each component level.

Additional JDBC
Parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

(AS400, MSSQL Server)

Create projection Select this check box to create a projection.

(Vertica)

Usage This component offers the flexibility of the database query and covers all possible SQL queries.
More scenarios are available for specific database Input components.

Limitation n/a

Database-specific fields:

Access Access File Name and path of the file to be processed.

Firebird Firebird File Name and path of the file to be processed.

HSQLDb Running Mode Select from the list the Server Mode that
corresponds to your database setup.

Use TLS/SSL Sockets Select this check box to enable the secured
mode, if required.

DB Alias Name of the database.

Interbase Interbase File Name and path of the file to be processed.

JavaDb Framework Type Select from the list a framework for your
database.

Structure type Select in the list the structure type.

DB Root Path Browse to your database root.

Mysql Temporary table Select this check box if you want to save
the created table temporarily.

ODBC ODBC Name Name of the database.

Oracle Connection Type Drop-down list of available drivers:

Oracle SID: Select this connection type to
uniquely identify a particular database on a
system.

Oracle Service Name: Select this
connection type to use the TNS alias that
you give when you connect to the remote
database.

Oracle OCI: Select this connection type
to use Oracle Call Interface with a set of
C-language software APIs that provide an
interface to the Oracle database.

WALLET: Select this connection type to
store credentials in an Oracle wallet.

SQLite SQLite File Name and path of the file to be processed.



Scenario: Creating new table in a Mysql Database

820 Talend Open Studio Components Reference Guide

Related topic: see Talend Open Studio User
Guide.

Teradata Create Select the table type from the drop-down
list. The type may be:

- SET TABLE: tables which do not allow
to duplicate.

- MULTI SET TABLE: tables allowing
duplicate rows

Scenario: Creating new table in a Mysql Database

The Job described below aims at creating a table in a database, made of a dummy schema taken from a delimited
file schema stored in the Repository. This Job is composed of a single component.

1. Drop a tCreateTable component from the Databases family in the Palette to the design workspace.

2. In the Basic settings view, and from the Database Type list, select Mysql for this scenario.

3. From the Table Action list, select Create table.

4. Select the Use Existing Connection check box only if you are using a dedicated DB connection component
section tMysqlConnection. In this example, we won’t use this option.

5. In the Property type field, select Repository so that the connection fields that follow are automatically filled
in. If you have not defined your DB connection metadata in the DB connection directory under the Metadata
node, fill in the details manually as Built-in.

6. In the Table Name field, fill in a name for the table to be created.

7. If you want to retrieve the Schema from the Metadata (it doesn’t need to be a DB connection Schema
metadata), select Repository then the relevant entry.

8. In any case (Built-in or Repository) click Edit Schema to check the data type mappingClick Edit Schema
to define the data structure.



Scenario: Creating new table in a Mysql Database

Talend Open Studio Components Reference Guide 821

9. Click the Reset DB Types button in case the DB type column is empty or shows discrepancies (marked in
orange). This allows you to map any data type to the relevant DB data type. Then, click OK to validate your
changes and close the dialog box.

10. Save your Job and press F6 to execute it.

The table is created empty but with all columns defined in the Schema.



tDBInput

822 Talend Open Studio Components Reference Guide

tDBInput

tDBInput properties

Component family Databases/DB Generic

Function tDBInput reads a database and extracts fields based on a query.

To use this component, relevant DBMSs' ODBC drivers should be installed and the
corresponding ODBC connections should be configured via the database connection
configuration wizard.

Purpose tDBInput executes a DB query with a strictly defined order which must correspond to the schema
definition. Then it passes on the field list to the next component via a Main row link.

For performance reasons, a specific Input component (e.g.: tMySQLInput for MySQL
database) should always be preferred to the generic component.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open the database connection configuration
wizard and store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Database Name of the data source defined via the database connection
configuration wizard.

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table Name Name of the source table where changes made to data should be
captured.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

tStatCatcher Statistics Select this check box to collect log data at the component level.



Scenario 1: Displaying selected data from DB table

Talend Open Studio Components Reference Guide 823

Usage This component offers the flexibility of the DB query and covers all possible SQL queries using
a generic ODBC connection.

Scenario 1: Displaying selected data from DB table

The following scenario creates a two-component Job, reading data from a database using a DB query and outputting
delimited data into the standard output (console).

As a prerequisite of this Job, the MySQL ODBC driver must have been installed and the corresponding ODBC connection
must have been configured.

1. Drop a tDBInput and tLogRow component from the Palette to the design workspace.

2. Connect the components using Row > Main link.

3. Double-click tDBInput to open its Basic settings view in the Component tab.

4. Fill in the database name, the username and password in the corresponding fields.

5. Click Edit Schema and create a 2-column description including shop code and sales.

6. Enter the table name in the corresponding field.

7. Type in the query making sure it includes all columns in the same order as defined in the Schema. In this
case, as we’ll select all columns of the schema, the asterisk symbol makes sense.

8. Click on the second component to define it.

9. Enter the fields separator. In this case, a pipe separator.

10. Now go to the Run tab, and click on Run to execute the Job.

The DB is parsed and queried data is extracted from the specified table and passed on to the job log console.
You can view the output file straight on the console.



Scenario 2: Using StoreSQLQuery variable

824 Talend Open Studio Components Reference Guide

Scenario 2: Using StoreSQLQuery variable

StoreSQLQuery is a variable that can be used to debug a tDBInput scenario which does not operate correctly. It
allows you to dynamically feed the SQL query set in your tDBInput component.

1. Use the same scenario as scenario 1 above and add a third component, tJava.

2. Connect tDBInput to tJava using a trigger connection of the OnComponentOk type. In this case, we want
the tDBInput to run before the tJava component.

3. Set both tDBInput and tLogRow component as in tDBInput scenario 1.

4. Click anywhere on the design workspace to display the Contexts property panel.

5. Create a new parameter called explicitly StoreSQLQuery. Enter a default value of 1. This value of 1 means
the StoreSQLQuery is “true” for a use in the QUERY global variable.

6. Click on the tJava component to display the Component view. Enter the
System.Out.println(“”)command to display the query content, press Ctrl+Space bar to access the
variable list and select the global variable QUERY.



Scenario 2: Using StoreSQLQuery variable

Talend Open Studio Components Reference Guide 825

7. Go to your Run tab and execute the Job.

8. The query entered in the tDBInput component shows at the end of the job results, on the log:



tDBOutput

826 Talend Open Studio Components Reference Guide

tDBOutput

tDBOutput properties

Component family Databases/DB Generic

Function tDBOutput writes, updates, makes changes or suppresses entries in a database.

To use this component, relevant DBMSs' ODBC drivers should be installed and the
corresponding ODBC connections should be configured via the database connection
configuration wizard.

Purpose tDBOutput executes the action defined on the data in a table, based on the flow incoming from
the preceding component in the Job.

Specific Output component should always be preferred to generic component.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open the database connection configuration
wizard and store the database connection parameters you set in the
component Basic settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Database Name of the data source defined via the database connection
configuration wizard.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, Job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the Update and Delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next to
the column names you want to use as a base for the Update
operation. Do the same in the Key in delete column for the
Delete operation.



Scenario: Writing a row to a table in the MySql database via an ODBC connection

Talend Open Studio Components Reference Guide 827

Clear data in table Select this check box to delete data in the selected table before any
operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before committing batches
of rows together into the DB. This option ensures transaction quality
(but not rollback) and, above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After depending on the action
to be performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.

Enable debug mode Select this check box to display each step during processing entries
in a database.

Use java.sql.Statement Select this check box to use the Statement object in case the
PreparedStatement object is not supported by certain DBMSs.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on the
data of a table in a database. It also allows you to create a reject flow using a Row > Rejects link
to filter data in error. For a related scenario, see section Scenario 3: Retrieve data in error with
a Reject link.

Scenario: Writing a row to a table in the MySql
database via an ODBC connection

This scenario clears the data in a table of a MySql database first and then adds a row to it.

The table, named Date, contains one column called date with the type being date.

As a prerequisite of this Job, the MySQL ODBC driver must have been installed and the corresponding ODBC connection
must have been configured.

1. Drop tDBOutput and tRowGenerator from the Palette to the design workspace.

2. Connect the components using a Row > Main link.



Scenario: Writing a row to a table in the MySql database via an ODBC connection

828 Talend Open Studio Components Reference Guide

3. Double-click tRowGenerator to open its Schema editor.

4. Click the [+] button to add a line.

Enter date as the column name.

Select Date from the data type list.

Select getCurrentDate from the Functions list.

Enter 1 in the Number of Rows for RowGenerator field as only one row will be added to the table.

Click OK to close the editor and propagate the schema changes to tDBOutput subsequently.

5. Double-click tDBOutput to open its Basic settings view in the Component tab.

6. In the Database field, enter the name of the data source defined during the configuration of the MySql ODBC
connection.

To configure an ODBC connection, click  to open the database connection configuration wizard.



Scenario: Writing a row to a table in the MySql database via an ODBC connection

Talend Open Studio Components Reference Guide 829

7. In the Username and Password fields, enter the database authentication credentials.

8. In the Table field, enter the table name, Date in this example.

9. In the Action on data field, select Insert to insert a line to the table.

10. Select the check box Clear data in table to clear the table before the insertion.

11. Save the Job and press F6 to run.

As shown above, the table now has only one line about the current date and time.



tDBSQLRow

830 Talend Open Studio Components Reference Guide

tDBSQLRow

tDBSQLRow properties

Component family Databases/DB Generic

Function tDBSQLRow is the generic component for database query. It executes the SQL query stated onto
the specified database. The row suffix means the component implements a flow in the job design
although it does not provide output.

For performance reasons, specific DB component should always be preferred to the
generic component.

Purpose Depending on the nature of the query and the database, tDBSQLRow acts on the actual DB
structure or on the data (although without handling data). The SQLBuilder tool helps you write
easily your SQL statements.

To use this component, relevant DBMSs' ODBC drivers should be installed and the
corresponding ODBC connections should be configured via the database connection
configuration wizard.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Datasource Name of the data source defined via the database connection
configuration wizard.

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table Name Name of the source table where changes made to data should be
captured.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

Use PreparedStatement Select this check box if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.



Scenario: Resetting a DB auto-increment

Talend Open Studio Components Reference Guide 831

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Note that the relevant DBRow component should be preferred according to your DBMSs. Most of
the DBMSs have their specific DBRow components.

Scenario: Resetting a DB auto-increment

This scenario describes a single component Job which aims at re-initializing the DB auto-increment to 1. This job
has no output and is generally to be used before running a script.

As a prerequisite of this Job, the relevant DBMS's ODBC driver must have been installed and the corresponding ODBC
connection must have been configured.

1. Drag and drop a tDBSQLRow component from the Palette to the design workspace.

2. Double-click tDBSQLRow to open its Basic settings view.

3. Select Repository in the Property Type list as the ODBC connection has been configured and saved in the
Repository. The follow-up fields gets filled in automatically.

For more information on storing DB connections in the Repository, see Talend Open Studio User Guide.

4. The Schema is built-in for this Job and it does not really matter in this example as the action is made on the
table auto-increment and not on data.

5. The Query type is also built-in. Click on the [...] button next to the Query statement box to launch the
SQLbuilder editor, or else type in directly in the statement box:

Alter table <TableName> auto_increment = 1

6. Press Ctrl+S to save the Job and F6 to run.



Scenario: Resetting a DB auto-increment

832 Talend Open Studio Components Reference Guide

The database autoincrement is reset to 1.



tEXAInput

Talend Open Studio Components Reference Guide 833

tEXAInput

tEXAInput properties

Component family Databases/EXA

Function tEXAInput reads databases and extracts fields using queries.

Purpose tEXAInput executes queries in databases according to a strict order which must correspond exactly
to that defined in the schema. The list of fields retrieved is then transmitted to the following
component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No properties stored centrally

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Host name Database server IP address.

Port Listening port number of the DB server

Schema name Enter the schema name.

Username et Password User authentication information.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide

Table Name Enter the table name.

Query type and Query Enter your database query, taking care to ensure that the order of the
fields corressponds exactly to that defined in the schema.

Guess Query Click this button to generate a query that corresponds to your table
schema in the Query field.

Guess schema Click this button to retrieve the schema from the table.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

Trim all the String/Char
columns

Select this check box to delete the spaces at the start and end of fields
in all of the columns containing strings.

Trim column Deletes the spaces from the start and end of fields in the selected
columns.

tStatCatcher Statistics Select this check box to collect the log data and a component level.

Usage This component covers all possible SQL queries for EXA databases.

Limitation n/a



Related scenarios

834 Talend Open Studio Components Reference Guide

Related scenarios

For scenarios in which tEXAInput might be used, see the following tBIInput scenarios:

• section Scenario 1: Displaying selected data from DB table

• section Scenario 2: Using StoreSQLQuery variable



tEXAOutput

Talend Open Studio Components Reference Guide 835

tEXAOutput

tEXAOutput properties

Component family Databases/EXA

Function tEXAOutput writes, updates, modifies or deletes data from databases.

Purpose tEXAOutput executes the action defined on the table and/or on the table data, depending on the
function of the input flow, from the preceding component.

Basic settings Property type Either Built-in or Repository.

Built-in: No properties stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Host Database server IP address.

Port Listening port number of the DB serve.

Schema name Enter the schema name.

Username and Password User authentication data.

Table Name of the table to be created. You can only create one table at a
time.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, Job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

You must specify at least one column as a primary key
on which the Update and Delete operations are based.



Related scenario

836 Talend Open Studio Components Reference Guide

You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the update and delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next
to the column name on which you want to base the update
operation. Do the same in the Key in delete column for the
deletion operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Use commit control Select this box to display the Commit every field in which you can
define the number of rows to be processed brefore comitting.

Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

You can press Ctrl+Space to access a list of predefined
global variables.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing

Name: Enter the name of the column to be modified or inserted.

SQL expression: Enter the SQL expression to be executed to modify
or insert data in the corresponding columns.

Position : Select Before, Replace or After, depending on the action
to be carried out on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, particularly when there
are several actions to be carried out on the data.

Enable debug mode Select this check box to display each step of the process by which
the data is written in the database.

tStatCatcher Statistics Select this check box to collect the log data at a component level.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in an EXA database. It also allows you to create a reject flow using a Row
> Rejects link to filter data in error. For a user scenario, see section Scenario 3: Retrieve data in
error with a Reject link.

Limitation n/a

Related scenario

For a scenario in which tEXAOutput might be used, see:



Related scenario

Talend Open Studio Components Reference Guide 837

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection.

• section Scenario 1: Adding a new column and altering data in a DB table.



tEXARow

838 Talend Open Studio Components Reference Guide

tEXARow

tEXARow properties

Component family Databases/EXA

Function The tEXARow component is specific to this type of database. It executes SQL queries on specified
databases. The Row suffix indicates that it is used to channel a flow in a Job although it does not
produce any output data.

Purpose Depending on the nature of the query and the database, tEXARow acts on the actual structure of
the database, or indeed the data, although without modifying them.

Basic settings Property type Either Built-in or Repository.

Built-in: No properties stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address.

Port Listening port number of the DB server.

Schema name Enter the schema name.

Username and Password User authentication information.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide

Table Name Name of the table to be processed.

Query type Either Built-in or Repository.

Built-in: Enter the query manually or with the help of the
SQLBuilder.

Repository: Select the appropriate query from the Repository. The
Query field is then completed automatically.

Guess Query Click the Guess Query button to generate the query that corresponds
to the table schema in the Query field.

Query Enter your query, taking care to ensure that the field order matches
that defined in the schema.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

Propagate QUERY’s
recordset

Select this check box to insert the query results in one of the flow
columns. Select the particular column from the use column list.

Commit every Number of rows to be included in the batch before the data is written.
This option guarantees the quality of the transaction (although there
is no rollback option) and improves performance.

tStatCatcher Statistics Select this check box to collect the log data at a component level.



Related scenarios

Talend Open Studio Components Reference Guide 839

Usage This component offers query flexibility as it covers all possible SQL query requirements.

Limitation n/a

Related scenarios

For a scenario in which tEXARow might be used, see:

• section Scenario: Resetting a DB auto-increment

• section Scenario 1: Removing and regenerating a MySQL table index



tEXistConnection

840 Talend Open Studio Components Reference Guide

tEXistConnection

tEXistConnection properties

This component is closely related to tEXistGet and tEXistPut. Once you have set the connection properties in
this component, you have the option of reusing the connection without having to set the properties again for each
tEXist component used in the Job.

Component family Databases/eXist

Function tEXistConnection opens a connection to an eXist database in order that a transaction may be
carried out.

Purpose Opens a connection to an eXist database in order that a transaction may be carried out.

Basic settings URI URI of the database you want to connect to.

Collection Enter the path to the collection of interest on the database server.

Driver This field is automatically populated with the standard driver.

Users can enter a different driver, depending on their
needs.

Username  and  Password User authentication information.

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing metadata at a Job
level as well as at each component level.

Usage This component is to be used along with the other tEXist components such as tEXistGet and
tEXistPut.

eXist-db is an open source database management system built using XML technology. It
stores XML data according to the XML data model and features efficient, index-based XQuery
processing.

For further information about XQuery, see XQuery.

For further information about the XQuery update extension, see XQuery update extension.

Limitation n/a

Related scenarios

This component is closely related to tEXistGet and tEXistPut. It usually does not make much sense to use one
of these without using a tEXistConnection component to open a connection for the current transaction.

For tEXistConnection related scenario, see section tMysqlConnection

http://exist.sourceforge.net/xquery.html
http://exist.sourceforge.net/update_ext.html


tEXistDelete

Talend Open Studio Components Reference Guide 841

tEXistDelete

tEXistDelete properties

Component family Databases/eXist

Function This component deletes resources from an eXist database.

Purpose tEXistDelete deletes specified resources from remote eXist databases.

Basic settings Use an existing connection/
Component List

Select this check box and click the relevant tEXistConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to use
an existing connection from the other level, make sure
that the available connection components are sharing the
intended connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared DB
connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the
component to specify the intended connection manually.
In this case, make sure the connection name is unique
and distinctive all over through the two Job levels. For
more information about Dynamic settings, see your
studio user guide.

URI URI of the database you want to connect to.

Collection Enter the path to the collection of interest on the database server.

Driver This field is automatically populated with the standard driver.

Users can enter a different driver, depending on their
needs.

Username and Password User authentication information.

Target Type Either Resource, Collection, or All.

Files Click the plus button to add the lines you want to use as filters:

Filemask: enter the filename or filemask using wildcharacters (*)
or regular expressions.

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing metadata at a job
level as well as at each component level.

Usage This component is typically used as a single component sub-job but can also be used as an
output or end object. eXist-db is an open source database management system built using XML
technology. It stores XML data according to the XML data model and features efficient, index-
based XQuery processing.

For further information about XQuery, see XQuery.

For further information about the XQuery update extension, see XQuery update extension.

Limitation n/a

http://exist.sourceforge.net/xquery.html
http://exist.sourceforge.net/update_ext.html


Related scenario

842 Talend Open Studio Components Reference Guide

Related scenario

No scenario is available for this component yet.



tEXistGet

Talend Open Studio Components Reference Guide 843

tEXistGet

tEXistGet properties

Component family Databases/eXist

Function This component retrieves resources from a remote eXist DB server.

Purpose tEXistGet downloads selected resources from a remote DB server to a defined local directory.

Basic settings Use an existing connection/
Component List

Select this check box and click the relevant tEXistConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to use
an existing connection from the other level, make sure
that the available connection components are sharing the
intended connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared DB
connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the
component to specify the intended connection manually.
In this case, make sure the connection name is unique
and distinctive all over through the two Job levels. For
more information about Dynamic settings, see your
studio user guide.

URI URI of the database you want to connect to.

Collection Enter the path to the collection of interest on the database server.

Driver This field is automatically populated with the standard driver.

Users can enter a different driver, depending on their
needs.

Username and Password User authentication information.

Local directory Path to the file’s destination location.

Files Click the plus button to add the lines you want to use as filters:

Filemask: enter the filename or filemask using wildcharacters (*)
or regular expressions

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing metadata at a job
level as well as at each component level.

Usage This component is typically used as a single component sub-job but can also be used as an
output or end object. eXist-db is an open source database management system built using XML
technology. It stores XML data according to the XML data model and features efficient, index-
based XQuery processing.

For further information about XQuery, see XQuery.

For further information about the XQuery update extension, see XQuery update extension.

Limitation n/a

http://exist.sourceforge.net/xquery.html
http://exist.sourceforge.net/update_ext.html


Scenario: Retrieve resources from a remote eXist DB server

844 Talend Open Studio Components Reference Guide

Scenario: Retrieve resources from a remote eXist DB
server
This is a single-component Job that retrieves data from a remote eXist DB server and download the data to a
defined local directory.

This simple Job requires one component: tEXistGet.

1. Drop the tEXistGet component from the Palette into the design workspace.

2. Double-click the tEXistGet component to open the Component view and define the properties in its Basic
settings view.

3. Fill in the URI field with the URI of the eXist database you want to connect to.

In this scenario, the URI is xmldb:exist://192.168.0.165:8080/exist/xmlrpc. Note that the URI used in this use
case is for demonstration purpose only and is not an active address.

4. Fill in the Collection field with the path to the collection of interest on the database server, /db/talend in
this scenario.

5. Fill in the Driver field with the driver for the XML database, org.exist.xmldb.DatabaseImpl in this scenario.

6. Fill in the Username and Password fields by typing in admin and talend respectively in this scenario.

7. Click the three-dot button next to the Local directory field to set a path for saving the XML file downloaded
from the remote database server.

In this scenario, set the path to your desktop, for example C:/Documents and Settings/galano/Desktop/
ExistGet.



Scenario: Retrieve resources from a remote eXist DB server

Talend Open Studio Components Reference Guide 845

8. In the Files field, click the plus button to add a new line in the Filemask area, and fill it with a complete file
name to retrieve data from a particular file on the server, or a filemask to retrieve data from a set of files.
In this scenario, fill in dictionary_en.xml.

9. Save your Job and press F6 to execute it.

The XML file dictionary_en.xml is retrieved and downloaded to the defined local directory.



tEXistList

846 Talend Open Studio Components Reference Guide

tEXistList

tEXistList properties

Component family Databases/eXist

Function This component lists the resources stored on a remote DB server.

Purpose tEXistList lists the resources stored on a remote database server.

Basic settings Use an existing connection/
Component List

Select this check box and click the relevant tEXistConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to use
an existing connection from the other level, make sure
that the available connection components are sharing the
intended connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared DB
connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the
component to specify the intended connection manually.
In this case, make sure the connection name is unique
and distinctive all over through the two Job levels. For
more information about Dynamic settings, see your
studio user guide.

URI URI of the database you want to connect to.

Collection Enter the path to the collection of interest on the database server.

Driver This field is automatically populated with the standard driver.

Users can enter a different driver, depending on their
needs.

Username and Password Server authentication information.

Files Click the plus button to add the lines you want to use as filters:.

Filemask: enter the filename or filemask using wildcharacters (*)
or regular expressions.

Target Type Either Resource, Collection or All contents:

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing metadata at a job
level as well as at each component level.

Usage This component is typically used along with a tEXistGetcomponent to retrieve the files listed,
for example.

eXist-db is an open source database management system built using XML technology. It
stores XML data according to the XML data model and features efficient, index-based XQuery
processing.

For further information about XQuery, see XQuery.

For further information about the XQuery update extension, see XQuery update extension.

http://exist.sourceforge.net/xquery.html
http://exist.sourceforge.net/update_ext.html


Related scenario

Talend Open Studio Components Reference Guide 847

Limitation n/a

Related scenario

No scenario is available for this component yet.



tEXistPut

848 Talend Open Studio Components Reference Guide

tEXistPut

tEXistPut properties

Component family Databases/eXist

Function This component uploads resources to a DB server.

Purpose tEXistPut uploads specified files from a defined local directory to a remote DB server.

Basic settings Use an existing connection/
Component List

Select this check box and click the relevant tEXistConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to use
an existing connection from the other level, make sure
that the available connection components are sharing the
intended connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared DB
connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the
component to specify the intended connection manually.
In this case, make sure the connection name is unique
and distinctive all over through the two Job levels. For
more information about Dynamic settings, see your
studio user guide.

URI URI of the database you want to connect to.

Collection Enter a path to indicate where the resource is to be saved on the
server.

Driver This field is automatically populated with the standard driver.

Users can enter a different driver, depending on their
needs.

Username and Password User authentication information.

Local directory Path to the source location of the file(s).

Files Click the plus button to add the lines you want to use as filters:.

Filemask: enter the filename or filemask using wildcharacters (*)
or regular expressions.

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing metadata at a job
level as well as at each component level.

Usage This component is typically used as a single component sub-job but can also be used as an output
or end object.

eXist-db is an open source database management system built using XML technology. It
stores XML data according to the XML data model and features efficient, index-based XQuery
processing.

For further information about XQuery, see XQuery.

For further information about the XQuery update extension, see XQuery update extension.

http://exist.sourceforge.net/xquery.html
http://exist.sourceforge.net/update_ext.html


Related scenario

Talend Open Studio Components Reference Guide 849

Limitation n/a

Related scenario

No scenario is available for this component yet.



tEXistXQuery

850 Talend Open Studio Components Reference Guide

tEXistXQuery

tEXistXQuery properties

Component family Databases/eXist

Function This component uses local files containing XPath queries to query XML files stored on remote
databases.

Purpose tEXistXQuery queries XML files located on remote databases and outputs the results to an
XML file stored locally.

Basic settings Use an existing connection/
Component List

Select this check box and click the relevant tEXistConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to use
an existing connection from the other level, make sure
that the available connection components are sharing the
intended connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared DB
connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the
component to specify the intended connection manually.
In this case, make sure the connection name is unique
and distinctive all over through the two Job levels. For
more information about Dynamic settings, see your
studio user guide.

URI URI of the database you want to connect to.

Collection Enter the path to the XML file location on the database.

Driver This field is automatically populated with the standard driver.

Users can enter a different driver, depending on their
needs.

Username and Password DB server authentication information.

XQuery Input File Browse to the local file containing the query to be executed.

Local Output Browse to the directory in which the query results should be saved.

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing metadata at a job
level as well as at each component level.

Usage This component is typically used as a single component Job but can also be used as part of a
more complex Job.

eXist-db is an open source database management system built using XML technology. It
stores XML data according to the XML data model and features efficient, index-based XQuery
processing.

For further information about XQuery, see XQuery.

For further information about the XQuery update extension, see XQuery update extension.

Limitation n/a

http://exist.sourceforge.net/xquery.html
http://exist.sourceforge.net/update_ext.html


Related scenario

Talend Open Studio Components Reference Guide 851

Related scenario

No scenario is available for this component yet.



tEXistXUpdate

852 Talend Open Studio Components Reference Guide

tEXistXUpdate

tEXistXUpdate properties

Component family Databases/eXist

Function This component processes XML file records and updates the records on the DB server.

Purpose tEXistXUpdate processes XML file records and updates the existing records on the DB server.

Basic settings Use an existing connection/
Component List

Select this check box and click the relevant tEXistConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to use
an existing connection from the other level, make sure
that the available connection components are sharing the
intended connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared DB
connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the
component to specify the intended connection manually.
In this case, make sure the connection name is unique
and distinctive all over through the two Job levels. For
more information about Dynamic settings, see your
studio user guide.

URI URI of the database you want to connect to.

Collection Enter the path to the collection and file of interest on the database
server.

Driver This field is automatically populated with the standard driver.

Users can enter a different driver, depending on their
needs.

Username and Password DB server authentication information.

Update File Browse to the local file in the local directory to be used to update
the records on the database.

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing metadata at a job
level as well as at each component level.

Usage This component is typically used as a single component Job but can also be used as part of a
more complex Job.

eXist-db is an open source database management system built using XML technology. It
stores XML data according to the XML data model and features efficient, index-based XQuery
processing.

For further information about XQuery, see XQuery.

For further information about the XQuery update extension, see XQuery update extension.

Limitation n/a

http://exist.sourceforge.net/xquery.html
http://exist.sourceforge.net/update_ext.html


Related scenario

Talend Open Studio Components Reference Guide 853

Related scenario

No scenario is available for this component yet.



tFirebirdClose

854 Talend Open Studio Components Reference Guide

tFirebirdClose

tFirebirdClose properties

Component family Databases/Firebird

Function tFirebirdClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tFirebirdConnection component in the list if more than
one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Firebird components, especially with
tFirebirdConnection and tFirebirdCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tFirebirdCommit

Talend Open Studio Components Reference Guide 855

tFirebirdCommit

tFirebirdCommit Properties

This component is closely related to tFirebirdConnection and tFirebirdRollback. It usually doesn’t make much
sense to use these components independently in a transaction.

Component family Databases/Firebird

Function Validates the data processed through the Job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the tFirebirdConnection component in the list if more than
one connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to link
tFirebirdCommit to your Job, your data will be commited
row by row. In this case, do not select the Close connection
check box or your connection will be closed before the end
of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Firebird components, especially with
tFirebirdConnection and tFirebirdRollback components.

Limitation n/a

Related scenario

This component is closely related to tFirebirdConnection and tFirebirdRollback. It usually doesn’t make much
sense to use one of these without using a tFirebirdConnection component to open a connection for the current
transaction.

For tFirebirdCommit related scenario, see section tMysqlConnection



tFirebirdConnection

856 Talend Open Studio Components Reference Guide

tFirebirdConnection

tFirebirdConnection properties

This component is closely related to tFirebirdCommit and tFirebirdRollback. It usually does not make much
sense to use one of these without using a tFirebirdConnection to open a connection for the current transaction.

Component family Databases/Firebird

Function tFirebirdConnection opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host name Database server IP address.

Database Name of the database.

Username and Password DB user authentication data.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Advanced settings Auto commit Select this check box to automatically commit a transaction when it
is completed.

tStatCatcher Statistics Select this check box to gather the job processing metadata at a Job
level as well as at each component level.

Usage This component is to be used along with Firebird components, especially with tFirebirdCommit
and tFirebirdRollback.

Limitation n/a

Related scenarios

This component is closely related to tFirebirdCommit and tFirebirdRollback. It usually does not make much
sense to use one of these without using a tFirebirdConnection component to open a connection for the current
transaction.

For tFirebirdConnection related scenario, see section tMysqlConnection



tFirebirdInput

Talend Open Studio Components Reference Guide 857

tFirebirdInput

tFirebirdInput properties

Component family Databases/FireBird

Function tFirebirdInput reads a database and extracts fields based on a query.

Purpose tFirebirdInput executes a DB query with a strictly defined order which must correspond to the
schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address

Port Listening port number of the DB server.

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Query type and Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Advanced Settings Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL queries for FireBird databases.

Limitation n/a

Related scenarios

For related topics, see the tDBInput scenarios:

• section Scenario 1: Displaying selected data from DB table.

• section Scenario 2: Using StoreSQLQuery variable.

See also related topic: section Scenario: Dynamic context use in MySQL DB insert.



tFirebirdOutput

858 Talend Open Studio Components Reference Guide

tFirebirdOutput

tFirebirdOutput properties

Component family Databases/FireBird

Function tFirebirdOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tFirebirdOutput executes the action defined on the table and/or on the data contained in the table,
based on the flow incoming from the preceding component in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be written
at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, Job stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

You must specify at least one column as a primary key
on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to set as
primary key(s). For an advanced use, click the Advanced
settings view where you can simultaneously define primary
keys for the update and delete operations. To do that: Select
the Use field options check box and then in the Key in
update column, select the check boxes next to the column
name on which you want to base the update operation.



Related scenarios

Talend Open Studio Components Reference Guide 859

Do the same in the Key in delete column for the deletion
operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before committing batches
of rows together into the DB. This option ensures transaction quality
(but not rollback) and, above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.

Enable debug mode Select this check box to display each step during processing entries
in a database.

Support null in “SQL
WHERE” statement

Select this check box if you want to deal with the Null values
contained in a DB table.

Make sure the Nullable check box is selected for the
corresponding columns in the schema.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a Firebird database. It also allows you to create a reject flow using a
Row > Rejects link to filter data in error. For an example of tMySqlOutput in use, see section
Scenario 3: Retrieve data in error with a Reject link.

Limitation n/a

Related scenarios

For related topics, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection.

• section Scenario 1: Adding a new column and altering data in a DB table.



tFirebirdRollback

860 Talend Open Studio Components Reference Guide

tFirebirdRollback

tFirebirdRollback properties

This component is closely related to tFirebirdCommit and tFirebirdConnection. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/Firebird

Function tFirebirdRollback cancels the transaction committed in the connected database.

Purpose This component avoids to commit part of a transaction involuntarily..

Basic settings Component list Select the tFirebirdConnection component in the list if more than
one connection are planned for the current Job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Firebird components, especially with
tFirebirdConnection and tFirebirdCommit.

Limitation n/a

Related scenario

For tFirebirdRollback related scenario, see section Scenario: Rollback from inserting data in mother/daughter
tables.



tFirebirdRow

Talend Open Studio Components Reference Guide 861

tFirebirdRow

tFirebirdRow properties

Component family Databases/FireBird

Function tFirebirdRow is the specific component for this database query. It executes the SQL query stated
onto the specified database. The row suffix means the component implements a flow in the job
design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tFirebirdRow acts on the actual DB
structure or on the data (although without handling data). The SQLBuilder tool helps you write
easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tFirebirdConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder



Related scenarios

862 Talend Open Studio Components Reference Guide

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Use PreparedStatement Select this checkbox if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all possible SQL queries.

Limitation n/a

Related scenarios

For related topics, see:

• section Scenario 3: Combining two flows for selective output

• section Scenario: Resetting a DB auto-increment.

• section Scenario 1: Removing and regenerating a MySQL table index.



tHiveClose

Talend Open Studio Components Reference Guide 863

tHiveClose

tHiveClose component belongs to two component families: Big Data and Databases. For more information about
tHiveClose, see section tHiveClose.



tHiveConnection

864 Talend Open Studio Components Reference Guide

tHiveConnection

tHiveConnection component belongs to two component families: Big Data and Databases. For more information
about tHiveConnection, see section tHiveConnection.



tHiveRow

Talend Open Studio Components Reference Guide 865

tHiveRow

tHiveRow component belongs to two component families: Big Data and Databases. For more information about
tHiveRow, see section tHiveRow.



tHSQLDbInput

866 Talend Open Studio Components Reference Guide

tHSQLDbInput

tHSQLDbInput properties

Component family Databases/HSQLDb

Function tHSQLDbInput reads a database and extracts fields based on a query.

Purpose tHSQLDbInput executes a DB query with a strictly defined order which must correspond to the
schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Running Mode Select on the list the Server Mode corresponding to your DB setup
among the four propositions :

HSQLDb Server, HSQLDb WebServer, HSQLDb In Process
Persistent, HSQLDb In Memory.

Use TLS/SSL sockets select this check box to enable the secured mode if required.

Host Database server IP address

Port Listening port number of DB server.

Database Alias Alias name of the database

Username and Password DB user authentication data.

DB path Specify the directory to the database you want to connect to. This
field is available only to the HSQLDb In Process Persistent
running mode.

By default, if the database you specify in this field does
not exist, it will be created automatically. If you want
to change this default setting, modify the connection
parameter set in the Additional JDBC parameter field in
the Advanced settings view

Db name Enter the database name that you want to connect to. This field is
available only to the HSQLDb In Process Persistent running mode
and the HSQLDb In Memory running mode.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.



Related scenarios

Talend Open Studio Components Reference Guide 867

Query type and Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection
you are creating. When the running mode is HSQLDb In Process
Persistent , this additional property is set as ifexists=true by
default, meaning that the database will be automatically created
when needed.

Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL queries for HSQLDb databases.

Global Variables Number of Lines: Indicates the number of lines processed. This is
available as an After variable.

Returns an integer.

Query: Indicates the query to be processed. This is available as a
Flow variable.

Returns a string

For further information about variables, see Talend Open Studio User
Guide.

Connections Outgoing links (from one component to another):

Row: Main; Iterate

Trigger: Run if; On Component Ok; On Component Error; On
Subjob Ok; On Subjob Error.

Incoming links (from one component to another):

Row: Iterate;

Trigger: Run if; On Component Ok; On Component Error; On
Subjob Ok; On Subjob Error.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation n/a

Related scenarios

For related topics, see the tDBInput scenarios:

• section Scenario 1: Displaying selected data from DB table.

• section Scenario 2: Using StoreSQLQuery variable



tHSQLDbOutput

868 Talend Open Studio Components Reference Guide

tHSQLDbOutput

tHSQLDbOutput properties

Component family Databases/HSQLDb

Function tHSQLDbOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tHSQLDbOutput executes the action defined on the table and/or on the data contained in the
table, based on the flow incoming from the preceding component in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Running Mode Select on the list the Server Mode corresponding to your DB
setupamong the four propositions :

HSQLDb Server, HSQLDb WebServer, HSQLDb In Process
Persistent, HSQLDb In Memory.

Use TLS/SSL sockets Select this check box to enable the secured mode if required.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

DB path Specify the directory to the database you want to connect to. This
field is available only to the HSQLDb In Process Persistent
running mode.

By default, if the database you specify in this field does
not exist, it will be created automatically. If you want
to change this default setting, modify the connection
parameter set in the Additional JDBC parameter field in
the Advanced settings view

Db name Enter the database name that you want to connect to. This field is
available only to the HSQLDb In Process Persistent running mode
and the HSQLDb In Memory running mode.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.



tHSQLDbOutput properties

Talend Open Studio Components Reference Guide 869

Drop a table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, Job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the Update and Delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next to
the column names you want to use as a base for the Update
operation. Do the same in the Key in delete column for the
Delete operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection
you are creating. When the running mode is HSQLDb In Process
Persistent , this additional property is set as ifexists=true by
default, meaning that the database will be automatically created
when needed.

You can press Ctrl+Space to access a list of predefined
global variables.

Commit every Enter the number of rows to be completed before committing batches
of rows together into the DB. This option ensures transaction quality
(but not rollback) and, above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.



tHSQLDbOutput properties

870 Talend Open Studio Components Reference Guide

Use field options Select this check box to customize a request, especially when there
is double action on data.

Enable debug mode Select this check box to display each step during processing entries
in a database.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a MySQL database. It also allows you to create a reject flow using a
Row > Rejects link to filter data in error. For an example of tMySqlOutput in use, see section
Scenario 3: Retrieve data in error with a Reject link.

Global Variables Number of Lines: Indicates the number of lines processed. This is
available as an After variable.

Returns an integer.

NB line Updated: Indicates the number of lines updated. This is
available as an After variable.

Returns an integer.

NB line Inserted: Indicates the number of lines inserted. This is
available as an After variable.

Returns an integer.

NB line Deleted: Indicates the number of lines deleted. This is
available as an After variable.

Returns an integer.

NB line Rejected: Indicates the number of lines rejected. This is
available as an After variable.

Returns an integer

Query: Indicates the query to be processed. This is available as a
After variable.

Returns a string

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Row: Main; Reject

Trigger: Run if; On Component Ok; On Component Error; On
Subjob Ok; On Subjob Error.

Incoming links (from one component to another):

Row: Main;

Trigger: Run if; On Component Ok; On Component Error; On
Subjob Ok; On Subjob Error.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation n/a



Related scenarios

Talend Open Studio Components Reference Guide 871

Related scenarios

For related topics, see

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection

• section Scenario 1: Adding a new column and altering data in a DB table.



tHSQLDbRow

872 Talend Open Studio Components Reference Guide

tHSQLDbRow

tHSQLDbRow properties
Component family Databases/HSQLDb

Function tHSQLDbRow is the specific component for this database query. It executes the SQL query stated
onto the specified database. The row suffix means the component implements a flow in the job
design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tHSQLDbRow acts on the actual DB
structure or on the data (although without handling data). The SQLBuilder tool helps you write
easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Running Mode Select on the list the Server Mode corresponding to your DB setup
among the four propositions :

HSQLDb Server, HSQLDb WebServer, HSQLDb In Process
Persistent, HSQLDb In Memory.

Use TLS/SSL sockets Select this check box to enable the secured mode if required.

Host Database server IP address

Port Listening port number of DB server.

Database Alias Name of the database

Username and Password DB user authentication data.

DB path Specify the directory to the database you want to connect to. This
field is available only to the HSQLDb In Process Persistent
running mode.

By default, if the database you specify in this field does
not exist, it will be created automatically. If you want
to change this default setting, modify the connection
parameter set in the Additional JDBC parameter field in
the Advanced settings view

Database Enter the database name that you want to connect to. This field is
available only to the HSQLDb In Process Persistent running mode
and the HSQLDb In Memory running mode.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.



Related scenarios

Talend Open Studio Components Reference Guide 873

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection
you are creating. When the running mode is HSQLDb In Process
Persistent , this additional property is set as ifexists=true by
default, meaning that the database will be automatically created
when needed.

Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Global Variables Query: Indicates the query to be processed. This is available as a
Flow variable.

Returns a string

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Row: Main; Reject; Iterate

Trigger: Run if; On Component Ok; On Component Error; On
Subjob Ok; On Subjob Error.

Incoming links (from one component to another):

Row: Main; Iterate

Trigger: Run if; On Component Ok; On Component Error; On
Subjob Ok; On Subjob Error.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation n/a

Related scenarios

For related topics, see:

• section Scenario: Resetting a DB auto-increment.

• section Scenario 1: Removing and regenerating a MySQL table index.



tInterbaseClose

874 Talend Open Studio Components Reference Guide

tInterbaseClose

tInterbaseClose properties

Component family Databases/Interbase

Function tInterbaseClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tInterbaseConnection component in the list if more than
one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Interbase components, especially with
tInterbaseConnection and tInterbaseCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tInterbaseCommit

Talend Open Studio Components Reference Guide 875

tInterbaseCommit

tInterbaseCommit Properties

This component is closely related to tInterbaseConnection and tInterbaseRollback. It usually doesn’t make
much sense to use JDBC components independently in a transaction.

Component family Databases/Interbase

Function Validates the data processed through the Job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the tInterbaseConnection component in the list if more than
one connection are planned for the current Job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

If you want to use a Row > Main connection to link
tInterbaseCommit to your Job, your data will be commited
row by row. In this case, do not select the Close connection
check box or your connection will be closed before the end
of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Interbase components, especially with the
tInterbaseConnection and tInterbaseRollback components.

Limitation n/a

Related scenario

This component is closely related to tInterbaseConnection and tInterbaseRollback. It usually doesn’t make
much sense to use JDBC components without using the tInterbaseConnection component to open a connection
for the current transaction.

For tInterbaseCommit related scenario, see section tMysqlConnection



tInterbaseConnection

876 Talend Open Studio Components Reference Guide

tInterbaseConnection

tInterbaseConnection properties

This component is closely related to tInterbaseCommit and tInterbaseRollback. It usually does not make much
sense to use one of these without using a tInterbaseConnection to open a connection for the current transaction.

Component family Databases/Interbase

Function tInterbaseConnection opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host name Database server IP address.

Database Name of the database.

Username and Password DB user authentication data.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Advanced settings Auto commit Select this check box to automatically commit a transaction when it
is completed.

tStatCatcher Statistics Select this check box to gather the job processing metadata at a Job
level as well as at each component level.

Usage This component is to be used along with Interbase components, especially with tInterbaseCommit
and tInterbaseRollback.

Limitation n/a

Related scenarios

This component is closely related to tInterbaseCommit and tInterbaseRollback. It usually does not make much
sense to use one of these without using a tInterbaseConnection component to open a connection for the current
transaction.

For tInterbaseConnection related scenario, see section tMysqlConnection



tInterbaseInput

Talend Open Studio Components Reference Guide 877

tInterbaseInput

tInterbaseInput properties

Component family Databases/Interbase

Function tInterbaseInput reads a database and extracts fields based on a query.

Purpose tInterbaseInput executes a DB query with a strictly defined order which must correspond to the
schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Host Database server IP address

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Query type and Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL queries for Interbase databases.

Limitation n/a

Related scenarios

For related topics, see the tDBInput scenarios:

• section Scenario 1: Displaying selected data from DB table.

• section Scenario 2: Using StoreSQLQuery variable.



Related scenarios

878 Talend Open Studio Components Reference Guide

See also the related topic in tContextLoad: section Scenario: Dynamic context use in MySQL DB insert.



tInterbaseOutput

Talend Open Studio Components Reference Guide 879

tInterbaseOutput

tInterbaseOutput properties

Component family Databases/Interbase

Function tInterbaseOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tInterbaseOutput executes the action defined on the table and/or on the data contained in the
table, based on the flow incoming from the preceding component in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Host Database server IP address

Database Name of the database

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, Job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to



Related scenarios

880 Talend Open Studio Components Reference Guide

set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the Update and Delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next to
the column names you want to use as a base for the Update
operation. Do the same in the Key in delete column for the
Delete operation.

Clear data in table Wipes out data from the selected table before action.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before committing batches
of rows together into the DB. This option ensures transaction quality
(but not rollback) and, above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.

Enable debug mode Select this check box to display each step during processing entries
in a database.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a Interbase database. It also allows you to create a reject flow using a
Row > Rejects link to filter data in error. For an example of tMySqlOutput in use, see section
Scenario 3: Retrieve data in error with a Reject link.

Limitation n/a

Related scenarios

For related topics, see

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection.

• section Scenario 1: Adding a new column and altering data in a DB table.



Related scenarios

Talend Open Studio Components Reference Guide 881



tInterbaseRollback

882 Talend Open Studio Components Reference Guide

tInterbaseRollback

tInterbaseRollback properties

This component is closely related to tInterbaseCommit and tInterbaseConnection. It usually does not make
much sense to use these components independently in a transaction.

Component family Databases/Interbase

Function tInterbaseRollback cancels the transaction committed in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tInterbaseConnection component in the list if more than
one connection are planned for the current Job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Interbase components, especially with
tInterbaseConnection and tInterbaseCommit.

Limitation n/a

Related scenarios

For tInterbaseRollback related scenario, see section Scenario: Rollback from inserting data in mother/daughter
tables.



tInterbaseRow

Talend Open Studio Components Reference Guide 883

tInterbaseRow

tInterbaseRow properties

Component family Databases/Interbase

Function tInterbaseRow is the specific component for this database query. It executes the SQL query stated
onto the specified database. The row suffix means the component implements a flow in the job
design although it does not provide output.

Purpose Depending on the nature of the query and the database, tInterbaseRow acts on the actual DB
structure or on the data (although without handling data). The SQLBuilder tool helps you write
easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tInterbaseConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Database Name of the database

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder



Related scenarios

884 Talend Open Studio Components Reference Guide

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Use PreparedStatement Select this checkbox if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Limitation n/a

Related scenarios

For related scenarios, see:

• section Scenario 3: Combining two flows for selective output

• For  tDBSQLRow related scenario: see section Scenario: Resetting a DB auto-increment

• For tMySQLRow related scenario: see section Scenario 1: Removing and regenerating a MySQL table index.



tJavaDBInput

Talend Open Studio Components Reference Guide 885

tJavaDBInput

tJavaDBInput properties

Component family Databases/JavaDB

Function tJavaDBInput reads a database and extracts fields based on a query.

Purpose tJavaDBInput executes a DB query with a strictly defined order which must correspond to the
schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Framework Select your Java database framework on the list

Database Name of the database

DB root path Browse to your database root.

Username and Password DB user authentication data.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Query type and Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL database queries.

Limitation n/a

Related scenarios

For related topics, see the tDBInput scenarios:

• section Scenario 1: Displaying selected data from DB table.



Related scenarios

886 Talend Open Studio Components Reference Guide

• section Scenario 2: Using StoreSQLQuery variable.

See also the related topic in tContextLoad: section Scenario: Dynamic context use in MySQL DB insert.



tJavaDBOutput

Talend Open Studio Components Reference Guide 887

tJavaDBOutput

tJavaDBOutput properties

Component family Databases/JavaDB

Function tJavaDBOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tJavaDBOutput executes the action defined on the table and/or on the data contained in the table,
based on the flow incoming from the preceding component in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Framework Select your Java database framework on the list

Database Name of the database

DB root path Browse to your database root.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, Job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.



Related scenarios

888 Talend Open Studio Components Reference Guide

You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the Update and Delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next to
the column names you want to use as a base for the Update
operation. Do the same in the Key in delete column for the
Delete operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before committing batches
of rows together into the DB. This option ensures transaction quality
(but not rollback) and, above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.

Enable debug mode Select this check box to display each step during processing entries
in a database.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a Java database. It also allows you to create a reject flow using a Row >
Rejects link to filter data in error. For an example of tMysqlOutput in use, see section Scenario 3:
Retrieve data in error with a Reject link.

Limitation n/a

Related scenarios

For related topics, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection.

• section Scenario 1: Adding a new column and altering data in a DB table.



Related scenarios

Talend Open Studio Components Reference Guide 889



tJavaDBRow

890 Talend Open Studio Components Reference Guide

tJavaDBRow

tJavaDBRow properties

Component family Databases/JavaDB

Function tJavaDBRow is the specific component for this database query. It executes the SQL query stated
onto the specified database. The row suffix means the component implements a flow in the job
design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tJavaDBRow acts on the actual DB
structure or on the data (although without handling data). The SQLBuilder tool helps you write
easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Framework Select your Java database framework on the list

Database Name of the database

DB root path Browse to your database root.

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

Use PreparedStatement Select this checkbox if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.



Related scenarios

Talend Open Studio Components Reference Guide 891

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Limitation n/a

Related scenarios

For related topics, see:

• section Scenario: Resetting a DB auto-increment.

• section Scenario 1: Removing and regenerating a MySQL table index.



tJDBCColumnList

892 Talend Open Studio Components Reference Guide

tJDBCColumnList

tJDBCColumnList Properties

Component family Databases/JDBC

Function Iterates on all columns of a given table through a defined JDBC connection.

Purpose Lists all column names of a given JDBC table.

Basic settings Component list Select the tJDBCConnection component in the list if more than one
connection are planned for the current Job.

Table name Enter the name of the tabe.

Usage This component is to be used along with JDBC components, especially with tJDBCConnection.

Limitation n/a

Related scenario

For tJDBCColumnList related scenario, see section Scenario: Iterating on a DB table and listing its column
names.



tJDBCClose

Talend Open Studio Components Reference Guide 893

tJDBCClose

tJDBCClose properties

Component family Databases/JDBC

Function tJDBCClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tJDBCConnection component in the list if more than one
connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with JDBC components, especially with tJDBCConnection
and tJDBCCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tJDBCCommit

894 Talend Open Studio Components Reference Guide

tJDBCCommit

tJDBCCommit Properties

This component is closely related to tJDBCConnection and tJDBCRollback. It usually doesn’t make much sense
to use JDBC components independently in a transaction.

Component family Databases/JDBC

Function Validates the data processed through the Job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the tJDBCConnection component in the list if more than one
connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to link
tJDBCCommit to your Job, your data will be commited
row by row. In this case, do not select the Close connection
check box or your connection will be closed before the end
of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with JDBC components, especially with the tJDBCConnection
and tJDBCRollback components.

Limitation n/a

Related scenario

This component is closely related to tJDBCConnection and tJDBCRollback. It usually doesn’t make much sense
to use JDBC components without using the tJDBCConnection component to open a connection for the current
transaction.

For tJDBCCommit related scenario, see section tMysqlConnection



tJDBCConnection

Talend Open Studio Components Reference Guide 895

tJDBCConnection

tJDBCConnection Properties

This component is closely related to tJDBCCommit and tJDBCRollback. It usually doesn’t make much sense
to use one of JDBC components without using the tJDBCConnection component to open a connection for the
current transaction.

Component family Databases/JDBC

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings

JDBC URL Enter the JDBC URL to connect to the desired DB. For example,
enter: jdbc:mysql://IP address/database name to connect to a mysql
database.

Driver JAR Click the plus button under the table to add lines of the count of your
need for the purpose of loading several JARs. Then on each line,
click the three dot button to open the Select Module wizard from
which you can select a driver JAR of your interest for each line.

Driver Class Enter the driver class related o your connection. For example,
enter com.mysql.jdbc.Driver as a driver class to connect to a mysql
database.

Username and Password Enter your DB authentication data.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Specify a data source alias Select this check box and specify the alias of a data source created on
the Talend Runtime side to use the shared connection pool defined
in the data source configuration. This option works only when you
deploy and run your Job in Talend Runtime.

Advanced settings Use Auto-Commit Select this check box to display the Auto Commit check box. Select
it to activate auto commit mode.

Once you clear the Use Auto-Commit check box, the auto-commit
statement will be removed from the codes.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with JDBC components, especially with the tJDBCCommit
and tJDBCRollback components.

Limitation n/a



Related scenario

896 Talend Open Studio Components Reference Guide

Related scenario

This component is closely related to tJDBCCommit and tJDBCRollback. It usually doesn’t make much sense
to use one of JDBC components without using the tJDBCConnection component to open a connection for the
current transaction.

For tJDBCConnection related scenario, see section tMysqlConnection



tJDBCInput

Talend Open Studio Components Reference Guide 897

tJDBCInput

tJDBCInput properties

Component family Databases/JDBC

Function tJDBCInput reads any database using a JDBC API connection and extracts fields based on a query.

Purpose tJDBCInput executes a DB query with a strictly defined order which must correspond to the
schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tJDBCConnection
component on the Component list to reuse the connection details you
already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

JDBC URL Type in the database location path

Driver JAR Click the plus button under the table to add lines of the count of your
need for the purpose of loading several JARs. Then on each line,
click the three dot button to open the Select Module wizard from
which you can select a driver JAR of your interest for each line.

Class Name Type in the Class name to be pointed to in the driver.

Username and Password DB user authentication data.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.



Related scenarios

898 Talend Open Studio Components Reference Guide

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table Name Type in the name of the table.

Query type and Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Specify a data source alias Select this check box and specify the alias of a data source created on
the Talend Runtime side to use the shared connection pool defined
in the data source configuration. This option works only when you
deploy and run your Job in Talend Runtime.

If you use the component's own DB configuration, your
data source connection will be closed at the end of the
component. To prevent this from happening, use a shared
DB connection with the data source alias specified.

This check box is not available when the Use an existing connection
check box is selected.

Advanced settings Use cursor When selected, helps to decide the row set to work with at a time and
thus optimize performance.

Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL queries for any database using a JDBC connection.

Related scenarios

Related topics in tDBInput scenarios:

• section Scenario 1: Displaying selected data from DB table.

• section Scenario 2: Using StoreSQLQuery variable.

Related topic in tContextLoad: see section Scenario: Dynamic context use in MySQL DB insert.



tJDBCOutput

Talend Open Studio Components Reference Guide 899

tJDBCOutput

tJDBCOutput properties

Component family Databases/JDBC

Function tJDBCOutput writes, updates, makes changes or suppresses entries in any type of database
connected to a JDBC API.

Purpose tJDBCOutput executes the action defined on the data contained in the table, based on the flow
incoming from the preceding component in the Job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tJDBCConnection
component on the Component list to reuse the connection details you
already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

JDBC URL Type in the database location path

Driver JAR Click the plus button under the table to add lines of the count of your
need for the purpose of loading several JARs. Then on each line,
click the three dot button to open the Select Module wizard from
which you can select a driver JAR of your interest for each line.

Class Name Type in the Class name to be pointed to in the driver.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on data On the data of the table defined, you can perform:



tJDBCOutput properties

900 Talend Open Studio Components Reference Guide

Insert: Add new entries to the table. If duplicates are found, Job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to set as
primary key(s). For an advanced use, click the Advanced
settings view where you can simultaneously define primary
keys for the Update and Delete operations. To do that:
Select the Use field options check box and then in the Key
in update column, select the check boxes next to the column
names you want to use as a base for the Update operation.
Do the same in the Key in delete column for the Delete
operation.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Specify a data source alias Select this check box and specify the alias of a data source created on
the Talend Runtime side to use the shared connection pool defined
in the data source configuration. This option works only when you
deploy and run your Job in Talend Runtime.

If you use the component's own DB configuration, your
data source connection will be closed at the end of the
component. To prevent this from happening, use a shared
DB connection with the data source alias specified.

This check box is not available when the Use an existing connection
check box is selected.

Advanced settings Commit every Enter the number of rows to be completed before committing batches
of rows together into the DB. This option ensures transaction quality
(but not rollback) and, above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.



Related scenarios

Talend Open Studio Components Reference Guide 901

Enable debug mode Select this check box to display each step during processing entries
in a database.

Use Batch Size When selected, enables you to define the number of lines in each
processed batch.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a JDBC database. It also allows you to create a reject flow using a
Row > Rejects link to filter data in error. For an example of tMySqlOutput in use, see section
Scenario 3: Retrieve data in error with a Reject link.

Related scenarios

For tJDBCOutput related topics, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection.

• section Scenario 1: Adding a new column and altering data in a DB table.



tJDBCRollback

902 Talend Open Studio Components Reference Guide

tJDBCRollback

tJDBCRollback properties

This component is closely related to tJDBCCommit and tJDBCConnection. It usually does not make much sense
to use JDBC components independently in a transaction.

Component family Databases/JDBC

Function Cancels the transaction committed in the connected DB.

Purpose Avoid commiting part of a transaction accidentally.

Basic settings Component list Select the tJDBCConnection component in the list if more than one
connection are planned for the current Job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with JDBC components, especially with tJDBCConnection
and tJDBCCommit components.

Limitation n/a

Related scenario

This component is closely related to tJDBCConnection and tJDBCCommit. It usually does not make much
sense to use JDBC components without using the tJDBCConnection component to open a connection for the
current transaction.

For tJDBCRollback related scenario, see section tMysqlRollback



tJDBCRow

Talend Open Studio Components Reference Guide 903

tJDBCRow

tJDBCRow properties

Component family Databases/JDBC

Function tJDBCRow is the component for any type database using a JDBC API. It executes the SQL query
stated onto the specified database. The row suffix means the component implements a flow in the
job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tJDBCRow acts on the actual DB structure
or on the data (although without handling data). The SQLBuilder tool helps you write easily your
SQL statements.

Basic settings Use an existing connection Select this check box and click the relevant tJDBCConnection
component on the Component list to reuse the connection details you
already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

JDBC URL Type in the database location path.

Driver JAR Click the plus button under the table to add lines of the count of your
need for the purpose of loading several JARs. Then on each line,
click the three dot button to open the Select Module wizard from
which you can select a driver JAR of your interest for each line.

Class Name Type in the Class name to be pointed to in the driver.

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table Name Name of the table to be processed.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder



Related scenarios

904 Talend Open Studio Components Reference Guide

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Specify a data source alias Select this check box and specify the alias of a data source created on
the Talend Runtime side to use the shared connection pool defined
in the data source configuration. This option works only when you
deploy and run your Job in Talend Runtime.

If you use the component's own DB configuration, your
data source connection will be closed at the end of the
component. To prevent this from happening, use a shared
DB connection with the data source alias specified.

This check box is not available when the Use an existing connection
check box is selected.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Use PreparedStatement Select this checkbox if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query for any database using a JDBC connection
and covers all possible SQL queries.

Related scenarios

For related topics, see:

• section Scenario 3: Combining two flows for selective output .

• section Scenario: Resetting a DB auto-increment.

• section Scenario 1: Removing and regenerating a MySQL table index.



tJDBCSP

Talend Open Studio Components Reference Guide 905

tJDBCSP

tJDBCSP Properties

Component family Databases/JDBC

Function tJDBCSP calls the specified database stored procedure.

Purpose tJDBCSP offers a convenient way to centralize multiple or complex queries in a database and call
them easily.

Basic settings JDBC URL Type in the database location path

Driver JAR Click the plus button under the table to add lines of the count of your
need for the purpose of loading several JARs. Then on each line,
click the three dot button to open the Select Module wizard from
which you can select a driver JAR of your interest for each line.

Class Name Type in the Class name to be pointed to in the driver.

Username and Password DB user authentication data.

Schema and Edit Schema In SP principle, the schema is an input parameter.

A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if you
make changes, the schema automatically becomes Built-in.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

SP Name Type in the exact name of the Stored Procedure.

Is Function / Return result in Select this check box , if a value only is to be returned.

Select on the list the schema column, the value to be returned is based
on.

Parameters Click the Plus button and select the various Schema Columns that
will be required by the procedures. Note that the SP schema can hold
more columns than there are paramaters used in the procedure.

Select the Type of parameter:

IN: Input parameter

OUT: Output parameter/return value

IN OUT: Input parameters is to be returned as value, likely after
modification through the procedure (function).

RECORDSET: Input parameters is to be returned as a set of values,
rather than single value.

Check section tPostgresqlCommit, if you want to analyze
a set of records from a database table or DB query and
return single records.

Specify a data source alias Select this check box and specify the alias of a data source created on
the Talend Runtime side to use the shared connection pool defined



Related scenario

906 Talend Open Studio Components Reference Guide

in the data source configuration. This option works only when you
deploy and run your Job in Talend Runtime.

If you use the component's own DB configuration, your
data source connection will be closed at the end of the
component. To prevent this from happening, use a shared
DB connection with the data source alias specified.

This check box is not available when the Use an existing connection
check box is selected.

Usage This component is used as intermediary component. It can be used as start component but only
input parameters are thus allowed.

Limitation The Stored Procedures syntax should match the Database syntax.

Related scenario

For related scenarios, see:

• section Scenario: Executing a stored procedure in the MDM Hub.

• section Scenario: Checking number format using a stored procedure

Check as well section tPostgresqlCommit if you want to analyze a set of records from a database table or DB
query and return single records.



tJDBCTableList

Talend Open Studio Components Reference Guide 907

tJDBCTableList

tJDBCTableList Properties

Component family Databases/JDBC

Function Iterates on a set of table names through a defined JDBC connection.

Purpose Lists the names of a given set of JDBC tables using a select statement based on a Where clause.

Basic settings Component list Select the tJDBCConnection component in the list if more than one
connection are planned for the current Job.

Where clause for table name
selection

Enter the Where clause to identify the tables to iterate on.

Usage This component is to be used along with JDBC components, especially with tJDBCConnection.

Limitation n/a

Related scenario

For tJDBCTableList related scenario, see section Scenario: Iterating on a DB table and listing its column names.



tLDAPAttributesInput

908 Talend Open Studio Components Reference Guide

tLDAPAttributesInput

tLDAPAttributesInput Properties

Component family Databases/LDAP

Function tLDAPAttributesInput analyses each object found via the LDAP query and lists a collection of
attributes associated with the object.

Purpose tLDAPAttributesInput executes an LDAP query based on the given filter and corresponding to
the schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tLDAPConnection
component on the Component list to reuse the connection details
you already defined.

Host LDAP Directory server IP address.

Port Listening port number of server.

Base DN Path to user’s authorised tree leaf.

Protocol Select the protocol type on the list.

LDAP : no encryption is used

LDAPS: secured LDAP. When this option is chosen, the Advanced
CA check box appears. Once selected, the advanced mode allows
you to specify the directory and the keystore password of the
certificate file for storing a specific CA. However, you can still
deactivate this certificate validation by selecting the Trust all certs
check box.

TLS: certificate is used. When this option is chosen, the Advanced
CA check box appears and is used the same way as that of the
LDAPS type.

Authentication User and
Password

Select the Authentication check box if LDAP login is required. Note
that the login must match the LDAP syntax requirement to be valid.
e.g.: “cn=Directory Manager”.

Filter Type in the filter as expected by the LDAP directory db.

Multi valued field separator Type in the value separator in multi-value fields.

Alias dereferencing Select the option on the list. Never improves search performance if
you are sure that no alias is to be dereferenced. By default, Always
is to be used:

Always: Always dereference aliases

Never: Never dereferences aliases.

Searching:Dereferences aliases only after name resolution.

Finding: Dereferences aliases only during name resolution

Referral handling Select the option on the list:

Ignore: does not handle request redirections



Related scenario

Talend Open Studio Components Reference Guide 909

Follow:does handle request redirections

Limit Fill in a limit number of records to be read If needed.

Time Limit Fill in a timeout period for the directory. access

Paging Specify the number of entries returned at a time by the LDAP server.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

As this component is intended to list the attributes
associated with a LDAP object, its schema is then pre-
defined. You should retain these established columns, even
though you may need to add some new columns. Hence you
should use the Built-in mode.

The pre-defined schema lists:

- objectclass: list of object classes

- mandatoryattributes: list of mandatory attributes to these classes

- optionalattributes: list of optional attributes to these classes

- objectattributes: list of attributes that are essential for the analysed
object.

Advanced settings Class Definition Root Specify the root of the object class definition namespace.

tStatCatcher Statistics Select this check box to gather the job processing metadata at a job
level as well as at each component level.

Usage This component covers all possible LDAP queries.

Note: Press Ctrl + Space bar to access the global variable list, including the GetResultName
variable to retrieve automatically the relevant Base

Related scenario

The tLDAPAttributesInput component follows the usage similar to that of tLDAPInput. Hence for
tLDAPInput related scenario, see section Scenario: Displaying LDAP directory’s filtered content.



tLDAPConnection

910 Talend Open Studio Components Reference Guide

tLDAPConnection

tLDAPConnection Properties

Component family Databases/LDAP

Function Opens a connection to an LDAP Directory server for data transaction.

Purpose This component creates a connection to an LDAP Directory server. Then it can be invoked by other
components that need to access the LDAP Directory server, e.g., tLDAPInput, tLDAPOutput,
etc.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host LDAP Directory server IP address.

Port Listening port number of server.

Protocol Select the protocol type on the list.

LDAP: no encryption is used

LDAPS: secured LDAP. When this option is chosen, the Advanced
CA check box appears. Once selected, the advanced mode allows
you to specify the directory and the keystore password of the
certificate file for storing a specific CA. However, you can still
deactivate this certificate validation by selecting the Trust all certs
check box.

TLS: certificate is used. When this option is chosen, the Advanced
CA check box appears and is used the same way as that of the
LDAPS type.

Base DN Path to user’s authorized tree leaf.

User and Password Fill in the User and Password as required by the directory

Note that the login must match the LDAP syntax requirement to be
valid. e.g.: “cn=Directory Manager”.

Alias dereferencing Select the option on the list. Never improves search performance if
you are sure that no aliases is to be dereferenced. By default, Always
is to be used:

Always: Always dereference aliases

Never: Never dereferences aliases.

Searching:Dereferences aliases only after name resolution.

Finding: Dereferences aliases only during name resolution

Referral handling Select the option on the list:

Ignore: does not handle request redirections

Follow:does handle request redirections

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing metadata at a job
level as well as at each component level.

Usage This component is to be used with other LDAP components, especially with tLDAPInput and
tLDAPOutput.



Related scenarios

Talend Open Studio Components Reference Guide 911

Related scenarios

This component is closely related to tLDAPInput and tLDAPOutput as it frees you from filling in the connection
details repeatedly if multiple LDAP input/output components exist.

For tLDAPConnection related scenarios, see section Scenario: Inserting data in mother/daughter tables.



tLDAPInput

912 Talend Open Studio Components Reference Guide

tLDAPInput

tLDAPInput Properties

Component family Databases/LDAP

Function tLDAPInput reads a directory and extracts data based on the defined filter.

Purpose tLDAPInput executes an LDAP query based on the given filter and corresponding to the schema
definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box and click the relevant tLDAPConnection
component on the Component list to reuse the connection details
you already defined.

Host LDAP Directory server IP address.

Port Listening port number of server.

Base DN Path to the user’s authorised tree leaf.

To retrieve the full DN information, enter a field named
DN in the schema, in either upper case or lower case.

Protocol Select the protocol type on the list.

LDAP : no encryption is used

LDAPS: secured LDAP. When this option is chosen, the Advanced
CA check box appears. Once selected, the advanced mode allows
you to specify the directory and the keystore password of the
certificate file for storing a specific CA. However, you can still
deactivate this certificate validation by selecting the Trust all certs
check box.

TLS: certificate is used When this option is chosen, the Advanced
CA check box appears and is used the same way as that of the
LDAPS type.

Authentication User and
Password

Select the Authentication check box if LDAP login is required. Note
that the login must match the LDAP syntax requirement to be valid.
e.g.: “cn=Directory Manager”.

Filter Type in the filter as expected by the LDAP directory db.

Multi valued field separator Type in the value separator in multi-value fields.

Alias dereferencing Select the option on the list. Never improves search performance if
you are sure that no alias is to be dereferenced. By default, Always
is to be used:

Always: Always dereference aliases

Never: Never dereferences aliases.



Scenario: Displaying LDAP directory’s filtered content

Talend Open Studio Components Reference Guide 913

Searching:Dereferences aliases only after name resolution.

Finding: Dereferences aliases only during name resolution

Referral handling Select the option on the list:

Ignore: does not handle request redirections

Follow:does handle request redirections

Limit Fill in a limit number of records to be read If needed.

Time Limit Fill in a timeout period for the directory. access

Paging Specify the number of entries returned at a time by the LDAP server.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Usage This component covers all possible LDAP queries.

Note: Press Ctrl + Space bar to access the global variable list, including the GetResultName
variable to retrieve automatically the relevant Base.

Scenario: Displaying LDAP directory’s filtered content

The Job described below simply filters the LDAP directory and displays the result on the console.

• Drop the tLDAPInput component along with a tLogRow from the Palette to the design workspace.

• Set the tLDAPInput properties.

• Set the Property type on Repository if you stored the LDAP connection details in the Metadata Manager in
the Repository. Then select the relevant entry on the list.

• In Built-In mode, fill in the Host and Port information manually. Host can be the IP address of the LDAP
directory server or its DNS name.

• No particular Base DN is to be set.



Scenario: Displaying LDAP directory’s filtered content

914 Talend Open Studio Components Reference Guide

• Then select the relevant Protocol on the list. In this example: a simple LDAP protocol is used.

• Select the Authentication check box and fill in the login information if required to read the directory. In this
use case, no authentication is needed.

• In the Filter area, type in the command, the data selection is based on. In this example, the filter is:
(&(objectClass=inetorgperson)&(uid=PIERRE DUPONT)).

• Fill in Multi-valued field separator with a comma as some fields may hold more than one value, separated
by a comma.

• As we do not know if some aliases are used in the LDAP directory, select Always on the list.

• Set Ignore as Referral handling.

• Set the limit to 100 for this use case.

• Set the Schema as required by your LDAP directory. In this example, the schema is made of 6 columns including
the objectClass and uid columns which get filtered on.

• In the tLogRow component, no particular setting is required.



Scenario: Displaying LDAP directory’s filtered content

Talend Open Studio Components Reference Guide 915

Only one entry of the directory corresponds to the filter criteria given in the tLDAPInput component.



tLDAPOutput

916 Talend Open Studio Components Reference Guide

tLDAPOutput

tLDAPOutput Properties

Component family Databases/LDAP

Function tLDAPOutput writes into an LDAP directory.

Purpose tLDAPOutput executes an LDAP query based on the given filter and corresponding to the schema
definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box and click the relevant tLDAPConnection
component on the Component list to reuse the connection details
you already defined.

Host LDAP Directory server IP address.

Port Listening port number of server.

Base DN Path to user’s authorized tree leaf.

Protocol Select the protocol type on the list.

LDAP : no encryption is used

LDAPS: secured LDAP. When this option is chosen, the Advanced
CA check box appears. Once selected, the advanced mode allows
you to specify the directory and the keystore password of the
certificate file for storing a specific CA. However, you can still
deactivate this certificate validation by selecting the Trust all certs
check box.

TLS: certificate is used When this option is chosen, the Advanced
CA check box appears and is used the same way as that of the
LDAPS type.

User and Password Fill in the User and Password as required by the directory

Note that the login must match the LDAP syntax requirement to be
valid. e.g.: “cn=Directory Manager”.

Multi valued field separator Character, string or regular expression to separate data in a multi-
value field.

Alias dereferencing Select the option on the list. Never improves search performance if
you are sure that no aliases is to be dereferenced. By default, Always
is to be used:

Always: Always dereference aliases

Never: Never dereferences aliases.

Searching:Dereferences aliases only after name resolution.



Scenario: Editing data in a LDAP directory

Talend Open Studio Components Reference Guide 917

Finding: Dereferences aliases only during name resolution

Referral handling Select the option on the list:

Ignore: does not handle request redirections

Follow:does handle request redirections

Insert mode Select the editing mode on the list:

Add: add a value in a multi-value attribute,

Insert: insert new data,

Updata: updates the existing data,

Delete: remove the selected data from the directory,

Insert or Update: insert new data or update existing ones.

DN Column Name Select in the list the type of the LDAP input entity used.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Reject link.

Advanced settings Use Attribute Options (for
update mode)

Select this check box to choose the desired attribute (including dn,
dc, ou, objectClass, mail and uid) and the corresponding operation
(including Add, Replace, Remove Attribute and Remove Value).

tStatCatcher Statistics Select this check box to gather the job processing metadata at a job
level as well as at each component level.

Usage This component covers all possible LDAP queries.

Note: Press Ctrl + Space bar to access the global variable list, including the GetResultName
variable to retrieve the relevant DN Base automatically. This component allows you to carry out
actions on a table or on the data of a table in an database. It also allows you to create a reject flow
using a Row > Rejects link to filter data in error. For an example of tMySqlOutput in use, see
section Scenario 3: Retrieve data in error with a Reject link.

Scenario: Editing data in a LDAP directory

The following scenario describes a Job that reads an LDAP directory, updates the email of a selected entry and
displays the output before writing the LDAP directory. To keep it simple, no alias dereferencing nor referral
handling is performed. This scenario is based on section Scenario: Displaying LDAP directory’s filtered content.
The result returned was a single entry, related to an organisational person, whom email is to be updated.

• Drop the tLDAPInput, tLDAPOutput, tMap and tLogRow components from the Palette to the design
workspace.

• Connect the input component to the tMap then to the tLogRow and to the output component.



Scenario: Editing data in a LDAP directory

918 Talend Open Studio Components Reference Guide

• In the tLDAPInput Component view, set the connection details to the LDAP directory server as well as the
filter as described in section Scenario: Displaying LDAP directory’s filtered content.

• Change the schema to make it simpler, by removing the unused fields: dc, ou, objectclass.

• Then open the mapper to set the edit to be carried out.

• Drag & drop the uid column from the input table to the output as no change is required on this column.

• In the Expression field of the dn column (output), fill in with the exact expression expected by the LDAP server
to reach the target tree leaf and allow directory writing on the condition that you haven’t set it already in the
Base DN field of the tLDAPOutput component.

• In this use case, the GetResultName global variable is used to retrieve this path automatically. Press Ctrl
+Space bar to access the variable list and select tLDAPInput_1_RESULT_NAME.

• In the mail column’s expression field, type in the new email that will overwrite the current data in the LDAP
directory. In this example, we change to Pierre.Dupont@talend.com.

• Click OK to validate the changes.

• The tLogRow component does not need any particular setting.

• Then select the tLDAPOutput component to set the directory writing properties.



Scenario: Editing data in a LDAP directory

Talend Open Studio Components Reference Guide 919

• Set the Port and Host details manually if they aren’t stored in the Repository.

• In Base DN field, set the highest tree leaf you have the rights to access. If you have not set previously the exact
and full path of the target DN you want to access, then fill in it here. In this use case, the full DN is provided by
the dn output from the tMap component, therefore only the highest accessible leaf is given: o=directoryRoot.

• Select the relevant protocol to be used: LDAP for this example.

• Fill in the User and Password as expected by the LDAP directory.

• Fill in Multi-valued field separator with a comma as some fields may hold more than one value, separated
by a comma.

• Use the default setting of Alias Dereferencing and Referral Handling fields, respectively Always and Ignore.

• The Insert mode for this use case is Update (the email address).

• The schema was provided by the previous component through the propagation operation.

• Save the Job and execute.

The output shows the following fields: dn, uid and mail as defined in the Job.



tLDAPRenameEntry

920 Talend Open Studio Components Reference Guide

tLDAPRenameEntry

tLDAPRenameEntry properties

Component family Databases/LDAP

Function tLDAPRenameEntry renames entries in an LDAP directory.

Purpose The tLDAPRenameEntry component rename ones or more entries in a specific LDAP directory.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tLDAPConnection
component on the Component list to reuse the connection details
you already defined.

Host LDAP directory server IP address.

Port Number of the listening port of the server.

Base DN Path to user’s authorized tree leaf.

Protocol Select the protocol type on the list.

LDAP: no encryption is used,

LDAPS: secured LDAP,

TLS: certificate is used.

User and Password Fill in user authentication information.

Note that the login must match the LDAP syntax requirement to be
valid. e.g.: “cn=Directory Manager”.

Alias dereferencing Select the option on the list. Never improves search performance if
you are sure that no alias is to be dereferenced. By default, Always
is to be used:

Always: Always dereference aliases,

Never: Never dereferences aliases,

Searching: Dereferences aliases only after name resolution,

Finding: Dereferences aliases only during name resolution.

Referrals handling Select the option on the list:

Ignore: does not handle request redirections,

Follow: does handle request redirections.

Previous DN and New DN Select from the list the schema column that holds the old DN
(Previous DN) and the column that holds the new DN (New DN).

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.



Related scenarios

Talend Open Studio Components Reference Guide 921

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Reject link.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible LDAP queries. It is usually used as a one-component subjob
but you can use it with other components as well.

Note: Press Ctrl + Space bar to access the global variable list, including the GetResultName
variable to retrieve automatically the relevant DN Base.

Related scenarios

For use cases in relation with tLDAPRenameEntry, see the following scenarios:

• section Scenario: Displaying LDAP directory’s filtered content.

• section Scenario: Editing data in a LDAP directory.



tMaxDBInput

922 Talend Open Studio Components Reference Guide

tMaxDBInput

tMaxDBInput properties

Component family Databases/MaxDB

Function tMaxDBInput reads a database and extracts fields based on a query.

Purpose tMaxDBInput executes a DB query with a strictly defined order which must correspond to the
schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Host name Database server IP address

Port Listening port number of DB server.

Database Name of the database.

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table name Type in the table name.

Query type and Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Guess Query Click the Guess Query button to generate the query which
corresponds to your table schema in the Query field.

Guess schema Click the Guess schema button to retrieve the table schema.

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Limitation n/a



Related scenario

Talend Open Studio Components Reference Guide 923

Related scenario

For a related scenario, see:

• section Scenario 1: Displaying selected data from DB table.

• section Scenario 2: Using StoreSQLQuery variable.



tMaxDBOutput

924 Talend Open Studio Components Reference Guide

tMaxDBOutput

tMaxDBOutput properties

Component family Databases/MaxDB

Function tMaxDBOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tMaxDBOutput executes the action defined on the table and/or on the data contained in the table,
based on the flow incoming from the preceding component in the job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time and that the table must exist for the insert operation
to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create table: The table is removed and created again.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does not exist.

Clear table: The table content is deleted.

Truncate table: The table content is deleted. You do not have the
possibility to rollback the operation.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.



Related scenario

Talend Open Studio Components Reference Guide 925

You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the Update and Delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next to
the column names you want to use as a base for the Update
operation. Do the same in the Key in delete column for the
Delete operation.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before committing batches
of rows together into the DB. This option ensures transaction quality
(but not rollback) and, above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.

Enable debug mode Select this check box to display each step during processing entries
in a database.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a database. It also allows you to create a reject flow using a Row >
Rejects link to filter data in error. For an example of tMySqlOutput in use, see section Scenario 3:
Retrieve data in error with a Reject link.

Limitation n/a

Related scenario

For a related scenario, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection.

• section Scenario 1: Adding a new column and altering data in a DB table.



Related scenario

926 Talend Open Studio Components Reference Guide



tMaxDBRow

Talend Open Studio Components Reference Guide 927

tMaxDBRow

tMaxDBRow properties

Component family Databases/MaxDB

Function tMaxDBRow is the specific component for this database query. It executes the SQL query stated
onto the specified database. The row suffix means the component implements a flow in the job
design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tMaxDBRow acts on the actual DB
structure or on the data (although without handling data). The SQLBuilder tool helps you write
easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database.

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table name Type in the table name.

Query type and Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Guess Query Click the Guess Query button to generate the query which
corresponds to your table schema in the Query field.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

Use PreparedStatement Select this checkbox if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.



Related scenario

928 Talend Open Studio Components Reference Guide

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all possible SQL queries.

Limitation n/a

Related scenario

For a related scenario, see:

• section Scenario 1: Displaying selected data from DB table

• section Scenario 2: Using StoreSQLQuery variable



tParseRecordSet

Talend Open Studio Components Reference Guide 929

tParseRecordSet

You can find this component at the root of Databases group of the Palette of Talend Open Studio.
tParseRecordSet covers needs related indirectly to the use of any database.

tParseRecordSet properties

Component family Databases

Function tParseRecordSet parses a set of records from a database table or DB query and possibly returns
single records.

Purpose .Parses a recordset rather than individual records from a table.

Basic settings Prev. Comp. Column list Set the column from the database that holds the recordset.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Attribute table Set the position value of each column for single records from the
recordset.

Usage This component is used as intermediary component. It can be used as start component but only
input parameters are thus allowed.

Limitation This component is mainly designed for a use with the SP component Recordset feature.

Related Scenario

For an example of tParseRecordSet in use, see section Scenario 2: Using PreparedStatement objects to query
data.



tPostgresPlusBulkExec

930 Talend Open Studio Components Reference Guide

tPostgresPlusBulkExec

tPostgresPlusBulkExec properties

The tPostgresplusOutputBulk and tPostgresplusBulkExec components are generally used together as part of a
two step process. In the first step, an output file is generated. In the second step, this file is used in the INSERT
operation used to feed a database. These two steps are fused together in the tPostgresPlusOutputBulkExec
component, detailed in a separate section. The advantage of using two separate components is that the data can
be transformed before it is loaded in the database.

Component family Databases/PostgresPlus

Function tPostgresPlusBulkExec executes the Insert action on the data provided.

Purpose As a dedicated component, tPostgresPlusBulkExec allows gains in performance during Insert
operations to a DB2 database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant
tPostgresPlusConnection component on the Component List to
reuse the connection details you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Name of the DB schema.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.



Related scenarios

Talend Open Studio Components Reference Guide 931

Drop and create table: The table is removed and created again.

Create table: The table does not exist and gets created.

Create table if not exists: The table is created if it does not exist.

Clear table: The table content is deleted.

Truncate table: The table content is deleted. You do not have the
possibility to rollback the operation.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: You create the schema and store it locally for this
component only. Related topic: see Talend Open Studio User Guide.

Repository: You have already created the schema and stored it in
the Repository, hence can reuse it. Related topic: see Talend Open
Studio User Guide.

Advanced settings Action Select the action to be carried out

Bulk insert Bulk update Depending on the action selected, the
required information varies.

Field terminated by Character, string or regular expression to separate fields.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This dedicated component offers performance and flexibility of DB2 query handling.

Related scenarios

For tPostgresPlusBulkExec related topics, see:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Truncating and inserting file data into Oracle DB.



tPostgresPlusClose

932 Talend Open Studio Components Reference Guide

tPostgresPlusClose

tPostgresPlusClose properties

Component family Databases/Postgres

Function tPostgresPlusClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tPostgresPlusConnection component in the list if more
than one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with PostgresPlus components, especially with
tPostgresPlusConnection and tPostgresPlusCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tPostgresPlusCommit

Talend Open Studio Components Reference Guide 933

tPostgresPlusCommit

tPostgresPlusCommit Properties

This component is closely related to tPostgresPlusConnection and tPostgresPlusRollback. It usually does not
make much sense to use JDBC components independently in a transaction.

Component family Databases/PostgresPlus

Function Validates the data processed through the Job into the connected DB.

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the tPostgresPlusConnection component in the list if more
than one connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to link
tPostgresPlusCommit to your Job, your data will be
commited row by row. In this case, do not select the Close
connection check box or your connection will be closed
before the end of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with PostgresPlus components, especially with the
tPostgresPlusConnection and tPostgresPlusRollback components.

Limitation n/a

Related scenario

This component is closely related to tPostgresPlusConnection and tPostgresPlusRollback. It usually doesn’t
make much sense to use PostgresPlus components without using the tPostgresPlusConnection component to
open a connection for the current transaction.

For tPostgresPlusCommit related scenario, see section tMysqlConnection



tPostgresPlusConnection

934 Talend Open Studio Components Reference Guide

tPostgresPlusConnection

tPostgresPlusConnection Properties

This component is closely related to tPostgresPlusCommit and tPostgresPlusRollback. It usually doesn’t make
much sense to use one of PostgresPlus components without using the tPostgresPlusConnection component to
open a connection for the current transaction.

Component family Databases/PostgresPlus

Function Opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Exact name of the schema

Username and Password Enter your DB authentication data.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Advanced settings Auto commit Select this check box to automatically commit a transaction when it
is completed.

tStatCatcher Statistics Select this check box to gather the job processing metadata at a Job
level as well as at each component level.

Usage This component is to be used along with PostgresPlus components, especially with the
tPostgresPlusCommit and tPostgresPlusRollback components.

Limitation n/a

Related scenario

This component is closely related to tPostgresPlusCommit and tPostgresPlusRollback. It usually doesn’t make
much sense to use one of PostgresPlus components without using the tPostgresPlusConnection component to
open a connection for the current transaction.



Related scenario

Talend Open Studio Components Reference Guide 935

For tPostgresPlusConnection related scenario, see section tMysqlConnection



tPostgresPlusInput

936 Talend Open Studio Components Reference Guide

tPostgresPlusInput

tPostgresPlusInput properties

Component family Databases/ PostgresPlus

Function tPostgresPlusInput reads a database and extracts fields based on a query.

Purpose tPostgresPlusInput executes a DB query with a strictly defined order which must correspond to
the schema definition. Then it passes on the field list to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box when using a configured
tPostgresplusConnection component.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio User
Guide.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Schema Exact name of the schema.

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.



Related scenarios

Talend Open Studio Components Reference Guide 937

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table name Name of the table to be read.

Query type and Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Advanced settings Use cursor When selected, helps to decide the row set to work with at a time and
thus optimize performance.

Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component covers all possible SQL queries for Postgresql databases.

Related scenarios

For related scenarios, see:

• section Scenario 1: Displaying selected data from DB table.

• section Scenario 2: Using StoreSQLQuery variable.



tPostgresPlusOutput

938 Talend Open Studio Components Reference Guide

tPostgresPlusOutput

tPostgresPlusOutput properties

Component family Databases/PostgresPlus

Function tPostgresPlusOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tPostgresPlusOutput executes the action defined on the table and/or on the data contained in the
table, based on the flow incoming from the preceding component in the job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Use an existing connection Select this check box when using a configured
tPostgresPlusConnection component.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio User
Guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Exact name of the schema.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.



tPostgresPlusOutput properties

Talend Open Studio Components Reference Guide 939

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Drop a table if exists and create: The table is removed if already
exists and created again.

Clear a table: The table content is deleted.

Truncate table: The table content is deleted. You don not have the
possibility to rollback the operation.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, Job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the Update and Delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next to
the column names you want to use as a base for the Update
operation. Do the same in the Key in delete column for the
Delete operation.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before committing batches
of rows together into the DB. This option ensures transaction quality
(but not rollback) and, above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.



Related scenarios

940 Talend Open Studio Components Reference Guide

Use field options Select this check box to customize a request, especially when there
is double action on data.

Enable debug mode Select this check box to display each step during processing entries
in a database.

Support null in “SQL
WHERE” statement

Select this check box if you want to deal with the Null values
contained in a DB table.

Ensure that the Nullable check box is selected for the
corresponding columns in the schema.

Use batch size Select this check box to activate the batch mode for data processing.
In the Batch Size field that appears when this check box is selected,
you can type in the number you need to define the batch size to be
processed.

This check box is available only when you have selected
the Insert, the Update or the Delete option in the Action
on data field.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a table
or on the data of a table in a PostgresPlus database. It also allows you to create a reject flow using
a Row > Rejects link to filter data in error. For an example of tMySqlOutput in use, see section
Scenario 3: Retrieve data in error with a Reject link.

Related scenarios

For tPostgresPlusOutput related topics, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection.

• section Scenario 1: Adding a new column and altering data in a DB table.



tPostgresPlusOutputBulk

Talend Open Studio Components Reference Guide 941

tPostgresPlusOutputBulk

tPostgresPlusOutputBulk properties

The tPostgresplusOutputBulk and tPostgresplusBulkExec components are generally used together as part of a
two step process. In the first step, an output file is generated. In the second step, this file is used in the INSERT
operation used to feed a database. These two steps are fused together in the tPostgresPlusOutputBulkExec
component, detailed in a separate section. The advantage of using two separate components is that the data can
be transformed before it is loaded in the database.

Component family Databases/PostgresPlus

Function Writes a file with columns based on the defined delimiter and the PostgresPlus standards

Purpose Prepares the file to be used as parameter in the INSERT query to feed the PostgresPlus database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using
the data retrieved.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio User Guide.

Field separator Character, string or regular expression to separate fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Append Select this check box to add the new rows at the end of the file

Include header Select this check box to include the column header to the file.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job
designs. Related topic: see Talend Open Studio User Guide.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Usage This component is to be used along with tPostgresPlusBulkExec component. Used together
they offer gains in performance while feeding a PostgresPlus database.

Related scenarios

For use cases in relation with tPostgresplusOutputBulk, see the following scenarios:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.



Related scenarios

942 Talend Open Studio Components Reference Guide

• section Scenario: Truncating and inserting file data into Oracle DB.



tPostgresPlusOutputBulkExec

Talend Open Studio Components Reference Guide 943

tPostgresPlusOutputBulkExec

tPostgresPlusOutputBulkExec properties

The tPostgresplusOutputBulk and tPostgresplusBulkExec components are generally used together as part of a
two step process. In the first step, an output file is generated. In the second step, this file is used in the INSERT
operation used to feed a database. These two steps are fused together in the tPostgresPlusOutputBulkExec
component.

Component family Databases/PostgresPlus

Function Executes the Insert action on the data provided.

Purpose As a dedicated component, it allows gains in performance during Insert operations to a PostgresPlus
database.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Exact name of the schema.

Username and Password DB user authentication data.

Table Name of the table to be written. Note that only one table can be
written at a time and that the table must exist for the insert operation
to succeed.

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.

Clear a table: The table content is deleted.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Advanced settings Action Select the action to be carried out

Bulk insert Bulk update Depending on the action selected, the
required information varies.

File type Select the type of file being handled.

Null string String displayed to indicate that the value is null.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Field terminated by Character, string or regular expression to separate fields.

Text enclosure Character used to enclose text.



Related scenarios

944 Talend Open Studio Components Reference Guide

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is mainly used when no particular tranformation is required on the data to be
loaded onto the database.

Related scenarios

For use cases in relation with tPostgresPlusOutputBulkExec, see the following scenarios:

• section Scenario: Inserting transformed data in MySQL database.

• section Scenario: Inserting data in MySQL database.

• section Scenario: Truncating and inserting file data into Oracle DB.



tPostgresPlusRollback

Talend Open Studio Components Reference Guide 945

tPostgresPlusRollback

tPostgresPlusRollback properties

This component is closely related to tPostgresPlusCommit and tPostgresPlusConnection. It usually does not
make much sense to use these components independently in a transaction.

Component family Databases/PostgresPlus

Function tPostgresPlusRollback cancels the transaction committed in the connected DB.

Purpose This component avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tPostgresPlusConnection component in the list if more
than one connection are planned for the current job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with PostgresPlus components, especially with
tPostgresPlusConnection and tPostgresPlusCommit.

Limitation n/a

Related scenarios

For tPostgresPlusRollback related scenario, see section Scenario: Rollback from inserting data in mother/
daughter tables.



tPostgresPlusRow

946 Talend Open Studio Components Reference Guide

tPostgresPlusRow

tPostgresPlusRow properties

Component family Databases/Postgresplus

Function tPostgresPlusRow is the specific component for the database query. It executes the SQL query
stated onto the specified database. The row suffix means the component implements a flow in the
job design although it doesn’t provide output.

Purpose Depending on the nature of the query and the database, tPostgresPlusRow acts on the actual DB
structure or on the data (although without handling data). The SQLBuilder tool helps you write
easily your SQL statements.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant
tPostgresPlusConnection component on the Component list to
reuse the connection details you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio User
Guide.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Schema Exact name of the schema.

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.



Related scenarios

Talend Open Studio Components Reference Guide 947

Table name Name of the table to be read.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Use PreparedStatement Select this checkbox if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Related scenarios

For related topics, see:

• section Scenario 3: Combining two flows for selective output

• section Scenario: Resetting a DB auto-increment.

• section Scenario 1: Removing and regenerating a MySQL table index.



tPostgresPlusSCD

948 Talend Open Studio Components Reference Guide

tPostgresPlusSCD

tPostgresPlusSCD belongs to two component families: Business Intelligence and Databases. For more
information on it, see section tPostgresPlusSCD.



tPostgresPlusSCDELT

Talend Open Studio Components Reference Guide 949

tPostgresPlusSCDELT

tPostgresPlusSCDELT belongs to two component families: Business Intelligence and Databases. For more
information on it, see section tPostgresPlusSCDELT.



tSasInput

950 Talend Open Studio Components Reference Guide

tSasInput

Before being able to benefit from all functional objectives of the SAS components, make sure to install the following three
modules: sas.core.jar, sas.intrnet.javatools.jar and sas.svc.connection.jar in the path lib > java in your Talend Open Studio
directory. You can later verify, if needed whether the modules are successfully installed through the Modules view of the
Studio.

tSasInput properties

Component family Databases/SAS

Function tSasInput reads a database and extracts fields based on a query.

Purpose tSasInput executes a DB query with a strictly defined statement which must correspond to the
schema definition. Then it passes on the field list to the component that follows via a Row > Main
connection.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Host name SAS server IP address.

Port Listening port number of server.

Librefs Enter the directory name that holds the table to read followed by its
access path. For example:

“TpSas ‘C:/SAS/TpSas’”

Username and Password DB user authentication data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Table Name Enter the name of the table to read preceded by the directory name
that holds it. For example: “TpSas.Customers”.

Query type The query can be Built-in for a particular job, or for commonly used
query, it can be stored in the Repository to ease the query reuse.

Query If your query is not stored in the Repository, type in your DB query
paying particularly attention to properly sequence the fields in order
to match the schema definition.

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing metadata at a Job
level as well as at each component level.

Usage This component covers all possible SQL queries for databases using SAS connections.



Related scenarios

Talend Open Studio Components Reference Guide 951

Limitation n/a

Related scenarios

For related topics, see:

• section Scenario 1: Displaying selected data from DB table.

• section Scenario 2: Using StoreSQLQuery variable.

• section Scenario: Dynamic context use in MySQL DB insert.



tSasOutput

952 Talend Open Studio Components Reference Guide

tSasOutput

Before being able to benefit from all functional objectives of the SAS components, make sure to install the following three
modules: sas.core.jar, sas.intrnet.javatools.jar and sas.svc.connection.jar in the path lib > java in your Talend Open Studio
directory. You can later verify, if needed whether the modules are successfully installed through the Modules view of the
Studio.

tSasOutput properties

Component family Databases/SAS

Function tSasOutput writes, updates, makes changes or suppresses entries in a database.

Purpose tSasOutput executes the action defined on the table and/or on the data contained in the table, based
on the incoming flow from the preceding component in the Job.

Basic settings Use an existing connection Select this check box and click the relevant tSASConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

SAS URL Enter the URL to connect to the desired DB.

Driver JAR In the drop down list, select a desired available driver, or download
one from a local directory through clicking the three-dot button.

Class Name Type in the Class name to be pointed to in the driver.

Username and Password DB user authentication data.

Table Name of the table to read.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.



Related scenarios

Talend Open Studio Components Reference Guide 953

You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the Update and Delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next to
the column names you want to use as a base for the Update
operation. Do the same in the Key in delete column for the
Delete operation.

Clear data in table Select this check box to delete data in the selected table before any
operation.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before committing batches
of rows together into the DB. This option ensures transaction quality
(but not rollback) and, above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as a new column.

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tSasOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.

Enable debug mode Select this check box to display each step during processing entries
in a database.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility benefit of the DB query and covers all of the SQL queries
possible.

This component must be used as an output component. It allows you to carry out actions on a
table or on the data of a table in a SAS database. It also allows you to create a reject flow using a
Row > Rejects link to filter data in error. For an example of tMySQLOutput in use, see section
Scenario 3: Retrieve data in error with a Reject link.

Limitation n/a

Related scenarios
For scenarios in which tSasOutput might be used, see:

• section Scenario: Writing a row to a table in the MySql database via an ODBC connection.



Related scenarios

954 Talend Open Studio Components Reference Guide

• section Scenario 1: Adding a new column and altering data in a DB table.



tSQLiteClose

Talend Open Studio Components Reference Guide 955

tSQLiteClose

tSQLiteClose properties

Component family Databases/SQLite

Function tSQLiteClose closes the transaction committed in the connected DB.

Purpose Close a transaction.

Basic settings Component list Select the tSQLiteConnection component in the list if more than
one connection are planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with SQLite components, especially with tSQLiteConnection
and tSQLiteCommit.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tSQLiteCommit

956 Talend Open Studio Components Reference Guide

tSQLiteCommit

tSQLiteCommit Properties

This component is closely related to tSQLiteConnection and tSQLiteRollback. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/SQLite

Function tSQLiteCommit validates the data processed through the Job into the connected DB

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the tSQLiteConnection component in the list if more than
one connection are planned for the current Job.

Close Connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to link
tSQLiteCommit to your Job, your data will be commited
row by row. In this case, do not select the Close connection
check box or your connection will be closed before the end
of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with SQLite components, especially with tSQLiteConnection
and tSQLiteRollback.

Limitation n/a

Related scenario

This component is closely related to tSQLiteConnection and tSQLiteRollback. It usually does not make much
sense to use one of these without using a tSQLiteConnection component to open a connection for the current
transaction.

For tSQLiteCommit related scenario, see section Scenario: Inserting data in mother/daughter tables.



tSQLiteConnection

Talend Open Studio Components Reference Guide 957

tSQLiteConnection

SQLiteConnection properties

This component is closely related to tSQLiteCommit and tSQLiteRollback. It usually does not make much sense
to use one of these without using a tSQLiteConnection to open a connection for the current transaction.

Component family Databases/SQLite

Function tSQLiteConnection opens a connection to the database for a current transaction.

Purpose This component allows you to commit all of the Job data to an output database in just a single
transaction, once the data has been validated.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Database Name of the database.

Use or register a shared DB
Connection

Select this check box to share your connection or fetch a connection
shared by a parent or child Job. This allows you to share one single
DB connection among several DB connection components from
different Job levels that can be either parent or child.

This option is incompatible with the Use dynamic job and
Use an independent process to run subjob options of the
tRunJob component. Using a shared database connection
together with a tRunJob component with either of these
two options enabled will cause your Job to fail.

Shared DB Connection Name: set or type in the shared connection
name.

Advanced settings Auto commit Select this check box to automatically commit a transaction when it
is completed.

tStatCatcher Statistics Select this check box to gather the job processing metadata at a Job
level as well as at each component level.

Usage This component is to be used along with SQLite components, especially with tSQLiteCommit
and tSQLiteRollback.

Limitation n/a

Related scenarios

This component is closely related to tSQLiteCommit and tSQLiteRollback. It usually does not make much sense
to use one of these without using a tSQLiteConnection component to open a connection for the current transaction.

For tSQLiteConnection related scenario, see section tMysqlConnection



tSQLiteInput

958 Talend Open Studio Components Reference Guide

tSQLiteInput

tSQLiteInput Properties

Component family Databases

Function tSQLiteInput reads a database file and extracts fields based on an SQL query. As it embeds the
SQLite engine, no need of connecting to any database server.

Purpose tSQLiteInput executes a DB query with a defined command which must correspond to the schema
definition. Then it passes on rows to the next component via a Main row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tSQLiteConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see see Talend Open Studio User
Guide.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Database Filepath to the SQLite database file.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Query type Either Built-in or Repository.



Scenario: Filtering SQlite data

Talend Open Studio Components Reference Guide 959

Query If your query is not stored in the Repository, type in your DB query
paying particularly attention to properly sequence the fields in order
to match the schema definition.

Advanced settings Trim all the String/Char
columns

Select this check box to remove leading and trailing whitespace from
all the String/Char columns.

Trim column Remove leading and trailing whitespace from defined columns.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is standalone as it includes the SQLite engine. This is a startable component that
can iniate a data flow processing.

Scenario: Filtering SQlite data

This scenario describes a rather simple job which uses a select statement based on a filter to extract rows from a
source SQLite Database and feed an output SQLite table.

• Drop from the Palette, a tSQLiteInput and a tSQLiteOutput component from the Palette to the design
workspace.

• Connect the input to the output using a row main link.

• On the tSQLiteInput Basic settings, type in or browse to the SQLite Database input file.

• The file contains hundreds of lines and includes an ip column which the select statement will based on

• On the tSQLite Basic settings, edit the schema for it to match the table structure.



Scenario: Filtering SQlite data

960 Talend Open Studio Components Reference Guide

• In the Query field, type in your select statement based on the ip column.

• On the tSQLiteOutput component Basic settings panel, select the Database filepath.

• Type in the Table to be fed with the selected data.

• Select the Action on table and Action on Data. In this use case, the action on table is Drop and create and
the action on data is Insert.

• The schema should be synchronized with the input schema.

• Save the job and run it.

The data queried is returned in the defined SQLite file.



tSQLiteOutput

Talend Open Studio Components Reference Guide 961

tSQLiteOutput

tSQLiteOutput Properties

Component family Databases

Function tSQLiteOutput writes, updates, makes changes or suppresses entries in an SQLite database. As it
embeds the SQLite engine, no need of connecting to any database server.

Purpose tSQLiteOutput executes the action defined on the table and/or on the data contained in the table,
based on the flow incoming from the preceding component in the job.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tSQLiteConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio User
Guide.

Click this icon to open a database connection wizard and store the
database connection parameters you set in the component Basic
settings view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Database Filepath to the Database file

Table Name of the table to be written. Note that only one table can be
written at a time

Action on table On the table defined, you can perform one of the following
operations:

None: No operation is carried out.

Drop and create a table: The table is removed and created again.

Create a table: The table does not exist and gets created.

Create a table if not exists: The table is created if it does not exist.



tSQLiteOutput Properties

962 Talend Open Studio Components Reference Guide

Drop a table if exists and create: The table is removed if it already
exists and created again.

Clear a table: The table content is deleted.

Action on data On the data of the table defined, you can perform:

Insert: Add new entries to the table. If duplicates are found, job
stops.

Update: Make changes to existing entries

Insert or update: Add entries or update existing ones.

Update or insert: Update existing entries or create it if non existing

Delete: Remove entries corresponding to the input flow.

It is necessary to specify at least one column as a primary
key on which the Update and Delete operations are based.
You can do that by clicking Edit Schema and selecting
the check box(es) next to the column(s) you want to
set as primary key(s). For an advanced use, click the
Advanced settings view where you can simultaneously
define primary keys for the Update and Delete operations.
To do that: Select the Use field options check box and then
in the Key in update column, select the check boxes next to
the column names you want to use as a base for the Update
operation. Do the same in the Key in delete column for the
Delete operation.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic:see Talend Open
Studio User Guide.

Die on error This check box is selected by default. Clear the check box to skip the
row on error and complete the process for error-free rows. If needed,
you can retrieve the rows on error via a Row > Rejects link.

Advanced settings Commit every Enter the number of rows to be completed before committing batches
of rows together into the DB. This option ensures transaction quality
(but not rollback) and, above all, better performance at execution.

Additional Columns This option is not offered if you create (with or without drop) the
DB table. This option allows you to call SQL functions to perform
actions on columns, which are not insert, nor update or delete actions,
or action that require particular preprocessing.

Name: Type in the name of the schema column to be altered or
inserted as new column

SQL expression: Type in the SQL statement to be executed in order
to alter or insert the relevant column data.

Position: Select Before, Replace or After following the action to be
performed on the reference column.

Reference column: Type in a column of reference that the
tDBOutput can use to place or replace the new or altered column.

Use field options Select this check box to customize a request, especially when there
is double action on data.

Enable debug mode Select this check box to display each step during processing entries
in a database.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component must be connected to an Input component. It allows you to carry out actions on a
table or on the data of a table in an SQLite database. It also allows you to create reject flows using



Related Scenario

Talend Open Studio Components Reference Guide 963

a Row > Reject link to filter erroneous data. For an example of tSQLiteOuput in use, see section
Scenario 3: Retrieve data in error with a Reject link.

Related Scenario

For scenarios related to tSQLiteOutput, see section Scenario 3: Retrieve data in error with a Reject link.



tSQLiteRollback

964 Talend Open Studio Components Reference Guide

tSQLiteRollback

tSQLiteRollback properties

This component is closely related to tSQLiteCommit and tSQLiteConnection. It usually does not make much
sense to use these components independently in a transaction.

Component family Databases/SQLite

Function tSQLiteRollback cancels the transaction committed in the connected DB.

Purpose Avoids to commit part of a transaction involuntarily.

Basic settings Component list Select the tSQLiteConnection component in the list if more than
one connection are planned for the current Job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with SQLite components, especially with tSQLiteConnection
and tSQLiteCommit.

Limitation n/a

Related scenarios

For tSQLiteRollback related scenario, see section Scenario: Rollback from inserting data in mother/daughter
tables.



tSQLiteRow

Talend Open Studio Components Reference Guide 965

tSQLiteRow

tSQLiteRow Properties

Component family Databases

Function tSQLiteRow executes the defined query onto the specified database and uses the parameters bound
with the column.

Purpose A prepared statement uses the input flow to replace the placeholders with the values for each
parameters defined. This component can be very useful for updates.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file in which the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

Use an existing connection Select this check box and click the relevant tSQLiteConnection
component on the Component list to reuse the connection details
you already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB connection
across Job levels, see Use or register a shared
DB connection in any database connection component
corresponding to the database you are using.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see Talend Open Studio User
Guide.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic :see Talend Open
Studio User Guide.

Query type Either Built-in or Repository.

Built-in: Fill in manually the query statement or build it graphically
using SQLBuilder

Repository: Select the relevant query stored in the Repository. The
Query field gets accordingly filled in.

Query Enter your DB query paying particularly attention to properly
sequence the fields in order to match the schema definition.



Scenario: Updating SQLite rows

966 Talend Open Studio Components Reference Guide

Die on error Clear this check box to skip the row on error and complete the
process for error-free rows.

Advanced settings Propagate QUERY’s
recordset

Select this check box to insert the result of the query into a COLUMN
of the current flow. Select this column from the use column list.

This option allows the component to have a different
schema from that of the preceding component. Moreover,
the column that holds the QUERY’s recordset should be
set to the type of Object and this component is usually
followed by tParseRecordSet.

Use PreparedStatement Select this checkbox if you want to query the database using
a PreparedStatement. In the Set PreparedStatement Parameter
table, define the parameters represented by “?” in the SQL instruction
of the Query field in the Basic Settings tab.

Parameter Index: Enter the parameter position in the SQL
instruction.

Parameter Type: Enter the parameter type.

Parameter Value: Enter the parameter value.

This option is very useful if you need to execute the same
query several times. Performance levels are increased

Commit every Number of rows to be completed before committing batches of rows
together into the DB. This option ensures transaction quality (but not
rollback) and above all better performance on executions.

tStat Catcher Statistics Select this check box to collect log data at the component level.

Usage This component offers the flexibility of the DB query and covers all possible SQL queries.

Scenario: Updating SQLite rows

This scenario describes a job which updates an SQLite database file based on a prepared statement and using a
delimited file.

• Drop a tFileInputDelimited and a tSQLiteRow component from the Palette to the design workspace.

• On the tFileInputDelimited Basic settings panel, browse to the input file that will be used to update rows in
the database.

• There is no Header nor Footer. The Row separator is a carriage return and the Field separator is a semi-colon.



Scenario: Updating SQLite rows

Talend Open Studio Components Reference Guide 967

• Click the [...] button next to Edit schema and define the schema structure in case it is not stored in the
Repository.

• Make sure the length and type are respectively correct and large enough to define the columns.

• Then in the tSQLiteRow Basic settings panel, set the Database filepath to the file to be updated.

• The schema is read-only as it is required to match the input schema.

• Type in the query or retrieve it from the Repository. In this use case, we updated the type_os for the id defined
in the Input flow. The statement is as follows: “Update download set type_os=? where id=?”.

• Then select the Use PreparedStatement check box to display the placeholders’ parameter table.



Related scenarios

968 Talend Open Studio Components Reference Guide

• In the Input parameters table, add as many lines as necessary to cover all placeholders. In this scenario, type_os
and id are to be defined.

• Set the Commit every field.

• Save the job and press F6 to run it.

The download table from the SQLite database is thus updated with new type_os code according to the delimited
input file.

Related scenarios

For a related scenario, see:

• section Scenario 3: Combining two flows for selective output



Talend Open Studio Components Reference Guide

DotNET components
This chapter details the main components which you can find in the DotNET family of the Palette in the
Integration perspective of the Talend Studio.

The DotNET family comprises the most popular database connectors that are utilized to integrate with .NET
objects.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.



tDotNETInstantiate

970 Talend Open Studio Components Reference Guide

tDotNETInstantiate

tDotNETInstantiate properties

Component family DotNET

Function tDotNETInstantiate  instantiates an object in the .NET for later reuse.

Purpose tDotNETInstantiate invokes the constructor of a .NET object that is intended for later reuse.

Basic settings Dll to load Type in the path, or browse to the DLL library containing
the classe(es) of interest or enter the assembly’s name to be
used. For example, System.Data, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089 for an OleDb assembly.

 Fully qualified class name(i.e.
ClassLibrary1.NameSpace2.Class1)

Enter a fully qualified name for the class of interest.

 Value(s) to pass to the constructor Click the plus button to add one or more values to be passed to the
constructor for the object. Or, leave this table empty to call a default
constructor for the object.

The valid value(s) should be the parameters required by the class to
be used.

 Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component can be used as a start component in a flow or an independent subjob

To use this component, you must first install the runtime DLLs, for example janet-win32.dll for Windows
32-bit version and janet-win64.dll for Windows 64-bit version, from the corresponding Microsoft Visual
C++ Redistributable Package. This allows you to avoid errors like the UnsatisfiedLinkError on dependent
DLL.

So ensure that the runtime and all of the other DLLs which the DLL to be called depends on are installed
and their versions are consistent among one another.

The required DLLs can be installed in the System32 folder or in the bin folder of the Java runtime
to be used.

If you need to export a Job using this component to run it outside the Studio, you have to specify
the runtime container of interest by setting the -Djava.library.path argument accordingly.

Related scenario

For a related scenario, see section Scenario: Utilizing .NET in Talend.



tDotNETRow

Talend Open Studio Components Reference Guide 971

tDotNETRow

tDotNETRow properties

Component family DotNET

Function tDotNETRow  sends data to and from libraries and classes within .NET or other custom DLL files.

Purpose tDotNETRow helps you facilitate data transform by utilizing custom or built-in .NET classes.

 Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the number of fields to
be processed and passed on to the next component. The schema is
either built-in or remotely stored in the Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties are stored.
The following fields are pre-filled in using fetched data

Use a static method Select this check box to invoke a static method in .NET and this will
disable Use an existing intance check box.

Propagate a data to output Select this check box to propagate a transformed data to output.

Use an existing instance Select this check box to reuse an existing instance of a .NET object
from the Existing instance to use list.

Existing instance to use: Select an existing instance of .NET objects
created by the other .NET components from the list.

This check box will be disabled if you have selected
Use a static method and selecting this check box will
disable Dll to load, Fully qualified class name(i.e.
ClassLibrary1.NameSpace2.Class1) and Value(s) to
pass to the constructor.

Dll to load Type in the path, or browse to the DLL library containing
the class(es) of interest or enter the assembly's name to be
used. For example, System.Data, Version=2.0.0.0, Culture=neutral,
PublicKeyToken=b77a5c561934e089 for an OleDb assembly.

 Fully qualified class name(i.e.
ClassLibrary1.NameSpace2.Class1)

Enter a fully qualified name for the class of interest.

 Method name Fill this field with the name of the method to be invoked in .NET.

Value(s) to pass to the constructor Click the plus button to add one or more lines for values to be passed
to the constructor for the object. Or, leave this table empty to call a
default constructor for the object.

The valid value(s) should be the parameters required by the class to
be used.

Method Parameters Click the plus button to add one or more lines for parameters to be
passed to the method.

Output value target column Select a column in the output row from the list to put value into it.

 Advanced settings Create a new instance at each row Select this check box to create a new instance at each row that passes
through the component.

Method doesn't return a value Select this check box to invoke a method without returning a value
as a result of the processing.

Returns an instance of a .NET Object Select this check box to return an instance of a .NET object as a result
of a invoked method.



Scenario: Utilizing .NET in Talend

972 Talend Open Studio Components Reference Guide

Store the returned value for later use Select this check box to store the returned value of a method for later
reuse in another tDotNETRow component.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is utilized to integrate with .NET objects.

To use this component, you must first install the runtime DLLs, for example janet-win32.dll for Windows
32-bit version and janet-win64.dll for Windows 64-bit version, from the corresponding Microsoft Visual
C++ Redistributable Package. This allows you to avoid errors like the UnsatisfiedLinkError on dependent
DLL.

So ensure that the runtime and all of the other DLLs which the DLL to be called depends on are installed
and their versions are consistent among one another.

The required DLLs can be installed in the System32 folder or in the bin folder of the Java runtime
to be used.

If you need to export a Job using this component to run it outside the Studio, you have to specify
the runtime container of interest by setting the -Djava.library.path argument accordingly.

Scenario: Utilizing .NET in Talend

This scenario describes a three-component Job that uses a DLL library containing a class called Test1.Class1 Class
and invokes a method on it that processes the value and output the result onto the console.

Prerequisites

Before replicating this scenario, you need first to build up your runtime environment.

• Create the DLL to be loaded by tDotNETInstantiate

This example class built into .NET reads as follows:

using System;
using System.Collections.Generic;
using System.Text;

namespace Test1
{
    public class Class1
    {
        string s = null;
        public Class1(string s)
        {



Scenario: Utilizing .NET in Talend

Talend Open Studio Components Reference Guide 973

            this.s = s;
        }

        public string getValue()
        {
            return "Return Value from Class1: " + s;
        }

    }
    }

This class reads the input value and adds the text Return Value from Class1: in front of this value. It is compiled
using the latest .NET.

• Install the runtime DLL from the latest .NET. In this scenario, we use janet-win32.dll on Windows 32-bit version
and place it in the System32 folder.

Thus the runtime DLL is compatible with the DLL to be loaded.

Connecting components

1. Drop the following components from the Palette to the design workspace: tDotNETInstantiate,
tDotNETRow and tLogRow.

2. Connect tDotNETInstantiate to tDotNETRow using a Trigger On Subjob OK connection.

3. Connect tDotNETRow to tLogRow using a Row Main connection.

Configuring tDotNETInstantiate

1. Double-click tDotNETInstantiate to display its Basic settings view and define the component properties.

2. Click the three-dot button next to the Dll to load field and browse to the DLL file to be loaded. Alternatively,
you can fill the field with an assembly. In this example, we use :

"C:/Program Files/ClassLibrary1/bin/Debug/ClassLibrary1.dll""

3. Fill the Fully qualified class name field with a valid class name to be used. In this example, we use:

"Test1.Class1"

4. Click the plus button beneath the Value(s) to pass to the constructor table to add a new line for the value
to be passed to the constructor.



Scenario: Utilizing .NET in Talend

974 Talend Open Studio Components Reference Guide

In this example, we use:

"Hello world"

Configuring tDotNETRow

1. Double-click tDotNETRow to display its Basic settings view and define the component properties.

2. Select Propagate data to output check box.

3. Select Use an existing instance check box and select tDotNETInstantiate_1 from the Existing instance
to use list on the right.

4. Fill the Method Name field with a method name to be used. In this example, we use "getValue", a custom
method.

5. Click the three-dot button next to Edit schema to add one column to the schema.

Click the plus button beneath the table to add a new column to the schema and click OK to save the setting.

6. Select newColumn from the Output value target column list.

Configuring tLogRow

1. Double-click tLogRow to display its Basic settings view and define the component properties.



Scenario: Utilizing .NET in Talend

Talend Open Studio Components Reference Guide 975

2. Click Sync columns button to retrieve the schema defined in the preceding component.

3. Select Table in the Mode area.

Save your Job and press F6 to execute it.

From the result, you can read that the text Return Value from Class1 is added in front of the retrieved value
Hello world.



Talend Open Studio Components Reference Guide



Talend Open Studio Components Reference Guide

ELT components
This chapter details the main components that you can find in the ELT family of the Palette in the Integration
perspective of the Talend Studio.

The ELT family groups together the most popular database connectors and processing components, all dedicated
to the ELT mode where the target DBMS becomes the transformation engine.

This mode supports all of the most popular databases including Teradata, Oracle, Vertica, Netezza, Sybase, etc.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.



tCombinedSQLAggregate

978 Talend Open Studio Components Reference Guide

tCombinedSQLAggregate

tCombinedSQLAggregate properties

Component family ELT/CombinedSQL

Function tCombinedSQLAggregate collects data values from one or more columns of a table
for statistical purposes. This component has real-time capabilities since it runs the data
transformation on the DBMS itself.

Purpose Helps to provide a set of matrix based on values or calculations.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created the schema and stored it
in the Repository. You can reuse it in various projects and Jobs.
Related topic: see Talend Open Studio User Guide.

Group by Define the aggregation sets, the values of which will be used for
calculations.

Output Column: Select the column label in the list offered
according to the schema structure you defined. You can add
as many output columns as you wish to make more precise
aggregations.

Input Column: Select the input column label to match the
output column’s expected content, in case the output label of the
aggregation set needs to be different.

Operations Select the type of operation along with the value to use for the
calculation and the output field.

Output Column: Select the destination field in the list.

Function: Select any of the following operations to perform on
data: count, min, max, avg, sum, first, last, distinct and count
(distinct).

Input column: Select the input column from which you want to
collect the values to be aggregated.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is an intermediary component. The use of the corresponding connection and
commit components is recommended when using this component to allow a unique connection
to be open and then closed during the Job execution.

Limitation n/a



Scenario: Filtering and aggregating table columns directly on the DBMS

Talend Open Studio Components Reference Guide 979

Scenario: Filtering and aggregating table columns
directly on the DBMS

The following scenario creates a Job that opens a connection to a MySQL database and:

• instantiates the schema from a database table in part (for column filtering),

• filters two columns in the same table to get only the data that meets two filtering conditions,

• collects data from the filtered column(s), grouped by specific value(s) and writes aggregated data in a target
database table.

To filter and aggregate database table columns:

• Drop the following components from the Palette onto the design workspace: tMysqlConnection,
tCombinedSQLInput, tCombinedSQLFilter, tCombinedSQLAggregate, tCombinedSQLOutput and
tMysqlCommit.

• Connect tMysqlConnection, tCombinedSQLInput and tMysqlCommit using OnSubjobOk links.

• Connect tCombinedSQLInput, tCombinedSQLFilter, tCombinedSQLAggregate and
tCombinedSQLOutput using a Combine link.

• In the design workspace, select tMysqlConnection and click the Component tab to define its basic settings.

• In the Basic settings view, set the database connection details manually or select Repository from the Property
Type list and select your DB connection if it has already been defined and stored in the Metadata area of the
Repository tree view.

For more information on centralizing DB connection details in the Repository, see Talend Open Studio User Guide.



Scenario: Filtering and aggregating table columns directly on the DBMS

980 Talend Open Studio Components Reference Guide

• In the design workspace, select tCombinedSQLInput and click the Component tab to access the configuration
panel.

• Enter the source table name in the Table field, and click the three-dot button next to Edit schema to define
the data structure.

The schema defined through tCombinedSQLInput can be different from that of the source table as you can just instantiate
the desired columns of the source table. Therefore, tCombinedSQLInput also plays a role of column filtering.

In this scenario, the source database table has seven columns: id, first_name, last_name, city, state, date_of_birth,
and salary while tCombinedSQLInput only instantiates four columns that are needed for the aggregation: id,
state, date_of_birth, and salary from the source table.

• In the design workspace, select tCombinedSQLFilter and click the Component tab to access the configuration
panel.

• Click the Sync columns button to retrieve the schema from the previous component, or configure the schema
manually by selecting Built-in from the Schema list and clicking the [...] button next to Edit schema.

When you define the data structure for tCombinedSQLFilter, column names automatically appear in the Input column
list in the Conditions table.

In this scenario, the tCombinedSQLFilter component instantiates four columns: id, state, date_of_birth, and
salary.



Scenario: Filtering and aggregating table columns directly on the DBMS

Talend Open Studio Components Reference Guide 981

• In the Conditions table, set input parameters, operators and expected values in order to only extract the records
that fulfill these criteria.

In this scenario, the tCombinedSQLFilter component filters the state and date_of_birth columns in the source
table to extract the employees who were born after Oct. 19, 1960 and who live in the states Utah, Ohio and Iowa.

• Select And in the Logical operator between conditions list to apply the two conditions at the same time. You
can also customize the conditions by selecting the Use custom SQL box and editing the conditions in the code
box.

• In the design workspace, select tCombinedSQLAggregate and click the Component tab to access the
configuration panel.

• Click the Sync columns button to retrieve the schema from the previous component, or configure the schema
manually by selecting Built-in from the Schema list and clicking on the [...] button.

The tCombinedSQLAggregate component instantiates four columns: id, state, date_of_birth, and salary, coming
from the previous component.

The Group by table helps you define the data sets to be processed based on a defined column. In this example:
State.

• In the Group by table, click the [+] button to add one line.

• In the Output column drop-down list, select State. This column will be used to hold the data filtered on State.

The Operations table helps you define the type of aggregation operations to be performed. The Output column
list available depends on the schema you want to output (through the tCombinedSQLOutput component). In this
scenario, we want to group employees based on the state they live. We want then count the number of employees
per state, calculate the average/lowest/highest salaries as well as the oldest/youngest employees for each state.

• In the Operations table, click the [+] button to add one line and then click in the Output column list to select
the output column that will hold the computed data.

• In the Function field, select the relevant operation to be carried out.



Scenario: Filtering and aggregating table columns directly on the DBMS

982 Talend Open Studio Components Reference Guide

• In the design workspace, select tCombinedSQLOutput and click the Component tab to access the
configuration panel.

• On the Database type list, select the relevant database.

• On the Component list, select the relevant database connection component if more than one connection is used.

• In the Table field, enter the name of the target table which will store the results of the aggregation operations.

In this example, the Schema field doesn't need to be filled out as the database is not Oracle.

• Click the three-dot button next to Edit schema to define the data structure of the target table.

In this scenario, tCombinedSQLOutput instantiates seven columns coming from the previous component in the
Job design (tCombinedSQLAggregate): state, empl_count, avg_salary, min_salary, max_salary, oldest_empl
and youngest_empl.

• In the design workspace, select tCombinedSQLCommit and click the Component tab to access the
configuration panel.

• On the Component list, select the relevant database connection component if more than one connection is used.

• Save your Job and press F6 to execute it.

Rows are inserted into a seven-column table empl_by_state in the database. The table shows, per defined state,
the number of employees, the average salary, the lowest and highest salaries as well as the oldest and youngest
employees.



tCombinedSQLFilter

Talend Open Studio Components Reference Guide 983

tCombinedSQLFilter

tCombinedSQLFilter Properties

Component family ELT/CombinedSQL

Function tCombinedSQLFilter allows you to alter the schema of a source table through column name
mapping and to define a row filter on that table. Therefore, it can be used to filter columns and
rows at the same time. This component has real-time capabilities since it runs the data filtering
on the DBMS itself.

Purpose Helps to filter data by reorganizing, deleting or adding columns based on the source table and
to filter the given data source using the filter conditions.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created the schema and stored it
in the Repository. You can reuse it in various projects and Jobs.
Related topic: see Talend Open Studio User Guide.

Logical operator between
conditions

Select the logical operator between the filter conditions defined in
the Conditions panel.

Two operators are available: Or, And.

Conditions Select the type of WHERE clause along with the values and the
columns to use for row filtering.

Input Column: Select the column to filter in the list.

Operator: Select the type of the WHERE clause: =, < >, >, <, >=,
<=, LIKE, IN, NOT IN, and EXIST IN.

Values: Type in the values to be used in the WHERE clause.

Negate: Select this check box to enable the condition that is
opposite to the current setting.

Use custom SQL Customize a WHERE clause by selecting this check box and
editing in the SQL Condition field.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is an intermediary component. The use of the corresponding connection and
commit components is recommended when using this component to allow a unique connection
to be open and then closed during the Job execution.

Limitation n/a



Related Scenario

984 Talend Open Studio Components Reference Guide

Related Scenario

For a related scenario, see section Scenario: Filtering and aggregating table columns directly on the DBMS.



tCombinedSQLInput

Talend Open Studio Components Reference Guide 985

tCombinedSQLInput

tCombinedSQLInput properties

Component family ELT/CombinedSQL

Function tCombinedSQLInput extracts fields from a database table based on its schema. This component
also has column filtering capabilities since its schema can be different from that of the database
table.

Purpose tCombinedSQLInput extracts fields from a database table based on its schema definition.
Then it passes on the field list to the next component via a Combine row link. The schema
of tCombinedSQLInput can be different from that of the source database table but must
correspond to it in terms of the column order.

Basic settings Table Name of the source database table.

Schema Name of the source table’s schema. This field has to be filled if
the database is Oracle.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created the schema and stored it
in the Repository. You can reuse it in various projects and Jobs.
Related topic: see Talend Open Studio User Guide.

Add additional columns This option allows you to call SQL functions to perform actions
on columns, provided that these are not insert, update or delete
actions, or actions that require pre-processing.

Name: Type in the name of the schema column to be altered.

SQL expression: Type in the SQL statement to be executed in
order to alter the data in the corresponding column.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is an intermediary component. The use of the corresponding connection and
commit components is recommended when using this component to allow a unique connection
to be open and then closed during the Job execution.

Limitation n/a

Related scenario

For a related scenario, see section Scenario: Filtering and aggregating table columns directly on the DBMS.



tCombinedSQLOutput

986 Talend Open Studio Components Reference Guide

tCombinedSQLOutput

tCombinedSQLOutput properties

Component family ELT/CombinedSQL

Function tCombinedSQLOutput inserts records to an existing database table.

Purpose tCombinedSQLOutput inserts records from the incoming flow to an existing database table.

Basic settings Database Type Select the database type.

Component list Select the relevant DB connection component in the list if more
than one connection is used for the current Job.

Table Name of the target database table.

Schema Name of the target database table’s schema. This field has to be
filled if the database is Oracle.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created the schema and stored it
in the Repository. You can reuse it in various projects and Jobs.
Related topic: see Talend Open Studio User Guide.

Action on data Select INSERT from the list to insert the records from the
incoming flow to the target database table.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is an intermediary component. The use of the corresponding connection and
commit components is recommended when using this component to allow a unique connection
to be open and then closed during the Job execution.

Limitation n/a

Related scenario

For a related scenario, see section Scenario: Filtering and aggregating table columns directly on the DBMS.



tELTGreenplumInput

Talend Open Studio Components Reference Guide 987

tELTGreenplumInput

tELTGreenplumInput properties

The three ELT Greenplum components are closely related, in terms of their operating conditions. These
components should be used to handle Greenplum DB schemas to generate Insert statements, including clauses,
which are to be executed in the DB output table defined.

Component family ELT/Map/Greenplum

Function Provides the table schema to be used for the SQL statement to execute.

Purpose Allows you to add as many Input tables as required for the most complicated Insert statement.

Basic settings Schema and Edit Schema A schema is a row description, i.e. it defines the number of fields that
will be processed and passed on to the next component.

Click Edit Schema to make changes to the schema. Note that if you
make changes, the schema automatically becomes built-in.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Default Table Name Type in the default table name.

Default Schema Name Type in the default schema name.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage tELTGreenplumInput is to be used along with the tELTGreenplumMap. Note that the Output
link to be used with these components must correspond strictly to the syntax of the table name

Note that the ELT components do not handle actual data flow but only schema
information.

Related scenarios

For use cases in relation with tELTGreenplumInput, see:

• section Scenario: Mapping data using a simple implicit join

• section Scenario 1: Aggregating table columns and filtering

• section Scenario 2: ELT using an Alias table



tELTGreenplumMap

988 Talend Open Studio Components Reference Guide

tELTGreenplumMap

tELTGreenplumMap properties

The three ELT Greenplum components are closely related, in terms of their operating conditions. These
components should be used to handle Greenplum DB schemas to generate Insert statements, including clauses,
which are to be executed in the DB output table defined.

Component family ELT/Map/Greenplum

Function Helps you to build the SQL statement graphically, using the table provided as input.

Purpose Uses the tables provided as input, to feed the parameter in the built statement. The statement can
include inner or outer joins to be implemented between tables or between one table and its aliases.

Basic settings Use an existing connection Select this check box and select the appropriate Connection
component from the Component list if you want to re-use
connection parameters that you have already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

ELT Greenplum Map Editor The ELT Map editor allows you to define the output schema and
make a graphical build of the SQL statement to be executed. The
column names of schema can be different from the column names
in the database.

Style link Select the way in which links are displayed.

Auto: By default, the links between the input and output schemas
and the Web service parameters are in the form of curves.

Bezier curve: Links between the schema and the Web service
parameters are in the form of curve.

Line: Links between the schema and the Web service parameters are
in the form of straight lines.

This option slightly optimizes performance.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.



Scenario: Mapping data using a simple implicit join

Talend Open Studio Components Reference Guide 989

Repository: Select the Repository file where Properties are stored.
The following fields are pre-filled in using fetched data.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and Password DB user authentication data.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage tELTGreenplumMap is used along with tELTGreenplumInput and tELTGreenplumOutput.
Note that the Output link to be used with these components must correspond strictly to the syntax
of the table name.

Note that the ELT components do not handle actual data flow but only schema
information.

Scenario: Mapping data using a simple implicit join

In this scenario, a tELTGreenplumMap component is deployed to retrieve the data from the source table
employee_by_statecode, compares its statecode column against the table statecode, and then maps the desired
columns from the two tables to the output table employee_by_state.

Before the Job execution, the three tables, employee_by_statecode, statecode and employee_by_state look like:

Dropping components

1. Drop tGreenplumConnection, tELTGreenplumInput (X2), tELTGreenplumMap,
tELTGreenplumOutput, tGreenplumCommit, tGreenplumInput and tLogRow from the Palette onto
the workspace.

2. Rename tGreenplumConnection as connect_to_greenplum_host, two tELTGreenplumInput
components as employee+statecode and statecode, tELTGreenplumMap as match
+map, tELTGreenplumOutput as map_data_output, tGreenplumCommit as commit_to_host,
tGreenplumInput as read_map_output_table and tLogRow as show_map_data.

3. Link tGreenplumConnection to tELTGreenplumMap using an OnSubjobOk trigger.

Link tELTGreenplumMap to tGreenplumCommit using an OnSubjobOk trigger.

Link tGreenplumCommit to tGreenplumInput using an OnSubjobOk trigger.

4. Link tGreenplumInput to tLogRow using a Row > Main connection.

The two tELTGreenplumInput components and tELTGreenplumOutput will be linked to
tELTGreenplumMap later once the relevant tables have been defined.



Scenario: Mapping data using a simple implicit join

990 Talend Open Studio Components Reference Guide

Configuring the components

1. Double-click tGreenplumConnection to open its Basic settings view in the Component tab.

In the Host and Port fields, enter the context variables for the Greenplum server.

In the Database field, enter the context variable for the Greenplum database.

In the Username and Password fields, enter the context variables for the authentication credentials.

For more information on context variables, see the Talend Open Studio User Guide.

2. Double-click employee+statecode to open its Basic settings view in the Component tab.

In the Default table name field, enter the name of the source table, namely employee_by_statecode.

Click the [...] button next to the Edit schema field to open the schema editor.



Scenario: Mapping data using a simple implicit join

Talend Open Studio Components Reference Guide 991

Click the [+] button to add three columns, namely id, name and statecode, with the data type as INT4,
VARCHAR, and INT4 respectively.

Click OK to close the schema editor.

Link employee+statecode to tELTGreenplumMap using the output employee_by_statecode.

3. Double-click statecode to open its Basic settings view in the Component tab.

In the Default table name field, enter the name of the lookup table, namely statecode.

4. Click the [...] button next to the Edit schema field to open the schema editor.

Click the [+] button to add two columns, namely state and statecode, with the data type as VARCHAR and
INT4 respectively.



Scenario: Mapping data using a simple implicit join

992 Talend Open Studio Components Reference Guide

Click OK to close the schema editor.

Link statecode to tELTGreenplumMap using the output statecode.

5. Click tELTGreenplumMap to open its Basic settings view in the Component tab.

Select the Use an existing connection check box.

6. Click the [...] button next to the ELT Greenplum Map Editor field to open the map editor.

7. Click the [+] button on the upper left corner to open the table selection box.



Scenario: Mapping data using a simple implicit join

Talend Open Studio Components Reference Guide 993

Select tables employee_by_statecode and statecode in sequence and click Ok.

The tables appear on the left panel of the editor.

8. On the upper right corner, click the [+] button to add an output table, namely employee_by_state.

Click Ok to close the map editor.

9. Double-click tELTGreenplumOutput to open its Basic settings view in the Component tab.

In the Default table name field, enter the name of the output table, namely employee_by_state.

10. Click the [...] button next to the Edit schema field to open the schema editor.



Scenario: Mapping data using a simple implicit join

994 Talend Open Studio Components Reference Guide

Click the [+] button to add three columns, namely id, name and state, with the data type as INT4, VARCHAR,
and VARCHAR respectively.

Click OK to close the schema editor.

Link tELTGreenplumMap to tELTGreenplumOutput using the table output employee_by_state.

Click OK on the pop-up window below to retrieve the schema of tELTGreenplumOutput.

Now the map editor's output table employee_by_state shares the same schema as that of
tELTGreenplumOutput.

11. Double-click tELTGreenplumMap to open the map editor.

Drop the column statecode from table employee_by_statecode to its counterpart of the table statecode,
looking for the records in the two tables that have the same statecode values.

Drop the columns id and name from table employee_by_statecode as well as the column statecode from table
statecode to their counterparts in the output table employee_by_state.

Click Ok to close the map editor.

12. Double-click tGreenplumInput to open its Basic settings view in the Component tab.

Select the Use an existing connection check box.

In the Table name field, enter the name of the source table, namely employee_by_state.

In the Query field, enter the query statement, namely "SELECT * FROM \"employee_by_state\"".

13. Double-click tLogRow to open its Basic settings view in the Component tab.



Related scenario:

Talend Open Studio Components Reference Guide 995

In the Mode area, select Table (print values in cells of a table for a better display.

Executing the Job

1. Press Ctrl+S to save the Job.

2. Press F6 to run the Job.

As shown above, the desired employee records have been written to the table employee_by_state, presenting
clearer geographical information about the employees.

Related scenario:

For related scenarios, see tELTMysqlMap scenarios:

• section Scenario 1: Aggregating table columns and filtering.

• section Scenario 2: ELT using an Alias table.



tELTGreenplumOutput

996 Talend Open Studio Components Reference Guide

tELTGreenplumOutput

tELTGreenplumOutput properties

The three ELT Greenplum components are closely related, in terms of their operating conditions. These
components should be used to handle Greenplum DB schemas to generate Insert statements, including clauses,
which are to be executed in the DB output table defined.

Component family ELT/Map/Greenplum

Function Carries out the action on the table specified and inserts the data according to the output schema
defined the ELT Mapper.

Purpose Executes the SQL Insert, Update and Delete statement to the Greenplum database

Basic settings Action on data On the data of the table defined, you can perform the following
operation:

Insert: Adds new entries to the table.

Update: Updates entries in the table.

Delete: Deletes the entries which correspond to the entry flow.

Schema and Edit Schema A schema is a row description, i.e. it defines the number of fields that
will be processed and passed on to the next component.

Click Edit Schema to make changes to the schema. Note that if you
make changes, the schema automatically becomes built-in.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Where clauses for (for
UPDATE and DELETE
only)

Enter a clause to filter the data to be updated or deleted during the
update or delete operations.

Default Table Name Enter the default table name, between double quotation marks.

Default Schema Name Enter the default schema name,between double quotation marks.

Use different table name Select this check box to define a different output table name, between
double quotation marks, in the Table name field which appears.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage tELTGreenplumOutput is to be used along with the tELTGreenplumMap. Note that the Output
link to be used with these components must correspond strictly to the syntax of the table name.

Note that the ELT components do not handle actual data flow but only schema
information.

Related scenarios

For use cases in relation with tELTGreenplumOutput, see:

• section Scenario: Mapping data using a simple implicit join



Related scenarios

Talend Open Studio Components Reference Guide 997

• section Scenario 1: Aggregating table columns and filtering

• section Scenario 2: ELT using an Alias table



tELTJDBCInput

998 Talend Open Studio Components Reference Guide

tELTJDBCInput

tELTJDBCInput properties

The three ELT JDBC components are closely related, in terms of their operating conditions. These components
should be used to handle JDBC DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/JDBC

Function Provides the table schema to be used for the SQL statement to execute.

Purpose Allows you to add as many Input tables as required for the most complicated Insert statement.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the nature and number
of fields to be processed. The schema is either built-in or remotely
stored in the Repository. The Schema defined is then passed on to
the ELT Mapper to be included to the Insert SQL statement.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Click Edit Schema to modify the schema. Note that if you make
the modifcation, the schema switches automatically to the Built-in
mode.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Default Table Name Type in the default table name.

Default Schema Name Type in the default schema name.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage tELTJDBCInput is to be used along with the tELTJDBCMap. Note that the Output link to be
used with these components must correspond strictly to the syntax of the table name

Note that the ELT components do not handle actual data flow but only schema
information.

Related scenarios

For use cases in relation with tELTJDBCInput, see tELTMysqlMap scenarios:

• section Scenario 1: Aggregating table columns and filtering

• section Scenario 2: ELT using an Alias table



tELTJDBCMap

Talend Open Studio Components Reference Guide 999

tELTJDBCMap

tELTJDBCMap properties

The three ELT JDBC components are closely related, in terms of their operating conditions. These components
should be used to handle JDBC DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/JDBC

Function Helps to graphically build the SQL statement using the table provided as input.

Purpose Uses the tables provided as input, to feed the parameter in the built statement. The statement can
include inner or outer joins to be implemented between tables or between one table and its aliases.

Basic settings Use an existing connection Select this check box and select the appropriate Connection
component from the Component list if you want to re-use
connection parameters that you have already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

ELT JDBC Map Editor The ELT Map editor allows you to define the output schema and
make a graphical build of the SQL statement to be executed. The
column names of schema can be different from the column names
in the database.

Style link Select the way in which links are displayed.

Auto: By default, the links between the input and output schemas
and the Web service parameters are in the form of curves.

Bezier curve: Links between the schema and the Web service
parameters are in the form of curve.

Line: Links between the schema and the Web service parameters are
in the form of straight lines.

This option slightly optimizes performance.

Property type Either Built-in or Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.



Related scenario:

1000 Talend Open Studio Components Reference Guide

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties are stored.
The following fields are pre-filled in using fetched data.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and Password DB user authentication data.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage tELTJDBCMap is used along with tELTJDBCInput and tELTJDBCOutput. Note that the
Output link to be used with these components must correspond strictly to the syntax of the table
name.

Note that the ELT components do not handle actual data flow but only schema
information.

Related scenario:

For related scenarios, see tELTMysqlMap scenarios:

• section Scenario 1: Aggregating table columns and filtering.

• section Scenario 2: ELT using an Alias table.



tELTJDBCOutput

Talend Open Studio Components Reference Guide 1001

tELTJDBCOutput

tELTJDBCOutput properties

The three ELT JDBC components are closely related, in terms of their operating conditions. These components
should be used to handle JDBC DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/JDBC

Function Carries out the action on the table specified and inserts the data according to the output schema
defined the ELT Mapper.

Purpose Executes the SQL Insert, Update and Delete statement to the JDBC database

Basic settings Action on data On the data of the table defined, you can perform the following
operation:

Insert: Adds new entries to the table. If duplicates are found, Job
stops.

Update: Updates entries in the table.

Delete: Deletes the entries which correspond to the entry flow.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either built-in or remotely stored in the Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Click Edit Schema to modify the schema. Note that if you make
the modifcation, the schema switches automatically to the Built-in
mode.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Where clauses for (for
UPDATE and DELETE
only)

Enter a clause to filter the data to be updated or deleted during the
update or delete operations.

Default Table Name Enter the default table name, between double quotation marks.

Default Schema Name Enter the default schema name,between double quotation marks.

Use different table name Select this check box to define a different output table name, between
double quotation marks, in the Table name field which appears.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage tELTJDBCOutput is to be used along with the tELTJDBCMap. Note that the Output link to be
used with these components must correspond strictly to the syntax of the table name.

Note that the ELT components do not handle actual data flow but only schema
information.



Related scenarios

1002 Talend Open Studio Components Reference Guide

Related scenarios

For use cases in relation with tELTJDBCOutput, see tELTMysqlMap scenarios:

• section Scenario 1: Aggregating table columns and filtering

• section Scenario 2: ELT using an Alias table



tELTMSSqlInput

Talend Open Studio Components Reference Guide 1003

tELTMSSqlInput

tELTMSSqlInput properties

The three ELT MSSql components are closely related, in terms of their operating conditions. These components
should be used to handle MSSql DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/MSSql

Function Provides the table schema to be used for the SQL statement to execute.

Purpose Allows you to add as many Input tables as required for the most complicated Insert statement.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the nature and number
of fields to be processed. The schema is either built-in or remotely
stored in the Repository. The Schema defined is then passed on to
the ELT Mapper to be included to the Insert SQL statement.

Click Edit Schema to modify the schema. Note that if you make
the modifcation, the schema switches automatically to the Built-in
mode.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Default Table Name Type in the default table name.

Default Schema Name Type in the default schema name.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage tELTMySSqlInput is to be used along with the tELTMSSsqlMap. Note that the Output link to
be used with these components must correspond strictly to the syntax of the table name.

Note that the ELT components do not handle actual data flow but only schema
information.

Related scenarios

For use cases in relation with tELTMSSqlInput, see tELTMysqlMap scenarios:

• section Scenario 1: Aggregating table columns and filtering

• section Scenario 2: ELT using an Alias table



tELTMSSqlMap

1004 Talend Open Studio Components Reference Guide

tELTMSSqlMap

tELTMSSqlMap properties

The three ELT MSSql components are closely related, in terms of their operating conditions. These components
should be used to handle MSSql DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/MSSql

Function Helps you to build the SQL statement graphically, using the table provided as input.

Purpose Uses the tables provided as input, to feed the parameter in the built statement. The statement can
include inner or outer joins to be implemented between tables or between one table and its aliases.

Basic settings Use an existing connection Select this check box and select the appropriate Connection
component from the Component list if you want to re-use
connection parameters that you have already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

ELT MSSql Map Editor The ELT Map editor allows you to define the output schema and
make a graphical build of the SQL statement to be executed. The
column names of schema can be different from the column names
in the database.

Style link Select the way in which links are displayed.

Auto: By default, the links between the input and output schemas
and the Web service parameters are in the form of curves.

Bezier curve: Links between the schema and the Web service
parameters are in the form of curve.

Line: Links between the schema and the Web service parameters are
in the form of straight lines.

This option slightly optimizes performance.

Property type Either Built-in or Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.



Related scenario:

Talend Open Studio Components Reference Guide 1005

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties are stored.
The following fields are pre-filled in using fetched data.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and Password DB user authentication data.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage tELTMSSqlMap is used along with a tELTMSSqlInput and tELTMSSqlOutput. Note that the
Output link to be used with these components must correspond strictly to the syntax of the table
name.

Note that the ELT components do not handle actual data flow but only schema
information.

Related scenario:

For related scenarios, see tELTMysqlMap scenarios:

• section Scenario 1: Aggregating table columns and filtering.

• section Scenario 2: ELT using an Alias table.



tELTMSSqlOutput

1006 Talend Open Studio Components Reference Guide

tELTMSSqlOutput

tELTMSSqlOutput properties

The three ELT MSSql components are closely related, in terms of their operating conditions. These components
should be used to handle MSSql DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/MSSql

Function Carries out the action on the table specified and inserts the data according to the output schema
defined the ELT Mapper.

Purpose Executes the SQL Insert, Update and Delete statement to the MSSql database

Basic settings Action on data On the data of the table defined, you can perform the following
operation:

Insert: Adds new entries to the table. If duplicates are found, Job
stops.

Update: Updates entries in the table.

Delete: Deletes the entries which correspond to the entry flow.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Click Edit Schema to modify the schema. Note that if you make
the modifcation, the schema switches automatically to the Built-in
mode.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Where clauses for (for
UPDATE and DELETE
only)

Enter a clause to filter the data to be updated or deleted during the
update or delete operations.

Default Table Name Enter the default table name, between double quotation marks.

Default Schema Name Enter the default schema name,between double quotation marks.

Use different table name Select this check box to define a different output table name, between
double quotation marks, in the Table name field which appears.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage tELTMSSqlOutput is to be used along with the tELTMSSqlMap. Note that the Output link to
be used with these components must correspond strictly to the syntax of the table name.

Note that the ELT components do not handle actual data flow but only schema
information.

Limitation n/a



Related scenarios

Talend Open Studio Components Reference Guide 1007

Related scenarios

For use cases in relation with tELTMSSqlOutput, see tELTMysqlMap scenarios:

• section Scenario 1: Aggregating table columns and filtering

• section Scenario 2: ELT using an Alias table



tELTMysqlInput

1008 Talend Open Studio Components Reference Guide

tELTMysqlInput

tELTMysqlInput properties

The three ELT Mysql components are closely related, in terms of their operating conditions. These components
should be used to handle Mysql DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Mysql

Function Provides the table schema to be used for the SQL statement to execute.

Purpose Allows you to add as many Input tables as required for the most complicated Insert statement.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the nature and number
of fields to be processed. The schema is either built-in or remotely
stored in the Repository. The Schema defined is then passed on to
the ELT Mapper to be included to the Insert SQL statement.

Click Edit Schema to modify the schema. Note that if you make
the modification, the schema switches automatically to the Built-in
mode.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Default Table Name Enter the default table name, between double quotation marks.

Usage tELTMysqlInput is to be used along with the tELTMysqlMap. Note that the Output link to be
used with these components must correspond strictly to the syntax of the table name

Note that the ELT components do not handle actual data flow but only schema
information.

Related scenarios

For use cases in relation with tELTMysqlInput, see tELTMysqlMap scenarios:

• section Scenario 1: Aggregating table columns and filtering

• section Scenario 2: ELT using an Alias table



tELTMysqlMap

Talend Open Studio Components Reference Guide 1009

tELTMysqlMap

tELTMysqlMap properties

The three ELT Mysql components are closely related, in terms of their operating conditions. These components
should be used to handle Mysql DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Mysql

Function Helps to graphically build the SQL statement using the table provided as input.

Purpose Uses the tables provided as input, to feed the parameter in the built statement. The statement can
include inner or outer joins to be implemented between tables or between one table and its aliases.

Basic settings Use an existing connection Select this check box and select the appropriate Connection
component from the Component list if you want to re-use
connection parameters that you have already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

ELT Mysql Map editor The ELT Map editor allows you to define the output schema as well
as build graphically the SQL statement to be executed. The column
names of schema can be different from the column names in the
database.

Style link Select the way in which links are displayed.

Auto: By default, the links between the input and output schemas
and the Web service parameters are in the form of curves.

Bezier curve: Links between the schema and the Web service
parameters are in the form of curve.

Line: Links between the schema and the Web service parameters are
in the form of straight lines.

This option slightly optimizes performance.

Property type Either Built-in or Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.



tELTMysqlMap properties

1010 Talend Open Studio Components Reference Guide

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties are stored.
The following fields are pre-filled in using fetched data.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and Password DB user authentication data.

Usage tELTMysqlMap is used along with a tELTMysqlInput and tELTMysqlOutput. Note that the
Output link to be used with these components must correspond strictly to the syntax of the table
name.

The ELT components do not handle actual data flow but only schema information.

Connecting ELT components

The ELT components do not handle any data as such but table schema information that will be used to build the
SQL query to execute.

Therefore the only connection required to connect these components together is a simple link.

The output name you give to this link when creating it should always be the exact name of the table to be accessed as this
parameter will be used in the SQL statement generated.

Related topic: see Talend Open Studio User Guide.

Mapping and joining tables

In the ELT Mapper, you can select specific columns from input schemas and include them in the output schema.

• As you would do it in the regular Map editor, simply drag & drop the content from the input schema towards
the output table defined.

• Use the Ctrl and Shift keys for multiple selection of contiguous or non contiguous table columns.

You can implement explicit joins to retrieve various data from different tables.

• Select the Explicit join check box for the relevant column, and selct a type of join from the Join list.

• Possible joins include: Inner Join, Left Outer Join, Right Outer Join or Full Outer Join and Cross Join.

• By default the Inner Join is selected.

You can also create Alias tables to retrieve various data from the same table.

• In the Input area, click on the plus [+] button to create an Alias.

• Define the table to base the alias on.

• Type in a new name for the alias table, preferably not the same as the main table.

Adding where clauses

You can also restrict the Select statement based on a Where clause. Click the Add filter row button at the top of
the output table and type in the relevant restriction to be applied.



Scenario 1: Aggregating table columns and filtering

Talend Open Studio Components Reference Guide 1011

Make sure that all input components are linked correctly to the ELT Map component to be able to implement all
inclusions, joins and clauses.

Generating the SQL statement

The mapping of elements from the input schemas to the output schemas create instantly the corresponding Select
statement.

The clause are also included automatically.

Scenario 1: Aggregating table columns and filtering

This scenario is for reference only. If you are using Talend Open Studio for Big Data, the property type and schema of a
component are always built-in, which means you have to configure the database connection details and schemas manually.

This scenario describes a Job that gathers together several input DB table schemas and implementing a clause to
filter the output using an SQL statement.

• Drop the following components from the Palette onto the design workspace: three tELTMysqlInput
components, a tELTMysqlMap, and a tELTMysqlOutput. Label these components to best describe their
functionality.

• Double-click the first tELTMysqlInput component to display its Basic settings view.



Scenario 1: Aggregating table columns and filtering

1012 Talend Open Studio Components Reference Guide

• Select Repository from the Schema list, click the three dot button preceding Edit schema, and select your DB
connection and the desired schema from the [Repository Content] dialog box.

The selected schema name appears in the Default Table Name field automatically.

In this use case, the DB connection is Talend_MySQL and the schema for the first input component is owners.

• Set the second and third tELTMysqlInput components in the same way but select cars and resellers
respectively as their schema names.

In this use case, all the involved schemas are stored in the Metadata node of the Repository tree view for easy retrieval.
For further information concerning metadata, see Talend Open Studio User Guide.

You can also select the three input components by dropping the relevant schemas from the Metadata area onto the design
workspace and double-clicking tELTMysqlInput from the [Components] dialog box. Doing so allows you to skip the
steps of labeling the input components and defining their schemas manually.

• Connect the three tELTMysqlInput components to the tELTMysqlMap component using links named
following strictly the actual DB table names: owners, cars and resellers.

• Connect the tELTMysqlMap component to the tELTMysqlOutput component and name the link agg_result,
which is the name of the database table you will save the aggregation result to.

• Click the tELTMysqlMap component to display its Basic settings view.

• Select Repository from the Property Type list, and select the same DB connection that you use for the input
components.

All the database details are automatically retrieved.

• Leave all the other settings as they are.

• Double-click the tELTMysqlMap component to launch the ELT Map editor to set up joins between the input
tables and define the output flow.



Scenario 1: Aggregating table columns and filtering

Talend Open Studio Components Reference Guide 1013

• Add the input tables by clicking the green plus button at the upper left corner of the ELT Map editor and selecting
the relevant table names in the [Add a new alias] dialog box.

• Drop the ID_Owner column from the owners table to the corresponding column of the cars table.

• In the cars table, select the Explicit join check box in front of the ID_Owner column.

As the default join type, INNER JOIN is displayed on the Join list.

• Drop the ID_Reseller column from the cars table to the corresponding column of the resellers table to set up
the second join, and define the join as an inner join in the same way.

• Select the columns to be aggregated into the output table, agg_result.

• Drop the ID_Owner, Name, and ID_Insurance columns from the owners table to the output table.

• Drop the Registration, Make, and Color columns from the cars table to the output table.

• Drop the Name_Reseller and City columns from the resellers table to the output table.

• With the relevant columns selected, the mappings are displayed in yellow and the joins are displayed in dark
violet.

• Set up a filter in the output table. Click the Add filter row button on top of the output table to display the
Additional clauses expression field, drop the City column from the resellers table to the expression field, and
complete a WHERE clause that reads resellers.City ='Augusta'.



Scenario 1: Aggregating table columns and filtering

1014 Talend Open Studio Components Reference Guide

• Click the Generated SQL Select query tab to display the corresponding SQL statement.

• Click OK to save the ELT Map settings.

• Double-click the tELTMysqlOutput component to display its Basic settings view.

• Select an action from the Action on data list as needed.

• Select Repository as the schema type, and define the output schema in the same way as you defined the input
schemas. In this use case, select agg_result as the output schema, which is the name of the database table used
to store the mapping result.

You can also use a built-in output schema and retrieve the schema structure from the preceding component; however, make
sure that you specify an existing target table having the same data structure in your database.

• Leave all the other settings as they are.



Scenario 2: ELT using an Alias table

Talend Open Studio Components Reference Guide 1015

• Save your Job and press F6 to launch it.

All selected data is inserted in the agg_result table as specified in the SQL statement.

Scenario 2: ELT using an Alias table
This scenario is for reference only. If you are using Talend Open Studio for Big Data, the property type and schema of a
component are always built-in, which means you have to configure the database connection details and schemas manually.

This scenario describes a Job that maps information from two input tables and an alias table, serving as a virtual
input table, to an output table. The employees table contains employees’ IDs, their department numbers, their
names, and the IDs of their respective managers. The managers are also considered as employees and hence
included in the employees table. The dept table contains the department information. The alias table retrieves the
names of the managers from the employees table.

• Drop two tELTMysqlInput components, a tELTMysqlMap component, and a tELTMysqlOutput
component to the design workspace, and label them to best describe their functionality.

• Double-click the first tELTMysqlInput component to display its Basic settings view.

• Select Repository from the Schema list, and define the DB connection and schema by clicking the three dot
button preceding Edit schema.

The DB connection is Talend_MySQL and the schema for the first input component is employees.

In this use case, all the involved schemas are stored in the Metadata node of the Repository tree view for easy retrieval.
For further information concerning metadata, see Talend Open Studio User Guide.

• Set the second tELTMysqlInput component in the same way but select dept as its schema.



Scenario 2: ELT using an Alias table

1016 Talend Open Studio Components Reference Guide

• Double-click the tELTMysqlOutput component to display its Basic settings view.

• Select an action from the Action on data list as needed, Insert in this use case.

• Select Repository as the schema type, and define the output schema in the same way as you defined the input
schemas. In this use case, select result as the output schema, which is the name of the database table used to
store the mapping result.

The output schema contains all the columns of the input schemas plus a ManagerName column.

• Leave all the other parameters as they are.

• Connect the two tELTMysqlInput components to the tELTMysqlMap component using Link connections
named strictly after the actual input table names, employees and dept in this use case.

• Connect the tELTMysqlMap component to the tELTMysqlOutput component using a Link connection.
When prompted, click Yes to allow the ELT Mapper to retrieve the output table structure from the output
schema.

• Click the tELTMysqlMap component and select the Component tab to display its Basic settings view.

• Select Repository from the Property Type list, and select the same DB connection that you use for the input
components.

All the DB connection details are automatically retrieved.

• Leave all the other parameters as they are.

• Click the three-dot button next to ELT Mysql Map Editor or double-click the tELTMysqlMap component
on the design workspace to launch the ELT Map editor.

With the tELTMysqlMap component connected to the output component, the output table is displayed in the
output area.

• Add the input tables, employees and dept, in the input area by clicking the green plus button and selecting the
relevant table names in the [Add a new alias] dialog box.



Scenario 2: ELT using an Alias table

Talend Open Studio Components Reference Guide 1017

• Create an alias table based on the employees table by selecting employees from the Select the table to use list
and typing in Managers in the Type in a valid alias field in the the [Add a new alias] dialog box.

• Drop the DeptNo column from the employees table to the dept table.

• Select the Explicit join check box in front of the DeptNo column of the dept table to set up an inner join.

• Drop the ManagerID column from the employees table to the ID column of the Managers table.

• Select the Explicit join check box in front of the ID column of the Managers table and select LEFT OUTER
JOIN from the Join list to allow the output rows to contain Null values.

• Drop all the columns from the employees table to the corresponding columns of the output table.

• Drop the DeptName and Location columns from the dept table to the corresponding columns of the output table.

• Drop the Name column from the Managers table to the ManagerName column of the output table.



Scenario 2: ELT using an Alias table

1018 Talend Open Studio Components Reference Guide

• Click on the Generated SQL Select query tab to display the SQL query statement to be executed.

• Save your Job and press F6 to run it.

The output database table result contains all the information about the employees, including the names of their
respective managers.



tELTMysqlOutput

Talend Open Studio Components Reference Guide 1019

tELTMysqlOutput

tELTMysqlOutput properties

The three ELT Mysql components are closely related, in terms of their operating conditions. These components
should be used to handle Mysql DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Mysql

Function Carries out the action on the table specified and inserts the data according to the output schema
defined the ELT Mapper.

Purpose Executes the SQL Insert, Update and Delete statement to the Mysql database

Basic settings

Use tCreateTable as
substitute for this
function.

Action on data On the data of the table defined, you can perform the following
operation:

Insert: Add new entries to the table. If duplicates are found, Job
stops.

Update: Updates entries in the table.

Delete: Deletes the entries which correspond to the entry flow.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either built-in or remotely stored in the Repository.

Click Edit Schema to modify the schema. Note that if you make
the modification, the schema switches automatically to the Built-in
mode.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Where clauses for (for
UPDATE and DELETE
only)

Enter a clause to filter the data to be updated or deleted during the
update or delete operations.

Default Table Name Enter the default table name, between inverted commas.

Use different table name Select this check box to define a different output table name, between
double quotation marks, in the Table name field which appears.

Usage tELTMysqlOutput is to be used along with the tELTMysqlMap. Note that the Output link to be
used with these components must correspond strictly to the syntax of the table name.

Note that the ELT components do not handle actual data flow but only schema
information.

Related scenarios

For use cases in relation with tELTMysqlOutput, see tELTMysqlMap scenarios:



Related scenarios

1020 Talend Open Studio Components Reference Guide

• section Scenario 1: Aggregating table columns and filtering

• section Scenario 2: ELT using an Alias table



tELTNetezzaInput

Talend Open Studio Components Reference Guide 1021

tELTNetezzaInput

tELTNetezzaInput properties

The three ELT Netezza components are closely related, in terms of their operating conditions. These components
should be used to handle Netezza DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Netezza

Function Provides the table schema to be used for the SQL statement to execute.

Purpose Allows you to add as many Input tables as required for the most complicated Insert statement.

Basic settings Schema and Edit Schema A schema is a row description, i.e. it defines the number of fields that
will be processed and passed on to the next component.

Click Edit Schema to make changes to the schema. Note that if you
make changes, the schema automatically becomes built-in.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Default Table Name Type in the default table name.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage tELTNetezzaInput is to be used along with the tELTNetezzaMap. Note that the Output link to
be used with these components must correspond strictly to the syntax of the table name

Note that the ELT components do not handle actual data flow but only schema
information.

Related scenarios

For related scenarios, see:

• section Scenario: Mapping data using a simple implicit join

• section Scenario 1: Aggregating table columns and filtering

• section Scenario 2: ELT using an Alias table



tELTNetezzaMap

1022 Talend Open Studio Components Reference Guide

tELTNetezzaMap

tELTNetezzaMap properties

The three ELT Netezza components are closely related, in terms of their operating conditions. These components
should be used to handle Netezza DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Netezza

Function Helps you to build the SQL statement graphically, using the table provided as input.

Purpose Uses the tables provided as input, to feed the parameter in the built statement. The statement can
include inner or outer joins to be implemented between tables or between one table and its aliases.

Basic settings Use an existing connection Select this check box and select the appropriate Connection
component from the Component list if you want to re-use
connection parameters that you have already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

ELT Netezza Map Editor The ELT Map editor allows you to define the output schema and
make a graphical build of the SQL statement to be executed. The
column names of schema can be different from the column names
in the database.

Style link Select the way in which links are displayed.

Auto: By default, the links between the input and output schemas
and the Web service parameters are in the form of curves.

Bezier curve: Links between the schema and the Web service
parameters are in the form of curve.

Line (fastest): Links between the schema and the Web service
parameters are in the form of straight lines.

This option slightly optimizes performance.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.



Related scenarios

Talend Open Studio Components Reference Guide 1023

Repository: Select the Repository file where Properties are stored.
The following fields are filled in using fetched data.

Host Database server IP address.

Port Listening port number of DB server.

Database Name of the database.

Username and Password DB user authentication data.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage tELTNetezzaMap is used along with tELTNetezzaInput and tELTNetezzaOutput. Note that
the Output link to be used with these components must correspond strictly to the syntax of the
table name.

Note that the ELT components do not handle actual data flow but only schema
information.

Related scenarios

For related scenarios, see:

• section Scenario: Mapping data using a simple implicit join.

• section Scenario 1: Aggregating table columns and filtering.

• section Scenario 2: ELT using an Alias table.



tELTNetezzaOutput

1024 Talend Open Studio Components Reference Guide

tELTNetezzaOutput

tELTNetezzaOutput properties

The three ELT Netezza components are closely related, in terms of their operating conditions. These components
should be used to handle Netezza DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Netezza

Function Carries out the action on the table specified and inserts the data according to the output schema
defined the ELT Mapper.

Purpose Executes the SQL Insert, Update and Delete statement to the Netezza database

Basic settings Action on data On the data of the table defined, you can perform the following
operation:

Insert: Adds new entries to the table.

Update: Updates entries in the table.

Delete: Deletes the entries which correspond to the entry flow.

Schema and Edit Schema A schema is a row description, i.e. it defines the number of fields that
will be processed and passed on to the next component.

Click Edit Schema to make changes to the schema. Note that if you
make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Where clauses for (for
UPDATE and DELETE
only)

Enter a clause to filter the data to be updated or deleted during the
update or delete operations.

Default Table Name Enter the default table name, between double quotation marks.

Use different table name Select this check box to define a different output table name, between
double quotation marks, in the Table name field that appears.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage tELTNetezzaOutput is to be used along with the tELTNetezzaMap. Note that the Output link to
be used with these components must correspond strictly to the syntax of the table name.

Note that the ELT components do not handle actual data flow but only schema
information.

Related scenarios

For related scenarios, see:



Related scenarios

Talend Open Studio Components Reference Guide 1025

• section Scenario: Mapping data using a simple implicit join

• section Scenario 1: Aggregating table columns and filtering

• section Scenario 2: ELT using an Alias table



tELTOracleInput

1026 Talend Open Studio Components Reference Guide

tELTOracleInput

tELTOracleInput properties

The three ELT Oracle components are closely related, in terms of their operating conditions. These components
should be used to handle Oracle DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Oracle

Function Provides the table schema to be used for the SQL statement to execute.

Purpose Allows you to add as many Input tables as required for the most complicated Insert statement.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the nature and number
of fields to be processed. The schema is either built-in or remotely
stored in the Repository. The Schema defined is then passed on to
the ELT Mapper to be included to the Insert SQL statement.

Click Edit Schema to modify the schema. Note that if you make
the modification, the schema switches automatically to the Built-in
mode.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Default Table Name Enter the default table name, between double quotation marks.

Default Schema Name Enter the default schema name,between double quotation marks.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage tELTOracleInput is to be used along with the tELTOracleMap. Note that the Output link to be
used with these components must must correspond strictly to the syntax of the table name

The ELT components do not handle actual data flow but only schema information.

Related scenarios

For use cases in relation with tELTOracleInput, see section Scenario: Updating Oracle DB entries.



tELTOracleMap

Talend Open Studio Components Reference Guide 1027

tELTOracleMap

tELTOracleMap properties

The three ELT Oracle components are closely related, in terms of their operating conditions. These components
should be used to handle Oracle DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Oracle

Function Helps to graphically build the SQL statement using the table provided as input.

Purpose Uses the tables provided as input, to feed the parameter in the built statement. The statement can
include inner or outer joins to be implemented between tables or between one table and its aliases.

Basic settings Use an existing connection Select this check box and select the appropriate tOracleConnection
component from the Component list if you want to re-use
connection parameters that you have already defined

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

ELT Oracle Map Editor The ELT Map editor allows you to define the output schema and
make a graphical build of the SQL statement to be executed. The
column names of schema can be different from the column names
in the database.

Style link Auto: By default, the links between the input and output schemas
and the Web service parameters are in the form of curves.

Bezier curve: Links between the schema and the Web service
parameters are in the form of curve.

Line: Links between the schema and the Web service parameters are
in the form of straight lines.

This option slightly optimizes performance.

Property type Either Built-in or Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.



tELTOracleMap properties

1028 Talend Open Studio Components Reference Guide

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties are stored.
The following fields are pre-filled in using fetched data.

Connection type Drop-down list of the available drivers.

DB Version Select the Oracle version you are using.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Mapping Automatically set mapping parameter.

Advanced settings Additional JDBC
Parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

Use Hint Options Select this check box to activate the hint configuration area to help
you optimize a query’s execution. In this area, parameters are:

- HINT: specify the hint you need, using the syntax /*+ */. -
POSITION: specify where you put the hint in a SQL statement.

- SQL STMT: select the SQL statement you need to use.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage tELTOracleMap is used along with a tELTOracleInput and tELTOracleOutput. Note that the
Output link to be used with these components must correspond strictly to the syntax of the table
name.

Note that the ELT components do not handle actual data flow but only schema
information.

Connecting ELT components

For detailed information regarding ELT component connections, see section Connecting ELT components.

Related topic: see Talend Open Studio User Guide.

Mapping and joining tables

In the ELT Mapper, you can select specific columns from input schemas and include them in the output schema.

For detailed information regarding the table schema mapping and joining, see section Mapping and joining tables.

When you need to join a lot of tables or need to join tables by multiple join conditions with outer joins, it is recommended
to use the LEFT OUTER JOIN (+) and the RIGHT OUTER JOIN (+) options that allow you to use the Oracle private
keywords. For further information about these two private keywords, see the site: http://download.oracle.com/docs/cd/
B19306_01/server.102/b14200/queries006.htm

Adding where clauses

For details regarding the clause handling, see section Adding where clauses.

http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/queries006.htm
http://download.oracle.com/docs/cd/B19306_01/server.102/b14200/queries006.htm


Scenario: Updating Oracle DB entries

Talend Open Studio Components Reference Guide 1029

Generating the SQL statement

The mapping of elements from the input schemas to the output schemas create instantly the corresponding Select
statement.

The clause defined internally in the ELT Mapper are also included automatically.

Scenario: Updating Oracle DB entries

This scenario is based on the data aggregation scenario, section Scenario 1: Aggregating table columns and
filtering. As the data update action is available in Oracle DB, this scenario describes a Job that updates particular
data in the agg_result table.

• As described in section Scenario 1: Aggregating table columns and filtering, set up a Job for data
aggregation using the corresponding ELT components for Oracle DB, tELTOracleInput, tELTOracleMap,
and tELTOracleOutput, and execute the Job to save the aggregation result in a database table named
agg_result.

When defining filters in the ELT Map editor, note that strings are case sensitive in Oracle DB.

• Launch the ELT Map editor and add a new output table named update_data.

• Add a filter row to the update_data table to set up a relationship between input and output tables:
owners.ID_OWNER = agg_result.ID_OWNER.

• Drop the MAKE column from the cars table to the update_data table.

• Drop the NAME_RESELLER column from the resellers table to the update_data table.

• Add a model enclosed in single quotation marks, A8 in this use case, to the MAKE column from the cars table,
preceded by a double pipe.

• Add Sold by enclosed in single quotation marks in front of the NAME_RESELLER column from the resellers
table, with a double pipe in between.



Scenario: Updating Oracle DB entries

1030 Talend Open Studio Components Reference Guide

• Check the Generated SQL select query tab to be executed.

• Click OK to validate the changes in the ELT Mapper.

• Deactivate the tELTOracleOutput component labeled Agg_Result by right-clicking it and selecting Deactivate
Agg_Result from the contextual menu.

• Drop a new tELTOracleOutput component from the Palette to the design workspace, and label it Update_Data
to better identify its functionality.

• Connect the tELTOracleMap component to the new tELTOracleOutput component using the link
corresponding to the new output table defined in the ELT Mapper, update_data in this use case.

• Double-click the new tELTOracleOutput component to display its Basic settings view.

• From the Action on data list, select Update.

• Check the schema, and click Sync columns to retrieve the schema structure from the preceding component if
necessary.

• In the WHERE clauses area, add a clause that reads agg_result.MAKE = 'Audi' to update data relating to
the make of Audi in the database table agg_result.

• Fill the Default Table Name field with the name of the output link, update_data in this use case.

• Select the Use different table name check box, and fill the Table name field with the name of the database
table to be updated, agg_result in this use case.



Scenario: Updating Oracle DB entries

Talend Open Studio Components Reference Guide 1031

• Leave the other parameters as they are.

• Save your Job and press F6 to run it.

The relevant data in the database table is updated as defined.



tELTOracleOutput

1032 Talend Open Studio Components Reference Guide

tELTOracleOutput

tELTOracleOutput properties

The three ELT Oracle components are closely related, in terms of their operating conditions. These components
should be used to handle Oracle DB schemas to generate Insert, Update or Delete statements, including clauses,
which are to be executed in the DB output table defined.

Component family ELT/Map/Oracle

Function Carries out the action on the table specified and inserts the data according to the output schema
defined the ELT Mapper.

Purpose Executes the SQL Insert, Update and Delete statement to the Mysql database.

Basic Settings Action on data On the data of the table defined, you can perform the following
operation:

Insert: Add new entries to the table. If duplicates are found, the Job
stops.

Update: Updates entries in the table.

Delete: Deletes the entries which correspond to the entry flow.

MERGE: Updates or adds data to the table.

The options available for the MERGE operation are
different to those available for the Insert, Update or Delete
operations.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either built-in or remotely stored in the Repository.

Click Edit Schema to modify the schema. Note that if you make
the modification, the schema switches automatically to the Built-in
mode.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Where clauses for (for
UPDATE and DELETE
only)

Enter a clause to filter the data to be updated or deleted during the
update or delete operations.

Use Merge Update (for
MERGE)

Select this check box to update the data in the output table.

Column : Lists the columns in the entry flow.

Update : Select the check box which corresponds to the name of the
column you want to update.

Use Merge Update Where Clause : Select this check box and
enter the WHERE clause required to filter the data to be updated, if
necessary.



Scenario: Using the Oracle MERGE function to update and add data simultaneously

Talend Open Studio Components Reference Guide 1033

Use Merge Update Delete Clause: Select this check box and enter
the WHERE clause required to filter the data to be deleted and
updated, if necessary.

Use Merge Insert (for
MERGE)

Select this check box to insert the data in the table.

Column: Lists the entry flow columns.

Check All: Select the check box corresponding to the name of the
column you want to insert.

Use Merge Update Where Clause: Select this check box and enter
the WHERE clause required to filter the data to be inserted.

Default Table Name Enter a default name for the table, between double quotation marks.

Default Schema Name Enter a name for the default Oracle schema, between double
quotation marks.

Use different table name Select this check box to define a different output table name, between
double quotation marks, in the Table name field which appears.

Advanced settings Use Hint Options Select this check box to activate the hint configuration area when
you want to use a hint to optimize a query’s execution. In this area,
parameters are:

- HINT: specify the hint you need, using the syntax /*+ */.

- POSITION: specify where you put the hint in a SQL statement.

- SQL STMT: select the SQL statement you need to use.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage tELTOracleOutput is to be used along with the tELTOracleInput and tELTOracleMap
components. Note that the Output link to be used with these components must correspond strictly
to the syntax of the table name.

Note that the ELT components do not handle actual data flow but only schema
information.

Scenario: Using the Oracle MERGE function to update
and add data simultaneously

This scenario is for reference only. If you are using Talend Open Studio for Big Data, the property type and schema of a
component are always built-in, which means you have to configure the database connection details and schemas manually.

This scenario describes a Job that allows you to add new customer information and update existing customer
information in a database table using the Oracle MERGE command.

• Drop the following components from the Palette to the design workspace: tELTOracleInput,
tELTOracleMap, and tELTOracleOutput, and label them to identify their functionality.

• Double-click the tELTOracleInput component to display its Basic settings view.



Scenario: Using the Oracle MERGE function to update and add data simultaneously

1034 Talend Open Studio Components Reference Guide

• Select Repository from the Schema list, click the three dot button preceding Edit schema, and select your DB
connection and the desired schema from the [Repository Content] dialog box.

The selected schema name appears in the Default Table Name field automatically.

In this use case, the DB connection is Talend_Oracle and the schema is new_customers.

In this use case, the input schema is stored in the Metadata node of the Repository tree view for easy retrieval. For further
information concerning metadata, see Talend Open Studio User Guide.

You can also select the input component by dropping the relevant schema from the Metadata area onto the design workspace
and double-clicking tELTOracleInput from the [Components] dialog box. Doing so allows you to skip the steps of labeling
the input component and defining its schema manually.

• Connect the tELTOracleInput component to the tELTOraclelMap component using the link named strictly
after the actual DB table name, new_customers in this use case.

• Connect the tELTOraclelMap component to the tELTOracleOutput component and name the link
customers_merge, which is the name of the database table you will save the merge result to.

• Click the tELTOracleMap component to display its Basic settings view.

• Select Repository from the Property Type list, and select the same DB connection that you use for the input
components.

All the database details are automatically retrieved.

• Leave the other settings as they are.

• Double-click the tELTOracleMap component to launch the ELT Map editor to set up the data transformation
flow.

• Display the input table by clicking the green plus button at the upper left corner of the ELT Map editor and
selecting the relevant table name in the [Add a new alias] dialog box.

In this use case, the only input table is new_customers.



Scenario: Using the Oracle MERGE function to update and add data simultaneously

Talend Open Studio Components Reference Guide 1035

• Select all the columns in the input table and drop them to the output table.

• Click the Generated SQL Select query tab to display the query statement to be executed.

• Click OK to validate the ELT Map settings and close the ELT Map editor.

• In the design workspace, double-click the tELTOracleOutput component to display its Basic settings view.

• From the Action on data list, select MERGE.

• Click the Sync columns button to retrieve the schema from the preceding component.

• Select the Use Merge Update check box to update the data using Oracle’s MERGE function.

• In the table that appears, select the check boxes for the columns you want to update.

In this use case, we want to update all the data according to the customer ID. Therefore, select all the check
boxes except the one for the ID column.



Scenario: Using the Oracle MERGE function to update and add data simultaneously

1036 Talend Open Studio Components Reference Guide

The columns defined as the primary key CANNOT and MUST NOT be made subject to updates.

• Select the Use Merge Insert check box to insert new data while updating the existing data by leveraging Oracle’s
MERGE function.

• In the table that appears, select the check boxes for the columns into which you want to insert new date.

In this use case, we want to insert all the new customer data. Therefore, select all the check boxes by clicking
the Check All check box.

• Fill the Default Table Name field with the name of the target table already existing in your database. In this
example, fill in customers_merge.

• Leave the other parameters as they are.

• Save your Job and press F6 to run it.

The data is updated and inserted in the database. The query used is displayed on the console.



Scenario: Using the Oracle MERGE function to update and add data simultaneously

Talend Open Studio Components Reference Guide 1037



tELTPostgresqlInput

1038 Talend Open Studio Components Reference Guide

tELTPostgresqlInput

tELTPostgresqlInput properties

The three ELT Postgresql components are closely related, in terms of their operating conditions. These components
should be used to handle Postgresql DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Postgresql

Function Provides the table schema to be used for the SQL statement to execute.

Purpose Allows you to add as many Input tables as required for the most complicated Insert statement.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the nature and number
of fields to be processed. The schema is either built-in or remotely
stored in the Repository. The Schema defined is then passed on to
the ELT Mapper to be included to the Insert SQL statement.

Click Edit Schema to modify the schema. Note that if you make
the modifcation, the schema switches automatically to the Built-in
mode.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Default Table Name Enter the default table name, between double quotation marks.

Default Schema Name Enter the default schema name, between double quotation marks.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage tELTPostgresqlInput is to be used along with the tELTPostgresqlMap. Note that the Output
link to be used with these components must correspond strictly to the syntax of the table name

Note that the ELT components do not handle actual data flow but only schema
information.

Related scenarios

For use cases in relation with tELTPostgresqlInput, see tELTMysqlMap scenarios:

• section Scenario 1: Aggregating table columns and filtering

• section Scenario 2: ELT using an Alias table



tELTPostgresqlMap

Talend Open Studio Components Reference Guide 1039

tELTPostgresqlMap

tELTPostgresqlMap properties

The three ELT Postgresql components are closely related, in terms of their operating conditions. These components
should be used to handle Postgresql DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Postgresql

Function Helps to build the SQL statement graphically, using the table provided as input.

Purpose Uses the tables provided as input, to feed the parameter in the built statement. The statement can
include inner or outer joins to be implemented between tables or between one table and its aliases.

Basic settings Use an existing connection Select this check box and select the appropriate Connection
component from the Component list if you want to re-use
connection parameters that you have already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

ELT Postgresql Map Editor The ELT Map editor allows you to define the output schema and
make a graphical build of the SQL statement to be executed. The
column names of schema can be different from the column names
in the database.

Style link Select the way in which links are displayed.

Auto: By default, the links between the input and output schemas
and the Web service parameters are in the form of curves.

Bezier curve: Links between the schema and the Web service
parameters are in the form of curve.

Line: Links between the schema and the Web service parameters are
in the form of straight lines.

This option slightly optimizes performance.

Property type Either Built-in or Repository.

Built-in: No property data stored centrally.



Related scenario:

1040 Talend Open Studio Components Reference Guide

Repository: Select the Repository file where Properties are stored.
The following fields are pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Advanced settings Additional JDBC
parameters

Specify additional connection properties for the DB connection you
are creating. This option is not available if you have selected the Use
an existing connection check box in the Basic settings.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage tELTPostgresqlMap is used along with a tELTPostgresqlInput and tELTPostgresqlOutput.
Note that the Output link to be used with these components must correspond strictly to the syntax
of the table name.

Note that the ELT components do not handle actual data flow but only schema
information.

Related scenario:

For related scenarios, see tELTMysqlMap scenarios:

• section Scenario 1: Aggregating table columns and filtering.

• section Scenario 2: ELT using an Alias table.



tELTPostgresqlOutput

Talend Open Studio Components Reference Guide 1041

tELTPostgresqlOutput

tELTPostgresqlOutput properties

The three ELT Postgresql components are closely related, in terms of their operating conditions. These components
should be used to handle Mysql DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Postgresql

Function Carries out the action on the table specified and inserts the data according to the output schema
defined the ELT Mapper.

Purpose Executes the SQL Insert, Update and Delete statement to the Postgresql database

Basic settings Action on data On the data of the table defined, you can perform the following
operation:

Insert: Add new entries to the table. If duplicates are found, Job
stops.

Update: Updates entries in the table.

Delete: Deletes the entries which correspond to the entry flow.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either built-in or remotely stored in the Repository.

Click Edit Schema to modify the schema. Note that if you make
the modifcation, the schema switches automatically to the Built-in
mode.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Where clauses for (for
UPDATE and DELETE
only)

Enter a clause to filter the data to be updated or deleted during the
update or delete operations.

Default Table Name Enter the default table name between double quotation marks.

Default Schema Name Enter the default schema name between double quotation marks

Use different table name Select this check box to enter a different output table name, between
double quotation marks, in the Table name field which appears.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage tELTPostgresqlOutput is to be used along with the tELTPostgresqlMap. Note that the Output
link to be used with these components must correspond strictly to the syntax of the table name.

Note that the ELT components do not handle actual data flow but only schema
information.

Related scenarios

For use cases in relation with tELTPostgresqlOutput, see tELTMysqlMap scenarios:



Related scenarios

1042 Talend Open Studio Components Reference Guide

• section Scenario 1: Aggregating table columns and filtering

• section Scenario 2: ELT using an Alias table



tELTSybaseInput

Talend Open Studio Components Reference Guide 1043

tELTSybaseInput

tELTSybaseInput properties

The three ELT Sybase components are closely related, in terms of their operating conditions. These components
should be used to handle Sybase DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Sybase

Function Provides the table schema for the SQL statement to execute

Purpose Allows you to add as many Input tables as required, for Insert statements which can be complex.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the number and nature
of the fields to be processed. The schema is either built-in (local) or
stored remotely in the Repository. The Schema defined is then passed
on to the ELT Mapper for inclusion in the Insert SQL statement.

Click on Edit Schema, to modify the schema. Note that if you
modify the schema, it automatically becomes built-in.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository. Hence, it can be re-used for other projects and Jobs.
Related topic: see Talend Open Studio User Guide.

Default Table Name Enter a default name for the table, between double quotation marks.

Default Schema Name Enter a default name for the Sybase schema, between double
quotation marks.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage tELTSybaseInput is intended for use with tELTSybaseMap. Note that the Output link to be used
with these components must correspond strictly to the syntax of the table name.

ELT components only handle schema information. They do not handle actual data flow..

Related scenarios

For scenarios in which tELTSybaseInput may be used, see tELTMysqlMap scenarios:

• section Scenario 1: Aggregating table columns and filtering

• section Scenario 2: ELT using an Alias table.



tELTSybaseMap

1044 Talend Open Studio Components Reference Guide

tELTSybaseMap

tELTSybaseMap properties

The three ELT Sybase components are closely related in terms of their operating conditions. These components
should be used to handle Sybase DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Sybase

Function Allows you construct a graphical build of the SQL statement using the table provided as input.

Purpose Uses the tables provided as input to feed the parameters required to execute the SQL statement.
The statement can include inner or outer joins to be implemented between tables or between a table
and its aliases

Basic settings Use an existing connection Select this check box and select the appropriate tSybaseConnection
component from the Component list if you want to re-use
connection parameters that you have already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
ensure that the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

ELT Sybase Map Editor The ELT Map editor allows you to define the output schema and
make a graphical build of the SQL statement to be executed. The
column names of schema can be different from the column names
in the database.

Style link Select the way in which links are displayed.

Auto: By default, the links between the input and output schemas
and the Web service parameters are in the form of curves.

Bezier curve: Links between the schema and the Web service
parameters are in the form of curve.

Line: Links between the schema and the Web service parameters are
in the form of straight lines.

This option slightly optimizes performance.

Property type Can be either Built-in or Repository.

Built-in : No property data is stored centrally.



Related scenarios

Talend Open Studio Components Reference Guide 1045

Repository : Select the Repository file where the component
properties are stored. The following fields are pre-filled using
collected data

Host Database server IP address

Port Listening port number of DB server

Database Name of the database

Username et Password DB user authentication data.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at component level.

Usage tELTSybaseMap is intended for use with tELTSybaseInput and tELTSybaseOutput. Note that
the Output link to be used with these components must correspond strictly to the syntax of the
table name.

The ELT components only handle schema information. They do not handle actual data
flow.

Related scenarios

For scenarios in which tELTSybaseMap may be used, see the following tELTMysqlMap scenarios:

• section Scenario 1: Aggregating table columns and filtering.

• section Scenario 2: ELT using an Alias table.



tELTSybaseOutput

1046 Talend Open Studio Components Reference Guide

tELTSybaseOutput

tELTSybaseOutput properties

The three ELT Sybase components are closely related in terms of their operating conditions. These components
should be used to handle Sybase DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Componant family ELT/Map/Sybase

Function Carries out the action on the table specified and inserts the data according to the output schema
defined the ELT Mapper.

Purpose Executes the SQL Insert, Update and Delete statement in the Mysql database

Basic settings

Use tCreate Table
as substitute for this
function.

Action on data On the data of the table defined, you can perform the following
operation:

Insert: Add new entries to the table. If duplicates are found, the Job
stops.

Update: Updates entries in the table.

Delete: Deletes the entries which correspond to the entry flow.

Schema and Edit schema A schema is a row description, i.e., it defines the number and nature
of the fields to be processed and passed on to the next component.
The schema is either Built-in (local) or stored remotely in the
Repository. The Schema defined is then passed on to the ELT
Mapper for inclusion in the Insert SQL statement.

Click on Edit Schema, to modify the schema. Note that if you
modify the schema, it automatically becomes built-in.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository. Hence, it can be re-used for other projects and Jobs.
Related topic: see Talend Open Studio User Guide.

Where clauses for (for
UPDATE and DELETE
only)

Enter a clause to filter the data to be updated or deleted during the
update or delete operations.

Default Table Name Enter a default name for the table, between double quotation marks.

Default Schema Name Enter a default name for the Sybase schema, between double
quotation marks.

Use different table name Select this check box to enter a different output table name, between
double quotation marks, in the Table name field which appears.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at component level.

Usage tELTSybaseOutput is intended for use with the tELTMysqlInput and tELTSybaseMap
components. Note that the Output link to be used with these components must correspond strictly
to the syntax of the table name..

ELT components only handle schema information. They do not handle actual data flow.

Limitation n/a



Related scenarios

Talend Open Studio Components Reference Guide 1047

Related scenarios

For scenarios in which tELTSybaseOutput may be used, see the following tELTMysqlMap scenarios :

• section Scenario 1: Aggregating table columns and filtering.

• section Scenario 2: ELT using an Alias table.



tELTTeradataInput

1048 Talend Open Studio Components Reference Guide

tELTTeradataInput

tELTTeradataInput properties

The three ELT Teradata components are closely related, in terms of their operating conditions. These components
should be used to handle Teradata DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Teradata

Function Provides the table schema to be used for the SQL statement to execute.

Purpose Allows you to add as many Input tables as required for the most complicated Insert statement.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the nature and number
of fields to be processed. The schema is either built-in or remotely
stored in the Repository. The Schema defined is then passed on to
the ELT Mapper to be included to the Insert SQL statement.

Click Edit Schema to modify the schema. Note that if you make
the modifcation, the schema switches automatically to the Built-in
mode.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Default Table Name Enter a default name for the table, between double quotation marks.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at component level.

Usage tELTTeradataInput is to be used along with the tELTTeradataMap. Note that the Output link
to be used with these components must correspond strictly to the syntax of the table name

Note that the ELT components do not handle actual data flow but only schema
information.

Related scenarios

For use cases in relation with tELTTeradataInput, see tELTMysqlMap scenarios:

• section Scenario 1: Aggregating table columns and filtering

• section Scenario 2: ELT using an Alias table



tELTTeradataMap

Talend Open Studio Components Reference Guide 1049

tELTTeradataMap

tELTTeradataMap properties

The three ELT Teradata components are closely related, in terms of their operating conditions. These components
should be used to handle Teradata DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Teradata

Function Helps to graphically build the SQL statement using the table provided as input.

Purpose Uses the tables provided as input, to feed the parameter in the built statement. The statement can
include inner or outer joins to be implemented between tables or between one table and its aliases.

Basic settings Use an existing connection Select this check box and select the appropriate
tTeradataConnection component from the Component list if you
want to re-use connection parameters that you have already defined.

When a Job contains the parent Job and the child Job,
Component list presents only the connection components
in the same Job level, so if you need to use an existing
connection from the other level, make sure that the
available connection components are sharing the intended
connection.

For more information on how to share a DB
connection across Job levels, see Use or register a
shared DB connection in any database connection
component corresponding to the database you are using,
in Databases - traditional components, Databases -
appliance/datawarehouse components, or Databases -
other components.

Otherwise, you can as well deactivate the connection
components and use Dynamic settings of the component
to specify the intended connection manually. In this case,
make sure the connection name is unique and distinctive
all over through the two Job levels. For more information
about Dynamic settings, see your studio user guide.

ELT Teradata Map editor The ELT Map editor allows you to define the output schema as well
as build graphically the SQL statement to be executed. The column
names of schema can be different from the column names in the
database.

Style link Select the way in which links are displayed.

Auto: By default, the links between the input and output schemas
and the Web service parameters are in the form of curves.

Bezier curve: Links between the schema and the Web service
parameters are in the form of curve.

Line: Links between the schema and the Web service parameters are
in the form of straight lines.

This option slightly optimizes performance.

Property type Either Built-in or Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.



Related scenarios

1050 Talend Open Studio Components Reference Guide

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties are stored.
The following fields are pre-filled in using fetched data.

Host Database server IP address

Port Listening port number of DB server.

Database Name of the database

Username and Password DB user authentication data.

Usage tELTTeradataMap is used along with a tELTTeradataInput and tELTTeradataOutput. Note
that the Output link to be used with these components must faithfully reflect the name of the tables.

The ELT components do not handle actual data flow but only schema information.

Connecting ELT components

For detailed information regarding ELT component connections, see section Connecting ELT components.

Related topic: see Talend Open Studio User Guide.

Mapping and joining tables

In the ELT Mapper, you can select specific columns from input schemas and include them in the output schema.

For detailed information regarding the table schema mapping and joining, see section Mapping and joining tables.

Adding WHERE clauses

For details regarding the clause handling, see section Adding where clauses.

Generating the SQL statement

The mapping of elements from the input schemas to the output schemas create instantly the corresponding Select
statement.

The clause defined internally in the ELT Mapper are also included automatically.

Related scenarios

For use cases in relation with tELTTeradataMap, see tELTMysqlMap scenarios:

• section Scenario 1: Aggregating table columns and filtering.

• section Scenario 2: ELT using an Alias table.



tELTTeradataOutput

Talend Open Studio Components Reference Guide 1051

tELTTeradataOutput

tELTTeradataOutput properties

The three ELT Teradata components are closely related, in terms of their operating conditions. These components
should be used to handle Teradata DB schemas to generate Insert statements, including clauses, which are to be
executed in the DB output table defined.

Component family ELT/Map/Teradata

Function Carries out the action on the table specified and inserts the data according to the output schema
defined the ELT Mapper.

Purpose Executes the SQL Insert, Update and Delete statement to the Teradata database

Basic settings

Use tCreate Table
as substitute for this
function.

Action on data On the data of the table defined, you can perform the following
operation:

Insert: Add new entries to the table. If duplicates are found, Job
stops.

Update: Updates entries in the table.

Delete: Deletes the entries which correspond to the entry flow.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Click Edit Schema to modify the schema. Note that if you make
the modifcation, the schema switches automatically to the Built-in
mode.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Where clauses for (for
UPDATE and DELETE
only)

Enter a clause to filter the data to be updated or deleted during the
update or delete operations.

Default Table Name Enter a default name for the table, between double quotation marks.

Use different table name Select this check box to enter a different output table name, between
double quotation marks, in the Table name field which appears.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at component level.

Usage tELTTeradataOutput is to be used along with the tELTTeradataMap. Note that the Output link
to be used with these components must correspond strictly to the syntax of the table name.

Note that the ELT components do not handle actual data flow but only schema
information.

Limitation n/a

Related scenarios

For use cases in relation with tELTTeradataOutput, see tELTMysqlMap scenarios:



Related scenarios

1052 Talend Open Studio Components Reference Guide

• section Scenario 1: Aggregating table columns and filtering.

• section Scenario 2: ELT using an Alias table.



tSQLTemplateAggregate

Talend Open Studio Components Reference Guide 1053

tSQLTemplateAggregate

tSQLTemplateAggregate properties

Component family ELT/SQLTemplate

Function tSQLTemplateAggregate collects data values from one or more columns with the intent to
manage the collection as a single unit. This component has real-time capabilities since it runs
the data transformation on the DBMS itself.

Purpose Helps to provide a set of matrix based on values or calculations.

Basic settings Database Type Select the database type you want to connect to from the list.

Component List Select the relevant DB connection component in the list if you use
more than one connection in the current Job.

Database name Name of the database.

Source table name Name of the table holding the data you want to collect values from.

Target table name Name of the table you want to write the collected and transformed
data in.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created the schema and stored it
in the Repository. You can reuse it in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Operations Select the type of operation along with the value to use for the
calculation and the output field.

Output Column: Select the destination field in the list.

Function: Select any of the following operations to perform on
data: count, min, max, avg, sum, and count (distinct).

Input column position: Select the input column from which you
want to collect the values to be aggregated.

Group by Define the aggregation sets, the values of which will be used for
calculations.

Output Column: Select the column label in the list offered
according to the schema structure you defined. You can add
as many output columns as you wish to make more precise
aggregations.

Input Column position: Match the input column label with your
output columns, in case the output label of the aggregation set
needs to be different.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

SQL Template SQL Template List To add a default system SQL template: Click the Add button
to add the default system SQL template(s) in the SQL Template
List.



Scenario: Filtering and aggregating table columns directly on the DBMS

1054 Talend Open Studio Components Reference Guide

Click in the SQL template field and then click the arrow to display
the system SQL template list. Select the desired system SQL
template provided by Talend.

Note: You can create your own SQL template and add them to the
SQL Template List.

To create a user-defined SQL template:

-Select a system template from the SQL Template list and click
on its code in the code box. You will be prompted by the system
to create a new template.

-Click Yes to open the SQL template wizard.

-Define your new SQL template in the corresponding fields and
click Finish to close the wizard. An SQL template editor opens
where you can enter the template code.

-Click the Add button to add the new created template to the SQL
Template list.

For more information, see Talend Open Studio User Guide.

Usage This component is used as an intermediate component with other relevant DB components,
especially the DB connection and commit components.

Limitation n/a

Scenario: Filtering and aggregating table columns
directly on the DBMS

The following scenario creates a Job that opens a connection to a Mysql database and:

• instantiates the schemas from a database table whose rows match the column names specified in the filter,

• filters a column in the same database table to have only the data that matches a WHERE clause,

• collects data grouped by specific value(s) from the filtered column and writes aggregated data in a target database
table.

To filter and aggregate database table columns:

• Drop the following components from the Palette onto the design
workspace: tELTMysqlconnection, tSQLTemplateFilterColumns, tSQLTemplateFilterRows,
tSQLTemplateAggregate, tSQLTemplateCommit, and tSQLTemplateRollback.

• Connect the five first components using OnComponentOk links.

• Connect tSQLTemplateAggregate to tSQLTemplateRollback using an OnComponentError link.



Scenario: Filtering and aggregating table columns directly on the DBMS

Talend Open Studio Components Reference Guide 1055

• In the design workspace, select tMysqlConnection and click the Component tab to define the basic settings
for tMysqlConnection.

• In the Basic settings view, set the database connection details manually or select Repository from the Property
Type list and select your DB connection if it has already been defined and stored in the Metadata area of the
Repository tree view.

For more information about Metadata, see Talend Open Studio User Guide.

• In the design workspace, select tSQLTemplateFilterColumns and click the Component tab to define its basic
settings.

• On the Database type list, select the relevant database.

• On the Component list, select the relevant database connection component if more than one connection is used.

• Enter the names for the database, source table, and target table in the corresponding fields and click the three-
dot buttons next to Edit schema to define the data structure in the source and target tables.



Scenario: Filtering and aggregating table columns directly on the DBMS

1056 Talend Open Studio Components Reference Guide

When you define the data structure for the source table, column names automatically appear in the Column list in the
Column filters panel.

In this scenario, the source table has five columns: id, First_Name, Last_Name, Address, and id_State.

• In the Column filters panel, set the column filter by selecting the check boxes of the columns you want to
write in the source table.

In this scenario, the tSQLTemplateFilterColumns component instantiates only three columns: id, First_Name,
and id_State from the source table.

In the Component view, you can click the SQL Template tab and add system SQL templates or create your own and
use them within your Job to carry out the coded operation. For more information, see section tSQLTemplateFilterColumns
Properties.

• In the design workspace, select tSQLTemplateFilterRows and click the Component tab to define its basic
settings.

• On the Database type list, select the relevant database.

• On the Component list, select the relevant database connection component if more than one connection is used.

• Enter the names for the database, source table, and target table in the corresponding fields and click the three-
dot buttons next to Edit schema to define the data structure in the source and target tables.

In this scenario, the source table has the three initially instantiated columns: id, First_Name, and id_State and the
source table has the same three-column schema.

• In the Where condition field, enter a WHERE clause to extract only those records that fulfill the specified
criterion.

In this scenario, the tSQLTemplateFilterRows component filters the First_Name column in the source table to
extract only the first names that contain the “a” letter.

• In the design workspace, select tSQLTemplateAggregate and click the Component tab to define its basic
settings.

• On the Database type list, select the relevant database.

• On the Component list, select the relevant database connection component if more than one connection is used.

• Enter the names for the database, source table, and target table in the corresponding fields and click the three-
dot buttons next to Edit schema to define the data structure in the source and target tables.

The schema for the source table consists of the three columns: id, First_Name, and id_State. The schema for the
target table consists of two columns: customers_status and customers_number. In this scenario, we want to group
customers by their marital status and count customer number in each marital group. To do that, we define the
Operations and Group by panels accordingly.



Scenario: Filtering and aggregating table columns directly on the DBMS

Talend Open Studio Components Reference Guide 1057

• In the Operations panel, click the plus button to add one or more lines and then click in the Output column
line to select the output column that will hold the counted data.

• Click in the Function line and select the operation to be carried on.

• In the Group by panel, click the plus button to add one or more lines and then click in the Output column line
to select the output column that will hold the aggregated data.

• In the design workspace, select tSQLTemplateCommit and click the Component tab to define its basic
settings.

• On the Database type list, select the relevant database.

• On the Component list, select the relevant database connection component if more than one connection is used.

• Do the same for tSQLTemplateRollback.

• Save your Job and press F6 to execute it.

A two-column table aggregate_customers is created in the database. It groups customers according to their marital
status and count customer number in each marital group.



tSQLTemplateCommit

1058 Talend Open Studio Components Reference Guide

tSQLTemplateCommit

tSQLTemplateCommit properties

This component is closely related to tSQLTemplateRollback and to the ELT connection component for the
database you work with. tSQLTemplateCommit, tSQLTemplateRollback and the ELT database connection
component are usually used together in a transaction.

Component family ELT/SQLTemplate

Function tSQLTemplateCommit validates the data processed in a Job in a specified database.

Purpose Using a single connection, this component commits a global action in one go instead of doing so
for every row or every batch of rows, separately. This provides a gain in performance.

Basic settings Database Type Select the database type you want to connect to from the list.

Component List Select the ELT database connection component in the list if more
than one connection is required for the current Job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

SQL Template SQL Template List To add a default system SQL template: Click the Add button to
add the default system SQL template(s) in the SQL Template List.

Click in the SQL template field and then click the arrow to display the
system SQL template list. Select the desired system SQL template
provided by Talend.

Note: You can create your own SQL template and add them to the
SQL Ttemplate List.

To create a user-defined SQL template:

-Select a system template from the SQL Template list and click on
its code in the code box. You will be prompted by the system to
create a new template.

-Click Yes to open the SQL template wizard.

-Define your new SQL template in the corresponding fields and click
Finish to close the wizard. An SQL template editor opens where you
can enter the template code.

-Click the Add button to add the new created template to the SQL
Template list.

For more information, see Talend Open Studio User Guide.

Usage This component is to be used with ELT components, especially with tSQLTemplateRollback and
the relevant database connection component.

Limitation n/a



Related scenario

Talend Open Studio Components Reference Guide 1059

Related scenario

This component is closely related to tSQLTemplateRollback and to the ELT connection component depending
on the database you are working with. It usually does not make much sense to use ELT components without using
the relevant ELT database connection component as its purpose is to open a connection for a transaction.

For more information on tSQLTemplateCommit, see section Scenario: Filtering and aggregating table columns
directly on the DBMS.



tSQLTemplateFilterColumns

1060 Talend Open Studio Components Reference Guide

tSQLTemplateFilterColumns

tSQLTemplateFilterColumns Properties

Component family ELT/SQLTemplate

Function tSQLTemplateFilterColumns makes specified changes to the defined schema of the database
table based on column name mapping. This component has real-time capabilities since it runs
the data filtering on the DBMS itself

Purpose Helps homogenize schemas by reorganizing, deleting or adding new columns.

Basic settings Database Type Select the type of database you want to work on from the drop-
down list.

Component List Select the relevant DB connection component in the list if you use
more than one connection in the current Job.

Database name Name of the database.

Source table name Name of the table holding the data you want to filter.

Target table name Name of the table you want to write the filtered data in.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created the schema and stored it
in the Repository. You can reuse it in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Column Filters In the table, click the Filter check box to filter all of the columns.
To select specific columns for filtering, select the check box(es)
which correspond(s) to the column name(s).

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

SQL Template SQL Template List To add a default system SQL Template: Click the Add button
to add the default system SQL template(s) in the SQL Template
List.

Click in the SQL template field and then click the arrow to display
the system SQL template list. Select the desired system SQL
template provided by Talend.

Note: You can create your own SQL templates and add them to
the SQL Template List.

To create a user-defined SQL list:

-Select a system template from the SQL Template list and click
on its code in the code box. You will be prompted by the system
to create a new template.

-Click Yes to open the SQL Template wizard.



Related Scenario

Talend Open Studio Components Reference Guide 1061

-Define your new SQL template in the corresponding fields and
click Finish to close the wizard. An SQL template editor opens
where you can enter the template code.

-Click the Add button to add the new created template to the SQL
Template list.

For more information, see Talend Open Studio User Guide.

Usage This component is used as an intermediary component with other relevant DB components,
especially DB connection components.

Limitation n/a

Related Scenario

For a related scenario, see section Scenario: Filtering and aggregating table columns directly on the DBMS.



tSQLTemplateFilterRows

1062 Talend Open Studio Components Reference Guide

tSQLTemplateFilterRows

tSQLTemplateFilterRows Properties

Component family ELT/SQLTemplate

Function tSQLTemplateFilterRows allows you to define a row filter on one table. This component has
real-time capabilities since it runs the data filtering on the DBMS itself.

Purpose Helps to set row filters for any given data source, based on a WHERE clause.

Basic settings Database Type Select the type of database you want to work on from the drop
down list.

Component List Select the relevant DB connection component in the list if you are
using more than one connection in the current Job.

Database name Name of the database.

Source table name Name of the table holding the data you want to filter.

Target table name Name of the table you want to write the filtered data in.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created the schema and stored it
in the Repository. You can reuse it in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Where condition Use a WHERE clause to set the criteria that you want the rows to
meet.

You can use the WHERE clause to select specific rows from the
table that match specified criteria or conditions.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

SQL Template SQL Template List To add a default system SQL template: Click the Add button
to add the default system SQL template(s) in the SQL Template
List.

Click in the SQL template field and then click the arrow to display
the system SQL template list. Select the desired system SQL
template provided by Talend.

Note: You can create your own SQL template and add them to the
SQL Template List.

To create a user-defined SQL template:

-Select a system template from the SQL Template list and click
on its code in the code box. You will be prompted by the system
to create a new template.

-Click Yes to open the SQL template wizard.



Related Scenario

Talend Open Studio Components Reference Guide 1063

-Define your new SQL template in the corresponding fields and
click Finish to close the wizard. An SQL template editor opens
where you can enter the template code.

-Click the Add button to add the new created template to the SQL
Template list.

For more information, see Talend Open Studio User Guide.

Usage This component is used as an intermediary component with other DB components, particularly
DB connection components.

Limitation n/a

Related Scenario

For a related scenario, see section Scenario: Filtering and aggregating table columns directly on the DBMS.



tSQLTemplateMerge

1064 Talend Open Studio Components Reference Guide

tSQLTemplateMerge

tSQLTemplateMerge properties

Component family ELT/SQLTemplate

Function This component creates an SQL MERGE statement to merge data into a database table.

Purpose This component is used to merge data into a database table directly on the DBMS by creating and
executing a MERGE statement.

Basic settings Database Type Select the type of database you want to work on from the drop-down
list.

Component list Select the relevant DB connection component from the list if you use
more than one connection in the current Job.

Source table name Name of the database table holding the data you want to merge into
the target table.

Target table name Name of the table you want to merge data into.

Schema and Edit schema This component involves two schemas: source schema and target
schema.

A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either built-in or remotely stored in the Repository.

Click Edit Schema to modify the schema. Note that if you make
the modification, the schema switches automatically to the Built-in
mode.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Merge ON Specify the target and source columns you want to use as the primary
keys.

Use UPDATE (WHEN
MATCHED)

Select this check box to update existing records. With the check
box selected, the UPDATE Columns table appears, allowing you to
define the columns in which records are to be updated.

Specify additional output
columns

Select this check box to update records in additional columns other
than those listed in the UPDATE Columns table. With this check
box selected, the Additional UPDATE Columns table appears,
allowing you to specify additional columns.

Specify UPDATE WHERE
clause

Select this check box and type in a WHERE clause in the WHERE
clause field to filter data during the update operation.

This option may not work with certain database versions,
including Oracle 9i.

Use INSERT (WHEN
MATCHED)

Select this check box to insert new records. With the check box
selected, the INSERT Columns table appears, allowing you to
specify the columns to be involved in the insert operation.

Specify additional output
columns

Select this check box to insert records to additional columns other
than those listed in the INSERT Columns table. With this check box
selected, the Additional INSERT Columns table appears, allowing
you to specify additional columns.

Specify INSERT WHERE
clause

Select this check box and type in a WHERE clause in the WHERE
clause field to filter data during the insert operation.



Scenario: Merging data directly on the DBMS

Talend Open Studio Components Reference Guide 1065

This option may not work with certain database versions,
including Oracle 9i.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at component level.

SQL Template SQL Template List To add a default system SQL template: Click the Add button to
add the default system SQL template(s) in the SQL Template List.

Click in the SQL template field and then click the arrow to display the
system SQL template list. Select the desired system SQL template
provided by Talend.

Note: You can create your own SQL template and add them to the
SQL Template List.

To create a user-defined SQL template:

-Select a system template from the SQL Template list and click on
its code in the code box. You will be prompted by the system to
create a new template.

-Click Yes to open the SQL template wizard.

-Define your new SQL template in the corresponding fields and click
Finish to close the wizard. An SQL template editor opens where you
can enter the template code.

-Click the Add button to add the new created template to the SQL
Template list.

For more information, see Talend Open Studio User Guide.

Usage This component is used as an intermediate component with other relevant DB components,
especially the DB connection and commit components.

Scenario: Merging data directly on the DBMS

This scenario describes a simple Job that opens a connection to a MySQL database, merges data from a source
table into a target table according to customer IDs, and displays the contents of the target table before and after
the merge action. A WHERE clause is used to filter data during the merge operation.



Scenario: Merging data directly on the DBMS

1066 Talend Open Studio Components Reference Guide

• Drop a tMysqlConnection component, a tSQLTemplateMerge component, two tMysqlInput components
and two tLogRow components from the Palette onto the design workspace.

• Connect the tMysqlConnection component to the first tMysqlInput component using a Trigger >
OnSubjobOK connection.

• Connect the first tMysqlInput component to the first tLogRow component using a Row > Main connection.
This row will display the initial contents of the target table on the console.

• Connect the first tMysqlInput component to the tSQLTemplateMerge component, and the
tSQLTemplateMerge component to the second tMysqlInput component using Trigger > OnSubjobOK
connections.

• Connect the second tMysqlInput component to the second tLogRow component using a Row > Main
connection. This row will display the merge result on the console.

• Double-click the tMysqlConnection component to display its Basic settings view.

• Set the database connection details manually or select Repository from the Property Type list and select your
DB connection if it has already been defined and stored in the Metadata area of the Repository tree view.

For more information about Metadata, see Talend Open Studio User Guide.

• Double-click the first tMysqlInput component to display its Basic settings view.



Scenario: Merging data directly on the DBMS

Talend Open Studio Components Reference Guide 1067

• Select the Use an existing connection check box. If you are using more than one DB connection component in
your Job, select the component you want to use from the Component List.

• Click the three-dot button next to Edit schema and define the data structure of the target table, or select
Repository from the Schema list and select the target table if the schema has already been defined and stored
in the Metadata area of the Repository tree view.

In this scenario, we use built-in schemas.

• Define the columns as shown above, and then click OK to propagate the schema structure to the output
component and close the schema dialog box.

• Fill the Table Name field with the name of the target table, customer_info_merge in this scenario.

• Click the Guess Query button, or type in “SELECT * FROM customer_info_merge” in the Query area, to
retrieve all the table columns.

• Define the properties of the second tMysqlInput component, using exactly the same settings as for the first
tMysqlInput component.

• In the Basic settings view of each tLogRow component, select the Table option in the Mode area so that the
contents will be displayed in table cells on the console.



Scenario: Merging data directly on the DBMS

1068 Talend Open Studio Components Reference Guide

• Double-click the tSQLTemplateMerge component to display its Basic settings view.

• Type in the names of the source table and the target table in the relevant fields.

In this scenario, the source table is new_customer_info, which contains eight records; the target table is
customer_info_merge, which contains five records, and both tables have the same data structure.

The source table and the target table may have different schema structures. In this case, however, make sure that the source
column and target column specified in each line of the Merge ON table, the UPDATE Columns table, and the INSERT
Columns table are identical in data type and the target column length allows the insertion of the data from the corresponding
source column.

• Define the source schema manually, or select Repository from the Schema list and select the relevant table if
the schema has already been defined and stored in the Metadata area of the Repository tree view.

In this scenario, we use built-in schemas.

• Define the columns as shown above and click OK to close the schema dialog box, and do the same for the
target schema.



Scenario: Merging data directly on the DBMS

Talend Open Studio Components Reference Guide 1069

• Click the green plus button beneath the Merge ON table to add a line, and select the ID column as the primary
key.

• Select the Use UPDATE check box to update existing data during the merge operation, and define the columns
to be updated by clicking the green plus button and selecting the desired columns.

In this scenario, we want to update all the columns according to the customer IDs. Therefore, we select all the
columns except the ID column.

The columns defined as the primary key CANNOT and MUST NOT be made subject to updates.

• Select the Specify UPDATE WHERE clause check box and type in customer_info_merge.ID >= 4 within
double quotation marks in the WHERE clause field so that only those existing records with an ID equal to or
greater than 4 will be updated.

• Select the Use INSERT check box and define the columns to take data from and insert data to in the INSERT
Columns table.

In this example, we want to insert all the records that do not exist in the target table.



Scenario: Merging data directly on the DBMS

1070 Talend Open Studio Components Reference Guide

• Select the SQL Template view to display and add the SQL templates to be used.

By default, the SQLTemplateMerge component uses two system SQL templates: MergeUpdate and
MergeInsert.

In the SQL Template tab, you can add system SQL templates or create your own and use them within your Job to carry out
the coded operation. For more information, see section tSQLTemplateFilterColumns Properties.

• Click the Add button to add a line and select Commit from the template list to commit the merge result to
your database.

Alternatively, you can connect the tSQLTemplateMerge component to a tSQLTemplateCommit or
tMysqlCommit component using a Trigger > OnSubjobOK connection to commit the merge result to your
database.

• Save your Job and press F6 to run it.

Both the original contents of the target table and the merge result are displayed on the console. In the target
table, records No. 4 and No. 5 contain the updated information, and records No.6 through No. 8 contain the
inserted information.



Scenario: Merging data directly on the DBMS

Talend Open Studio Components Reference Guide 1071



tSQLTemplateRollback

1072 Talend Open Studio Components Reference Guide

tSQLTemplateRollback

tSQLTemplateRollback properties

This component is closely related to tSQLTemplateCommit and to the ELT connection component relative to
the database you work with. tSQLTemplateRollback, tSQLTemplateCommit and the ELT database connection
component are usually used together in a transaction.

Component family ELT/SQLTemplate

Function tSQLTemplateRollback cancels the transaction committed in the database you connect to.

Purpose To avoid committing transactions accidentally.

Basic settings Database Type Select the database type you want to connect to from the list.

Component List Select the ELT database connection component in the list if more
than one connection is planned for the current Job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

SQL Template SQL Template List To add a default system SQL template: Click the Add button to
add the default system SQL template(s) in the SQL Template List.

Click in the SQL template field and then click the arrow to display the
system SQL template list. Select the desired system SQL template
provided by Talend.

Note: You can create your own SQL template and add them to the
SQL Template List.

To create a user-defined SQL template:

-Select a system template from the SQL Template list and click on
its code in the code box. You will be prompted by the system to
create a new template.

-Click Yes to open the SQL template wizard.

-Define your new SQL template in the corresponding fields and click
Finish to close the wizard. An SQL template editor opens where you
can enter the template code.

-Click the Add button to add the new created template to the SQL
Template list.

For more information, see Talend Open Studio User Guide.

Usage This component is to be used with ELT components, especially with tSQLTemplateCommit and
the relevant database connection component.

Limitation n/a

Related scenarios

For a tSQLTemplateRollback related scenario, see section Scenario: Filtering and aggregating table columns
directly on the DBMS.



Talend Open Studio Components Reference Guide

ESB components
This chapter details the main components that you can find in the ESB family of the Palette in the Integration
perspective of the Talend Studio.

The ESB component family groups together the components dedicated to ESB related tasks.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.



tESBConsumer

1074 Talend Open Studio Components Reference Guide

tESBConsumer

tESBConsumer properties

Component family ESB/Web Services

Function Calls the defined method from the invoked Web service and returns the class as defined, based
on the given parameters.

Purpose Invokes a Method through a Web service.

Basic settings Property Type Either Built-in or Repository

Built-in: No property data stored centrally.

Repository: Select the desired web service from the Repository,
to the granularity of the port name and operation.

Service configuration Description of Web service bindings and configuration. The
Endpoint field gets filled in automatically upon completion of the
service configuration.

Connection time
out(second)

Set a value in seconds for Web service connection time out.

Receive time out(second) Set a value in seconds for server answer.

Input Schema and Edit
schema

A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository Click Edit
schema to make changes to the schema. Note that if you make
changes, the schema automatically becomes Built-in. Click Sync
columns to retrieve the schema from the previous component
connected in the Job.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Response Schema and Edit
schema

A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository Click Edit
schema to make changes to the schema. Note that if you make
changes, the schema automatically becomes Built-in.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Fault Schema and Edit
schema

A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository Click Edit
schema to make changes to the schema. Note that if you make
changes, the schema automatically becomes Built-in.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.



Scenario: Returning valid email

Talend Open Studio Components Reference Guide 1075

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

ESB Service Settings Use Service Locator: Maintains the availability of the service to
help meet demands and service level agreements (SLAs).

Use Service Activity Monitor: Captures events and stores this
information to facilitate in-depth analysis of service activity and
track-and-trace of messages throughout a business transaction.
This can be used to analyze service response times, identify traffic
patterns, perform root cause analysis and more.

Use Authentication: Select this check box to enable the
authentication option. Select from Basic HTTP, SAML Token
(ESB runtime only) and Username Token. Enter a username and
a password in the corresponding fields as required. Authentication
with the username token works both from the studio and at runtime.
Authentication with the SAML token works at runtime only.

Use http proxy/Proxy host,
Proxy port, Proxy user, and
Proxy password

Select this check box if you are using a proxy server and fill in the
necessary information.

Trust server with SSL/
TrustStore file and
TrustStore password

Select this check box to validate the server certificate to the client
via an SSL protocol and fill in the corresponding fields:

TrustStore file: Enter the path (including filename) to the
certificate TrustStore file that contains the list of certificates that
the client trusts.

TrustStore password: Enter the password used to check the
integrity of the TrustStore data.

Mapping links display as Auto: By default, the links between the input and output schemas
and the Web service parameters are in the form of curves.

Curves: Links between the schema and the Web service
parameters are in the form of curves.

Lines (fast): Links between the schema and the Web service
parameters are in the form of straight lines. This option slightly
optimizes performance.

Die on error Select this check box to kill the Job when an error occurs.

Advanced settings Service Locator Custom
Properties

This table appears when Use Service Locator is selected. You
can add as many lines as needed in the table to customize the
relevant properties. Enter the name and the value of each property
between double quotation marks in the Property Name field and
the Property Value field respectively.

Service Activity Custom
Properties

This table appears when Use Service Activity Monitor is selected.
You can add as many lines as needed in the table to customize the
relevant properties. Enter the name and the value of each property
between double quotation marks in the Property Name field and
the Property Value field respectively.

Temporary folder (for
wsdl2java)

Set or browse to a temporary folder that you configured in order
to store the WSDL files.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component can be used as an intermediate component. It requires to be linked to an output
component.

Limitation A JDK is required for this component to operate.

Scenario: Returning valid email

This scenario describes a Job that uses a tESBConsumer component to retrieve the valid email.



Scenario: Returning valid email

1076 Talend Open Studio Components Reference Guide

Dropping and linking the components

1. Drop the following components from the Palette onto the design workspace: a tFixedFlowInput, a
tXMLMap, a tESBConsumer, and two tLogRow components.

2. Right-click the tFixedFlowInput component, select Row > Main from the contextual menu and click the
tXMLMap component.

3. Right-click the tXMLMap component, select Row > *New Output* (Main) from the contextual menu and
click the tESBConsumer component. Enter payload in the popup dialog box to name this row and accept
the propagation that prompts you to get the schema from the tESBConsumer component.

4. Right-click the tESBConsumer component, select Row > Response from the contextual menu and click one
of the tLogRow component.

5. Right-click the tESBConsumer component again, select Row > Fault from the contextual menu and click
the other tLogRow component.

Configuring the components

Configuring the tFixedFlowInput component

1. Double-click the tFixedFlowInput component to open its Basic settings view in the Component tab.

2. Click the three-dot button next to Edit Schema. In the schema dialog box, click the plus button to add a new
line of String type and name it payloadString. Click OK to close the dialog box.



Scenario: Returning valid email

Talend Open Studio Components Reference Guide 1077

3. In the Number of rows field, set the number of rows as 1.

4. In the Mode area, select Use Single Table and input the following request in double quotation marks into
the Value field:

nomatter@gmail.com

Configuring the tXMLMap component

1. In the design workspace, double-click the tXMLMap component to open the Map Editor.

2. In the output table, right-click the root node and select Rename from the contextual menu. Enter IsValidEmail
in the dialog box that appears.

3. Right-click the IsValidEmail node and select Set A Namespace from the contextual menu. Enter http://
www.webservicex.net in the dialog box that appears.

4. Right-click the IsValidEmail node again and select Create Sub-Element from the contextual menu. Enter
Email in the dialog box that appears.

5. Right-click the Email node and select As loop element from the contextual menu.

6. Click the payloadString node in the input table and drop it to the Expression column in the row of the Email
node in the output table.



Scenario: Returning valid email

1078 Talend Open Studio Components Reference Guide

7. Click OK to validate the mapping and close the Map Editor.

Configuring the tESBConsumer component

1. In the design workspace, double-click the tESBConsumer component to open its Basic settings view in the
Component tab.

2. Click the three-dot button next to Service configuration.



Scenario: Returning valid email

Talend Open Studio Components Reference Guide 1079

3. In the dialog box that appears, type in: http://www.webservicex.net/ValidateEmail.asmx?WSDL in the WSDL
field and click the refresh button to retrieve port name and operation name. In the Port Name list, select
the port you want to use, ValidateEmailSoap in this example. Click OK to validate your settings and close
the dialog box.

4. Set the Input Schema as follows:

5. Set the Response Schema as follows:

6. Set the Fault Schema as follows:

Configuring the tLogRow components

1. In the design workspace, double-click the tLogRow component that monitors the fault message to display
its Basic settings view in the Component tab.



Scenario: Returning valid email

1080 Talend Open Studio Components Reference Guide

2. Click the three-dot button next to Edit Schema and define the schema as follows:

3. In the design workspace, double-click the tLogRow component that monitors the response message to display
its Basic settings view in the Component tab.

4. Click the three-dot button next to Edit Schema and define the schema as follows:

5. Press Ctrl+S to save your Job.



Scenario: Returning valid email

Talend Open Studio Components Reference Guide 1081

Executing the Job

Click the Run view to display it and click the Run button to launch the execution of your Job. You can also press
F6 to execute it. In the execution log you will see:



tESBProviderFault

1082 Talend Open Studio Components Reference Guide

tESBProviderFault

This component is relevant only when used with the ESB version of the Studio, as it should be used with the Service
Repository node and the Data Service creation related wizard(s).

tESBProviderFault properties

Component family ESB/Web Services

Function Serves a Talend Job cycle result as a Fault message of the Web service in case of a request response
communication style.

Purpose Acts as Fault message of the Web Service response at the end of a Talend Job cycle.

Basic settings Schema and Edit schema A schema is a row description, i.e. it defines the number of fields to
be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Click Edit schema to make changes to the schema. Note that if you
make changes, the schema automatically becomes Built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

EBS service settings/fault
title

Value of the faultString in the Fault message.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage This component should only be used with the tESBProviderRequest component.

Limitation A JDK is required for this component to operate.

Scenario: Returning Fault message

The Jobs, which are built upon the components under the ESB/Web Services family, act as the implementations
of web services defined in the Services node of the Repository. They require the creation of and association with
relevant services. For more information about services, see the related topics in the Talend Open Studio User
Guide.

In this scenario, a provider Job and a consumer Job are needed. In the meantime, the related service should already
exist in the Services node, with the WSDL URI being http://127.0.0.1.8088/esb/provider/?WSDL, the port name
being LOCAL_providerSoapBinding and the operation being invoke(anyType):anyType.

The provider Job consists of a tESBProviderRequest, a tESBProviderFault, a tXMLMap, and two tLogRow
components.



Scenario: Returning Fault message

Talend Open Studio Components Reference Guide 1083

• From the Palette, drop a tESBProviderRequest, a tESBProviderFault, a tXMLMap, and two tLogRow onto
the design workspace.

• Double-click tESBProviderRequest_1 to display its Component view and set its Basic settings.

• Select Repository from the Property Type list and click the three-dot button to choose the service, to the
granularity of port name and operation.

• Click OK.

• Click the three-dot button next to Edit schema to view the schema of tESBProviderRequest_1.



Scenario: Returning Fault message

1084 Talend Open Studio Components Reference Guide

• Connect tESBProviderRequest_1 to tLogRow_1.

• Double-click the tLogRow_1 to display its Component view and set its Basic settings.

• Click the three-dot button next to the Edit schema and define the schema as follow.

• Connect tLogRow_1 to tXMLMap_1.

• Connect tXMLMap_1 to tLogRow_2 and name this row as payload.

• Double-click tXMLMap_1 to open the Map Editor.

• In the left table, right-click root to open the contextual menu.

• From the contextual menu, select Create Sub-Element and type in request in the popup dialog box.

• Repeat this operation to create a sub-element response of the root node in the output table.

• Right-click the request node in the input table and select As loop element from the contextual menu.

• Click the request node in the input table and drop it to the Expression column in the row of the response node
in the output table.

• Click OK to validate the mapping and close the Map Editor.



Scenario: Returning Fault message

Talend Open Studio Components Reference Guide 1085

• In the design workspace, double-click tLogRow_2 to display its Component view and set its Basic settings.

• Click the three-dot button next to the Edit schema and define the schema as follow.

• Connect tLogRow_2 to tESBProviderFault_1.

• In the design workspace, double-click tESBProviderFault_1 to display its Component view and set its Basic
settings.



Scenario: Returning Fault message

1086 Talend Open Studio Components Reference Guide

• Click the three-dot button next to the Edit schema and define the schema as follow.

• The Job can be run without errors.

The consumer Job consists of a tFixedFlowInput, a tXMLMap, a tESBConsumer, and two tLogRow
components.

• From the Palette, drop a tFixedFlowInput, a tXMLMap, a tESBConsumer, and two tLogRow components
onto the design workspace.

• Double-click tFixedFlowInput_1 to display its Component view and set its Basic settings.

• Click the three-dot button next to Edit schema.



Scenario: Returning Fault message

Talend Open Studio Components Reference Guide 1087

• Click the plus button to add a new line of string type and name it payloadString.

• Click OK.

• In the Mode area, select Use Single Table and input Test error in quotations into the Value field.

• Connect tFixedFlowInput_1 to tXMLMap_1.

• Connect tXMLMap_1 to tESBConsumer_1 and name this row as payload.

• In the design workspace, double-click tXMLMap_1 to open the Map Editor.

• On the lower right part of the map editor, click the plus button to add one row to the payload table and name
this row as payload.

• In the Type column of this payload row, select Document as the data type. The corresponding XML root is
added automatically to the table on the right side which represents the output flow.

• In the payload table, right-click root to open the contextual menu.

• From the contextual menu, select Create Sub-Element and type in request in the popup dialog box.

• Right-click the request node and select As loop element from the contextual menu.

• Click the payloadstring node in the input table and drop it to the Expression column in the row of the request
node in the output table.

• Click OK to validate the mapping and close the Map Editor.



Scenario: Returning Fault message

1088 Talend Open Studio Components Reference Guide

• Start the provider Job. In the executing log you can see:

...
web service [endpoint: http://127.0.0.1:8088/esb/provider] published
...

• On the tESBConsumer_1 Component view of the consumer Job, click the three-dot button next to the Service
Configuration to open the editor.

• In the WSDL field, type in: http://127.0.0.1:8088/esb/provider/?WSDL.

• Click the Refresh button to retrieve port name and operation name.



Scenario: Returning Fault message

Talend Open Studio Components Reference Guide 1089

• Click OK.

• In the Basic settings of the tESBConsumer_1 component, set the Input schema as follow:

• Set the Response schema as follow:

• Set the Fault schema as follow:

• Connect tESBConsumer_1 to tLogRow_1 and tLogRow_2.

• Stop the provider Job.

• In the consumer Job, double-click tLogRow_1 to display its Component view and set its Basic settings.



Scenario: Returning Fault message

1090 Talend Open Studio Components Reference Guide

• Click the three-dot button next to Edit schema and define the schema as follow:

• In the design workspace, double-click tLogRow_2 to display its Component view and set its Basic settings.

• Click the three-dot button next to Edit schema and define the schema as follow:

• The Job can be run without errors.

• Run the provider Job. In the execution log you will see:

...
2011-04-19 15:38:33.486:INFO::jetty-7.2.2.v20101205
2011-04-19 15:38:33.721:INFO::Started SelectChannelConnector@127.0.0.1:8088
web service [endpoint: http://127.0.0.1:8088/esb/provider] published



Scenario: Returning Fault message

Talend Open Studio Components Reference Guide 1091

• Run the consumer Job. In the execution log of the Job you will see:

Starting job consumer at 15:39 19/04/2011.

[statistics] connecting to socket on port 3850
[statistics] connected
LOCAL_provider
LOCAL_providerSoapBinding
|
{http://talend.org/esb/service/job}LOCAL_provider
{http://talend.org/esb/service/job}LOCAL_providerSoapBinding
invoke
[tLogRow_1] faultString: TestFaultTitle [tESBProviderFault_1]
faultDetail: <?xml version="1.0" encoding="UTF-8"?>
<response xmlns="http://talend.org/esb/service/job">Fault message
text: Test error!</response>
[statistics] disconnected
Job consumer ended at 15:39 19/04/2011. [exit code=0]

• In the provider’s log you will see the exception trace log:

...
WARNING: Application {http://talend.org/esb/service/job}LOCAL_provider#{http://
talend.org/esb/service/job}invoke
has thrown exception, unwinding now
org.apache.cxf.binding.soap.SoapFault: TestFaultTitle [tESBProviderFault_1]
...

It is expected because the Fault message is generated.



tESBProviderRequest

1092 Talend Open Studio Components Reference Guide

tESBProviderRequest

This component is relevant only when used with the ESB version of the Studio, as it should be used with the Service
Repository node and the Data Service creation related wizard(s).

tESBProviderRequest properties

Component family ESB/Web Services

Function Wraps Talend Job as web service.

Purpose Waits for a request message from a consumer and passes it to the next component.

Basic settings Property Type Either Built-in or Repository.

Built-in: No WSDL file is configured for the job.

Repository: Select the desired web service from the Repository, to
the granularity of the port name and operation.

Schema and Edit schema A schema is a row description, i.e. it defines the number of fields to
be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Click Edit schema to make changes to the schema. Note that if you
make changes, the schema automatically becomes Built-in.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema is created and stored in the Repository,
hence can be reused. Related topic: see Talend Open Studio User
Guide.

Keep listening Check this box when you want to ensure that the provider (and
therefore Talend Job) will continue listening for requests after
processing the first incoming request.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage This component covers the possibility that a Talend Job can be wrapped as a service, with the
ability to input a request to a service into a Job and return the Job result as a service response.

The tESBProviderRequest component should be used with the tESBProviderResponse
component to provide a Job result as a response, in case of a request-response communication style.

Limitation A JDK is required for this component to operate.

Scenario: Service sending a message without
expecting a response

The Jobs, which are built upon the components under the ESB/Web Services family, act as the implementations
of web services defined in the Services node of the Repository. They require the creation of and association with
relevant services. For more information about services, see the related topics in the Talend Open Studio User
Guide.

In this scenario, a provider Job and a consumer Job are needed. In the meantime, the related service should already
exist in the Services node, with the WSDL URI being http://127.0.0.1.8088/esb/provider/?WSDL, the port name
being TEST_ProviderJobSoapBinding and the operation being invoke(anyType):anyType.



Scenario: Service sending a message without expecting a response

Talend Open Studio Components Reference Guide 1093

The provider Job consists of a tESBProviderRequest, a tXMLMap, and two tLogRow components.

• Drop the following components from the Palette onto the design workspace: a tESBProviderRequest, a
tXMLMap, and two tLogRow.

• Double-click tESBProviderRequest_1 in the design workspace to display its Component view and set its
Basic settings.

• Select Repository from the Property Type list and click the three-dot button to choose the service, to the
granularity of port name and operation.

• Click OK.

• Click the three-dot button next to Edit schema to view the schema of tESBProviderRequest_1.



Scenario: Service sending a message without expecting a response

1094 Talend Open Studio Components Reference Guide

• Click OK.

• Connect tESBProviderRequest_1 to tLogRow_1.

• Double-click tLogRow_1 in the design workspace to display its Component view and set its Basic settings.

• Click the three-dot button next to Edit schema. and define the schema as follow.

• Connect tLogRow_1 to tXMLMap_1.

• Connect tXMLMap_1 to tLogRow_2 and name this row as payload.

• In the design workspace, double-click tXMLMap_1 to open the Map Editor.

• On the lower right part of the map editor, click the plus button to add one row to the payload table and name
this row as payload.

• In the Type column of this payload row, select Document as the data type. The corresponding XML root is
added automatically to the top table on the right side which represents the output flow.

• In the payload table, right-click root to open the contextual menu.

• From the contextual menu, select Create Sub-Element and type in response in the popup dialog box.

• Right-click the response node and select As loop element from the contextual menu.

• Repeat this operation to create a sub-element request of the root node in the input table and set the request
node as loop element.

• Click the request node in the input table and drop it to the Expression column in the row of the response node
in the output table.



Scenario: Service sending a message without expecting a response

Talend Open Studio Components Reference Guide 1095

• Click OK to validate the mapping and close the map editor.

• Double-click tLogRow_2 in the design workspace to display its Component view and set its Basic settings.

• Click the three-dot button next to Edit Schema and define the schema as follow.

• Save the Job.

The consumer Job consists of a tFixedFlowInput, a tXMLMap, a tESBConsumer, and two tLogRow
components.



Scenario: Service sending a message without expecting a response

1096 Talend Open Studio Components Reference Guide

• Drop the following components from the Palette onto the design workspace: a tFixedFlowInput, a tXMLMap,
a tESBConsumer, and two tLogRow.

• Double-click tFixedFlowInput_1 in the design workspace to display its Component view and set its Basic
settings.

• Edit the schema of the tFixedFlowInput_1 component.

• Click the plus button to add a new line of string type and name it payloadString.

• Click OK.



Scenario: Service sending a message without expecting a response

Talend Open Studio Components Reference Guide 1097

• In the Number of rows field, set the number of rows as 1.

• In the Mode area, select Use Single Table and input world in quotations into the Value field.

• Connect tFixedFlowInput_1 to tXMLMap_1.

• Connect tXMLMap_1 to tESBConsumer_1 and name this row as payload.

• In the design workspace, double-click tXMLMap_1 to open the Map Editor.

• In the output table, right-click the root node to open the contextual menu.

• From the contextual menu, select Create Sub-Element and type in request in the popup dialog box.

• Right-click the request node and select As loop element from the contextual menu.

• Click the payloadstring node in the input table and drop it to the Expression column in the row of the request
node in the output table.

• Click OK to validate the mapping and close the Map Editor.

• Start the Provider Job. In the executing log you can see:

...
web service [endpoint: http://127.0.0.1:8088/esb/provider] published
...

• In the tESBConsumer_1 Component view, set its Basic settings.



Scenario: Service sending a message without expecting a response

1098 Talend Open Studio Components Reference Guide

• Click the three-dot button next to the Service Configuration to open the editor.

• In the WSDL field, type in: http://127.0.0.1:8088/esb/provider?WSDL.

• Click the Refresh button to retrieve port name and operation name.

• Click OK.



Scenario: Service sending a message without expecting a response

Talend Open Studio Components Reference Guide 1099

• In the Basic settings of the tESBConsumer, set the Input Schema as follow:

• Set the Response Schema as follow:

• Set the Fault Schema as follow:

• Connect tESBConsumer_1 to tLogRow_1 and tLogRow_2.

• In the design workspace, double-click the tLogRow_1 component to display its Component view and set its
Basic settings.

• Click the three-dot button next to Edit Schema and define the schema as follow:

• In the Job Design, double-click tLogRow_2 to display its Component view and set its Basic settings.



Scenario: Service sending a message without expecting a response

1100 Talend Open Studio Components Reference Guide

• Click the three-dot button next to Edit Schema and define the schema as follow.

• Save the Job.

• Run the provider Job. In the execution log you will see:

INFO: Setting the server's publish address to be http://127.0.0.1:8088/esb/provider

2011-04-21 14:14:36.793:INFO::jetty-7.2.2.v20101205

2011-04-21 14:14:37.856:INFO::Started

SelectChannelConnector@127.0.0.1:8088

web service [endpoint: http://127.0.0.1:8088/esb/provider] published

• Run the consumer Job. In the execution log of the Job you will see:

Starting job CallProvider at 14:15 21/04/2011.

[statistics] connecting to socket on port 3942
[statistics] connected
TEST_ESBProvider2
TEST_ESBProvider2SoapBingding
|
[tLogRow_2] payloadString: <request>world</request>
{http://talend.org/esb/service/job}TEST_ESBProvider2
{http://talend.org/esb/service/job}TEST_ESBProvider2SoapBinding
invoke
[tLogRow_1] payload: null
[statistics] disconnected
Job CallProvider2 ended at 14:16 21/04/2011. [exit code=0]

• In the provider’s log you will see the trace log:

web service [endpoint: http://127.0.0.1:8088/esb/provider]
published
[tLogRow_1] payload: <?xml version="1.0" encoding="UTF-8"?>



Scenario: Service sending a message without expecting a response

Talend Open Studio Components Reference Guide 1101

<request>world</request>
### world
[tLogRow_2] content: world
[tLogRow_3] payload: <?xml version="1.0" encoding="UTF-8"?>
<response xmlns="http://talend.org/esb/service/job">Hello, world!</response>
web service [endpoint: http://127.0.0.1:8088/esb/provider] unpublished
[statistics] disconnected
Job ESBProvider2 ended at 14:16 21/04/2011. [exit code=0]



tESBProviderResponse

1102 Talend Open Studio Components Reference Guide

tESBProviderResponse

This component is relevant only when used with the ESB version of the Studio, as it should be used with the Service
Repository node and the Data Service creation related wizard(s).

tESBProviderResponse properties

Component family ESB/Web Services

Function Serves a Talend Job cycle result as a response message.

Purpose Acts as a service provider response builder at the end of each Talend Job cycle.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository

Click Edit schema to make changes to the schema. Note that if you
make changes, the schema automatically becomes Built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage The tESBProviderResponse component should only be used with the tESBProviderRequest
component to provide a Job result as response for a web service provider, in case of a request-
response communication style.

Limitation A JDK is required for this component to operate.

Scenario: Returning Hello world response

The Jobs, which are built upon the components under the ESB/Web Services family, act as the implementations
of web services defined in the Services node of the Repository. They require the creation of and association with
relevant services. For more information about services, see the related topics in the Talend Open Studio User
Guide.

In this scenario, a provider Job and a consumer Job are needed. In the meantime, the related service should already
exist in the Services node, with the WSDL URI being http://127.0.0.1.8088/esb/provider/?WSDL, the port name
being TEST_ProviderJobSoapBinding and the operation being invoke(anyType):anyType.

The provider Job consists of a tESBProviderRequest, a tESBProviderResponse, a tXMLMap, and two
tLogRow components.



Scenario: Returning Hello world response

Talend Open Studio Components Reference Guide 1103

• Drop the following components from the Palette onto the design workspace: a tESBProviderRequest, a
tESBProviderResponse, a tXMLMap, and two tLogRow.

• In the design workspace, double-click tESBProviderRequest_1 to display its Component view and set its
Basic settings.

• Select Repository from the Property Type list and click the three-dot button to choose the service, to the
granularity of port name and operation.

• Click OK.

• Click the three-dot button next to Edit schema to view its schema.

• Connect tESBProviderRequest_1 to tLogRow_1.



Scenario: Returning Hello world response

1104 Talend Open Studio Components Reference Guide

• Double-click tLogRow_1 to display its Component view and set its Basic settings.

• Click the three-dot button next to Edit schema and define the schema as follow.

• Connect tLogRow_1 to tXMLMap_1.

• Connect tXMLMap_1 to tLogRow_2 and name this row as payload.

• In the design workspace, double-click tXMLMap_1 to open the Map Editor.

• On the lower right part of the map editor, click the plus button to add one row to the payload table and name
this row as payload.

• In the Type column of this payload row, select Document as the data type. The corresponding XML root is
added automatically to the top table on the right side which represents the output flow.

• In the payload table, right-click root to open the contextual menu.

• From the contextual menu, select Create Sub-Element and type in response in the popup dialog box.

• Right-click the response node and select As loop element from the contextual menu.

• Repeat this operation to create a sub-element request of the root node in the input table and set the request
node as loop element.

• Click the request node in the input table and drop it to the Expression column in the row of the response node
in the output table.



Scenario: Returning Hello world response

Talend Open Studio Components Reference Guide 1105

• Click OK to validate the mapping and close the map editor.

• In the design workspace, double-click tLogRow_2 to display its Component view and set its Basic settings.

• Click the three-dot button next to Edit schema and define the schema as follow.

• Connect tLogRow_2 to tESBProviderResponse_1.

• In the design workspace, double-click tESBProviderResponse_1 to open its Component view and set its Basic
settings.



Scenario: Returning Hello world response

1106 Talend Open Studio Components Reference Guide

• Click the three-dot button next to Edit schema and define the schema as follow.

• Save the provider Job.

The consumer Job consists of a tFixedFlowInput, a tXMLMap, a tESBConsumer, and two tLogRow
components.

• Drop the following components from the Palette onto the design workspace: a tFixedFlowInput, a tXMLMap,
a tESBConsumer, and two tLogRow.

• Double-click tFixedFlowInput_1 in the design workspace to display its Component view and set its Basic
settings.

• Click the three-dot button next to Edit schema.



Scenario: Returning Hello world response

Talend Open Studio Components Reference Guide 1107

• Click the plus button to add a new line of string type and name it payloadString.

• Click OK.

• In the Number of rows field, set the number of rows as 1.

• In the Mode area, select Use Single Table and input world in quotations into the Value field.

• Connect tFixedFlowInput to tXMLMap.

• Connect tXMLMap to tESBConsumer and name this row as payload.

• In the design workspace, double-click tXMLMap_1 to open the Map Editor.

• In the payload table, right-click root to open the contextual menu.

• From the contextual menu, select Create Sub-Element and type in request in the popup dialog box.

• Right-click the request node and select As loop element from the contextual menu.

• Click the payloadstring node in the input table and drop it to the Expression column in the row of the request
node in the output table.

• Click OK to validate the mapping and close the Map Editor.

• Start the Provider Job. In the executing log you can see:

...
web service [endpoint: http://127.0.0.1:8088/esb/provider] published



Scenario: Returning Hello world response

1108 Talend Open Studio Components Reference Guide

...

• In the tESBConsumer_1 Component view, set its Basic settings.

• Click the three-dot button next to the Service Configuration to open the editor.

• In the WSDL field, type in: http://127.0.0.1:8088/esb/provider/?WSDL



Scenario: Returning Hello world response

Talend Open Studio Components Reference Guide 1109

• Click the Refresh button to retrieve port name and operation name.

• Click OK.

• In the Basic settings of the tESBConsumer, set the Input Schema as follow:

• Set the Response Schema as follow:

• Set the Fault Schema as follow:

• Connect tESBConsumer_1 to tLogRow_1 and tLogRow_2.

• In the design workspace, double-click tLogRow_1 to display its Component view and set its Basic settings.

• Click the three-dot button next to Edit Schema and define the schema as follow.



Scenario: Returning Hello world response

1110 Talend Open Studio Components Reference Guide

• In the Job Design, double-click tLogRow_2 to display its Component view and set its Basic settings.

• Click the three-dot button next to Edit Schema and define the schema as follow:

• Save the consumer Job.

• Run the provider Job. In the execution log you will see:

2011-04-21 15:28:26.874:INFO::jetty-7.2.2.v20101205

2011-04-21 15:28:27.108:INFO::Started

SelectChannelConnector@127.0.0.1:8088

web service [endpoint: http://127.0.0.1:8088/esb/provider] published

• Run the consumer Job. In the execution log of the Job you will see:

Starting job CallProvider at 15:29 21/04/2011.

[statistics] connecting to socket on port 3690
[statistics] connected
TEST_ProviderJob
TEST_ProviderJobSoapBingding
|
{http://talend.org/esb/service/job}TEST_ProviderJob
{http://talend.org/esb/service/job}TEST_ProviderJobSoapBinding
invoke
[tLogRow_2] payload: <?xml version="1.0" encoding="UTF-8"?>
<response xmlns="http://talend.org/esb/service/job">Hello, world!</response>
[statistics] disconnected
Job ConsumerJob ended at 15:29 21/04/2011. [exit code=0]

• In the provider’s log you will see the trace log:

[tLogRow_1] payload: <?xml version="1.0" encoding="UTF-8"?>
<request>world</request>
### world



Scenario: Returning Hello world response

Talend Open Studio Components Reference Guide 1111

[tLogRow_2] content: world
[tLogRow_3] payload: <?xml version="1.0" encoding="UTF-8"?>
<response xmlns="http://talend.org/esb/service/job">Hello, world!</response>
web service [endpoint: http://127.0.0.1:8088/esb/provider] unpublished
[statistics] disconnected
Job ProviderJob ended at 15:29 21/04/2011. [exit code=0]



tRESTClient

1112 Talend Open Studio Components Reference Guide

tRESTClient

tRESTClient properties

Component family ESB/REST

Function The tRESTClient component sends HTTP and HTTPS requests to a REpresentational State
Transfer (REST) Web service provider and gets the corresponding responses. This component
integrates well with Talend Runtime to get HTTPS support, with more QoS features to be
supported in time.

Purpose The tRESTClient component is used to interact with RESTful Web service providers by
sending HTTP and HTTPS requests using CXF (JAX-RS).

Basic settings URL Type in the URL address of the REST server to be invoked.

HTTP Method From this list, select an HTTP method that describes the desired
action. The specific meanings of the HTTP methods are subject
to definitions of your Web service provider. Listed below are the
generally accepted HTTP method definitions:

- GET: retrieves data from the server end based on the given
parameters.

- POST: uploads data to the server end based on the given
parameters.

- PUT: updates data based on the given parameters, or if the data
does not exist, creates it.

- DELETE: removes data based on the given parameters.

Content Type Select XML, JSON, or FORM according to the media type of
the content to be uploaded to the server end.

This list appears only when you select the POST or PUT HTTP
method.

Accept Type Select the media type the client end is prepared to accept for the
response from the server end.

Available options are XML, JSON, and ANY. When ANY is
selected, the response message can be of any type and will be
transformed into a string.

Query parameters Specify the URI query parameters in the form of name-value
pairs.

This option is mostly used with the GET method.

Use Authentication Select this check box if authentication is required on the REST
server end. Once selected, you need to provide your username
and password.

Currently only basic HTTP authentication is supported and more
options will be provided.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component.

This component uses three built-in, read-only schemas.

Click Edit Schema to view the schema structure.



tRESTClient properties

Talend Open Studio Components Reference Guide 1113

Changing the schema type may result in loss of
the schema structure and therefore failure of the
component.

Input Schema Schema for the input data. This schema contains two columns:

- body: stores the content of structured input data

- string: stores the input content when it is, or is handled as, a
string.

Response Schema Schema for server response. This schema is passed onto the next
component via a Row > Response link, and it contains three
columns:

- statusCode: stores the HTTP status code from the server end.

- body: stores the content of a structured response from the server
end.

- string: stores the response content from the server end when it
is, or is handled as, a string.

Error Schema Schema for error information. This schema is passed onto the next
component via a Row > Error link, and it contains two columns:

- errorCode: stores the HTTP status code from the server
end when an error occurs during the invocation process. The
specific meanings of the errors codes are subject to definitions
of your Web service provider. For reference information, visit
en.wikipedia.org/wiki/List_of_HTTP_status_codes.

- errorMessage: stores the error message corresponding the error
code.

Die on error This check box is selected to kill the Job when an error occurs.
Clear the check box to skip the row on error and complete the
process for error-free rows.

Advanced settings Connection timeout Set the amount of time, in seconds, that the client will attempt to
establish a connection before it times out. If set to 0, the client will
continue to attempt to open a connection indefinitely. (default:
30)

Receive timeout Set the amount of time, in seconds, that the client will wait for
a response before it times out. If set to 0, the client will wait
indefinitely. (default: 60)

HTTP Headers Type in the name-value pair(s) for HTTP headers to define the
parameters of the requested HTTP operation.

For the specific definitions of HTTP headers, consult your
REST Web service provider. For reference information, visit
en.wikipedia.org/wiki/List_of_HTTP_headers.

Use HTTP proxy Select this check box if you are using a proxy server. Once
selected, you need to provide the connection details: host, port,
username and password.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at the
Job level as well as at each component level.

Usage This component is used as a RESTful Web service client to communicate with a RESTful
service provider, with the ability to input a request to a service into a Job and return the Job
result as a service response. Depending on the actions to perform, it usually works as a start
or middle component in a Job or subjob.

Connections Outgoing links:

Row: Response; Error.

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component Ok; On Component Error.

Incoming links:

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_headers


Scenario: Sending and retrieving data by interacting with a RESTful service

1114 Talend Open Studio Components Reference Guide

Row: Main; Reject.

Trigger: Run if; On Subjob Ok; On Subjob Error; On component Ok; On Component Error.

For further information regarding connections, see Talend Open Studio User Guide.

Limitation n/a

Scenario: Sending and retrieving data by interacting
with a RESTful service

This scenario describes a Job composed of two subjobs: a four-component subjob that adds a customer record to a
RESTful Web service, and a two-component subjob that retrieves the customer information from the server end.
When executed, the Job displays relevant information on the Run console.

In this scenario, the Web service used as an example has the following XML tree structure, where only the content
of name nodes is user updatable:

<Customers>
    <Customer>
        <id>id1</id>
        <name>Name1</name>
    </Customer>
    <Customer>
        <id>id2</id>
        <name>Name2</name>
    </Customer>
    ...
</Customers>

In the first subjob, a tXMLMap component is used to adapt the input data structure to the tree structure of the
RESTful Web service.

Setting up the Job

1. Drop the following components from the Palette onto the design workspace: a tFixedFlowInput, a
tXMLMap, two tRESTClient components and two tLogRow components.

2. Connect the tFixedFlowInput to the tXMLMap component using a Row > Main connection.

3. Connect the tXMLMap component to the first tRESTClient component using a Row > Main connection,
and give it a name, out in this example.

4. Connect the first tRESTClient to first tLogRow using a Row > Response connection to complete the first
subjob, which will upload a customer record to the server end and display the response information from
the server end.

5. Connect the second tRESTClient to the second tLogRow using a Row > Response connection to complete
the second subjob, which will retrieve and display customer information from the server end.

6. Connect the two subjobs using a Trigger > OnSubjobOK connection.

7. Label the components to best describe the actions to perform.



Scenario: Sending and retrieving data by interacting with a RESTful service

Talend Open Studio Components Reference Guide 1115

Configuring the components

Setting up data input and structure mapping

1. Double-click the tFixedFlowInput component to open its Basic settings view.

2. Click the [...] button next to Edit schema and then set up the schema of the input data in the [Schema] dialog
box, and click OK to close the [Schema] dialog box.

In this example, the input schema has only one column, name.

3. In the Values table under the Use Single Table option, fill the Value field with a customer name, Gerald
Wilson for example, between double quotation marks.

4. Fill the Number of rows field with 1.

5. Double-click the tXMLMap component to open the Map Editor.



Scenario: Sending and retrieving data by interacting with a RESTful service

1116 Talend Open Studio Components Reference Guide

6. In the output table, right-click the default root node of the body column, select Rename from the contextual
menu, and rename it to Customer. Make sure Customer is the loop element because the XML structure of the
Web service to be invoked is looped on this element.

7. Right-click the Customer node, select Create Sub-Element from the contextual menu, and create sub-
element named name.

8. Drop the name column in the input table to the name node in the output table, and then click OK to validate
the mapping and close the Map Editor.

Setting up REST actions and console display

1. Double-click the first tRESTClient component to open its Basic settings view.

2. Fill the URL field with the URL of the Web service you are going to invoke. Note that the URL provided in
this use case is for demonstration purpose only and is not a live address.

3. From the HTTP Method list, select POST to send an HTTP request for creating a new record.



Scenario: Sending and retrieving data by interacting with a RESTful service

Talend Open Studio Components Reference Guide 1117

4. From the Content Type list, select the type of the content to be uploaded to the server end, XML in this
example.

5. From the Accept Type list, select the type the client end is prepared to accept for the response from the server
end, XML in this example. Leave the rest of the settings as they are.

6. Double-click the second tRESTClient component to open its Basic settings view.

7. Fill the URL field with the same URL as in the first tRESTClient component.

8. From the HTTP Method list, select GET to send an HTTP request for retrieving the existing records, and
select XML from the Accept Type list. Leave the rest of the settings as they are.

9. In the Basic settings view of each tLogRow, select the Print component unique name in front of each
output row and Print schema column name in front of each value check boxes for better identification
of the output flows.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run console to launch the Job.



Scenario: Sending and retrieving data by interacting with a RESTful service

1118 Talend Open Studio Components Reference Guide

The console shows that the first tRESTClient component sends an HTTP request to the server end to create a
new customer named Gerald Wilson, and the second tRESTClient component successfully reads data from
the server end, which includes the information of the new customer you just created.



tRESTRequest

Talend Open Studio Components Reference Guide 1119

tRESTRequest

tRESTRequest properties

This component is available to ESB Studio users only.

Component family ESB/REST

Function tRESTRequest is a server-side component which accepts the HTTP and/or HTTPS requests from
the clients and support GET, POST, PUT and DELETE HTTP methods.

To enable the HTTPS support, you have to generate a keystore and add some HTTPS
security configuration properties in the org.ops4j.pax.web.cfg file of your Runtime
container before deploying the service on it. For more information, see the Talend ESB
Container Administration Guide.

Purpose This component allows you to receive GET/POST/PUT/DELETE requests from the clients on the
server end.

Basic settings REST Endpoint Fill this field with the URI location where REST-ful web service will
be accessible for requests.

If you want your service to be available on both HTTP and
HTTPS, fill the field with a relative path.

REST API Mapping Click the [+] button beneath the mapping table to add lines to specify
HTTP request:

Output Flow: Click the [...] button to specify the name of an output
flow and set the schema for that output flow in the dialog box
afterwards.

The schema is not mandatory, so if you do not need to pass additional
parameters to the tRESTRequest component, you can leave the
schema empty. However, you will have to populate the schema if
you have URI Path parameters set in the URI Pattern field or if
you need to add optional request parameters such as URI Query,
HTTP Header or Form parameters, to the URI specified in the REST
Endpoint field. If you specify URI parameters in the output flow
schema, you might need to define what type of parameter it is in the
Comment field of the schema. By default, if you leave the Comment
field empty, the parameter is considered as a Path parameter. Below
is a list of supported Comment values:

• empty or path corresponds to the default @PathParam,

• query corresponds to @QueryParam,

• form corresponds to @FormParam,

• header corresponds to @HeaderParam.

We recommend you to set the default values of your
optional parameters (Header, Query, Form). To do so, fill
in the Default columns of the schema.

HTTP Verb: Select a HTTP method (GET/POST/PUT/DELETE)
from the list.

URI pattern: Fill this field with REST-ful URIs that describe the
resource.



Scenario 1: REST service accepting a HTTP request and sending a response

1120 Talend Open Studio Components Reference Guide

Use HTTP Basic
Authentication

Select this check box to enable the HTTP Basic authentication
method for the current service.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage This component covers the possibility that a Talend Job can be wrapped as a service, with the
ability to input a request to a service into a Job and return the Job result as a service response.

The tRESTRequest component should be used with the tRESTResponse component to provide
a Job result as a response, in case of a request-response communication style.

Limitation n/a

Scenario 1: REST service accepting a HTTP request
and sending a response

This scenario describes the process of accepting an HTTP request from the client, processing it and sending the
response back.

Configuring the tRESTRequest component

1. Drop the following components from the Palette onto the design workspace: tRESTRequest, tXMLMap
and tRESTResponse.

2. Double-click tRESTRequest in the design workspace to display its Basic settings view.

3. Fill the REST Endpoint field with the URI location where the REST-ful web service will be accessible for
requests. For example, "http://192.168.0.235:8088/user".

If you want your service to be available on both HTTP and HTTPS, fill the field with a relative path. For example,
if you type in "/test", your service will be available on both http://<DefaultHTTPEnpointAddress>/test and https://
<DefaultHTTPSEnpointAddress>/test, provided that you have configured your Runtime container to support HTTPS.
For more information, see the Talend ESB Container Administration Guide.



Scenario 1: REST service accepting a HTTP request and sending a response

Talend Open Studio Components Reference Guide 1121

4. Click the [+] button to add one line in the REST API Mapping table.

5. Select the newly-added line and click the [...] button in the Output Flow column to add a schema for the
output flow.

In this scenario, the output flow will be named as GetOneUser.

Then click the [+] button to add a new line id to the schema in the dialog box.

6. Click OK to save the schema.

7. Select GET from the list in the HTTP Verb column.

8. Fill the field in the URI Pattern column with "/{id}/".

Configuring the tXMLMap component

1. Connect tRESTRequest to tXMLMap using the Row > GetOneUser connection.

2. Double-click tXMLMap in the design workspace to open the Map Editor.

3. Click the [+] button on the top right to add an output and name it as ResponseUsers.

4. Click the [+] button on the bottom right to add two columns for the output.

Name the first column as body and set the Type to Document.

Name the second column as string and set the Type to String.



Scenario 1: REST service accepting a HTTP request and sending a response

1122 Talend Open Studio Components Reference Guide

5. Right-click on the node root and select Create Sub-Element to create a sub-element.

Name the sub-element as foo in the popup dialog box.

6. Right-click on the foo node created in the previous step and select As loop element.

7. Select the id column of the GetOneUser table to the left and drop it onto the Expression field of the foo node
of the ResponseUsers table to the right.

8. Click OK to save the settings.

Configuring the tRESTResponse component

1. Connect tXMLMap to tRESTResponse using Row > ResponseUsers connection.



Scenario 1: REST service accepting a HTTP request and sending a response

Talend Open Studio Components Reference Guide 1123

2. Click Sync columns to retrieve the schema defined in the preceding component.

3. Select OK(200) from the Return status code list.

4. Leave the rest of the settings as they are.

Saving and executing the Job

1. Save the Job and press F6 to execute it.

2. Go to your browser if you want to test the service.

The HTTP request for a user id is accepted by the REST service and the HTTP response is sent back to the
server.



Scenario 2: Using URI Query parameters to explore the data of a database

1124 Talend Open Studio Components Reference Guide

Scenario 2: Using URI Query parameters to explore
the data of a database

This scenario describes how to use URI query parameters in tRESTRequest to explore data of a database, and
send the response via the tRESTResponse.

To do so, you can create two subjobs linked together by an OnSubjobOk connection; this way the two subjobs
will be executed sequencially. For more information on Trigger connection, see the Talend Open Studio User
Guide. The first subjob will create and populate the database and the second one will allow to explore the database
through the REST service.

Creating the first subjob

To do this, proceed as follows:

1. Drop the following components from the Palette onto the design workspace: tFixedFlowInput from the
Misc family and tMysqlOutput from the Databases > Mysql family.

2. Link tFixedFlowInput to tMysqlOutput using a Row > Main connection.

3. Double-click tFixedFlowInput to display its Basic settings view:

4. Click the [...] button next to Edit schema to open the schema editor.



Scenario 2: Using URI Query parameters to explore the data of a database

Talend Open Studio Components Reference Guide 1125

5. In the schema editor, click the [+] button three times to add three lines and set them as displayed in the above
screenshot.

6. Click Ok.

7. Back to tFixedFlowInput Basic settings view, in the Mode area, select the Use inline table option.

8. Under the inline table, click the [+] button three times to add three rows in the table.

9. In the inline table, click the id field of the first row and type in 1.

10. Click the firstname field of the first row, press Ctrl+Space to display the autocompletion list and select the
TalendDataGenerator.getFirstName() variable in the list.

11. Click the lastname field of the first row, press Ctrl+Space to display the autocompletion list and select the
TalendDataGenerator.getLastName() variable in the list.

12. Do the same for the two following rows to obtain the settings displayed in the screenshot.

13. Double-click tMysqlOutput to display its Basic settings view:

14. From the Property Type list, leave Built-in and fill in the Host, Port, Database, Username and Password
fields manually. If you centralized your connection information to the database in the Metadata > DB



Scenario 2: Using URI Query parameters to explore the data of a database

1126 Talend Open Studio Components Reference Guide

Connections node of the Repository, you can select Repository from the list and the fields will be
automatically filled in.

For more information about storing metadata, see Talend Open Studio User guide.

15. In the Table field, type in the name of the table in which the data will be loaded, for example: users.

16. From the Action on table list, select Drop table if exists and create, select Insert from the Action on data
list.

17. Click Sync columns to retrieve the schema coming from the previous component.

Creating the second subjob

To do this, proceed as follows:

• Drop and place the following components as displayed in the first screenshot:

• tRESTRequest and tRESTResponse from the ESB > REST family,

• tFlowToIterate from the Orchestration family,

• tMysqlInput from the Databases > Mysql family,

• tXMLMap from the Processing family.

Configuring the tRESTRequest component

To do this, proceed as follows:

1. Double-click tRESTRequest in the design workspace to display its Basic settings view:

2. Fill the REST Endpoint field with the URI location where the REST-ful web service will be accessible for
requests. For example, "http://localhost:8088/users".

3. Click the [+] button to add one line in the REST API Mapping table.

4. Select the newly-added line and click the [...] button in the Output Flow column to add a schema for the
output flow.



Scenario 2: Using URI Query parameters to explore the data of a database

Talend Open Studio Components Reference Guide 1127

5. In the dialog box, name the output flow getUsers. A schema editor dialog box appears.

6. In the schema editor, click the [+] button twice to add two lines and set them as displayed in the above
screenshot.

7. Click OK.

8. Back to tRESTRequest Basic settings view, select GET from the list in the HTTP Verb column.

9. Leave the URI Pattern column as is.

Now that you created the tRESTRequest output flow, you can use the corresponding link to connect to the
following component:

1. Connect tRESTRequest to tFlowToIterate using Row > getUsers connection.

2. Leave the tFlowToIterate settings as is.

3. Connect tFlowToIterate to tMysqlInput using Row > Iterate connection.

Configuring the tMysqlInput component

To do this, proceed as follows:

1. Double-click tMysqlInput to display its Basic settings view:



Scenario 2: Using URI Query parameters to explore the data of a database

1128 Talend Open Studio Components Reference Guide

2. From the Property Type list, leave Built-in and fill in the Host, Port, Database, Username and Password
fields manually. If you centralized your connection information to the database in the Metadata > DB
Connections node of the Repository, you can select Repository from the list and the fields will be
automatically filled in.

For more information about storing metadata, see Talend Open Studio User guide.

3. Leave the Schema list as Built-in and click the [...] button next to the Edit schema field.

4. In the schema editor, define the schema exactly like the one of the tFixedFlowInput.

5. In the Table Name field, fill in the name of the table in which the data are stored: users.

6. Leave the Query Type list as Built-in and fill in the Query field with the following SQL query allowing to
explore the database data with the URI query set in the tRESTRequest component:

"select * from users where id >= " + globalMap.get("getUsers.from") + " and  id <= "
 + globalMap.get("getUsers.to")

Configuring the tXMLMap component

1. Right-click tMysqlInput, hold and drag to tXMLMap to connect the two components together.

2. Double-click tXMLMap in the design workspace to open the Map Editor.



Scenario 2: Using URI Query parameters to explore the data of a database

Talend Open Studio Components Reference Guide 1129

3. Click the [+] button on the top right to add an output and name it as ResponseUsers.

4. Click the [+] button on the bottom right to add two columns for the output.

Name the first column as body and set the Type to Document.

Name the second column as string and set the Type to String.

5. Right-click on the root node, select Rename in the list and rename it users

6. Right-click on the root node and select Create Sub-Element to create a sub-element.

Name the sub-element user in the popup dialog box.

7. Right-click on the user node created in the previous step and select As loop element.



Scenario 2: Using URI Query parameters to explore the data of a database

1130 Talend Open Studio Components Reference Guide

8. Select the id column of the row2 table to the left and drop it onto the user node of the ResponseUsers table
to the right.

9. In the [Selection] dialog box, select the Create as attribute of target node option and click OK.

10. Select the firstname and lastname columns of the row2 table to the left and drop it onto the user node of the
ResponseUsers table to the right.

11. In the [Selection] dialog box, select the Create as sub-element of target node option and click OK.

12. Click the wrench icon on the top of the ResponseUsers table to open the setting panel.



Scenario 2: Using URI Query parameters to explore the data of a database

Talend Open Studio Components Reference Guide 1131

13. Set the All in one feature as true, this way all XML data is outputted in one single flow.

14. Click OK to save the settings.

Configuring the tRESTResponse component

1. Connect tXMLMap to tRESTResponse using Row > ResponseUsers connection.

2. Double-click tRESTResponse in the design workspace to display its Basic settings view.

3. Click Sync columns to retrieve the schema defined in the preceding component.

4. Leave the other settings as they are.

Connecting the two subjobs

Now that the two subjobs are created, you can connect them together:

1. Right-click the tFixedFlowInput component of the first subjob.



Scenario 2: Using URI Query parameters to explore the data of a database

1132 Talend Open Studio Components Reference Guide

2. Select Trigger > OnSubjobOk on the list.

3. Click the tRESTRequest component of the second subjob.

This way, when executing the job, the second subjob will be executed only if the first one's execution succeeded.

Saving and executing the Job

1. Save the Job and press F6 to execute it.

2. Go to your browser if you want to test the service.

For example, use the URI query ?to=2 to retrieve the data of the two first users.

The HTTP request for a user id is accepted by the REST service and the HTTP response is sent back to the
server.



tRESTResponse

Talend Open Studio Components Reference Guide 1133

tRESTResponse

tRESTResponse properties

This component is available to ESB Studio users only.

Component family ESB/REST

Function tRestResponse sends HTTP and/or HTTPS responses to the client end when receiving the HTTP
and/or HTTPS requests.

To enable the HTTPS support, you have to generate a keystore and add some HTTPS
security configuration properties in the org.ops4j.pax.web.cfg file of your Runtime
container. For more information, see the Talend ESB Container Administration Guide.

Purpose This component allows you to return a specific HTTP status code to the client end as a response
to the HTTP request.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository

Click Edit schema to make changes to the schema. Note that if you
make changes, the schema automatically becomes Built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: The schema is created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Return status code Select a status code from the list to indicate the request status.

<<Custom>>: This option allows you to customize the status code.
Enter the status code of your choice in the field.

Bad Request (400): The request had bad syntax or was inherently
impossible to be satisfied.

Internal Server Error (500): The server encountered an
unexpected condition which prevented it from fulfilling the request.

OK (200): The request was fulfilled.

Resource Not Found (404): The server has not found anything
matching the URI given.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage This component covers the possibility that a Talend Job can be wrapped as a service, with the
ability to input a request to a service into a Job and return the Job result as a service response.

The tRESTResponse component should only be used with the tRESTRequest component to
provide a Job result as response for a web service provider, in case of a request-response
communication style.

Limitation In the schema of the tRestResponse component, the Document type column must be named body.



Related scenario

1134 Talend Open Studio Components Reference Guide

Related scenario

For a scenario in which tRESTResponse is used, see section Scenario 1: REST service accepting a HTTP request
and sending a response.



tRouteFault

Talend Open Studio Components Reference Guide 1135

tRouteFault

tRouteFault properties

This component is available to ESB Studio users only.

Component family ESB/Route

Function tRouteFault sends messages from a Job to a Route and mark the message as fault.

Purpose tRouteFault allows you to send messages from a Job to a Route and mark the message as fault.

Basic settings Output Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or remote in the Repository.

Click Edit Schema to make changes to the schema.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties are stored.

Camel Enter the message parameters corresponding to the columns you
defined in the schema dialog box via the Edit schema button.

Type Select between:

Body: Used to set the body of a Route, equals the code
exchange.getOut().setBody(…).

Property: Used to set the property of a Route, equals the code
exchange.setProperty(name, value).

System: Used to set the system property, equals the code
System.setProperty(name, value).

Header: Used the set the output header, equals the code
exchange.getOut().setHeader(name, value).

Name This column is used to set the name for the parameter when its
type is either Property, System or Header. This column is ignored
when the type is Body.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component can be used as the end component and thus requires an input component.

Limitation The Job using a tRouteFault must be launched only within a Route using the cTalendJob
component.

Scenario: Getting messages from tRouteFault

This scenario describes how to send messages from a Job to a Route using the tRouteFault component. To do
this, we need to build a Job to send the message and then create a Route using the cTalendJob component to call
the Job and receive the message.



Scenario: Getting messages from tRouteFault

1136 Talend Open Studio Components Reference Guide

For more information about how to use the Mediation components, see Talend Open Studio for ESB Mediation
Components Reference Guide.

Creating an Data Integration Job

In this section, we will build a Job named RouteCommunication to send the message to a Route.

Dropping and linking the components

1. Drag and drop a tFixedFlowInput and a tRouteFault from the Palette onto the design workspace.

2. Right-click the tFixedFlowInput component, select Row > Main from the contextual menu and click the
tRouteFault component.

Configuring the components

1. Double-click the tFixedFlowInput component to open its Basic settings view in the Component tab.

2. Click the three-dot button next to Edit Schema. In the schema dialog box, click the plus button to add a new
line of String type and name it body. Click OK to close the dialog box.



Scenario: Getting messages from tRouteFault

Talend Open Studio Components Reference Guide 1137

3. In the Number of rows field, set the number of rows as 1.

4. In the Mode area, select Use Single Table and input the following request in double quotation marks into
the Value field:

Hello from Talend Job!

5. Double-click the tRouteFault component to display its Basic settings view in the Component tab.

6. Make sure that tRouteFault has one element body. Set its type to Body.

7. Press Ctrl+S to save your Job.

Creating a Mediation Route

In this section, we will create a Route to receive the message sent from the Job.



Scenario: Getting messages from tRouteFault

1138 Talend Open Studio Components Reference Guide

Dropping and linking the components

1. Drag and drop a cMessagingEndpoint, a cTry, a cTalendJob, and a cProcessor component from the Palette
onto the design workspace.

2. Link the components with the Row > Route connection as shown above.

3. Label the components for better identification of their roles.

Configuring the components

1. Double-click the cMessagingEndpoint component to open its Basic settings view in the Component tab.

2. In the URI field, enter "timer://myTimer?period=2000" to start message exchanges every 2000
milliseconds.

3. Double-click the cTalendJob component to display its Basic settings view in the Component tab.

4. Select Job RouteCommunication from the repository.

5. Double click the cProcessor component to display its Basic settings view in the Component tab.



Scenario: Getting messages from tRouteFault

Talend Open Studio Components Reference Guide 1139

6. Customize the code in the Code area to show the message body and check whether the message is marked
as fault or not:

System.out.println(exchange.getIn());
System.out.print("Is message fault: ");
System.out.println(exchange.getIn().isFault());

7. Press Ctrl+S to save your Route.

Executing the Route

Click the Run view to display it and click the Run button to launch the execution of your Route. You can also
press F6 to execute it. In the execution log you will see:



tRouteInput

1140 Talend Open Studio Components Reference Guide

tRouteInput

tRouteInput properties

This component is available to ESB Studio users only.

Component family ESB/Route

Function tRouteInput accepts messages from a Route.

Purpose tRouteInput allows you to accept messages from a Route.

Basic settings Input Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or remote in the Repository.

Click Edit Schema to make changes to the schema.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties are stored.

Camel Enter the message parameters corresponding to the columns you
defined in the schema dialog box via the Edit schema button using
the Simple Expression Language.

For more information about the Simple Expression Language, see
the site http://camel.apache.org/simple.html.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component can be used as starter component and has an output.

Limitation The Job using a tRouteInput must be launched only within a Route using the cTalendJob
component.

Scenario: Getting messages from a Route

This scenario describes how to accept messages from a Route using the tRouteInput component. To do this, we
need to build a Job to accept the message and a Route to send the message and call the Job using the cTalendJob
component.

For more information about how to use the Mediation components, see Talend Open Studio for ESB Mediation
Components Reference Guide.

Creating an Data Integration Job

In this section, we will build a Job named RouteCommunication to accept the message from a Route.

http://camel.apache.org/simple.html


Scenario: Getting messages from a Route

Talend Open Studio Components Reference Guide 1141

Dropping and linking the components

1. Drag and drop a tRouteInput and a tLogRowfrom the Palette onto the design workspace.

2. Right-click the tRouteInput component, select Row > Main from the contextual menu and click the
tLogRow component.

Configuring the components

1. Double-click the tRouteInput component to open its Basic settings view in the Component tab.

2. Click the three-dot button next to Edit Schema. In the schema dialog box, click the plus button to add a new
line of String type and name it body. Click OK to close the dialog box.

3. In the Simple Expression field for the body element, enter "${in.body}" to get the body of the input
message from the Route.

4. The tLogRow component will monitor the message exchanges and does not need any configuration.



Scenario: Getting messages from a Route

1142 Talend Open Studio Components Reference Guide

5. Press Ctrl+S to save your Job.

Creating a Mediation Route

In this section, we will create a Route to send the message to the Job.

Dropping and linking the components

1. Drag and drop a cMessagingEndpoint, a cSetBody, and a cTalendJob from the Palette onto the design
workspace.

2. Link the components with the Row > Route connection as shown above.

3. Label the components for better identification of their roles.

Configuring the components

1. Double-click the cMessagingEndpoint component to open its Basic settings view in the Component tab.

2. In the URI field, enter "timer://myTimer?period=2000" to start message exchanges every 2000
milliseconds.

3. Double click the cSetBody component to display its Basic settings view in the Component tab.



Scenario: Getting messages from a Route

Talend Open Studio Components Reference Guide 1143

4. Select Simple from the Language list and enter Hello! in the Expression field.

5. Double-click the cTalendJob component to display its Basic settings view in the Component tab.

6. Select Job RouteCommunication from the repository.

7. Press Ctrl+S to save your Route.

Executing the Route

Click the Run view to display it and click the Run button to launch the execution of your Route. You can also
press F6 to execute it. In the execution log you will see:



tRouteOutput

1144 Talend Open Studio Components Reference Guide

tRouteOutput

tRouteOutput properties

This component is available to ESB Studio users only.

Component family ESB/Route

Function tRouteOutput sends messages from a Job to a Route.

Purpose tRouteOutput allows you to send messages from a Job to a Route.

Basic settings Output Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or remote in the Repository.

Click Edit Schema to make changes to the schema.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties are stored.

Camel Enter the message parameters corresponding to the columns you
defined in the schema dialog box via the Edit schema button.

Type Select between:

Body: Used to set the body of a Route, equals the code
exchange.getOut().setBody(…).

Property: Used to set the property of a Route, equals the code
exchange.setProperty(name, value).

System: Used to set the system property, equals the code
System.setProperty(name, value).

Header: Used the set the output header, equals the code
exchange.getOut().setHeader(name, value).

Name This column is used to set the name for the parameter when its
type is either Property, System or Header. This column is ignored
when the type is Body.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component can be used as the end component and thus requires an input component.

Limitation The Job using a tRouteOutput must be launched only within a Route using the cTalendJob
component.

Scenario: Getting messages from tRouteOutput

This scenario describes how to send messages from a Job to a Route using the tRouteOutput component. To do
this, we need to build a Job to send the message and then create a Route using the cTalendJob component to call
the Job and receive the message.



Scenario: Getting messages from tRouteOutput

Talend Open Studio Components Reference Guide 1145

For more information about how to use the Mediation components, see Talend Open Studio for ESB Mediation
Components Reference Guide.

Creating an Data Integration Job

In this section, we will build a Job named RouteCommunication to send the message to a Route.

Dropping and linking the components

1. Drag and drop a tFixedFlowInput and a tRouteOutput from the Palette onto the design workspace.

2. Right-click the tFixedFlowInput component, select Row > Main from the contextual menu and click the
tRouteOutput component.

Configuring the components

1. Double-click the tFixedFlowInput component to open its Basic settings view in the Component tab.

2. Click the three-dot button next to Edit Schema. In the schema dialog box, click the plus button to add a new
line of String type and name it body. Click OK to close the dialog box.



Scenario: Getting messages from tRouteOutput

1146 Talend Open Studio Components Reference Guide

3. In the Number of rows field, set the number of rows as 1.

4. In the Mode area, select Use Single Table and input the following request in double quotation marks into
the Value field:

Hello from Talend Job!

5. Double-click the tRouteOutput component to display its Basic settings view in the Component tab.

6. Make sure that tRouteOutput has one element body. Set its type to Body.

7. Press Ctrl+S to save your Job.

Creating a Mediation Route

In this section, we will create a Route to receive the message sent from the Job.



Scenario: Getting messages from tRouteOutput

Talend Open Studio Components Reference Guide 1147

Dropping and linking the components

1. Drag and drop a cMessagingEndpoint, a cTalendJob, and a cLog component from the Palette onto the
design workspace.

2. Link the components with the Row > Route connection as shown above.

3. Label the components for better identification of their roles.

Configuring the components

1. Double-click the cMessagingEndpoint component to open its Basic settings view in the Component tab.

2. In the URI field, enter "timer://myTimer?period=2000" to start message exchanges every 2000
milliseconds.

3. Double-click the cTalendJob component to display its Basic settings view in the Component tab.

4. Select Job RouteCommunication from the repository.

5. The cLog component will monitor the message exchanges and does not need any configuration.

6. Press Ctrl+S to save your Route.

Executing the Route

Click the Run view to display it and click the Run button to launch the execution of your Route. You can also
press F6 to execute it. In the execution log you will see:



Scenario: Getting messages from tRouteOutput

1148 Talend Open Studio Components Reference Guide



Talend Open Studio Components Reference Guide

File components
This chapter details the main components that you can find in File family of the Palette in the Integration
perspective of the Talend Studio.

The File family groups together components that read and write data in all types of files, from the most popular
to the most specific format (in the Input and Output subfamilies). In addition, the Management subfamily groups
together File-dedicated components that perform various tasks on files, including unarchiving, deleting, copying,
comparing files and so on.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.



tAdvancedFileOutputXML

1150 Talend Open Studio Components Reference Guide

tAdvancedFileOutputXML

tAdvancedFileOutputXML belongs to two component families: File and XML. For more information on
tAdvancedFileOutputXML, see section tAdvancedFileOutputXML.



tApacheLogInput

Talend Open Studio Components Reference Guide 1151

tApacheLogInput

tApacheLogInput properties

Component family File/Input

Function tApacheLogInput reads the access-log file for an Apache HTTP server.

Purpose tApachLogInput helps to effectively manage the Apache HTTP Server,. It is necessary to get feedback
about the activity and performance of the server as well as any problems that may be occurring.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties are stored. The
fields that follow are completed automatically using the data retrieved.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields that will
be processed and passed on to the next component.

In the context of tApacheLogInput usage, the schema is read-only.

Built-in: You can create the schema and store it locally for this component.
Related topic: see Talend Open Studio User Guide.

Repository: You have already created and stored the schema in the
Repository. You can reuse it in various projects and Job flowcharts. Related
topic: see Talend Open Studio User Guide.

File Name Name of the file and/or the variable to be processed.

Related topic: see Talend Open Studio User Guide.

Die on error Select this check box to stop the execution of the Job when an error occurs.
Clear the check box to skip the row on error and complete the process for
error-free rows. If needed, you can collect the rows on error using a Row
> Reject link.

Advanced settings Encoding Select the encoding type from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to gather the processing metadata at the Job level as
well as at each component level.

Usage tApacheLogInput can be used with other components or as a standalone component. It allows you to
create a data flow using a Row > Main connection, or to create a reject flow to filter specified data
using a Row > Reject connection. For an example of how to use these two links, see section Scenario 2:
Extracting correct and erroneous data from an XML field in a delimited file.

Limitation n/a

Scenario: Reading an Apache access-log file

The following scenario creates a two-component Job, which aims at reading the access-log file for an Apache
HTTP server and displaying the output in the Run log console.

1. Drop a tApacheLogInput component and a tLogRow component from the Palette onto the design
workspace.

2. Right-click on the tApacheLogInput component and connect it to the tLogRow component using a Main
Row link.



Scenario: Reading an Apache access-log file

1152 Talend Open Studio Components Reference Guide

3. In the design workspace, select tApacheLogInput.

4. Click the Component tab to define the basic settings for tApacheLogInput.

5. If desired, click the Edit schema button to see the read-only columns.

6. In the File Name field, enter the file path or browse to the access-log file you want to read.

7. In the design workspace, select tLogRow and click the Component tab to define its basic settings. For more
information, see section tLogRow

8. Press F6 to execute the Job.

The log lines of the defined file are displayed on the console.



tCreateTemporaryFile

Talend Open Studio Components Reference Guide 1153

tCreateTemporaryFile

tCreateTemporaryFile properties

Component family File/Management

Function tCreateTemporaryFile creates and manages temporary files.

Purpose tCreateTemporaryFile helps to create a temporary file and puts it in a defined directory. This
component allows you to either keep the temporary file or delete it after Job execution.

Basic settings Remove file when execution
is over

Select this check box to delete the temporary file after Job
execution.

Use default temporary
system directory

Select this check box to create the file in the system’s default
temporary directory.

Directory Select this check box to create the temporary file .

Template Enter a name to the temporary file respecting the template.

Suffix Enter the filename extension to indicate the file format you want
to give to the temporary file.

Usage tCreateTemporaryFile provides the possibility to manage temporary files so that the memory
can be freed for other ends and thus optimizes system performance.

Global Variables Filepath: Retrieves the path to where the file was created. This is
available as an After variable.

Returns a string.

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component
Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error; On component
Ok; On Component Error; Synchronize; Parallelize.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation n/a

Scenario: Creating a temporary file and writing data in
it

The following scenario describes a simple Job that creates an empty temporary file in a defined directory, writes
data in it and deletes it after Job execution.



Scenario: Creating a temporary file and writing data in it

1154 Talend Open Studio Components Reference Guide

Dropping and linking components

1. Drop the following components from the Palette onto the design workspace: tCreate temporaryFile,
tRowGenerator, tFileOutputDelimited, tFileInputDelimited and tLogRow.

2. Connect tCreateTemporaryFile to tRowGenerator using a SubjobOk link.

3. Connect tRowGenerator to tFileOutputDelimited using a Row Main link.

4. Connect tRowGenerator to tFileInputDelimited using a SubjobOk link.

5. Connect tFileInputDelimited to tLogRow using a Row Main link.

Configuring the components

1. In the design workspace, select tCreateTemporaryFile.

2. Click the Component tab to define the basic settings for tCreateTemporaryFile.

3. Select the Remove file when execution is over check box to delete the created temporary file when Job
execution is over.

4. Click the three-dot button next to the Directory field to browse to the directory where temporary files will
be stored, or enter the path manually.

5. In the Template field, enter a name for the temporary file respecting the template format.

6. In the Suffix field, enter a filename extension to indicate the file format you want to give to the temporary file.

7. In the design workspace, select tRowGenerator and click the Component tab to define its basic settings.



Scenario: Creating a temporary file and writing data in it

Talend Open Studio Components Reference Guide 1155

8. Set the Schema to Built-In.

9. Click the Edit schema three-dot button to define the data to pass on to the tFileOutputDelimited component,
one column in this scenario, value.

Click OK to close the dialog box.

10. Click the RowGenerator Editor three-dot button to open the editor dialog box.

11. In the Number of Rows for Rowgenerator field, enter 5 to generate five rows and click Ok to close the
dialog box.

12. In the design workspace, select tFileOutputDelimited and click the Component tab to define its basic
settings.

13. Set Property Type to Built-In.



Scenario: Creating a temporary file and writing data in it

1156 Talend Open Studio Components Reference Guide

14. Click in the File Name field and use the Ctrl+Space bar combination to access the variable completion list.
To output data in the created temporary file, select tCreateTemporaryFile_1.FILEPATH on the global
variable list.

15. Set the row and field separators in their corresponding fields as needed.

16. Set Schema to Built-In and click Sync columns to synchronize input and output columns. Note that the row
connection feeds automatically the output schema.

For more information about schema types, see Talend Open Studio User Guide.

17. In the design workspace, select the tFileInputDelimited component.

18. Click the Component tab to define the basic settings of tFileInputDelimited.

19. Click in the File Name field and use the Ctrl+Space bar combination to access the variable completion
list. To read data in the created temporary file, select tCreateTemporaryFile_1.FILEPATH on the global
variable list.

20. Set the row and field separators in their corresponding fields as needed.

21. Set Schema to Built in and click Edit schema to define the data to pass on to the tLogRow component. The
schema consists of one column here, value.

Saving and executing the Job

1. Press Ctrl+S to save the Job.

2. Press F6 to execute the Job or click the Run button of the Run tab.

The temporary file is created in the defined directory during Job execution and the five generated rows are written
in it. The temporary file is deleted when Job execution is over.



tChangeFileEncoding

Talend Open Studio Components Reference Guide 1157

tChangeFileEncoding

tChangeFileEncoding Properties

Component family File/Management

Function tChangeFileEncoding changes the encoding of a given file.

Purpose tChangeFileEncoding transforms the character encoding of a given file and generates a new
file with the transformed character encoding.

Basic settings Use Custom Input Encoding Select this check box to customize input encoding type. When it
is selected, a list of input encoding types appears, allowing you to
select an input encoding type or specify an input encoding type
by selecting CUSTOM.

Encoding From this list of character encoding types, you can select one
of the offered options or customize the character encoding by
selecting CUSTOM and specifying a character encoding type.

Input File Name Path of the input file.

Output File Name Path of the output file.

Usage This component can be used as standalone component.

Limitation n/a

Scenario: Transforming the character encoding of a
file

This Java scenario describes a very simple Job that transforms the character encoding of a text file and generates
a new file with the new character encoding.

1. Drop a tChangeFileEncoding component onto the design workspace.

2. Double-click the tChangeFileEncoding component to display its Basic settings view.



Scenario: Transforming the character encoding of a file

1158 Talend Open Studio Components Reference Guide

3. Select Use Custom Input Encoding check box. Set the Encoding type to GB2312.

4. In the Input File Name field, enter the file path or browse to the input file.

5. In the Output File Name field, enter the file path or browse to the output file.

6. Select CUSTOM from the second Encoding list and enter UTF-16 in the text field.

7. Press F6 to execute the Job.

The encoding type of the file in.txt is transformed and out.txt is generated with the UTF-16 encoding type.



tFileArchive

Talend Open Studio Components Reference Guide 1159

tFileArchive

tFileArchive properties

Component Family File/Management

Function The tFileArchive zips one or several files according to the parameters defined and places the
archive created in the directory selected.

Purpose This component zips one or several files for processing.

Basic settings Directory Path where the zipped file will be created.

Subdirectories: Select this check box if the selected directory
contains subfolders.

Archive file Destination path and name of the archive file.

Compress level Select the compression level you want to apply.

Best: the compression quality will be optimum, but the
compression time will be long.

Normal: compression quality and time will be average.

Fast: compression will be fast, but quality will be lower.

All files Select this check box if you want all files in the directory to be
zipped. Clear it to specify the file(s) you want to zip in the Files
table.

Filemask: type in a file name or a file mask using a special
character or a regular expression.

Create directory if not
exists

This check box is selected by default. It creates a destination folder
for the output table if it does not already exist.

Encoding Select the encoding type from the list or select Custom and define
it manually. This field is compulsory for DB data handling.

Overwrite Existing Archive This check box is selected by default. This allows you to save an
archive by replacing the existing one. But if you clear the check
box, an error is reported, the replacement fails and the new archive
cannot be saved.

When the replacement fails, the Job runs.

Encrypt files Select this check box if you want your archive to be password
protected. The Enter Password text box appears to let you enter
your password.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the Job
level as well as at each component level.

Usage This component must be used as a standalone component.

Global Variables Archive File Path: Retrieves the path to the archive file. This is
available as an After variable.

Returns a string.

Archive File Name: Retrieves the name of the archive file. This
is available as an After variable.

Returns a string.



Scenario: Zip files using a tFileArchive

1160 Talend Open Studio Components Reference Guide

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Row: Main; Reject; Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component
Ok; On Component Error.

Incoming links (from one component to another):

Row: Main; Reject; Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error; On component
Ok; On Component Error; Synchronize; Parallelize.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation n/a

Scenario: Zip files using a tFileArchive

This scenario creates a Job with a unique component. It aims at zipping files and recording them in the selected
directory.

1. Drop the tFileArchive component from the Palette onto the workspace.

2. Double-click it to display its Component view.

3. In the Directory field, click the [...] button, browse your directory and select the directory or the file you
want to compress.

4. Select the Subdirectories check box if you want to include the subfolders and their files in the archive.

5. Then, set the Archive file field, by filling the destination path and the name of your archive file.

6. Select the Create directory if not exists check box if you do not have a destination directory yet and you
want to create it.

7. In the Compress level list, select the compression level you want to apply to your archive. In this example,
we use the normal level.

8. Clear the All Files check box if you only want to zip specific files.



Scenario: Zip files using a tFileArchive

Talend Open Studio Components Reference Guide 1161

9. Add a row in the table by clicking the [+] button and click the name which appears. Between two star symbols
(ie. *RG*), type part of the name of the file that you want to compress.

10. Press F6 to execute your Job.

The tFileArchive has compressed the selected file(s) and created the folder in the selected directory.



tFileCompare

1162 Talend Open Studio Components Reference Guide

tFileCompare

tFileCompare properties

Component family File/Management

Function Compares two files and provides comparison data (based on a read-only schema)

Purpose Helps at controlling the data quality of files being processed.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

File to compare Filepath to the file to be checked.

Reference file Filepath to the file, the comparison is based on.

If differences are detected,
display and If no difference
detected, display

Type in a message to be displayed in the Run console based on
the result of the comparison.

Print to console Select this check box to display the message.

Advanced settings Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component can be used as standalone component but it is usually linked to an output
component to gather the log data.

Global Variables Difference: Checks whether two files are identical or not. This is
available as a Flow variable.

Returns a boolean value:

- true if the two files are identical.

- false if there is a difference between them.

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Row: Main.

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component
Ok; On Component Error.

Incoming links (from one component to another):

Row: Main; Reject; Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error; On component
Ok; On Component Error; Synchronize; Parallelize.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation n/a



Scenario: Comparing unzipped files

Talend Open Studio Components Reference Guide 1163

Scenario: Comparing unzipped files

This scenario describes a Job unarchiving a file and comparing it to a reference file to make sure it did not change.
The output of the comparison is stored into a delimited file and a message displays in the console.

1. Drag and drop the following components: tFileUnarchive, tFileCompare, and tFileOutputDelimited.

2. Link the tFileUnarchive to the tFileCompare with Iterate connection.

3. Connect the tFileCompare to the output component, using a Main row link.

4. In the tFileUnarchive component Basic settings, fill in the path to the archive to unzip.

5. In the Extraction Directory field, fill in the destination folder for the unarchived file.

6. In the tFileCompare Basic settings, set the File to compare. Press Ctrl+Space bar to
display the list of global variables. Select $_globals{tFileUnarchive_1}{CURRENT_FILEPATH} or
"((String)globalMap.get("tFileUnarchive_1_CURRENT_FILEPATH"))" according to the language you
work with, to fetch the file path from the tFileUnarchive component.

7. And set the Reference file to base the comparison on it.

8. In the messages fields, set the messages you want to see if the files differ or if the files are identical, for
example: "[job " + JobName + "] Files differ".

9. Select the Print to Console check box, for the message defined to display at the end of the execution.

10. The schema is read-only and contains standard information data. Click Edit schema to have a look to it.



Scenario: Comparing unzipped files

1164 Talend Open Studio Components Reference Guide

11. Then set the output component as usual with semi-colon as data separators.

12. Save your Job and press F6 to run it.

The message set is displayed to the console and the output shows the schema information data.



tFileCopy

Talend Open Studio Components Reference Guide 1165

tFileCopy

tFileCopy Properties

Component family File/Management

Function Copies a source file into a target directory and can remove the source file if required.

Purpose Helps to streamline processes by automating recurrent and tedious tasks such as copy.

Basic settings File Name Path to the file to be copied or moved

Destination Path to the directory where the file is copied/moved to.

Remove source file Select this check box to move the file to the destination.

Replace existing file Select this check box to overwrite any existing file with the newly
copied file.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component can be used as standalone component.

Global Variables Destination File Name: Retrieves the name of the destination file.
This is available as an After variable.

Returns a string.

Destination File Path: Retrieves the path to the destination file.
This is available as an After variable.

Returns a string.

Source Directory:.Retrieves the path to the source directory. This
is available as an After variable.

Returns a string.

Destination Directory: Retrieves the path to the destination
directory. This is available as an After variable.

Returns a stirng.

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Row: Main.

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component
Ok; On Component Error.

Incoming links (from one component to another):

Row: Main; Reject; Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error; On component
Ok; On Component Error; Synchronize; Parallelize.



Scenario: Restoring files from bin

1166 Talend Open Studio Components Reference Guide

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation n/a

Scenario: Restoring files from bin

This scenario describes a Job that iterates on a list of files, copies each file from the defined source directory to a
target directory. It then removes the copied files from the source directory.

1. Drop a tFileList and a tFileCopy from the Palette to the design workspace.

2. Link both components using an Iterate link.

3. In the tFileList Basic settings, set the directory for the iteration loop.

4. Set the Filemask to “*.txt” to catch all files with this extension. For this use case, the case is not sensitive.

5. Then select the tFileCopy to set its Basic settings.

6. In the File Name field, press Ctrl+Space bar to access the list of variables.

7. Select the global variable ((String)globalMap.get("tFileList_1_CURRENT_FILEPATH")). All files from the
source directory can be processed.

8. Select the Remove Source file check box to get rid of the file that have been copied.

9. Select the Replace existing file check box to overwrite any file possibly present in the destination directory.

10. Save your Job and press F6.

The files are copied onto the destination folder and are removed from the source folder.



tFileDelete

Talend Open Studio Components Reference Guide 1167

tFileDelete

tFileDelete Properties
Component family File/Management

Function Suppresses a file from a defined directory.

Purpose Helps to streamline processes by automating recurrent and tedious tasks such as delete.

Basic settings File Name Path to the file to be deleted. This field is hidden when you select
the Delete folder check box or the Delete file or folder check box.

Directory Path to the folder to be deleted. This field is available only when
you select the Delete folder check box.

File or directory to delete Enter the path to the file or to the folder you want to delete. This
field is available only when you select the Delete file or folder
check box.

Fail on error Select this check box to prevent the main Job from being executed
if an error occurs, for example, if the file to be deleted does not
exist.

Delete Folder Select this check box to display the Directory field, where you can
indicate the path the folder to be deleted.

Delete file or folder Select this check box to display the File or directory to delete
field, where you can indicate the path to the file or to the folder
you want to delete.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component can be used as standalone component.

Global Variables Delete path: Returns the path to the location from which the item
was deleted. This is available as an After variable.

Returns a string.

Current Status: Indicates whether an item has been deleted or not.
This is available as a Flow variable.

Returns a string and the delete command label.

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Row: Main.

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component
Ok; On Component Error.

Incoming links (from one component to another):

Row: Main; Reject; Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error; On component
Ok; On Component Error; Synchronize; Parallelize.

For further information regarding connections, see Talend Open
Studio User Guide.



Scenario: Deleting files

1168 Talend Open Studio Components Reference Guide

Limitation n/a

Scenario: Deleting files

This very simple scenario describes a Job deleting files from a given directory.

1. Drop the following components: tFileList, tFileDelete, tJava from the Palette to the design workspace.

2. In the tFileList Basic settings, set the directory to loop on in the Directory field.

3. The filemask is “*.txt” and no case check is to carry out.

4. In the tFileDelete Basic settings panel, set the File Name field in order for the current file in selection in the
tFileList component be deleted. This delete all files contained in the directory, as specified earlier.

5. press Ctrl+Space bar to access the list of global variables. In Java, the relevant variable to collect the current
file is: ((String)globalMap.get("tFileList_1_CURRENT_FILEPATH")).

6. Then in the tJava component, define the message to be displayed in the standard output
(Run console). In this Java use case, type in the Code field, the following script:
System.out.println( ((String)globalMap.get("tFileList_1_CURRENT_FILE"))

+ " has been deleted!" );

7. Then save your Job and press F6 to run it.



Scenario: Deleting files

Talend Open Studio Components Reference Guide 1169

The message set in the tJava component displays in the log, for each file that has been deleted through the
tFileDelete component.



tFileExist

1170 Talend Open Studio Components Reference Guide

tFileExist

tFileExist Properties

Component family File/Management

Function tFileExist checks if a file exists or not.

Purpose tFileExists helps to streamline processes by automating recurrent and tedious tasks such as
checking if a file exists.

Basic settings File Name Path to the file you want to check if it exists or not.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component can be used as standalone component.

Global Variables Exists: Indicates whether a specified file exists or not. This is
available as a Flow variable

Returns a boolean value:

- true if the file exists.

- false if the file does not exist.

File Name: Retrieves the name and path to a file. This is available
as an After variable.

Returns a string.

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component
Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error; On component
Ok; On Component Error; Synchronize; Parallelize.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation n/a

Scenario: Checking for the presence of a file and
creating it if it does not exist

This scenario describes a simple Job that: checks if a given file exists, displays a graphical message to confirm
that the file does not exist, reads the input data in another given file and writes it in an output delimited file.



Scenario: Checking for the presence of a file and creating it if it does not exist

Talend Open Studio Components Reference Guide 1171

Dropping and linking the components

1. Drop the following components from the Palette onto the design workspace: tFileExist,
tFileInputDelimited, tFileOutputDelimited, and tMsgBox.

2. Connect tFileExist to tFile InputDelimited using an OnSubjobOk and to tMsgBox using a Run If link.

3. Connect tFileInputDelimited to tFileOutputDelimite using a Row Main link.

Configuring the components

1. In the design workspace, select tFileExist and click the Component tab to define its basic settings.

2. In the File name field, enter the file path or browse to the file you want to check if it exists or not.

3. In the design workspace, select tFileInputDelimited and click the Component tab to define its basic settings.

4. Browse to the input file you want to read to fill out the File Name field.

If the path of the file contains some accented characters, you will get an error message when executing your Job.
For more information regarding the procedures to follow when the support of accented characters is missing, see the
Installation Guide of the Talend solution you are using.

5. Set the row and field separators in their corresponding fields.

6. Set the header, footer and number of processed rows as needed. In this scenario, there is one header in our
table.

7. Set Schema to Built-in and click the Edit schema button to define the data to pass on to the
tFileOutputDelimited component. Define the data present in the file to read, file2 in this scenario.



Scenario: Checking for the presence of a file and creating it if it does not exist

1172 Talend Open Studio Components Reference Guide

For more information about schema types, see Talend Open Studio User Guide.

The schema in file2 consists of five columns: Num, Ref, Price, Quant, and tax.

8. In the design workspace, select the tFileOutputDelimited component.

9. Click the Component tab to define the basic settings of tFileOutputDelimited.

10. Set property type to Built-in.

11. In the File name field, press Ctrl+Space to access the variable list and select the global variable FILENAME.

12. Set the row and field separators in their corresponding fields.

13. Select the Include Header check box as file2 in this scenario includes a header.

14. Set Schema to Built-in and click Sync columns to synchronize the output file schema (file1) with the input
file schema (file2).

15. In the design workspace, select the tMsgBox component.



Scenario: Checking for the presence of a file and creating it if it does not exist

Talend Open Studio Components Reference Guide 1173

16. Click the Component tab to define the basic settings of tMsgBox.

17. Click the If link to display its properties in the Basic settings view.

18. In the Condition panel, press Ctrl+Space to access the variable list and select the global variable EXISTS.
Type an exclamation mark before the variable to negate the meaning of the variable.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6  or click the Run button in the Run tab to execute it.

A dialog box appears to confirm that the file does not exists.

Click OK to close the dialog box and continue the Job execution process. The missing file, file1 in this scenario,
got written in a delimited file in the defined place.



tFileInputARFF

1174 Talend Open Studio Components Reference Guide

tFileInputARFF

tFileInputARFF properties

Component Family File/Input

Function tFileInputARFF reads a ARFF file row by row, with simple separated fields.

Purpose This component opens a file and reads it row by row, in order to divide it in fields and to send these
fields to the next component, as defined in the schema, through a Row connection.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties are stored.
The fields that follow are completed automatically using the data
retrieved.

Click this icon to open a connection wizard and store the Excel file
connection parameters you set in the component’s Basic settings view.

For more information about setting up and storing file connection
parameters, see Talend Open Studio User Guide.

File Name Name and path of the ARFF file and/or variable to be processed.

Related topic: see Talend Open Studio User Guide.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields that
will be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if you make
changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous component
connected in the Job.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the Repository,
hence can be reused in various projects and Job flowcharts. Related topic:
see Talend Open Studio User Guide.

Advanced settings Encoding Select the encoding type from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to gather the processing metadata at the Job level
as well as at each component level.

Usage Use this component to read a file and separate the fields with the specified separator.

Limitation n/a

Scenario: Display the content of a ARFF file

This scenario describes a two-component Job in which the rows of an ARFF file are read, the delimited data is
selected and the output is displayed in the Run view.

An ARFF file looks like the following:



Scenario: Display the content of a ARFF file

Talend Open Studio Components Reference Guide 1175

It is generally made of two parts. The first part describes the data structure, that is to say the rows which begin by
@attribute and the second part comprises the raw data, which follows the expression @data.

Dropping and linking components

1. Drop the tFileInputARFF component from the Palette onto the workspace.

2. In the same way, drop the tLogRow component.

3. Right-click the tFileInputARFF and select Row > Main in the menu. Then, drag the link to the tLogRow,
and click it. The link is created and appears.

Configuring the components

1. Double-click the tFileInputARFF.

2. In the Component view, in the File Name field, browse your directory in order to select your .arff file.

3. In the Schema field, select Built-In.

4. Click the [...] button next to Edit schema to add column descriptions corresponding to the file to be read.

5.
Click on the  button as many times as required to create the number of columns required, according to
the source file. Name the columns as follows.



Scenario: Display the content of a ARFF file

1176 Talend Open Studio Components Reference Guide

6. For every column, the Nullable check box is selected by default. Leave the check boxes selected, for all of
the columns.

7. Click OK.

8. In the workspace, double-click the tLogRow to display its Component view.



Scenario: Display the content of a ARFF file

Talend Open Studio Components Reference Guide 1177

9. Click the [...] button next to Edit schema to check that the schema has been propagated. If not, click the
Sync columns button.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 to execute your Job.

The console displays the data contained in the ARFF file, delimited using a vertical line (the default separator).



tFileInputDelimited

1178 Talend Open Studio Components Reference Guide

tFileInputDelimited

tFileInputDelimited properties

Component family File/Input

Function

Purpose

tFileInputDelimited reads a given file row by row with simple separated fields.

Opens a file and reads it row by row to split them up into fields then sends fields as defined in the Schema
to the next Job component, via a Row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties are stored. The
fields that follow are completed automatically using the data retrieved.

File Name/Stream File name: Name and path of the file to be processed.

Stream: The data flow to be processed. The data must be added to the flow
in order for tFileInputDelimited to fetch these data via the corresponding
representative variable.

This variable could be already pre-defined in your Studio or provided by
the context or the components you are using along with this component;
otherwise, you could define it manually and use it according to the design
of your Job, for example, using tJava or tJavaFlex.

In order to avoid the inconvenience of hand writing, you could select the
variable of interest from the auto-completion list (Ctrl+Space) to fill the
current field on condition that this variable has been properly defined.

Related topic to the available variables: see Talend Open Studio User
Guide

Row separator String (ex: “\n”on Unix) to distinguish rows.

Field separator Character, string or regular expression to separate fields.

CSV options Select this check box to include CSV specific parameters such as Escape
char and Text enclosure.

Header Number of rows to be skipped in the beginning of file.

Footer Number of rows to be skipped at the end of the file.

Limit Maximum number of rows to be processed. If Limit = 0, no row is read
or processed.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields that will
be processed and passed on to the next component. The schema is either
Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if you make
changes, the schema automatically becomes Built-in.

Click Sync columns to retrieve the schema from the previous component
connected in the Job.

Built-in: The schema will be created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the Repository,
hence can be reused in various projects and Job flowcharts. Related topic:
see Talend Open Studio User Guide.



Scenario: Delimited file content display

Talend Open Studio Components Reference Guide 1179

Skip empty rows Select this check box to skip empty rows.

Uncompress as zip file Select this check box to uncompress the input file.

Die on error Select this check box to stop the execution of the Job when an error occurs.
Clear the check box to skip the row on error and complete the process for
error-free rows. If needed, you can collect the rows on error using a Row
> Reject link.

To catch the FileNotFoundException, you also need to select this check
box.

Advanced settings Advanced separator (for
numbers)

Select this check box to modify the separators used for numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

Extract lines at random Select this check box to set the number of lines to be extracted randomly.

Encoding Select the encoding type from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Trim all column Select this check box to remove leading and trailing whitespace from all
columns.

Check each row structure
against schema

Select this check box to synchronize every row against the input schema.

Check date Select this check box to check the date format strictly against the input
schema.

Check columns to trim Select the check box next to the column name you want to remove leading
and trailing whitespace from.

Split row before field Select this check box to split rows before splitting fields.

tStatCatcher Statistics Select this check box to gather the processing metadata at the Job level as
well as at each component level.

Usage Use this component to read a file and separate fields contained in this file using a defined separator. It
allows you to create a data flow using a Row > Main link or via a Row > Reject link in which case the
data is filtered by data that does not correspond to the type defined. For further information, please see
section Scenario 2: Extracting correct and erroneous data from an XML field in a delimited file.

Limitation n/a

Scenario: Delimited file content display

The following scenario creates a two-component Job, which aims at reading each row of a file, selecting delimited
data and displaying the output in the Run log console.

Dropping and linking components

1. Drop a tFileInputDelimited component and a tLogRow component from the Palette to the design
workspace.

2. Right-click on the tFileInputDelimited component and select Row > Main. Then drag it onto the tLogRow
component and release when the plug symbol shows up.



Scenario: Delimited file content display

1180 Talend Open Studio Components Reference Guide

Configuring the components

1. Select the tFileInputDelimited component again, and define its Basic settings:

2. Fill in a path to the file in the File Name field. This field is mandatory.

If the path of the file contains some accented characters, you will get an error message when executing your Job.
For more information regarding the procedures to follow when the support of accented characters is missing, see the
Installation Guide of the Talend Solution you are using.

3. Define the Row separator allowing to identify the end of a row. Then define the Field separator used to
delimit fields in a row.

4. In this scenario, the header and footer limits are not set. And the Limit number of processed rows is set on 50.

5. Set the Schema as either a local (Built-in) or a remotely managed (Repository) to define the data to pass
on to the tLogRow component.

6. You can load and/or edit the schema via the Edit Schema function.

Related topics: see Talend Open Studio User Guide.

7. Enter the encoding standard the input file is encoded in. This setting is meant to ensure encoding consistency
throughout all input and output files.

8. Select the tLogRow and define the Field separator to use for the output display. Related topic: section
tLogRow.

9. Select the Print schema column name in front of each value check box to retrieve the column labels in
the output displayed.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Go to Run tab, and click on Run to execute the Job.

The file is read row by row and the extracted fields are displayed on the Run log as defined in both components
Basic settings.



Scenario 2: Reading data from a remote file in streaming mode

Talend Open Studio Components Reference Guide 1181

The Log sums up all parameters in a header followed by the result of the Job.

Scenario 2: Reading data from a remote file in
streaming mode

This scenario describes a four component Job used to fetch data from a voluminous file almost as soon as it has
been read. The data is displayed in the Run view. The advantage of this technique is that you do not have to wait
for the entire file to be downloaded, before viewing the data.

Dropping and linking components

1. Drop the following components onto the workspace: tFileFetch, tSleep, tFileInputDelimited, and
tLogRow.

2. Connect tSleep and tFileInputDelimited using a Trigger > OnComponentOk link and connect
tFileInputDelimited to tLogRow using a Row > Main link.

Configuring the components

1. Double-click tFileFetch to display the Basic settings tab in the Component view and set the properties.



Scenario 2: Reading data from a remote file in streaming mode

1182 Talend Open Studio Components Reference Guide

2. From the Protocol list, select the appropriate protocol to access the server on which your data is stored.

3. In the URI field, enter the URI required to access the server on which your file is stored.

4. Select the Use cache to save the resource check box to add your file data to the cache memory. This option
allows you to use the streaming mode to transfer the data.

5. In the workspace, click tSleep to display the Basic settings tab in the Component view and set the properties.

By default, tSleep’s Pause field is set to 1 second. Do not change this setting. It pauses the second Job in
order to give the first Job, containing tFileFetch, the time to read the file data.

6. In the workspace, double-click tFileInputDelimited to display its Basic settings tab in the Component view
and set the properties.

7. In the File name/Stream field:

- Delete the default content.

- Press Ctrl+Space to view the variables available for this component.

- Select tFileFetch_1_INPUT_STREAM from the auto-completion list, to add the following variable to the
Filename field: ((java.io.InputStream)globalMap.get("tFileFetch_1_INPUT_STREAM")).

8. From the Schema list, select Built-in and click [...] next to the Edit schema field to describe the structure
of the file that you want to fetch. The US_Employees file is composed of six columns: ID, Employee, Age,
Address, State, EntryDate.

Click [+] to add the six columns and set them as indicated in the above screenshot. Click OK.



Scenario 2: Reading data from a remote file in streaming mode

Talend Open Studio Components Reference Guide 1183

9. In the workspace, double-click tLogRow to display its Basic settings in the Component view and click Sync
Columns to ensure that the schema structure is properly retrieved from the preceding component.

Configuring Job execution and executing the Job

1. Click the Job tab and then on the Extra view.

2. Select the Multi thread execution check box in order to run the two Jobs at the same time. Bear in mind that
the second Job has a one second delay according to the properties set in tSleep. This option allows you to
fetch the data almost as soon as it is read by tFileFetch, thanks to the tFileDelimited component.

3. Save the Job and press F6 to run it.



Scenario 2: Reading data from a remote file in streaming mode

1184 Talend Open Studio Components Reference Guide

The data is displayed in the console as almost as soon as it is read.



tFileInputEBCDIC

Talend Open Studio Components Reference Guide 1185

tFileInputEBCDIC

This component requires an Oracle JDK to be functional.

tFileInputEBCDIC properties

Component family File/Input

Function tFileInputEBCDIC reads an EBCDIC file and extracts data depending on the selected schema.

Purpose tFileInputEBCDIC opens a file and reads it in order to separate the data, based on the file structure
description (schemas), and to send the file data and metadata to the next Job component(s), via a Row
> Main connection.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties are stored.
The fields that follow are completed automatically using the data
retrieved.

Schema(s) Click [+] to add one or more lines and click [...] in the Schema column
of one selected line to define the schema for the data to be processed.
Editable schema name will be displayed in the Distinguish field value
column of the selected line.

Data file Click [...] to browse to or type in the path to the EBCDIC file containing
the data to be processed.

Edit schema Click [...] to edit the Built-in or Repository schema for the data to be
processed.

This button is enabled when you select the Custom set
Original Length in Schema checkbox.

Built-in: Select this option to edit the Built-in schema for the data to be
processed.

Repository: Select this option to edit the Repository schema you select.
The field that follows is completed automatically using the schema you
select.

Xc2j file Click [...] to browse to or type in the path to the xc2j file to transform the
EBCDIC schema(s) into an intermediary XML file.

This field will be disabled and xc2j file will not be needed
when you select the Custom set Original Length in Schema
checkbox.

Custom set Original Length
in Schema

Select this check box to improve the speed of reading files.

When you select this check box, the Xc2j file field will be
disabled and xc2j file will not be needed and you are able to edit
the Built-in or Repository schema for the data to be processed.

 Advanced settings Encoding Select the encoding type from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Trim all column Select this check box to remove leading and trailing whitespaces from
defined columns.

tStatCatcher Statistics Select this check box to gather the processing metadata at the Job level
as well as at each component level.

Usage Use this component to read an EBCDIC file and to output the data separately depending on the schemas
identified in the file.



Scenario: Extracting data from an EBCDIC file and populating a database

1186 Talend Open Studio Components Reference Guide

Scenario: Extracting data from an EBCDIC file and
populating a database

This scenario uses the [Copybook Connection] wizard that guides users through the different steps necessary to create a
Copybook connection and to retrieve the EBCDIC schemas. This wizard is available only for users who have subscribed
to one of the Talend solutions. Otherwise, you need to drop the tFileInputEBCDIC component from the Palette and set
its basic settings manually.

The following scenario is a four-component Job that aims at: reading an EBCDIC file which contains information
concerning clients and their financial transactions, extracting and transforming this data, and finally creating two
tables in a database, based on the two schemas, clients and transactions, extracted from the original EBCDIC file.

This Java scenario uses the EBCDIC Connection wizard to set up a connection to the Copybook file and to generate
an xc2j file, which allows the retrieval and transformation of the different file schemas.

• Create a connection to the Copybook file, which describes the structure of your EBCDIC file. In this scenario,
the Copybook connection is called EBCDIC. Talend Open Studio User Guide.

• Retrieve the file schemas. Talend Open Studio User Guide.

Once the Copybook connection has been created and the schemas retrieved, using the EBCDIC and Schema
wizards, the new schemas appear under the node Metadata > Copybook. They are called Schema01, Schema04
and Schema05.

In order to retrieve the different file structures and to use them in Talend Open Studio:

• Drop schema 01 from the Repository tree view to the design workspace. This automatically creates the
tFileInputEBCDIC input component.

• Drop the tMysqlOutput component from the Palette to the design workspace.

• Double-click tFileInputEBCDIC to display the Basic settings view, then define the component properties:



Scenario: Extracting data from an EBCDIC file and populating a database

Talend Open Studio Components Reference Guide 1187

The metadata is automatically defined in the Property Type, Schema(s), Data file and Xc2j file fields. The
Property Type field shows which metadata has been used for the component. The Schema field shows which
schema will be transmitted to the following component. The Data file field shows the path to the file that holds
the EBCDIC data. The Xc2j file field shows the path to the file which enables to extract the schema describing
the EBCDIC file structure. If you are in Built-In mode, you have to fill these fields manually.

• In the design workspace, right-click tFileInputEBCDIC, select Row > row_Schema01_1 from the menu, then
click tMysqlOutput to connect the components together.

• Double-click tMysqlOutput to display the Basic settings view, then define the component properties.

• In the Property Type list, select Repository and click the button [...]. Select the database connection you
want to use, which is centralized in the metadata of the Repository. The Host, Port, Database, Username and
Password fields are automatically filled. If you are in Built-In mode, you have to fill these fields manually.

• In the Table field, enter the name of the table to be created, which will contain the data extracted from the
EBCDIC file.

• In the Action on table field, select the option Create table.



Scenario: Extracting data from an EBCDIC file and populating a database

1188 Talend Open Studio Components Reference Guide

At this stage, the Job retrieves the schema Schema01 from the EBCDIC file and transfers it, as well as the
corresponding data, to the database. We now need to retrieve, from the EBCDIC file, the schema 04 and its data,
then transform and transmit the data to the same database. To do this:

• Drop the tMap and tMysqlOutputBulkExec components to the design workspace.

• Double-click the tFileInputEBCDIC to display the Basic settings view, then define the component properties.

• In the Schema(s) field, click the plus button to add a line.

• Click in this line and then click the three-dot button that displays to open a dialog box. Select the Create schema
from repository button to retrieve the schema defined in the EBCDIC metadata, then select Shema04 from
the drop-down list.

• Click OK to close the dialog box.

• If you did not retrieve the schema from the Repository tree view, select Create schema for built-in and
manually enter the name and description of your schema.

The two schemas Shema01 and Schema04 appear in the Schema(s) field of the tFileInputEBCDIC component.

• In order to connect these two components, right-click tFileInputEBCDIC, select Row > row_Schema04_1 in
the menu and click the tMap component. Then right-click tMap, drag a link over to tMysqlOutputBulkExec
and release the right-click button. In the dialog box that opens up, fill in the name of the ebcdic_04 output file.

• Double-click tMap to open up the tMap Editor.



Scenario: Extracting data from an EBCDIC file and populating a database

Talend Open Studio Components Reference Guide 1189

• Select all the columns from the row_Schema04_1 table and drag them towards the ebcdic_04 table.

• In the table ebcdic_04, located in the Schema editor area at the bottom of the editor, click the plus button to
add a column to the schema. Name this column SUM_AG_NUMBER.

• In the table row_Schema04_1, to the left of the editor, press Ctrl and select the CC01404_L_11_MENAG_1_1
and CC01404_AG_CAM_1_1 columns. Drag them to the new column SUM_AG_NUMBER in
table ebcdic_04. Add the sign + between the two concatenated columns so that you have:
row_04_1.CC01404_L_11_MENAG_1_1 + row_04_1.CC01404_AG_CAM_1_1.

• Click OK to validate your changes and close the editor.

• In the design workspace, double-click tMysqlOutputBulkExec to display the Basic settings view, then define
the component properties:

• In the Property Type list, select Repository and click the three-dot button to display a dialog bow where
you can select the database connection you want to use, which is centralized in the Metadata folder of the



Scenario: Extracting data from an EBCDIC file and populating a database

1190 Talend Open Studio Components Reference Guide

Repository tree view. The Host, Port, Database, Username and Password fields are automatically filled. If
you are in Built-In mode, you have to fill these fields manually.

• In the Table field, enter the name of the table to be created, which will contain the data extracted from the
EBCDIC file.

• In the Action on table field, select the option Create table.

• Press Ctrl+S to save your Job and click the Run view. Select the Statistics and Exec time check boxes, then
click Run to execute the Job.

The two tables are created in the database. They contain the structure, as well as the clients and transaction data,
from the original EBCDIC file.



tFileInputExcel

Talend Open Studio Components Reference Guide 1191

tFileInputExcel

tFileInputExcel properties

Component family File/Input

Function tFileInputExcel reads an Excel file (.xls or .xlsx) and extracts data line by line.

Purpose tFileInputExcel opens a file and reads it row by row to split data up into fields using regular
expressions. Then sends fields as defined in the schema to the next component in the Job via a
Row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties are stored.
The fields that follow are completed automatically using the data
retrieved.

Click this icon to open a connection wizard and store the Excel file
connection parameters you set in the component Basic settings view.

For more information about setting up and storing file connection
parameters, see Talend Open Studio User Guide.

Read excel2007 file format
(xlsx)

Select this check box to read the .xlsx file of Excel 2007.

File Name/Stream File name: Name of the file and/or the variable to be processed.

Stream: Data flow to be processed. The data must be added
to the flow in order to be collected by tFileInputExcel via the
INPUT_STREAM variable in the auto-completion list (Ctrl+Space).

Related topic: see Talend Open Studio User Guide.

All sheets Select this check box to process all sheets of the Excel file.

Sheet list Click the plus button to add as many lines as needed to the list of the
excel sheets to be processed:

Sheet (name or position): enter the name or position of the excel
sheet to be processed.

Use Regex: select this check box if you want to use a regular
expression to filter the sheets to process.

Header Number of records to be skipped in the beginning of the file.

Footer Number of records to be skipped at the end of the file.

Limit Maximum number of lines to be processed.

Affect each
sheet(header&footer)

Select this check box if you want to apply the parameters set in the
Header and Footer fields to all excel sheets to be processed.

Die on error Select this check box to stop the execution of the Job when an error
occurs. Clear the check box to skip the row on error and complete
the process for error-free rows. If needed, you can collect the rows
on error using a Row > Reject link.

First column and Last
column

Define the range of the columns to be processed through setting the
first and last columns in the First column and Last column fields
respectively.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields that
will be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.



tFileInputExcel properties

1192 Talend Open Studio Components Reference Guide

Click Edit Schema to make changes to the schema. Note that if you
make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Advanced settings Advanced separator Select this check box to change the used data separators.

Trim all columns Select this check box to remove the leading and trailing whitespaces
from all columns. When this check box is cleared, the Check column
to trim table is displayed, which lets you select particular columns
to trim.

Check column to trim This table is filled automatically with the schema being used. Select
the check box(es) corresponding to the column(s) to be trimmed.

Convert date column to
string

Available when Read excel2007 file format (xlsx) is selected in the
Basic settings view.

Select this check box to show the table Check need convert date
column. Here you can parse the string columns that contain date
values based on the given date pattern.

Column: all the columns availabe in the schema of the source .xlsx
file.

Convert: select this check box to choose all the columns for
conversion (on the condition that they are all of the string type). You
can also select the individual check box next to each column for
conversion.

Date pattern: set the date format here.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Read real values for
numbers

Select this check box to read numbers in real values. This check box
becomes unavailable when you select Read excel2007 file format
(xlsx) in the Basic settings view.

Stop reading on
encountering empty rows

Select this check box to ignore the empty line encountered and, if
there are any, the lines that follow this empty line. This check box
becomes unavailable when you select Read excel2007 file format
(xlsx) in the Basic settings view.

Generation mode Available when Read excel2007 file format (xlsx) is selected in the
Basic settings view. Select the mode used to read the Excel 2007 file.

• Less memory consumed for large excel(Event mode): used for
large file. This is a memory-saving mode to read the Excel 2007
file as a flow.

• Memory-consuming (User mode): used for small file. It needs
much memory.

Don’t validate the cells Select this check box to in order not to validate data. This check box
becomes unavailable when you select Read excel2007 file format
(xlsx) in the Basic settings view.

Ignore the warning Select this check box to ignore all warnings generated to indicate
errors in the Excel file. This check box becomes unavailable when
you select Read excel2007 file format (xlsx) in the Basic settings
view.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage Use this component to read an Excel file and to output the data separately depending on the schemas
identified in the file. You can use a Row > Reject link to filter the data which doesn’t correspond to



Related scenarios

Talend Open Studio Components Reference Guide 1193

the type defined. For an example of how to use these two links, see section Scenario 2: Extracting
correct and erroneous data from an XML field in a delimited file.

Limitation n/a

Related scenarios

No scenario is available for this component yet.



tFileInputFullRow

1194 Talend Open Studio Components Reference Guide

tFileInputFullRow

tFileInputFull Row properties

Component family File/Input

Function tFileInputFullRow reads a given file row by row.

Purpose tFileInputFullRow opens a file and reads it row by row and sends complete rows as defined in the Schema
to the next Job component, via a Row link.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields to be
processed and passed on to the next component. The schema is either Built-
in or stored remotely in the Repository.

Click Edit schema to make changes to the schema. Note that if you make
changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous component
connected to tFileInputFullRow.

File Name Name of the file and/or the variable to be processed

Related topic: see Talend Open Studio User Guide.

Row separator String (ex: “\n”on Unix) to separate rows.

Header Number of rows to be skipped at the beginning of a file

Footer Number of rows to be skipped at the end of a file.

Limit Maximum number of rows to be processed. If Limit = 0, no row is read
or processed.

Skip empty rows Select this check box to skip empty rows.

Die on error Select this check box to stop the execution of the Job when an error occurs.
Clear the check box to skip the row on error and complete the process for
error-free rows. If needed, you can collect the rows on error using a Row
> Reject link.

Advanced settings Encoding Select the encoding from the list or select Custom and define it manually.
This field is compulsory for DB data handling.

Extract lines at random Select this check box to set the number of lines to be extracted randomly.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job level
as well as at each component level.

Usage Use this component to read full rows in delimited files that can get very large. You can also create a
rejection flow using a Row > Reject link to filter the data which does not correspond to the type defined.
For an example of how to use these two links, see section Scenario 2: Extracting correct and erroneous
data from an XML field in a delimited file.

Scenario: Reading full rows in a delimited file

The following scenario creates a two-component Job that aims at reading complete rows in a file and displaying
the output in the Run log console.

1. Drop a tFileInputFullRow and a tLogRow from the Palette onto the design workspace.

2. Right-click on the tFileInputFullRow component and connect it to tLogRow using a Row Main link.



Scenario: Reading full rows in a delimited file

Talend Open Studio Components Reference Guide 1195

3. In the design workspace, select tFileInputFullRow.

4. Click the Component tab to define the basic settings for tFileInputFullRow.

5. In the Basic settings view, set Schema to Built-In.

6. Click the three-dot [...] button next to the Edit schema field to see the data to pass on to the tLogRow
component. Note that the schema is read-only and it consists of one column, line.

7. Fill in a path to the file to process in the File Name field, or click the three-dot [...] button. This field is
mandatory. In this scenario, the file to read is test5. It holds three rows where each row consists of tow fields
separated by a semi colon.

8. Define the Row separator used to identify the end of a row.

9. Set the Header to 1, in this scenario the footer and the number of processed rows are not set.

10. From the design workspace, select tLogRow and click the Component tab to define its basic settings. For
more information, see section tLogRow

11. Save your Job and press F6 to execute it.



Scenario: Reading full rows in a delimited file

1196 Talend Open Studio Components Reference Guide

tFileInputFullRow reads the three rows one by one ignoring field separators, and the complete rows are
displayed on the Run console.

To extract only fields from rows, you must use tExtractDelimitedFields, tExtractPositionalFields, and
tExtractRegexFields. For more information, see section tExtractDelimitedFields, section tExtractPositionalFields
and section tExtractRegexFields.



tFileInputJSON

Talend Open Studio Components Reference Guide 1197

tFileInputJSON

tFileInputJSON properties

Component Family File

Function The tFileInputJSON reads a JSON file and extracts data according to the selected schema.

Purpose This component opens a file and reads it in order to isolate data according to the schemas which
describe this file structure, and to send the data and schemas to the next component(s), via a
Row connection.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties are
stored. The fields that follow are completed automatically using
the data retrieved.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Use URL Select this check box to retrieve data directly from the Web.

URL: type in the URL path from which you will retrieve data.

FIlename Name of the file from which you will retrieve data.

Mapping Column: shows the schema as defined in the Schema editor.

JSONPath Query: Type in the fields to extract from the JSON
input structure.

Advanced settings Advanced separator (for
numbers)

Select this check box to modify the separators used for numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

Encoding Select the encoding type from the list or select Custom and define
it manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Use this component to read a JSON file and separate data according to the identified schemas
in this file.

Limitation n/a



Scenario: Extracting data from the fields of a JSON format file

1198 Talend Open Studio Components Reference Guide

Scenario: Extracting data from the fields of a JSON
format file

This is a 2 component scenario which involves reading a JSON file, and extracting its data.

Dropping and linking the components

1. Drag and drop a tFileInputJSON component from the File family and a tLogRow from the Logs & Errors
family from the Palette onto the Job designer.

2. Link the components using a Main > Row connection.

3. Double-click the tFileInputJSON component to set its properties in the Basic settings, in the Component
view:

Configuring the components

1. Click the [...] button of the Edit schema field to open a dialog box in which you will define the output schema
to be displayed.

2. Click OK to close the dialog box. In the Mapping table, the items in the Column field are automatically
filled in according to the schema you just defined. In this example, the schema is made of four columns:
FirstName, LastName, Address and City.

3. In the Filename field, fill in the path to the JSON file from which you want to retrieve data. If your data are
stored on the internet, select the Use URL check box, and then, in the same way, fill in the access URL to
the file to be processed. In this example, the processed file is presented as follows:



Scenario: Extracting data from the fields of a JSON format file

Talend Open Studio Components Reference Guide 1199

4. In the Mapping table, the rows in the Column field are already filled in. For each of them, type in the tree
view level in which retrieve data, in the JSONPath query field.

5. In the Job designer, double-click the tLogRow to set its properties in the Basic settings tab, in the Component
view.

6. Click Sync Columns button to retrieve the schema of the previous component.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

Press F6 or click the Run button in the Run tab to execute it.

2.

The Job returns the customer information according to the parameters selected in the schema.



tFileInputLDIF

1200 Talend Open Studio Components Reference Guide

tFileInputLDIF

tFileInputLDIF Properties

Component Family File/Input

Function tFileInputLDIF reads a given LDIF file row by row.

Purpose tFileInputLDIF opens a file, reads it row by row, et gives the full rows to the next component as defined
in the schema, using a Row connection.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties are stored. The
fields that follow are completed automatically using the data retrieved.

File Name Name of the file and/or variable to be processed.

Related topic: see Talend Open Studio User Guide.

add operation as prefix when
the entry is modify type

Select this check box to display the operation mode.

Value separator Type in the separator required for parsing data in the given file. By default,
the separator used is “ ,”.

Die on error Select this check box to stop the execution of the Job when an error occurs.
Clear the check box to skip the row on error and complete the process for
error-free rows. If needed, you can collect the rows on error using a Row
> Reject link.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields that
will be processed and passed on to the next component. The schema is
either Built-in or stored remotely in the Repository. Click Edit Schema
to modify the schema. Note that if you make changes, the schema
automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous component
connected in the Job.

Advanced settings Encoding Select the encoding type from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Use field options (for Base64
decode checked)

Select this check box to specify the Base64-encoded columns of the input
flow. Once selected, this check box activates the Decode Base64 encoding
values table to enable you to precise the columns to be decoded from
Base64.

The data type of the columns to be handled by this check box is
byte[] that you define in the input schema editor.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job level
as well as at each component level.

Usage Use this component to read full rows in a voluminous LDIF file. This component enables you to create a
data flow, using a Row > Main link, and to create a reject flow with a Row > Reject link filtering the data
which type does not match the defined type. For an example of usage, see section Scenario 2: Extracting
erroneous XML data via a reject flow from tFileInputXML.

Limitation n/a



Related scenario

Talend Open Studio Components Reference Guide 1201

Related scenario

For a related scenario, see section Scenario: Writing DB data into an LDIF-type file.



tFileInputMail

1202 Talend Open Studio Components Reference Guide

tFileInputMail

tFileInputMail properties

Component family File/Input

Function tFileInputMail reads the header and content parts of defined email file.

Purpose This component helps to extract standard key data from emails.

Basic settings File name Browse to the source email file.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Attachment export directory Enter the path to the directory where you want to export email
attachments.

Mail parts Column: This field is automatically populated with the columns
defined in the schema that you propagated.

Mail part: Type in the label of the header part or body to be
displayed on the output.

Multi value: Select the check box next to the name of the column
that is made up of fields of multiple values.

Field separator: Enter a value separator for the field of multiple
values.

Die on error Select this check box to stop the execution of the Job when an error
occurs. Clear the check box to skip the row on error and complete
the process for error-free rows.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at the
Job level as well as at each component level.

Usage This component handles flow of data therefore it requires output. It is defined as an intermediary
step.

Limitation n/a

Scenario: Extracting key fields from an email

This Java scenario describes a two-component Job that extracts some key standard fields and displays the values
on the Run console.



Scenario: Extracting key fields from an email

Talend Open Studio Components Reference Guide 1203

1. Drop a tFileInputMail and a tLogRow component from the Palette to the design workspace.

2. Connect the two components together using a Main Row link.

3. Double-click tFileInputMail to display its Basic settings view and define the component properties.

4. Click the three-dot button next to the File Name field and browse to the mail file to be processed.

5. Set schema type to Built-in and click the three-dot button next to Edit schema to open a dialog box where
you can define the schema including all columns you want to retrieve on your output.

6. Click the plus button in the dialog box to add as many columns as you want to include in the output flow. In
this example, the schema has four columns: Date, Author, Object and Status.

7. Once the schema is defined, click OK to close the dialog box and propagate the schema into the Mail parts
table.

8. Click the three-dot button next to Attachment export directory and browse to the directory in which you want
to export email attachments, if any.

9. In the Mail part column of the Mail parts table, type in the actual header or body standard keys that will
be used to retrieve the values to be displayed.

10. Select the Multi Value check box next to any of the standard keys if more than one value for the relative
standard key is present in the input file.

11. If needed, define a separator for the different values of the relative standard key in the Separator field.

12. Double-click tLogRow to display its Basic settings view and define the component properties in order for
the values to be separated by a carriage return. On Windows OS, type in \n between double quotes.

13. Save your Job and press F6 to execute it and display the output flow on the console.



Scenario: Extracting key fields from an email

1204 Talend Open Studio Components Reference Guide

The header key values are extracted as defined in the Mail parts table. Mail reception date, author, subject and
status are displayed on the console.



tFileInputMSDelimited

Talend Open Studio Components Reference Guide 1205

tFileInputMSDelimited

tFileInputMSDelimited properties

Component family File/Input

Function tFileInputMSDelimited reads a complex multi-structured delimited file.

Purpose tFileInputMSDelimited opens a complex multi-structured file, reads its data structures (schemas) and
then uses Row links to send fields as defined in the different schemas to the next Job components.

Basic settings Multi Schema Editor The [Multi Schema Editor] helps to build and configure the data flow in
a multi-structure delimited file to associate one schema per output.

For more information, see section The Multi Schema Editor.

Output Lists all the schemas you define in the [Multi Schema Editor], along with
the related record type and the field separator that corresponds to every
schema, if different field separators are used.

Die on error Select this check box to stop the execution of the Job when an error occurs.
Clear the check box to skip the row on error and complete the process for
error-free rows.

Advanced settings Trim all column Select this check box to remove leading and trailing whitespaces from
defined columns.

Validate date Select this check box to check the date format strictly against the input
schema.

Advanced separator (for
numbers)

Select this check box to modify the separators used for numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job level
as well as at each component level.

Usage Use this component to read multi-structured delimited files and separate fields contained in these files
using a defined separator.

Limitation n/a

The Multi Schema Editor

The [Multi Schema Editor] enables you to:

• set the path to the source file,

• define the source file properties,

• define data structure for each of the output schemas.

When you define data structure for each of the output schemas in the [Multi Schema Editor], column names in the different
data structures automatically appear in the input schema lists of the components that come after tFileInputMSDelimited.
However, you can still define data structures directly in the Basic settings view of each of these components.

The [Multi Schema Editor] also helps to declare the schema that should act as the source schema (primary key)
from the incoming data to insure its unicity.The editor uses this mapping to associate all schemas processed in the
delimited file to the source schema in the same file.



Scenario: Reading a multi structure delimited file

1206 Talend Open Studio Components Reference Guide

The editor opens with the first column, that usually holds the record type indicator, selected by default. However, once the
editor is open, you can select the check box of any of the schema columns to define it as a primary key.

The below figure illustrates an example of the [Multi Schema Editor].

For detailed information about the usage of the Multi Schema Editor, see section Scenario: Reading a multi
structure delimited file.

Scenario: Reading a multi structure delimited file

The following scenario creates a Java Job which aims at reading three schemas in a delimited file and displaying
their data structure on the Run Job console.

The delimited file processed in this example looks like the following:



Scenario: Reading a multi structure delimited file

Talend Open Studio Components Reference Guide 1207

Dropping and linking components

1. Drop a tFileInputMSDelimited component and three tLogRow  components from the Palette onto the
design workspace.

2. In the design workspace, right-click tFileInputMSDelimited and connect it to tLogRow1, tLogRow2, and
tLogRow3 using the row_A_1, row_B_1, and row_C_1 links respectively.

Configuring the components

1. Double-click tFileInputMSDelimited to open the Multi Schema Editor.

2. Click Browse... next to the File name field to locate the multi schema delimited file you need to process.

3. In the File Settings area:

-Select from the list the encoding type the source file is encoded in. This setting is meant to ensure encoding
consistency throughout all input and output files.

-Select the field and row separators used in the source file.



Scenario: Reading a multi structure delimited file

1208 Talend Open Studio Components Reference Guide

Select the Use Multiple Separator check box and define the fields that follow accordingly if different field separators
are used to separate schemas in the source file.

A preview of the source file data displays automatically in the Preview panel.

Column 0 that usually holds the record type indicator is selected by default. However, you can select the check box
of any of the other columns to define it as a primary key.

4. Click Fetch Codes to the right of the Preview panel to list the type of schema and records you have in the
source file. In this scenario, the source file has three schema types (A, B, C).

Click each schema type in the Fetch Codes panel to display its data structure below the Preview panel.

5. Click in the name cells and set column names for each of the selected schema.

In this scenario, column names read as the following:

-Schema A: Type, DiscName, Author, Date,

-Schema B: Type, SongName,

-Schema C: Type, LibraryName.

You need now to set the primary key from the incoming data to insure its unicity (DiscName in this scenario).
To do that:



Scenario: Reading a multi structure delimited file

Talend Open Studio Components Reference Guide 1209

6. In the Fetch Codes panel, select the schema holding the column you want to set as the primary key (schema
A in this scenario) to display its data structure.

7. Click in the Key cell that corresponds to the DiscName column and select the check box that appears.

8. Click anywhere in the editor and the false in the Key cell will become true.

You need now to declare the parent schema by which you want to group the other “children” schemas
(DiscName in this scenario). To do that:

9. In the Fetch Codes panel, select schema B and click the right arrow button to move it to the right. Then,
do the same with schema C.

The Cardinality field is not compulsory. It helps you to define the number (or range) of fields in “children” schemas
attached to the parent schema. However, if you set the wrong number or range and try to execute the Job, an error
message will display.

10. In the [Multi Schema Editor], click OK to validate all the changes you did and close the editor.

The three defined schemas along with the corresponding record types and field separators display
automatically in the Basic settings view of tFileInputMSDelimited.



Scenario: Reading a multi structure delimited file

1210 Talend Open Studio Components Reference Guide

The three schemas you defined in the [Multi Schema Editor] are automatically passed to the three tLogRow
components.

11. If needed, click the Edit schema button in the Basic settings view of each of the tLogRow components to
view the input and output data structures you defined in the Multi Schema Editor or to modify them.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

The multi schema delimited file is read row by row and the extracted fields are displayed on the Run Job
console as defined in the [Multi Schema Editor].



Scenario: Reading a multi structure delimited file

Talend Open Studio Components Reference Guide 1211



tFileInputMSPositional

1212 Talend Open Studio Components Reference Guide

tFileInputMSPositional

tFileInputMSPositional properties

Component family File/Input

Function tFileInputMSPositional reads multiple schemas from a positional file.

Purpose tFileInputMSPositional opens a complex multi-structured file, reads its data structures (schemas) and
then uses Row links to send fields as defined in the different schemas to the next Job components.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties are stored.
The fields that follow are completed automatically using the data
retrieved.

File Name Name of the file and/or the variable to be processed

Related topic: see Talend Open Studio User Guide.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Header Field Position Start-end position of the schema identifier.

Records Schema: define as many schemas as needed.

Header value: value in the row that identifies a schema.

Pattern: string which represents the length of each column of the
schema, separated by commas. Make sure the values defined in this
field are relevant with the defined schema.

Reject incorrect row size: select the check boxes of the schemas where
to reject incorrect row size.

Parent row: Select the parent row from the drop-down list. By default,
it is <Empty>.

Parent key column: Type in the parent key column name. If the parent
row is not <Empty>, this field must be filled with a column name of
the parent row schema.

Key column: Type in the key column name.

Skip from header Number of rows to be skipped in the beginning of file.

Skip from footer Number of rows to be skipped at the end of the file.

Limit Maximum number of rows to be processed. If Limit = 0, no row is read
or processed.

Die on parse error Let the component die if an parsing error occurs.

Die on unknown header type Length values separated by commas, interpreted as a string between
quotes. Make sure the values entered in this fields are consistent with
the schema defined.

Advanced settings Process long rows (needed for
processing rows longer than
100,000 characters wide)

Select this check box to process long rows (this is necessary to process
rows longer than 100 000 characters).

Advanced separator (for
numbers)

Select this check box to modify the separators used for numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.



Scenario: Reading data from a positional file

Talend Open Studio Components Reference Guide 1213

Trim all column Select this check box to remove leading and trailing whitespaces from
defined columns.

Validate date Select this check box to check the date format strictly against the input
schema.

Encoding Select the encoding type from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage Use this component to read a multi schemas positional file and separate fields using a position separator
value. You can also create a rejection flow using a Row > Reject link to filter the data which does not
correspond to the type defined. For an example of how to use these two links, see section Scenario 2:
Extracting correct and erroneous data from an XML field in a delimited file.

Scenario: Reading data from a positional file

The following scenario reads data from a positional file, which contains two schemas. The positional file is shown
below:

schema_1 (car_owner):schema_id;car_make;owner;age
schema_2 (car-insurance):schema_id;car_owner;age;car_insurance
1bmw     John      45
1bench   Mike      30
2John      45 yes 
2Mike      50 No      

Dropping the components

1. Drop one tFileInputMSPositional and two tLogRow from the Palette to the design workspace.

2. Rename the two tLogRow components as car_owner and car_insurance.

Configuring the components

1. Double-click the tFileInputMSPositional component to show its Basic settings view and define its
properties.



Scenario: Reading data from a positional file

1214 Talend Open Studio Components Reference Guide

2. In the File name/Stream field, type in the path to the input file. Also, you can click the [...] button to browse
and choose the file.

3. In the Header Field Position field, enter the start-end position for the schema identifier in the input file, 0-1
in this case as the first character in each row is the schema identifier.

4. Click the [+] button twice to added two rows in the Records table.

5. Click the cell under the Schema column to show the [...] button.

Click the [...] button to show the schema naming box.

6. Enter the schema name and click OK.

The schema name appears in the cell and the schema editor opens.



Scenario: Reading data from a positional file

Talend Open Studio Components Reference Guide 1215

7. Define the schema car_owner, which has four columns: schema_id, car_make, owner and age.

8. Repeat the steps to define the schema car_insurance, which has four columns: schema_id, car_owner, age
and car_insurance.

9. Connect tFileInputMSPositional to the car_owner component with the Row > car_owner link, and the
car_insurance component with the Row > car_insurance link.

10. In the Header value column, type in the schema identifier value for the schema, 1 for the schema car_owner
and 2 for the schema car_insurance in this case.

11. In the Pattern column, type in the length of each field in the schema, i.e. the number of characters, number,
etc in each field, 1,8,10,3 for the schema car_owner and 1,10,3,3 for the schema car_insurance in this case.

12. In the Skip from header field, type in the number of beginning rows to skip, 2 in this case as the two rows
in the beginning just describes the two schemas, instead of the values.

13. Choose Table (print values in cells of a table) in the Mode area of the components car_owner and
car_insurance.

Executing the Job

1. Press Ctrl+S to save the Job.



Scenario: Reading data from a positional file

1216 Talend Open Studio Components Reference Guide

2. Press F6 or click Run on the Run tab to execute the Job.

The file is read row by row based on the length values defined in the Pattern field and output in two tables
with different schemas.



tFileInputMSXML

Talend Open Studio Components Reference Guide 1217

tFileInputMSXML

tFileInputMSXML Properties

Component family XML or File/Input

Function tFileInputMSXML reads and outputs multiple schema within an XML structured file.

Purpose tFileInputMSXML opens a complex multi-structured file, reads its data structures (schemas)
and then uses Row links to send fields as defined in the different schemas to the next Job
components.

Basic settings File Name Name of the file and/or the variable to be processed

Related topic: see Talend Open Studio User Guide.

Root XPath query The root of the XML tree, which the query is based on.

Enable XPath in column
“Schema XPath loop” But
lose the order

Select this check box if you want to define a XPath path in the
Schema XPath loop field of th Outputs array.

This option is only available with the dom4j generation
mode. Make sure this mode is selected in the
Generation mode list, in the Advanced settings tab of
your component. If you use this option, the data will
not be returned in order.

Outputs Schema: define as many schemas as needed.

Schema XPath loop: node of the XML tree or XPath path which
the loop is based on.

If you want to use a XPath path in the Schema XPath
loop field, you must select the Enable XPath in column
"Schema XPath loop" but lose the order check box.

XPath Queries: Enter the fields to be extracted from the
structured input.

Create empty row: select the check boxes of the schemas where
you want to create empty rows.

Die on error Select this check box to stop the execution of the Job when an
error occurs. Clear the check box to skip the row on error and
complete the process for error-free rows.

Advanced settings Trim all column Select this check box to remove leading and trailing whitespaces
from defined columns.

Validate date Select this check box to check the date format strictly against the
input schema.

Ignore DTD file Select this check box to ignore the DTD file indicated in the XML
file being processed.

Generation mode Select the appropriate generation mode according to your
memory availability. The available modes are:

• Slow and memory-consuming (Dom4j)

This option allows you to use dom4j to process the
XML files of high complexity.

• Fast with low memory consumption (SAX)

Encoding Select the encoding type from the list or select CUSTOM and
define it manually. This field is compulsory for DB data handling.



Scenario: Reading a multi structure XML file

1218 Talend Open Studio Components Reference Guide

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Limitation n/a

Scenario: Reading a multi structure XML file

The following scenario creates a Java Job which aims at reading a multi schema XML file and displaying data
structures on the Run Job console.

The XML file processed in this example looks like the following:

1. Drop a tFileInputMSXML and two tLogRow components from the Palette onto the design workspace.

2. Double-click tFileInputMSXML to open the component Basic settings view.

3. Browse to the XML file you want to process.

4. In the Root XPath query field, enter the root of the XML tree, which the query will be based on.

5. Select the Enable XPath in column “Schema XPath loop” but lose the order check box if you want to
define a XPath path in the Schema XPath loop field, in the Outputs array. In this scenario, we do not use
this option.

6. Click the plus button to add lines in the Outputs table where you can define the output schema, two lines
in this scenario: record and book.



Scenario: Reading a multi structure XML file

Talend Open Studio Components Reference Guide 1219

7. In the Outputs table, click in the Schema cell and then click a three-dot button to display a dialog box where
you can define the schema name.

8. Enter a name for the output schema and click OK to close the dialog box.

The tFileInputMSXML schema editor displays.

9. Define the schema you previously defined in the Outputs table.

10. Do the same for all the output schemas you want to define.

11. In the design workspace, right-click tFileInputMSXML and connect it to tLogRow1, and tLogRow2 using
the record and book links respectively.

12. In the Basic settings view and in the Schema XPath loop cell, enter the node of the XML tree, which the
loop is based on.

13. In the XPath Queries cell, enter the fields to be extracted from the structured XML input.

14. Select the check boxes next to schemas’ names where you want to create empty rows.

15. Save your Job and press F6 to execute it. The defined schemas are extracted from the multi schema XML
structured file and displayed on the console.

The multi schema XML file is read row by row and the extracted fields are displayed on the Run Job console
as defined.



Scenario: Reading a multi structure XML file

1220 Talend Open Studio Components Reference Guide



tFileInputPositional

Talend Open Studio Components Reference Guide 1221

tFileInputPositional

tFileInputPositional properties

Component family File/Input

Function tFileInputPositional reads a given file row by row and extracts fields based on a pattern.

Purpose This component opens a file and reads it row by row to split them up into fields then sends fields as
defined in the schema to the next Job component, via a Row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties are
stored. The fields that follow are completed automatically using the
data retrieved.

File Name/Stream File name: Name and path of the file to be processed.

Stream: The data flow to be processed. The data must be added to
the flow in order for tFileInputPositional to fetch these data via the
corresponding representative variable.

This variable could be already pre-defined in your Studio or
provided by the context or the components you are using along
with this component, for example, the INPUT_STREAM variable
of tFileFetch; otherwise, you could define it manually and use it
according to the design of your Job, for example, using tJava or
tJavaFlex.

In order to avoid the inconvenience of hand writing, you could
select the variable of interest from the auto-completion list (Ctrl
+Space) to fill the current field on condition that this variable has
been properly defined.

Related topic to the available variables: see Talend Open Studio
User GuideRelated scenario to the input stream, see section
Scenario 2: Reading data from a remote file in streaming mode.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Use byte length as the
cardinality

Select this check box to enable the support of double-byte character
to this component. JDK 1.6 is required for this feature.

Customize Select this check box to customize the data format of the positional
file and define the table columns:

Column: Select the column you want to customize.

Size: Enter the column size.

Padding char: Type in between inverted commas the padding
character used in order for it to be removed from the field. A space
by default.

Alignment: Select the appropriate alignment parameter.

Pattern Length values separated by commas, interpreted as a string between
quotes. Make sure the values entered in this field are consistent with
the schema defined.

Skip empty rows Select this check box to skip empty rows.

Uncompress as zip file Select this check box to uncompress the input file.



Scenario 1: From Positional to XML file

1222 Talend Open Studio Components Reference Guide

Die on error Select this check box to stop the execution of the Job when an error
occurs. Clear the check box to skip the row on error and complete
the process for error-free rows. If needed, you can collect the rows
on error using a Row > Reject link.

Header Number of rows to be skipped in the beginning of file

Footer Number of rows to be skipped at the end of the file.

Limit Maximum number of rows to be processed. If Limit = 0, no row is
read or processed.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Advanced settings Needed to process rows longer
than 100 000 characters

Select this check box if the rows to be processed in the input file are
longer than 100 000 characters.

Advanced separator (for
numbers)

Select this check box to modify the separators used for numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

Trim all column Select this check box to remove leading and trailing whitespaces
from defined columns.

Validate date Select this check box to check the date format strictly against the
input schema.

Encoding Select the encoding type from the list or select Custom and define
it manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage Use this component to read a file and separate fields using a position separator value. You can also
create a rejection flow using a Row > Reject link to filter the data which does not correspond to the
type defined. For an example of how to use these two links, see section Scenario 2: Extracting correct
and erroneous data from an XML field in a delimited file.

Scenario 1: From Positional to XML file

The following scenario describes a two-component Job, which aims at reading data from an input file that contains
contract numbers, customer references, and insurance numbers as shown below, and outputting the selected data
(according to the data position) into an XML file.

Contract       CustomerRef    InsuranceNr
00001          8200           50330      
00001          8201           50331      
00002          8202           50332      
00002          8203           50333      



Scenario 1: From Positional to XML file

Talend Open Studio Components Reference Guide 1223

Dropping and linking components

1. Drop a tFileInputPositional component from the Palette to the design workspace.

2. Drop a tFileOutputXML component as well. This file is meant to receive the references in a structured way.

3. Right-click the tFileInputPositional component and select Row > Main. Then drag it onto the
tFileOutputXML component and release when the plug symbol shows up.

Configuring data input

1. Double-click the tFileInputPositional component to show its Basic settings view and define its properties.

2. Define the Job Property type if needed. For this scenario, we use the built-in Property type.

As opposed to the Repository, this means that the Property type is set for this station only.

3. Fill in a path to the input file in the File Name field. This field is mandatory.

4. Define the Row separator identifying the end of a row if needed, by default, a carriage return.

5. If required, select the Use byte length as the cardinality check box to enable the support of double-byte
character.

6. Define the Pattern to delimit fields in a row. The pattern is a series of length values corresponding to the
values of your input files. The values should be entered between quotes, and separated by a comma. Make
sure the values you enter match the schema defined.

7. Fill in the Header, Footer and Limit fields according to your input file structure and your need. In this
scenario, we only need to skip the first row when reading the input file. To do this, fill the Header field with
1 and leave the other fields as they are.



Scenario 1: From Positional to XML file

1224 Talend Open Studio Components Reference Guide

8. Next to Schema, select Repository  if the input schema is stored in the Repository. In this use case, we use
a Built-In input schema to define the data to pass on to the tFileOutputXML component.

9. You can load and/or edit the schema via the Edit Schema function. For this schema, define three columns,
respectively Contract, CustomerRef and InsuranceNr matching the structure of the input file. Then, click OK
to close the [Schema] dialog box and propagate the changes.

Configuring data output

1. Double-click tFileOutputXML to show its Basic settings view.

2. Enter the XML output file path.

3. Define the row tag that will wrap each row of data, in this use case ContractRef.

4. Click the three-dot button next to Edit schema to view the data structure, and click Sync columns to retrieve
the data structure from the input component if needed.

5. Switch to the Advanced settings tab view to define other settings for the XML output.



Scenario 1: From Positional to XML file

Talend Open Studio Components Reference Guide 1225

6. Click the plus button to add a line in the Root tags table, and enter a root tag (or more) to wrap the XML
output structure, in this case ContractsList.

7. Define parameters in the Output format table if needed. For example, select the As attribute check box for
a column if you want to use its name and value as an attribute for the parent XML element, clear the Use
schema column name check box for a column to reuse the column label from the input schema as the tag
label. In this use case, we keep all the default output format settings as they are.

8. To group output rows according to the contract number, select the Use dynamic grouping check box, add
a line in the Group by table, select Contract from the Column list field, and enter an attribute for it in the
Attribute label field.

9. Leave all the other parameters as they are.

Saving and executing the Job

1. Press Ctrl+S to save your Job to ensure that all the configured parameters take effect.

2. Press F6 or click Run on the Run tab to execute the Job.

The file is read row by row based on the length values defined in the Pattern field and output as an XML
file as defined in the output settings. You can open it using any standard XML editor.



Scenario 2: Handling a positional file based on a dynamic schema

1226 Talend Open Studio Components Reference Guide

Scenario 2: Handling a positional file based on a
dynamic schema

This scenario describes a four-component Job that reads data from a positional file, writes the data to another
positional file, and replaces the padding characters with space. The schema column details are not defined in the
positional file components; instead, they leverages a reusable dynamic schema. The input file used in this scenario
is as follows:

id----name--------city--------
1-----Andrews-----Paris-------
2-----Mark--------London------
3-----Marie-------Paris-------
4-----Michael-----Washington--

Dropping and linking components

1. Drop the following components from the Palette onto the design workspace: tFixedFlowInput,
tSetDynamicSchema, tFileInputPositional, and tFileOutputPositional.

2. Connect the tFixedFlowInput component to the tSetDynamicSchema using a Row > Main connection to
form a subjob. This subjob will define a reusable dynamic schema.

3. Connect the tFileInputPositional component to the tFileOutputPositional component using a Row > Main
connection to form another subjob. This subjob will read data from the input positional file and write the data
to another positional file based on the dynamic schema set in the previous subjob.

4. Connect the tFixedFlowInput component to the tFileInputPositional component using a Trigger > On
Subjob Ok connection to link the two subjobs together.



Scenario 2: Handling a positional file based on a dynamic schema

Talend Open Studio Components Reference Guide 1227

Configuring the first subjob: creating a dynamic schema

1. Double-click the tFixedFlowInput component to show its Basic settings view and define its properties.

2. Click the [...] button next to Edit schema to open the [Schema] dialog box.



Scenario 2: Handling a positional file based on a dynamic schema

1228 Talend Open Studio Components Reference Guide

3. Click the [+] button to add three columns: ColumnName, ColumnType, and ColumnLength, and set their types
to String, String, and Integer respectively to define the minimum properties required for a positional file
schema. Then, click OK to close the dialog box.

4. Select the Use Inline Table option, click the [+] button three times to add three lines, give them a name in the
ColumnName field, according to the actual columns of the input file to read: ID, Name, and City, set their
types in the corresponding ColumnType field: id_Interger for column ID, and id_String for columns Name
and City, and set the length values of the columns in the corresponding ColumnLength field. Note that the
column names you give in this table will compose the header of the output file.

5. Double-click the tSetDynamicSchema component to open its Basic settings view.

6. Click Sync columns to ensure that the schema structure is properly retrieved from the preceding component.

7. Under the Parameters table, click the [+] button to add three lines in the table.

8. Click in the Property field for each line, and select ColumnName, Type, and Length respectively.

9. Click in the Value field for each line, and select ColumnName, ColumnType, and ColumnLength
respectively.



Scenario 2: Handling a positional file based on a dynamic schema

Talend Open Studio Components Reference Guide 1229

Now, with the values set in the inline table of the tFixedFlowInput component retrieved, the following data
structure is defined in the dynamic schema:

Column Name Type Length

ID Integer 6

Name String 12

City String 12

Configuring the second subjob: reading and writing positional
data

1. Double-click the tFileInputPositional component to open its Basic settings view.

The dynamic schema feature is only supported in Built-In mode and requires the input file to have a header row.

2. Select the Use existing dynamic check box, and in from the Component List that appears, select the
tSetDynamicSchema component you use to create the dynamic schema. In this use case, only one
tSetDynamicSchema component is used, so it is automatically selected.

3. In the File name/Stream field, enter the path to the input positional file, or browse to the file path by clicking
the [...] button.

4. Fill in the Header, Footer and Limit fields according to your input file structure and your need. In this
scenario, we only need to skip the first row when reading the input file. To do this, fill the Header field with
1 and leave the other fields as they are.

5. Click the [...] button next to Edit schema to open the Schema dialog box, define only one column, dyn in
this example, and select Dynamic from the Type list. Then, click OK to close the [Schema] dialog box and
propagate the changes.



Scenario 2: Handling a positional file based on a dynamic schema

1230 Talend Open Studio Components Reference Guide

6. Select the Customize check box, enter '-' in the Padding char field, and keep the other settings as they are.

7. Double-click the tFileOutputPositional component to open its Basic settings view.

8. Select the Use existing dynamic check box, specify the output file path, and select the Include header check
box.

9. In the Padding char field, enter ' ' so that the padding characters will be replaced with space in the output
file.

Saving and executing the Job

1. Press Ctrl+S to save your Job to ensure that all the configured parameters take effect.

2. Press F6 or click Run on the Run tab to execute the Job.



Scenario 2: Handling a positional file based on a dynamic schema

Talend Open Studio Components Reference Guide 1231

The data is read from the input positional file and written into the output positional file, with the padding
characters replaced by space.



tFileInputProperties

1232 Talend Open Studio Components Reference Guide

tFileInputProperties

tFileInputProperties properties

Component family File/Input

Function tFileInputProperties reads a text file row by row and extracts the fields.

Purpose tFileInputProperties opens a text file and reads it row by row then separates the fields according to the
model key = value.

Basic settings Schema and Edit Schema Either Built-in or Repository.

The schema is either built-in or remotely stored in the Repository but for
this component, the schema is read-only. It is made of two column, Key and
Value, corresponding to the parameter name and the parameter value to be
copied.

File format Select from the list your file format, either: .properties or .ini.

.properties: data in the configuration file is written in two lines and
structured according to the following way: key = value.

.ini: data in the configuration file is written in two lines and structured
according to the following way: key = value and re-grouped in sections.

Section Name: enter the section name on which the iteration is based.

File Name Name or path to the file to be processed. Related topic: see Talend Open
Studio User Guide.

Advanced settings Encoding Select the encoding type from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job level as
well as at each component level.

Usage Use this component to read a text file and separate data according to the structure key = value.

Scenario: Reading and matching the keys and the
values of different .properties files and outputting the
results in a glossary

This four-component Java Job reads two .properties files, one in French and the other in English. The data in the
two input files is mapped to output a glossary matching the English and French terms.

The two input files used in this scenario hold localization strings for the tMysqlInput component in Talend Open
Studio.



Scenario: Reading and matching the keys and the values of different .properties files and outputting the results in a glossary

Talend Open Studio Components Reference Guide 1233

Dropping and linking the components

1. Drop the following components from the Palette onto the design workspace: tFileInputProperties (x2),
tMap, and tLogRow.

2. Connect the component together using Row > Main links. The second properties file, FR, is used as a lookup
flow.

Configuring the components

1. Double-click the first tFileInputProperties component to open its Basic settings view and define its
properties.

2. In the File Format field, select your file format.

3. In the File Name field, click the three-dot button and browse to the input .properties file you want to use.

4. Do the same with the second tFileInputProperties and browse to the French properties file this time.



Scenario: Reading and matching the keys and the values of different .properties files and outputting the results in a glossary

1234 Talend Open Studio Components Reference Guide

5. Double-click the tMap component to open the tMap editor.

6. Select all columns from the English_terms table and drop them to the output table.

Select the key column from the English_terms table and drop it to the key column in the French_terms table.

7. In the glossary table in the lower right corner of the tMap editor, rename the value field as EN because it
will hold the values of the English file.

8. Click the plus button to add a line to the glossary table and rename it as FR.

9. In the Length field, set the maximum length to 255.

10. In the upper left corner of the tMap editor, select the value column in the English_terms table and drop it to
the FR column in the French_terms table.

11. Click OK to validate your changes and close the editor.

12. In the design workspace, double-click tLogRow to display its Basic settings and define the component
properties.

13. Click Sync Columns to retrieve the schema from the preceding component.



Scenario: Reading and matching the keys and the values of different .properties files and outputting the results in a glossary

Talend Open Studio Components Reference Guide 1235

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click the Run button from the Run tab to execute it.

The glossary displays on the console listing three columns holding: the key name in the first column, the English
term in the second, and the corresponding French term in the third.



tFileInputRegex

1236 Talend Open Studio Components Reference Guide

tFileInputRegex

tFileInputRegex properties

Component family File/Input

Function Powerful feature which can replace number of other components of the File family. Requires
some advanced knowledge on regular expression syntax

Purpose Opens a file and reads it row by row to split them up into fields using regular expressions. Then
sends fields as defined in the Schema to the next Job component, via a Row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties are
stored. The fields that follow are completed automatically using
the data retrieved.

File Name/Stream File name: Name of the file and/or the variable to be processed

Stream: Data flow to be processed. The data must be added to
the flow so that it can be collected by the tFileInputRegex via
the INPUT_STREAM variable in the autocompletion list (Ctrl
+Space)

Related topic: see Talend Open Studio User Guide.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Regex This field can contain multiple lines. Type in your regular
expressions including the subpattern matching the fields to be
extracted.

Note: Antislashes need to be doubled in regexp

Regex syntax requires double quotes.

Header Number of rows to be skipped in the beginning of file

Footer Number of rows to be skipped at the end of the file.

Limit Maximum number of rows to be processed. If Limit = 0, no row
is read or processed.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Skip empty rows Select this check box to skip empty rows.

Die on error Select this check box to stop the execution of the Job when an error
occurs. Clear the check box to skip the row on error and complete
the process for error-free rows. If needed, you can collect the rows
on error using a Row > Reject link.

Advanced settings Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.



Scenario: Regex to Positional file

Talend Open Studio Components Reference Guide 1237

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Use this component to read a file and separate fields contained in this file according to the defined
Regex. You can also create a rejection flow using a Row > Reject link to filter the data which
doesn’t correspond to the type defined. For an example of how to use these two links, see section
Scenario 2: Extracting correct and erroneous data from an XML field in a delimited file.

Limitation n/a

Scenario: Regex to Positional file

The following scenario creates a two-component Job, reading data from an Input file using regular expression and
outputting delimited data into an XML file.

Dropping and linking the components

1. Drop a tFileInputRegex component from the Palette to the design workspace.

2. Drop a tFileOutputPositional component the same way.

3. Right-click on the tFileInputRegex component and select Row > Main. Drag this main row link onto the
tFileOutputPositional component and release when the plug symbol displays.

Configuring the components

1. Select the tFileInputRegex again so the Component view shows up, and define the properties:

2. The Job is built-in for this scenario. Hence, the Properties are set for this station only.

3. Fill in a path to the file in File Name field. This field is mandatory.

4. Define the Row separator identifying the end of a row.

5. Then define the Regular expression in order to delimit fields of a row, which are to be passed on to the next
component. You can type in a regular expression using Java code, and on mutiple lines if needed.

Regex syntax requires double quotes.

6. In this expression, make sure you include all subpatterns matching the fields to be extracted.



Scenario: Regex to Positional file

1238 Talend Open Studio Components Reference Guide

7. In this scenario, ignore the header, footer and limit fields.

8. Select a local (Built-in) Schema to define the data to pass on to the tFileOutputPositional component.

9. You can load or create the schema through the Edit Schema function.

10. Then define the second component properties:

11. Enter the Positional file output path.

12. Enter the Encoding standard, the output file is encoded in. Note that, for the time being, the encoding
consistency verification is not supported.

13. Select the Schema type. Click on Sync columns to automatically synchronize the schema with the Input
file schema.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Now go to the Run tab, and click on Run to execute the Job.

The file is read row by row and split up into fields based on the Regular Expression definition. You can
open it using any standard file editor.



tFileInputXML

Talend Open Studio Components Reference Guide 1239

tFileInputXML

tFileInputXML belongs to two component families: File and XML. For more information on tFileInputXML,
see section tFileInputXML.



tFileList

1240 Talend Open Studio Components Reference Guide

tFileList

tFileList properties

Component family File/Management

Function tFileList iterates on files or folders of a set directory.

Purpose tFileList retrieves a set of files or folders based on a filemask pattern and iterates on each unity.

Basic settings Directory Path to the directory where the files are stored.

FileList Type Select the type of input you want to iterate on from the list:

Files if the input is a set of files,

Directories if the input is a set of directories,

Both if the input is a set of the above two types.

Include subdirectories Select this check box if the selected input source type includes
sub-directories.

Case Sensitive Set the case mode from the list to either create or not create case
sensitive filter on filenames.

Generate Error if no file
found

Select this check box to generate an error message if no files or
directories are found.

Use Glob Expressions as
Filemask

This check box is selected by default. It filters the results using a
Global Expression (Glob Expressions).

Files Click the plus button to add as many filter lines as needed:

Filemask: in the added filter lines, type in a filename or a filemask
using special characters or regular expressions.

Order by The folders are listed first of all, then the files. You can choose to
prioritise the folder and file order either:

By default: alphabetical order, by folder then file;

By file name: alphabetical order or reverese alphabetical order;

By file size: smallest to largest or largest to smallest;

By modified date: most recent to least recent or least recent to
most recent.

If ordering by file name, in the event of identical file
names then modified date takes precedence. If ordering
by file size, in the event of identical file sizes then
file name takes precedence. If ordering by modified
date, in the event of identical dates then file name takes
precedence.

Order action Select a sort order by clicking one of the following radio buttons:

ASC: ascending order;

DESC: descending order;

Advanced settings Use Exclude Filemask Select this check box to enable Exclude Filemask field to exclude
filtering condition based on file type:

Exclude Filemask: Fill in the field with file types to be excluded
from the Filemasks in the Basic settings view.



Scenario: Iterating on a file directory

Talend Open Studio Components Reference Guide 1241

File types in this field should be quoted with double
quotation marks and seperated by comma.

Format file path to slash(/)
style(useful on Windows)

Select this check box to format the file path to slash(/) style which
is useful on Windows.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage tFileList provides a list of files or folders from a defined directory on which it iterates

Global Variables Current File Name: Indicates the current file name. This is
available as a Flow variable.

Returns a string.

Current File Name with Path: Indicates the current file name as
well as the path to the file. This is available as a Flow variable.

Returns a string.

Current File Extension: Indicates the extension of the current
file. This is available as a Flow variable.

Returns a string.

Current File Directory:   Indicates the access path to the folder
or subfolder in which the current file is stored. This is available
as a Flow variable.

Returns a string.

Number of files: Indicates the number of files iterated upon so
far. This is available as a Flow variable.

Returns an integer.

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Row: Iterate

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component
Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error; On component
Ok; On Component Error; Synchronize; Parallelize.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation n/a

Scenario: Iterating on a file directory

The following scenario creates a three-component Job, which aims at listing files from a defined directory, reading
each file by iteration, selecting delimited data and displaying the output in the Run log console.



Scenario: Iterating on a file directory

1242 Talend Open Studio Components Reference Guide

1. Drop the following components from the Palette to the design workspace: tFileList, tFileInputDelimited,
and tLogRow.

2. Right-click on the tFileList component, and pull an Iterate connection to the tFileInputDelimited
component. Then pull a Main row from the tFileInputDelimited to the tLogRow component.

3. Double-click tFileList to display its Basic settings view and define its properties.

4. Browse to the Directory that holds the files you want to process. To display the path on the Job itself, use the
label (__DIRECTORY__) that shows up when you put the pointer anywhere in the Directory field. Type in
this lable in the Label Format field you can find if you click the View tab in the Basic settings view.

5. In the Basic settings view and from the FileList Type list, select the source type you want to process, Files
in this example.

6. In the Case sensitive list, select a case mode, Yes in this example to create case sensitive filter on file names.

7. Keep the Use Glob Expressions as Filemask check box selected if you want to use global expressions to
filter files.

8. In the Filemask field, define a file mask, use special characters if need be.

9. Double-click tFileInputDelimited to display its Basic settings view and set its properties.



Scenario: Iterating on a file directory

Talend Open Studio Components Reference Guide 1243

10. Enter the File Name field using a variable containing the current filename path, as you filled in the Basic
settings of tFileList. Press Ctrl+Space bar to access the autocomplete list of variables.

11. Select the global variable ((String)globalMap.get("tFileList_1_CURRENT_FILEPATH")) . This way,
all files in the input directory can be processed.

12. Fill in all other fields as detailed in the tFileInputDelimited section. Related topic: section tMDMInput
properties.

13. Select the last component, tLogRow, to display its Basic settings view and fill in the separator to be used to
distinguish field content displayed on the console. Related topic: section tLogRow.

The Job iterates on the defined directory, and reads all included files. Then delimited data is passed on to the last
component which displays it on the console.

For other scenarios using tFileList, see section tFileCopy.



tFileOutputARFF

1244 Talend Open Studio Components Reference Guide

tFileOutputARFF

tFileOutputARFF properties

Component family File/Output

Function tFileOutputARFF outputs data to an ARFF file.

Purpose This component writes an ARFF file that holds data organized according to the defined schema.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties are
stored. The fields that follow are completed automatically using
the data retrieved.

Click this icon to open a connection wizard and store the Excel
file connection parameters you set in the component Basic
settings view.

For more information about setting up and storing file connection
parameters, see Talend Open Studio User Guide.

File name Name or path to the output file and/or the variable to be used.

Related topic: see Talend Open Studio User Guide.

Attribute Define Displays the schema you defined in the [Edit schema dialog box.

Column: Name of the column.

Type: Data type.

Pattern: Enter the data model (pattern), if necessary.

Relation Enter the name of the relation.

Append Select this check box to add the new rows at the end of the file.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Built-in: You can create the schema and store it locally for this
component. Related topic: see Talend Open Studio User Guide.

Repository: You have already created and stored the schema
in the Repository. You can reuse it in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Create directory if not exists This check box is selected by default. It creates a directory to hold
the output table if it does not exist.

Advanced settings Don’t generate empty file Select this check box if you do not want to generate empty files.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Use this component along with a Row link to collect data from another component and to re-
write the data to an ARFF file.

Global Variables The Global variables can be used as parameters in most of the
fields found in the component properties view. To view these
variables, place the cursor in the field and press Ctrl + Space.
Double click the variable to populate the field. The main global
variable associated with tFileOutputARFF is:



Related scenarios

Talend Open Studio Components Reference Guide 1245

Number of lines: Indicates the number of lines processed. This is
available as an After variable

Connections Outgoing links (from one component to another):

Row: Main.

Trigger: On Subjob Ok; On Subjob Error; Run if.

Incoming links (from one component to another):

Row: Main; Reject; Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component
Ok; On Component Error; Synchronize; Parallelize.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation n/a

Related scenarios

For tFileOutputARFF related scenario, see section Scenario: Display the content of a ARFF file.



tFileOutputDelimited

1246 Talend Open Studio Components Reference Guide

tFileOutputDelimited

tFileOutputDelimited properties

Component family File/Output

Function tFileOutputDelimited outputs data to a delimited file.

Purpose This component writes a delimited file that holds data organized according to the defined
schema.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties are
stored. The fields that follow are completed automatically using
the data retrieved.

Use Output Stream Select this check box process the data flow of interest. Once you
have selected it, the Output Stream field displays and you can
type in the data flow of interest.

The data flow to be processed must be added to the flow in
order for this component to fetch these data via the corresponding
representattive variable.

This variable could be already pre-defined in your Studio or
provided by the context or the components you are using along
with this component; otherwise, you could define it manually and
use it according to the design of your Job, for example, using
tJava or tJavaFlex.

In order to avoid the inconvenience of hand writing, you could
select the variable of interest from the auto-completion list (Ctrl
+Space) to fill the current field on condition that this variable has
been properly defined.

For further information about how to use a stream, see section
Scenario 2: Reading data from a remote file in streaming mode.

File name Name or path to the output file and/or the variable to be used.

This field becomes unavailable once you have selected the Use
Output Stream check box.

Related topic: see Talend Open Studio User Guide.

Row Separator String (ex: “\n” on Unix) to distinguish rows in the output file.

Field Separator Character, string or regular expression to separate fields of the
output file.

Append Select this check box to add the new rows at the end of the file.

Include Header Select this check box to include the column header to the file.

Compress as zip file Select this check box to compress the output file in zip format.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes Built-in.



Scenario 1: Writing data in a delimited file

Talend Open Studio Components Reference Guide 1247

Built-in: You can create the schema and store it locally for this
component. Related topic: see Talend Open Studio User Guide.

Repository: You have already created and stored the schema
in the Repository. You can reuse it in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Sync columns Click to synchronize the output file schema with the input
file schema. The Sync function only displays once the Row
connection is linked with the output component.

Advanced settings Advanced separator (for
numbers)

Select this check box to modify the separators used for numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

CSV options Select this check box to take into account all parameters specific
to CSV files, in particular Escape char and Text enclosure
parameters.

Create directory if not exists This check box is selected by default. It creates the directory that
holds the output delimited file, if it does not already exist.

Split output in several files In case of very big output files, select this check box to divide the
output delimited file into several files.

Rows in each output file: set the number of lines in each of the
output files.

Custom the flush buffer size Select this check box to define the number of lines to write before
emptying the buffer.

Row Number: set the number of lines to write.

Output in row mode Writes in row mode.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Don’t generate empty file Select this check box if you do not want to generate empty files.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Use this component to write a delimited file and separate fields using a field separator value.

Limitation n/a

Scenario 1: Writing data in a delimited file

This scenario describes a three-component Job that extracts certain data from a file holding information about
clients, customers, and then writes the extracted data in a delimited file.

In the following example, we have already stored the input schema under the Metadata node in the Repository
tree view. For more information about storing schema metadata in the Repository, see Talend Open Studio User
Guide.



Scenario 1: Writing data in a delimited file

1248 Talend Open Studio Components Reference Guide

Dropping and linking components

1. In the Repository tree view, expand Metadata and File delimited in succession and then browse to your
input schema, customers, and drop it on the design workspace. A dialog box displays where you can select
the component type you want to use.

2. Click tFileInputDelimited and then OK to close the dialog box. A tFileInputDelimited component holding
the name of your input schema appears on the design workspace.

3. Drop a tMap component and a tFileOutputDelimited component from the Palette to the design workspace.

4. Link the components together using Row > Main connections.

Configuring the components

Configuring the input component

1. Double-click tFileInputDelimited to open its Basic settings view. All its property fields are automatically
filled in because you defined your input file locally.

2. If you do not define your input file locally in the Repository tree view, fill in the details manually after
selecting Built-in in the Property type list.

3. Click the [...] button next to the File Name field and browse to the input file, customer.csv in this example.



Scenario 1: Writing data in a delimited file

Talend Open Studio Components Reference Guide 1249

If the path of the file contains some accented characters, you will get an error message when executing your Job.
For more information regarding the procedures to follow when the support of accented characters is missing, see the
Installation Guide of the Talend solution you are using.

4. In the Row Separators and Field Separators fields, enter respectively "\n" and ";" as line and field
separators.

5. If needed, set the number of lines used as header and the number of lines used as footer in the corresponding
fields and then set a limit for the number of processed rows.

In this example, Header is set to 6 while Footer and Limit are not set.

6. In the Schema field, schema is automatically set to Repository and your schema is already defined since
you have stored your input file locally for this example. Otherwise, select Built-in and click the [...] button
next to Edit Schema to open the [Schema] dialog box where you can define the input schema, and then click
OK to close the dialog box.

Configuring the mapping component

1. In the design workspace, double-click tMap to open its editor.

2.
In the tMap editor, click  on top of the panel to the right to open the [Add a new output table] dialog box.



Scenario 1: Writing data in a delimited file

1250 Talend Open Studio Components Reference Guide

3. Enter a name for the table you want to create, row2 in this example.

4. Click OK to validate your changes and close the dialog box.

5. In the table to the left, row1, select the first three lines (Id, CustomerName and CustomerAddress) and drop
them to the table to the right

6. In the Schema editor view situated in the lower left corner of the tMap editor, change the type of
RegisterTime to String in the table to the right.

7. Click OK to save your changes and close the editor.

Configuring the output component

1. In the design workspace, double-click tFileOutputDelimited to open its Basic settings view and define the
component properties.

2. In the Property Type field, set the type to Built-in and fill in the fields that follow manually.

3. Click the [...] button next to the File Name field and browse to the output file you want to write data in,
customerselection.txt in this example.

4. In the Row Separator and Field Separator fields, set “\n” and “;” respectively as row and field separators.

5. Select the Include Header check box if you want to output columns headers as well.

6. Click Edit schema to open the schema dialog box and verify if the recuperated schema corresponds to the
input schema. If not, click Sync Columns to recuperate the schema from the preceding component.



Scenario 2: Utilizing Output Stream to save filtered data to a local file

Talend Open Studio Components Reference Guide 1251

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

The three specified columns Id, CustomerName and CustomerAddress are output in the defined output file.

Scenario 2: Utilizing Output Stream to save filtered
data to a local file
Based on the preceding scenario, this scenario saves the filtered data to a local file using output stream.

Dropping and linking components

1. Drop tJava from the Palette to the design workspace.

2. Connect tJava to tFileInputDelimited using a Trigger > On Subjob OK connection.

Configuring the components

1. Double-click tJava to open its Basic settings view.



Scenario 2: Utilizing Output Stream to save filtered data to a local file

1252 Talend Open Studio Components Reference Guide

2. In the Code area, type in the following command:

new java.io.File("C:/myFolder").mkdirs(); 
globalMap.put("out_file",new
java.io.FileOutputStream("C:/myFolder/customerselection.txt",false));

In this scenario, the command we use in the Code area of tJava will create a new folder C:/myFolder where the output
file customerselection.txt will be saved. You can customize the command in accordance with actual practice.

3. Double-click tFileOutputDelimited to open its Basic settings view.

4. Select Use Output Stream check box to enable the Output Stream field in which you can define the output
stream using command.

Fill in the Output Stream field with following command:

(java.io.OutputStream)globalMap.get("out_file")

You can customize the command in the Output Stream field by pressing CTRL+SPACE to select built-in command
from the list or type in the command into the field manually in accordance with actual practice. In this scenario, the
command we use in the Output Stream field will call the java.io.OutputStream class to output the filtered data
stream to a local file which is defined in the Code area of tJava in this scenario.

5. Click Sync columns to retrieve the schema defined in the preceding component.

6. Leave rest of the components as they were in the previous scenario.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

The three specified columns Id, CustomerName and CustomerAddress are output in the defined output file.



Scenario 2: Utilizing Output Stream to save filtered data to a local file

Talend Open Studio Components Reference Guide 1253



tFileOutputEBCDIC

1254 Talend Open Studio Components Reference Guide

tFileOutputEBCDIC

This component requires an Oracle JDK to be functional.

tFileOutputEBCDIC properties

Component family File/Output

Function The tFileOutputEBCDIC writes an EBCDIC file based on various source data files, each of them
with a different schema.

Purpose This component writes an EBCDIC file with data extracted from files based on their schemas.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties are stored.
The fields that follow are completed automatically using the data
retrieved.

Schema Select an option from the list to edit either the Built-in or Repository
schema for the data to be processed.

This list is enabled when you select the Custom set Original
Length in Schema checkbox.

Built-in: Select this option to edit the Built-in schema for the data to be
processed.

Repository: Select this option to edit the Repository schema you select.
The field that follows is completed automatically using the schema you
select.

File name Click [...] to browse to or type in the path to the EBCDIC file containing
the data to be generated. For further information, see Talend Open Studio
User Guide.

Edit schema Click [...] to edit the Built-in or Repository schema for the data to be
processed.

This button is enabled when you select the Custom set
Original Length in Schema checkbox.

Xc2j file Click [...] to browse to or type in the path to the xc2j file to transform the
EBCDIC schema(s) into an intermediary XML file.

This field will be disabled and xc2j file will not be needed
when you select the Custom set Original Length in Schema
checkbox.

Custom set Original Length
in Schema

Select this check box to improve the speed of reading files.

When you select this check box, the Xc2j file field will be
disabled and xc2j file will not be needed and you are able to edit
the Built-in or Repository schema for the data to be processed.

Advanced settings Create directory if not exist Select this check box to create a directory when the one you specified
does not exist.

tStatCatcher Statistics Select this check box to gather the processing metadata at the Job level
as well as at each component level.

Usage Use this component to write an EBCDIC file and to output the data separately depending on the schemas
identified in the incoming file.



Scenario: Creating an EBCDIC file using two delimited files

Talend Open Studio Components Reference Guide 1255

Scenario: Creating an EBCDIC file using two delimited
files

This scenario uses the [Copybook Connection] wizard that guides users through the different steps to create a Copybook
connection and to retrieve the EBCDIC schemas. This wizard is available only for users who have subscribed to one of
the Talend solutions. Otherwise, you need to drop the tFileInputEBCDIC component from the Palette and set its basic
settings manually.

The following scenario is a three-component Job that aims at writing an EBCDIC-format file using two delimited
files with different schemas.

This Java scenario uses the EBCDIC Connection wizard to set up a connection to the Copybook file and to generate
an xc2j file, which allows the retrieval and transformation of the different file schemas.

• Create a connection to the Copybook file, which describes the structure of your EBCDIC file. In this scenario,
the Copybook connection is called EBCDIC. Talend Open Studio User Guide.

• Retrieve the file schemas. Talend Open Studio User Guide.

Once the Copybook connection has been created and the schemas retrieved, using the EBCDIC and Schema
wizards, the new schemas appear under the node Metadata > Copybook. They are called 01, 04 and 05.

To create an EBCDIC file based on two delimited files in Talend Open Studio :

• Drop the following components from the Palette to the design workspace: tFileInputDelimited (x2) and
tFileOutputEBCDIC.

• To connect them together, right-click on each tFileInputDelimited component, select Row > Main in the
contextual menu and click on the tFileOutputEBCDIC component.

• Double-click on the first tFileInputDelimited component to display the Basic settings view and set the
component properties.



Scenario: Creating an EBCDIC file using two delimited files

1256 Talend Open Studio Components Reference Guide

• In the File Name field, browse to the delimited file via the three-dot button [...].

If the path of the file contains some accented characters, you will get an error message when executing your Job. For more
information regarding the procedures to follow when the support of accented characters is missing, see the Installation
Guide of the Talend solution you are using.

• In the Schema field, select Repository, then click the three-dot button and, when prompted, select the schema
corresponding to your file, under the Copybook node.

• In the Header field, set the number of fields that are used as “headers”, 1 in this example.

• Set the properties for the second tFileInputDelimited component the same way as for the first component.

• Double-click the tFileOutputEBCDIC component to display the Basic settings view and set the component
properties:

• In the Data file field, enter or browse to the directory path and the EBCDIC file name that is to be created
based on both delimited files.

• In the Xc2j file field, enter or browse to the path to the file allowing to extract the schema that describes the
EBCDIC structure file.

• Save your Job via Ctrl+S and click on the Run view, select the Statistics and Exec time check boxes then
click Run to execute the Job.



tFileOutputExcel

Talend Open Studio Components Reference Guide 1257

tFileOutputExcel

tFileOutputExcel Properties

Component family File/Output

Function tFileOutputExcel outputs data to an MS Excel type of file.

Purpose tFileOutputExcel writes an MS Excel file with separated data value according to a defined
schema.

Basic settings Write excel 2007 file format
(xlsx)

Select this check box to write the processed data into the .xlsx
format of Excel 2007.

Use Output Stream Select this check box process the data flow of interest. Once you
have selected it, the Output Stream field displays and you can
type in the data flow of interest.

The data flow to be processed must be added to the flow in
order for this component to fetch these data via the corresponding
representattive variable.

This variable could be already pre-defined in your Studio or
provided by the context or the components you are using along
with this component; otherwise, you could define it manually and
use it according to the design of your Job, for example, using
tJava or tJavaFlex.

In order to avoid the inconvenience of writing manually, you
could select the variable of interest from the auto-completion
list (Ctrl+Space) to fill the current field on condition that this
variable has been properly defined.

For further information about how to use a stream, see section
Scenario 2: Reading data from a remote file in streaming mode.

File name Name or path to the output file.

This field becomes unavailable once you have selected the Use
Output Stream check box

Related topic: see Talend Open Studio User Guide.

Sheet name Name of the xsl sheet.

Include header Select this check box to include a header row to the output file.

Append existing file Select this check box to add the new lines at the end of the file.

Append existing sheet: Select this check box to add the new lines
at the end of the Excel sheet.

Is absolute Y pos. Select this check box to add information in specified cells:

First cell X: cell position on the X-axis (X-coordinate or
Abcissa).

First cell Y: cell position on the Y-axis (Y-coordinate).

Keep existing cell format: select this check box to retain the
original layout and format of the cell you want to write into.

Font Select in the list the font you want to use.

Define all columns auto size Select this check box if you want the size of all your columns to
be defined automatically. Otherwise, select the Auto size check



Related scenario

1258 Talend Open Studio Components Reference Guide

boxes next to the column names you want their size to be defined
automatically.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
designs. Related topic: see Talend Open Studio User Guide.

Advanced settings Create directory if not exists This check box is selected by default. This option creates the
directory that will hold the output files if it does not already exist.

Custom the flush buffer size Available when Write excel2007 file format (xlsx) is selected
in the Basic settings view.

Select this check box to set the maximum number of rows in the
Row number field that are allowed in the buffer.

Advanced separator (for
numbers)

Select this check box to modify the separators you want to use
for numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

Encoding Select the encoding type from the list or select Custom and define
it manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Use this component to write an XML file with data passed on from other components using
a Row link.

Limitation n/a

Related scenario

For tFileOutputExcel related scenario, see section tSugarCRMInput;

For scenario about the usage of Use Output Stream check box, see section Scenario 2: Utilizing Output Stream
to save filtered data to a local file.



tFileOutputJSON

Talend Open Studio Components Reference Guide 1259

tFileOutputJSON

tFileOutputJSON properties

Component Family File

Function tFileOutputJSON writes data to a JSON structured output file.

Purpose tFileOutputJSON receives data and rewrites it in a JSON structured data block in an output
file.

Basic settings File Name Name and path of the output file.

Name of data block Enter a name for the data block to be written, between double
quotation marks.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Sync columns Click to synchronize the output file schema with the input
file schema. The Sync function only displays once the Row
connection is linked with the Output component.

Advanced settings Create directory if not exists This check box is selected by default. This option creates the
directory that will hold the output files if it does not already exist.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Use this component to rewrite received data in a JSON structured output file.

Limitation n/a

Scenario: Writing a JSON structured file

This is a 2 component scenario in which a tRowGenerator component generates random data which a
tFileOutputJSON component then writes to a JSON structured output file.

1. Drop a tRowGenerator and a tFileOutputJSON component onto the workspace from the Palette.

2. Link the components using a Row > Main connection.

3. Double click tRowGenerator to define its Basic Settings properties in the Component view.



Scenario: Writing a JSON structured file

1260 Talend Open Studio Components Reference Guide

4. Click [...] next to Edit Schema to display the corresponding dialog box and define the schema.

5. Click [+] to add the number of columns desired.

6. Under Columns type in the column names.

7. Under Type, select the data type from the list.

8. Click OK to close the dialog box.

9. Click [+] next to RowGenerator Editor to open the corresponding dialog box.

10. Under Functions, select pre-defined functions for the columns, if required, or select [...] to set customized
function parameters in the Function parameters tab.



Scenario: Writing a JSON structured file

Talend Open Studio Components Reference Guide 1261

11. Enter the number of rows to be generated in the corresponding field.

12. Click OK to close the dialog box.

13. Click tFileOutputJSON to set its Basic Settings properties in the Component view.

14. Click [...] to browse to where you want the output JSON file to be generated and enter the file name.

15. Enter a name for the data block to be generated in the corresponding field, between double quotation marks.

16. Select Built-In as the Schema type.

17. Click Sync Columns to retrieve the schema from the preceding component.

18. Press F6 to run the Job.

The data from the input schema is written in a JSON structured data block in the output file.



tFileOutputLDIF

1262 Talend Open Studio Components Reference Guide

tFileOutputLDIF

tFileOutputLDIF Properties

Component family File/Output

Function tFileOutputLDIF outputs data to an LDIF type of file which can then be loaded into a LDAP
directory.

Purpose tFileOutputLDIF writes or modifies a LDIF file with data separated in respective entries based
on the schema defined,.or else deletes content from an LDIF file.

Basic settings File name Name or path to the output file and/or the variable to be used.

Related topic: see Talend Open Studio User Guide.

Wrap Wraps the file content, every defined number of characters.

Change type Select Add, Modify or Delete to respectively create an LDIF file,
modify or remove an existing LDIF file. In case of modification,
set the type of attribute changes to be made.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
designs. Related topic: see Talend Open Studio User Guide.

Sync columns Click to synchronize the output file schema with the input
file schema. The Sync function only displays once the Row
connection is linked with the Output component.

Append Select this check box to add the new rows at the end of the file.

Advanced settings Create directory if not exists This check box is selected by default. It creates the directory that
holds the output delimited file, if it does not already exist.

Custom the flush buffer size Select this check box to define the number of lines to write before
emptying the buffer.

Row Number: set the number of lines to write.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Don’t generate empty file Select this check box if you do not want to generate empty files.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Use this component to write an XML file with data passed on from other components using
a Row link.

Limitation n/a

Scenario: Writing DB data into an LDIF-type file
This scenario describes a two component Job which aims at extracting data from a database table and writing this
data into a new output LDIF file.



Scenario: Writing DB data into an LDIF-type file

Talend Open Studio Components Reference Guide 1263

Dropping and linking components

1. Drop a tMysqlInput component and a tFileOutputLDIF component from the Palette to the design area.

2. Connect the components together using a Row > Main link.

Configuring the components

1. Select the tMysqlInput component, and go to the Component panel then select the Basic settings tab.

2. If you stored the DB connection details in a Metadata entry in the Repository, set the Property type as
well as the Schema type on Repository and select the relevant metadata entry. All other fields are filled in
automatically, and retrieve the metadata-stored parameters.

3. Alternatively select Built-in as the Property type and Schema type and define the DB connection and schema
manually.

4. Then double-click on tFileOutpuLDIF and define the Basic settings.

5. Browse to the folder where you store the Output file. In this use case, a new LDIF file is to be created. Thus
type in the name of this new file.

6. In the Wrap field, enter the number of characters held on one line. The text coming afterwards will get
wrapped onto the next line.



Scenario: Writing DB data into an LDIF-type file

1264 Talend Open Studio Components Reference Guide

7. Select Add as Change Type as the newly created file is by definition empty. In case of modification type of
Change, you’ll need to define the nature of the modification you want to make to the file.

8. As the Schema type, select Built-in and use the Sync Columns button to retrieve the input schema definition.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

The LDIF file created contains the data from the DB table and the type of change made to the file, in this
use case, addition.



Scenario: Writing DB data into an LDIF-type file

Talend Open Studio Components Reference Guide 1265



tFileOutputMSDelimited

1266 Talend Open Studio Components Reference Guide

tFileOutputMSDelimited

tFileOutputMSDelimited properties

Component family File/ Output

Function tFileOutputMSDelimited writes multiple schema in a delimited file.

Purpose tFileOutputMSDelimited creates a complex multi-structured delimited file, using data structures
(schemas) coming from several incoming Row flows.

Basic settings File Name Name and path to the file to be created and/or the variable to be used.

Related topic: see Talend Open Studio User Guide.

Row Separator String (ex: “\n”on Unix) to distinguish rows.

Field Separator Character, string or regular expression to separate fields.

Use Multi Field Separators Select this check box to set a different field separator for each of the
schemas using the Field separator field in the Schemas area.

Schemas The table gets automatically populated by schemas coming from the
various incoming rows connected to tFileOutputMSDelimited. Fill
out the dependency between the various schemas:

Parent row: Type in the parent flow name (based on the Row name
transferring the data).

Parent key column: Type in the key column of the parent row.

Key column: Type in the key column for the selected row.

Advanced settings Advanced separator (for
numbers)

Select this check box to modify the separators used for numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

CSV options Select this check box to take into account all parameters specific to CSV
files, in particular Escape char and Text enclosure parameters.

Create directory if not exists This check box is selected by default. It creates the directory that holds
the output delimited file, if it does not already exist.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Don’t generate empty file Select this check box if you do not want to generate empty files.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage Use this component to write a multi-schema delimited file and separate fields using a field separator
value.

Limitation n/a

Related scenarios

No scenario is available for this component yet.



tFileOutputMSPositional

Talend Open Studio Components Reference Guide 1267

tFileOutputMSPositional

tFileOutputMSPositional properties

Component family File/Output

Function tFileOutputMSPositional writes multiple schemas in a positional file.

Purpose tFileOutputMSPositional creates a complex multi-structured file, using data structures (schemas)
coming from several incoming Row flows.

Basic settings File Name Name and path to the file to be created and/or variable to be used.

Related topic: see Talend Open Studio User Guide.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Schemas The table gets automatically populated by schemas coming from the
various incoming rows connected to tFileOutputMSPositional. Fill
out the dependency between the various schemas:

Parent row: Type in the parent flow name (based on the Row name
transferring the data).

Parent key column: Type in the key column of the parent row

Key column: Type in the key column for the selected row.

Pattern: Type in the pattern that positions the fields separator for each
incoming row.

Padding char: type in the padding character to be used

Alignment: Select the relevant alignment parameter

Advanced settings Advanced separator (for
numbers)

Select this check box to modify the separators used for numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

Create directory if not exists This check box is selected by default. It creates the directory that holds
the output delimited file, if it does not already exist.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage Use this component to write a multi-schema positional file and separate fields using a position separator
value.

Related scenario

No scenario is available for this component yet.



tFileOutputMSXML

1268 Talend Open Studio Components Reference Guide

tFileOutputMSXML

tFileOutputMSXML Properties

Component family File/Output

Function tFileOutputMSXML writes multiple schema within an XML structured file.

Purpose tFileOutputMSXML creates a complex multi-structured XML file, using data structures
(schemas) coming from several incoming Row flows.

Basic settings File Name Name and path to the file to be created and or the variable to be
used.

Related topic: see Talend Open Studio User Guide.

Configure XML tree Opens the dedicated interface to help you set the XML
mapping. For details about the interface, see section Defining the
MultiSchema XML tree.

Advanced settings Create directory only if not
exists

This check box is selected by default. It creates the directory that
holds the output delimited file, if it does not already exist.

Advanced separator (for
numbers)

Select this check box to modify the separators used for numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Don’t generate empty file Select this check box if you do not want to generate empty files.

Trim the whitespace
characters

Select this check box to remove leading and trailing whitespace
from the columns.

Escape text Select this check box to escape special characters.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Limitation n/a

Defining the MultiSchema XML tree

Double-click on the tFileOutputMSXML component to open the dedicated interface or click on the three-dot
button on the Basic settings vertical tab of the Component tab.



tFileOutputMSXML Properties

Talend Open Studio Components Reference Guide 1269

To the left of the mapping interface, under Linker source, the drop-down list includes all the input schemas that
should be added to the multi-schema output XML file (on the condition that more than one input flow is connected
to the tFileOutputMSXML component).

And under Schema List, are listed all columns retrieved from the input data flow in selection.

To the right of the interface, are expected all XML structures you want to create in the output XML file.

You can create manually or easily import the XML structures. Then map the input schema columns onto each
element of the XML tree, respectively for each of the input schemas in selection under Linker source.

Importing the XML tree

The easiest and most common way to fill out the XML tree panel, is to import a well-formed XML file.

1. Rename the root tag that displays by default on the XML tree panel, by clicking on it once.

2. Right-click on the root tag to display the contextual menu.

3. On the menu, select Import XML tree.

4. Browse to the file to import and click OK.



tFileOutputMSXML Properties

1270 Talend Open Studio Components Reference Guide

The XML Tree column is hence automatically filled out with the correct elements. You can remove and
insert elements or sub-elements from and to the tree:

5. Select the relevant element of the tree.

6. Right-click to display the contextual menu

7. Select Delete to remove the selection from the tree or select the relevant option among: Add sub-element,
Add attribute, Add namespace to enrich the tree.

Creating manually the XML tree

If you don’t have any XML structure already defined, you can manually create it.

1. Rename the root tag that displays by default on the XML tree panel, by clicking on it once.

2. Right-click on the root tag to display the contextual menu.

3. On the menu, select Add sub-element to create the first element of the structure.

You can also add an attribute or a child element to any element of the tree or remove any element from the tree.

4. Select the relevant element on the tree you just created.

5. Right-click to the left of the element name to display the contextual menu.

6. On the menu, select the relevant option among: Add sub-element, Add attribute, Add namespace or Delete.

Mapping XML data from multiple schema sources

Once your XML tree is ready, select the first input schema that you want to map.

You can map each input column with the relevant XML tree element or sub-element to fill out the Related
Column:

1. Click on one of the Schema column name.



tFileOutputMSXML Properties

Talend Open Studio Components Reference Guide 1271

2. Drag it onto the relevant sub-element to the right.

3. Release the mouse button to implement the actual mapping.

A light blue link displays that illustrates this mapping. If available, use the Auto-Map button, located to the
bottom left of the interface, to carry out this operation automatically.

You can disconnect any mapping on any element of the XML tree:

4. Select the element of the XML tree, that should be disconnected from its respective schema column.

5. Right-click to the left of the element name to display the contextual menu.

6. Select Disconnect link.

The light blue link disappears.

Defining the node status

Defining the XML tree and mapping the data is not sufficient. You also need to define the loop elements for each
of the source in selection and if required the group element.

Loop element

The loop element allows you to define the iterating object. Generally the Loop element is also the row generator.

To define an element as loop element:

1. Select the relevant element on the XML tree.

2. Right-click to the left of the element name to display the contextual menu.

3. Select Set as Loop Element.



tFileOutputMSXML Properties

1272 Talend Open Studio Components Reference Guide

The Node Status column shows the newly added status.

There can only be one loop element at a time.

Group element

The group element is optional, it represents a constant element where the Groupby operation can be performed. A
group element can be defined on the condition that a loop element was defined before.

When using a group element, the rows should be sorted, in order to be able to group by the selected node.

To define an element as group element:

1. Select the relevant element on the XML tree.

2. Right-click to the left of the element name to display the contextual menu.

3. Select Set as Group Element.



Related scenario

Talend Open Studio Components Reference Guide 1273

The Node Status column shows the newly added status and any group status required are automatically defined,
if needed.

Click OK once the mapping is complete to validate the definition for this source and perform the same operation
for the other input flow sources.

Related scenario

No scenario is available for this component yet.



tFileOutputPositional

1274 Talend Open Studio Components Reference Guide

tFileOutputPositional

tFileOutputPositional Properties

Component Family File/Output

Function tFileOutputPositional writes a file row by row according to the length and the format of the f ields
or columns in a row.

Purpose It writes a file row by row, according to the data structure (schema) coming from the input flow.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the repository file where the properties are stored.
The fields that follow are completed automatically using the data
retrieved.

Use Output Stream Select this check box process the data flow of interest. Once you have
selected it, the Output Stream field displays and you can type in the
data flow of interest.

The data flow to be processed must be added to the flow in order for
this component to fetch these data via the corresponding representative
variable.

This variable could be already pre-defined in your Studio or provided by
the context or the components you are using along with this component;
otherwise, you could define it manually and use it according to the
design of your Job, for example, using tJava or tJavaFlex.

In order to avoid the inconvenience of hand writing, you could select
the variable of interest from the auto-completion list (Ctrl+Space) to
fill the current field on condition that this variable has been properly
defined.

For further information about how to use a stream, see section Scenario
2: Reading data from a remote file in streaming mode.

File Name Name or path to the file to be processed and or the variable to be used.

This field becomes unavailable once you have selected the Use Output
Stream check box.

Related topic: see Talend Open Studio User Guide.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields to be
processed and passed on to the next component. The schema is either
Built-in or stored remotely in the Repository.

Built-in: You create and store the schema locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: You have already created the schema and stored it in
the Repository. You can reuse it in various projects and Job designs.
Related topic: see Talend Open Studio User Guide.

Row separator String (ex: “\n”on Unix) to distinguish rows in the output file.

Append Select this check box to add the new rows at the end of the file.

Include header Select this check box to include the column header to the file.

Compress as zip file Select this check box to compress the output file in zip format.

Formats Customize the positional file data format and fill in the columns in the
Formats table.



Related scenario

Talend Open Studio Components Reference Guide 1275

Column: Select the column you want to customize.

Size: Enter the column size.

Padding char: Type in between quotes the padding characters used. A
space by default.

Alignment: Select the appropriate alignment parameter.

Keep: If the data in the column or in the field are too long, select the
part you want to keep.

Advanced settings Advanced separator (for
numbers)

Select this check box to modify the separators used for numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

Use byte length as the
cardinality

Select this checkbox to add support of double-byte character to this
component. JDK 1.6 is required for this feature.

Create directory if not exists This check box is selected by default. It creates a directory to hold the
output table if it does not exist.

Custom the flush buffer size Select this check box to define the number of lines to write before
emptying the buffer.

Row Number: set the number of lines to write.

Output in row mode Writes in row mode.

Encoding Select the encoding type from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Don’t generate empty file Select this check box if you do not want to generate empty files.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage Use this component to read a file and separate the fields using the specified separator.

Related scenario

For a related scenario, see section Scenario 2: Handling a positional file based on a dynamic schema.

For scenario about the usage of Use Output Stream check box, see section Scenario 2: Utilizing Output Stream
to save filtered data to a local file.



tFileOutputProperties

1276 Talend Open Studio Components Reference Guide

tFileOutputProperties

tFileOutputProperties properties

Component family File/Output

Function tFileInputProperties writes a configuration file of the type .ini or .properties.

Purpose tFileInputProperties writes a configuration file containing text data organized according to the model
key = value.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields to be
processed and passed on to the next component. The schema is either Built-
in or stored remotely in the Repository.

For this component, the schema is read-only. It is made of two column, Key
and Value, corresponding to the parameter name and the parameter value
to be copied.

File format Select from the list file format: either .properties or .ini.

.properties: data in the configuration file is written in two lines and
structured according to the following way: key = value.

.ini: data in the configuration file is written in two lines and structured
according to the following way: key = value and re-grouped in sections.

Section Name: enter the section name on which the iteration is based.

File Name Name or path to the file to be processed and/or the variable to be used.

Related topic: see Talend Open Studio User Guide.

Advanced settings Encoding Select the encoding from the list or select Custom and define it manually.
This field is compulsory for DB data handling.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job level as
well as at each component level.

Usage Use this component to write files where data is organized according to the structure key = value.

Related scenarios

For a related scenario, see section Scenario: Reading and matching the keys and the values of different .properties
files and outputting the results in a glossary of section tFileInputProperties.



tFileOutputXML

Talend Open Studio Components Reference Guide 1277

tFileOutputXML

tFileOtputXML belongs to two component families: File and XML. For more information on tFileOutputXML,
see section tFileOutputXML.



tFileProperties

1278 Talend Open Studio Components Reference Guide

tFileProperties

tFileProperties Properties

Component family File/Management

Function tFileProperties creates a single row flow that displays the properties of the processed file.

Purpose tFileProperties obtains information about the main properties of a defined file.

Basic settings Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created the schema and stored it
in the Repository. You can reuse it in various projects and Job
designs. Related topic: see Talend Open Studio User Guide.

File Name or path to the file to be processed. Related topic: see Talend
Open Studio User Guide.

Calculate MD5 Hash Select this check box to check the MD5 of the downloaded file.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component can be used as standalone component.

Connections Outgoing links (from one component to another):

Row: Main; Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component
Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error; On component
Ok; On Component Error; Synchronize; Parallelize.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation n/a

Scenario: Displaying the properties of a processed file

This Java scenario describes a very simple Job that displays the properties of the specified file.

1. Drop a tFileProperties component and a tLogRow component from the Palette onto the design workspace.

2. Right-click on tFileProperties and connect it to tLogRow using a Main Row link.



Scenario: Displaying the properties of a processed file

Talend Open Studio Components Reference Guide 1279

3. In the design workspace, select tFileProperties.

4. Click the Component tab to define the basic settings of tFileProperties.

5. Set Schema type to Built-In.

6. If desired, click the Edit schema button to see the read-only columns.

7. In the File field, enter the file path or browse to the file you want to display the properties for.

8. In the design workspace, select tLogRow and click the Component tab to define its basic settings. For more
information, see section tLogRow.

9. Press F6 to execute the Job.

The properties of the defined file are displayed on the console.



tFileRowCount

1280 Talend Open Studio Components Reference Guide

tFileRowCount

tFileRowCount properties

Component Family File/Management

Function tFileRowCount counts the number of rows in a file.

Purpose tFileRowCount opens a file and reads it row by row in order to determine the number of rows inside.

Basic settings File Name Name and path of the file to be processed and/or the variable to be used.

See also: Talend Open Studio User Guide.

Row separator String (ex: “\n”on Unix) to distinguish rows in the output file.

Ignore empty rows Select this checkbox to ignore the empty rows while the component is
counting the rows in the file.

Encoding Select the encoding type from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the Job level
as well as at each component level.

Usage tFileRowCount is a standalone component, it must be used with a OnSubjobOk connection to tJava.

Global Variables Number of counted lines: Returns the number of rows in a file. This is
available as a Flow variable.

Returns an integer.

For further information about variables, see Talend Open Studio User
Guide.

Connections Outgoing links (from one component to another):

Row: Main; Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component Ok;
On Component Error.

Incoming links (from one component to another):

Row: Main; Reject; Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On component Ok;
On Component Error; Synchronize; Parallelize.

For further information regarding connections, see Talend Open Studio
User Guide.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tFileTouch

Talend Open Studio Components Reference Guide 1281

tFileTouch

tFileTouch properties

Component Family File/Management

Function tFileTouch creates an empty file.

Purpose This component creates an empty file, and creates the destination directory if it does not exist.

Basic settings File Name Path and name of the file to be created and/or the variable to be used.

Related topic: see Talend Open Studio User Guide.

Create directory if not exists This check box is selected by default. It creates a directory to hold the
output table if it does not exist.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the Job level
as well as at each component level.

Usage This component can be used as a standalone component.

Connections Outgoing links (from one component to another):

Row: Main.

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component Ok;
On Component Error.

Incoming links (from one component to another):

Row: Main; Reject; Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error; On component Ok;
On Component Error; Synchronize; Parallelize.

For further information regarding connections, see Talend Open Studio
User Guide.

Related scenario

No scenario is available for this component yet.



tFileUnarchive

1282 Talend Open Studio Components Reference Guide

tFileUnarchive

tFileUnarchive Properties

Component family File/Management

Function Decompresses the archive file provided as parameter and puts it in the extraction directory.

Purpose Decompresses an archive file for further processing. Such formats are supported: *.tar.gz ,
*.tgz, *.tar, *.gz and *.zip.

Basic settings Archive file File path to the archive.

Extraction Directory Folder where the unzipped file(s) will be put.

Use archive name as root
directory

Select this check box to create a folder named as the archive, if it
does not exist, under the specified directory and extract the zipped
file(s) to that folder.

Check the integrity before
unzip

Select this check box to run an integrity check before unzipping
the archive.

Extract file paths Select this check box to reproduce the file path structure zipped
in the archive.

Need a password Select this check box and provide the correct password if the
archive to be unzipped is password protected. Note that the
encrypted archive must be one created by the tFileArchive
component; otherwise you will see error messages or get nothing
extracted even if no error message is displayed.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the Job
level as well as at each component level.

Usage This component can be used as a standalone component but it can also be used within a Job
as a Start component using an Iterate link.

Global Variables Current File: Retrieves the name of the decompressed archive
file. This is available as a Flow variable.

Returns a string.

Current File Path: Retrieves the path to the decompressed
archive file.This is available as a Flow variable.

Returns a string.

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Row: Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component
Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate.

Trigger: Run if; On Subjob Ok; On Subjob Error; On component
Ok; On Component Error; Synchronize; Parallelize.



Related scenario

Talend Open Studio Components Reference Guide 1283

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation Such files can be decompressed: *.tar.gz , *.tgz, *.tar, *.gz and *.zip.

Related scenario

For tFileUnarchive related scenario, see section tFileCompare.



tGPGDecrypt

1284 Talend Open Studio Components Reference Guide

tGPGDecrypt

tGPGDecrypt Properties

Component family File/Management

Function Decrypts a GnuPG-encrypted file and saves the decrypted file in the specified target directory.

Purpose This component calls the gpg -d command to decrypt a GnuPG-encrypted file and saves the
decrypted file in the specified directory.

Basic settings Input encrypted file File path to the encrypted file.

Output decrypted file File path to the output decrypted file.

GPG binary path File path to the GPG command.

Passphrase Enter the passphrase used in encrypting the specified input file.

No TTY Terminal Select this check box to speficy that no TTY terminal is used by
adding the --no-tty option to the decryption command.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the Job
level as well as at each component level.

Usage This component can be used as a standalone component.

Limitation n/a

Scenario: Decrypt a GnuPG-encrypted file and display
its content

The following scenario describes a three-component Job that decrypts a GnuPG-encrypted file and displays the
content of the decrypted file on the Run console.

Dragging and linking the components

1. Drop a tGPGDecrypt component, a tFileInputDelimited component, and a tLogRow component from the
Palette to the design workspace.



Scenario: Decrypt a GnuPG-encrypted file and display its content

Talend Open Studio Components Reference Guide 1285

2. Connect the tGPGDecrypt component to the tFileInputDelimited component using a Trigger >
OnSubjobOk link, and connect the tFileInputDelimited component to the tLogRow component using a
Row > Main link.

Configuring the components

1. Double-click the tGPGDecrypt to open its Component view and set its properties:

2. In the Input encrypted file field, browse to the file to be decrypted.

3. In the Output decrypted file field, enter the path to the decrypted file.

If the file path contains accented characters, you will get an error message when running the Job. For more information
on what to do when the accents are not supported, see the Installation Guide of the Talend solution you are using.

4. In the GPG binary path field, browse to the GPG command file.

5. In the Passphrase field, enter the passphrase used when encrypting the input file.

6. Double-click the tFileInputDelimited component to open its Component view and set its properties:

7. In the File name/Stream field, define the path to the decrypted file, which is the output path you have defined
in the tGPGDecrypt component.

8. In the Header, Footer and Limit fields, define respectively the number of rows to be skipped in the beginning
of the file, at the end of the file and the number of rows to be processed.

9. Use a Built-In schema. This means that it is available for this Job only.

10. Click Edit schema and edit the schema for the component. Click twice the [+] button to add two columns
that you will call idState and labelState.

11. Click OK to validate your changes and close the editor.



Scenario: Decrypt a GnuPG-encrypted file and display its content

1286 Talend Open Studio Components Reference Guide

12. Double-click the tLogRow component and set its properties:

13. Use a Built-In schema for this scenario.

14. In the Mode area, define the console display mode according to your preference. In this scenario, select Table
(print values in cells of a table).

Saving and executing the Job

1. Press Ctrl+S to save your Job

2. Press F6 or click Run from the Run tab to run it.

The specified file is decrypted and the defined number of rows of the decrypted file are printed on the Run console.



tNamedPipeClose

Talend Open Studio Components Reference Guide 1287

tNamedPipeClose

tNamedPipeClose properties

Component family File/Input

Function tNamedPipeClose closes a named-pipe opened with tNamedPipeOpen at the end of a process.

Purpose This component is used to close a named-pipe at the end of a process.

Basic settings Pipe Select an existing named-pipe from the list to close.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage This component is usually used to close a named-pipe at the end of a Job.

Limitation n/a

Related scenario

For a related scenario, see section Scenario: Writing and loading data through a named-pipe.



tNamedPipeOpen

1288 Talend Open Studio Components Reference Guide

tNamedPipeOpen

tNamedPipeOpen properties

Component family File/Input

Function tNamedPipeOpen opens a named-pipe for writing data into it.

Purpose This component is used in inner-process communication, it opens a named-pipe for writing data into it.

Basic settings Name Fill in the field with the name of the named-pipe.

Delete if already exist Select this checkbox to avoid duplicate named-pipe.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage This component is usually used as the starting component in a inner-process communication Job.

Limitation n/a

Related scenario

For a related scenario, see section Scenario: Writing and loading data through a named-pipe.



tNamedPipeOutput

Talend Open Studio Components Reference Guide 1289

tNamedPipeOutput

tNamedPipeOutput properties

Component family File/Input

Function tNamedPipeOutput writes data into an existing open named-pipe.

Purpose This component allows you to write data into an existing open named-pipe.

Basic settings Use existing pipe connection Select this check box to use an existing named-pipe in the Pipe
component list, or clear this check box to specify a named-pipe in
Pipe name field.

Pipe component Select an existing named-pipe component from the list.

This check box will display only when you select Use
existing pipe connection.

Pipe name Fill in the field with the name of an existing named-pipe.

This check box will display only when you clear Use
existing pipe connection.

Row separator String (ex: “\n”on Unix) to distinguish rows in the output file.

Field separator Character, string or regular expression to separate fields of the
output file.

CSV options Select this check box to take into account all parameters specific
to CSV files, in particular Escape char and Text enclosure
parameters.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if you
make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Delete pipe if it exists Select this checkbox to avoid duplicate named-pipe.

Advanced settings Boolean type Select a boolean type from the list.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage This component is usually connected to another component in a subjob that reads data from a source.

Limitation n/a



Scenario: Writing and loading data through a named-pipe

1290 Talend Open Studio Components Reference Guide

Scenario: Writing and loading data through a named-
pipe

The following scenario creates a multi-component Job, which writes data into an open named-pipe and displays
the data onto the console.

Dropping and linking the components

1. Drop the following components from the Palette to the design workspace: tNamedPipeOpen, tParallelize,
tNamedPipeClose, tFileInputDelimited, tSleep, tLogRow, tRowGenerator and tNamedPipeOutput.

2. Connect tNamedPipeOpen to tParallelize using a Trigger > OnSubjobOk connection.

3. Connect tParallelize to tFileInputDelimited using a Trigger > Parallelize connection.

4. Connect tParallelize to tSleep using a Trigger > Parallelize connection.

5. Connect tFileInputDelimited to tLogRow using a Row > Main connection.

6. Connect tParallelize to tNamedPipeClose using a Trigger > Synchronize (Wait for all) connection.

7. Connect tSleep to tRowGenerator using a Trigger > OnComponentOk connection.

8. Connect tRowGenerator to tNamedPipeOutput using a Row > Main connection.

Configuring the components

Configuring the input component

1. Double-click tNamedPipeOpen to define its propeties in its Basic settings view.

Fill in the Name field with the name of a named-pipe and select Delete if already exist to avoid duplicate
named-pipe.



Scenario: Writing and loading data through a named-pipe

Talend Open Studio Components Reference Guide 1291

2. Double-click tParallelize to define its properties in its Basic settings view.

Select end of all subjobs from the Wait for list.

Fill in the Sleep Duration field with 100 to set the sleep duration.

3. Double-click tFileInputDelimited to define its properties in its Basic settings view.

Fill in the File name/Stream field with the following expression to use the name of the existing named-pipe
defined in the Basic settings view of tNamedPipeOpen:

4. ((String)globalMap.get("tNamedPipeOpen_1_PIPE_NATIVE_NAME"))

5. Click the three-dot button next to Edit schema.



Scenario: Writing and loading data through a named-pipe

1292 Talend Open Studio Components Reference Guide

6. Click the plus button to add three columns for tFileInputDelimited. Fill the three Column fields with id,
first_name and last_name and set the Type of id to Integer. Keep the rest of the settings as default.

7. Click OK to save the settings for the schema.

8. Keep the rest of the settings in the Basic settings view of tFileInputDelimited as default.

9. Double-click tSleep and fill the Pause (in seconds) field with 1.

10. Double-click tRowGenerator to define its properties in its Basic settings view.

11. Click RowGenerator Editor to define the schema.

12. Click the plus button to add three columns for tRowGenerator. Fill the three Column fields with id,
first_name and last_name and set the Type of id to Integer. Keep the rest of the settings of Type as default.

13. Select sequence from the list in the Functions field for id.

14. Select getFirstName from the list in the Functions field for Column first_name.

15. Select TalendDataGenerator.getLastName from the list in the Functions field for Column last_name.

16. Select id, fill the Value field under Function parameters tab with s1 for sequence identifier, 1001 for start
value and 1 for step.



Scenario: Writing and loading data through a named-pipe

Talend Open Studio Components Reference Guide 1293

17. Click OK to save the settings.

Configuring the output component

1. Double-click tNamedPipeOutput to define its properties in its Basic settings view.

2. Select the Use existing pipe connection checkbox and select tNamedPipeOpen_1 from the Pipe component
list.

3. Select Delete pipe if it exists to avoid duplicate named-pipe.

4. Click Sync columns to retrieve the schema from the preceding component.

5. Leave the rest of the settings as they are.

6. Double-click tLogRow to define its properties in its Basic settings view.

7. Click Sync columns to retrieve the schema from the preceding component.

8. Select Table in the Mode area.

9. Double-click tNamedPipeClose to define its properties in its Basic settings view.



Scenario: Writing and loading data through a named-pipe

1294 Talend Open Studio Components Reference Guide

10. Select tNamedPipeOpen_1 from the Pipe list.

Saving and executing the Job

• Press F6 to execute the Job.

The data written into the named-pipe is displayed onto the console.



tPivotToColumnsDelimited

Talend Open Studio Components Reference Guide 1295

tPivotToColumnsDelimited

tPivotToColumnsDelimited Properties

Component family File/Output

Function tPivotToColumnsDelimited outputs data based on an aggregation operation carried out on a
pivot column.

Purpose tPivotToColumnsDelimited is used to fine-tune the selection of data to output

Basic settings Pivot column Select the column from the incoming flow that will be used as
pivot for the aggregation operation.

Aggregation column Select the column from the incoming flow that contains the data
to be aggregated.

Aggregation function Select the function to be used in case several values are available
for the pivot column.

Group by Define the aggregation sets, the values of which will be used for
calculations.

Input Column: Match the input column label with your output
columns, in case the output label of the aggregation set needs to
be different.

File Name Name or path to the output file and/or the variable to be used.

Related topic: see Talend Open Studio User Guide.

Field separator Character, string or regular expression to separate fields of the
output file.

Row separator String (ex: “\n”on Unix) to distinguish rows in the output file.

Usage This component requires an input flow.

Limitation n/a

Scenario: Using a pivot column to aggregate data

The following scenario describes a Job that aggregates data from a delimited input file, using a defined pivot
column.

Dropping and linking components

1. Drop the following component from the Palette to the design workspace: tFileInputDelimited,
tPivotToColumnsDelimited.



Scenario: Using a pivot column to aggregate data

1296 Talend Open Studio Components Reference Guide

2. Link the two components using a Row > Main connection.

Configuring the components

Set the input component

1. Double-click the tFileInputDelimited component to open its Basic settings view.

2. Browse to the input file to fill out the File Name field.

The file to use as input file is made of 3 columns, including: ID, Question and the corresponding Answer

3. Define the Row and Field separators, in this example, respectively: carriage return and semi-colon

4. As the file contains a header line, define it also.

5. Set the schema describing the three columns: ID, Questions, Answers.

Set the output component

1. Double-click the tPivotToColumnsDelimited component to open its Basic settings view.



Scenario: Using a pivot column to aggregate data

Talend Open Studio Components Reference Guide 1297

2. In the Pivot column field, select the pivot column from the input schema. this is often the column presenting
most duplicates (pivot aggregation values).

3. In the Aggregation column field, select the column from the input schema that should gets aggregated.

4. In the Aggregation function field, select the function to be used in case duplicates are found out.

5. In the Group by table, add an Input column, that will be used to group by the aggregation column.

6. In the File Name field, browse to the output file path. And on the Row and Field separator fields, set the
separators for the aggregated output rows and data.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

The output file shows the newly aggregated data.



Talend Open Studio Components Reference Guide



Talend Open Studio Components Reference Guide

Internet components
This chapter details the main components which belong to the Internet family in the Palette in the Integration
perspective of the Talend Studio.

The Internet family comprises all of the components which help you to access information via the Internet, through
various means including Web services, RSS flows, SCP, MOM, Emails, FTP etc.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.



tFileFetch

1300 Talend Open Studio Components Reference Guide

tFileFetch

tFileFetch properties

Component family Internet

Function tFileFetch retrieves a file via a defined protocol

Purpose tFileFetch allows you to retrieve file data according to the protocol which is in place.

Basic settings Protocol Select the protocol you want to use from the list and fill in the
corresponding fields: http, https, ftp, smb.

The properties differ slightly depending on the type of
protocol selected. The additional fields are defined in this
table, after the basic settings.

URI Type in the URI of the site from which the file is to be fetched.

Use cache to save resource Select this check box to save the data in the cache.

This option allows you to process the file data flow (in
streaming mode) without saving it on your drive. This is
faster and improves performance.

smb Domain Enter the Microsoft server domain name

smb Username and Password Enter the authentication information required to access the server.

Destination Directory Browse to the destination folder where the file fetched is to be
placed.

Destination Filename Enter a new name for the file fetched.

http, https, ftp Create full path according
to URI

This check box is selected by default. It allows you to reproduce the
URI directory path. To save the file at the root of your destination
directory, clear the check box.

http, https Add header Select this check box if you want to add one or more HTTP request
headers as fetch conditions. In the Headers table, enter the name(s)
of the HTTP header parameter(s) in the Headers field and the
corresponding value(s) in the Value field.

http, https POST method This check box is selected by default. It allows you to use the POST
method. In the Parameters table, enter the name of the variable(s)
in the Name field and the corresponding value in the Value field.

Clear the check box if you want to use the GET method.

http, https, ftp Die on error Clear this check box to skip the rows in error and to complete the
process for the error free rows

http, https, ftp, smb Read Cookie Select this check box for tFileFetch to load a web authentication
cookie.

http, https, ftp, smb Save Cookie Select this check box to save the web page authentication cookie.
This means you will not have to log on to the same web site in the
future.

http, https, ftp, smb Cookie directory Click [...] and browse to where you want to save the cookie in your
directory, or to where the cookie is already saved.

http, https, ftp, smb Cookie policy Choose a cookie policy from this drop-down list. Four options
are available, i.e. BROWSER_COMPATIBILITY, DEFAULT,
NETSCAPE and RFC_2109.

http, https, ftp, smb Single cookie header Check this box to put all cookies into one request header for
maximum compatibility among different servers.



Scenario 1: Fetching data through HTTP

Talend Open Studio Components Reference Guide 1301

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at each component
level.

http, https Timeout Enter the number of seconds after which the protocol connection
should close.

http, https Print response to console Select this check box to print the server response in the console.

http, https Upload file Select this check box to upload one or more files to the server. In
the Name field, enter the name of the file you want to upload and
in the File field, indicate the path.

http, https, ftp Enable proxy server Select this check box if you are connecting via a proxy and
complete the fields which follow with the relevant information.

http, https Enable NTLM Credentials Select this check box if you are using an NTLM authentication
protocol.

Domain: The client domain name.

Host: The client’s IP address.

http, https Need authentication Select this check box and enter the username and password in the
relevant fields, if they are required to access the protocol.

http, https Support redirection Select this check box to repeat the redirection request until
redirection is successful and the file can be retrieved.

Usage This component is generally used as a start component to feed the input flow of a Job and is
often connected to the Job using an OnSubjobOk or OnComponentOk link, depending on the
context.

Limitation n/a

Scenario 1: Fetching data through HTTP

This scenario describes a three-component Job which retrieves data from an HTTP website and select data that
will be stored in a delimited file.

Dropping and linking components

1. Drop a tFileFetch, a tFileInputRegex and a tFileOutputDelimited onto your design workspace.

2. Link tFileFetch to tFileInputRegex using a Trigger > On Subjob Ok or On Component Ok connection.

3. Link tFileInputRegex to tFileOutputDelimited using a Row > Main connection.



Scenario 2: Reusing stored cookie to fetch files through HTTP

1302 Talend Open Studio Components Reference Guide

Configuring the components

1. In the Basic settings view of tFileFetch, select the protocol you want to use from the list. Here, use the
HTTP protocol.

2. Type in the URI where the file to be fetched can be retrieved from.

3. In the Destination directory field, browse to the folder where the fetched file is to be stored.

4. In the Filename field, type in a new name for the file if you want it to be changed. In this example, filefetch.txt.

5. If needed, select the Add header check box and define one or more HTTP request headers as fetch conditions.
For example, to fetch the file only if it has been modified since 19:43:31 GMT, October 29, 1994, fill in the
Name and Value fields with "If-Modified-Since" and "Sat, 29 Oct 1994 19:43:31 GMT" respectively in the
Headers table. For details about HTTP request header definitions, see Header Field Definitions.

6. Select the tFileInputRegex, set the File name so that it corresponds to the file fetched earlier.

7. Using a regular expression, in the Regex field, select the relevant data from the fetched file. In this example:
<td(?: class="leftalign")?> \s* (t\w+) \s* </td>

Regex syntaxe requires double quotation marks.

8. Define the header, footer and limit if need be. In this case, ignore these fields.

9. Define the schema describing the flow to be passed on to the final output.

The schema should be automatically propagated to the final output, but to be sure, check the schema in the
Basic settings panel of the tFileOutputDelimited component.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Then press F6 or click Run on the Run tab to execute the Job.

Scenario 2: Reusing stored cookie to fetch files
through HTTP

This scenario describes a two-component Job which logs in a given HTTP website and then using cookie stored
in a user-defined local directory, fetches data from this website.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14


Scenario 2: Reusing stored cookie to fetch files through HTTP

Talend Open Studio Components Reference Guide 1303

Dropping and linking components

1. Drop two tFileFetch components onto your design workspace.

2. Link the two components as subjobs using a Trigger > On Subjob Ok connection.

Configuring the components

Configuring the first subjob

1. Double click tFileFetch_1 to open its component view.



Scenario 2: Reusing stored cookie to fetch files through HTTP

1304 Talend Open Studio Components Reference Guide

2. In the Procotol field, select the protocol you want to use from the list. Here, we use the HTTP protocol.

3. In the URI field, type in the URI through which you can log in the website and fetch the web page accordingly.
In this example, the URI is http://www.codeproject.com/script/Membership/LogOn.aspx?rp=http
%3a%2f%2fwww.codeproject.com%2fKB%2fcross-platform%2fjavacsharp.aspx&download=true.

4. In the Destination directory field, browse to the folder where the fetched file is to be stored. This folder will
be created on the fly if it does not exist. In this example, type in C:/Logpage.

5. In the Destination Filename field, type in a new name for the file if you want it to be changed. In this
example, webpage.html.

6. Under the Parameters table, click the plus button to add two rows.

7. In the Name column of the Parameters table, type in a new name respectively for the two rows. In this
example, they are Email and Password, which are required by the website you are logging in.

8. In the Value column, type in the authentication information.

9. Select the Save cookie check box to activate the Cookie directory field.

10. In the Cookie directory field, browse to the folder where you want to store cookie file and type in a name
for the cookie to be saved. This folder must exist already. In this example, the directory is C:/temp/Cookie.

Configuring the second subjob

1. Double click tFileFetch_2 to open its Component view.



Related scenario

Talend Open Studio Components Reference Guide 1305

2. In the Procotol list, select http.

3. In the URI field, type in the address from which you fetch the files of your interest. In this example, the
address is http://www.codeproject.com/KB/java/RemoteShell/RemoteShell.zip.

4. In the Destination directory field, type in the directory or browse to the folder where you want to store the
fetched files. This folder can be automatically created if it does not exist yet during the execution process.
In this example, type in C:/JavaProject.

5. In the Destination Filename field, type in a new name for the file if you want it to be changed. In this
example, RemoteShell.zip.

6. Clear the Post method check box to deactivate the Parameter table.

7. Select the Read cookie check box to activate the Cookie directory field.

8. In the Cookie directory field, type in the directory or browse to the cookie file you have saved and need to
use. In this example, the directory is C:/temp/Cookie.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Then press F6 to run the Job, and check each folder you have used to store the fetched files.

Related scenario

For an example of transferring data in streaming mode, see section Scenario 2: Reading data from a remote file
in streaming mode



tFileInputJSON

1306 Talend Open Studio Components Reference Guide

tFileInputJSON

tFileInputJSON belongs to two different component families: Internet and File. For further information, see
section tFileInputJSON.



tFTPConnection

Talend Open Studio Components Reference Guide 1307

tFTPConnection

tFTPConnection properties

Component family Internet/FTP

Function tFTPConnection opens an FTP connection in order that a transaction may be carried out.

Purpose tFTPConnection allows you to open an FTP connection to transfer files in a single transaction.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties are stored.
The following fields are pre-filled in using fetched data.

Host The FTP server IP address.

Port The FTP server listening port number.

Username and Password FTP user authentication data.

SFTP Support When you select this check box, the Authentication method
appears.

It offers two means of authentication:

Public key: Enter the access path to the public key.

Password: Enter the password.

FTPS Support Select this check box to connect to an FTP server via an FTPS
connection.

Two fields appear:

Keystore file: Enter the access path to the keystore file (password
protected file containing several keys and certificates).

Keystore Password: Enter your keystore password.

Connect mode Select the mode: Active or Passive

Usage This component is typically used as a single-component sub-job. It is used along with other FTP
components.

Limitation n/a

Related scenarios

For a related scenario, see section Scenario: Putting files on a remote FTP server.

For a related scenario, see section Scenario: Iterating on a remote directory.

For a related scenario using a different protocol, see section Scenario: Getting files from a remote SCP server.



tFTPDelete

1308 Talend Open Studio Components Reference Guide

tFTPDelete

tFTPDelete properties

Component family Internet/FTP

Function This component deletes specified files via an FTP connection.

Purpose tFTPDelete deletes files on a remote FTP server.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties are stored.
The following fields are pre-filled in using fetched data.

Host FTP IP address

Port The FTP server listening port number.

Username and Password FTP user authentication data.

Remote directory Source directory where the files to be deleted are located.

SFTPSupport/
Authentication method

Select this check box and then in the Authentication method list,
select the SFTP authentication method:

Password: Type in the password required in the relevant field.

Public key: Type in the private key or click the three dot button
next to the Private key field to browse to it.

If you select Public Key as the SFTP authentication
method, make sure that the key is added to the agent or
that no passphrase (secret phrase) is required.

Use Perl5 Regex Expression
as Filemask

Select this check box if you want to use Perl5 regular expressions
in the Files field as file filters.

For information about Perl5 regular expression syntax, see Perl5
Regular Expression Syntax.

Files File name or path to the files to be deleted. You can specify
multiple files in a line by using wildcards or a regular expression.

Usage This component is typically used as a single-component sub-job but can also be used as an output
or end object.

Limitation n/a

Related scenario

For tFTPDelete related scenario, see section Scenario: Putting files on a remote FTP server.

For tFTPDelete related scenario using a different protocol, see section Scenario: Getting files from a remote SCP
server.

http://mythryl.org/my-Perl5_Regular_Expression_Syntax.html
http://mythryl.org/my-Perl5_Regular_Expression_Syntax.html


tFTPFileExist

Talend Open Studio Components Reference Guide 1309

tFTPFileExist

tFTPFileExist properties

Component family Internet/FTP

Function tFTPFileExist checks if a file exists on an FTP server.

Purpose tFTPFileExist allows you to check if a file exists on an FTP server.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties are stored.
The following fields are pre-filled in using fetched data.

Use an existing connection/
Component List

Select this check box and in the Component List click the relevant
connection component to reuse the connection details you already
defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to use
an existing connection from the other level, you can use
Dynamic settings to share the intended connection. In
this case, make sure that the connection name is unique
and distinctive all over through the two Job levels. For
more information about Dynamic settings, see your
studio user guide.

Host FTP IP address.

Port The FTP server listening port number.

Username and Password (or
Private key)

User authentication information.

Remote directory Path to the remote directory.

File Name Name of the file you want to check exists.

SFTPSupport/
Authentication method

Select this check box and then in the Authentication method list,
select the SFTP authentication method:

Password: Type in the password required in the relevant field.

Public key: Type in the private key or click the three dot button
next to the Private key field to browse to it.

If you select Public Key as the SFTP authentication
method, make sure that the key is added to the agent or
that no passphrase (secret phrase) is required.

Connection Mode Select the SFTP connection mode you want to use:

Active: You determine the connection port to use to allow data
transfer.

Passive: the FTP server determines the connection port to use to
allow data transfer.

Encoding Type Select an encoding type from the list, or select Custom and define
it manually. This field is compulsory for DB data handling.

Advanced settings Use Socks Proxy Select this check box if you want to use a proxy. Then, set the Host,
Port, User and Password proxy fields.



Related scenario

1310 Talend Open Studio Components Reference Guide

Ignore Failure At Quit
(FTP)

Select this check box to ignore library closing errors or FTP closing
errors.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is typically used as a single-component sub-job but can also be used with other
components.

Limitation n/a

Related scenario

For tFTPFileExist related scenario, see section Scenario: Putting files on a remote FTP server.

For tFTPFileExist related scenario using a different protocol, see section Scenario: Getting files from a remote
SCP server.



tFTPFileList

Talend Open Studio Components Reference Guide 1311

tFTPFileList

tFTPFileList properties

Component family Internet/FTP

Function tFTPFileList iterates on files and/or folders of a given directory on a remote host.

Objective tFTPFileList retrieves files and /or folders based on a defined filemask pattern and iterates on
each of them by connecting to a remote directory via an FTP protocol.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties are stored.
The following fields are pre-filled in using fetched data.

Use an existing connection/
Component List

Select this check box and in the Component List click the relevant
connection component to reuse the connection details you already
defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to
use an existing connection from the other level, you can
use Dynamic settings to share the intended connection.
For more information about Dynamic settings, see your
studio user guide.

Host FTP IP address.

Port Listening port number of the FTP server.

Username and Password (or
Private key)

User authentication information.

Remote directory Path to the remote directory.

File detail Select this check box if you want to display the details of each of
the files or folders on the remote host. These informative details
include:

type of rights on the file/folder, name of the author, name of the
group of users that have a read-write rights, file size and date of
last modification.

SFTPSupport/
Authentication method

Select this check box and then in the Authentication method list,
select the SFTP authentication method:

Password: Type in the password required in the relevant field.

Public key: Type in the private key or click the three dot button
next to the Private key field to browse to it.

If you select Public Key as the SFTP authentication
method, make sure that the key is added to the agent or
that no passphrase (secret phrase) is required.

Files Click the plus button to add the lines you want to use as filters:

Filemask: enter the filename or filemask using wildcharacters (*)
or regular expressions.

Connect Mode Select the SFTP connection mode you want to use:

Active: You determine the connection port to be used to allow data
transfer.



Scenario: Iterating on a remote directory

1312 Talend Open Studio Components Reference Guide

Passive: the FTP server determines the connection port to use to
allow data transfer.

Usage This component is typically used as a single-component sub-job but can also be used with other
components.

Limitation n/a

Scenario: Iterating on a remote directory

The following scenario describes a three-component Job that connects to an FTP server, lists files held in a remote
directory based on a filemask and finally recuperates and saves the files in a defined local directory.

Dropping and linking components

1. Drop the following components from the Palette to the design workspace: tFTPConnection, tFTPFileList
and tFTPGet.

2. Link tFTPConnection to tFTPFileList using an OnSubjobOk connection and then tFTPFileList to
tFTPGet using an Iterate connection.

Configuring the components

Configuring a connection to the FTP server

1. Double-click tFTPConnection to display its Basic settings view and define the component properties.

2. In the Host field, enter the IP address of the FTP server.

3. In the Port field, enter the listening port number.

4. In the Username and Password fields, enter your authentication information for the FTP server.



Scenario: Iterating on a remote directory

Talend Open Studio Components Reference Guide 1313

5. In the Connect Mode list, select the FTP connection mode you want to use, Passive in this example.

Configuring an FTP download list

1. Double-click tFTPFileList to open its Basic settings view and define the component properties.

2. Select the Use an existing connection check box and in the Component list, click the relevant FTP
connection component, tFTPConnection_1 in this scenario. Connection information are automatically filled
in.

3. In the Remote directory field, enter the relative path of the directory that holds the files to be listed.

4. In the Filemask field, click the plus button to add one line and then define a file mask to filter the data to be
retrieved. You can use special characters if need be. In this example, we want only to recuperate delimited
files (*csv).

5. In the Connect Mode list, select the FTP server connection mode you want to use, Active in this example.

Configuring file download

1. Double-click tFTPGet to display its Basic settings view and define the components properties.



Scenario: Iterating on a remote directory

1314 Talend Open Studio Components Reference Guide

2. Select the Use an existing connection check box and in the Component list, click the relevant FTP
connection component, tFTPConnection_1 in this scenario. Connection information are automatically filled
in.

3. In the Local directory field, enter the relative path for the output local directory where you want to write
the recuperated files.

4. In the Remote directory field, enter the relative path of the remote directory that holds the file to be
recuperated.

5. In the Transfer Mode list, select the FTP transfer mode you want to use, ascii in this example.

6. In the Overwrite file field, select an option for you want to use for the transferred files.

7. In the Files area, click the plus button to add a line in the Filemask list, then click in the
added line and pressCtrl+Space to access the variable list. In the list, select the global variable
((String)globalMap.get("tFTPFileList_1_CURRENT_FILEPATH")) to process all files in the remote
directory.

8. In the Connect Mode list, select the connection mode to the FTP server you want to use.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

All .csv files held in the remote directory on the FTP server are listed in the defined directory, as defined in
the filemask. Then the files are retrieved and saved in the defined local output directory.



tFTPFileProperties

Talend Open Studio Components Reference Guide 1315

tFTPFileProperties

tFTPFileProperties Properties

Component family Internet

Function tFTPFileProperties iterates on files and/or folders of a given directory on a remote host.

Purpose tFTPFileProperties retrieves files and /or folders based on a defined filemask pattern and
iterates on each of them by connecting to a remote directory via an FTP protocol.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties are
stored. The following fields are pre-filled in using fetched data.

Schema and Edit schema A schema is a row description, i.e., it defines the number of
fields that will be processed and passed on to the next component.
The schema is either Built-in (local) or stored remotely in the
Repository.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created the schema and stored it
in the Repository. You can reuse it in various projects and Job
designs. Related topic: see Talend Open Studio User Guide.

Host FTP IP address

Port Listening port number of the FTP server.

Username FTP user name.

Password FTP password.

Remote directory Path to the source directory where the files can be fetched.

File Name or path to the file to be processed. Related topic: see Talend
Open Studio User Guide.

SFTP Support and
Authentication method

Select this check box and then in the Authentication method list,
select the SFTP authentication method:

Password: Type in the password required in the relevant field.

Public key: Type in the private key or click the three dot button
next to the Private key field to browse to it.

If you select Public Key as the SFTP authentication
method, ensure that the key is added to the agent or that
no passphrase (secret phrase) is required.

If you do not select the check box, choose the connection mode
you want to use:

Active: You determine the connection port to use to allow data
transfer.

Passive: the FTP server determines the connection port to use to
allow data transfer.

Encoding Select an encoding type from the list, or select Custom and define
it manually. This field is compulsory for DB data handling.

Calculate MD5 Hash Select this check box to check the of the downloaded file’s MD5.



Related scenario

1316 Talend Open Studio Components Reference Guide

Advanced settings Use Socks Proxy Select this check box if you want to use a proxy. Then, set the
Host, Port, User and Password proxy fields.

Ignore Failure At Quit
(FTP)

Select this check box to ignore library closing errors or FTP
closing errors.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component can be used as standalone component.

Limitation n/a

Related scenario

For a related scenario, see section Scenario: Displaying the properties of a processed file



tFTPGet

Talend Open Studio Components Reference Guide 1317

tFTPGet

tFTPGet properties

Component family Internet/FTP

Function This component retrieves specified files via an FTP connection.

Purpose tFTPGet retrieves selected files from a defined remote FTP directory and cop them to a local
directory.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties are stored.
The following fields are pre-filled in using fetched data.

Use an existing connection/
Component List

Select this check box and then choose the appropriate connection
component from the Component list to reuse its connection
parameters.

Host FTP IP address.

Port Listening port number of the FTP server.

Username FTP user name.

Password FTP password.

Local directory Path to where the file is to be saved locally.

Remote directory Path to source directory where the files can be fetched.

Transfer mode Different FTP transfer modes.

Overwrite file List of file transfer options.

Append: Select this check box to append the data at the end of the
file in order to avoid overwriting data.

SFTP Support When you select this check box, the Overwrite file and
Authentication method appear.

Overwrite file: Offers three options:

Overwrite: Overwrite the existing file.

Resume: Resume downloading the file from the point of
interruption.

Append: Add data to the end of the file without overwriting data.

Authentication Offers two means of authentication:

Public key: Enter the access path to the public key.

Password: Enter the password.

FTPS Support Select this check box to connect to an FTP server via an FTPS
connection.

Two fields appear:

Keystore file: Enter the access path to the keystore file (password
protected file containing several keys and certificates).

Keystore Password: Enter your keystore password.

Use Perl5 Regex Expression
as Filemask

Select this check box if you want to use Perl5 regular expressions
in the Files field as file filters.



Related scenario

1318 Talend Open Studio Components Reference Guide

For information about Perl5 regular expression syntax, see Perl5
Regular Expression Syntax.

Files File names or paths to the files to be transferred. You can specify
multiple files in a line by using wildcards or a regular expression.

Die on error This check box is selected by default. Clear the check box to skip
the row on error and complete the process for error-free rows.

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing metadata at a Job
level as well as at each component level.

Print message Select this check box to display in the Console the list of files
downloaded.

Usage This component is typically used as a single-component sub-job but can also be used as output
or end object.

Limitation n/a

Related scenario

For an tFTPGet related scenario, see section Scenario: Putting files on a remote FTP server.

For an tFTPGet related scenario, see section Scenario: Iterating on a remote directory.

For an tFTPGet related scenario using a different protocol, see section Scenario: Getting files from a remote
SCP server.

http://mythryl.org/my-Perl5_Regular_Expression_Syntax.html
http://mythryl.org/my-Perl5_Regular_Expression_Syntax.html


tFTPPut

Talend Open Studio Components Reference Guide 1319

tFTPPut

tFTPPut properties

Component family Internet/FTP

Function This component copies selected files via an FTP connection.

Purpose tFTPPut copies selected files from a defined local directory to a destination remote FTP
directory.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties are stored.
The following fields are pre-filled in using fetched data.

Use an existing connection/
Component List

A connection needs to be open to allow the loop to check for FTP
data on the defined DB.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to
use an existing connection from the other level, you can
use Dynamic settings to share the intended connection.
For more information about Dynamic settings, see your
studio user guide.

Host FTP IP address.

Port FTP server listening port number.

Username FTP user name.

Password FTP password.

Local directory Path to the source location of the file(s).

Remote directory Path to the destination directory of the file(s).

Transfer mode Different FTP transfer modes.

Overwrite file  or   Append List of available options for the transferred file

SFTPSupport/
Authentication method

Select this check box and then in the Authentication method list,
select the SFTP authentication method:

Password: Type in the password required in the relevant field.

Public key: Type in the private key or click the three dot button
next to the Private key field to browse to it.

If you select Public Key as the SFTP authentication
method, make sure that the key is added to the agent or
that no passphrase (secret phrase) is required.

Files Click the [+] button to add a new line, then fill in the columns.

Filemask: file names or path to the files to be transferred.

New name: name to give the FTP file after the transfer.

Die on error This check box is selected by default. Clear the check box to skip
the row on error and complete the process for error-free rows.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.



Scenario: Putting files on a remote FTP server

1320 Talend Open Studio Components Reference Guide

Usage This component is typically used as a single-component sub-job but can also be used as output
component.

Limitation n/a

Scenario: Putting files on a remote FTP server

This two-component Job allows you to open a connection to a remote FTP server in order to put specific files on
the remote server in one transaction.

Dropping and linking components

1. Drop tFTPConnection and tFTPPut from the Palette onto the design workspace. tFTPConnection allows
you to perform all operations in one transaction.

2. Connect the two components together using an OnSubJobOK link.

Configuring the components

Configuring a connection to the FTP server

1. Double-click tFTPConnection to display its Basic settings view and define its properties.



Scenario: Putting files on a remote FTP server

Talend Open Studio Components Reference Guide 1321

2. In the Host field, enter the server IP address.

3. In the Port field, enter the listening port number.

4. In the Username and Password fields, enter your login and password for the remote server.

5. From the Connect Mode list, select the FTP connection mode you want to use, Active in this example.

Configuring file upload to the FTP server

1. In the design workspace, double-click tFTPPut to display its Basic settings view and define its properties.

2. Select the Use an existing connection check box and then select tFTPConnection_1 from the Component
List. The connection information is automatically filled in.

3. In the Local directory field, enter the path to the local directory containing the files, if all your files are in
the same directory. If the files are in different directories, enter the path for each file in the Filemask column
of the Files table.

4. In the Remote directory field, enter the path to the destination directory on the remote server.

5. From the Transfer mode list, select the transfer mode to be used.

6. From the Overwrite file list, select an option for the transferred file.

7. In the Files table, click twice the plus button to add two lines to the Filemask column and then fill in the
filemasks of all files to be copied onto the remote directory.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

The files specified in the Filemask column are copied to the remote server.



Scenario: Putting files on a remote FTP server

1322 Talend Open Studio Components Reference Guide



tFTPRename

Talend Open Studio Components Reference Guide 1323

tFTPRename

tFTPRename Properties

Component Family Internet/FTP

Function tFTPRename renames the selected files via an FTP connection.

Purpose tFTPRename renames files selected from a local directory towards a distant FTP directory.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties are stored.
The following fields are pre-filled in using fetched data.

Use an existing connection/
Component List

Select this check box and in the Component List click the relevant
connection component to reuse the connection details you already
defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to
use an existing connection from the other level, you can
use Dynamic settings to share the intended connection.
For more information about Dynamic settings, see your
studio user guide.

Host FTP IP address.

Port FTP server listening port number.

Username Connection login to the FTP server.

Password Connection password to the FTP server.

Remote directory Path to the remote directory.

Overwrite file List of available options for the transferred file.

Append: Select this check box to write the data at the end of the
record, to not delete it.

SFTPSupport/
Authentication method

Select this check box and then in the Authentication method list,
select the SFTP authentication method:

Password: Type in the password required in the relevant field.

Public key: Type in the private key or click the three dot button
next to the Private key field to browse to it.

If you select Public Key as the SFTP authentication
method, make sure that the key is added to the agent or
that no passphrase (secret phrase) is required.

Files Click the [+] button to add the lines you want to use as filters:

Filemask: enter the filename or filemask using wildcharacters (*)
or regular expressions.

New name: name to give to the FTP file after the transfer.

Connection Mode Select the SFTP connection mode you want to use:

Active: You determine the connection port to use to allow data
transfer.



Related scenario

1324 Talend Open Studio Components Reference Guide

Passive: the FTP server determines the connection port to use to
allow data transfer.

Encoding type Select an encoding type from the list, or select Custom and define
it manually. This field is compulsory for DB data handling.

Die on error This check box is selected by default. Clear the check box to skip
the row in error and complete the process for error-free rows.

Advanced settings Use Socks Proxy Select this check box if you want to use a proxy. Then, set the Host,
Port, User and Password proxy fields.

Ignore Failure At Quit
(FTP)

Select this check box to ignore library closing errors or FTP closing
errors.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is generally used as a subjob with one component, but it can also be used as
an output or end component..

Limitation n/a

Related scenario

For a related scenario, see section Scenario: Putting files on a remote FTP server .



tFTPTruncate

Talend Open Studio Components Reference Guide 1325

tFTPTruncate

tFTPTruncate properties

Component family Internet/FTP

Function tFTPTruncate truncates the selected files via an FTP connection.

Objective tFTPTruncate truncates the selected files of a defined local directory via a distant FTP directory.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where properties are stored.
The following fields are pre-filled in using fetched data.

Use an existing connection/
Component List

Select this check box and in the Component List click the relevant
connection component to reuse the connection details you already
defined.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to
use an existing connection from the other level, you can
use Dynamic settings to share the intended connection.
For more information about Dynamic settings, see your
studio user guide.

Host FTP IP address.

Port Listening port number of the FTP server.

Username and Password (or
Private key)

User authentication information.

Remote directory Path to the remote directory.

SFTPSupport/
Authentication method

Select this check box and then in the Authentication method list,
select the SFTP authentication method:

Password: Type in the password required in the relevant field.

Public key: Type in the private key or click the three dot button
next to the Private key field to browse to it.

If you select Public Key as the SFTP authentication
method, make sure that the key is added to the agent or
that no passphrase (secret phrase) is required.

Use Perl5 Regex Expression
as Filemask

Select this check box if you want to use Perl5 regular expressions
in the Files field as file filters.

For information about Perl5 regular expression syntax, see Perl5
Regular Expression Syntax.

Files Click the plus button to add the lines you want to use as filters:

Filemask: enter the filename or filemask using wildcards (*) or
regular expressions.

Connection Mode Select the SFTP connection mode you want to use:

Active: You determine the connection port to use to allow data
transfer.

Passive: the FTP server determines the connection port to use to
allow data transfer.

http://mythryl.org/my-Perl5_Regular_Expression_Syntax.html
http://mythryl.org/my-Perl5_Regular_Expression_Syntax.html


Related scenario

1326 Talend Open Studio Components Reference Guide

Encoding type Select an encoding type from the list, or select Custom and define
it manually. This field is compulsory for DB data handling.

Advanced settings Use Socks Proxy Select this check box if you want to use a proxy. Then, set the Host,
Port, User and Password proxy fields.

Ignore Failure At Quit
(FTP)

Select this check box to ignore library closing errors or FTP closing
errors.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is typically used as a single-component sub-job but can also be used with other
components.

Limitation n/a

Related scenario

For a related scenario, see section Scenario: Putting files on a remote FTP server.



tHttpRequest

Talend Open Studio Components Reference Guide 1327

tHttpRequest

tHttpRequest properties

Component family Internet

Function This component sends an HTTP request to the server end and gets the corresponding response
information from the server end.

Purpose The tHttpRequest component allows you to send an HTTP request to the server and output
the response information locally.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created the schema and stored it
in the Repository. You can reuse it in various projects and Job
designs. Related topic: see Talend Open Studio User Guide.

Sync columns Click this button to retrieve the schema from the preceding
component.

URI Type in the Uniform Resource Identifier (URI) that identifies the
data resource on the server. A URI is similar to a URL, but more
general.

Method Select an HTTP method to define the action to be performed:

Post: Sends data (e.g. HTML form data) to the server end.

Get: Retrieves data from the server end.

Write response content to
file

Select this check box to save the HTTP response to a local file.
You can either type in the file path in the input field or click the
three-dot button to browse to the file path.

Headers Type in the name-value pair(s) for HTTP headers to define the
parameters of the requested HTTP operation.

Key: Fill in the name of the header field of an HTTP header.

Value: Fill in the content of the header field of an HTTP header.

For more information about definition of HTTP headers, please
refer to:

en.wikipedia.org/wiki/List_of_HTTP_headers.

Need authentication Select this check box to fill in a user name and a password in the
corresponding fields if authentication is needed:

user: Fill in the user name for the authentication.

password: Fill in the password for the authentication.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level and at each component level.

Usage This component can be used in sending HTTP requests to server and saving the response
information. This component can be used as a standalone component.

Limitation N/A

http://en.wikipedia.org/wiki/List_of_HTTP_headers


Scenario: Sending a HTTP request to the server and saving the response information to a local file

1328 Talend Open Studio Components Reference Guide

Scenario: Sending a HTTP request to the server and
saving the response information to a local file

This java scenario describes a two-component Job that uses the GET method to retrieve information from the
server end and writes the response to a local file as well as to the console.

• Drop the following components from the Palette onto the design workspace: tHttpRequest and tLogRow.

• Connect the tHttpRequest component to the tLogRow component using a Row > Main connection.

• Double-click the tHttpRequest component to open its Basic settings view and define the component properties.

• Fill in the URI field with “http://192.168.0.63:8081/testHttpRequest/build.xml”. Note that this URI is for
demonstration purpose only and it is not a live address.

• Select GET from the Method list.

• Select the Write response content to file check box and fill in the input field on the right with the file path
by manual entry, D:/test.txt for this use case.

• Select the Need authentication check box and fill in the user and password, both tomcat in this use case.

• Double-click the tLogRow component to open its Basic settings view and select Table in the Mode area.

• Save your Job and press F6 to execute it.

Then the response information from the server is saved and displayed.



Scenario: Sending a HTTP request to the server and saving the response information to a local file

Talend Open Studio Components Reference Guide 1329



tJMSInput

1330 Talend Open Studio Components Reference Guide

tJMSInput

tJMSInput properties

Component Family Internet

Function tJMSInput creates an interface between a Java application and a Message-Oriented middle
ware system.

Purpose Using a JMS server, tJMSInput makes it possible to have loosely coupled, reliable, and
asynchronous communication between different components in a distributed application.

Basic settings Module List Select the library to be used from the list.

Context Provider Type in the context URL, for example
"com.tibco.tibjms.naming.TibjmsInitialContext Factory".
However, be careful, the syntax can vary according to the JMS
server used.

Server URL Type in the server URL, respecting the syntax, for example
"tibjmsnaming://localhost:7222".

Connection Factory JDNI
Name

Type in the JDNI name.

Use Specified User Identity If you have to log in, select the check box and type in your login
and password.

Message Type Select the message type, either: Topic or Queue.

Message From Type in the message source, exactly as expected by the server;
this must include the type and name of the source. e.g.: queue/A
or topic/testtopic

Note that the field is case-sensitive.

Timeout for Next Message
(in sec)

Type in the number of seconds before passing to the next
message.

Maximum Messages Type in the maximum number of messages to be processed.

Message Selector
Expression

Set your filter.

Processing Mode Select the processing mode for the messages.

Raw Message or Message Content

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component.

The tJMSInput schema is read-only. It is made of only one
column: Message

Advanced settings Properties Click the plus button underneath the table to add lines that
contains username and password required for user authentication.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is generally used as an input component. It must be linked to an output
component.

Limitation Make sure the JMS server is launched.



Related scenarios

Talend Open Studio Components Reference Guide 1331

Related scenarios

For related scenarios, see section Scenario 1: Asynchronous communication via a MOM server and section
Scenario 2: Transmitting XML files via a MOM server.



tJMSOutput

1332 Talend Open Studio Components Reference Guide

tJMSOutput

tJMSOutput properties

Component Family Internet

Function tJMSOutput creates an interface between a Java application and a Message-Oriented middle
ware system.

Purpose Using a JMS server, tJMSOutput makes it possible to have loosely coupled, reliable, and
asynchronous communication between different components in a distributed application.

Basic settings Module List Select the library to be used from the list.

Context Provider Type in the context URL, for example
"com.tibco.tibjms.naming.TibjmsInitialContext Factory".
However, be careful, the syntax can vary according to the JMS
server used.

Server URL Type in the server URL, respecting the syntax, for example
"tibjmsnaming://localhost:7222".

Connection Factory JDNI
Name

Type in the JDNI name.

Use Specified User Identity If you have to log in, select the check box and type in your login
and password.

Message Type Select the message type, either: Topic or Queue.

To Type in the message target, as expected by the server.

Processing Mode Select the processing mode for the messages.

Raw Message or Message Content

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component.

The tJMSOutput schema is read-only. It is made of one column:
Message

Advanced settings Delivery Mode Select a delivery mode from this list to ensure the quality of data
delivery:

Not Persistent: This mode allows data loss during the data
exchange.

Persistent: This mode ensures the integrity of message delivery.

Properties Click the plus button underneath the table to add lines that
contains username and password required for user authentication.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is generally used as an output component. It must be linked to an input
component.

Limitation Make sure the JMS server is launched.

Related scenarios

For related scenarios, see section Scenario 1: Asynchronous communication via a MOM server and section
Scenario 2: Transmitting XML files via a MOM server.



tMicrosoftMQInput

Talend Open Studio Components Reference Guide 1333

tMicrosoftMQInput

tMicrosoftMQInput Properties

Component family Internet/MOM and JMS

Function This component retrieves the first message in a given Microsoft message queue (only support
String).

Purpose This component allows you to fetch messages one by one in the ID sequence of these messages
from the Microsoft message queue. Each execution retrieves only one message.

Basic settings PROPERTY Either Built-in or Repository.

Built-in: No property data stored centrally. Enter properties
manually

Repository: Select the repository file where properties are stored.
The fields that come after are pre-filled in using the fetched data.

Host Type in the Host name or IP address of the host server.

Queue Enter the queue name you want to retrieve messages from.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is generally used as a start component of a Job or Subjob. It must be linked
to an output component.

Connections Outgoing links (from one component to another):

Row: Main, Iterate

Trigger: Run if; On Subjob Ok, On Component Ok; On
Component Error.

Incoming links (from one component to another):

Row: Iterate;

Trigger: Run if, On Subjob Ok, On Component Ok, On
Component Error.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation This component supports only String type. Also, it only works with the Windows systems.

Scenario: Writing and fetching queuing messages
from Microsoft message queue

This scenario is made of two Jobs. The first Job posts messages on a Microsoft message queue and the second
Job fetches the message from the server.



Scenario: Writing and fetching queuing messages from Microsoft message queue

1334 Talend Open Studio Components Reference Guide

Posting messages on a Microsoft message queue

In the first Job, a string message is created using a tRowGenerator and put on a Microsoft message queue using
a tMicrosoftMQOutput. An intermediary tLogRow component displays the flow being passed.

Dropping and linking components

1. Drop the three components required for the first Job from the Palette onto the design workspace.

2. Connect the components using a Row > Main link.

Configuring the components

1. Double-click tRowGenerator to open its editor.

2. Click the plus button to add three rows into the schema table.

3. In the Column column, type in a new name for each row to rename it. Here, we type in ID, Name and Address.

4. In the Type column, select Integer for the ID row from the drop-down list and leave the other rows as String.

5. In the Functions column, select random for the ID row, getFirstName for the Name row and getUsCity
for the Address row.

6. In the Number of Rows for RowGenerator field on the right end of the toolbar, type in 12 to limit the
number of rows to be generated. Then, Click Ok to validate this editing.

In real case, you may use an input component to load the data of your interest, instead of the tRowGenerator
component.

7. Double click the tMicrosoftMQOutput component to open its Component view.



Scenario: Writing and fetching queuing messages from Microsoft message queue

Talend Open Studio Components Reference Guide 1335

8. In the Host field, type in the host address. In this example, it is localhost.

9. In the Queue field, type in the queue name you want to write message in. In this example, name it
AddressQueue.

10. In Message column (String Type) field, select Address from the drop-down list to determine the message
body to be written.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

You can see that this queue has been created automatically and that the messages have been written.

Fetching the first queuing message from the message queue

Now set the second Job in order to fetch the first queuing message from the message queue.



Scenario: Writing and fetching queuing messages from Microsoft message queue

1336 Talend Open Studio Components Reference Guide

Dropping and linking components

1. Drop tMicrosoftMQInput and tLogRow from the Palette to the design workspace.

2. Connect these two components using a Row > Main link.

Configuring the components

1. Double-click the tMicrosoftMQInput to open its Component view.

2. In the Host field, type in the host name or address. Here, we type in localhost.

3. In the Queue field, type in the queue name from which you want to fetch the message. In this example, it
is AddressQueue.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

The message body Atlanta fetched from the queue is displayed on the console.



Scenario: Writing and fetching queuing messages from Microsoft message queue

Talend Open Studio Components Reference Guide 1337



tMicrosoftMQOutput

1338 Talend Open Studio Components Reference Guide

tMicrosoftMQOutput

tMicrosoftMQOutput Properties

Component family Internet/MOM and JMS

Function This component writes a defined column of given inflow data to Microsoft message queue
(only support String type).

Purpose This component makes it possible to write messages to Microsoft message queue.

Basic settings PROPERTY Either Built-in or Repository.

Built-in: No property data stored centrally. Enter properties
manually

Repository: Select the repository file where properties are stored.
The fields that come after are pre-filled in using the fetched data.

Host Type in the Host name or the IP address of the host server.

Queue Type in the name of the queue which you want write a given
message in. This queue can be created automatically on the fly if
it does not exist then.

Message column Select the column as message to be written to Microsoft message
queue. The selected column must be of String type.

Usage This component must be linked to an input or intermediary component.

Connections Outgoing links (from one component to another):

Row: Main, Iterate

Trigger: Run if, On Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Main; Reject; Iterate;

Trigger: Run if, On Subjob Ok, On Subjob Error; On Component
Ok, On Component Error.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation The message to be output cannot be null.

Related scenario

For a related scenario, see section Scenario: Writing and fetching queuing messages from Microsoft message queue



tMomCommit

Talend Open Studio Components Reference Guide 1339

tMomCommit

tMomCommit Properties

This component is closely related to tMomRollback. It usually doesn’t make much sense to use these components
independently in a transaction.

Component family Internet

Function The tMomCommit commits data in the MQ Server.

Purpose Using a unique connection, this component commits in one go a global transaction instead of doing
that on every row or every batch and thus provides gain in performance.

Basic settings Component list Select the Connection component used in your Job.

MQ Server Select the MOM server to be used from the list.

Close Connection This check box is selected by default. It allows you to close the
database connection once the commit is done. Clear this check box
to continue to use the selected connection once the component has
performed its task.

If you want to use a Row > Main connection to link
tMomCommit to your Job, your data will be commited row
by row. In this case, do not select the Close connection
check box or your connection will be closed before the end
of your first row commit.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Mom components, especially with tMomRollback
component.

Limitation n/a

Related scenario

For tMomCommit related scenario, see section tMysqlConnection



tMomConnection

1340 Talend Open Studio Components Reference Guide

tMomConnection

tMomConnection Properties

This component is closely related to tMomCommit and tMomRollback. It usually doesn’t make much sense to
use one of these without using a tMomConnection component to open a connection for the current transaction.

Component family Internet

Function tMomConnection opens a connection to the MQ Server.

Purpose This component opens a connection to the MQ Server for communication.

Basic settings Failover Select this check box to show the server address table.

In that table, you can define multiple MQ servers for failover.

MQ server List of the MQ servers.

Host IP address of the MQ server.

Port Listening port of the MQ server.

Advanced settings Use Transacted Select this check box to set the session created to be transacted.

tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Mom components, especially with tMomCommit and
tMomRollback.

Limitation n/a

Related scenario

For tMomConnection related scenario, see section tMysqlConnection



tMomInput

Talend Open Studio Components Reference Guide 1341

tMomInput

tMomInput Properties

Component family Internet

Function Fetches a message from a queue on a Message-Oriented middle ware system and passes it on to the next
component.

Purpose tMomInput makes it possible to set up asynchronous communications via a MOM server.

Basic settings Use existing
connection

Select this check box and in the Component List click the relevant connection
component to reuse the connection details you already defined.

When a Job contains the parent Job and the child Job, Component list
presents only the connection components in the same Job level, so if
you need to use an existing connection from the other level, you can use
Dynamic settings to share the intended connection. In this case, ensure
that the connection name is unique and distinctive all over through the two
Job levels. For more information about Dynamic settings, see Talend Open
Studio User Guide.

Keep listening Select this check box to keep the MOM server listening for and fetching new messages.

-For JBoss Messaging server, with this check box selected, the Sleeping time (in sec)
field will appear.

-For Active MQ server, with this check box selected, the Sleeping time (in sec) field
will disappear.

Sleeping time (in
sec)

Set the frequency by typing in numbers.

(Available when ActiveMQ or JBoss Messaging is selected in the MQ Server list.)

MQ Server Select the MOM server to be used from the list. According to the server selected, the
parameters required differ slightly.

Host/Port Fill in the Host name or IP address of the MOM server and Port.

Username Connection login to the server you select in the MQ Server list.

Password Connection password to the server you select in the MQ Server list.

Message From Type in the message source, exactly as expected by the server; this must include the
type and name of the source. e.g.: queue/A or topic/testtopic

Note that the field is case-sensitive.

(Available when ActiveMQ or JBoss Messaging is selected in the MQ Server list.)

Message Type Select the message type, either: Topic or Queue.

(Available when ActiveMQ or JBoss Messaging is selected in the MQ Server list.)

Message Body
Type

Select the message body type, either: Text , Bytes or Map

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number of fields that will be processed
and passed on to the next component.

In the context of tMomInput usage, the schema is comprised of two columns: From
and Message, and the column names are read only.

Websphere MQ Channel Fill this field with the name of the channel through which the data connection is
established. The default value is DC.SVRCONN.

Queue Manager A system program that provides a logical container for the message queue and is
responsible for transferring data to other queue managers via message channels. Fill
this field with the name of the queue manager to which the data connection is made.



tMomInput Properties

1342 Talend Open Studio Components Reference Guide

Message Queue A queue from which message queueing applications can put messages on, and get
messages. Fill this field with the name of the message queue.

Is using message
id to fetch

Select this check box to fetch messages according to their IDs.

Commit (delete
message after
reading from the
queue)

Select this check box to force a commit after reading each message from the queue.

Backout
removed
messages

Select this check box to indicate to the queue manager that all the messages read from
the server will not be deleted when the connection to server is cut off.

This check box and the Browse message check box in the Advanced
settings view enable you to read messages non-destructively from the
queue. It is visible only when the MQ server is WebSphere MQ with the
Keep listening check box cleared. For further information, see https://
publib.boulder.ibm.com/iseries/v5r2/ic2924/books/csqzaw07.pdf .

ActiveMQ Receive number
of messages

Select this check box to set the number of messages that you will receive on the
console.

When you want to limit the number of messages to receive, the time
limit becomes inactive and the Keep listening/Sleeping time (in sec) fields
disappear.

Failover Select this check box to show the server address table.

In that table, you can define multiple MQ servers for failover.

Advanced settings Acknowledgement
Mode

Select an acknowledgement mode from the list to indicate that the client will
acknowledge any messages it receives:

Auto Acknowledge: With this acknowledgement mode, the client automatically
acknowledges a message when it has either successfully returned from a call to
receive,or the message listener it has called to process the message successfully returns.

Client Acknowledge: With this acknowledgement mode, the client acknowledges a
message by calling a message’s acknowledge method.

Dups OK Acknowledge: This acknowledgement mode instructs the session to lazily
acknowledge the delivery of messages.

For further information about the usage of Jms headers, see https://
publib.boulder.ibm.com/iseries/v5r2/ic2924/books/csqzaw07.pdf.

If the check box Set Transacted is selected in the Advanced settings view
of tMomOutput, Acknowledgement Mode will be ignored. This check box
is enabled when the MQ server is ActiveMQ or JBoss Messaging.

Get Jms Header Select this check box to receive the Jms headers through the mapping from Jms fields
onto MQ Series fields. When this checkbox is checked, you can specify the Jms header
and the corresponding reference column name in the line(s) you added by clicking the
plus button in the Parameters table. For further information about the usage of Jms
headers, see https://publib.boulder.ibm.com/iseries/v5r2/ic2924/books/csqzaw07.pdf.

This check box is enabled when the MQ server is ActiveMQ or JBoss
Messaging.

Get Jms
Properties

Select this check box to receive the Jms properties mapped to MQMD fields. When
this checkbox is checked, you can specify the property name, the property type and
the reference column name in the line(s) you added by clicking the plus button in
the Parameters table. For further information about the usage of Jms properties, see
https://publib.boulder.ibm.com/iseries/v5r2/ic2924/books/csqzaw07.pdf.

(Available when ActiveMQ or JBoss Messaging is selected in the MQ Server list.)

Browse message Select this check box to disable Commit(delete message after reading from the
queue) check box and Backout removed messages check box in the Basic settings
view and open the queue to browse messages.

This check box and the Backout removed messages check box
in the Basic settings view enable you to read messages non-
destructively from the queue. Browse message check box is visible



Scenario 1: Asynchronous communication via a MOM server

Talend Open Studio Components Reference Guide 1343

only when the MQ server is WebSphere MQ with the Backout
removed messages check box cleared. For further information,
see http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0m0/index.jsp?
topic=%2Fcom.ibm.mq.java.doc%2Fcom%2Fibm%2Fmq%2FMQC.html/.

Get MQMD
Fields

Select this check box to set one or more message descriptors by adding new fields for
MQMD(message queuing message descriptor) in the Parameters table:

Field Name: Select one or more message descriptors from the list to retrieve header
information of the message.

Reference Column Name: The header and properties information of the message.

For further information, see http://publib.boulder.ibm.com/infocenter/wmqv7/
v7r0m0/index.jsp?topic=%2Fcom.ibm.mq.csqzak.doc%2Ffr13040_.htm/.

(Available when WebSphere MQ is selected in the MQ Server list.)

Include Header Select this check box to enable the check box for:

MQRFH2 fixed Portion: Select this check box and click the plus button to add one or
more lines to specify the fields and the reference column names for the fixed portion
of MQRFH2 header.

and the check boxes for the variable portion which contains the following three folders:

MCD folder: Select this check box and click the plus button to add one or more lines
to specify the fields and the reference column names for the properties that describe
the format of the message.

JMS folder: Select this check box and click the plus button to add one or more lines to
specify the fields and the reference column names for the transportation of JMS header
fields and JMSX properties.

USR folder: Select this check box and click the plus button to add one or more lines to
specify the fields and the reference column names for the transportation of application-
defined properties associated with the message.

For further information about MQRFH2 header, see https://publib.boulder.ibm.com/
iseries/v5r2/ic2924/books/csqzaw07.pdf.

(Available when WebSphere MQ is selected in the MQ Server list.)

Set CipherSpec Select this check box to enable the CipherSpec list from which you can specify the
CipherSpec to be used with WebSphere MQ SSL.

For further information about CipherSpec, see http://publib.boulder.ibm.com/
infocenter/wmqv6/v6r0/index.jsp?topic=%2Fcom.ibm.mq.csqzas.doc
%2Fsy12870_.htm.

(Available when WebSphere MQ is selected in the MQ Server list.)

tStatCatcher
Statistics

Select this check box to gather the Job processing metadata at a Job level as well as
at each component level.

Usage This component is generally used as a start component. It must be linked to an output component.

Limitation Make sure the relevant ActiveMQ, JBoss Messaging or Websphere MQ server is launched.

Scenario 1: Asynchronous communication via a MOM
server

This scenario is made of two Jobs. The first Job posts messages on a JBoss server queue and the second Job fetches
the message from the server.

http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0m0/index.jsp?topic=%2Fcom.ibm.mq.java.doc%2Fcom%2Fibm%2Fmq%2FMQC.html/
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0m0/index.jsp?topic=%2Fcom.ibm.mq.java.doc%2Fcom%2Fibm%2Fmq%2FMQC.html/
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0m0/index.jsp?topic=%2Fcom.ibm.mq.csqzak.doc%2Ffr13040_.htm/
http://publib.boulder.ibm.com/infocenter/wmqv7/v7r0m0/index.jsp?topic=%2Fcom.ibm.mq.csqzak.doc%2Ffr13040_.htm/
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=%2Fcom.ibm.mq.csqzas.doc%2Fsy12870_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=%2Fcom.ibm.mq.csqzas.doc%2Fsy12870_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=%2Fcom.ibm.mq.csqzas.doc%2Fsy12870_.htm


Scenario 1: Asynchronous communication via a MOM server

1344 Talend Open Studio Components Reference Guide

Configuring and executing the first Job

In the first Job, a string message is created using a tRowGenerator and put on a JBoss server using a
tMomOutput. An intermediary tLogRow component displays the flow being passed.

1. Drop the three components required for the first Job from the Palette onto the design workspace and right-
click to connect them using a Main row link.

2. Double-click on tRowGenerator to set the schema to be randomly generated.

3. Set just one column called message. This is the message to be put on the MOM queue.

4. This column is of String type and is nullable. To produce the data, use a preset function which concatenates
randomly chosen ascii characters to form a 6-char string. This function is getAsciiRandomString. (Java
version). Click the Preview button to view a random sample of data generated.

5. Set the Number of rows to be generated to 10.

Click OK to validate.

6. The tLogRow is only used to display a intermediary state of the data to be handled. In this example, it doesn’t
require any specific configuration.

7. Then select the tMomOutput component.

8. In this case, the MQ server to be used is JBoss.

In the Host and Port fields, fill in the relevant connection information.

9. Select the Message type from the list. The message can be of Queue or Topic type. In this example, select
the Queue type from the list.

10. In the To field, type in the message source information strictly respecting the syntax expected by the server.
This should match the Message Type you selected, such as: queue/A.

The message name is case-sensitive, therefore queue/A and Queue/A are different.



Scenario 1: Asynchronous communication via a MOM server

Talend Open Studio Components Reference Guide 1345

11. Then click Sync Columns to pass on the schema from the preceding component. The schema being read-
only, it cannot be changed. The data posted onto the MQ comes from the first schema column encountered.

12. Press F6 to execute the Job and view the data flow being passed on in the console, thanks to the tLogRow
component.

Configuring and executing the second Job

Then set the second Job in order to fetch the queuing messages from the MOM server.

1. Drop the tMomInput component and a tLogRow from the Palette to the design workspace.

2. Select the tMomInput to set the parameters.

3. Select the MQ server from the list. In this example, a JBoss messaging server is used.

4. Set the server Host and Port information.

5. Set the Message From and the Message Type to match the source and type expected by the messaging server.

6. The Schema is read-only and is made of two columns: From and Message.

7. Select the Keep listening check box and set the verification frequency to 5 seconds.

When using the Keep Listening option, you’ll need to kill the Job to end it.

8. No need to change any default setting from the tLogRow.

9. Save the Job and run it (when launching for the first time or if you killed it on a previous run).



Scenario 2: Transmitting XML files via a MOM server

1346 Talend Open Studio Components Reference Guide

The messages fetched on the server are displayed on the console.

Scenario 2: Transmitting XML files via a MOM server

This scenario describes a five-component Job composed of two subjobs that sends XML files from a local folder to
a MOM queue, and then fetches the files from the MOM queue and displays the contents of the files on the console.

Dropping and links the components

1. From the Palette, drop the following components one after another onto the design workspace: tFileList,
tFileInputXML, tMomOutput, tMomInput, and tLogRow.

2. Connect tFileList to tFileInputXML using a Row > Iterate link, and connect tFileInputXML to
tMomOutput using a Row > Main link to form the first subjob. This subjob will read each XML file in a
given folder and send it to a MOM queue.

3. Connect tMomInput to tLogRow using a Row > Main link to form the second subjob. This subjob will
fetch the XML files from MOM queue and display the file contents on the console.



Scenario 2: Transmitting XML files via a MOM server

Talend Open Studio Components Reference Guide 1347

4. Connect tFileInputXML to tMomInput using a Trigger > On Component Ok connection to link the two
subjobs.

Configuring the first subjob

Configuring the input components

1. Double-click the tFileList component to open its Basic settings view.

2. In the Directory field, enter the path to the directory to read XML files from, or browse to the path by clicking
the [...] button next to the field.

3. Select Use Glob Expressions as Filemask check box, add a new line in the Files field by clicking the [+]
button, and enter "*.xml" as the file mask so that all XML files in the directory will be used. Keep all the
other settings as they are.

4. Double-click the tFileInputXML component to open its Basic settings view.



Scenario 2: Transmitting XML files via a MOM server

1348 Talend Open Studio Components Reference Guide

5. Click the [...] button next to Edit schema to open the [Schema] dialog box.

6. Click the [+] button to add a column, give it a name, message in this example, and select Document from
the Type list to handle XML format files. Then, click OK to close the dialog box.

7. In the File name/Stream field, press Ctrl+Space to access the global variable list, and select
tFileList_1.CURRENT_FILEPATH to loop on the context files’ directory.

8. In in the Loop XPath query fields, enter “/” to define the root as the loop node of the input files' structure;
in the Mapping table, fill the XPath query column with “.” to extract all data from context node of the
source files, and select the Get Nodes check box to build a Document type data flow.

Configuring the tMomOutput component

1. Double-click the tMomOutput component to open its Basic settings view.



Scenario 2: Transmitting XML files via a MOM server

Talend Open Studio Components Reference Guide 1349

2. Select WebSphere MQ from the MQ server list, and enter the host name or IP address of the MQ server
and the port number.

3. Enter the login authentication information in the Username and Password fields, and enter the channel name
of the transmission queue in the Channel field.

4. As we are handling file messages, select Text Message from the Message Body Type list.

5. Click Sync columns to retrieve the schema structure from the preceding component.

6. Fill in the queue manager and message queue details in the corresponding fields, and leave the other settings
as they are.

Configuring the second subjob

1. Double-click the tMomInput component to open its Basic settings view.

2. Set the basic parameters of the component using the same settings you have done in the tMomOutput
component, including the MQ server details, login authentication details, channel, message body type, queue
manager and message queue.

3. Click the [...] button next to Edit schema to open the [Schema] dialog box.



Scenario 2: Transmitting XML files via a MOM server

1350 Talend Open Studio Components Reference Guide

4. From the Type list for the message column, select Document to handle XML format files, and then click
OK to close the dialog box.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.

The XML files in the specified folder are written to the message queue and then retrieved from the queue.
The contents of the files are displayed on the console.



Scenario 2: Transmitting XML files via a MOM server

Talend Open Studio Components Reference Guide 1351



tMomMessageIdList

1352 Talend Open Studio Components Reference Guide

tMomMessageIdList

tMomMessageIdList Properties

Component family Internet

Function tMomMessageIdList fetches a message ID list from a queue on a Message-Oriented
middleware system and passes it to the next component.

Purpose tMomMessageIdList makes it possible to iterate on certain message IDs. It is usually used
with tMomInput, for more information, see section tMomInput Properties.

Basic settings MQ Server Select the MOM server to be used from the list. According to the
server selected, the parameters required differ slightly.

Host/Port Fill in the Host name or IP address of the MOM server and Port.

Websphere Channel Channel on the queue.

Queue Manager Fill in the server driver details.

Message Queue Source of the message.

Usage This component is generally used as an input component.

Limitation Make sure the relevant Websphere server is launched.

Related scenario

For a related scenario, see section tMomInput.



tMomOutput

Talend Open Studio Components Reference Guide 1353

tMomOutput

tMomOutput Properties

Component
family

Internet

Function Adds a message to a Message-Oriented middleware system queue in order for it to be fetched asynchronously.

Purpose tMomOutput makes it possible to set up asynchronous communications via a MOM server.

Basic settings Use existing
connection

Select this check box and in the Component List click the relevant connection component to
reuse the connection details you already defined.

When a Job contains the parent Job and the child Job, Component list presents only
the connection components in the same Job level, so if you need to use an existing
connection from the other level, you can use Dynamic settings to share the intended
connection. In this case, ensure that the connection name is unique and distinctive
all over through the two Job levels. For more information about Dynamic settings,
see Talend Open Studio User Guide.

Failover Select this check box to show the server address table.

In that table, you can define multiple MQ servers for failover.

(Available when ActiveMQ is selected in the MQ Server list.)

MQ Server Select the MOM server to be used from the list. According to the server selected, the parameters
required differ slightly.

Host/Port Fill in the MOM server and Port Host name or IP address.

Username Connection login to the server.

Password Connection password to the server.

To Type in the message destination, respecting the syntax required by the server; this must include
the type and name of the target folder. e.g.: queue/A or topic/testtopic

Note that the field is case-sensitive.

(Available when ActiveMQ or JBoss Messaging is selected in the MQ Server list.)

Message Type Select the message type, either: Topic or Queue.

(Available when ActiveMQ or JBoss Messaging is selected in the MQ Server list.)

Message Body
Type

Select the message body type, either: Text , Bytes or Map

Schema and Edit
Schema

A schema is a row description, i.e., it defines the number of fields that will be processed and
passed on to the next component.

In the context of tMomOutput usage, the schema is read-only but will change according to the
incoming schema. Only one-column schema is expected by the server to contain the Messages.

Websphere MQ Channel Fill this field with the name of the channel through which the data connection is established.
The default value is DC.SVRCONN.

Queue Manager A system program that provides a logical container for the message queue and is responsible
for transferring data to other queue managers via message channels. Fill this field with the
name of the queue manager to which the data connection is made.

Message Queue A queue from which message queueing applications can put messages on, and get messages.
Fill this field with the name of the message queue.

Is using
message id to set

Select this check box to set messages according to their ids.

Advanced settings Delivery Mode Select a delivery mode supported by JMS:



tMomOutput Properties

1354 Talend Open Studio Components Reference Guide

Not Persistent: This delivery mode does not require that the message be logged to stable
storage.

Persistent: This delivery mode requires that the message be logged to stable storage as part
of the client's send operation.

For further information about the delivery modes, see https://publib.boulder.ibm.com/iseries/
v5r2/ic2924/books/csqzaw07.pdf.

(Available when ActiveMQ or JBoss Messaging is selected in the MQ Server list.)

Set Transacted Select this check box to transact the session. For further information about this paramater, see
https://publib.boulder.ibm.com/iseries/v5r2/ic2924/books/csqzaw07.pdf.

Selecting this check box will ignore the settings in the Acknowledgement Mode
list in the Advanced settings view of tMomInput. This check box is enabled when
the MQ server is ActiveMQ or JBoss Messaging.

Set Jms Header Select this check box to send the Jms headers through the mapping from Jms fields onto
MQ Series fields on the MQ server. When this checkbox is checked, you can specify the
header name and the header value in the line(s) you added by clicking the plus button in
the Parameters table. For further information about the usage of Jms headers, see https://
publib.boulder.ibm.com/iseries/v5r2/ic2924/books/csqzaw07.pdf.

(Available when ActiveMQ or JBoss Messaging is selected in the MQ Server list.)

Set Jms
Properties

Select this check box to send the Jms properties mapped onto MQMD fields on the MQ server.
When this checkbox is checked, you can specify the property name, the property type and the
property value in the line(s) you added by clicking the plus button in the Parameters table.
For further information about the usage of Jms properties, see https://publib.boulder.ibm.com/
iseries/v5r2/ic2924/books/csqzaw07.pdf.

(Available when ActiveMQ or JBoss Messaging is selected in the MQ Server list.)

Use format Select this check box to specify the WebSphere message format in the WebSphere Message
Format field. The default format is MQSTR.

For further information about WebSphere message format,
see http://publib.boulder.ibm.com/infocenter/wtxdoc/v8r2m0/index.jsp?topic=/
com.ibm.websphere.dtx.adapibmmq.doc/references/
r_ibmmq_Message_Format_FORMAT.htm.

(Available when WebSphere MQ is selected in the MQ Server list.)

Include Header Select this check box to enable the check box for:

MQRFH2 fixed Portion: Select this check box and click the plus button to add one or more
lines to specify the field name and the value for the fixed portion of MQRFH2 header.

and the check boxes for the variable portion which contains the following three folders:

MCD folder: Select this check box and click the plus button to add one or more lines to specify
the field name and the value for the properties that describe the format of the message.

JMS folder: Select this check box and click the plus button to add one or more lines to specify
the field name and the value for the transportation of JMS header fields and JMSX properties.

USR folder: Select this check box and click the plus button to add one or more lines to specify
the field name and the value for the transportation of application-defined properties associated
with the message.

For further information about MQRFH2 header, see https://publib.boulder.ibm.com/iseries/
v5r2/ic2924/books/csqzaw07.pdf.

(Available when WebSphere MQ is selected in the MQ Server list.)

Set CipherSpec Select this check box to enable the CipherSpec list from which you can specify the CipherSpec
to be used with WebSphere MQ SSL.

For further information about CipherSpec, see http://publib.boulder.ibm.com/infocenter/
wmqv6/v6r0/index.jsp?topic=%2Fcom.ibm.mq.csqzas.doc%2Fsy12870_.htm.

(Available when WebSphere MQ is selected in the MQ Server list.)

http://publib.boulder.ibm.com/infocenter/wtxdoc/v8r2m0/index.jsp?topic=/com.ibm.websphere.dtx.adapibmmq.doc/references/r_ibmmq_Message_Format_FORMAT.htm
http://publib.boulder.ibm.com/infocenter/wtxdoc/v8r2m0/index.jsp?topic=/com.ibm.websphere.dtx.adapibmmq.doc/references/r_ibmmq_Message_Format_FORMAT.htm
http://publib.boulder.ibm.com/infocenter/wtxdoc/v8r2m0/index.jsp?topic=/com.ibm.websphere.dtx.adapibmmq.doc/references/r_ibmmq_Message_Format_FORMAT.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=%2Fcom.ibm.mq.csqzas.doc%2Fsy12870_.htm
http://publib.boulder.ibm.com/infocenter/wmqv6/v6r0/index.jsp?topic=%2Fcom.ibm.mq.csqzas.doc%2Fsy12870_.htm


Related scenario

Talend Open Studio Components Reference Guide 1355

tStatCatcher
Statistics

Select this check box to gather the Job processing metadata at a Job level as well as at each
component level.

Usage This component must be linked to an input or intermediary component.

Limitation Make sure the relevant Websphere MQ, JBoss Messaging or ActiveMQ server is launched.

Related scenario

For a related scenario, see section tMomInput



tMomRollback

1356 Talend Open Studio Components Reference Guide

tMomRollback

tMolRollback properties

This component is closely related to tMomCommit component. It usually does not make much sense to use these
components independently in a transaction.

Component family Internet

Function tMomRollback rollbacks data from the MQ Server..

Purpose Avoids involuntary commitment of part of a transaction.

Basic settings Component list Select the Connection component Used in your Job.

Close Connection Clear this check box to continue to use the selected connection once
the component has performed its task.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is to be used along with Mom components, especially with tMomCommit.

Limitation n/a

Related scenario

For tMomRollback related scenario, see section Scenario: Rollback from inserting data in mother/daughter
tables.



tPOP

Talend Open Studio Components Reference Guide 1357

tPOP

tPOP properties

Component family Internet

Function The tPOP component fetches one or more email messages from a server using the POP3 or
IMAP protocol.

Purpose The tPOP component uses the POP or IMAP protocol to connect to a specific email server.
Then it fetches one or more email messages and writes the recovered information in specified
files. Parameters in the Advanced settings view allows you to use filters on your selection.

Basic settings Host IP address of the email server you want to connect to.

Port Port number of the email server.

Username and Password User authentication data for the email server.

Username: enter the username you use to access your email box.

Password: enter the password you use to access your email box.

Output directory Enter the path to the file in which you want to store the email
messages you retrieve from the email server, or click the three-
dot button next to the field to browse to the file.

Filename pattern Define the syntax of the names of the files that will hold each of
the email messages retrieved from the email server, or press Ctrl
+Space to display the list of predefined patterns.

Retrieve all emails? By default, all email messages present on the specified server are
retrieved.

To retrieve only a limited number of these email messages, clear
this check box and in the Number of emails to retrieve.field,
enter the number of messages you want to retrieve. email
messages are retrieved starting from the most recent.

Delete emails from server Select this check box if you do not want to keep the retrieved
email messages on the server.

For Gmail servers, this option does not work for the
pop3 protocol. Select the imap protocol and ensure that
the Gmail account is configured to use imap.

Choose the protocol From the list, select the protocol to be used to retrieve the email
messages from the server. This protocol is the one used by the
email server. If you choose the imap protocol, you will be able to
select the folder from which you want to retrieve your emails.

Use SSL Select this check box if your email server uses this protocol for
authentication and communication confidentiality.

This option is obligatory for users of Gmail.

Advanced settings tStatCatcher Statistics Select this check box to gather the job processing metadata at a
job level as well as at each component level.

Filter Click the plus button to add as many lines as needed to filter email
messages and retrieve only a specific selection:

Filter item: select one of the following filter types from the list:

From: email messages are filtered according to the sender email
address.



Scenario: Retrieving a selection of email messages from an email server

1358 Talend Open Studio Components Reference Guide

To: email messages are filtered according to the recipient email
address.

Subject: email messages are filtered according to the message
subject matter.

Before date: email messages are filtered by the sending or
receiving date. All messages before the set date are retrieved.

After date: email messages are filtered by the sending or
receiving date. All messages after the set date are retrieved.

Pattern: press Ctrl+Space to display the list of available values.
Select the value to use for each filter.

Filter condition relation Select the type of logical relation you want to use to combine the
specified filters:

and: the conditions set by the filters are combined together, the
research is more restrictive.

or: the conditions set by the filters are independent, the research
is large.

Usage This component does not handle data flow, it can be used alone.

Limitation n/a

Scenario: Retrieving a selection of email messages
from an email server
This Java scenario is a one-component Job that retrieves a predefined number of email messages from an email
server.

• Drop the tPOP component from the Palette to the design workspace.

• Double click tPOP to display the Basic settings view and define the component properties.

• Enter the email server IP address and port number in the corresponding fields.

• Enter the username and password for your email account in the corresponding fields. In this example, the email
server is called Free.

• In the Output directory field, enter the path to the output directory manually, or click the three-dot button
next to the field and browse to the output directory where the email messages retrieved from the email server
are to be stored.



Scenario: Retrieving a selection of email messages from an email server

Talend Open Studio Components Reference Guide 1359

• In the Filename pattern field, define the syntax you want to use to name the output files that will hold
the messages retrieved from the email server, or press Ctrl+Space to display a list of predefined patterns.
The syntax used in this example is the following: TalendDate.getDate("yyyyMMdd-hhmmss") + "_" +
(counter_tPOP_1 + 1) + ".txt".

The output files will be stored as .txt files and are defined by date, time and arrival chronological order.

• Clear the Retrieve all emails? field and in the Number of emails to retrieve field, enter the number of email
messages you want to retrieve, 10 in this example.

• Select the Delete emails from server check box to delete the email messages from the email server once they
are retrieved and stored locally.

• In the Choose the protocol field, select the protocol type you want to use. This depends on the protocol used
by the email server. Certain email suppliers, like Gmail, use both protocols. In this example, the protocol used
is pop3.

• Save your Job and press F6 to execute it.

The tPOP component retrieves the 10 recent messages from the specified email server.

In the tPOP directory stored locally, a .txt file is created for each retrieved message. Each file holds the metadata
of the email message headings (sender’s address, recipient’s address, subject matter) in addition to the message
content.



tREST

1360 Talend Open Studio Components Reference Guide

tREST

tREST properties

Component family Internet

Function The tREST component sends HTTP requests to a REpresentational State Transfer (REST) Web
service provider and gets responses correspondingly.

Purpose The tREST component serves as a REST Web service client that sends HTTP requests to a
REST Web service provider and gets the responses.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component.

This component always uses a built-in, read-only schema that
contains two columns:

- Body: stores the result from the server end.

- ERROR_CODE: stores the HTTP status code from the server
end when an error occurs during the invocation process. The
specific meanings of the errors codes are subject to definitions
of your Web service provider. For reference information, visit
en.wikipedia.org/wiki/List_of_HTTP_status_codes.

Click Edit Schema to view the schema structure.

Changing the schema type may result in loss of
the schema structure and therefore failure of the
component.

URL Type in the URL address of the REST Web server to be invoked.

HTTP Method From this list, select an HTTP method that describes the desired
action. The specific meanings of the HTTP methods are subject
to definitions of your Web service provider. Listed below are the
generally accepted HTTP method definitions:

- GET: retrieves data from the server end based on the given
parameters.

- POST: creates and uploads data based on the given parameters.

- PUT: updates data based on the given parameters, or if the data
does not exist, creates it.

- DELETE: removes data based on the given parameters.

HTTP Headers Type in the name-value pair(s) for HTTP headers to define the
parameters of the requested HTTP operation.

For the specific definitions of HTTP headers, consult your
REST Web service provider. For reference information, visit
en.wikipedia.org/wiki/List_of_HTTP_headers.

HTTP Body Type in the payload to be uploaded to the server end when the
POST or PUT action is selected.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at the
Job level as well as at each component level.

Usage Use this component as a REST Web service client to communicate with a REST Web service
provider. It must be linked to an output component.

Limitation JRE 1.6 must be running for this component to work properly.

http://en.wikipedia.org/wiki/List_of_HTTP_status_codes
http://en.wikipedia.org/wiki/List_of_HTTP_headers


Scenario: Creating and retrieving data by invoking REST Web service

Talend Open Studio Components Reference Guide 1361

Scenario: Creating and retrieving data by invoking
REST Web service

This scenario describes a simple Job that invokes a REST Web service to create a new customer record on the
server end and then retrieve the customer information. When executed, the Job displays relevant information on
the Run console.

• Drop the following components from the Palette onto the design workspace: two tREST components and two
tLogRow components, and label the two tREST components to best describe the actions to perform.

• Connect each tREST to one tLogRow using a Row > Main connection.

• Connect the first tREST to the second tREST using a Trigger > OnSubjobOK connection.

• Double click the first tREST component to open its Basic settings view.

• Fill the URL field with the URL of the Web service you are going to invoke. Note that the URL provided in
this use case is for demonstration purpose only and is not a live address.

• From the HTTP Method list, select POST to send an HTTP request for creating a new record.

• Click the plus button to add a line in the HTTP Headers table, and type in the appropriate name-value key pair,
which is subject to definition of your service provider, to indicate the media type of the payload to send to the
server end. In this use case, type in Content-Type and application/xml. For reference information about Internet
media types, visit www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.7.

• Fill the HTTP Body field with the payload to be uploaded to the server end. In this use case, type in
<Customer><name>Steven</name></Customer> to create a record for a new customer named Steven.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec3.html#sec3.7


Scenario: Creating and retrieving data by invoking REST Web service

1362 Talend Open Studio Components Reference Guide

If you want to include double quotation marks in your payload, be sure to use a backslash escape character before each of the
quotation marks. In this use case, for example, type in <Customer><name>\"Steven\"</name></Customer> if you want
to enclose the name Steven in a pair of double quotation marks.

• Double click the second tREST component to open its Basic settings view.

• Fill the URL field with the same URL.

• From the HTTP Method list, select GET to send an HTTP request for retrieving the existing records.

• In the Basic settings view of each tLogRow, select the Print component unique name in front of each output
row and Print schema column name in front of each value check boxes for better identification of the output
flows.

• Save your Job and press F6 to launch it.

The console shows that the first tREST component sends an HTTP request to the server end to create a new
customer named Steven, and the second tREST component successfully reads data from the server end, which
includes the information of the new customer you just created.



tRSSInput

Talend Open Studio Components Reference Guide 1363

tRSSInput

tRSSInput Properties

Component family Internet

Function tRSSInput reads RSS-Feeds using URLs.

Purpose tRSSInput makes it possible to keep track of blog entries on websites to gather and organize
information for quick and easy access.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

The tRSSInput component has a read-only schema that is made
of four columns: TITLE, DESCRIPTION, PUBDATE, and
Link.

RSS URL Enter the URL for the RSS_Feed to read.

Read articles from If selected, tRSSInput reads articles on the RSS_Feed from the
date set through the three-dot [...] button next to the date time
field.

Max number of articles If selected, tRSSInput reads as many articles as the number
entered in the max amount field.

Die on error This check box is selected by default. Clear the check box to skip
the row on error and complete the process for error-free rows.

Usage This component is generally used as an input component. It requires an output component.

Limitation n/a

Scenario: Fetching frequently updated blog entries.

This two-component scenario aims at retrieving frequently updated blog entries from a Talend local news RSS
feed using the tRSSInput component.

1. Drop the following components from the Palette onto the design workspace: tRSSInput and tLogRow.

2. Right-click to connect them using a Row > Main link.

3. In the design workspace, select tRSSInput, and click the Component tab to define the basic settings for
tRSSInput.



Scenario: Fetching frequently updated blog entries.

1364 Talend Open Studio Components Reference Guide

4. Enter the URL for the RSS_Feed to access. In this scenario, tRSSInput links to the Talend RSS_Feed: http://
feeds.feedburner.com/Talend.

5. Select/clear the other check boxes as required. In this scenario, we want to display the information about two
articles dated from July 20, 2008.

6. In the design workspace, select tLogRow and click the Component tab to define its basic settings. For more
information about tLogRow properties, see section tLogRow properties.

7. Save the Job and press F6 to execute it.

The tRSSInput component accessed the RSS feed of Talend website on your behalf and organized the
information for you.

Two blog entries are displayed on the console. Each entry has its own title, description, publication date,
and the corresponding RSS feed URL address. Blogs show the last entry first, and you can scroll down to
read earlier entries.



tRSSOutput

Talend Open Studio Components Reference Guide 1365

tRSSOutput

tRSSOutput Properties

Component family Internet

Function tRSSOutput writes RSS_Feed or Atom_Feed XML files.

Purpose tRSSOutput makes it possible to create XML files that hold RSS or Atom feeds.

Basic settings File name Name or path to the output XML file. Related topic: see Talend
Open Studio User Guide.

Encoding Select an encoding type from the list, or select Custom and define
it manually. This field is compulsory for DB data handling.

Append Select this check box to add the new rows to the end of the file.

Mode Select between RSS or ATOM according to the feed you want
to generate.

Channel (in RSS mode) The information to be typed in here concerns your
entire input data, site etc, rather than a particular item.

Title: Enter a meaningful title.

Description: Enter a description that you think will describe your
content.

Publication date: Enter the relevant date.

Link: Enter the relevant URL.

Feed (in ATOM mode) Title: Enter a meaningful title.

Link: Enter the relevant URL.

Id: Enter the valid URL corresponding to the Link.

Update date: Enter the relevant date .

Author name: Enter the relevant name.

Optionnal Channel
Elements

Click the [+] button below the table to add new lines and enter
the information relative to the RSS flow metadata:

Element Name: name of the metadata.

Element Value: content of the metadata.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

By default, the schema of tRSSOutput is made of five read-
only columns: id, title, link, updated, and summary. You can
add new columns or click Syn columns to retrieve the schema
structure from the preceding component.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component must be linked to an input or intermediary component.

Limitation n/a



Scenario 1: Creating an RSS flow and storing files on an FTP server

1366 Talend Open Studio Components Reference Guide

Scenario 1: Creating an RSS flow and storing files on
an FTP server

In this scenario we:

• create an RSS flow for files that you would like to share with other people, and

• store the complete files on an FTP server.

This scenario writes an RSS feed XML file about a Mysql table holding information about books. It adds links to
the files stored on an FTP server in case users want to have access to the complete files.

Dropping and linking components

1. Drop the following components from the Palette onto the design workspace: tMysqlInput, tRSSOutput,
and tFTPPut.

2. Right-click tMysqlInput and connect it to tRSSOutput using a Row > Main link.

3. Right-click tMysqlInput and connect it to tFTPPut using a Trigger > OnSubjobOk link.

Defining the data source

1. In the design workspace, select tMysqlInput, and click the Component tab to define the basic settings for
tMysqlInput.



Scenario 1: Creating an RSS flow and storing files on an FTP server

Talend Open Studio Components Reference Guide 1367

2. Set the Property type to Repository and click the three-dots button [...] to select the relevant DB entry from
the list. The connection details along with the schema get filled in automatically.

3. In the Table Name field, either type your table name or click the three dots button [...] and select your table
name from the list. In this scenario, the Mysql input table is called “rss_talend” and the schema is made up
of four columns, TITLE, Description, PUBDATE, and LINK.

4. In the Query field, enter your DB query paying particular attention to properly sequence the fields in order
to match the schema definition, or click Guess Query.

Creating an RSS flow

1. In the design workspace, select tRSSOutput, and click the Component view to define the basic settings
for tRSSOutput.



Scenario 1: Creating an RSS flow and storing files on an FTP server

1368 Talend Open Studio Components Reference Guide

2. In the File name field, use the by default file name and path, or browse to set your own for the output XML
file.

3. Select the encoding type on the Encoding Type list.

4. In the Mode area, select RSS.

5. In the Channel panel, enter a title, a description, a publication date, and a link to define your input data as
a whole.

6. Click Edit Schema to modify the schema if necessary.

You can click Sync columns to retrieve the generated schema from the preceding component.

7. Save your Job and press F6 to execute this first part.



Scenario 1: Creating an RSS flow and storing files on an FTP server

Talend Open Studio Components Reference Guide 1369

The tRSSOutput component created an output RSS flow in an XML format for the defined files.

Writing the complete files to an FTP server

To store the complete files on an FTP server:

1. In the design workspace, select FTPPut, and click the Component tab to define the basic settings for
tFTPPut.



Scenario 2: Creating an RSS flow that contains metadata

1370 Talend Open Studio Components Reference Guide

2. Enter the host name and the port number in their corresponding fields.

3. Enter your connection details in the corresponding Username and Password fields.

4. Browse to the local directory, or enter it manually in the Local directory field.

5. Enter the details of the remote server directory.

6. Select the transfer mode from the Transfer mode list.

7. On the Files panel, click on the plus button to add new lines and fill in the filemasks of all files to be copied
onto the remote directory. In this scenario, the files to be saved on the FTP server are all text files.

8. Save your Job and press F6 to execute it.

Files defined in the Filemask are copied on the remote server.

Scenario 2: Creating an RSS flow that contains
metadata

This scenario describes a two-component Job that creates an RSS flow that holds metadata and then redirects the
obtained information in an XML file of the output RSS flow.

Dropping and linking components

1. Drop tRSSInput and tRSSOutput from the Palette to the design workspace.

2. Connect the two components together using a Row > Main link.

Configuring the components

1. Double-click tRSSInput to open its Basic settings view and define the component properties.



Scenario 2: Creating an RSS flow that contains metadata

Talend Open Studio Components Reference Guide 1371

2. Enter the URL for the RSS_Feed to access. In this scenario, tRSSInput links to the Talend RSS_Feed: http://
feeds.feedburner.com/Talend.

3. In the design workspace, double-click tRSSOutput to display its Basic settings view and define the
component properties.

4. In the File name field, use the by default file name and path, or browse to set your own for the output XML
file.

5. Select the encoding type on the Encoding Type list.

6. In the Mode area, select RSS.

7. In the Channel panel, enter a title, a description, a publication date and a link to define your input data as
a whole.

8. In the Optional Channel Element, define the RSS flow metadata. In this example, the flow has two metadata:
copyright, which value is tos, and language which value is en_us.

9. Click Edit Schema to modify the schema if necessary.

You can click Sync Column to retrieve the generated schema from the preceding component.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.



Scenario 3: Creating an ATOM feed XML file

1372 Talend Open Studio Components Reference Guide

The defined files are copied in the output XML file and the metadata display under the <channel> node
above the information about the RSS flow.

Scenario 3: Creating an ATOM feed XML file
This scenario describes a two component Job that generates data and writes them in an ATOM feed XML file.

Dropping and linking components

1. Drop the following components from the Palette onto the deisgn workspace: tFixedFlowInput of the Misc
component group and tRSSOutput of the Internet component group.

2. Right-click tFixedFlowInput and connect it to tRSSOutput using a Row Main link.

3. When asked whether you want to pass on the schema of tRSSOutput to tFixedFlowInput, click Yes.



Scenario 3: Creating an ATOM feed XML file

Talend Open Studio Components Reference Guide 1373

Configuring the components

1. In the design workspace, double-click tFixedFlowInput to display its corresponding Component view and
define its basic settings.

2. In the Number of rows field, leave the default setting to 1 to only generate one line of data.

3. In the Mode area, leave the Use Single Table option selected and fill in the Values table. Note that the
Column field of the Values table is filled in by the columns of the schema defined in the component.

4. In the Value field of the Values table, type in the data you want to be sent to the following component.

5. In the design workspace, double-click tRSSOutput to display its corresponding Component view and define
its basic settings.



Scenario 3: Creating an ATOM feed XML file

1374 Talend Open Studio Components Reference Guide

6. Click the [...] button next to the File Name field to set the output XML file directory and name.

7. In the Mode area, select ATOM to generate an ATOM feed XML file.

As the ATOM feed format is strict, some default information is required to create the XML file. So, the schema
tRSSOutput contains default columns that will contain those information. Those default columns are greyed out to
indicate that they must not be modified. If you choose to modify the schema of the component, the ATOM XML file
created will not be valid.

8. In the Feed area, enter a title, link, id, update date, author name to define your input data as a whole.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run on the Run tab to execute the Job.



Scenario 3: Creating an ATOM feed XML file

Talend Open Studio Components Reference Guide 1375

The tRSSOutput component creates an output ATOM flow in an XML format.



tSCPClose

1376 Talend Open Studio Components Reference Guide

tSCPClose

tSCPClose Properties

Componant family Internet/SCP

Function tSCPClose closes a connection to a fully encrypted channel.

Purpose This component closes a connection to an SCP protocol.

Basic settings Component list If there is more than one connection in the current Job, select
tSCPConnection from the list.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level

Usage tSCPClose is generally used as a start component. It requires an output component.

Limitation n/a

Related scenario

This component is closely related to tSCPConnection and tSCPRollback. It is generally used with
SCPConnection as it allows you to close a connection for the transaction which is underway.

For a related scenario see section tMysqlConnection.



tSCPConnection

Talend Open Studio Components Reference Guide 1377

tSCPConnection

tSCPConnection properties

Component family Internet/SCP

Function tSCPConnection opens an SCP connection for the current transaction.

Purpose tSCPConnection allows you to open an SCP connection to transfer files in one transaction.

Host IP address of the SCP server.

Port Number of listening port of the SCP server.

Username User name for the SCP server.

Authentication method SCP authentication method.

Basic settings

Password User password for the SCP server.

Usage This component is typically used as a single-component sub-job. It is used along with other SCP
components.

Limitation n/a

Related scenarios

For a related scenario, see section Scenario: Putting files on a remote FTP server.

For a related scenario using a different protocol, see section Scenario: Getting files from a remote SCP server.



tSCPDelete

1378 Talend Open Studio Components Reference Guide

tSCPDelete

tSCPDelete properties

Component family Internet/SCP

Function This component deletes files from remote hosts over a fully encrypted channel.

Purpose tSCPDelete allows you to remove a file from the defined SCP server.

Basic settings Host SCP IP address.

Port Listening port number of the SCP server.

Username SCP user name.

Authentication method SCP authentication method.

Password SCP password.

Filelist File name or path to the files to be deleted.

Usage This component is typically used as a single-component sub-job but can also be used with other
components.

Limitation n/a

Related scenario

For tSCPDelete related scenario, see section Scenario: Getting files from a remote SCP server.

For tSCPDelete related scenario using a different protocol, see section Scenario: Putting files on a remote FTP
server.



tSCPFileExists

Talend Open Studio Components Reference Guide 1379

tSCPFileExists

tSCPFileExists properties

Component family Internet/SCP

Function This component checks, over a fully encrypted channel, if a file exists on a remote host.

Purpose tSCPFileExists allows you to verify the existence of a file on the defined SCP server.

Host SCP IP address.

Port Listening port number of the SCP server.

Username SCP user name.

Authentication method SCP authentication method.

Password SCP password.

Remote directory File path on the remote directory.

Basic settings

Filename Name of the file to check.

Usage This component is typically used as a single-component sub-job but can also be used with other
components.

Limitation n/a

Related scenario

For tSCPFileExists related scenario, see section Scenario: Getting files from a remote SCP server.

For tSCPFileExists related scenario using a different protocol, see section Scenario: Putting files on a remote
FTP server.



tSCPFileList

1380 Talend Open Studio Components Reference Guide

tSCPFileList

tSCPFileList properties

Component family Internet/SCP

Function This component iterates, over a fully encrypted channel, on files of a given directory on a remote
host.

Purpose tSCPFileList allows you to list files from the defined SCP server.

Host SCP IP address.

Port Listening port number of the SCP server.

Username SCP user name.

Authentication method SCP authentication method.

Password SCP password.

Command separator The character used to separate multiple commands.

Basic settings

Filelist Directory name or path to the directory holding the files to list.

Usage This component is typically used as a single-component sub-job but can also be used with other
components.

Limitation n/a

Related scenario

For tSCPFileList related scenario, see section Scenario: Getting files from a remote SCP server.

For tSCPFileList related scenario using a different protocol, see section Scenario: Putting files on a remote FTP
server.



tSCPGet

Talend Open Studio Components Reference Guide 1381

tSCPGet

tSCPGet properties

Component family Internet/SCP

Function This component transfers defined files via an SCP connection over a fully encrypted channel.

Purpose tSCPGet allows you to copy files from the defined SCP server.

Basic settings Host SCP IP address.

Port Listening port number of the SCP server.

Username SCP user name.

Authentication method SCP authentication method.

Password SCP password.

Local directory Path to the destination folder.

Overwrite or Append List of available options for the transferred files.

Filelist File name or path to the file(s) to copy.

Usage This component is typically used as a single-component sub-job but can also be used with other
components.

Limitation n/a

Scenario: Getting files from a remote SCP server

This scenario creates a single-component Job which gets the defined file from a remote SCP server.

• Drop a tSCPGet component from the Palette onto the design workspace.

• In the design workspace, select tSCPGet and click the Component tab to define its basic settings.



Scenario: Getting files from a remote SCP server

1382 Talend Open Studio Components Reference Guide

• Fill in the Host IP address, the listening Port number, and the user name in the corresponding fields.

• On the Authentication method list, select the appropriate authentication method.

Note that the field to follow changes according to the selected authentication method. The authentication form
used in this scenario is password.

• Fill in the local directory details where you want to copy the fetched file.

• On the Overwrite or Append list, select the action to be carried out.

• In the Filelist area, click the plus button to add a line in the Source list and fill in the path to the given file
on the remote SCP server.

In this scenario, the file to copy from the remote SCP server to the local disk is backport.

• Save the Job and press F6 to execute it.

The given file on the remote server is copied on the local disk.



tSCPPut

Talend Open Studio Components Reference Guide 1383

tSCPPut

tSCPPut properties

Component family Internet/SCP

Function This component copies defined files to a remote SCP server over a fully encrypted channel.

Purpose tSCPPut allows you to copy files to the defined SCP server.

Basic settings Host SCP IP address.

Port Listening port number of the SCP server.

Username SCP user name.

Authentication method SCP authentication method.

Password SCP password.

Remote directory Path. to the destination folder.

Filelist File name or path to the file(s) to copy.

Usage This component is typically used as a single-component sub-job but can also be used with other
components.

Limitation n/a

Related scenario

For tSCPPut related scenario, see section Scenario: Getting files from a remote SCP server.

For tSCPut related scenario using a different protocol, see section Scenario: Putting files on a remote FTP server.



tSCPRename

1384 Talend Open Studio Components Reference Guide

tSCPRename

tSCPRename properties

Component family Internet/SCP

Function This component renames files on a remote SCP server.

Purpose tSCPRename allows you to rename file(s) on the defined SCP server.

Host SCP IP address.

Port Listening port number of the SCP server.

Username SCP user name.

Authentication method SCP authentication method.

Password SCP password.

File to rename Enter the name or path to the file you want to rename.

Basic settings

Rename to Enter the file new name.

Usage This component is typically used as a single-component sub-job but can also be used with other
components.

Limitation n/a

Related scenario

For tSCPRename related scenario, see section Scenario: Getting files from a remote SCP server.



tSCPTruncate

Talend Open Studio Components Reference Guide 1385

tSCPTruncate

tSCPRename properties

Component family Internet/SCP

Function This component removes all the data from a file via an SCP connection.

Purpose tSCPTruncate allows you to remove data from file(s) on the defined SCP server.

Basic settings Host SCP IP address.

Port Listening port number of the SCP server.

Username SCP user name.

Authentication method SCP authentication method.

Password SCP password.

Remote directory Path. to the destination file.

Filelist File name or path to the file(s) to truncate.

Usage This component is typically used as a single-component sub-job but can also be used with other
components.

Limitation n/a

Related scenario

For tSCPTruncate related scenario, see section Scenario: Getting files from a remote SCP server.



tSendMail

1386 Talend Open Studio Components Reference Guide

tSendMail

tSendMail Properties

Component family Internet

Function tSendMail sends emails and attachments to defined recipients.

Purpose tSendMail purpose is to notify recipients about a particular state of a Job or possible errors.

Basic settings To Main recipient email address.

From Sending server email address.

Show sender’s name Select this check box if you want the sender name to show in the
messages.

Cc Email addresses of secondary recipients of the email message
directed to another.

Bcc Email addresses of secondary recipients of the email message.
Recipients listed in the Bcc field receive a copy of the message but
are not shown on any other recipient's copy.

Subject Heading of the mail.

Message Body message of the email. Press Ctrl+Space to display the list
of available variables.

Die if the attachment file
doesn’t exist

This check box is selected by default. Clear this check box if you
want the message to be sent even if there are no attachments.

Attachments / File and
Content Transfer Encoding

Click the plus button to add as many lines as needed where you
can put filemask or path to the file to be sent along with the mail,
if any. Two options are available for content transfer encoding, i.e.
Default and Base64.

Other Headers Click the plus button to add as many lines as needed where you
can type the Key and the corresponding Value of any header
information that does not belong to the standard header.

SMTP Host and Port IP address of SMTP server used to send emails.

SSL Support Select this check box to authenticate the server at the client side
via an SSL protocol.

STARTTLS Support Select this check box to authenticate the server at the client side
via a STARTTLS protocol.

Importance Select in the list the priority level of your messages.

Need authentication /
Username and Password

Select this check box and enter a username and a password in the
corresponding fields if this is necessary to access the service.

Die on error This check box is selected by default. Clear the check box to skip
the row on error and complete the process for error-free rows.

Advanced settings MIME subtype from the
‘text’ MIME type

Select in the list the structural form for the text of the message.

Encoding type Select the encoding from the list or select Custom and define it
manually.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is typically used as one sub-job but can also be used as output or end object. It
can be connected to other components with either Row or Iterate links.

Limitation n/a



Scenario: Email on error

Talend Open Studio Components Reference Guide 1387

Scenario: Email on error

This scenario creates a three-component Job which sends an email to defined recipients when an error occurs.

• Drop the following components from your Palette to the design workspace: tFileInputDelimited,
tFileOutputXML, tSendMail.

• Define tFileInputdelimited properties. Related topic: section tFileInputDelimited.

• Right-click on the tFileInputDelimited component and select Row > Main. Then drag it onto the
tFileOutputXML component and release when the plug symbol shows up.

• Define tFileOutputXML properties.

• Drag a Run on Error link from tFileDelimited to tSendMail component.

• Define the tSendMail component properties:

• Enter the recipient and sender email addresses, as well as the email subject.

• Enter a message containing the error code produced using the corresponding global variable. Access the list of
variables by pressing Ctrl+Space.

• Add attachments and extra header information if any. Type in the SMTP information.



Scenario: Email on error

1388 Talend Open Studio Components Reference Guide

In this scenario, the file containing data to be transferred to XML output cannot be found. tSendmail runs on this
error and sends a notification email to the defined recipient.



tSetKerberosConfiguration

Talend Open Studio Components Reference Guide 1389

tSetKerberosConfiguration

tSetKerberosConfiguration properties

Component family Internet

Function tSetKerberosConfiguration is designed to configure Kerberos authentication for enhanced
security of network communications.

For more information on the Kerberos protocol, go to http://www.kerberos.org.

Purpose tSetKerberosConfiguration allows you to enter the relevant information for Kerberos
authentication.

Basic settings KDC Server Address of the Key Distribution Center (KDC) server.

Realm Name of the Kerberos realm.

Username and Password Kerberos authentication credentials.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is typically used as a sub-job by itself and is used along with tSoap.

Limitation n/a

Related scenarios

No scenario is available for this component.

http://www.kerberos.org


tSetKeystore

1390 Talend Open Studio Components Reference Guide

tSetKeystore

tSetKeystore properties

Component family Internet

Function tSetKeystore submits authentication data of a truststore with or without keystore to validation
for the SSL connection.

Purpose This component allows you to set the authentication data type between PKCS 12 and JKS.

Basic settings TrustStore type Select the type of the TrustStore to be used. It may be PKCS 12
or JKS.

TrustStore file Type in the path, or browse to the certificate TrustStore file
(including filename) that contains the list of certificates that the
client trusts.

TrustStore password Type in the password used to check the integrity of the TrustStore
data.

Need Client authentication Select this check box to validate the keystore data. Once doing
so, you need complete three fields:

- KeyStore type: select the type of the keystore to be used. It may
be PKCS 12 or JKS.

- KeyStore file: type in the path, or browse to the file (including
filename) containing the keystore data.

- KeyStore password: type in the password for this keystore.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is used standalone.

Connections Outgoing links (from one component to another):

Trigger: Run if; On Subjob Ok, On Subjob Error, On Component
Ok; On Component Error.

Incoming links (from one component to another):

Trigger: Run if, On Subjob Ok, On Component Ok, On
Component Error.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation n/a.

Scenario: Extracting customer information from a
private WSDL file
This scenario describes a three-component Job that connects to a private WSDL file in order to extract customer
information.

The WSDL file used in this Job accesses the corresponding web service under the SSL protocol. For this purpose,
the most relative code in this file reads as follows :



Scenario: Extracting customer information from a private WSDL file

Talend Open Studio Components Reference Guide 1391

<wsdl:port name="CustomerServiceHttpSoap11Endpoint"
binding="ns:CustomerServiceSoap11Binding">
            <soap:address location="https://192.168.0.22:8443/axis2/services/
CustomerService.CustomerServiceHttpSoap11Endpoint/"/>
        </wsdl:port>

Accordingly, we enter the following code in the server.xml file of Tomcat:

<Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true"
               maxThreads="150" scheme="https" secure="true"
               clientAuth="true" sslProtocol="TLS" 
     keystoreFile="D:/server.keystore" keystorePass="password"
     keystoreType="JKS"
     truststoreFile="D:/server.p12" truststorePass="password"
     truststoreType="PKCS12"
    />

So we need keystore files to connect to this WSDL file. To replicate this Job, proceed as follows:

• Drop the following components from the Palette onto the design workspace: tSetKeystore, tWebService, and
tLogRow.

• Right-click tSetKeystore to open its contextual menu.

• In this menu, select Trigger > On Subjob Ok to connect this component to tWebService.

• Right-click tWebService to open its contextual menu.

• In this menu, select Row > Main to connect this component to tLogRow.

• Double-click tSetKeystore to open its Basic settings view and define the component properties.

• In the TrustStore type field, select PKCS12 from the drop-down list.

• In the TrustStore file field, browse to the corresponding truststore file. Here, it is server.p12.



Scenario: Extracting customer information from a private WSDL file

1392 Talend Open Studio Components Reference Guide

• In the TrustStore password field, type in the password for this truststore file. In this example, it is password.

• Select the Need Client authentication check box to activate the keystore configuration fields.

• In the KeyStore type field, select JKS from the drop-down list.

• In the KeyStore file field, browse to the corresponding keystore file. Here, it is server.keystore.

• Double-click tWebService to open the component editor, or select the component in the design workspace and
in the Basic settings view, click the three-dot button next to Service configuration.

• In the WSDL field, browse to the private WSDL file to be used. In this example, it is CustomerService.wsdl.

• Click the refresh button next to the WSDL field to retrieve the WSDL description and display it in the fields
that follow.

• In the Port Name list, select the port you want to use, CustomerServiceHttpSoap11Endpoint in this example.

• In the Operation list, select the service you want to use. In this example the selected service is
getCustomer(parameters):Customer.

• Click Next to open a new view in the editor.



Scenario: Extracting customer information from a private WSDL file

Talend Open Studio Components Reference Guide 1393

In the panel to the right of the Input mapping view, the input parameter of the service displays automatically.
However, you can add other parameters if you select [+] parameters and then click the plus button on top to
display the [Parameter Tree] dialog box where you can select any of the listed parameters.

The Web service in this example has only one input parameter, ID.

• In the Expression column of the parameters.ID row, type in the customer ID of your interest between quotation
marks. In this example, it is A00001.

• Click Next to open a new view in the editor.

In the Element list to the left of the view, the output parameter of the web service displays automatically. However,
you can add other parameters if you select [+] parameters and then click the plus button on top to display the
[Parameter Tree] dialog box where you can select any of the parameters listed.

The Web service in this example has four output parameter: return.address, return.email, return.name and
return.phone.

You now need to create a connection between the output parameter of the defined Web service and the schema
of the output component. To do so:

• In the panel to the right of the view, click the three-dot button next to Edit Schema to open a dialog box in
which you can define the output schema.

• In the schema editing dialog box, click the plus button to add four columns to the output schema.



Scenario: Extracting customer information from a private WSDL file

1394 Talend Open Studio Components Reference Guide

• Click in each column and type in the new names, Name, Phone, Email and Address in this example. This will
retrieve the customer information of your interest.

• Click OK to validate your changes and to close the schema editing dialog box.

• In the Element list to the right of the editor, drag each parameter to the field that corresponds to the column
you have defined in the schema editing dialog box.

If available, use the Auto map! button, located at the bottom left of the interface, to carry out the mapping operation
automatically.

• Click OK to validate your changes and to close the editor.

• In the design workspace, double-click tLogRow to open its Basic settings view and define its properties.

• Click Sync columns to retrieve the schema from the preceding component.

• Save your Job and press F6 to execute it.

The information of the customer with ID A00001 is returned and displayed in the console of Talend Open Studio.



tSetProxy

Talend Open Studio Components Reference Guide 1395

tSetProxy

tSetProxy properties

Component family Internet

Function tSetProxy is designed to for proxy setup.

Purpose tSetProxy allows you to enter the relevant information for proxy setup.

Basic settings Proxy type List of proxy protocols.

Proxy host Address of the proxy server.

Proxy port Number of the proxy port.

Proxy user Username for proxy authentication.

Proxy password Password for proxy authentication.

None proxy hosts The hosts which should be connected to directly and not through
the proxy server. The value can be a list of hosts, each separated
by a |, and in addition a wildcard character (*) can be used for
matching, e.g. "192.168.0.* | localhost".

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Typically used as a sub-job by itself, tSetProxy is deployed along with other Internet
components.

Limitation n/a

Related scenarios

No scenario is available for this component.



tSocketInput

1396 Talend Open Studio Components Reference Guide

tSocketInput

tSocketInput properties

Component family Internet

Function tSocketInput component opens the socket port and listens for the incoming data.

Purpose tSocketInput component is a listening component, allowing to pass data via a defined port

JAVA Basic settings Host name Name or IP address of the Host server

Port Listening port to open

Timeout Number of seconds for the port to listen before closing.

Uncompress Select this check box to unzip the data if relevant

Die on error This check box is selected by default. Clear the check box to skip
the row on error and complete the process for error-free rows. If
needed, you can retrieve the rows on error via a Row > Rejects
link.

Field separator Character, string or regular expression to separate fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Escape Char Character of the row to be escaped

Text enclosure Character used to enclose text.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job
flowcharts. Related topic: see Talend Open Studio User Guide.

Encoding type Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

JAVA Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component opens a point of access to a workstation or server. This component starts a Job
and only stops after the time goes out.

Limitation n/a

Scenario: Passing on data to the listening port

The following scenario describes two Jobs aiming at passing data via a listening port. The first Job (SocketInput)
opens the listening port and waits for the data to be sent over. The second Job (SocketOutput) passes delimited
data from a file to a defined port number corresponding to the listening port.

Another application for the Socket components would be to allow controlled communication between servers
which cannot communicate directly.



Scenario: Passing on data to the listening port

Talend Open Studio Components Reference Guide 1397

Dropping and linking components

1. For the first Job, drop a tSocketInput component and a tLogRow component from the Palette to the design
workspace, and link them using a Row > Main connection.

2. For the second Job, drop a tFileInputDelimited component and a tSocketOutput component from the
Palette to the design workspace, and link them using a Row > Main connection.

Configuring the Jobs

1. On the second Job, select the tFileInputDelimited and on the Basic Settings tab of the Component view,
set the access parameters to the input file.

2. In File Name, browse to the file, and fill the Row, Field separators, and Header fields according to the
input file used.

3. Describe the Schema of the data to be passed on to the tSocketOutput component.



Scenario: Passing on data to the listening port

1398 Talend Open Studio Components Reference Guide

The schema should be propagated automatically to the output component.

4. Select the tSocketOutput component and set the parameters on the Basic Settings tab of the Component
view.

5. Define the Host IP address and the Port number where the data will be passed on to.

6. Set the number of retries in the Retry field and the amount of time (in seconds) after which the Job will
time out.

7. Now on the other Job (SocketInput) design, define the parameters of the tSocketInput component.

8. Define the Host IP address and the listening Port number where the data are passed on to.

9. Set the amount of time (in seconds) after which the Job will time out.

10. Edit the schema and set it to reflect the whole or part of the other Job’s schema.

Executing the Jobs

1. Press F6 to execute this Job (SocketInput) first, in order to open the listening port and prepare it to receive
the passed data.

2. Before the time-out, launch the other Job (SocketOutput) to pass on the data.

The result displays on the Run view, along with the opening socket information.



Scenario: Passing on data to the listening port

Talend Open Studio Components Reference Guide 1399



tSocketOutput

1400 Talend Open Studio Components Reference Guide

tSocketOutput

tSocketOutput properties

Component family Internet

Function tSocketOutput component writes data to a listening port.

Purpose tSocketOutput sends out the data from the incoming flow to listening socket port.

Basic settings Host name Name or IP address of the Host server

Port Listening port to open

Compress Select this check box to zip the data if relevant.

Retry times Number of retries before the Job fails.

Timeout Number of seconds for the port to listen before closing.

Die on error Clear this check box to skip the row on error and complete the
process for error-free rows.

Field separator Character, string or regular expression to separate fields.

Row separator String (ex: “\n”on Unix) to distinguish rows.

Escape Char Character of the row to be escaped

Text enclosure Character used to enclose text.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job
flowcharts. Related topic: see Talend Open Studio User Guide.

Encoding type Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Usage This component opens a point of access to a workstation or server. This component starts a Job
and only stops after the time goes out.

Limitation n/a

Related Scenario

For use cases in relation with tSocketOutput, see section Scenario: Passing on data to the listening port



tSOAP

Talend Open Studio Components Reference Guide 1401

tSOAP

tSOAP properties

Component family Internet

Function tSOAP sends the defined SOAP message with the given parameters to the invoked Web service
and returns the value as defined, based on the given parameters.

Purpose This component calls a method via a Web service in order to retrieve the values of the parameters
defined in the component editor.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component.

This component always uses a built-in, read-only schema.

By default, the schema contains three String type columns:

- Header: stores the SOAP message header of the response from
the server end.

- Body: stores the SOAP message body of the response from the
server end.

- Fault: stores the error information when an error occurs during
the SOAP message processing.

If the Output in Document check box is selected, the schema then
contains only one Document type column named Soap, which
stores the whole response SOAP message in the XML format.

Click Edit schema to view the schema structure.

Changing the schema type may result in loss of the
schema structure and therefore failure of the component.

Use NTLM Select this check box if you want to use the NTLM authentication
protocol.

Domain: Name of the client domain.

Need authentication Select this check box and enter a user name and a password in the
corresponding fields if this is necessary to access the service.

Use http proxy Select this check box if you are using a proxy server and fill in the
necessary information.

Trust server with SSL Select this check box to validate the server certificate to the client
via an SSL protocol and fill in the corresponding fields:

TrustStore file: enter the path (including filename) to the
certificate TrustStore file that contains the list of certificates that
the client trusts.

TrustStore password: enter the password used to check the
integrity of the TrustStore data.

ENDPOINT Type in the URL address of the invoked Web server.

SOAP Action Type in the URL address of the SOAPAction HTTP header field
to be used to identify the intent of the SOAP HTTP request.

SOAP version Select the version of the SOAP system you are using.



Scenario 1: Extracting the weather information using a Web service

1402 Talend Open Studio Components Reference Guide

The required SOAP Envelope varies among versions.

Use a message from the input
schema

Select this check box to read a SOAP message from the preceding
component to send to the invoked Web service.

When this check box is selected, the SOAP message field becomes
a drop-down list allowing you to select a Document type column
to read an input XML file.

This option makes sense only when the tSOAP
component is connected with an input component the
schema of which contains a Document type column to
read a valid SOAP message.

Output in Document Select this check box to output the response message in XML
format.

SOAP message Type in the SOAP message to be sent to the invoked Web service.
The global and context variables can be used when you write a
SOAP message.

For further information about the context variables, see Talend
Open Studio User Guide.

Advanced settings Use Kerberos Select this check box to choose a tSetKerberosConfiguration
component from the Kerberos configuration list.

The OnSubjobOk trigger of
tSetKerberosConfiguration should be used for
connection with tSoap.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component can be used as an input or as an intermediate component.

Connections Outgoing links (from one component to another):

Row: Main; Iterate

Trigger: Run if; On Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Main; Iterate

Trigger: Run if; On Component Ok; On Component Error.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation N/A

Scenario 1: Extracting the weather information using a
Web service

This scenario describes a two-component Job that uses a Web service to retrieve the weather information of a
given American city.

The Web service to be used is http://www.deeptraining.com/webservices/weather.asmx.

1. Drop the following components from the Palette onto the design workspace: tSOAP and tLogRow.

http://www.deeptraining.com/webservices/weather.asmx


Scenario 1: Extracting the weather information using a Web service

Talend Open Studio Components Reference Guide 1403

2. Right click tSOAP, select Row > Main from the contextual menu, and click tLogRow to connect the
components together using a Main Row link.

3. Double-click tSOAP to open its Basic settings view and define the component properties.

4. In ENDPOINT field, type in or copy-paste the URL address of the Web service to be used between the
quotation marks: “http://www.deeptraining.com/webservices/weather.asmx”.

5. In the SOAP Action field, type in or copy-paste the URL address of the SOAPAction HTTP header field
that indicates that you want to retrieve the weather information: http://litwinconsulting.com/webservices/
GetWeather.

You can see this address by looking at the WSDL for the Web service you are calling. For the Web service of this
example, in a web browser, append ?wsdl on the end of the URL of the Web service used in the ENDPOINT field,
open the corresponding web page, and then see the SOAPAction defined under the operation node:

<wsdl:operation name="GetWeather">
<soap:operation soapAction="http://litwinconsulting.com/webservices/GetWeather"
style="document"/>

6. In the SOAP version field, select the version of the SOAP system being used. In this scenario, the version
is SOAP 1.1.

7. In the SOAP message field, enter the XML-format message used to retrieve the weather information from
the invoked Web service. In this example, the weather information of Chicago is needed, so the message is:

"<soapenv:Envelope xmlns:soapenv=\"http://schemas.xmlsoap.org/soap/envelope/\"



Scenario 2: Using a SOAP message from an XML file to get weather information and saving the information to an XML file

1404 Talend Open Studio Components Reference Guide

xmlns:web=\"http://litwinconsulting.com/webservices/\">
 <soapenv:Header/>
  <soapenv:Body>
     <web:GetWeather>
         <web:City>Chicago</web:City>
      </web:GetWeather>
   </soapenv:Body>
 </soapenv:Envelope>"

8. Save your Job and press F6 to execute it.

The weather of Chicago is returned and displayed in the console of the Run view.

Scenario 2: Using a SOAP message from an XML file
to get weather information and saving the information
to an XML file

This scenario describes a three-component Job that uses a SOAP message from an input XML file to invoke a
Web service for weather information of Paris, and writes the response to an XML file.

As in the previous scenario, the Web service to be used is http://www.deeptraining.com/webservices/
weather.asmx.

Dropping and linking the components

1. Drop the following components from the Palette onto the design workspace: tFileInputXML, tSOAP, and
tFileOutputXML.

2. Connect the components using Main > Row links.

http://www.deeptraining.com/webservices/weather.asmx
http://www.deeptraining.com/webservices/weather.asmx


Scenario 2: Using a SOAP message from an XML file to get weather information and saving the information to an XML file

Talend Open Studio Components Reference Guide 1405

Configuring the input component

1. Double-click the tFileInputXML component to open its Basic settings view and define the component
properties.

2. Click the [...] button next to Edit schema to open the [Schema] dialog box.

3. Click the [+] button to add a column, give it a name, getWeather in this example, and select Document from
the Type list. Then, click OK to close the dialog box.

4. In the File name/Stream field, enter the path to the input XML file that contains the SOAP message to be
used, or browse to the path by clicking the [...] button.

The input file contains the following SOAP message:

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
    xmlns:web="http://litwinconsulting.com/webservices/">
    <soapenv:Header/>
    <soapenv:Body>
        <web:GetWeather>
            <web:City>Paris</web:City>
        </web:GetWeather>
    </soapenv:Body>
</soapenv:Envelope>

5. In the Loop XPath query field, enter “/” to define the root as the loop node of the input file structure.

6. In the Mapping table, fill the XPath query column with “.” to extract all data from context node of the
source, and select the Get Nodes check box to build a Document type data flow.



Scenario 2: Using a SOAP message from an XML file to get weather information and saving the information to an XML file

1406 Talend Open Studio Components Reference Guide

Configuring the Web service via the tSOAP component

1. Double-click the tSOAP component to open its Basic settings view and define the component properties.

2. In ENDPOINT field, enter or copy-paste the URL address of the Web service to be used between the
quotation marks: “http://www.deeptraining.com/webservices/weather.asmx”.

3. In the SOAP Action field, enter or copy-paste the URL address of the SOAPAction HTTP header field
that indicates that you want to retrieve the weather information: http://litwinconsulting.com/webservices/
GetWeather.

4. Select the Use a message from the input schema check box, and select a Document type column from the
SOAP Message list to read the SOAP message from the input file to send to the Web service. In this example,
the input schema has only one column, getWeather.

Configuring the output component

1. Double-click the tFileOutputXML component to open its Basic settings view.

2. In the File Name field, enter the path to the output XML file.

3. Select the Incoming record is a document check box to retrieve the incoming data flow as an XML
document. Note that a Column list appears allowing you choose a column to retrieve data from. In this
example, the schema contains only one column.



Scenario 2: Using a SOAP message from an XML file to get weather information and saving the information to an XML file

Talend Open Studio Components Reference Guide 1407

Executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6, or click Run on the Run tab to execute the Job.

The weather of Paris is returned and the information is saved in the defined XML file.



tWebService

1408 Talend Open Studio Components Reference Guide

tWebService

This component requires an Oracle JDK to be functional.

tWebService properties

Component family Internet

Function tWebservice calls the defined method from the invoked Web service and returns the class as
defined, based on the given parameters.

Purpose This component calls a method via a Web service in order to retrieve the values of the
parameters defined in the component editor.

Basic settings Property type Either Built-in or Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: No property data stored centrally. Enter properties
manually

Repository: Select the repository file where properties are stored.
The fields that come after are pre-filled in using the fetched data.

Service configuration Click the three-dot button next to the field to open the component
editor.

In this editor, you can:

-select the Web service you want to use,

-configure the input parameters of the Web service,

-configure the output parameters of the Web service. These
parameters will be used to retrieve and output specific data.

Mapping links display as Auto: By default, the links between the input and output schemas
and the Web service parameters are in the form of curves.

Curves: Links between the schema and the Web service
parameters are in the form of curve.

Lines: Links between the schema and the Web service parameters
are in the form of straight lines. This option slightly optimizes
performance.

Connection Time out Set a value in seconds for Web service connection time out.

Receive Time out Set a value in seconds for server answer.

Input schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository. This field
is used to process the input schema. The option for this schema
may be

- Built-in: No property data stored centrally.

- Repository: Select the Repository file where properties are
stored. The following fields are pre-filled in using fetched data.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.



Scenario: Extracting a name list using a Web service

Talend Open Studio Components Reference Guide 1409

Edit Schema Click the three-dot button to make changes to the schema. Note
that if you make changes, the schema automatically becomes
built-in.

Sync columns This button is available when an input link has been created. Click
this button to retrieve the schema from the previous component
connected in the Job.

Output schema This field is used to process the output schema. The schema is
either built-in or remote in the Repository and is configured the
same way as the input schema is.

The input schema is not necessarily identical with the
output schema.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Use NTLM Select this check box if you want to use the NTLM authentication
protocol.

Domain: Name of the client domain,

Host: Client IP address.

Need authentication Select this check box and enter a username and a password in the
corresponding fields if this is necessary to access the service.

Use http proxy Select this check box if you are using a proxy server and fill in
the necessary information.

Trust server with SSL Select this check box to validate the server certificate to the client
via an SSL protocol and fill in the corresponding fields:

TrustStore file: enter the path (including filename) to the
certificate TrustStore file that contains the list of certificates that
the client trusts.

TrustStore password: enter the password used to check the
integrity of the TrustStore data.

Die on error Clear this check box to skip the rows in error and to complete the
process for the error free rows.

Advanced settings Temporary folder (for
wsdl2java)

Set or browse to a temporary folder that you configured in order
to store the wsdl files.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Enable parallel execution Select this check box to perform high-speed data processing, that
is treating multiple data flows simultaneously.

For further information, see Talend Open Studio User Guide.

Usage This component can be used as an input or as an intermediate component. It must be linked
to an output component.

Limitation A JDK is required for this component to operate.

Scenario: Extracting a name list using a Web service

This scenario describes a three-component Job that uses a Web service to retrieve a list of all of the defenders who
play for the football team of a defined country.

You can also call a Job exported as a Web service. For more information, see section Scenario 2: Buffering output
data on the webapp server and section Scenario 4: Calling a Job exported as Webservice in another Job.

• Drop the following components from the Palette onto the design workspace: tFixedFlowInput, tWebService,
and tLogRow.



Scenario: Extracting a name list using a Web service

1410 Talend Open Studio Components Reference Guide

• Connect the components together using Main Row links.

• Double-click tFixedFlowInput to open its Basic settings view and define the component properties.

• Click the three-dot button next to the Edit schema field to open a dialog box where you can define the input
schema.

• In the open dialog box, click the plus button to add a column to the schema.

• Click in the column and type in a name, Country in this example.

• Click OK to close the schema definition dialog box. The Country column displays in the Values table in the
component Basic settings view.

• In the Values table, click in the Value column and enter the value of the Country column, ITALY in this example.
This will retrieve the list of defenders of the Italian football team.

• Double-click tWebService to open the component editor, or select the component in the design workspace and
in the Basic settings view, click the three-dot button next to Service configuration.



Scenario: Extracting a name list using a Web service

Talend Open Studio Components Reference Guide 1411

• Connect to the Web service you want to use in the Job.

• In the WSDL field, enter the Web service address or browse to it, if the WSDL is locally stored, by clicking
the [Browse...] button.

• Click the refresh button next to the WSDL filed to retrieve the WSDL description and display it in the fields
that follow.

• In the Port Name list, select the port you want to use, FootballPoolWebServiceSoap in this example.

• In the Operation list, select the service you want to use. In this example the selected service is
AllDefenders(parameters):ArrayOfString .

• Click Next to open a new view in the editor.



Scenario: Extracting a name list using a Web service

1412 Talend Open Studio Components Reference Guide

In the panel to the right of the Input mapping view, the input parameter of the service displays automatically.
However, you can add other parameters if you select [+] parameters and then click the plus button on top to
display the [Parameter Tree] dialog box where you can select any of the listed parameters.

The Web service in this example has only one input parameter, sCountryName.

If available, use the Auto map! button, located at the bottom left of the interface, to carry out the mapping operation
automatically.

You now need to create a connection between the input schema and the input parameter of the defined Web
service. To do so:

• In the Column list, drag the column in the input schema you want to link to the input parameter of the Web
service to the corresponding parameter in the panel to the right.

• Click Next to open a new view in the editor.

In the Element list to the left of the view, the output parameter of the web service displays automatically. However,
you can add other parameters if you select [+] parameters and then click the plus button on top to display the
[Parameter Tree] dialog box where you can select any of the parameters listed.

The Web service in this example has only one output parameter: AllDefendersResult.string.

You now need to create a connection between the output parameter of the defined Web service and the schema
of the output component. To do so:

• In the panel to the right of the view, click the three-dot button next to Edit Schema to open a dialog box in
which you can define the output schema.



Scenario: Extracting a name list using a Web service

Talend Open Studio Components Reference Guide 1413

• In the Output list to the right of the dialog box, click the plus button to add a column to the output schema.

• Click in the column and type in a name, Name in this example. This will retrieve the names of the defenders.

• Click OK to validate your changes and to close the schema definition dialog box.

• In the Element list to the right of the editor, drag parameters.AllDefendersResult.string to the field that
corresponds to the Name column to the right of the editor.

If available, use the Auto map! button, located at the bottom left of the interface, to carry out the mapping operation
automatically.

• Select this row in the panel to the right and click Denormalize in order to denormalize the returned data.

• Add [*] after the parameter in order to have the following code:
denormalize(parameters.AllDefendersResult.string[*],”:”). This will retrieve all data separated by
a colon “:”.

• Click OK to validate your changes and to close the editor.

• In the design workspace, double-click tLogRow to open its Basic settings view and define its properties.

• Click Sync columns to retrieve the schema from the preceding component.



Scenario: Extracting a name list using a Web service

1414 Talend Open Studio Components Reference Guide

• Save your Job and press F6 to execute it.

The names of all defenders of the Italian football team are returned and displayed in the console of Talend Open
Studio.



tWebServiceInput

Talend Open Studio Components Reference Guide 1415

tWebServiceInput

tWebServiceInput Properties

Component family Internet

Function Calls the defined method from the invoked Web service, and returns the class as defined, based
on the given parameters.

Purpose Invokes a Method through a Web service.

To handle complex hierarchical data, use the advanced features of
tWebServiceInput and provide Java code directly in the Code field of the Advanced
Settings view.

Basic settings Property type Either Built-in or Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: No property data stored centrally.

Repository: Select the Repository file where the properties are
stored. The fields that follow are completed automatically using
the data retrieved.

Click this icon to open a WSDL schema wizard and store your
WSDL connection in the Repository tree view.

For more information about setting up and storing database
connection parameters, see Talend Open Studio User Guide.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component in the Job.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: You create the schema and store it locally for the
relevant component. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created the schema and stored it
in the Repository. You can reuse it in various projects and job
flowcharts. Related topic: see Talend Open Studio User Guide.

WSDL Description of Web service bindings and configuration.

Need authentication /
Username and Password

Select this check box and:

-enter a username and a password in the corresponding fields if
this is necessary to access the service. Or,

-select the Windows authentication check box and enter the
windows domain in the corresponding field if this is necessary to
access the service.

Use http proxy Select this check box if you are using a proxy server and fill in
the necessary information.



Scenario 1: Extracting images through a Web service

1416 Talend Open Studio Components Reference Guide

Trust server with SSL Select this check box to validate the server certificate to the client
via an SSL protocol and fill in the corresponding fields:

TrustStore file: enter the path (including filename) to the
certificate TrustStore file that contains the list of certificates that
the client trusts.

TrustStore password: enter the password used to check the
integrity of the TrustStore data.

Time out (second) Set a value in seconds for Web service connection time out.

Method Name Enter the exact name of the Method to be invoked.

The Method name MUST match the corresponding method
described in the Web Service. The Method name is also case-
sensitive.

Parameters Enter the parameters expected and the sought values to be
returned. Make sure that the parameters entered fully match the
names and the case of the parameters described in the method.

Advanced Use Select this check box to display the fields dedicated for the
advanced use of tWebServiceInput:

WSDL2java: click the three-dot button to generate Talend
routines that hold the Java code necessary to connect and query
the Web service.

Code: replace the generated model Java code with the code
necessary to connect and query the specified Web service using
the code in the generated Talend routines.

Match Brackets: select the number of brackets to be used to
close the for loop based on the number of open brackets.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is generally used as a Start component. It must be linked to an output
component.

Limitation n/a

Scenario 1: Extracting images through a Web service

This scenario describes a two-component Job which uses a Web service method and displays the output on the
Run console view.

The method retrieves a full URL as an input string and returns a string array of images from a given Web page.

• Drop a tWebServiceInput component and a tLogRow component from the Palette onto the design workspace.

• On the Component view of the tWebServiceInput component, define the WSDL specifications, such as End
Point URI, WSDL and SOAPAction URI where required.

• If the Web service you invoke requires authentication details, select the Need authentication check box and
provide the relevant authentication information.



Scenario 1: Extracting images through a Web service

Talend Open Studio Components Reference Guide 1417

• If you are using a proxy server, select the Use http proxy check box and enter the necessary connection
information.

• In the Method Name field, enter the method name as defined in the Web Service description. The name and
the case of the method entered must match the corresponding Web service method exactly.

• In the Parameters area, click the plus [+] button to add a row to the table, then enter the exact name of the
parameters which correspond to the method.

• In the Value column, type in the URL of the Website that the images are to be extracted from.

• Link the tWebServiceInput component to the standard output component, tLogRow.

• Then save your Job and press F6 to execute it.

All of the images extracted from the Web site are returned as a list of URLs on the Run view.



Scenario 2: Reading the data published on a Web service using the tWebServiceInput advanced features

1418 Talend Open Studio Components Reference Guide

Scenario 2: Reading the data published on a Web
service using the tWebServiceInput advanced features

This scenario describes a two-component Job that retrieves a list of funds published by a financial Web service
(distributed by www.xignite.com) and displays the output on the standard console (the Run view).

This scenario is designed for advanced users with basic knowledge of Java. Since the aim of this Job is to retrieve
complex hierarchical data, you need to code the necessary functions in Java.

• Drop the following components from the Palette onto the design workspace: tWebServiceInput and tLogRow.

• Link the two components together using a Row Main connection.

• Double-click tWebServiceInput to show the Component view and set the component properties:

In the Basic settings view:

• In the Property Type list, select Built-in and complete the fields that follow manually.

• In the Schema Type list, select Built-in and click the [...] button to configure the data structure (schema)
manually, as shown in the figure below:



Scenario 2: Reading the data published on a Web service using the tWebServiceInput advanced features

Talend Open Studio Components Reference Guide 1419

• Click OK to validate the schema and close the window.

A dialog box opens and asks you if you want to propagate the modifications.

• Click Yes.

• In the WSDL field, enter the URL from which to get the WSDL.

• In the Time out field, enter the desired duration of the Web Service connection.

• Click the Advanced settings tab to display the corresponding view where you can set the tWebServiceInput
advanced features:

• Select the check box next to Advanced Use to display the advanced configuration fields.

• Click the [...] button next to the WSDL2Java field in order to generate routines from the WSDL Web service.



Scenario 2: Reading the data published on a Web service using the tWebServiceInput advanced features

1420 Talend Open Studio Components Reference Guide

The routines generated display automatically under Code > Routines in the Repository tree view. These routines
can thus easily be called in the code to build the function required to fetch complex hierarchical data from the
Web Service.

• Enter the relevant function in the Code field. By default, two examples of code are provided in the Code field.
The first example returns one piece of data, and the second example returns several.

• In this scenario, several data are to be returned. Therefore, remove the first example of code and use the second
example of code to build the function.

• Replace the pieces of code provided as examples with the relevant routines that have been automatically
generated from the WSDL.

• Change TalendJob_PortType to the routine name ending with _Port_Type, such as:
XigniteFundHoldingsSoap_PortType.

• Replace the various instances of TalendJob with a more relevant name such as the name of the method in use.
In this use case: fundHolding

• Replace TalendJobServiceLocator with the name of the routine ending with Locator, such as:
XigniteFundHoldingLocator.

• Replace both instances of TalendJobSoapBindingStub with the routine name ending with BindingStub, such
as: XigniteFundHoldingsSoap_BindingStub.

• Within the brackets corresponding to the pieces of code: stub.setUsername and stub.setPassword, enter your
username and password respectively, between quotes.

For the sake of confidentiality or maintenance, you can store your username and password in context variables.



Scenario 2: Reading the data published on a Web service using the tWebServiceInput advanced features

Talend Open Studio Components Reference Guide 1421

• The list of funds provided by the Xignite Web service is identified using so-called “symbols”, which are of string
type. In this example, we intend to fetch the list of funds of which the symbol is between “I” and “J”. To do so,
define the following statements: string startSymbol=“I” and string endSymbol=“J”.

• Then enter the piece of code to create the result table showing the list of funds (listFunds)
of funds holdings using the statements defined earlier on: routines.Fund[] result =

fundHoldings.listFunds(startSymbol, endSymbol);

• Run a loop on the fund list to fetch the funds ranging from “I” to “J”: for(int i = 0; i < result.length;
i++) {.

• Define the results to return, for example: fetch the CIK data from the Security schema using the code
getSecurity().getCIK(), then pass them on to the CIK output schema.

The function that operates the Web service should read as follows:

routines.XigniteFundHoldingsSoap_PortType
fundHoldings = new routines.XigniteFundHoldingsLocator().getXigniteFundHoldingsSoap(
);
        
routines.XigniteFundHoldingsSoap_BindingStub
stub = (routines.XigniteFundHoldingsSoap_BindingStub)fundHoldings;
        
stub.setUsername(“identifiant”);
Stub.setPassword(“mot de passe”);
        
String startSymbol="I";
String endSymbol="J";
        
routines.Fund[ ] result = fundHoldings.listFunds(startSymbol,
endSymbol); for(int i = 0; i < result.length; i++) {

output_row.CIK = (result[i]).getSecurity().getCIK();
output_row.cusip = (result[i]).getSecurity().getCusip();
output_row.symbol = (result[i]).getSecurity().getSymbol();
output_row.ISIN = (result[i]).getSecurity().getISIN();
output_row.valoren = (result[i]).getSecurity().getValoren();
output_row.name = (result[i]).getSecurity().getName();
output_row.market = (result[i]).getSecurity().getMarket();
output_row.category =
(result[i]).getSecurity().getCategoryOrIndustry();
output_row.asOfDate = (result[i]).getAsOfDate(); 

The outputs defined in the Java function output_row.output must match the columns defined in the component schema
exactly. The case used must also be matched in order for the data to be retrieved.

• In the Match Brackets field, select the number of brackets to use to end the For loop, based on the number of
open brackets. For this scenario, select one bracket only as only one bracket has been opened in the function.

• Double-click the tLogRow component to display the Component view and set its parameters.

• Click the [...] button next to the Edit Schema field in order to check that the preceding component schema was
properly propagated to the output component. If needed, click the Sync Columns button to retrieve the schema.

• Save your Job and press F6 to run it.



Scenario 2: Reading the data published on a Web service using the tWebServiceInput advanced features

1422 Talend Open Studio Components Reference Guide

The funds comprised between “I” and “J” are returned and displayed in the Talend Open Studio console.



tXMLRPCInput

Talend Open Studio Components Reference Guide 1423

tXMLRPCInput

tXMLRPCInput Properties

Component family Internet

Function Calls the defined method from the invoked RPC service, and returns the class as defined, based
on the given parameters.

Purpose Invokes a Method through a Web service and for the described purpose

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

In the RPC context, the schema corresponds to the output
parameters. If two parameters are meant to be returned, then the
schema should contain two columns.

Server URL URL of the RPC service to be accessed

Need authentication /
Username and Password

Select this check box and fill in a username and password if
required to access the service.

Method Name Enter the exact name of the Method to be invoked.

The Method name MUST match the corresponding method
described in the RPC Service. The Method name is also case-
sensitive.

Return class Select the type of data to be returned by the method. Make sure
it fully matches the one defined in the method.

Parameters Enter the parameters expected by the method as input parameters.

Usage This component is generally used as a Start component. It requires to be linked to an output
component.

Limitation n/a

Scenario: Guessing the State name from an XMLRPC

This scenario describes a two-component Job aiming at using a RPC method and displaying the output on the
console view.

• Drop the tXMLRPCInput and a tLogRow components from the Palette to the design workspac.



Scenario: Guessing the State name from an XMLRPC

1424 Talend Open Studio Components Reference Guide

• Set the tXMLRPCInput basic settings.

• Define the Schema type as Built-in for this use case.

• Set a single-column schema as the expected output for the called method is only one parameter: StateName.

• Then set the Server url. For this demo, use: http://phpxmlrpc.sourceforge.net/server.php

• No authentication details are required in this use case.

• The Method to be called is: examples.getStateName

• The return class is not compulsory for this method but might be strictly required for another. Leave the default
setting for this use case.

• Then set the input Parameters required by the method called. The Name field is not used in the code but the
value should follow the syntax expected by the method. In this example, the Name used is State Nr and the
value randomly chosen is 42.

• The class has not much impact using this demo method but could have with another method, so leave the default
setting.

• On the tLogRow component Component view, check the box: Print schema column name in front of each
value.

• Then save the Job and press F6 to execute it.

South Dakota is the state name found using the GetStateName RPC method and corresponds the 42nd State of
the United States as defined as input parameter.



Talend Open Studio Components Reference Guide

Logs & Errors components
This chapter details the main components that you can find in the Logs & Errors family of the the Palette in the
Integration perspective of the Talend Studio.

The Logs & Errors family groups together the components which are dedicated to log information catching and
Job error handling.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.



tAssert

1426 Talend Open Studio Components Reference Guide

tAssert

tAssert Properties

The tAssert component works alongside tAssertCatcher to evaluate the status of a Job execution. It concludes
with the boolean result based on an assertive statement related to the execution and feed the result to
tAssertCatcher for proper Job status presentation.

Component family Logs & Errors

Function Provides the Job status messages to tAssertCatcher.

Purpose Generates the boolean evaluation on the concern for the Job execution status. The status
includes:

- Ok: the Job execution succeeds.

- Fail: the Job execution fails. The tested Job's result does not match the expectation or an
execution error occured at runtime.

Basic settings Description Type in your descriptive message to help identify the assertion
of a tAssert.

Expression Type in the assertive statement you base the evaluation on.

Usage This component follows the action the assertive condition is directly related to. It can be the
intermediate or end component of the main Job, or the start, intermediate or end component
of the secondary Job.

Limitation The evaluation of tAssert is captured only by tAssertCatcher.

Scenario: Setting up the assertive condition for a Job
execution

This scenario describes how to set up an assertive condition in tAssert in order to evaluate that a Job execution
succeeds or not. Moreover, you can also find out how the two different evaluation results display and the way to
read them. Apart from tAssert, the scenario uses the following components as well:

• tFileInputDelimited and tFileOutputDelimited. The two components compose the main Job of which
the execution status is evaluated. For the detailed information on the two components, see section
tFileInputDelimited and section tFileOutputDelimited.

• tFileCompare. It realizes the comparison between the output file of the main Job and a standard reference file.
The comparative result is evaluated by tAssert against the assertive condition set up in its settings. For more
detailed information on tFileCompare, see section tFileCompare.

• tAssertCatcher. It captures the evaluation generated by tAssert. For more information on tAssertCatcher,
see section tAssertCatcher.

• tLogRow. It allows you to read the captured evaluation. For more information on tLogRow, see section
tLogRow.

First proceed as follows to design the main Job:

• Prepare a delimited .csv file as the source file read by your main Job.



Scenario: Setting up the assertive condition for a Job execution

Talend Open Studio Components Reference Guide 1427

• Edit two rows in the delimited file. The contents you edit are not important, so feel free to simplify them.

• Name it source.csv.

• In Talend Open Studio, create a new job JobAssertion.

• Place tFileInputDelimited and tFileOutputDelimited on the workspace.

• Connect them with a Row Main link to create the main Job.

• Double-click tFileInputDelimited to open its Component view.

• In the File Name field of the Component view, fill in the path or browse to source.csv.

• Still in the Component view, set Property Type to Built-In and click  next to Edit schema to define the
data to pass on to tFileOutputDelimited. In the scenario, define the data presented in source.csv you created.

For more information about schema types, see Talend Open Studio User Guide.

• Define the other parameters in the corresponding fields according to source.csv you created.

• Double-click tFileOutputDelimited to open its Component view.

• In the File Name field of the Component view, fill in or browse to specify the path to the output file, leaving
the other fields as they are by default.



Scenario: Setting up the assertive condition for a Job execution

1428 Talend Open Studio Components Reference Guide

• Press F6 to execute the main Job. It reads source.csv, pass the data to tFileOutputDelimited and output an
delimited file, out.csv.

Then contine to edit the Job to see how tAssert evaluates the execution status of the main Job.

• Rename out.csv as reference.csv.This file is used as the expected result the main Job should output.

• Place tFileCompare, tAssert and tLogRow on the workspace.

• Connect them with Row Main link.

• Connect tFileInputDelimited to tFileCompare with OnSubjobOk link.

• Double-click tFileCompare to open its Component view.

• In the Component view, fill in the corresponding file paths in the File to compare field and the Reference
file field, leaving the other fields as default.

For more information on the tFileCompare component, see section tFileCompare.

• Then click tAssert and click the Component tab on the lower side of the workspace.



Scenario: Setting up the assertive condition for a Job execution

Talend Open Studio Components Reference Guide 1429

• In the Component view, edit the assertion row2.differ==0 in the expression field and the descriptive message
of the assertion in description field.

In the expression field, row2 is the data flow transmissing from tFileCompare to tAssert, differ is one of
the columns of the tFileCompare schema and presents whether the compared files are identical, and 0 means no
difference is detected between the out.csv and reference.csv by tFileCompare. Hence when the compared files
are identical, the assertive condition is thus fulfilled, tAssert concludes that the main Job succeeds; otherwise,
it concludes failure.

The differ column is in the read-only tFileCompare schema. For more information on its schema, see section tFileCompare.

• Press F6 to execute the Job.

• Check the result presented in the Run view

The console shows the comparison result of tFileCompare: Files are identical. But you find nowhere the
evaluation result of tAssert.

So you need tAssertCatcher to capture the evaluation.

• Place tAssertCatcher and tLogRow on the workspace.

• Connect them with Row Main link.



Scenario: Setting up the assertive condition for a Job execution

1430 Talend Open Studio Components Reference Guide

• Use the default configuration in the Component view of tAssertCatcher.

• Press F6 to execute the Job.

• Check the result presented in the Run view. You will see the Job status information is added in:

2010-01-29 15:37:33|fAvAzH|TASSERT|JobAssertion|java|tAssert_1|Ok|--|
The output file should be identical with the reference file

.

The descriptive information on JobAssertion in the console is organized according to the tAssertCatcher schema.
This schema includes, in the following order, the execution time, the process ID, the project name, the Job name,
the code language, the evaluation origin, the evaluation result, detailed information of the evaluation, descriptive
message of the assertion. For more information on the schema of tAssertCatcher, see section tAssertCatcher.

The console indicates that the execution status of Job JobAssertion is Ok. In addition to the evalution, you can
still see other descriptive information about JobAssertion including the descriptive message you have edited in
the Basic settings of tAssert.



Scenario: Setting up the assertive condition for a Job execution

Talend Open Studio Components Reference Guide 1431

Then you will perform operations to make the main Job fail to generate the expected file. To do so, proceed as
follows in the same Job you have executed:

• Delete a row in reference.csv.

• Press F6 to execute the Job again.

• Check the result presented in Run view.

2010-02-01 19:47:43|GeHJNO|TASSERT|JobAssertion|tAssert_1|Failed|Test
logically failed|The output file should be identical with the reference
file

.

The console shows that the execution status of the main Job is Failed. The detailed explanation for this status is
closely behind it, reading Test logically failed.

You can thus get a basic idea about your present Job status: it fails to generate the expected file because of a logical
failure. This logical failure could come from a logical mistake during the Job design.

The status and its explanatory information are presented respectively in the status and the substatus columns of
the tAssertCatcher schema. For more information on the columns, see section tAssertCatcher.



tAssertCatcher

1432 Talend Open Studio Components Reference Guide

tAssertCatcher

tAssertCatcher Properties

Component family Logs & Errors

Function Based on its pre-defined schema, fetches the execution status information from repository, Job
execution and tAssert.

Purpose Generates a data flow consolidating the status information of a job execution and transfer the
data into defined output files.

Basic settings Schema type A schema is a row description, i.e., it defines the fields to be
processed and passed on to the next component. In this particular
case, the schema is read-only, as this component gathers standard
log information including:

Moment: Processing time and date.

Pid: Process ID.

Project: Project which the job belongs to.

Job: Job name.

Language: Language used by the Job (Java)

Origin: Status evaluation origin. The origin may be different
tAssert components.

Status: Evaluation fetched from tAssert. They may be

- Ok: if the assertive statement of tAssert is evaluated as true at
runtime.

- Failed: if the assertive statement of tAssert is evaluated as false
or an execution error occurs at runtime. The tested Job's result
does not match the expectation or an execution error occured at
runtime.

Substatus: Detailed explanation for failed execution. The
explanation can be:

- Test logically failed: the investigated Job does not produce the
expected result.

- Execution error: an execution error occured at runtime.

Description: Descriptive message you typed in in Basic settings
of tAssert.

Catch Java Exception This check box allows to capture Java exception errors, once
checked.

Catch tAssert This check box allows to capture the evaluations of tAssert.

Usage This component is the start component of a secondary Job which fetches the execution status
information from several sources. It generates a data flow to transfer the information to the
component which proceeds.

Limitation This component must be used with tAssert together.

Related scenarios

For using case in relation with tAssertCatcher, see tAssert scenario:



Related scenarios

Talend Open Studio Components Reference Guide 1433

• section Scenario: Setting up the assertive condition for a Job execution



tChronometerStart

1434 Talend Open Studio Components Reference Guide

tChronometerStart

tChronometerStart Properties

Component family Logs & Errors

Function Starts measuring the time a subjob takes to be executed.

Purpose Operates as a chronometer device that starts calculating the processing time of one or more
subjobs in the main Job, or that starts calculating the processing time of part of your subjob.

Usage You can use tChronometerStart as a start or middle component. It can precede one or more
processing tasks in the subjob. It can precede one or more subjobs in the main Job.

Limitation n/a

Related scenario

For related scenario, see section Scenario: Measuring the processing time of a subjob and part of a subjob.



tChronometerStop

Talend Open Studio Components Reference Guide 1435

tChronometerStop

tChronometerStop Properties

Component family Logs & Errors

Function Measures the time a subjob takes to be executed.

Purpose Operates as a chronometer device that stops calculating the processing time of one or more
subjobs in the main Job, or that stops calculating the processing time of part of your subjob.

tChronometerStop displays the total execution time.

Basic settings Since options Select either check box to select measurement starting point:

Since the beginning: stops time measurement launched at the
beginning of a subjob.

Since a tChronometerStart: stops time measurement launched
at one of the tChronometerStart components used on the data
flow of the subjob.

Display duration in console When selected, it displays subjob execution information on the
console.

Display component name When selected, it displays the name of the component on the
console.

Caption Enter desired text, to identify your subjob for example.

Display human readable
duration

When selected, it displays subjob execution information in
readable time unites.

Usage Cannot be used as a start component.

Limitation n/a

Scenario: Measuring the processing time of a subjob
and part of a subjob

This scenario is a subjob that does the following in a sequence:

• generates 1000 000 rows of first and last names,

• gathers first names with their corresponding last names,

• stores the output data in a delimited file,

• measures the duration of the subjob as a whole,

• measures the duration of the name replacement operation,

• displays the gathered information about the processing time on the Run log console.

To measure the processing time of the subjob:

• Drop the following components from the Palette onto the design workspace: tRowGenerator, tMap,
tFileOutputDelimited, and tChronometerStop.



Scenario: Measuring the processing time of a subjob and part of a subjob

1436 Talend Open Studio Components Reference Guide

• Connect the first three components using Main Row links.

When connecting tMap to tFileOutputDelimited, you will be prompted to name the output table. The name used in this
example is “new_order”.

• Connect tFileOutputDelimited to tChronometerStop using an OnComponentOk link.

• Select tRowGenerator and click the Component tab to display the component view.

• In the component view, click Basic settings. The Component tab opens on the Basic settings view by default.

• Click Edit schema to define the schema of the tRowGenerator. For this Job, the schema is composed of two
columns: First_Name and Last_Name, so click twice the [+] button to add two columns and rename them.

• Click the RowGenerator Editor three-dot button to open the editor and define the data to be generated.

• In the RowGenerator Editor, specify the number of rows to be generated in the Number of Rows for
RowGenerator field and click OK. The RowGenerator Editor closes.

• You will be prompted to propagate changes. Click Yes in the popup message.

• Double-click on the tMap component to open the Map editor. The Map editor opens displaying the input
metadata of the tRowGenerator component.



Scenario: Measuring the processing time of a subjob and part of a subjob

Talend Open Studio Components Reference Guide 1437

• In the Schema editor panel of the Map editor, click the plus button of the output table to add two rows and
define them.

• In the Map editor, drag the First_Name row from the input table to the Last_Name row in the output table and
drag the Last_Name row from the input table to the First_Name row in the output table.

• Click Apply to save changes.

• You will be prompted to propagate changes. Click Yes in the popup message.

• Click OK to close the editor.

• Select tFileOutputDelimited and click the Component tab to display the component view.

• In the Basic settings view, set tFileOutputDelimited properties as needed.



Scenario: Measuring the processing time of a subjob and part of a subjob

1438 Talend Open Studio Components Reference Guide

• Select tChronometerStop and click the Component tab to display the component view.

• In the Since options panel of the Basic settings view, select Since the beginning option to measure the duration
of the subjob as a whole.

t

• Select/clear the other check boxes as needed. In this scenario, we want to display the subjob duration on the
console preceded by the component name.

• If needed, enter a text in the Caption field.

• Save your Job and press F6 to execute it.

You can measure the duration of the subjob the same way by placing tChronometerStop below tRowGenerator, and
connecting the latter to tChronometerStop using an OnSubjobOk link.



tDie

Talend Open Studio Components Reference Guide 1439

tDie

tDie properties

Both tDie and tWarn components are closely related to the tLogCatcher component.They generally make sense
when used alongside a tLogCatcher in order for the log data collected to be encapsulated and passed on to the
output defined.

Component family Logs & Errors

Function Kills the current Job. Generally used with a tCatch for log purpose.

Purpose Triggers the tLogCatcher component for exhaustive log before killing the Job.

Basic settings Die message Enter the message to be displayed before the Job is killed.

Error code Enter the error code if need be, as an integer

Priority Set the level of priority, as an integer

Usage Cannot be used as a start component.

Limitation n/a

Related scenarios

For use cases in relation with tDie, see tLogCatcher scenarios:

• section Scenario 1: warning & log on entries

• section Scenario 2: Log & kill a Job



tFlowMeter

1440 Talend Open Studio Components Reference Guide

tFlowMeter

tFlowMeter Properties

Component family Logs & Errors

Function Counts the number of rows processed in the defined flow.

Purpose The number of rows is then meant to be caught by the tFlowMeterCatcher for logging purpose.

Basic settings Use input connection name
as label

Select this check box to reuse the name given to the input main
row flow as label in the logged data.

Mode Select the type of values for the data measured: Absolute: the
actual number of rows is logged

Relative: a ratio (%) of the number of rows is logged. When this
option is selected, a Connections List shows to let you select a
reference connection.

Thresholds Adds a threshold to watch proportions in volumes measured. you
can decide that the normal flow has to be between low and top
end of a row number range, and if the flow is under this low end,
there is a bottleneck.

Usage Cannot be used as a start component as it requires an input flow to operate.

Limitation n/a

If you have a need of log, statistics and other measurement of your data flows, see Talend Open Studio User Guide.

Related scenario

For related scenario, see section Scenario: Catching flow metrics from a Job



tFlowMeterCatcher

Talend Open Studio Components Reference Guide 1441

tFlowMeterCatcher

tFlowMeterCatcher Properties

Component family Logs & Errors

Function Based on a defined sch.ema, the tFlowMeterCatcher catches the processing volumetric from
the tFlowMeter component and passes them on to the output component.

Purpose Operates as a log function triggered by the use of a tFlowMeter component in the Job.

Basic settings Schema type A schema is a row description, i.e., it defines the fields to be
processed and passed on to the next component. In this particular
case, the schema is read-only, as this component gathers standard
log information including:

Moment: Processing time and date

Pid: Process ID

Father_pid: Process ID of the father Job if applicable. If not
applicable, Pid is duplicated.

Root_pid: Process ID of the root Job if applicable. If not
applicable, pid of current Job is duplicated.

System_pid: Process id generated by the system

Project: Project name, the Job belongs to.

Job: Name of the current Job

Job_repository_id: ID generated by the application.

Job_version: Version number of the current Job

Context: Name of the current context

Origin: Name of the component if any

Label: Label of the row connection preceding the tFlowMeter
component in the Job, and that will be analyzed for volumetrics.

Count: Actual number of rows being processed

Reference: Number of rows passing the reference link.

Thresholds: Only used when the relative mode is selected in the
tFlowMeter component.

Usage This component is the start component of a secondary Job which triggers automatically at the
end of the main Job.

Limitation The use of this component cannot be separated from the use of the tFlowMeter. For more
information, see section tFlowMeter

Scenario: Catching flow metrics from a Job

The following basic Job aims at catching the number of rows being passed in the flow processed. The measures
are taken twice, once after the input component, that is, before the filtering step and once right after the filtering
step, that is, before the output component.



Scenario: Catching flow metrics from a Job

1442 Talend Open Studio Components Reference Guide

• Drop the following components from the Palette to the design workspace: tMysqlInput, tFlowMeter (x2),
tMap, tLogRow, tFlowMeterCatcher and tFileOutputDelimited.

• Link components using row main connections and click on the label to give consistent name throughout the
Job, such as US_States from the input component and filtered_states for the output from the tMap component,
for example.

• Link the tFlowMeterCatcher to the tFileOutputDelimited component using a row main link also as data is
passed.

• On the tMysqlInput Component view, configure the connection properties as Repository, if the table metadata
are stored in the Repository. Or else, set the Type as Built-in and configure manually the connection and schema
details if they are built-in for this Job.

• The 50 States of the USA are recorded in the table states. In order for all 50 entries of the table to get selected,
the query to run onto the Mysql database is as follows:

select * from states.

• Select the relevant encoding type on the Advanced settings vertical tab.

• Then select the following component which is a tFlowMeter and set its properties.



Scenario: Catching flow metrics from a Job

Talend Open Studio Components Reference Guide 1443

• Select the check box Use input connection name as label, in order to reuse the label you chose in the log
output file (tFileOutputDelimited).

• The mode is Absolute as there is no reference flow to meter against, also no Threshold is to be set for this
example.

• Then launch the tMap editor to set the filtering properties.

• For this use case, drag and drop the ID and State columns from the Input area of the tMap towards the Output
area. No variable is used in this example.

• On the Output flow area (labelled filtered_states in this example), click the arrow & plus button to activate the
expression filter field.

• Drag the State column from the Input area (row2) towards the expression filter field and type in the rest of
the expression in order to filter the state labels starting with the letter M. The final expression looks like:
row2.State.startsWith("M")

• Click OK to validate the setting.

• Then select the second tFlowMeter component and set its properties.



Scenario: Catching flow metrics from a Job

1444 Talend Open Studio Components Reference Guide

• Select the check box Use input connection name as label.

• Select Relative as Mode and in the Reference connections list, select US_States as reference to be measured
against.

• Once again, no threshold is used for this use case.

• No particular setting is required in the tLogRow.

• Neither does the tFlowMeterCatcher as this component’s properties are limited to a preset schema which
includes typical log information.

• So eventually set the log output component (tFileOutputDelimited).

• Select the Append check box in order to log all tFlowMeter measures.

• Then save your Job and press F6 to execute it.

The Run view shows the filtered state labels as defined in the Job.

In the delimited csv file, the number of rows shown in column count varies between tFlowMeter1 and
tFlowMeter2 as the filtering has then been carried out. The reference column shows also this difference.



tLogCatcher

Talend Open Studio Components Reference Guide 1445

tLogCatcher

tLogCatcher properties

Both tDie and tWarn components are closely related to the tLogCatcher component.They generally make sense
when used alongside a tLogCatcher in order for the log data collected to be encapsulated and passed on to the
output defined.

Component family Logs & Errors

Function Fetches set fields and messages from Java Exception, tDie and/or tWarn and passes them on
to the next component.

Purpose Operates as a log function triggered by one of the three: Java exception, tDie or tWarn, to
collect and transfer log data.

Basic settings Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job
flowcharts. Related topic: see Talend Open Studio User Guide.

Catch Java Exception Select this check box to trigger the tCatch function when a Java
Exception occurs in the Job

Catch tDie Select this check box to trigger the tCatch function when a tDie
is called in a Job

Catch tWarn Select this check box to trigger the tCatch function when a tWarn
is called in a Job

Usage This component is the start component of a secondary Job which automatically triggers at the
end of the main Job

Limitation n/a

Scenario 1: warning & log on entries

In this basic scenario made of three components, a tRowGenerator creates random entries (id to be incremented).
The input hits a tWarn component which triggers the tLogCatcher subjob. This subjob fetches the warning
message as well as standard predefined information and passes them on to the tLogRow for a quick display of
the log data.



Scenario 2: Log & kill a Job

1446 Talend Open Studio Components Reference Guide

• Drop a tRowGenerator, a tWarn, a tLogCatcher and a tLogRow from the Palette, on your design workspace

• Connect the tRowGenerator to the tWarn component.

• Connect separately the tLogCatcher to the tLogRow.

• On the tRowGenerator editor, set the random entries creation using a basic function:

• On the tWarn Component view, set your warning message, the code the priority level. In this case, the message
is “this is a warning’.

• For this scenario, we will concatenate a function to the message above, in order to collect the first value from
the input table.

• On the Basic settings view of tLogCatcher, select the tWarn check box in order for the message from the
latter to be collected by the subjob.

• Click Edit Schema to view the schema used as log output. Notice that the log is comprehensive.

Press F6 to execute the Job. Notice that the Log produced is exhaustive.

Scenario 2: Log & kill a Job

This scenario uses a tLogCatcher and a tDie component. A tRowGenerator is connected to a
tFileOutputDelimited using a Row link. On error, the tDie triggers the catcher subjob which displays the log
data content on the Run console.



Scenario 2: Log & kill a Job

Talend Open Studio Components Reference Guide 1447

• Drop all required components from various folders of the Palette to the design workspace: tRowGenerator,
tFileOutputDelimited, tDie, tLogCatcher, tLogRow.

• On the tRowGenerator Component view, define the setting of the input entries to be handled.

• Edit the schema and define the following columns as random input examples: id, name, quantity, flag and
creation.

• Set the Number of rows onto 0. This will constitute the error which the Die operation is based on.

• On the Values table, define the functions to feed the input flow.

• Define the tFileOutputDelimited to hold the possible output data. The row connection from the
tRowGenerator feeds automatically the output schema. The separator is a simple semi-colon.

• Connect this output component to the tDie using a Trigger > If  connection. Double-click on the newly created
connection to define the if:

((Integer)globalMap.get("tRowGenerator_1_NB_LINE")) <=0

• Then double-click to select and define the Basic settings of the tDie component.

• Enter your Die message to be transmitted to the tLogCatcher before the actual kill-job operation happens.

• Next to the Job but not physically connected to it, drop a tLogCatcher from the Palette to the design workspace
and connect it to a tLogRow component.



Scenario 2: Log & kill a Job

1448 Talend Open Studio Components Reference Guide

• Define the tLogCatcher Basic settings. Make sure the tDie box is selected in order to add the Die message to
the Log information transmitted to the final component.

• Press F6 to run the Job and notice that the log contains a black message and a red one.

• The black log data come from the tDie and are transmitted by the tLogCatcher. In addition the normal Java
Exception message in red displays as a Job abnormally died.



tLogRow

Talend Open Studio Components Reference Guide 1449

tLogRow

tLogRow properties

Component family Logs & Errors

Function Displays data or results in the Run console.

Purpose tLogRow is used to monitor data processed.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Click Edit Schema to make changes to the schema. Note that if you
make changes, the schema automatically becomes built-in.

Built-in: You can create the schema and store it locally for this
component. Related topic: see Talend Open Studio User Guide.

Repository: You have already created and stored the schema in the
Repository. You can reuse it in various projects and Job flowcharts.
Related topic: see Talend Open Studio User Guide.

Sync columns Click to synchronize the output file schema with the input file
schema. The Sync function is available only when the component is
linked with the preceding component using a Row connection.

Basic Displays the output flow in basic mode.

Table Displays the output flow in table cells.

Vertical Displays each row of the output flow as a key-value list.

With this mode selected, you can choose to show either the unique
name or the label of component, or both of them, for each output
row.

Separator

(For Basic mode only)

Enter the separator which will delimit data on the Log display.

Print header

(For Basic mode only)

Select this check box to include the header of the input flow in the
output display.

Print component unique name
in front of each output row

(For Basic mode only)

Select this check box to show the unique name the component in
front of each output row to differentiate outputs in case several
tLogRow components are used.

Print schema column name in
front of each value

(For Basic mode only)

Select this check box to retrieve column labels from output schema.

Use fixed length for values

(For Basic mode only)

Select this check box to set a fixed width for the value display.

Usage This component can be used as intermediate step in a data flow or as a n end object in the Job
flowchart.

Limitation n/a



Scenario: Delimited file content display

1450 Talend Open Studio Components Reference Guide

Scenario: Delimited file content display

For related scenarios, see:

• section Scenario: Reading master data in an MDM hub.

• section Scenario: Dynamic context use in MySQL DB insert.

• section Scenario 1: warning & log on entries.

• section Scenario 2: Log & kill a Job.



tStatCatcher

Talend Open Studio Components Reference Guide 1451

tStatCatcher

tStatCatcher Properties

Component family Logs & Errors

Function Based on a defined schema, gathers the Job processing metadata at a Job level as well as at
each component level.

Purpose Operates as a log function triggered by the StatsCatcher Statistics check box of individual
components, and collects and transfers this log data to the output defined.

Basic settings Schema type A schema is a row description, i.e., it defines the fields to be
processed and passed on to the next component. In this particular
case, the schema is read-only, as this component gathers standard
log information including:

Moment: Processing time and date

Pid: Process ID

Father_pid: Process ID of the father Job if applicable. If not
applicable, Pid is duplicated.

Root-pid: Process ID of the root Job if applicable. If not
applicable, pid of current Job is duplicated.

Project: Project name, the Job belongs to.

Job: Name of the current Job

Context: Name of the current context

Origin: Name of the component if any

Message: Begin or End.

Usage This component is the start component of a secondary Job which triggers automatically at the
end of the main Job. The processing time is also displayed at the end of the log.

Limitation n/a

Scenario: Displaying job stats log

This scenario describes a four-component Job, aiming at displaying on the Run console the statistics log fetched
from the file generation through the tStatCatcher component.

• Drop the required components: tRowGenerator, tFileOutputDelimited, tStatCatcher and tLogRow from the
Palette to the design workspace.



Scenario: Displaying job stats log

1452 Talend Open Studio Components Reference Guide

• In the Basic settings panel of tRowGenerator, define the data to be generated. For this Job, the schema is
composed of three columns: ID_Owners, Name_Customer and ID_Insurance.

• The number of rows can be restricted to 100.

• Click on the Main tab of the Component view.

• And select the tStatCatcher Statistics check box to enable the statistics fetching operation.

• Then, define the output component’s properties. In the tFileOutputDelimited Component view, browse to the
output file or enter a name for the output file to be created. Define the delimiters, such as semi-colon, and the
encoding.

• Click on Edit schema and make sure the schema is recollected from the input schema. If need be, click on
Sync Columns.

• Then click on the Basic settings tab of the Component view, and select here as well the tStatCatcher Statistics
check box to enable the processing data gathering.

• In the secondary Job, double-click on the tStatCatcher component. Note that the Properties are provided for
information only as the schema representing the processing data to be gathered and aggregated in statistics, is
defined and read-only.



Scenario: Displaying job stats log

Talend Open Studio Components Reference Guide 1453

• Define then the tLogRow to set the delimiter to be displayed on the console.

• Eventually, press F6 to run the Job and display the Job result.

The log shows the Begin and End information for the Job itself and for each of the component used in the Job.



tWarn

1454 Talend Open Studio Components Reference Guide

tWarn

tWarn Properties

Both tDie and tWarn components are closely related to the tLogCatcher component.They generally make sense
when used alongside a tLogCatcher in order for the log data collected to be encapsulated and passed on to the
output defined.

Component family Logs & Errors

Function Provides a priority-rated message to the next component.

Purpose Triggers a warning often caught by the tLogCatcher component for exhaustive log.

Basic settings Warn message Type in your warning message.

Code Define the code level.

Priority Enter the priority level as an integer.

Usage Cannot be used as a start component. If an output component is connected to it, an input
component should be preceding it.

Limitation n/a

Related scenarios

For use cases in relation with tWarn, see tLogCatcher scenarios:

• section Scenario 1: warning & log on entries

• section Scenario 2: Log & kill a Job



Talend Open Studio Components Reference Guide

Misc group components
This chapter details the main components that you can find in Misc family of the Palette in the Integration
perspective of the Talend Studio.

The Misc family gathers miscellaneous components covering needs such as the creation of sets of dummy data
rows, buffering data or loading context variables.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.



tAddLocationFromIP

1456 Talend Open Studio Components Reference Guide

tAddLocationFromIP

tAddLocationFromIP Properties

Component family Misc

Function tAddLocationFromIP replaces IP addresses with geographical locations.

Purpose tAddLocationFromIP helps you to geolocate visitors through their IP addresses. It
identifies visitors’ geographical locations i.e. country, region, city, latitude, longitude, ZIP
code...etc.using an IP address lookup database file.

Basic settings Schema type and Edit
schema

A schema is a row description, i.e., it defines the number of fields to be
processed and passed on to the next component. The schema is either
built-in or remote in the Repository.

Built-in: You create and store the schema locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: Select the Repository file where Properties are stored.
When selected, the fields that follow are pre-defined using fetched data.

Database Filepath The path to the IP address lookup database file.

Input parameters Input column: Select the input column from which the input values
are to be taken.

input value is a hostname: Check if the input column holds hostnames.

input value is an IP address: Check if the input column holds IP
addresses.

Location type Country code: Check to replace IP with country code.

Country name: Check to replace IP with country name.

Usage This component is an intermediary step in the data flow allowing to replace IP with geolocation
information. It can not be a start component as it requires an input flow. It also requires an
output component.

Limitation n/a

Scenario: Identifying a real-world geographic location
of an IP

The following scenario creates a three-component Job that associates an IP with a geographical location. It obtains
a site visitor's geographical location based on its IP.

Dropping and linking components

1. Drop the following components from the Palette onto the design workspace: tFixedFlowInput,
tAddLocationFromIP, and tLogRow.

2. Connect the three components using Row Main links.



Scenario: Identifying a real-world geographic location of an IP

Talend Open Studio Components Reference Guide 1457

Configuring the components

1. In the design workspace, select tFixedFlowInput, and click the Component tab to define the basic settings
for tFixedFlowInput.

2. Click the [...] button next to Edit Schema to define the structure of the data you want to use as input. In this
scenario, the schema is made of one column that holds an IP address.

3. Click OK to close the dialog box, and accept propagating the changes when prompted by the system. The
defined column is displayed in the Values panel of the Basic settings view.

4. In the Number of rows field, enter the number of rows to be generated, and click in the Value cell and set
the value for the IP address.

5. In the design workspace, select tAddLocationFromIP and click the Component tab to define the basic
settings for tAddLocationFromIP.



Scenario: Identifying a real-world geographic location of an IP

1458 Talend Open Studio Components Reference Guide

6. Click the Sync columns button to synchronize the schema with the input schema set with tFixedFlowInput.

7. Browse to the GeoIP.dat file to set its path in the Database filepath field.

Ensure to download the latest version of the IP address lookup database file from the relevant site as indicated in the
Basic settings view of tAddLocationFromIp.

8. In the Input parameters panel, set your input parameters as needed. In this scenario, the input column is the
ip column defined earlier that holds an IP address.

9. In the Location type panel, set location type as needed. In this scenario, we want to display the country name.

10. In the design workspace, select tLogRow and click the Component tab and define the basic settings for
tLogRow as needed. In this scenario, we want to display values in cells of a table.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6 or click Run in the Run tab to execute the Job.

One row is generated to display the country name that is associated with the set IP address.



tBufferInput

Talend Open Studio Components Reference Guide 1459

tBufferInput

tBufferInput properties

Component family Misc

Function This component retrieves bufferized data in order to process it in a second subjob.

Purpose The tBufferInput component retrieves data bufferized via a tBufferOutput component, for
example, to process it in another subjob.

Basic settings Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

In the case of tBufferInput, the column position is more important
than the column label as this will be taken into account.

Built-in: You create the schema and store it locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created the schema and stored it in
the Repository, hence can be reused in various projects and Job
designs. Related topic: see Talend Open Studio User Guide.

Usage This component is the start component of a secondary Job which is triggered automatically at
the end of the main Job.

Scenario: Retrieving bufferized data

This scenario describes a Job that retrieves bufferized data from a subjob and displays it on the console.

• Drop the following components from the Palette onto the design workspace: tFileInputDelimited and
tBufferOutput.

• Select the tFileInputDelimited and on the Basic Settings tab of the Component view, set the access parameters
to the input file.



Scenario: Retrieving bufferized data

1460 Talend Open Studio Components Reference Guide

• In the File Name field, browse to the delimited file holding the data to be bufferized.

• Define the Row and Field separators, as well as the Header.

• Click [...] next to the Schema type field to describe the structure of the file.

• Describe the Schema of the data to be passed on to the tBufferOutput component.

• Select the tBufferOutput component and set the parameters on the Basic Settings tab of the Component view.

Generally speaking, the schema is propagated from the input component and automatically fed into the tBufferOutput
schema. But you can also set part of the schema to be bufferized if you want to.

• Drop the tBufferInput and tLogRow components from the Palette onto the design workspace below the subjob
you just created.

• Connect tFileInputDelimited and tBufferInput via a Trigger > OnSubjobOk link and connect tBufferInput
and tLogRow via a Row > Main link.

• Double-click tBufferInput to set its Basic settings in the Component view.

• In the Basic settings view, click [...] next to the Edit Schema field to describe the structure of the file.

• Use the schema defined for the tFileInputDelimited component and click OK.

• The schema of the tBufferInput component is automatically propagated to the tLogRow. Otherwise, double-
click tLogRow to display the Component view and click Sync column.

• Save your Job and press F6 to execute it.



Scenario: Retrieving bufferized data

Talend Open Studio Components Reference Guide 1461

The standard console returns the data retrieved from the buffer memory.



tBufferOutput

1462 Talend Open Studio Components Reference Guide

tBufferOutput

tBufferOutput properties

Component family Misc

Function This component collects data in a buffer in order to access it later via webservice for example.

Purpose This component allows a Webservice to access data. Indeed it had been designed to be
exported as Webservice in order to access data on the web application server directly. For more
information, see Talend Open Studio User Guide.

Basic settings Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

In the case of the tBufferOutput, the column position is more
important than the column label as this will be taken into account.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
designs. Related topic: see Talend Open Studio User Guide.

Usage This component is not startable (green background) and it requires an output component.

Scenario 1: Buffering data (Java)

This scenario describes an intentionally basic Job that bufferizes data in a child job while a parent Job simply
displays the bufferized data onto the standard output console. For an example of how to use tBufferOutput to
access output data directly on the Web application server, see section Scenario 2: Buffering output data on the
webapp server.

• Create two Jobs: a first Job (BufferFatherJob) runs the second Job and displays its content onto the Run console.
The second Job (BufferChildJob) stores the defined data into a buffer memory.



Scenario 1: Buffering data (Java)

Talend Open Studio Components Reference Guide 1463

• On the first Job, drop the following components: tRunJob and tLogRow from the Palette to the design
workspace.

• On the second Job, drop the following components: tFileInputDelimited and tBufferOutput the same way.

Let’s set the parameters of the second Job first:

• Select the tFileInputDelimited and on the Basic Settings tab of the Component view, set the access parameters
to the input file.

• In File Name, browse to the delimited file whose data are to be bufferized.

• Define the Row and Field separators, as well as the Header.

• Describe the Schema of the data to be passed on to the tBufferOutput component.

• Select the tBufferOutput component and set the parameters on the Basic Settings tab of the Component view.

• Generally the schema is propagated from the input component and automatically fed into the tBufferOutput
schema. But you could also set part of the schema to be bufferized if you want to.

• Now on the other Job (BufferFatherJob) Design, define the parameters of the tRunJob component.



Scenario 2: Buffering output data on the webapp server

1464 Talend Open Studio Components Reference Guide

• Edit the Schema if relevant and select the column to be displayed. The schema can be identical to the bufferized
schema or different.

• You could also define context parameters to be used for this particular execution. To keep it simple, the default
context with no particular setting is used for this use case.

Press F6 to execute the parent Job. The tRunJob looks after executing the child Job and returns the data onto
the standard console:

Scenario 2: Buffering output data on the webapp
server

This scenario describes a Job that is called as a Webservice and stores the output data in a buffer directly on the
server of the Web application. This scenario creates first a Webservice oriented Job with context variables, and
next exports the Job as a Webservice.

Creating a Webservice-oriented Job with context variables:

• Drop the following components from the Palette onto the design workspace: tFixedFlowInput and
tBufferOutput.

• Connect tFixedFlowInput to tBufferOutput using a Row Main link.

• In the design workspace, select tFixedFlowInput.

• Click the Component tab to define the basic settings for tFixedFlowInput.

• Set the Schema Type to Built-In and click the three-dot [...] button next to Edit Schema to describe the data
structure you want to create from internal variables. In this scenario, the schema is made of three columns, now,
firstname, and lastname.



Scenario 2: Buffering output data on the webapp server

Talend Open Studio Components Reference Guide 1465

• Click the plus button to add the three parameter lines and define your variables.

• Click OK to close the dialog box and accept propagating the changes when prompted by the system. The three
defined columns display in the Values panel of the Basic settings view of tFixedFlowInput.

• Click in the Value cell of each of the first two defined columns and press Ctrl+Space to access the global
variable list.

• From the global variable list, select TalendDate.getCurrentDate() and talendDatagenerator.getFirstName, for
the now and firstname columns respectively.

For this scenario, we want to define two context variables: nb_lines and lastname. In the first we set the number
of lines to be generated, and in the second we set the last name to display in the output list. The tFixedFlowInput
component will generate the number of lines set in the context variable with the three columns: now, firstname
and lastname. For more information about how to create and use context variables, see Talend Open Studio User
Guide.

To define the two context variables:

• Select tFixedFlowInput and click the Contexts tab.

• In the Variables view, click the plus button to add two parameter lines and define them.



Scenario 2: Buffering output data on the webapp server

1466 Talend Open Studio Components Reference Guide

• Click the Values as table tab and define the first parameter to set the number of lines to be generated and the
second to set the last name to be displayed.

• Click the Component tab to go back to the Basic settings view of tFixedFlowInput.

• Click in the Value cell of lastname column and press Ctrl+Space to access the global variable list.

• From the global variable list, select context.lastname, the context variable you created for the last name column.

Exporting your Job as a Webservice:

Before exporting your Job as a Web service, see Talend Open Studio User Guide for more information.

• In the Repository tree view, right-click on the above created Job and select Export Job Scripts. The [Export
Job Scripts] dialog box displays.



Scenario 3: Calling a Job with context variables from a browser

Talend Open Studio Components Reference Guide 1467

• Click the Browse... button to select a directory to archive your Job in.

• In the Export type panel, select the export type you want to use in the Tomcat webapp directory (WAR in this
example) and click Finish. The [Export Job Scripts] dialog box disappears.

• Copy the War folder and paste it in a Tomcat webapp directory.

Scenario 3: Calling a Job with context variables from a
browser

This scenario describes how to call the Job you created in scenario 2 from your browser with/without modifying
the values of the context variables.

Type the following URL into your browser: http://localhost:8080//export_job/services/export_job3?
method=runJob where “export_job” is the name of the webapp directory deployed in Tomcat and “export_job3”
is the name of the Job.

Click Enter to execute your Job from your browser.



Scenario 3: Calling a Job with context variables from a browser

1468 Talend Open Studio Components Reference Guide

The Job uses the default values of the context variables: nb_lines and lastname, that is it generates three lines with
the current date, first name and Ford as a last name.

You can modify the values of the context variables directly from your browser. To call the Job from your browser
and modify the values of the two context variables, type the following URL:

http://localhost:8080//export_job/services/export_job3?method=runJob&arg1=--context_param
%20lastname=MASSY&arg2=--context_param%20nb_lines=2.

%20 stands for a blank space in the URL language. In the first argument “arg1”, you set the value of the context
variable to display “MASSY” as last name. In the second argument “arg2”, you set the value of the context variable
to “2” to generate only two lines.

Click Enter to execute your Job from your browser.



Scenario 4: Calling a Job exported as Webservice in another Job

Talend Open Studio Components Reference Guide 1469

The Job generates two lines with MASSY as last name.

Scenario 4: Calling a Job exported as Webservice in
another Job

This scenario describes a Job that calls another Job exported as a Webservice using the tWebServiceInput. This
scenario will call the Job created in scenario 2.

• Drop the following components from the Palette onto the design workspace: tWebServiceInput and tLogRow.

• Connect tWebserviceInput to tLogRow using a Row Main link.

• In the design workspace, select tWebServiceInput.

• Click the Component tab to define the basic settings for tWebServiceInput.

• Set the Schema Type to Built-In and click the three-dot [...] button next to Edit Schema to describe the data
structure you want to call from the exported Job. In this scenario, the schema is made of three columns, now,
firstname, and lastname.

• Click the plus button to add the three parameter lines and define your variables.Click OK to close the dialog box.

• In the WSDL field of the Basic settings view of tWebServiceInput, enter the URL http://localhost:8080/
export_job/services/export_job3?WSDL where “export_job” is the name od the webapp directory where the Job
to call is stored and “export_job3” is the name of the Job itself.



Scenario 4: Calling a Job exported as Webservice in another Job

1470 Talend Open Studio Components Reference Guide

• In the Method name field, enter runJob.

• In the Parameters panel, Click the plus button to add two parameter lines to define your context variables.

• Click in the first Value cell to enter the parameter to set the number of generated lines using the following
syntax: --context_param nb_line=3.

• Click in the second Value cell to enter the parameter to set the last name to display using the following syntax:
--context_param lastname=Ford.

• Select tLogRow and click the Component tab to display the component view.

• Set the Basic settings for the tLogRow component to display the output data in a tabular mode. For more
information, see section tLogRow.

• Save your Job and press F6 to execute it.

The system generates three columns with the current date, first name, and last name and displays them onto the
log console in a tabular mode.



tContextDump

Talend Open Studio Components Reference Guide 1471

tContextDump

tContextDump properties

Component family Misc

Function tContextDump makes a dump copy the values of the active Job context.

Purpose tContextDump can be used to transform the current context parameters into a flow that can
then be used in a tContextLoad. This feature is very convenient in order to define once only the
context and be able to reuse it in numerous Jobs via the tContextLoad.

Basic settings Schema type and Edit
schema

In the tContextDump use, the schema is read only and made of
two columns, Key and Value, corresponding to the parameter name
and the parameter value to be copied.

A schema is a row description, i.e., it defines the fields that will
be processed and passed on to the next component. The schema is
either built-in or remote in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Print operations Select this check box to display the context parameters set in the
Run view.

Usage This component creates from the current context values, a data flow, therefore it requires to be
connected to an output component.

Limitation tContextDump does not create any non-defined context variable.

Related Scenario

No scenario is available for this component yet.



tContextLoad

1472 Talend Open Studio Components Reference Guide

tContextLoad

tContextLoad properties

Component family Misc

Function tContextLoad modifies dynamically the values of the active context.

Purpose tContextLoad can be used to load a context from a flow.

This component performs also two controls. It warns when the parameters defined in the
incoming flow are not defined in the context, and the other way around, it also warns when a
context value is not initialized in the incoming flow.

But note that this does not block the processing.

Basic settings Schema type and Edit
schema

In tContextLoad, the schema must be made of two columns,
including the parameter name and the parameter value to be
loaded.

A schema is a row description, i.e., it defines the fields that will
be processed and passed on to the next component. The schema is
either built-in or remote in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job
flowcharts. Related topic: see Talend Open Studio User Guide.

If a variable loaded, but not
in the context

If a variable is loaded but does not appear in the context, select
how the notification must be displayed. In the shape of an Error,
a warning or an information (info).

If a variable in the context,
but not loaded

If a variable appears in the context but is not loaded, select how the
notification must be displayed. In the shape of an Error, a warning
or an information (info)

Print operations Select this check box to display the context parameters set in the
Run view.

Disable errors Select this check box to prevent the error from displaying.

Disable warnings Select this check box to prevent the warning from displaying.

Disable infos Select this check box to prevent the information from displaying.

Die on error This check box is selected by default. Clear the check box to skip
the row on error and complete the process for error-free rows.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component relies on the data flow to load the context values to be used, therefore it requires
a preceding input component and thus cannot be a start component.

Limitation tContextLoad does not create any non-defined variable in the default context.



Scenario: Dynamic context use in MySQL DB insert

Talend Open Studio Components Reference Guide 1473

Scenario: Dynamic context use in MySQL DB insert

This scenario is made of two subjobs. The first subjob aims at dynamically load the context parameters, and the
second subjob uses the loaded context to display the content of a DB table.

• For the first subjob, drop a tFilelist, tFileInputDelimited, tContextLoad from the Palette to the design
workspace.

• Drop tMysqlInput and a tLogRow the same way for the second subjob.

• Connect all the components together.

• Create as many delimited files as there are different contexts and store them in a specific directory, named
Contexts. In this scenario, test.txt contains the local database connection details for testing purpose. And prod.txt
holds the actual production db details.

• Each file is made of two fields, contain the parameter name and the corresponding value, according to the
context.

• In the tFileList component Basic settings panel, select the directory where both context files, test and prod,
are held.

• In the tFileInputDelimited component Basic settings panel, press Ctrl+Space bar to access the global variable
list. Select tFileList_1.CURRENT_FILEPATH to loop on the context files’ directory.

• Define the schema manually (Built-in). It contains two columns defined as: Key and Value.

• Accept the defined schema to be propagated to the next component (tContextLoad).

• For this scenario, select the Print operations check box in order for the context parameters in use to be displayed
on the Run panel.

• Then double-click to open the tMySQLInput component Basic settings.

• For each of the field values being stored in a context file, press F5 and define the user-defined context parameter.
For example: The Host field has for value parameter context.host, as the parameter name is host in the
context file. Its actual value being talend-dbms.



Scenario: Dynamic context use in MySQL DB insert

1474 Talend Open Studio Components Reference Guide

• Then fill in the Schema information. If you stored the schema in the Repository Metadata, then you can
retrieve it by selecting Repository and the relevant entry in the list.

• In the Query field, type in the SQL query to be executed on the DB table specified. In this case, a simple
SELECT of the columns of the table, which will be displayed on the Run tab, through the tLogRow component.

• Eventually, press F6 to run the Job.

The context parameters as well as the select values from the DB table are all displayed on the Run view.



tFixedFlowInput

Talend Open Studio Components Reference Guide 1475

tFixedFlowInput

tFixedFlowInput properties

Component family Misc

Function tFixedFlowInput generates as many lines and columns as you want using the context variables.

Purpose tFixedFlowInput allows you to generate fixed flow from internal variables.

Basic settings Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number of fields that
will be processed and passed on to the next component. The schema
is either built-in or remote in the Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User Guide.

Repository: You have already created the schema and stored it in the
Repository, hence can be reused in various projects and job designs.
Related topic: see Talend Open Studio User Guide.

Mode From the three options, select the mode that you want to use.

Use Single Table : Enter the data that you want to generate in the
relevant value field.

Use Inline Table : Add the row(s) that you want to generate.

Use Inline Content : Enter the data that you want to generate,
separated by the separators that you have already defined in the Row
and Field Separator fields.

Number of rows Enter the number of lines to be generated.

Values Between inverted commas, enter the values corresponding to the
columns you defined in the schema dialog box via the Edit schema
button.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a Job
level as well as at each component level.

Usage This component can be used as a start or intermediate component and thus requires an output
component.

Related scenarios

For related scenarios, see:

• section Scenario 2: Buffering output data on the webapp server.

• section Scenario: Iterating on a DB table and listing its column names.

• section Scenario: Filtering and searching a list of names.



tMemorizeRows

1476 Talend Open Studio Components Reference Guide

tMemorizeRows

tMemorizeRows properties

Component family Misc

Function tMemorizeRows temporarily memorizes an array of incoming data in a row by row sequence
and instantiates this array by indexing each of the memorized rows from 0. The maximum
number of rows to be memorized at any given time is defined in the Basic settings view.

Purpose tMemorizeRows memorizes a sequence of rows that pass this component and then allows its
following component(s) to perform operations of your interest on the memorized rows.

Basic settings Schema type and Edit
schema

A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

- Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

- Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created the schema and stored it in
the Repository, hence can be reused in various projects and job
designs. Related topic: see Talend Open Studio User Guide.

Row count to memorize Define the row count to be memorized.

Columns to memorize Select the columns to be memorized from the incoming data
schema.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component can be used as intermediate step in a data flow or the last step before beginning
a subjob.

Note: You can use the global variable NB_LINE_ROWS to retrieve the value of the Row count
to memorize field of the tMemorizeRows component.

Connections Outgoing links (from one component to another):

Row: Main

Trigger: Run if; On Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Main;

For further information regarding connections, see Talend Open
Studio User Guide.



Scenario: Counting the occurrences of different ages

Talend Open Studio Components Reference Guide 1477

Scenario: Counting the occurrences of different ages

This scenario counts how many different ages there are within a group of 12 customers. In this scenario, the
customer data is generated at random.

This Job uses 5 components which are:

• tRowGenerator: it generates 12 rows of customer data containing IDs, names and ages of the 12 customers.

• tSortRow: it sorts the 12 rows according to the age data.

• tMemorizeRows: it temporarily memorizes a specific number of incoming data rows at any give time and
indexes the memorized data rows.

• tJavaFlex: it compares the age values of the data memorized by the preceding component, counts the
occurrences of different ages and displays these ages in the Run view.

• tJava: it displays the number of occurrences of different ages.

To replicate this scenario, proceed as follows:

Dropping and linking the components

1. Drop tRowGenerator, tSortRow, tMemorizeRows, tJavaFlex and tJava on the design workspace.

2. Connect tRowGenerator  to tSortRow using the Row > Main link.

3. Do the same to link together tSortRow, tMemorizeRows and tJavaFlex using the Row > Main link.

4. Connect tRowGenerator to tJava using the Trigger > OnSubjobOk link.

Configuring the components

Configuring the tRowGenerator component

1. Double click the tRowGenerator component to open the its editor.



Scenario: Counting the occurrences of different ages

1478 Talend Open Studio Components Reference Guide

2. In this editor, click the plus button three times to add three columns and name them as: id, name, age.

3. In the Type column, select Integer for id and age.

4. In the Length column, enter 50 for name.

5. In the Functions column, select random for id and age, then select getFirstName for name.

6. In the field of Number of Rows for RowGenerator, type in 12.

7. In the Column column, click age to open its corresponding Function parameters view in the lower part
of this editor.

In the Value column of the Function parameters view, type in the minimum age and maximum age that
will be generated for the 12 customers. In this example, they are 10 and 25.

Configuring the tSortRow component

1. Double click tSortRow to open its Component view.



Scenario: Counting the occurrences of different ages

Talend Open Studio Components Reference Guide 1479

2. In the Criteria table, click the plus button to add one row.

3. In the Schema column column, select the data column you want to base the sorting operation on. In this
example, select age as it is the ages that should be compared and counted.

4. In the Sort num or alpha column, select the type of the sorting operation. In this example, select num, that
is numerical, as age is integer.

5. In the Order asc or desc column, select desc as the sorting order for this scenario.

Configuring the tMemorizeRows component

1. Double click tMemorizeRows to open its Component view.

2. In the Row count to memorize field, type in the maximum number of rows to be memorized at any given time.
As you need to compare ages of two customers for each time, enter 2. Thus, this component memorizes two
rows at maximum at any given moment and always indexes the newly incoming row as 0 and the previously
incoming row as 1.

3. In the Memorize column of the Columns to memorize table, select the check box(es) to determine the
column(s) to be memorized. In this example, select the check box corresponding to age.

Configuring the tJavaFlex and tJava components

1. Double click tJavaFlex to open its Component view.



Scenario: Counting the occurrences of different ages

1480 Talend Open Studio Components Reference Guide

2. In the Start code area, enter the Java code that will be called during the initialization phase. In this example,
type in int count=0; in order to declare a variable count and assign the value 0 to it.

3. In the Main code area, enter the Java code to be applied to each row in the data flow. In this scenario, type in

if(!age_tMemorizeRows_1[0].equals(age_tMemorizeRows_1[1]))
{
count++;
}
System.out.println(age_tMemorizeRows_1[0]);

This code compares two ages memorized by tMemorizeRows each time and count one change every
time when the ages are found different. Then this code displays the ages that have been indexed as 0 by
tMemorizeRows.

4. In the End code area, enter the Java code that will be called during the closing phase. In this example, type
in globalMap.put("count", count); to output the count result.

5. Double click tJava to open its Component view.

6. In the Code area, type in the code System.out.println("Different ages:

"+globalMap.get("count")); to retrieve the count result.



Scenario: Counting the occurrences of different ages

Talend Open Studio Components Reference Guide 1481

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6, or click Run on the Run console to execute the Job.

In the console, you can read that there are 10 different ages within the group of 12 customers.



tMsgBox

1482 Talend Open Studio Components Reference Guide

tMsgBox

tMsgBox properties

Component family Misc

Function Opens a dialog box with an OK button requiring action from the user.

Purpose tMsgBox is a graphical break in the job execution progress.

Basic settings Title Text entered shows on the title bar of the dialog box created.

Buttons Listbox of buttons you want to include in the dialog box. The
button combinations are restricted and cannot be changed.

The Question button displays theMask Answer check box. Select
this check box if you want to mask the answer you type in the pop-
up window that opens when you run the Job.

Icon Icon shows on the title bar of the dialog box.

Message Free text to display as message on the dialog box. Text can be
dynamic (for example: retrieve and show a file name).

Usage This component can be used as intermediate step in a data flow or as a start or an end object
in the Job flowchart.

It can be connected to the next/previous component using either a Row or Iterate link.

Limitation n/a

Scenario: ‘Hello world!’ type test

The following scenario creates a single-component Job, where tMsgBox is used to display the pid (process id) in
place of the traditional “Hello World!” message.

• Drop a tMsgBox component from the Palette to the design workspace.

• Define the dialog box display properties:

• ‘Title’ is the message box title, it can be any variable.

• In the Message field, enter "Current date is: " between double quotation marks.
Then click CTRL+Space to display the autocompletion list and select the following system routine,
TalendDate.getCurrentDate. Put brackets around this routine.



Scenario: ‘Hello world!’ type test

Talend Open Studio Components Reference Guide 1483

• Switch to the Run tab to execute the Job defined.

The Message box displays the message and requires the user to click OK to go to the next component or end the Job.

After the user clicked OK, the Run log is updated accordingly.

Related topic: see Talend Open Studio User Guide.



tRowGenerator

1484 Talend Open Studio Components Reference Guide

tRowGenerator

tRowGenerator properties

Component family Misc

Function tRowGenerator generates as many rows and fields as are required using random values taken
from a list.

Purpose Can be used to create an input flow in a Job for testing purposes, in particular for boundary
test sets

Basic settings Schema type and Edit
schema

A schema is a row description, i.e., it defines the number of fields to be
processed and passed on to the next component. The schema is either
built-in or stored remotely in the Repository.

Built-in: You create and store the schema locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: Select the Repository file where the properties are stored.
When selected, the fields that follow are filled in automatically using
fetched data.

RowGenerator editor The editor allows you to define the columns and the nature of data to
be generated. You can use predefined routines or type in the function
to be used to generate the data specified

Usage The tRowGenerator Editor’s ease of use allows users without any Java knowledge to generate
random data for test purposes.

Limitation n/a

The tRowGenerator Editor opens up on a separate window made of two parts:

• a Schema definition panel at the top of the window

• and a Function definition and preview panel at the bottom.

Defining the schema

First you need to define the structure of data to be generated.

• Add as many columns to your schema as needed, using the plus (+) button.

• Type in the names of the columns to be created in the Columns area and select the Key check box if required

• Make sure you define then the nature of the data contained in the column, by selecting the Type in the
list. According to the type you select, the list of Functions offered will differ. This information is therefore
compulsory.



Scenario: Generating random java data

Talend Open Studio Components Reference Guide 1485

• Some extra information, although not required, might be useful such as Length, Precision or Comment. You
can also hide these columns, by clicking on the Columns drop-down button next to the toolbar, and unchecking
the relevant entries on the list.

• In the Function area, you can select the predefined routine/function if one of them corresponds to your
needs.You can also add to this list any routine you stored in the Routine area of the Repository. Or you can
type in the function you want to use in the Function definition panel. Related topic: see Talend Open Studio
User Guide.

• Click Refresh to have a preview of the data generated.

• Type in a number of rows to be generated. The more rows to be generated, the longer it’ll take to carry out
the generation operation.

Defining the function

Select the [...] under Function in the Schema definition panel in order to customize the function parameters.

• Select the Function parameters tab

• The Parameter area displays Customized parameter as function name (read-only)

• In the Value area, type in the Java function to be used to generate the data specified.

• Click on the Preview tab and click Preview to check out a sample of the data generated.

Scenario: Generating random java data

The following scenario creates a two-component Job, generating 50 rows structured as follows: a randomly picked-
up ID in a 1-to-3 range, a random ascii First Name and Last Name generation and a random date taken in a defined
range.



Scenario: Generating random java data

1486 Talend Open Studio Components Reference Guide

• Drop a tRowGenerator and a tLogRow component from the Palette to the design workspace.

• Right-click tRowGenerator and select Row > Main. Drag this main row link onto the tLogRow component
and release when the plug symbol displays.

• Double click tRowGenerator to open the Editor.

• Define the fields to be generated.

• The random ID column is of integer type, the First and Last names are of string type and the Date is of date type.

• In the Function list, select the relevant function or set on the three dots for custom function.

• On the Function parameters tab, define the Values to be randomly picked up.

• First_Name and Last_Name columns are to be generated using the getAsciiRandomString function that is
predefined in the system routines. By default the length defined is 6 characters long. You can change this if
need be.

• The Date column calls the predefined getRandomDate function. You can edit the parameter values in the
Function parameters tab.

• Set the Number of Rows to be generated to 50.

• Click OK to validate the setting.

• Double click tLogRow to view the Basic settings. The default setting is retained for this Job.

• Press F6 to run the Job.



Scenario: Generating random java data

Talend Open Studio Components Reference Guide 1487

The 50 rows are generated following the setting defined in the tRowGenerator editor and the output is displayed
in the Run console.



Talend Open Studio Components Reference Guide



Talend Open Studio Components Reference Guide

Orchestration components
This chapter details the main components that you can find in Orchestration family of the Palette in the
Integration perspective of the Talend Studio.

The Orchestration family groups together components that help you to sequence or orchestrate tasks or processing
in your Jobs or subjobs and so on.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.



tFileList

1490 Talend Open Studio Components Reference Guide

tFileList

tFileList belongs to two component families: File and Orchestration. For more information on tFileList, see
section tFileList.



tFlowToIterate

Talend Open Studio Components Reference Guide 1491

tFlowToIterate

tFlowToIterate Properties

Component family Orchestration

Function tFlowToIterate iterates on the input data and generates global variables.

Purpose This component is used to read data line by line from the input flow and store the data entries
in iterative global variables.

Basic settings Use the default (key, value)
in global variables

When selected, the system uses the default value of the global
variable in the current Job.

Customize key: Type in a name for the new global variable. Press Ctrl+Space
to access all available variables either global or user-defined.

value: Click in the cell to access a list of the columns attached to
the defined global variable.

Usage You cannot use this component as a start component. tFlowToIterate requires an output
component.

Global Variables Number of Lines: Indicates the number of lines processed. This
is available as an After variable.

Returns an integer.

Current iteration: Indicates the current iteration number. This is
available as a Flow variable.

Returns an integer.

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Row: Iterate

Trigger: Run if; On Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Main;

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation n/a

Scenario: Transforming data flow to a list

The following scenario describes a Job that reads a list of files from a defined input file, iterates on each of the
files and displays their content row by row on the Run console.



Scenario: Transforming data flow to a list

1492 Talend Open Studio Components Reference Guide

Setting up the Job

1. Drop the following components from the Palette onto the design workspace: two tFileInputDelimited
components, a tFlowToIterate, and a tLogRow.

2. Connect the first tFileInputDelimited to tFlowToIterate using a Row > Main link, tFlowToIterate to the
second tFileInputDelimited using an Iterate link, and the second tFileInputDelimited to tLogRow using
a Row > Main link.

Configuring the Components

1. Double-click the first tFileInputDelimited to display its Basic settings view.

2. Click the [...] button next to the File Name field to select the path to the input file.

The File Name field is mandatory.

The input file used in this scenario is Customers.txt. It is a text file that contains a list of names of three other
simple text files: Name.txt, E-mail.txt and Address.txt. The first text file, Name.txt, is made of one column
holding customers’ names. The second text file, E-mail.txt, is made of one column holding customers’ e-mail
addresses. The third text file, Address.txt, is made of one column holding customers’ postal addresses.

Fill in all other fields as needed. For more information, see section tFileInputDelimited properties. In this
scenario, the header and the footer are not set and there is no limit for the number of processed rows.

3. Click Edit schema to describe the data structure of this input file. In this scenario, the schema is made of
one column, FileName.



Scenario: Transforming data flow to a list

Talend Open Studio Components Reference Guide 1493

4. Double-click tFlowToIterate to display its Basic settings view.

Click the plus button to add new parameter lines and define your variables, and click in the key cell to enter
the variable name as desired. In this scenario, one variable is defined: "Name_of_File".

Alternatively, you can select the Use the default (key, value) in global variables check box to use the default
in global variables.

5. Double-click the second tFileInputDelimited to display its Basic settings view.

In the File name field, enter the directory of the files to be read, and then press Ctrl+Space to select the
global variable "Name_of_File". In this scenario, the syntax is as follows:

"C:/scenario/flow_to_iterate/"+((String)globalMap.get("Name_of_File"))

Click Edit schema to define the schema column name. In this scenario, it is RowContent.

Fill in all other fields as needed. For more information, see section tFileInputDelimited properties.



Scenario: Transforming data flow to a list

1494 Talend Open Studio Components Reference Guide

6. In the design workspace, select the last component, tLogRow, and click the Component tab to define its
basic settings.

Define your settings as needed. For more information, see section tLogRow properties.

Saving and executing the Job

1. Save your Job by pressing Ctrl+S.

2. Execute the Job by pressing F6 or clicking Run on the Run tab.

Customers’ names, customers’ e-mails, and customers’ postal addresses appear on the console preceded by the
schema column name.



tForeach

Talend Open Studio Components Reference Guide 1495

tForeach

tForeach Properties

Component Family Orchestration

Function tForeach creates a loop on a list for an iterate link.

Purpose tForeach allows you to to create a loop on a list for an iterate link.

Basic settings Values Use the [+] button to add rows to the Values table. Then click on the fields
to enter the list values to be iterated upon, between double quotation marks.

Advanced settings tStatCatcher
Statistics

Select this check box to collect the log data at a component level.

Usage tForeach is an input component and requires an Iterate link to connect it to another component.

Limitation n/a

Scenario: Iterating on a list and retrieving the values

This scenario describes a two component Job in which a list is created and iterated upon in a tForEach component.
The values are then retrieved in a tJava component.

• rop a tForeach and a tJava component onto the design workspace:

• Link tForeach to tJava using a Row > Iterate connection.

• Double-click tForEach to open its Basic settings view:

• Click the [+] button to add as many rows to the Values list as required.



Scenario: Iterating on a list and retrieving the values

1496 Talend Open Studio Components Reference Guide

• Click on the Value fields to enter the list values, between double quotation marks.

• Double-click tJava to open its Basic settings view:

• Enter the following Java code in the Code area:
System.out.println(globalMap.get("tForeach_1_CURRENT_VALUE")+"_out");

• Save the Job and press F6 to run it

The tJava run view displays the list values retrieved from tForeach, each one suffixed with _out:



tInfiniteLoop

Talend Open Studio Components Reference Guide 1497

tInfiniteLoop

tInfiniteLoop Properties

Component Family Orchestration

Function tInfiniteLoop runs an infiite loop on a task.

Purpose tInfiniteLoop allows you to to execute a task or a Job automatically, based on a loop.

Basic settings Wait at each iteration
(in milliseconds)

Enter the time delay between iterations.

Advanced settings tStatCatcher
Statistics

Select this check box to collect the log data at a component level.

Usage tInifniteLoop is an input component and requires an Iterate link to connect it to the following
component.

Global Variables Current iteration: Indicates the current iteration number. This is available
as a Flow variable.

Returns an integer.

For further information about variables, see Talend Open Studio User
Guide.

Connections Outgoing links (from one component to another):

Row: Iterate

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component Ok; On
Component Error.

Incoming links (from one component to another):

Row: Iterate;

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component Ok; On
Component Error; Synchronize; Parallelize.

For further information regarding connections, see Talend Open Studio
User Guide.

Limitation n/a

Related scenario

For an example of the kind of scenario in which tInifniteLoop might be used, see section Scenario: Job execution
in a loop, regarding the tLoop component.



tIterateToFlow

1498 Talend Open Studio Components Reference Guide

tIterateToFlow

tIterateToFlow Properties

Component family Orchestration

Function tIterateToFlow transforms a list into a data flow that can be processed.

Purpose Allows you to transform non processable data into a processable flow.

Basic settings Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

In the case of tIterateToFlow, the schema is to be defined

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
designs. Related topic: see Talend Open Studio User Guide.

Mapping Column: Enter a name for the column to be created

Value: Press Ctrl+Space to access all of the available variables,
be they global or user-defined.

Advanced Settings tStatCatcher Statistics Select this check box to collect the log data at a component level.

Usage This component is not startable (green background) and it requires an output component.

Connections Outgoing links (from one component to another):

Row: Main.

Trigger: Run if; On Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Iterate;

For further information regarding connections, see Talend Open
Studio User Guide.

Scenario: Transforming a list of files as data flow

The following scenario describes a Job that iterates on a list of files, picks up the filename and current date and
transforms this into a flow, that gets displayed on the console.

• Drop the following components: tFileList, tIterateToFlow and tLogRow from the Palette to the design
workspace.



Scenario: Transforming a list of files as data flow

Talend Open Studio Components Reference Guide 1499

• Connect the tFileList to the tIterateToFlow using an iterate link and connect the Job to the tLogRow using
a Row main connection.

• In the tFileList Component view, set the directory where the list of files is stored.

• In this example, the files are three simple .txt files held in one directory: Countries.

• No need to care about the case, hence clear the Case sensitive check box.

• Leave the Include Subdirectories check box unchecked.

• Then select the tIterateToFlow component et click Edit Schema to set the new schema

• Add two new columns: Filename of String type and Date of date type. Make sure you define the correct pattern
in Java.

• Click OK to validate.

• Notice that the newly created schema shows on the Mapping table.

• In each cell of the Value field, press Ctrl+Space bar to access the list of global and user-specific variables.

• For the Filename column, use the global variable: tFileList_1CURRENT_FILEPATH. It retrieves the current
filepath in order to catch the name of each file, the Job iterates on.

• For the Date column, use the Talend routine:TalendDate.getCurrentDate() (in Java)

• Then on the tLogRow component view, select the Print values in cells of a table check box.

• Save your Job and press F6 to execute it.



Scenario: Transforming a list of files as data flow

1500 Talend Open Studio Components Reference Guide

The filepath displays on the Filename column and the current date displays on the Date column.



tLoop

Talend Open Studio Components Reference Guide 1501

tLoop

tLoop Properties

Component family Orchestration

Function tLoop iterates on a task execution.

Purpose tLoop allows you to execute a task or a Job automatically, based on a loop

Basic settings Loop Type Select a type of loop to be carried out: either For or While.

For: The task or Job is carried out for the defined number of iteration

While: The task or Job is carried until the condition is met.

For From Type in the first instance number which the loop should start from. A start
instance number of 2 with a step of 2 means the loop takes on every even
number instance.

To Type in the last instance number which the loop should finish with.

Step Type in the step the loop should be incremented of. A step of 2 means
every second instance.

While Declaration Type in an expression initiating the loop.

Condition Type in the condition that should be met for the loop to end.

Iteration Type in the expression showing the operation to be performed at each loop.

Values are
increasing

Select this check box to only allow an increasing sequence. Deselect this
check box to only allow a decreasing sequence.

Usage tLoop is to be used as a start component and can only be used with an iterate connection to the
next component.

Global Variables Current value: Indicates the current value. This is available as a Flow
variable.

Returns an integer.

Current iteration: Indicates the number of the current iteration. This is
available as a Flow variable

Returns an integer.

The CURRENT_VALUE variable is available only in case of a For type
loop.

For further information about variables, see Talend Open Studio User
Guide.

Connections Outgoing links (from one component to another):

Row: Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component Ok; On
Component Error.

Incoming links (from one component to another):

Row: Iterate;

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component Ok; On
Component Error; Synchronize; Parallelize.



Scenario: Job execution in a loop

1502 Talend Open Studio Components Reference Guide

For further information regarding connections, see Talend Open Studio
User Guide.

Limitation n/a

Scenario: Job execution in a loop

This scenario describes a Job composed of a parent Job and a child Job. The parent Job implements a loop which
executes n times a child Job, with a pause between each execution.

• In the parent Job, drop a tLoop, a tRunJob and a tSleep component from the Palette to the design workspace.

• Connect the tLoop to the tRunJob using an Iterate connection.

• Then connect the tRunJob to a tSleep component using a Row connection.

• On the child Job, drop the following components: tPOP, tFileInputMail and tLogRow the same way.

• On the Basic settings panel of the tLoop component, type in the instance number to start from (1), the instance
number to finish with (5) and the step (1)

• On the Basic settings panel of the tRunJob component, select the child Job in the list of stored Jobs offered.
In this example: popinputmail

• Select the context if relevant. In this use case, the context is default with no variables stored.

• In the tSleep Basic settings panel, type in the time-off value in second. In this example, type in 3 seconds in
the Pause field.

• Then in the child Job, define the connection parameters to the pop server, on the Basic settings panel.

• In the tFileInputMail Basic settings panel, select a global variable as File Name, to collect the current file in
the directory defined in the tPOP component. Press Ctrl+Space bar to access the variable list. In this example,
the variable to be used is: ((String)globalMap.get("tPOP_1_CURRENT_FILEPATH"))

• Define the Schema, for it to include the mail element to be processed, such as author, topic, delivery date and
number of lines.



Scenario: Job execution in a loop

Talend Open Studio Components Reference Guide 1503

• In the Mail Parts table, type in the corresponding Mail part for each column defined in the schema. ex: author
comes from the From part of the email file.

• Then connect the tFileInputMail to a tLogRow to check out the execution result on the Run view.

• Press F6 to run the Job.



tPostjob

1504 Talend Open Studio Components Reference Guide

tPostjob

tPostjob Properties

Component family Orchestration

Function tPostjob starts the execution of a postjob.

Purpose tPostjob triggers a task required after the execution of a Job

Usage tPostjob is a start component and can only be used with an iterate connection to the next
component.

Connections Outgoing links (from one component to another):

Trigger: On Component Ok.

Incoming links (from one component to another):

Trigger: Synchronize; Parallelize.

For further information regarding connections, see Talend Open Studio
User Guide.

Limitation n/a

For more information about the tPostjob component, see Talend Open Studio User Guide.

Related scenario

No scenario is available for this component yet.



tPrejob

Talend Open Studio Components Reference Guide 1505

tPrejob

tPrejob Properties

Component family Orchestration

Function tPrejob starts the execution of a prejob.

Purpose tPrejob triggers a task required for the execution of a Job

Usage tPrejob is a start component and can only be used with an iterate connection to the next
component.

Connections Outgoing links (from one component to another):

Trigger: On Component Ok..

Incoming links (from one component to another):

Trigger: Synchronize; Parallelize.

For further information regarding connections, see Talend Open Studio
User Guide.

Limitation n/a

For more information about the tPrejob component, see Talend Open Studio User Guide.

Related scenario

No scenario is available for this component yet.



tReplicate

1506 Talend Open Studio Components Reference Guide

tReplicate

tReplicate Properties

Component family Orchestration

Function Duplicate the incoming schema into two identical output flows.

Purpose Allows you to perform different operations on the same schema.

Basic settings Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Click Edit schema to make changes to the schema. Note that if
you make changes to a remote schema, the schema automatically
becomes built-in.

Click Sync columns to retrieve the schema from the previous
component in the Job.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
designs. Related topic: see Talend Open Studio User Guide.

Usage This component is not startable (green background), it requires an Input component and an output
component.

Connections Outgoing links (from one component to another):

Row: Main.

Trigger: Run if; On Component Ok; On Component Error.

Incoming links (from one component to another):

Row: Main; Reject;

For further information regarding connections, see Talend Open
Studio User Guide.

Related scenario

For a use case showing this component in use, see section tReplaceList.



tRunJob

Talend Open Studio Components Reference Guide 1507

tRunJob

tRunJob belongs to two component families: System and Orchestration. For more information on tRunJob, see
section tRunJob.



tSleep

1508 Talend Open Studio Components Reference Guide

tSleep

tSleep Properties

Component family Orchestration

Function tSleep implements a time off in a Job execution.

Purpose Allows you to identify possible bottlenecks using a time break in the Job for testing or tracking
purpose. In production, it can be used for any needed pause in the Job to feed input flow for
example.

Basic settings Pause (in second) Time in second the Job execution is stopped for.

Usage tSleep component is generally used as a middle component to make a break/pause in the Job,
before resuming the Job.

Connections Outgoing links (from one component to another):

Row: Main; Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component
Ok; On Component Error

Incoming links (from one component to another):

Row: Main; Reject; Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component
Ok; On Component Error; Synchronize; Parallelize.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation n/a

Related scenarios

For use cases in relation with tSleep, see section Scenario: Job execution in a loop.



tUnite

Talend Open Studio Components Reference Guide 1509

tUnite

tUnite Properties

Component family Orchestration

Function Merges data from various sources, based on a common schema.

tUnite cannot exist in a data flow loop. For instance, if a data flow goes through
several tMap components to generate two flows, they cannot be fed to tUnite.

Purpose Centralize data from various and heterogeneous sources.

Basic settings Schema and Edit Schema A schema is a row description, i.e. it defines the number of fields
that will be processed and passed on to the next component.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component in the Job.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
designs. Related topic: see Talend Open Studio User Guide.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is not startable and requires one or several input components and an output
component.

Global Variables Number of lines: Indicates the number of lines processed. This is
available as an After variable.

Returns an integer.

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Row: Main.

Trigger: Run if; On Component Ok; On Component Error

Incoming links (from one component to another):

Row: Main; Reject.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation n/a



Scenario: Iterate on files and merge the content

1510 Talend Open Studio Components Reference Guide

Scenario: Iterate on files and merge the content

The following Job iterates on a list of files then merges their content and displays the final 2-column content on
the console.

Dropping and linking the components

1. Drop the following components onto the design workspace: tFileList, tFileInputDelimited, tUnite and
tLogRow.

2. Connect the tFileList to the tFileInputDelimited using an Iterate connection and connect the other
component using a row main link.

Configuring the components

1. In the tFileList Basic settings view, browse to the directory, where the files to merge are stored.

The files are pretty basic and contain a list of countries and their respective score.



Scenario: Iterate on files and merge the content

Talend Open Studio Components Reference Guide 1511

2. In the Case Sensitive field, select Yes to consider the letter case.

3. Select the tFileInputDelimited component, and display this component’s Basic settings view.

4. Fill in the File Name/Stream field by using the Ctrl+Space bar combination to access the variable
completion list, and selecting tFileList.CURRENT_FILEPATH from the global variable list to process all
files from the directory defined in the tFileList.

5. Click the Edit Schema button and set manually the 2-column schema to reflect the input files’ content.

For this example, the 2 columns are Country and Points. They are both nullable. The Country column is of
String type and the Points column is of Integer type.

6. Click OK to validate the setting and accept to propagate the schema throughout the Job.

7. Then select the tUnite component and display the Component view. Notice that the output schema strictly
reflects the input schema and is read-only.

8. In the Basic settings view of tLogRow, select the Table option to display properly the output values.



Scenario: Iterate on files and merge the content

1512 Talend Open Studio Components Reference Guide

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6, or click Run on the Run console to execute the Job.

The console shows the data from the various files, merged into one single table.



tWaitForFile

Talend Open Studio Components Reference Guide 1513

tWaitForFile

tWaitForFile properties

Component family Orchestration

Function tWaitForFile component iterates on a given folder for file insertion or deletion then triggers a
subjob to be executed when the condition is met.

Purpose This component allows a subjob to be triggered given a condition linked to file presence or
removal.

Basic settings Time (in seconds) between
iterations

Set the time interval in seconds between each check for the file.

Max. number of iterations
(infinite loop if empty)

Number of checks for file before the jobs times out.

Directory to scan Name of the folder to be checked for insert or removal

File mask Mask of the file to be searched for insertion or removal.

Include subdirectories Select this check box to include the sub-folders.

Case sensitive Select this check box to activate case sensitivity.

Include present file Select this check box to include the file in use.

Trigger action when Select the condition to be met for the action to be carried out:

A file is created A file is deleted A file is updated A file is created
or updated or deleted.

Then Select the action to be carried out: either stop the iterations when
the condition is met (exit loop) or continue the loop until the end
of the max iteration number (continue loop).

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository. .

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
designs. Related topic: see Talend Open Studio User Guide.

Advanced Settings Wait for file to be released Select this check box so that the subjob only triggers after the
file insertion/update/removal operation is complete. In case the
operation is incomplete, the subjob will not trigger.

Usage This component plays the role of the start (or trigger) component of the subjob which gets
executed under the condition described. Therefore this component requires a subjob to be
connected to via an Iterate link.

Global Variables Current iteration: Indicates the number of the current iteration.
This is available as a Flow variable.

Returns an integer.

Present File: Indicates the name of the current file in the iteration
which activated the trigger. This is available as a Flow variable.

Returns a string.



Scenario: Waiting for a file to be removed

1514 Talend Open Studio Components Reference Guide

Deleted File: Indicates the path and name of the deleted file, which
activated the trigger. This is available as a Flow variable

Returns a string.

Created File Name: Indicates the name and path to a newly
created file which activated the trigger. This is available as a Flow
variable.

Returns a string.

Updated File: Indicates the name and path to a file which has been
updated, thereby activating the trigger. This is available as a Flow
variable.

Returns a string.

File Name: Indicates the name of a file which has been created,
deleted or updated, thereby activating the trigger. This is available
as a Flow variable.

Returns a string.

Not Updated File Name: Indicates the names of files which have
not been updated, thereby activating the trigger. This is available
as a Flow variable.

Returns a string.

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Row: Main; Iterate.

Trigger: On Subjob Ok; Run if; On Component Ok; On
Component Error

Incoming links (from one component to another):

Row:Iterate.

Trigger: On Subjob Ok; Run if; On Component Ok; On
Component Error; Synchronize; Parallelize.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation n/a

Scenario: Waiting for a file to be removed

This scenario describes a Job scanning a directory and waiting for a file to be removed from this directory, in
order for a subjob to be executed. When the condition of file removal is met, then the subjob simply displays a
message box showing the file being removed.



Scenario: Waiting for a file to be removed

Talend Open Studio Components Reference Guide 1515

• This use case only requires two components from the Palette: tWaitForFile and tMsgbox

• Click and place these components on the design workspace and connect them using an Iterate link to implement
the loop.

• Then select the tWaitForFile component, and on the Basic Settings view of the Component tab, set the
condition and loop properties:

• In the Time (in seconds) between iteration field, set the time in seconds you want to wait before the next
iteration starts. In this example, the directory will be scanned every 5 seconds.

• In the Max. number of iterations (infinite loop if empty) field, fill out the number of iterations max you want to
have before the whole Job is forced to end. In this example, the directory will be scanned a maximum of 5 times.

• In the Directory to scan field, type in the path to the folder to scan.

• In the Trigger action when field, select the condition to be met, for the subjob to be triggered. In this use case,
the condition is a file is deleted (or moved) from the directory.

• In the Then field, select the action to be carried out when the condition is met before the number of iteration
defined is reached. In this use case, as soon as the condition is met, the loop should be ended.

• Then set the subjob to be executed when the condition set is met. In this use case, the subjob simply displays
a message box.

• Select the tMsgBox component, and on the Basic Setting view of the Component tab, set the message to be
displayed.

• Fill out the Title and Message fields.

• Select the type of Buttons and the Icon

• In the Message field, you can write any type of message you want to display and use global variables available
in the auto-completion list via Ctrl+Space combination.

• The message is:

"Deleted file: "+((String)globalMap.get("tWaitForFile_1_DELETED_FILE"))+"
on iteration Nr:"+((Integer)globalMap.get("tWaitForFile_1_CURRENT_ITERATION"))



Scenario: Waiting for a file to be removed

1516 Talend Open Studio Components Reference Guide

Then execute the Job via the F6 key. While the loop is executing, remove a file from the location defined. The
message pops up and shows the defined message.



tWaitForSocket

Talend Open Studio Components Reference Guide 1517

tWaitForSocket

tWaitForSocket properties

Component Family Orchestration

Function tWaitForSocket component makes a loop on a defined port, to look for data, and triggers a
subjob when the condition is met.

Purpose This component triggers a Job based on a defined condition.

Basic settings Port DB server listening port.

End of line separator Enter the end of line separator to be used..

Then Select the action to be carried out:

keep on listening

or

close socket

Print client/server data Select this check box to display the client or server data.

Advanced settings tStatCatcher Statistics Select this check box to collect the log data at a component level.

Usage This is an input, trigger component for the subjob executed depending on the condition set.
Hence, it needs to be connected to a subjob via an Iterate link.

Global Variables Client input data: Returns the data transmitted by the client. This
is available as a Flow variable.

Returns a string.

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Row: Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component
Ok; On Component Error.

Incoming links (from one component to another):

Row:Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component
Ok; On Component Error; Synchronize; Parallelize.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation n/a

Related scenario

No scenario is available for this component yet.



tWaitForSqlData

1518 Talend Open Studio Components Reference Guide

tWaitForSqlData

tWaitForSqlData properties

Component family Orchestration

Function tWaitForSqlData component iterates on a given connection for insertion or deletion of rows
and triggers a subjob to be executed when the condition is met.

Purpose This component allows a subjob to be triggered given a condition linked to sql data presence.

Basic settings Wait at each iteration (in
seconds)

Set the time interval in seconds between each check for the sql data.

Max. iterations (infinite if
empty)

Number of checks for sql data before the Jobs times out.

Use an existing connection/
Component List

A connection needs to be open to allow the loop to check for sql
data on the defined DB.

When a Job contains the parent Job and the child
Job, Component list presents only the connection
components in the same Job level, so if you need to use
an existing connection from the other level, you can

From the available database connection component
in the level where the current component is, select
the Use or register a shared DB connection check
box. For more information about this check box,
see Databases - traditional components, Databases
- appliance/datawarehouse components, or Databases
- other components for the connection components
according to the database you are using.

Otherwise, still in the level of the current component,
deactivate the connection components and use Dynamic
settings of the component to specify the intended
connection manually. In this case, make sure the
connection name is unique and distinctive all over
through the two Job levels. For more information about
Dynamic settings, see your studio user guide.

Table to scan Name of the table to be checked for insert or deletion

Trigger action when
rowcount is

Select the condition to be met for the action to be carried out:

Equal to Not Equal to Greater than Lower than Greater or
equal to Lower or equal to

Value Define the value to take into account.

Then Select the action to be carried out: either stop the iterations when
the condition is met (exit loop) or continue the loop until the end
of the max iteration number (continue loop).

Usage Although this component requires a Connection component to open the DB access, it plays also
the role of the start (or trigger) component of the subjob which gets executed under the condition
described. Therefore this component requires a subjob to be connected to via an Iterate link.

Global Variables Current iteration: Returns the number of the current iteration.
This is available as a Flow variable.

Returns an integer.



Scenario: Waiting for insertion of rows in a table

Talend Open Studio Components Reference Guide 1519

Row count: Indicates the number of records detected in the table.
This is available as a Flow variable.

Returns an integer.

For further information about variables, see Talend Open Studio
User Guide.

Limitation n/a

Scenario: Waiting for insertion of rows in a table

This scenario describes a Job reading a DB table and waiting for data to be put in this table in order for a subjob
to be executed. When the condition of the data insertion in the table is met, then the subjob performs a Select* on
the table and simply displays the content of the inserted data onto the standard console.

• Drop the following components from the Palette onto the design workspace: tMySqlConnection,
tWaitForSqlData, tMysqlInput, tLogRow.

• Connect the tMysqlConnection component to the tWaitforSqlData using an OnSubjobOK link, available
on the right-click menu.

• Then connect the tWaitForSqlData component to the subjob using an Iterate link as no actual data is
transferred in this part. Indeed, simply a loop is implemented by the tWaitForSqlData until the condition is met.

• On the subjob to be executed if the condition is met, a tMysqlInput is connected to the standard console
component, tLogRow. As the connection passes on data, use a Row main link.

• Now, set the connection to the table to check at regular intervals. On the Basic Settings view of the
tMySqlConnection Component tab, set the DB connection properties.

• Fill out the Host, Port, Database, Username, Password fields to open the connection to the Database table.

• Select the relevant Encoding if needed.

• Then select the tWaitForSqlData component, and on the Basic Setting view of the Component tab, set its
properties.



Scenario: Waiting for insertion of rows in a table

1520 Talend Open Studio Components Reference Guide

• In the Wait at each iteration field, set the time in seconds you want to wait before the next iteration starts.

• In the Max iterations field, fill out the number of iterations max you want to have before the whole Job is
forced to end.

• The tWaitForSqlData component requires a connection to be open in order to loop on the defined number of
iteration. Select the relevant connection (if several) in the Component List combo box.

• In the Table to scan field, type in the name of the table in the DB to scan.In this example: test_datatypes.

• In the Trigger action when rowcount is and Value fields, select the condition to be met, for the subjob to be
triggered. In this use case, the number of rows in the scanned table should be greater or equal to 1.

• In the Then field, select the action to be carried out when the condition is met before the number of iteration
defined is reached. In this use case, as soon as the condition is met, the loop should be ended.

• Then set the subjob to be executed when the condition set is met. In this use case, the subjob simply selects the
data from the scanned table and displays it on the console.

• Select the tMySqlInput component, and on the Basic Setting view of the Component tab, set the connection
to the table.

• If the connection is set in the Repository, select the relevant entry on the list. Or alternatively, select the Use an
existing connection check box and select the relevant connection component on the list.

• In this use case, the schema corresponding to the table structure is stored in the Repository.

• Fill out the Table Name field with the table the data is extracted from, Test_datatypes.

• Then in the Query field, type in the Select statement to extract the content from the table.

• No particular setting is required in the tLogRow component for this use case.

Then before executing the Job, make sure the table to scan (test_datatypes) is empty, in order for the condition
(greater or equal to 1) to be met. Then execute the Job by pressing the F6 key on your keyboard. Before the end
of the iterating loop, feed the test_datatypes table with one or more rows in order to meet the condition.



Scenario: Waiting for insertion of rows in a table

Talend Open Studio Components Reference Guide 1521

The Job ends when this table insert is detected during the loop, and the table content is thus displayed on the
console.



Talend Open Studio Components Reference Guide



Talend Open Studio Components Reference Guide

Processing components
This chapter details the main components that you can find in Processing family of the Palette in the Integration
perspective of the Talend Studio.

The Processing family gathers together components that help you to perform all types of processing tasks on data
flows, including aggregation, mapping, transformation, denormalizing, filtering and so on.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.



tAggregateRow

1524 Talend Open Studio Components Reference Guide

tAggregateRow

tAggregateRow properties

Component family Processing

Function tAggregateRow receives a flow and aggregates it based on one or more columns. For each output
line, are provided the aggregation key and the relevant result of set operations (min, max, sum...).

Purpose Helps to provide a set of metrics based on values or calculations.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Group by Define the aggregation sets, the values of which will be used for
calculations.

Output Column: Select the column label in the list offered based
on the schema structure you defined. You can add as many output
columns as you wish to make more precise aggregations.

Ex: Select Country to calculate an average of values for each
country of a list or select Country and Region if you want to
compare one country’s regions with another country’ regions.

Input Column: Match the input column label with your output
columns, in case the output label of the aggregation set needs to
be different.

Operations Select the type of operation along with the value to use for the
calculation and the output field.

Output Column: Select the destination field in the list.

Function: Select the operator among: count, min, max, avg, sum,
first, last, list, list(objects), count(distinct), standard deviation.

Input column: Select the input column from which the values are
taken to be aggregated.

Ignore null values: Select the check boxes corresponding to the
names of the columns for which you want the NULL value to be
ignored.

Advanced settings Delimiter(only for list
operation)

Enter the delimiter you want to use to separate the different
operations.

Use financial precision,
this is the max precision
for “sum” and “avg”
operations, checked option
heaps more memory and
slower than unchecked.

Select this check box to use a financial precision. This is a max
precision but consumes more memory and slows the processing.

We advise you to use the BigDecimal type for the output
in order to obtain precise results.

Check type overflow
(slower)

Checks the type of data to ensure that the Job doesn’t crash.



Scenario 1: Aggregating values and sorting data

Talend Open Studio Components Reference Guide 1525

Check ULP (Unit in the
Last Place), ensure that a
value will be incremented
or decremented correctly,
only float and double types.
(slower)

Select this check box to ensure the most precise results possible
for the Float and Double types.

tStatCatcher Statistics Check this box to collect the log data at component level.

Usage This component handles flow of data therefore it requires input and output, hence is defined
as an intermediary step. Usually the use of tAggregateRow is combined with the tSortRow
component

Limitation n/a

Scenario 1: Aggregating values and sorting data
The following scenario describes a four-component Job. As input component, a CSV file contains countries and
notation values to be sorted by best average value. This component is connected to a tAggregateRow operator,
in charge of the average calculation then to a tSortRow component for the ascending sort. The output flow goes
to the new csv file.

• From the File folder in the Palette, drop a tFileInputDelimited component to the design workspace.

• Click the label and rename it as Countries. Or rename it from the View tab panel

• In the Basic settings tab panel of this component, define the filepath and the delimitation criteria. Or select the
metadata file in the repository if it exists.

• Click Edit schema... and set the columns: Countries and Points to match the file structure. If your file
description is stored in the Metadata area of the Repository, the schema is automatically uploaded when you
click Repository in Schema type field.

• Then from the Processing folder in the Palette, drop a tAggregateRow component to the design workspace.
Rename it as Calculation.

• Connect Countries to Calculation via a right-click and select Row > Main.

• Double-click Calculation (tAggregateRow component) to set the properties. Click Edit schema and define the
output schema. You can add as many columns as you need to hold the set operations results in the output flow.



Scenario 1: Aggregating values and sorting data

1526 Talend Open Studio Components Reference Guide

• In this example, we’ll calculate the average notation value per country and we will display the max and the
min notation for each country, given that each country holds several notations. Click OK when the schema is
complete.

• To carry out the various set operations, back in the Basic settings panel, define the sets holding the operations
in the Group By area. In this example, select Country as group by column. Note that the output column needs
to be defined a key field in the schema. The first column mentioned as output column in the Group By table is
the main set of calculation. All other output sets will be secondary by order of display.

• Select the input column which the values will be taken from.

• Then fill in the various operations to be carried out. The functions are average, min, max for this use case.
Select the input columns, where the values are taken from and select the check boxes in the Ignore null values
list as needed.

• Drop a tSortRow component from the Palette onto the design workspace. For more information regarding this
component, see section tSortRow properties.

• Connect the tAggregateRow to this new component using a row main link.

• On the Component view of the tSortRow component, define the column the sorting is based on, the sorting
type and order.

• In this case, the column to be sorted by is Country, the sort type is alphabetical and the order is ascending.

• Drop a tFileOutputDelimited from the Palette to the design workspace and define it to set the output flow.

• Connect the tSortRow component to this output component.



Scenario 1: Aggregating values and sorting data

Talend Open Studio Components Reference Guide 1527

• In the Component view, enter the output filepath. Edit the schema if need be. In this case the delimited file is
of csv type. And select the Include Header check box to reuse the schema column labels in your output flow.

• Press F6 to execute the Job. The csv file thus created contains the aggregating result.



tAggregateSortedRow

1528 Talend Open Studio Components Reference Guide

tAggregateSortedRow

tAggregateSortedRow properties

Component family Processing

Function tAggregateSortedRow receives a sorted flow and aggregates it based on one or more columns. For
each output line, are provided the aggregation key and the relevant result of set operations (min, max,
sum...).

Purpose Helps to provide a set of metrics based on values or calculations. As the input flow is meant to be
sorted already, the performance are hence greatly optimized.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields that
will be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if you
make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the Repository,
hence can be reused in various projects and Job flowcharts. Related
topic: see Talend Open Studio User Guide.

Input rows count Specify the number of rows that are sent to the tAggregateSortedRow
component.

If you specified a Limit for the number of rows to be
processed in the input component, you will have to use that
same limit in the Input rows count field.

Group by Define the aggregation sets, the values of which will be used for
calculations.

Output Column: Select the column label in the list offered based
on the schema structure you defined. You can add as many output
columns as you wish to make more precise aggregations.

Ex: Select Country to calculate an average of values for each country
of a list or select Country and Region if you want to compare one
country’s regions with another country’ regions.

Input Column: Match the input column label with your output
columns, in case the output label of the aggregation set needs to be
different.

Operations Select the type of operation along with the value to use for the
calculation and the output field.

Output Column: Select the destination field in the list.

Function: Select the operator among: count, min, max, avg, first, last.

Input column: Select the input column from which the values are
taken to be aggregated.

Ignore null values: Select the check boxes corresponding to the names
of the columns for which you want the NULL value to be ignored.

Usage This component handles flow of data therefore it requires input and output, hence is defined as an
intermediary step.



Related scenario

Talend Open Studio Components Reference Guide 1529

Limitation n/a

Related scenario

For related use case, see section Scenario 1: Aggregating values and sorting data.



tConvertType

1530 Talend Open Studio Components Reference Guide

tConvertType

tConvertType properties

Component family Processing

Function tConvertType allows specific conversions at run time from one Talend java type to another.

Purpose Helps to automatically convert one Talend java type to another and thus.avoid compiling errors.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Built-in: You create and store the schema locally for only the
current component. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Auto Cast This check box is selected by default. It performs an automatic java
type conversion.

Manual Cast This mode is not visible if the Auto Cast check box is selected.
It allows you to precise manually the columns where a java type
conversion is needed.

Set empty values to Null
before converting

This check box is selected to set the empty values of String or
Object type to null for the input data.

Die on error This check box is selected to kill the Job when an error occurs.

Usage This component cannot be used as a start component as it requires an input flow to operate.

Limitation n/a

Scenario: Converting java types

This Java scenario describes a four-component Job where the tConvertType component is used to convert Java
types in three columns, and a tMap is used to adapt the schema and have as an output the first of the three columns
and the sum of the two others after conversion.

In this scenario, the input schemas for the input delimited file are stored in the repository, you can simply drag and drop
the relevant file node from Repository - Metadata - File delimited onto the design workspace to automatically retrieve the
tFileInputDelimited component’s setting. For more information, see Talend Open Studio User Guide.

Dropping the components

1. Drop the following components from the Palette onto the design workspace: tConvertType, tMap, and
tLogRow.



Scenario: Converting java types

Talend Open Studio Components Reference Guide 1531

2. In the Repository tree view, expand Metadata and from File delimited drag the relevant node, JavaTypes
in this scenario, to the design workspace.

The [Components] dialog box displays.

3. From the component list, select tFileInputDelimited and click Ok.

A tFileInputComponent called Java types displays in the design workspace.

4. Connect the components using Row > Main links.

Configuring the components

1. Double-click tFileInputDelimited to enter its Basic settings view.

2. Set Property Type to Repository since the file details are stored in the repository. The fields to follow are
pre-defined using the fetched data.

The input file used in this scenario is called input. It is a text file that holds string, integer, and float java types.

Fill in all other fields as needed. For more information, see section tMDMInput properties. In this scenario,
the header and the footer are not set and there is no limit for the number of processed rows.

3. Click Edit schema to describe the data structure of this input file. In this scenario, the schema is made of
three columns, StringtoInteger, IntegerField, and FloatToInteger.



Scenario: Converting java types

1532 Talend Open Studio Components Reference Guide

4. Click Ok to close the dialog box.

5. Double-click tConvertType to enter its Basic settings view.

6. Set Schema Type to Built in, and click Sync columns to automatically retrieve the columns from the
tFileInputDelimited component.

7. Click Edit schema to describe manually the data structure of this processing component.

In this scenario, we want to convert a string type data into an integer type and a float type data into an integer
type.

Click OK to close the [Schema of tConvertType] dialog box.

8. Double-click tMap to open the Map editor.

The Map editor displays the input metadata of the tFileInputDelimited component



Scenario: Converting java types

Talend Open Studio Components Reference Guide 1533

9. In the Schema editor panel of the Map editor, click the plus button of the output table to add two rows and
name them as StringToInteger and Sum.

10. In the Map editor, drag the StringToInteger row from the input table to the StringToInteger row in the output
table.

11. In the Map editor, drag each of the IntegerField and the FloatToInteger rows from the input table to the Sum
row in the output table and click OK to close the Map editor.

12. In the design workspace, select tLogRow and click the Component tab to define its basic settings. For more
information, see section tLogRow.



Scenario: Converting java types

1534 Talend Open Studio Components Reference Guide

Executing the Job

1. Press Ctrl+S to save the Job.

2. Press F6 to execute it.

The string type data is converted into an integer type and displayed in the StringToInteger column on the
console. The float type data is converted into an integer and added to the IntegerField value to give the
addition result in the Sum column on the console.



tDenormalize

Talend Open Studio Components Reference Guide 1535

tDenormalize

tDenormalize Properties

Component family Processing/Fields

Function Denormalizes the input flow based on one column.

Purpose tDenormalize helps synthesize the input flow.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.  In
this component, the schema is read-only.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

To denormalize In this table, define the parameters used to denormalize your
columns.

Column: Select the column to denormalize.

Delimiter: Type in the separator you want to use to denormalize
your data between double quotes.

Merge same value: Select this check box to merge identical
values.

Advanced settings

tStatCatcher Statistics Select this ckeck box to collect the log data at component level.

Usage This component can be used as intermediate step in a data flow.

Limitation n/a

Scenario 1: Denormalizing on one column

This scenario illustrates a Job denormalizing one column in a delimited file.

• Drop the following components: tFileInputDelimited, tDenormalize, tLogRow from the Palette to the design
workspace.

• Connect the components using Row main connections.

• On the tFileInputDelimited Component view, set the filepath to the file to be denormalized.



Scenario 1: Denormalizing on one column

1536 Talend Open Studio Components Reference Guide

• Define the Header, Row Separator and Field Separator parameters.

• The input file schema is made of two columns, Fathers and Children.

• In the Basic settings of tDenormalize, define the column that contains multiple values to be grouped.

• In this use case, the column to denormalize is Children.

• Set the Delimiter to separate the grouped values. Beware as only one column can be denormalized.

• Select the Merge same value check box, if you know that some values to be grouped are strictly identical.

• Save your Job and press F6 to execute it.



Scenario 2: Denormalizing on multiple columns

Talend Open Studio Components Reference Guide 1537

All values from the column Children (set as column to denormalize) are grouped by their Fathers column. Values
are separated by a comma.

Scenario 2: Denormalizing on multiple columns
This scenario illustrates a Job denormalizing two columns from a delimited file.

• Drop the following components: tFileInputDelimited, tDenormalize, tLogRow from the Palette to the design
workspace.

• Connect all components using a Row main connection.

• On the tFileInputDelimited Basic settings panel, set the filepath to the file to be denormalized.

• Define the Row and Field separators, the Header and other information if required.

• The file schema is made of four columns including: Name, FirstName, HomeTown, WorkTown.



Scenario 2: Denormalizing on multiple columns

1538 Talend Open Studio Components Reference Guide

• In the tDenormalize component Basic settings, select the columns that contain the repetition. These are the
column which are meant to occur multiple times in the document. In this use case, FirstName, HomeCity and
WorkCity are the columns against which the denormalization is performed.

• Add as many line to the table as you need using the plus button. Then select the relevant columns in the drop-
down list.

• In the Delimiter column, define the separator between double quotes, to split concanated values. For FirstName
column, type in “#”, for HomeCity, type in “§”, ans for WorkCity, type in “¤”.

• Save your Job and press F6 to execute it.

• The result shows the denormalized values concatenated using a comma.

• Back to the tDenormalize components Basic settings, in the To denormalize table, select the Merge same
value check box to remove the duplicate occurrences.

• Save your Job again and press F6 to execute it.

This time, the console shows the results with no duplicate instances.



tDenormalizeSortedRow

Talend Open Studio Components Reference Guide 1539

tDenormalizeSortedRow

tDenormalizeSortedRow properties

Component family Processing/Fields

Function tDenormalizeSortedRow combines in a group all input sorted rows. Distinct values of the
denormalized sorted row are joined with item separators.

Purpose tDenormalizeSortedRow helps synthesizing sorted input flow to save memory.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component in the Job.

Built-in: You create the schema and store it locally for the relevant
component. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Input rows count Enter the number of input rows.

To denormalize Enter the name of the column to denormalize.

Usage This component handles flows of data therefore it requires input and output components.

Limitation n/a

Scenario: Regrouping sorted rows

This Java scenario describes a four-component Job. It aims at reading a given delimited file row by row, sorting
input data by sort type and order, denormalizing all input sorted rows and displaying the output on the Run log
console.

• Drop the following components from the Palette onto the design workspace: tFileInputDelimited, tSortRow,
tDenormalizeSortedRow, and tLogRow.

• Connect the four components using Row Main links.

• In the design workspace, select tFileInputDelimited.



Scenario: Regrouping sorted rows

1540 Talend Open Studio Components Reference Guide

• Click the Component tab to define the basic settings for tFileInputDelimited.

• Set Property Type to Built-In.

• Fill in a path to the processed file in the File Name field. The name_list file used in this example holds two
columns, id and first name.

• If needed, define row and field separators, header and footer, and the number of processed rows.

• Set Schema to Built in and click the three-dot button next to Edit Schema to define the data to pass on to the
next component. The schema in this example consists of two columns, id and name.

• In the design workspace, select tSortRow.

• Click the Component tab to define the basic settings for tSortRow.



Scenario: Regrouping sorted rows

Talend Open Studio Components Reference Guide 1541

• Set the Schema Type to Built-In and click Sync columns to retrieve the schema from the tFileInputDelimited
component.

• In the Criteria panel, use the plus button to add a line and set the sorting parameters for the schema column to
be processed. In this example we want to sort the id columns in ascending order.

• In the design workspace, select tDenormalizeSortedRow.

• Click the Component tab to define the basic settings for tDenormalizeSortedRow.

• Set the Schema Type to Built-In and click Sync columns to retrieve the schema from the tSortRow component.

• In the Input rows countfield, enter the number of the input rows to be processed or press Ctrl+Space to access
the context variable list and select the variable: tFileInputDelimited_1_NB_LINE.

• In the To denormalize panel, use the plus button to add a line and set the parameters to the column to be
denormalize. In this example we want to denormalize the name column.

• In the design workspace, select tLogRow and click the Component tab to define its basic settings. For more
information about tLogRow, see section tLogRow.

• Save your Job and press F6 to execute it.



Scenario: Regrouping sorted rows

1542 Talend Open Studio Components Reference Guide

The result displayed on the console shows how the name column was denormalize.



tExternalSortRow

Talend Open Studio Components Reference Guide 1543

tExternalSortRow

tExternalSortRow properties

Component family Processing

Function Uses an external sort application to sort input data based on one or several columns, by sort type
and order

Purpose Helps create metrics and classification table.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

File Name Name of the file to be processed.

Related topic: see Talend Open Studio. User Guide.

Field separator Character, string or regular expression to separate fields.

External command “sort”
path

Enter the path to the external file containing the sorting algorithm
to use.

Criteria Click the plus button to add as many lines as required for the sort
to be complete. By default the first column defined in your schema
is selected.

Schema column: Select the column label from your schema,
which the sort will be based on. Note that the order is essential as
it determines the sorting priority.

Sort type: Numerical and Alphabetical order are proposed. More
sorting types to come.

Order: Ascending or descending order.

Advanced settings Maximum memory Type in the size of physical memory you want to allocate to sort
processing.

Temporary directory Specify the temporary directory to process the sorting command.

Set temporary input file
directory

Select the check box to activate the field in which you can specify
the directory to handle your temporary input file.

Add a dummy EOF line Select this check box when using the tAggregateSortedRow
component.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at the
Job level as well as at each component level.

Usage This component handles flow of data therefore it requires input and output, hence is defined as
an intermediary step.

Limitation n/a



Related scenario

1544 Talend Open Studio Components Reference Guide

Related scenario

For related use case, see section tSortRow.



tExtractDelimitedFields

Talend Open Studio Components Reference Guide 1545

tExtractDelimitedFields

tExtractDelimitedFields properties

Component family Processing/Fields

Function tExtractDelimitedFields generates multiple columns from a given column in a delimited file.

Purpose tExtractDelimitedFields helps to extract ‘fields’ from within a string to write them elsewhere
for example.

Basic settings Field to split Select an incoming field from the Field to split list to split.

Field separator Set field separator.

Since this component uses regex to split a filed and the
regex syntax uses special characters as operators, make
sure to precede the regex operator you use as a field
separator by a double backslash. For example, you have
to use "\\|" instead of "|".

Die on error This check box is selected by default. Clear the check box to skip
the row on error and complete the process for error-free rows. If
needed, you can retrieve the rows on error via a Row > Reject link.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component connected to tExtractDelimitedFields.

Built-in: You create the schema and store it locally for the
component. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Advanced settings Advanced separator (for
number)

Select this check box to modify the separators used for numbers.

Trim column Select this check box to remove leading and trailing whitespace
from all columns.

Check each row structure
against schema

Select this check box to synchronize every row against the input
schema.

Validate date Select this check box to check the date format strictly against the
input schema.

tStatCatcher Statistics Select this check box to gather the processing metadata at the Job
level as well as at each component level.

Usage This component handles flow of data therefore it requires input and output components. It allows
you to extract data from a delimited field, using a Row > Main link, and enables you to create
a reject flow filtering data which type does not match the defined type.

Limitation n/a



Scenario: Extracting fields from a comma-delimited file

1546 Talend Open Studio Components Reference Guide

Scenario: Extracting fields from a comma-delimited
file

This scenario describes a three-component Job where the tExtractdelimitedFields component is used to extract
two columns from a comma-delimited file.

• Drop the following components from the Palette onto the design workspace: tFileInputDelimited,
tExtractDelimitedFields, and tLogRow.

• Via a right-click each of the three components, connect them using Row Main links.

• In the design workspace, select tFileInputDelimited.

• Click the Component tab to define the basic settings for tFileInputDelimited.

• In the Basic settings view, set Property Type to Built-In.

• Click the three-dot [...] button next to the File Name field to select the path to the input file.

The File Name field is mandatory.

The input file used in this scenario is called test5. It is a text file that holds comma-delimited data.

• In the Basic settings view, fill in all other fields as needed. For more information, see section tMDMInput
properties. In this scenario, the header and the footer are not set and there is no limit for the number of processed
rows



Scenario: Extracting fields from a comma-delimited file

Talend Open Studio Components Reference Guide 1547

• Click Edit schema to describe the data structure of this input file. In this scenario, the schema is made of one
column, name.

• In the design workspace, select tExtractDelimitedFields.

• Click the Component tab to define the basic settings for tExtractDelimitedFields.

• From the Field to split list, select the column to split, name in this scenario.

• In the Field separator field, enter the corresponding separator.

• Click Edit schema to describe the data structure of this processing component.

• In the output panel of the [Schema of tExtractDelimitedFields] dialog box, click the plus button to add two
columns for the output schema, firstname and lastname.

In this scenario, we want to split the name column into two columns in the output flow, firstname and lastname.

• Click OK to close the [Schema of tExtractDelimitedFields] dialog box.



Scenario: Extracting fields from a comma-delimited file

1548 Talend Open Studio Components Reference Guide

• In the design workspace, select tLogRow and click the Component tab to define its basic settings. For more
information, see section tLogRow.

• Save your Job and press F6 to execute it.

First names and last names are extracted and displayed in the corresponding defined columns on the console.



tExtractEBCDICFields

Talend Open Studio Components Reference Guide 1549

tExtractEBCDICFields

tExtractEBCDICFields properties

Component family Processing/Fields

Function tExtractEBCDICFields generates multiple columns from a given column using regex
matching.

Purpose tExtractEBCDICFields allows you to use regular expressions to extract data from a formatted
string.

Basic settings Field Select an incoming field from the Field list to extract.

Die on error This check box is selected by default. Clear the check box to skip
the row on error and complete the process for error-free rows. If
needed, you can retrieve the rows on error via a Row > Reject
connection.

Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Built-in: Select this option to edit the Built-in schema for the data
to be processed.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Edit schema Click [...] to edit the Built-in or Repository schema for the data to
be processed.

Sync columns Click this button to retrieve the schema defined in the input
component.

This button is available only when an input component
is connected to this component via a Row > Main
connection.

 Advanced settings Encoding Select the encoding type from the list or select Custom and define
it manually. This field is compulsory for DB data handling.

Trim all column Select this check box to remove leading and trailing whitespaces
from defined columns.

tStatCatcher Statistics Select this check box to gather the processing metadata at the Job
level as well as at each component level.

Usage This component handles flow of data therefore it requires input and output components. It allows
you to extract data from a delimited field, using a Row > Main link, and enables you to create
a reject flow filtering data which type does not match the defined type.

Limitation n/a

Related scenario

For a related scenario, see section Scenario: Extracting name, domain and TLD from e-mail addresses.



tExtractPositionalFields

1550 Talend Open Studio Components Reference Guide

tExtractPositionalFields

tExtractPositionalFields properties

Component family Processing/Fields

Function tExtractPositionalFields generates multiple columns from one column using positional fields.

Purpose tExtractPositionalFields allows you to use a positional pattern to extract data from a formatted
string.

Basic settings Field Select an incoming field from the Field list to extract.

Customize Select this check box to customize the data format of the positional
file and define the table columns:

Column: Select the column you want to customize.

Size: Enter the column size.

Padding char: Type in between inverted commas the padding
character used, in order for it to be removed from the field. A space
by default.

Alignment: Select the appropriate alignment parameter.

Pattern Enter the pattern to use as basis for the extraction.

A pattern is length values separated by commas, interpreted as a
string between quotes. Make sure the values entered in this fields
are consistent with the schema defined.

Die on error This check box is selected by default. Clear the check box to skip
the row on error and complete the process for error-free rows. If
needed, you can retrieve the rows on error via a Row > Reject link.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component connected to tPositionalFields.

Built-in: You create the schema and store it locally for the
component. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Advanced settings Advanced separator (for
number)

Select this check box to modify the separators used for numbers.

Trim Column Select this check box to remove leading and trailing whitespace
from all columns.

Check each row structure
against schema

Select this check box to synchronize every row against the input
schema.

tStatCatcher Statistics Select this check box to gather the processing metadata at the Job
level as well as at each component level.

Usage This component handles flow of data therefore it requires input and output components. It allows
you to extract data from a delimited field, using a Row > Main link, and enables you to create
a reject flow filtering data which type does not match the defined type.



Related scenario

Talend Open Studio Components Reference Guide 1551

Limitation n/a

Related scenario

For a related scenario, see section Scenario: Extracting name, domain and TLD from e-mail addresses.



tExtractRegexFields

1552 Talend Open Studio Components Reference Guide

tExtractRegexFields

tExtractRegexFields properties

Component family Processing/Fields

Function tExtractRegexFields generates multiple columns from a given column using regex matching.

Purpose tExtractRegexFields allows you to use regular expressions to extract data from a formatted
string.

Basic settings Field to split Select an incoming field from the Field to split list to split.

Regex Enter a regular expression according to the programming language
you are using.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component connected to tExtractRegexFields.

Built-in: You create and store the schema locally for the
component. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Advanced settings Die on error This check box is selected by default. Clear the check box to skip
the row on error and complete the process for error-free rows. If
needed, you can retrieve the rows on error via a Row > Reject link.

Check each row structure
against schema

Select this check box to synchronize every row against the input
schema.

tStatCatcher Statistics Select this check box to gather the processing metadata at the Job
level as well as at each component level.

Usage This component handles flow of data therefore it requires input and output components. It allows
you to extract data from a delimited field, using a Row > Main link, and enables you to create
a reject flow filtering data which type does not match the defined type.

Limitation n/a

Scenario: Extracting name, domain and TLD from e-
mail addresses

This Java scenario describes a three-component Job where tExtractRegexFields is used to specify a regular
expression that corresponds to one column in the input data, email. The tExtractRegexFields component is used
to perform the actual regular expression matching. This regular expression includes field identifiers for user name,
domain name and Top-Level Domain name portions in each e-mail address. If the given e-mail address is valid,
the name, domain and TLD are extracted and displayed on the console in three separate columns. Data in the other
two input columns, id and age is extracted and routed to destination as well.

• Drop the following components from the Palette onto the design workspace: tFileInputDelimited,
tExtractRegexFields, and tLogRow.



Scenario: Extracting name, domain and TLD from e-mail addresses

Talend Open Studio Components Reference Guide 1553

• Connect the three components using Row Main links.

• In the design workspace, select tFileInputDelimited.

• Click the Component tab to define the basic settings for tFileInputDelimited.

• In the Basic settings view, set Property Type to Built-In.

• Click the three-dot [...] button next to the File Name field to select the path to the input file.

The File Name field is mandatory.

The input file used in this scenario is called test4. It is a text file that holds three columns: id, email, and age.

• Fill in all other fields as needed. For more information, see section tMDMInput properties. In this scenario, the
header and the footer are not set and there is no limit for the number of processed rows

• Click Edit schema to describe the data structure of this input file. In this scenario, the schema is made of the
three columns, id, email and age.

• In the design workspace, select tExtractRegexFields.

• Click the Component tab to define the basic settings for tExtractRegexFields.

• From the Field to split list, select the column to split, email in this scenario.

• In the Regex panel, enter the regular expression you want to use to perform data matching, java regular
expression in this scenario.



Scenario: Extracting name, domain and TLD from e-mail addresses

1554 Talend Open Studio Components Reference Guide

• Click Edit schema to describe the data structure of this processing component.

• In the output panel of the [Schema of tExtractRegexFields] dialog box, click the plus button to add five
columns for the output schema.

In this scenario, we want to split the input email column into three columns in the output flow, name, domain, and
tld. The two other input columns will be extracted as they are.

• Click OK to close the [Schema of tExtractRegexFields] dialog box.

• In the design workspace, select tLogRow and click the Component tab to define its basic settings. For more
information, see section tLogRow.

• Save your Job and press F6 to execute it.

The tExtractRegexFields component matches all given e-mail addresses with the defined regular expression and
extracts the name, domain, and TLD names and displays them on the console in three separate columns. The two
other columns, id and age, are extracted as they are.



tExtractXMLField

Talend Open Studio Components Reference Guide 1555

tExtractXMLField

tExtractXMLFieldbelongs to two component families: Processing and XML. For more information on
tExtractXMLField, see section tExtractXMLField.



tFilterColumns

1556 Talend Open Studio Components Reference Guide

tFilterColumns

tFilterColumns Properties

Component family Processing

Function Makes specified changes to the schema defined, based on column name mapping.

Purpose Helps homogenize schemas either on the columns order or by removing unwanted columns or
adding new columns.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component in the Job.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Usage This component is not startable (green background) and it requires an output component.

Related Scenario

For more information regarding the tFilterColumns component in use, see section Scenario: multiple
replacements and column filtering.



tFilterRow

Talend Open Studio Components Reference Guide 1557

tFilterRow

tFilterRow Properties

Component family Processing

Function tFilterRow filters input rows by setting conditions on the selected columns.

Purpose tFilterRow helps parametrizing filters on the source data.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields that
will be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

The schema is read-only.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Logical operator used to
combine conditions

In the case you want to combine simple filtering and advanced mode,
select the operator to combine both modes.

Conditions Click the plus button to add as many conditions as needed. The
conditions are performed one after the other for each row.

Input column: Select the column of the schema the function is to be
operated on

Function: Select the function on the list

Operator: Select the operator to bind the input column with the value

Value: Type in the filtered value, between quotes if need be.

Use advanced mode Select this check box when the operation you want to perform cannot
be carried out through the standard functions offered. In the text field,
type in the regular expression as required.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at the Job
level as well as at each component level.

Usage This component is not startable (green background) and it requires an output component.

Scenario: Filtering and searching a list of names

The following scenario is a Java Job that uses a simple condition and a regular expression to filter a list of records.
This scenario will output two tables: the first will list all Italian records where first names are shorter than six
characters; the second will list all rejected records. An error message for each rejected record will display in the
same table to explain why such a record has been rejected.



Scenario: Filtering and searching a list of names

1558 Talend Open Studio Components Reference Guide

• Drop tFixedFlowInput, tFilterRow and tLogRow from the Palette onto the design workspace.

• Connect the tFixedFlowInput to the tFilterRow, using a Row > Main link. Then, connect the tFilterRow to
the tLogRow, using a Row > Filter link.

• Drop tLogRow from the Palette onto the design workspace and rename it as reject. Then, connect the
tFilterRow to the reject, using a Row > Reject link.

• Double-click tFixedFlowInput to display its Basic settings view and define its properties.

• Select the Use Inline Content(delimited file) option in the Mode area to define the input mode.

• Set the row and field separators in the corresponding fields. The row separator is a carriage return and the field
separator is a semi-colon.

• From the Schema list, select Built-in. The properties and schema are Built-in for this Job. This means, the
schema is not stored in the Repository.

• Click the three-dot button next to Edit schema to define the schema for the input file. In this example, the
schema is made of the following four columns: firstname, gender, language and frequency. In the Type column,
select String for the first three rows and select Integer for frequency.

• Click OK to validate and close the editor. A dialog box opens and asks you if you want to propagate the schema.
Click Yes.



Scenario: Filtering and searching a list of names

Talend Open Studio Components Reference Guide 1559

• Type in content in the Content multiline textframe according to the setting in the schema.

• Double-click tFilterRow to display its Basic settings view and define its properties.

• In the Conditions table, fill in the filtering parameters based on the firstname column.

• In InputColumn, select firstname, in Function, select Length, in Operator, select Lower than.

• In the Value column, type in 6 to filter only first names of which length is lower than six characters.

In the Value column, you must type in your values between double quotes for all data types, except for the Integer type,
which does not need quotes.

• Then to implement the search on names whose language is italian, select the Use advanced mode check
box and type in the following regular expression that includes the name of the column to be searched:
input_row.language.equals("italian")

• To combine both conditions (simple and advanced), select And as logical operator for this example.

• In the Basic settings of tLogRow components, select Table (print values in cells of a table) in the Mode area.

• Save your Job and press F6 to execute it.

Thus, the first table lists records that have Italian names made up of less than six characters and the second table
lists all records that do not match the filter condition “rejected record”. Each rejected record has a corresponding
error message that explains the reason of rejection.



tJoin

1560 Talend Open Studio Components Reference Guide

tJoin

tJoin properties

Component family Processing

Function tJoin joins two tables by doing an exact match on several columns. It compares columns from
the main flow with reference columns from the lookup flow and outputs the main flow data and/
or the rejected data.

Purpose This component helps you ensure the data quality of any source data against a reference data
source.

Basic settings Schema and Edit schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit schema to make changes to the schema. Note that if
you make changes to a remote schema, the schema automatically
becomes built-in.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Include lookup columns in
output

Select this check box to include the lookup columns you define in
the output flow.

Key definition Input key attribute Select the column(s) from the main flow that needs to be checked
against the reference (lookup) key column.

Lookup key attribute Select the lookup key columns that you will use as a reference
against which to compare the columns from the input flow.

Inner join (with reject
output)

Select this check box to join the two tables first and gather the
rejected data from the main flow.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is not startable and it requires two input components and one or more output
components.

Limitation/prerequisite n/a

Scenario 1: Doing an exact match on two columns and
outputting the main and rejected data

This scenario describes a five-component Job aiming at carrying out an exact match between the firstnameClient
column of an input file against the data of the reference input file, and the lastnameClient column against the data
of the reference input file. The outputs of this exact match are written in two separate files: exact data are written
in an Excel file, and inaccurate data are written in a delimited file.

In this scenario, we have already stored the input schemas of the input and reference files in the Repository. For
more information about storing schema metadata in the Repository tree view, see Talend Open Studio User Guide.



Scenario 1: Doing an exact match on two columns and outputting the main and rejected data

Talend Open Studio Components Reference Guide 1561

Dropping and linking the components

1. In the Repository tree view, expand Metadata and the file node where you have stored the input schemas
and drop the relevant file onto the design workspace.

The [Components] dialog box appears.

2. Select tFileInputDelimited from the list and click OK to close the dialog box.

The tFileInputDelimited component displays in the workspace. The input file used in this scenario is called
ClientSample. It holds four columns including the two columns firstnameClient and lastnameClient we want
to do the exact match on.

3. Do the same for the second input file you want to use as a reference, ClientSample_Update in this scenario.

4. Drop the following components from the Palette onto the design workspace: tJoin, tFileOutputExcel, and
tFileOutputDelimited.

5. Connect the main and reference input files to tJoin using Main links. The link between the reference input
file and tJoin appears as a lookup link on the design workspace.

6. Connect tJoin to tFileOutputExcel using the Main link and tJoin to tFileOutputDelimited using the Inner
join reject link.



Scenario 1: Doing an exact match on two columns and outputting the main and rejected data

1562 Talend Open Studio Components Reference Guide

Configuring the components

1. If needed, double-click the main and reference input files to display their Basic settings views. All their
property fields are automatically filled in. If you do not define your input files in the Repository, fill in the
details manually after selecting Built-in in the Property Type field.

2. Double click tJoin to display its Basic settings view and define its properties.

3. Click the Edit schema button to open a dialog box that displays the data structure of the input files, define
the data you want to pass to the output components, three columns in this scenario, idClient, firstnameClient
and lastnameClient, and then click OK to validate the schema and close the dialog box.

4. In the Key definition area of the Basic settings view of tJoin, click the plus button to add two columns to
the list and then select the input columns and the output columns you want to do the exact matching on from
the Input key attribute and Lookup key attribute lists respectively, firstnameClient and lastnameClient
in this example.

5. Select the Inner join (with reject output) check box to define one of the outputs as inner join reject table.

6. Double click tFileOutputExcel to display its Basic settings view and define its properties.



Scenario 1: Doing an exact match on two columns and outputting the main and rejected data

Talend Open Studio Components Reference Guide 1563

7. Set the destination file name and the sheet name, and select the Include header check box.

8. Double click tFileOutputDelimited to display its Basic settings view and define its properties.

9. Set the destination file name, and select the Include header check box.

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Press F6, or click Run on the Run tab to execute the Job.



Scenario 1: Doing an exact match on two columns and outputting the main and rejected data

1564 Talend Open Studio Components Reference Guide

The output of the exact match on the firstnameClient and lastnameClient columns is written to the defined
Excel file.

The rejected data is written to the defined delimited file.



tMap

Talend Open Studio Components Reference Guide 1565

tMap

tMap properties

Component family Processing

Function tMap is an advanced component, which integrates itself as plugin to Talend Open Studio.

Purpose tMap transforms and routes data from single or multiple sources to single or multiple
destinations.

Basic settings Preview The preview is an instant shot of the Mapper data. It becomes available
when Mapper properties have been filled in with data. The preview
synchronization takes effect only after saving changes.

Mapping links
display as

Auto: the default setting is curves links

Curves: the mapping display as curves

Lines: the mapping displays as straight lines. This last option allows to
slightly enhance performance.

Map editor It allows you to define the tMap routing and transformation properties.

If you do not want to handle execution errors, you can click
the Property Settings button at the top of the input area and
select the Die on error check box (selected by default) in the
[Property Settings] dialog box. It will kill the Job if there
is an error.

Usage Possible uses are from a simple reorganization of fields to the most complex Jobs of data
multiplexing or demultiplexing transformation, concatenation, inversion, filtering and more...

Limitation The use of tMap supposes minimum Java knowledge in order to fully exploit its functionalities.

This component is a junction step, and for this reason cannot be a start nor end component
in the Job.

For further information, see Talend Open Studio User Guide.

Scenario 1: Mapping data using a filter and a simple
explicit join

The Job described below aims at reading data from a csv file with its schema stored in the Repository, looking up
at a reference file, the schema of which is also stored in the Repository, then extracting data from these two files
based on a defined filter to an output file and reject files.



Scenario 1: Mapping data using a filter and a simple explicit join

1566 Talend Open Studio Components Reference Guide

• Click File in the Palette of components, select tFileInputDelimited and drop it onto the design workspace.
Rename the component Cars, either by double-clicking the label in the design workspace or via the View tab
of the Component view.

• Repeat this operation, and rename this second input component Owners.

• Click Processing in the Palette of components, select tMap and drop it onto the design workspace.

• Connect the two input components to the mapping component using Row > Main connections and label the
connections Cars_data and Owners_data respectively.

• Double-click the tFileInputDelimited component labelled Cars to display its Basic settings view.

• Select Repository from the Property type list and select the component’s schema, cars in this scenario, from
the [Repository Content] dialog box. The rest fields are automatically filled.

• Double-click the component labelled Owners and repeat the setting operation. Select the appropriate metadata
entry, owners in this scenario.

In this scenario, the input schemas are stored in the Metadata node of the Repository tree view for easy retrieval. For further
information regarding metadata creation in the Repository, see Talend Open Studio User Guide.

• Double-click the tMap component to open the Map Editor.

Note that the input area is already filled with the defined input tables and that the top table is the main input
table, and the respective row connection labels are displayed on the top bar of the table.

• Create a join between the two tables on the ID_Owner column by simply dropping the ID_Owner column from
the Cars_data table onto the ID_Owner column in the Owners_data table.



Scenario 1: Mapping data using a filter and a simple explicit join

Talend Open Studio Components Reference Guide 1567

• Define this join as an inner join by clicking the tMap settings button, clicking in the Value field for Join Model,
clicking the small button that appears in the field, and selecting Inner Join from the [Options] dialog box.

• Click the [+] button on the output area of the Map Editor to add three output tables: Insured, Reject_NoInsur,
Reject_OwnerID.

• Drag all the columns of the Cars_data table to the Insured table.

• Drag the ID_Owner, Registration, and ID_Reseller columns of the Cars_data table and the Name column of
the Owners_data table to the Reject_NoInsur table.

• Drag all the columns of the Cars_data table to the Reject_OwnerID table.

For more information regarding data mapping, see Talend Open Studio User Guide.

• Click the plus arrow button at the top of the Insured table to add a filter row.

• Drag the ID_Insurance column of the Owners_data table to the filter condition area and enter the formula
meaning ‘not undefined’: Owners_data.ID_Insurance != null.

With this filter, the Insured table will gather all the records that include an insurance ID.



Scenario 1: Mapping data using a filter and a simple explicit join

1568 Talend Open Studio Components Reference Guide

• Click the tMap settings button at the top of the Reject_NoInsur table and set Catch output reject to true to
define the table as a standard reject output flow to gather the records that do not include an insurance ID.

• Click the tMap settings button at the top of the Reject_OwnerID table and set Catch lookup inner join reject
to true so that this output table will gather the records from the Cars_data flow with missing or unmatched
owner IDs.

• Click OK to validate the mappings and close the Map Editor.



Scenario 2: Mapping data using inner join rejections

Talend Open Studio Components Reference Guide 1569

• Add three tFileOutputDelimited components to the design workspace and connect the tMap component to the
three output components using the relevant Row connections.

• Relabel the three output components accordingly.

• Double-click each of the output components, one after the other, to define their properties. If you want a new
file to be created, browse to the destination output folder, and type in a file name including the extension.

• Select the Include header check box to reuse the column labels from the schema as header row in the output file.

• Save your Job and press F6 to run it.

The output files are created, which contain the relevant data as defined.

Scenario 2: Mapping data using inner join rejections

This scenario, based on scenario 1, adds one input file containing details about resellers and extra fields in the
main output table. Two filters on inner joins are added to gather specific rejections.



Scenario 2: Mapping data using inner join rejections

1570 Talend Open Studio Components Reference Guide

• Click File in the Palette of Components, and drop a tFileInputDelimited component to the design workspace,
and label the component Resellers.

• Connect it to the Mapper using a Row > Main connection, and label the connection Resellers_data.

• Double-click the Resellers component to display its Basic settings view.

• Select Repository from the Property type list and select the component’s schema, resellers in this scenario,
from the [Repository Content] dialog box. The rest fields are automatically filled.

In this scenario, the input schemas are stored in the Metadata node of the Repository tree view for easy retrieval. For further
information regarding metadata creation in the Repository, see Talend Open Studio User Guide.

• Double-click the tMap component to open the Map Editor.

Note that the schema of the new input component is already added in the Input area.

• Create a join between the main input flow and the new input flow by dropping the ID_Reseller column of the
Cars_data table to the ID_Reseller column of the Resellers_data table.

• Click the tMap settings button at the top of the Resellers_data table and set Join Model to Inner Join.



Scenario 2: Mapping data using inner join rejections

Talend Open Studio Components Reference Guide 1571

• Drag all the columns except ID_Reseller of the Resellers_data table to the main output table, Insured.

When two inner joins are defined, you either need to define two different inner join reject tables to differentiate the two
rejections or, if there is only one inner join reject output, both inner join rejections will be stored in the same output.

• Click the [+] button at the top of the output area to add a new output table, and name this new output table
Reject_ResellerID.

• Drag all the columns of the Cars_data table to the Reject_ResellerID table.

• Click the tMap settings button and select Catch lookup inner join reject to true to define this new output
table as an inner join reject output.



Scenario 2: Mapping data using inner join rejections

1572 Talend Open Studio Components Reference Guide

If the defined inner join cannot be established, the information about the relevant cars will be gathered through
this output flow.

• Now apply filters on the two Inner Join reject outputs, in order for to distinguish the two types of rejection.

• In the first Inner Join output table, Reject_OwnerID, click the plus arrow button to add a filter line and fill it
with the following formula to gather only owner ID related rejection: Owners_data.ID_Owner==null

• In the second Inner Join output table, Reject_ResellerID, repeat the same operation using the following formula:
Resellers_data.ID_Reseller==null

• Click OK to validate the map settings and close the Mapper Editor.



Scenario 3: Cascading join mapping

Talend Open Studio Components Reference Guide 1573

• Drop a new tFileOutputDelimited component from the Palette to the design workspace, and label the
component No_Reseller_ID.

• Define the properties of the new tFileOutputDelimited component, as shown below.

In this use case, simple specify the output file path and select the Include Header check box, and leave the
other parameters as they are.

• Connect the tMap component to the new tFileOutputDelimited component by using the Row connection
named Reject_ResellerID.

• To demonstrate the work of the Mapper, in this example, remove reseller IDs 5 and 8 from the input file
Resellers.csv.

• Save your Job and press F6 to run it.

The four output files are all created in the specified folder, containing information as defined. The output file
No_Reseller_ID.csv contains the cars information related to reseller IDs 5 and 8, which are missing in the input
file Resellers.csv.

Scenario 3: Cascading join mapping

As third advanced use scenario, based on the scenario 2, add a new Input table containing Insurance details for
example.

Set up an Inner Join between two lookup input tables (Owners and Insurance) in the Mapper to create a cascade
lookup and hence retrieve Insurance details via the Owners table data.



Scenario 4: Advanced mapping using filters, explicit joins and rejections

1574 Talend Open Studio Components Reference Guide

Scenario 4: Advanced mapping using filters, explicit
joins and rejections

This scenario introduces a Job that allows you to find BMW owners who have two to six children (inclusive), for
sales promotion purpose for example.

• Drop three tFileInputDelimited components, a tMap component, and two tFileOutputDelimited components
from the Palette onto the design workspace, and label them to best describe their functions.

• Connect the input components to the tMap using Row > Main connections.

Pay attention to the file you connect first as it will automatically be set as Main flow, and all the other
connections will be Lookup flows. In this example, the connection for the input component Owners is the
Main flow.

• Define the properties of each input components in the respective Basic settings view. Define the properties
of Owners.

• Select Repository from the Property type list and select the component’s schema, owners in this scenario,
from the [Repository Content] dialog box. The rest fields are automatically filled.

In this scenario, the input schemas are stored in the Metadata node of the Repository tree view for easy retrieval. For further
information regarding metadata creation in the Repository, see Talend Open Studio User Guide.

• In the same way, set the properties of the other input components: Cars and Resellers. These two Lookup flows
will fill in secondary (lookup) tables in the input area of the Map Editor.

• Then double-click the tMap component to launch the Map Editor and define the mappings and filters.

• Set an explicit join between the Main flow Owner and the Lookup flow Cars by dropping the ID_Owner
column of the Owners table to the ID_Owner column of the Cars table.



Scenario 4: Advanced mapping using filters, explicit joins and rejections

Talend Open Studio Components Reference Guide 1575

The explicit join is displayed along with a hash key.

• In the Expr. Key field of the Make column, type in a filter. In this use case, simply type in “BMW” as the search
is focused on the owners of this particular make.

• Implement a cascading join between the two lookup tables Cars and Resellers on the ID_Reseller column in
order to retrieve resellers information.

• As you want to reject the null values into a separate table and exclude them from the standard output, click the
tMap settings button and set Join Model to Inner Join in each of the Lookup tables.



Scenario 4: Advanced mapping using filters, explicit joins and rejections

1576 Talend Open Studio Components Reference Guide

• In the tMap settings, you can set Match Model to Unique match, First match, or All matches. In this use
case, the All matches option is selected. Thus if several matches are found in the Inner Join, i.e. rows matching
the explicit join as well as the filter, all of them will be added to the output flow (either in rejection or the
regular output).

The Unique match option functions as a Last match. The First match and All matches options function as named.

• On the output area of the Map Editor, click the plus button to add two tables, one for the full matches and
the other for the rejections.

• Drag all the columns of the Owners table, the Registration, Make and Color columns of the Cars table, and the
ID_Reseller and Name_Reseller columns of the Resellers table to the main output table.

• Drag all the columns of the Owners table to the reject output table.

• Click the Filter button at the top of the main output table to display the Filter expression area.

• Type in a filter statement to narrow down the number of rows loaded in the main output flow. In this use case,
the statement reads: Owners.Children_Nr >= 2 && Owners.Children_Nr <= 6.

• In the reject output table, click the tMap settings button and set the reject types.

• Set Catch output reject to true to collect data about BMW car owners who have less than two or more than
six children.

• Set Catch lookup inner join reject to true to collect data about owners of other car makes and owners for
whom the reseller information is not found.



Scenario 4: Advanced mapping using filters, explicit joins and rejections

Talend Open Studio Components Reference Guide 1577

• Click OK to validate the mappings and close the Map Editor.

• On the design workspace, right-click the tMap and pull the respective output link to the relevant output
components.

• Define the properties of the output components in their respective Basic settings view.

In this use case, simple specify the output file paths and select the Include Header check box, and leave the
other parameters as they are.

• Save you Job and press F6 to run it.



Scenario 5: Advanced mapping with filters and different rejections

1578 Talend Open Studio Components Reference Guide

The main output file contains the information related to BMW owners who have two to six children, and the
reject output file contains the information about the rest of the car owners.

Scenario 5: Advanced mapping with filters and
different rejections

This scenario is a modified version of the preceding scenario. It describes a Job that applies filters to limit the
search to BMW and Mercedes owners who have two to six children and divides unmatched data into different
reject output flows.

• Take the same Job as in section Scenario 4: Advanced mapping using filters, explicit joins and rejections.

• Drop a new tFileOutputDelimited component from the Palette on the design workspace, and name it
Rejects_BMW_Mercedes to present its functionality.

• Connect the tMap component to the new output component using a Row connection and label the connection
according to the functionality of the output component.

This connection label will appear as the name of the new output table in the Map Editor.

• Relabel the existing output connections and output components to reflect their functionality.



Scenario 5: Advanced mapping with filters and different rejections

Talend Open Studio Components Reference Guide 1579

The existing output tables in the Map Editor will be automatically renamed according to the connection
labels. In this example, relabel the existing output connections BMW_Mercedes_withChildren and
Owners_Other_Makes respectively.

• Double-click the tMap component to launch the Map Editor to change the mappings and the filters.

Note that the output area contains a new, empty output table named Rejects_BMW_Mercedes. You can adjust
the position of the table by selecting it and clicking the Up or Down arrow button at the top of the output area.

• Remove the Expr. key filter (“BMW”) from the Cars table in the input area.

• Click the Filters button to display the Filter field, and type in a new filter to limit the search
to BMW or Mercedes car makes. The statement reads as follows: Cars.Make.equals("BMW") ||

Cars.Make.equals("Mercedes")

• Select all the columns of the main output table and drop them down to the new output table.

Alternatively, you can also drag the corresponding columns from the relevant input tables to the new output
table.

• Click the tMap settings button at the top of the new output table and set Catch output reject to true to collect
data about BMW and Mercedes owners who have less than two or more than six children.

• In the Owners_Other_Makes table, set Catch lookup inner join reject to true to collect data about owners of
other car makes and owners for whom the reseller information is not found.



Scenario 5: Advanced mapping with filters and different rejections

1580 Talend Open Studio Components Reference Guide

• Click OK to validate the mappings and close the Map Editor.

• Define the properties of the output components in their respective Basic settings view.

In this use case, simple specify the output file paths and select the Include Header check box, and leave the
other parameters as they are.



Scenario 6: Advanced mapping with lookup reload at each row

Talend Open Studio Components Reference Guide 1581

• Save the Job and press F6 to run it.

The output files contain content of the main output flow shows that the filtered rows have correctly been passed
on.

Scenario 6: Advanced mapping with lookup reload at
each row

The following scenario describes a Job that retrieves people details from a lookup database, based on a join on
the age. The main flow source data is read from a MySQL database table called people_age that contains people
details such as numeric id, alphanumeric first name and last name and numeric age. The people age is either 40
or 60. The number of records in this table is intentionally restricted.

The reference or lookup information is also stored in a MySQL database table called large_data_volume. This
lookup table contains a number of records including the city where people from the main flow have been to. For
the sake of clarity, the number of records is restricted but, in a normal use, the usefulness of the feature described
in the example below is more obvious for very large reference data volume.

To optimize performance, a database connection component is used in the beginning of the Job to open the
connection to the lookup database table in order not to do that every time we want to load a row from the lookup
table.

An Expression Filter is applied to this lookup source flow, in order to select only data from people whose age is
equal to 60 or 40. This way only the relevant rows from the lookup database table are loaded for each row from
the main flow.

Therefore this Job shows how, from a limited number of main flow rows, the lookup join can be optimized to load
only results matching the expression key.

Generally speaking, as the lookup loading is performed for each main flow row, this option is mainly interesting when a
limited number of rows is processed in the main flow while a large number of reference rows are to be looked up to.

The join is solved on the age field. Then, using the relevant loading option in the tMap component editor, the
lookup database information is loaded for each main flow incoming row.



Scenario 6: Advanced mapping with lookup reload at each row

1582 Talend Open Studio Components Reference Guide

For this Job, the metadata has been prepared for the source and connection components. For more information on
how to set up the DB connection schema metadata, see the relevant section in the Talend Open Studio User Guide.

This Job is formed with five components, four database components and a mapping component.

• Drop the DB Connection under the Metadata node of the Repository to the design workspace. In this example,
the source table is called people_age.

• Select tMysqlInput from the list that pops up when dropping the component.

• Drop the lookup DB connection table from the Metadata node to the design workspace selecting tMysqlInput
from the list that pops up. In this Job, the lookup is called large_data_volume.

• The same way, drop the DB connection from the Metadata node to the design workspace selecting
tMysqlConnection from the list that pops up. This component creates a permanent connection to the lookup
database table in order not to do that every time we want to load a row from the lookup table.



Scenario 6: Advanced mapping with lookup reload at each row

Talend Open Studio Components Reference Guide 1583

• Then pick the tMap component from the Processing family, and the tMysqlOutput and tMysqlCommit
components from the Database family in the Palette to the right hand side of the editor.

• Now connect all the components together. To do so, right-click the tMysqlInput component corresponding to
the people table and drag the link towards tMap.

• Release the link over the tMap component, the main row flow is automatically set up.

• Rename the Main row link to people, to identify more easily the main flow data.

• Perform the same operation to connect the lookup table (large_data_volume) to the tMap component and the
tMap to the tMysqlOutput component.

• A dialog box prompts for a name to the output link. In this example, the output flow is named:
people_mixandmatch.

• Rename also the lookup row connection link to large_volume, to help identify the reference data flow.

• Connect tMysqlConnection to tMysqlInput using the trigger link OnSubjobOk.

• Connect the tMysqlInput component to the tMysqlCommit component using the trigger link OnSubjobOk.

• Then double-click the tMap component to open the graphical mapping editor.

• The Output table (that was created automatically when you linked the tMap to the tMySQLOutput will be
formed by the matching rows from the lookup flow (large_data_volume) and the main flow (people_age).

• Select the main flow rows that are to be passed on to the output and drag them over to paste them in the Output
table (to the right hand side of the mapping editor).

• In this example, the selection from the main flow include the following fields: id, first_name, last_Name and age.



Scenario 6: Advanced mapping with lookup reload at each row

1584 Talend Open Studio Components Reference Guide

• From the lookup table, the following column is selected: city.

• Drop the selected columns from the input tables (people and large_volume) to the output table.

• Now set up the join between the main and lookup flows.

• Select the age column of the main flow table (on top) and drag it towards the age column of the lookup flow
table (large_volume in this example).

• A key icon appears next to the linked expression on the lookup table. The join is now established.

• Click the tMap settings button, click the three-dot button corresponding to Lookup Model, and select the
Reload at each row option from the [Options] dialog box in order to reload the lookup for each row being
processed.

• In the same way, set Match Model to All matches in the Lookup table, in order to gather all instances of age
matches in the output flow.

• Now implement the filtering, based on the age column, in the Lookup table. The GlobalMapKey field is
automatically created when you selected the Reload at each row option. Indeed you can use this expression
to dynamically filter the reference data in order to load only the relevant information when joining with the
main flow.

As mentioned in the introduction of the scenario, the main flow data contains only people whose age is either 40
or 60. To avoid the pain of loading all lookup rows, including ages that are different from 40 and 60, you can use
the main flow age as global variable to feed the lookup filtering.



Scenario 6: Advanced mapping with lookup reload at each row

Talend Open Studio Components Reference Guide 1585

• Drop the Age column from the main flow table to the Expr. field of the lookup table.

• Then in the globalMap Key field, put in the variable name, using the expression. In this example, it reads:
“people.Age”

• Click OK to save the mapping setting and go back to the design workspace.

• To finalize the implementation of the dynamic filtering of the lookup flow, you need now to add a WHERE
clause in the query of the database input.

• At the end of the Query field, following the Select statement, type in the following WHERE clause: WHERE
AGE ='"+((Integer)globalMap.get("people.Age"))+"'"

• Make sure that the type corresponds to the column used as variable. In this use case, Age is of Integer type. And
use the variable the way you set in the globalMap key field of the map editor.

• Double-click the tMysqloutput component to define its properties.



Scenario 6: Advanced mapping with lookup reload at each row

1586 Talend Open Studio Components Reference Guide

• Select the Use an existing connection check box to leverage the created DB connection.

• Define the target table name and relevant DB actions.

• Click the Run tab at the bottom of the design workspace, to display the Job execution tab.

• From the Debug Run view, click the Traces Debug button to view the data processing progress.

For more comfort, you can maximize the Job design view while executing by simply double-clicking on the Job
name tab.

The lookup data is reloaded for each of the main flow’s rows, corresponding to the age constraint. All age matches
are retrieved in the lookup rows and grouped together in the output flow.

Therefore if you check out the data contained in the newly created people_mixandmatch table, you will find all
the age duplicates corresponding to different individuals whose age equals to 60 or 40 and the city where they
have been to.



Scenario 7: Mapping with join output tables

Talend Open Studio Components Reference Guide 1587

Scenario 7: Mapping with join output tables

The following scenario describes a Job that processes reject flows without separating them from the main flow.

• In the Repository tree view, click Metadata > File delimited. Drag and drop the customers metadata onto
the workspace.

The customers metadata contains information about customers, such as their ID, their name or their address, etc.

For more information about centralizing metadata, see Talend Open Studio User Guide.

• In the dialog box that asks you to choose which component type you want to use, select tFileInputDelimited
and click OK.

• Drop the states metadata onto the design workspace. Select the same component in the dialog box and click OK.

The states metadata contains the ID of the state, and its name.



Scenario 7: Mapping with join output tables

1588 Talend Open Studio Components Reference Guide

• Drop a tMap and two tLogRow components from the Palette onto the design workspace.

• Connect the customers component to the tMap, using a Row > Main connection.

• Connect the states component to the tMap, using a Row > Main connection. This flow will automatically be
defined as Lookup.

• Double-click the tMap component to open the Map Editor.

• Drop the idState column from the main input table to the idState column of the lookup table to create a join.

• Click the tMap settings button and set Join Model to Inner Join.

• Click the Property Settings button at the top of the input area to open the [Property Settings] dialog box, and
clear the Die on error check box in order to handle the execution errors.

The ErrorReject table is automatically created.

• Select the id, idState, RegTime and RegisterTime in the input table and drag them to the ErrorReject table.

• Click the [+] button at the top right of the editor to add an output table. In the dialog box that opens, select New
output. In the field next to it, type in the name of the table, out1. Click OK.

• Drag the following columns from the input tables to the out1 table: id, CustomerName, idState, and LabelState.

• Add two columns, RegTime and RegisterTime, to the end of the out1 table and set their date formats: "dd/MM/
yyyy HH:mm" and "yyyy-MM-dd HH:mm:ss.SSS" respectively.



Scenario 7: Mapping with join output tables

Talend Open Studio Components Reference Guide 1589

• Click in the Expression field for the RegTime column, and press Ctrl+Space to display the auto-
completion list. Find and double-click TalendDate.parseDate. Change the pattern to ("dd/MM/yyyy
HH:mm",row1.RegTime).

• Do the same thing for the RegisterTime column, but change the pattern to ("yyyy-MM-dd

HH:mm:ss.SSS",row1.RegisterTime).

• Click the [+] button at the top of the output area to add an output table. In the dialog box that opens, select
Create join table from, choose Out1, and name it rejectInner. Click OK.

• Click the tMap settings button and set Catch lookup inner join reject to true in order to handle rejects.

• Drag the id, CustomerName, and idState columns from the input tables to the corresponding columns of the
rejectInner table.

• Click in the Expression field for the LabelState column, and type in “UNKNOWN”.

• Click in the Expression field for the RegTime column, press Ctrl+Space, and select TalendDate.parseDate.
Change the pattern to ("dd/MM/yyyy HH:mm",row1.RegTime).

• Click in the Expression field for the RegisterTime column, press Ctrl+Space, and select
TalendDate.parseDate, but change the pattern to ("yyyy-MM-dd HH:mm:ss.SSS",row1.RegisterTime).

If the data from row1 has a wrong pattern, it will be returned by the ErrorReject flow.



Scenario 7: Mapping with join output tables

1590 Talend Open Studio Components Reference Guide

• Click OK to validate the changes and close the editor.

• Double-click the first tLogRow component to display its Component view.

• Click Sync columns to retrieve the schema structure from the mapper if needed.

• In the Mode area, select Table.

• Do the same thing with the second tLogRow.

• Save your Job and press F6 to execute it.

The Run console displays the main out flow and the ErrorReject flow. The main output flow unites both
valid data and inner join rejects, while the ErrorReject flow contains the error information about rows with
unparseable date formats.



tNormalize

Talend Open Studio Components Reference Guide 1591

tNormalize

tNormalize Properties

Component family Processing/Fields

Function Normalizes the input flow following SQL standard.

Purpose tNormalize helps improve data quality and thus eases the data update.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository. .

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
designs. Related topic: see Talend Open Studio User Guide.

Column to normalize Select the column from the input flow which the normalization is
based on.

Item separator Enter the separator which will delimit data in the input flow.

Advanced settings Get rid of duplicated rows
from output

Select this check box to deduplicate rows in the data of the output
flow.

Use CSV parameters Select this check box to include CSV specific parameters such as
escape mode and enclosure character.

Discard the trailing empty
strings

Select this check box to discard the trailing empty strings.

Trim resulting values Select this check box to trim leading and trailing whitespace from
the resulting data.

When both Discard the trailing empty string and Trim
resulting values check boxes are selected, the former
works first.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at the
Job level as well as at each component level.

Usage This component can be used as intermediate step in a data flow.

Limitation n/a

Scenario: Normalizing data

This simple scenario illustrates a Job that normalizes a list of tags for Web forum topics, and displays the result
in a table on the Run console.

This list is not well organized and it contains trailing empty strings, leading and trailing whitespace, and repeated
tags, as shown below.

ldap,
  db2, jdbc driver,
grid computing,  talend architecture  ,



Scenario: Normalizing data

1592 Talend Open Studio Components Reference Guide

content, environment,,
tmap,,
eclipse,
database,java,postgresql,
tmap,
database,java,sybase,
deployment,,
repository,
database,informix,java

Setting up the Job

1. Drop the following components from the Palette to the design workspace: tFileInputDelimited, tNormalize,
tLogRow.

2. Connect the components using Row > Main connections.

Configuring the components

1. Double-click the tFileInputDelimited component to open its Basic settings view.

2. In the File name field, specify the path to the input file to be normalized.

3. Click the [...] button next to Edit schema to open the [Schema] dialog box, and set up the input schema by
adding one column named Tags. When done, click OK to validate your schema setup and close the dialog
box, leaving the rest of the settings as they are.



Scenario: Normalizing data

Talend Open Studio Components Reference Guide 1593

4. Double-click the tNormalize component to open Basic settings view.

5. Check the schema, and if necessary, click Sync columns to get the schema synchronized with the input
component.

6. Define the column the normalization operation is based on.

In this use case, the input schema has only one column, Tags, so just accept the default setting.

7. In the Advanced settings view, select the Get rid of duplicate rows from output, Discard the trailing
empty strings, and Trim resulting values check boxes.

8. In the tLogRow component, select the Print values in the cells of table radio button.



Scenario: Normalizing data

1594 Talend Open Studio Components Reference Guide

Saving and executing the Job

1. Press Ctrl+S to save your Job.

2. Click Run on the Run tab or press F6 to execute the Job.

The list is tidied up, with duplicate tags, leading and trailing whitespace and trailing empty strings removed,
and the result is displayed in a table cell on the console.



tReplace

Talend Open Studio Components Reference Guide 1595

tReplace

tReplace Properties

Component family Processing

Function Carries out a Search & Replace operation in the input columns defined.

Purpose Helps to cleanse all files before further processing.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Two read-only columns, Value and Match are added to the output
schema automatically.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Simple Mode Search /
Replace

Click Plus to add as many conditions as needed. The conditions
are performed one after the other for each row.

Input column: Select the column of the schema the search &
replace is to be operated on

Search: Type in the value to search in the input column

Replace with: Type in the substitution value.

Whole word: Select this check box if the searched value is to be
considered as whole.

Case sensitive: Select this check box to care about the case.

Note that you cannot use regular expression in these columns.

Use advanced mode Select this check box when the operation you want to perform
cannot be carried out through the simple mode. In the text field,
type in the regular expression as required.

Usage This component is not startable as it requires an input flow. And it requires an output component.

Scenario: multiple replacements and column filtering

This following Job searches and replaces various typos and defects in a csv file then operates a column filtering
before producing a new csv file with the final output.



Scenario: multiple replacements and column filtering

1596 Talend Open Studio Components Reference Guide

• Drop the following components from the Palette onto the design workspace: tFileInputDelimited, tReplace,
tFilterColumn and tFileOutputDelimited.

• Connect the components using Main Row connections via a right-click each component.

• Select the tFileInputDelimited component and set the input flow parameters.

• The Property type for this scenario is Built-in. Therefore the following fields are to be set manually unlike the
Properties stored centrally in the repository, that are retrieved automatically.

• The File is a simple csv file stored locally. The Row Separator is a carriage return and the Field Separator is
a semi-colon. In the Header is the name of the column, and no Footer nor Limit are to be set.

• The file contains characters such as: *t, . or Nikson which we want to turn into Nixon, and streat, which
we want to turn into Street.

• The schema for this file is built in also and made of four columns of various types (string or int).

• Now select the tReplace component to set the search & replace parameters.



Scenario: multiple replacements and column filtering

Talend Open Studio Components Reference Guide 1597

• The schema can be synchronized with the incoming flow.

• Select the Simple mode check box as the search parameters can be easily set without requiring the use of regexp.

• Click the plus sign to add some lines to the parameters table.

• On the first parameter line, select Amount as InputColumn. Type "." in the Search field, and "," in the Replace
field.

• On the second parameter line, select Street as InputColumn. Type "streat" in the Search field, and "Street"
in the Replace field.

• On the third parameter line, select again Amount as InputColumn. Type "$" in the Search field, and "£" in
the Replace field.

• On the fourth paramater line, select Name as InputColumn. Type "Nikson" in the Search field, and "Nixon"
in the Replace field.

• On the fifth parameter line, select Firstname as InputColumn. Type "*t" in the Search field, and replace them
with nothing between double quotes.

• The advanced mode isn’t used in this scenario.

• Select the next component in the Job, tFilterColumn.

• The tFilterColumn component holds a schema editor allowing to build the output schema based on the column
names of the input schema. In this use case, add one new column named empty_field and change the order of
the input schema columns to obtain a schema as follows: empty_field, Firstname, Name, Street, Amount.

• Click OK to validate.



Scenario: multiple replacements and column filtering

1598 Talend Open Studio Components Reference Guide

• Set the tFileOutputDelimited properties manually.

• The schema is built-in for this scenario, and comes from the preceding component in the Job.

• Save the Job and press F6 to execute it.

The first column is empty, the rest of the columns have been cleaned up from the parasitical characters, and Nikson
was replaced with Nixon. The street column was moved and the decimal delimiter has been changed from a dot
to a comma, along with the currency sign.



tSampleRow

Talend Open Studio Components Reference Guide 1599

tSampleRow

tSampleRow properties

Component family Processing

Function tSampleRow filters rows according to line numbers.

Purpose tSampleRow helps to select rows according to a list of single lines and/or a list of groups of lines.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component in the Job.

Built-in: You create the schema and store it locally for the relevant
component. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Range Enter a range using the relevant syntax to choose a list of single
lines and/or a list of groups of lines.

Usage This component handles flows of data therefore it requires input and output components.

Limitation n/a

Scenario: Filtering rows and groups of rows

This scenario describes a three-component Job. A tRowGenerator is used to create random entries which are
directly sent to a tSampleRow where they will be filtered according to a defined range. In this scenario, we suppose
the input flow contains names of salespersons along with their respective number of sold products and their years
of presence in the enterprise. The result of the filtering operation is displayed on the Run console.

Dropping and linking the components

1. Drop the following components from the Palette onto the design workspace: tRowGenerator, tSampleRow,
and tLogRow.

2. Connect the three components using Row > Main links.



Scenario: Filtering rows and groups of rows

1600 Talend Open Studio Components Reference Guide

Configuring the components

1. In the design workspace, select tRowgenerator, and click the Component tab to define the basic settings
for tRowGenerator.

2. Click the [...] button next to Edit Schema to define the data you want to use as input. In this scenario, the
schema is made of five columns.

3. In the Basic settings view, click RowGenerator Editor to define the data to be generated.

4. In the RowGenerator Editor, specify the number of rows to be generated in the Number of Rows for
RowGenerator field and click OK. The RowGenerator Editor closes.

5. In the design workspace, select tSampleRow and click the Component tab to define the basic settings for
tSampleRow.



Scenario: Filtering rows and groups of rows

Talend Open Studio Components Reference Guide 1601

6. In the Basic settings view, set the Schema to Built-In and click Sync columns to retrieve the schema from
the tRowGenerator component.

7. In the Range panel, set the filter to select your rows using the correct syntax as explained. In this scenario,
we want to select the first and fifth lines along with the group of lines between 9 and 12.

8. In the design workspace, select tLogRow and click the Component tab to define its basic settings. For more
information about tLogRow, see section tLogRow.

Saving and execting the Job

1. Press Ctrl+S to save your Job.

2. Press F6, or click Run on the Run tab to execute the Job.

The filtering result displayed on the console shows the first and fifth rows and the group of rows between
9 and 12.



tSortRow

1602 Talend Open Studio Components Reference Guide

tSortRow

tSortRow properties

Component family Processing

Function Sorts input data based on one or several columns, by sort type and order

Purpose Helps creating metrics and classification table.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields that will
be processed and passed on to the next component. The schema is either
Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if you make
changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous component
connected in the Job.

Built-in: The schema will be created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the Repository,
hence can be reused in various projects and Job flowcharts. Related topic:
see Talend Open Studio User Guide.

Criteria Click + to add as many lines as required for the sort to be complete. By
default the first column defined in your schema is selected.

Schema column: Select the column label from your schema, which the
sort will be based on. Note that the order is essential as it determines the
sorting priority.

Sort type: Numerical and Alphabetical order are proposed. More sorting
types to come.

Order: Ascending or descending order.

Advanced settings Sort on disk Customize the memory used to temporarily store output data.

Temp data directory path: Set the location where the temporary files
should be stored.

Create temp data directory if not exists: Select this checkbox to create
the directory if it does not exist.

Buffer size of external sort: Type in the size of physical memory you
want to allocate to sort processing.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at the Job level
as well as at each component level.

Usage This component handles flow of data therefore it requires input and output, hence is defined as an
intermediary step.

Limitation n/a

Scenario 1: Sorting entries

This scenario describes a three-component Job. A tRowGenerator is used to create random entries which are
directly sent to a tSortRow to be ordered following a defined value entry. In this scenario, we suppose the input



Scenario 1: Sorting entries

Talend Open Studio Components Reference Guide 1603

flow contains names of salespersons along with their respective sales and their years of presence in the company.
The result of the sorting operation is displayed on the Run console.

• Drop the three components required for this use case: tRowGenerator, tSortRow and tLogRow from the
Palette to the design workspace.

• Connect them together using Row main links.

• On the tRowGenerator editor, define the values to be randomly used in the Sort component. For more
information regarding the use of this particular component, see section tRowGenerator

• In this scenario, we want to rank each salesperson according to its Sales value and to its number of years in
the company.

• Double-click tSortRow to display the Basic settings tab panel. Set the sort priority on the Sales value and as
secondary criteria, set the number of years in the company.

• Use the plus button to add the number of rows required. Set the type of sorting, in this case, both criteria being
integer, the sort is numerical. At last, given that the output wanted is a rank classification, set the order as
descending.

• Display the Advanced Settings tab and select the Sort on disk check box to modify the temporary memory
parameters. In the Temp data directory path field, type the path to the directory where you want to store the
temporary data. In the Buffer size of external sort field, set the maximum buffer value you want to allocate
to the processing.

The default buffer value is 1000000 but the more rows and/or columns you process, the higher the value needs to be to
prevent the Job from automatically stopping. In that event, an “out of memory” error message displays.

• Make sure you connected this flow to the output component, tLogRow, to display the result in the Job console.



Scenario 1: Sorting entries

1604 Talend Open Studio Components Reference Guide

• Press F6 to run the Job. The ranking is based first on the Sales value and then on the number of years of
experience.



tSplitRow

Talend Open Studio Components Reference Guide 1605

tSplitRow

tSplitRow properties

Component family Processing/Fields

Function tSplitRow splits one row into several rows.

Purpose This component helps splitting one input row into several output rows.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Columns mapping Click the plus button to add as many lines as needed by mappings
from input columns onto output columns.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at the
Job level as well as at each component level.

Usage This component splits one input row into multiple output rows by mapping input columns onto
output columns.

Limitation n/a

Scenario 1: Splitting one row into two rows

This scenario describes a three-component Job. A row of data containing information of two companies will be
split up into two rows.

1. Drop the following components required for this use case: tFixedFlowInput, tSplitRow and tLogRow from
the Palette to the design workspace.

2. Connect them together using Row Main connections.

3. Double-click tFixedFlowInput to open its Basic settings view.



Scenario 1: Splitting one row into two rows

1606 Talend Open Studio Components Reference Guide

4. Select Use Inline Content(delimited file) in the Mode area.

5. Fill the Content area with the following scripts:

Talend;LA;California;537;5thAvenue;IT;Lionbridge;Memphis;Tennessee;537;Lincoln Road;IT Service;

6. Click Edit schema to open a dialog box to edit the schema for the input data.

7. Click the plus button to add twelve lines for the input columns: Company, City, State, CountryCode, Street,
Industry, Company2, City2, State2, CountryCode2, Street2 and Industry2.

8. Click OK to close the dialog box.

9. Double-click tSplitRow to open its Basic settings view.



Scenario 1: Splitting one row into two rows

Talend Open Studio Components Reference Guide 1607

10.Click Edit schema to set the schema for the output data.

11.Click the plus button beneath the tSplitRow_1(Output) table to add four lines for the output columns: Company,
CountryCode, Address and Industry.

12.Click OK to close the dialog box. Then an empty table with column names defined in the preceding step will
appear in the Columns mapping area:

13.Click the plus button beneath the empty table in the Columns mapping area to add two lines for the output rows.

14.Fill the table in the Columns mapping area by columns with the following values:

Company: row1.Company, row1.Company2;

Country: row1.CountryCode, row1.CountryCode2;



Scenario 1: Splitting one row into two rows

1608 Talend Open Studio Components Reference Guide

Address: row1.Street+","+row1.City+","+row1.State, row1.Street2+","+row1.City2+","+row1.State2;

Industry: row1.Industry, row1.Industry2;

The value in Address column, for example, row1.Street+","+row1.City+","+row1.State, will display an absolute address
by combining values in Street column, City column and State column together. The "row1" used in the values of each
column refers to the input row from tFixedFlowInput.

15.Double-click tLogRow to open its Basic settings view.

16.Click Sync columns to retrieve the schema defined in the preceding component.

17.Select Table in the Mode area.

18.Save the Job and press F6 to run it.

The input data in one row is split into two rows of data containing the same company information.



tWriteJSONField

Talend Open Studio Components Reference Guide 1609

tWriteJSONField

tWriteJSONField properties

Component family Processing/Fields

Function tWriteJSONField outputs JSON objects to the defined field of an output file.

Purpose tWriteJSONField reads data from an input file, assembles it into JSON objects and outputs
them to the defined field of an output file.

Basic settings Output Column Select the destination field in the output component where you
want to write the JSON objects.

Configure JSON Tree Opens the interface that supports the creation of the JSON data
structure you want to write to a field.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either Built-in or stored remotely in the Repository.

Built-in: You create the schema and store it locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and Job
flowcharts. Related topic: see Talend Open Studio User Guide.

Sync columns Click to synchronize the output file schema with the input
file schema. The Sync function only displays once the Row
connection is linked with the output component.

Group by Define the aggregation set, the columns you want to use to
regroup the data.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component can be used as intermediate step in a data flow.

Limitation n/a

Related Scenarios

For related scenarios, see:

• section Scenario: Extracting the structure of an XML file and inserting it into the fields of a database table.



tXMLMap

1610 Talend Open Studio Components Reference Guide

tXMLMap

tXMLMap properties

Component family Processing/XML

Function tXMLMap is an advanced component fine-tuned for transforming and routing XML data flow
(data of the Document type), especially when processing numerous XML data sources, with
or without joining flat data.

Purpose tXMLMap transforms and routes data from single or multiple sources to single or multiple
destinations.

Basic settings Map editor It allows you to define the tXMLMap routing and transformation
properties.

Advanced settings tStatCatcher
Statistics

Select this check box to gather the Job processing metadata at the Job
level as well as at each component level.

Usage Possible uses are from a simple reorganization of fields to the most complex jobs of data
multiplexing or demultiplexing transformation, concatenation, inversion, filtering and so on.

When needs be, you can define sophisticated outputting strategy for the output XML flows
using group element, aggregate element, empty element and many other features such as All
in one. For further information about these features, see Talend Open Studio User Guide.

It is used as an intermediate component and fits perfectly the process requiring many XML
data sources, such as, the ESB request-response processes.

Limitation The limitations to be kept in mind are:

- The use of this component supposes minimum Java and XML knowledge in order to fully
exploit its functionalities.

- This component is a junction step, and for this reason cannot be a start nor end component
in the Job.

- At least one loop element is required for each XML data flow involved.

The following sections present several generic use cases about how to use the tXMLMap component, while if
you need some specific examples using this component along with the ESB components to build data services,
see the user guide for the Talend ESB Studio.

If you need further information about the principles of mapping multiple input and output flows, see Talend Open
Studio User Guide.

Scenario 1: Mapping and transforming XML data

In this scenario, a three-component Job is run to map and transform data from one XML source, customer.xml and
generate a XML output flow which could be reused for various purposes in the future, such as, for a ESB request.

These three components are:

• tFileInputXML: this component is used to provide input data to tXMLMap.

• tXMLMap: this component maps and transforms the received XML data flows into one single XML data flow.



Scenario 1: Mapping and transforming XML data

Talend Open Studio Components Reference Guide 1611

• tLogRow: this component is used to display the output data.

To replicate this scenario, proceed as the following sections illustrate.

Dropping and linking the components

To do this, proceed as follows:

1. From the Palette, drop tFileInputXML, tXMLMap and tLogRow into the Design workspace.

A component used in the workspace can be labelled the way you need. In this scenario, this input component is labelled
Customers for tFileInputXML. For further information about how label a component, see Talend Open Studio User
Guide

2. Double click the tFileInputXML component labelled Customers to open its contextual menu.

3. From this menu, select Row > Main link to connect this component to tXMLMap..

4. Repeat this operation to connect tXMLMap to tLogRow using Row > *New output* (Main) link. A dialog
box pops up to prompt you to name this output link. In this scenario, name it as Customer_States.

Then you can continue to configure each component.

Configuring the input flow

To do this, proceed as follows:

1. Double-click the tFileInputXML component labelled Customers to display its Basic settings view.



Scenario 1: Mapping and transforming XML data

1612 Talend Open Studio Components Reference Guide

2. Next to Edit schema, click the three-dot button to open the schema editor.

3. In the schema editor, click the plus button to add one row.

4. In the Column column, type in a new name for this row. In this scenario, it is Customer.

5. In the Type column, select the data type of this row. In this scenario, it is Document. The document data type
is essential for making full use of tXMLMap. For further information about this data type, see Talend Open
Studio User Guide.

6. Click OK to validate this editing and accept the propagation prompted by the popup dialog box. One row is
added automatically to the Mapping table.

7. In the File name / Stream field, browse to, or type in the path to the XML source that provides the customer
data.

8. In the Loop XPath query field, type in “/” to replace the default one. This means the source data is queried
from the root.

9. In the XPath query column of the Mapping table, type in the XPath. In this scenario, type in “.”, meaning
that all of the data from source are queried.

10.In the Get Nodes column of the Mapping table, select the check box.

In order to build the Document type data flow, it is necessary to get the nodes from this component.



Scenario 1: Mapping and transforming XML data

Talend Open Studio Components Reference Guide 1613

Configuring tXMLMap for transformation

To do this, proceed as follows:

1. Double-click the tXMLMap component to open the Map Editor.

Note that the input area is already filled with the defined input tables and that the top table is the main input table.

2. In the left table, right-click Customer to open the contextual menu.

3. From this contextual menu, select Import From File and in the pop-up dialog box, browse to the corresponding
source file in order to import therefrom the XML structure used by the data to be received by tXMLMap. In
this scenario, the source file is Customer.xml, which is the data input to  tFileInputXML (Customers).

You can also import an XML tree from an XSD file. When importing either an input or an output XML tree structure
from an XSD file, you can choose an element as the root of your XML tree. For more information on importing an XML
tree from an XSD file, see Talend Open Studio User Guide.

4. In the imported XML tree, right click the Customer node and select As loop element to set it as the loop element.

5. On the lower part of this map editor, click the schema editor tab to display the corresponding view.

6. On the right side of this view, click the plus button to add one row to the Customer table and rename this row
as Customer_States.

7. In the Type column of this Customer_States row, select Document as the data type. The corresponding XML
root is added automatically to the top table on the right side which represents the output flow.

8. On the right side in the top table labelled Customer_States, import the XML data structure that you need to use
from the corresponding XML source file. In this scenario, it is Customer_State.xml.



Scenario 1: Mapping and transforming XML data

1614 Talend Open Studio Components Reference Guide

9. Right click the customer node and select As loop element from the contextual menu.

Then you can begin to map the input flow to the output flow.

10.In the top table on the input side (left) of the map editor, click the id node and drop it to the Expression column
in the row corresponding to the output row you need map. In this scenario, it is the @id node.

11.Do the same to map CustomerName to CustomerName, CustomerAddress to CustomerAddress and idState to
idState from the left side to the right side.

In the real project, you may have to keep empty elements in your output XML tree. If so, you can use tXMLMap to
manage them. For further information about how to manage empty elements using tXMLMap, see Talend Open Studio
User Guide.

12.If required to generate single XML flow, click the wrench icon on top of the output side to open the setting
panel and set the All in one feature as true. In this example, this option is set as true. For further information
about the All in one feature, see Talend Open Studio User Guide.



Scenario 2: Launching a lookup in a second XML flow to join complementary data

Talend Open Studio Components Reference Guide 1615

13.Click OK to validate the mappings and close the Map Editor.

If you close the Map Editor without having set the required loop elements as described earlier in this scenario, the root
element will be automatically set as loop element.

Then you can run this Job.

Executing the Job

To execute this Job, Press F6.

Scenario 2: Launching a lookup in a second XML flow
to join complementary data

Based on the previous scenario, this scenario shows how to use lookup in an XML flow to join the data of interest
to a given XML flow. The XML data for lookup is held in the USstates.xml file.

To do this, a tFileInputXML component is added to the previous Job in order to load and send the complementary
data to tXMLMap. Thus this Job looks like as follows:



Scenario 2: Launching a lookup in a second XML flow to join complementary data

1616 Talend Open Studio Components Reference Guide

To replicate this scenario, proceed as the following sections illustrate.

Configuring the data flow for lookup

To do this, proceed as follows:

1. From the Palette, drop tFileInputXML into the Design workspace.

A component used in the workspace can be labelled the way you need. In this scenario, the newly added tFileInputXML
is labelled USstates. For further information about how to label a component, see Talend Open Studio User Guide

2. Double click the tFileInputXML component labelled USstates to open its contextual menu and select Row >
Main connection to connect this component to tXMLMap. As you create this connection in the second place,
this connection is of type Lookup.

3. Double click the tFileInputXML component labelled USstates to open its Component view.

4. Next to Edit schema, click the three-dot buttons to open the schema editor.

5. Click the plus button to add one rows and rename it, for example, as USState.

6. In the Type column, select the Document option from the drop-down list.



Scenario 2: Launching a lookup in a second XML flow to join complementary data

Talend Open Studio Components Reference Guide 1617

7. Click OK to validate this editing and accept the propagation prompted by the pop-up dialog box.

8. In the File name/Stream field, browse to or type in the path to the USStates.xml file.

The input schemas could be stored in the Metadata node of the Repository tree view for easy retrieval. For further
information regarding metadata creation in the Repository, see Talend Open Studio User Guide.

9. In the Loop XPath query field, type in "/" to replace the default value. This means the loop is based on the root.

10.In the Mapping table, where one row is already added automatically, enter "." in the XPath query column
to retrieve US States data from the source file.

11.In the Get Nodes column, select the check box. This retrieves the XML structure for the Document type data.

Configuring the transformation

To do this, proceed as follows

1. Double-click the tXMLMap component to open the Map Editor.

Note that the input area is already filled with the defined input tables and that the top table is the main input table.

2. In the top table, click the idState node and drop it, in the lower table, to the Exp.key column in the row
corresponding to the idState row. This creates a join between the two tables on the idState data, among which
the idState node from the main flow provides the lookup key.



Scenario 2: Launching a lookup in a second XML flow to join complementary data

1618 Talend Open Studio Components Reference Guide

Then you can begin to modify the mapping you have done in the previous scenario to join the complementary
data into the input flow. This mapping then should look like as follows:



Scenario 2: Launching a lookup in a second XML flow to join complementary data

Talend Open Studio Components Reference Guide 1619

3. In the lookup table on the input side (left) of the map editor, click the LabelState row and drop it on the customer
node on the output side. A dialog box pops up.

4. In this dialog box, select Create as sub-element of target node and click OK. This operation adds a new sub-
element to the output XML tree and maps it with LabelState on the input inside at the same time.

5. If required to generate single XML flow, click the wrench icon on top of the output side to open the setting
panel and set the All in one feature as true. In this example, this option is set as true. For further information
about the All in one feature, see Talend Open Studio User Guide.

6. Click OK to validate the mappings and close the Map Editor.

7. Press F6 to run this Job.

The Run view presents the execution result which may read as follows:



Scenario 3: Mapping data using a filter

1620 Talend Open Studio Components Reference Guide

The US state labels that correspond to the state IDs provided as the lookup key by the main data flow are selected
and outputted.

A step-by-step tutorial related to this Join topic is available on the Talend Technical Community Site. For further
information, see http://talendforge.org/tutorials/tutorial.php?language=english&idTuto=101.

Scenario 3: Mapping data using a filter

Based on section Scenario 2: Launching a lookup in a second XML flow to join complementary data, this scenario
presents how to apply filter condition(s) to select the data of interest using tXMLMap.

For example, you need to select the customer data where the state id is 9.

To replicate this scenario, proceed as follows:

1. In your Studio, open the Job used in the previous scenario to display it in the Design workspace.

2. Double click tXMLMap to open its editor. In this editor, the input and output data flows have been mapped
since the replication of the previous scenario.

http://talendforge.org/tutorials/tutorial.php?language=english&idTuto=101


Scenario 3: Mapping data using a filter

Talend Open Studio Components Reference Guide 1621

3.
On the output side (right), click the  button to open the filter area.

4. In this filter area, drop the idState node from the tree view of the input data flow. The Xpath of idState is added
automatically to this filter area.



Scenario 4: Catching the data rejected by lookup and filter

1622 Talend Open Studio Components Reference Guide

5. Still in this area, write down the filter condition of interest in Java. In this scenario, this condition reads:
"9".equals([row1.Customer:/Customers/Customer/Address/idState])

6. If required to generate single XML flow, click the wrench icon on top of the output side to open the setting
panel and set the All in one feature as true. In this example, this option is set as true. For further information
about the All in one feature, see Talend Open Studio User Guide.

7. Click OK to validate this editing and close this editor.

8. Press F6 to run this Job.

The execution result is displayed in the Run view as follows:

The result says that the customer Pivot Point College is selected as its state ID is 9, representing the Florida state
in this scenario.

Scenario 4: Catching the data rejected by lookup and
filter

The data rejected by the lookup and filter conditions you set in tXMLMap can be caught and outputted by this
component itself.

Based on section Scenario 3: Mapping data using a filter, this scenario presents how to catch the data rejected by
the lookup and the filter set up in the previous sections.

In this scenario, another tLogRow component is added to the Job used in the previous scenario and thus the Job
displays as follows:



Scenario 4: Catching the data rejected by lookup and filter

Talend Open Studio Components Reference Guide 1623

To replicate this scenario, proceed as follows:

1. In your Studio, open the Job used in the previous scenario to display it in the Design workspace.

2. From the Palette, drop the tLogRow component on the workspace.

3. Right-click tXMLMap to open its contextual menu and select Row > *New Output* (Main) to connect this
component to the newly added tLogRow component. A dialog box pops up to prompt you to name this output
link. In this scenario, name it as Reject.

4. Click OK to validate this creation.

5. Double click the tXMLMap component to open its editor. An empty Reject table has been added to the output
side to represent the output data flow carrying the rejected data. You need to complete this table to make this
editor look like as follows:



Scenario 4: Catching the data rejected by lookup and filter

1624 Talend Open Studio Components Reference Guide

6. Select this empty Reject table.

7. In the lower part of this editor, click the Schema editor tab to open the corresponding view.

8. On the right part of this Schema editor view, click the plus button to add the rows you need to use. In this
scenario, click four times to add four rows to the Reject table.

9. In the Reject table presented on the right part of this Schema editor view, rename each of the four newly added
rows. They are: ID, Customer, idState, LabelState.

In this scenario, the Reject output flow uses flat data type. However, you can create an XML tree view for this flow
using the Document data type. For further information about how to use this Document type, see section Scenario 1:
Mapping and transforming XML data.

The Reject table is completed and thus you have defined the schema of the output flow used to carry the captured
rejected data. Then you need to set up the condition(s) to catch the rejected data of interest.



Scenario 5: Mapping data using a group element

Talend Open Studio Components Reference Guide 1625

10.On the upper part of the output side in this Map editor, select the Reject table.

11.
At the top of this table, click the  button to open the setting area.

12.In the Catch Output Reject row of the setting area, select true from the drop-down list. Thus tXMLMap
outputs the data rejected by the filter set up in the previous scenario for the Customer output flow.

13.Do the same thing to switch the Catch Lookup Inner Join Reject row to the true option.

14.Click OK to validate this editing and close this editor.

15.Press F6 to run this Job.

The captured data rejected by the filter and the lookup reads as follows in the Run view:

None of the State IDs of these customers is 9. The customer BBQ Smith’s Tex Mex is marked with the state ID 60.
This number does not exist in the idState column of USState.txt where the defined lookup was done, so the data
of this customer is rejected by the lookup and the other data rejected by the filter.

The data selected by the filter you set up in the previous scenario reads as follows in XML format.

Scenario 5: Mapping data using a group element

Based on the Job used in section Scenario 2: Launching a lookup in a second XML flow to join complementary
data, this scenario presents how to set up an element as group element in the Map editor of tXMLMap to group
the output data.



Scenario 5: Mapping data using a group element

1626 Talend Open Studio Components Reference Guide

To replicate this scenario, you can reuse the Job in section Scenario 2: Launching a lookup in a second XML flow
to join complementary data.

In this Job, double click tXMLMap to open the Map editor.

The objective of this scenario is to group the customer id and the customer name information according to the States
the customers come from. To do this, you need to adjust the XML structure with considering the following factors:

• The elements tagging the customer id and the customer name information should be located under the loop
element. Thus they are the sub-elements of the loop element.

• The loop element and its sub-elements should be dependent directly on the group element.

• The element tagging the States used as grouping condition should be dependent directly on the group element.



Scenario 5: Mapping data using a group element

Talend Open Studio Components Reference Guide 1627

• The group element cannot be the root element.

To put a group element into effect, the XML data to be processed should have been sorted, for example via your XML tools,
around the element you need to use as the grouping condition. The figure below presents part of the sorted source data used
in this scenario. The customers possessing the same State id is already put together.

Based on this analysis, the structure of the output data should read as follows:



Scenario 5: Mapping data using a group element

1628 Talend Open Studio Components Reference Guide

In this figure, the customers node is the root, the Customer element is set as group element and the output data
is grouped according to the LabelState element.

To set a group element, two restrictions must be respected:

• the root node cannot be set as group element;

• the group element must be the parent of the loop element.

Once the group element is set, the first element except the loop one is used as condition to group the output data.

To perform the adjustment according to this analysis, proceed as follows:

1. In the XML tree view of the output side, right-click the customer (loop:true) node to open the contextual menu
and select Delete. Thus all of the elements under the root customers are removed. Then you can reconstruct the
XML tree view to have the best structure used to group the output data of interest.

2. Again in the XML tree view of the output side, right-click the root node customers to open the contextual menu
and select Create sub-element. Then a dialog box pops up.

3. Type in the name of the new sub-element. In this scenario, it is Customer.

4. Repeat the previous operations to create two more sub-elements under this Customer node. They are: LabelState
and Name.

5. Do these operations again to create two more sub-elements under this newly created Name node. They are:
id and CustomerName.

6. Right-click the Name node to open the contextual menu and select As loop element to set this element as loop.

7. Right-click the Customer node to open its contextual menu and select As group element. This means that the
output data is grouped according to the LabelState element.

8. From the lookup data flow on the input side, click and drop the LabelState row to the row of the LabelState
node in the Expression column on the output side. Thus the corresponding data is mapped.



Scenario 6: classing the output data with aggregate element

Talend Open Studio Components Reference Guide 1629

9. Do the same to map the id element and the CustomerName elements between both sides. Then this modification
is done.

10.If required to generate single XML flow, click the wrench icon on top of the output side to open the setting
panel and set the All in one feature as true. In this example, this option is set as true. For further information
about the All in one feature, see Talend Open Studio User Guide.

11.Click OK to validate this modification and close this editor.

If you close the Map Editor without having set the required loop elements as described earlier in this scenario, the root
element will be automatically set as loop element.

12.Press F6 to run this Job.

The execution result reads as follows in the Run view.

The id element and the CustomerName element contained in the loop are grouped according to the LabelState
element. The group element Customer tags the start and the end of each group.

tXMLMap provides group element and aggregate element to classify data in the XML tree structure. When handling one
row of data ( one complete XML flow), the behavioral difference between them is:

• The group element processes the data always within one single flow.

• The aggregate element splits this flow into separate and complete XML flows.

Scenario 6: classing the output data with aggregate
element

Based on the Job used in section Scenario 5: Mapping data using a group element, this scenario presents how to
set up an element as aggregate element in the Map editor of tXMLMap in order to class the output data into
separate XML flows.



Scenario 6: classing the output data with aggregate element

1630 Talend Open Studio Components Reference Guide

On the Design workspace, double-click the tXMLMap component to open its Map editor. There the output side
reads as follows:

The objective of this scenario is to class the customer information using aggregate element in accordance with
the States they come from and then to send these classes separately in different XML flows to the component
that follows.

To put an aggregate element into effect, the XML data to be processed should have been sorted, for example via your XML
tools, around the element you need to use as the aggregating condition. The figure below presents part of the sorted source
data used in this scenario. The customers possessing the same State id is already put together.



Scenario 6: classing the output data with aggregate element

Talend Open Studio Components Reference Guide 1631

To do this, adjust the output XML tree as follows:

1. Right-click the Customer element to open its contextual menu and from this menu, select Remove group
element.

2. Click the wrench icon on top of the output side to open the setting panel and set the All in one feature as false.

3. Right-click the LabelState element to open its context menu and from this menu, select As aggregate element.
This element tags the State information of each customer and the customer information will be classed under
the State information.

To make the aggregate element available, ensure that the All in one feature is set as false. For further information about
the All in one feature, see Talend Open Studio User Guide

4. Click OK to validate these changes and close the Map editor.

5. Press F6 to run this Job.

Once done, the Run view is opened automatically, where you can check the execution result.



Scenario 7: Restructuring products data using multiple loop elements

1632 Talend Open Studio Components Reference Guide

tXMLMap outputs three separate XML flows, each of which carries the information of one State and the
customers from that State.

tXMLMap provides group element and aggregate element to classify data in the XML tree structure. When handling one
row of data ( one complete XML flow), the behavioral difference between them is:

• The group element processes the data always within one single flow.

• The aggregate element splits this flow into separate and complete XML flows.

Scenario 7: Restructuring products data using
multiple loop elements

This scenario uses a four-component Job to restructure the products data given by a document flow using multiple
loop elements.

The components used are:

• tFileInputXML: it reads the source product data and pass them to the tXMLMap component.

• tXMLMap: it transforms the input flows with the expected structure streamlined.

• tLogRow: it presents the execution result in the console.

• tFileOutputDelimited: it generates the output flow into an XML file.

The input flow reads as follows:



Scenario 7: Restructuring products data using multiple loop elements

Talend Open Studio Components Reference Guide 1633

The objective of this restructuring is to streamline the presentation of the products information to serve the
manufacturing operations.

The output flow is expected to read as follows:



Scenario 7: Restructuring products data using multiple loop elements

1634 Talend Open Studio Components Reference Guide

In the output flow, the root element is changed to manufactures, the sales information is selected and consolidated
into the sale element and the manufacture element is reduced to one single level.

To replicate this scenario, proceed as follows:

Dropping and linking the components

To do this, perform the following operations:



Scenario 7: Restructuring products data using multiple loop elements

Talend Open Studio Components Reference Guide 1635

1. On the workspace, drop tFileInputXML, tXMLMap, tLogRow and tFileOutputDelimited from the
Palette.

2. Right-click tFileInputXML to open its contextual menu and select the Row > Main link from this menu to
connect this component to the tXMLMap component.

3. Repeat this operation to connect tXMLMap to tLogRow using Row > *New output* (Main) link. A dialog
box pops up to prompt you to name this output link. In this scenario, name it as outDoc.

4. Do the same to connect tLogRow to tFileOutputDelimited using the Row > Main link.

Configuring the input flow

To do this, do the following:

1. Double-click tFileInputXML to open its Component view.

2. Click the [...] button next to Edit schema to open the schema editor.

3. Click the [+] button to add one row to the editor and rename it as doc.

4. In the Type column, select Document from the drop-down list as the type of the input flow.

5. In the File name / Stream field, browse to, or type in the path to the XML source that provides the customer
data.



Scenario 7: Restructuring products data using multiple loop elements

1636 Talend Open Studio Components Reference Guide

6. In the Loop XPath query field, type in “/” to replace the default one. This means the source data is queried
from the root.

7. In the XPath query column of the Mapping table, type in the XPath. In this scenario, type in “.”, meaning
that all of the data from source are queried.

8. In the Get Nodes column of the Mapping table, select the check box.

Configuring tXMLMap with multiple loops

To do this, proceed as follows:

1. Double-click the tXMLMap component to open the Map Editor.

Note that the input area is already filled with the default basic XML structure and that the top table is the
main input table.

2. In the left table, right-click doc to open the contextual menu.

3. From this contextual menu, select Import From File and in the pop-up dialog box, browse to the
corresponding source file in order to import therefrom the XML structure used by the data to be received
by tXMLMap. In this scenario, the source file is input2.xml, which provides the data read and loaded by
tFileInputXML.

4. In the imported XML tree, right-click the manufacture node and select As loop element to set it as the loop
element. Then do the same to set the types node and the sale node as loop element, respectively.

5. On the lower part of this map editor, click the schema editor tab to display the corresponding view.

6. On the right side of this view, click the [+] button to add one row to the outDoc table and rename this row
as outDoc.

7. In the Type column of this outDoc row, select Document as the data type. The corresponding XML root is
added automatically to the top table on the right side which represents the output flow.



Scenario 7: Restructuring products data using multiple loop elements

Talend Open Studio Components Reference Guide 1637

8. On the right side in the top table labelled outDoc, import the XML data structure that you need to use from the
corresponding XML source file. In this scenario, it is ref.xml. This file provides the expected XML structure
mentioned earlier.

9. Right-click the manufacture node and select As loop element from the contextual menu. Then do the same
to set the types node and the sale node as loop element, respectively.

Then you can begin to map the input flow to the output flow.

10. In the top table on the input side (left) of the map editor, click the @category node and drop it to the
Expression column in the row corresponding to the output row you need to map. In this scenario, it is the
@category node.



Scenario 7: Restructuring products data using multiple loop elements

1638 Talend Open Studio Components Reference Guide

11. Do the same to map:

• @name to @name

• @unit under the summary node to @unit

• @id to @id and to manufacture id, respectively

• @date to @date

• name to @name

• type to type

• @type to @sales_type

• income to sale (loop)

12. If required to generate single XML flow, click the wrench icon on top of the output side to open the setting
panel and set the All in one feature as true. In this example, this option is set as true. For further information
about the All in one feature, see Talend Open Studio User Guide.

13. Click the [...] button next to the types loop element to open the loop sequence table. In this table, ensure that
the types input loop is the primary loop, meaning that its sequence number is 1. This way, the relative part of
the output flow will be sorted with regards to the values of the type element.

When a loop element receives mappings from more than one loop element of the input flow, a [...] button appears next
to this receiving loop element and allows you to set the sequence of the input loops. For example, in this scenario the



Scenario 7: Restructuring products data using multiple loop elements

Talend Open Studio Components Reference Guide 1639

types loop element of the output flow is mapped with @id and type which belong to the manufacture loop element
and the types loop element, respectively, so the [...] button appears beside this types loop element.

If the receiving flow is flat data, once it receives mappings from more than one loop element, this [...] button appears
as well, on the head of the table representing the flat data flow, though.

14. Click OK to validate the mappings and close the Map Editor.

If you close the Map Editor without having set the required loop elements as described earlier in this scenario, the
root element will be automatically set as loop element.

Configuring the output flow

To do this, proceed as follows:

1. Double-click tLogRow to open its Component view.

2. If this component does not have the same schema of the preceding component, a warning icon appears. In
this case, click the Sync columns button to retrieve the schema from the preceding one and once done, the
warning icon disappears.

3. Click OK to validate these changes and accept the propagation prompted by the pop-up dialog box.

4. Double-click tFileOutputDelimited to open its Component view.

5. In the File Name field, browse to, or enter the path to the file you need to generate the output flow in.

Executing the Job

To execute this Job, press F6.

Once done, the Run view is opened automatically, where you can check the execution result.

Open the file generated, and you will see the expected products data restructured for manufacturing.



Talend Open Studio Components Reference Guide



Talend Open Studio Components Reference Guide

System components
This chapter details the main components that you can find in the System family of the Palette in the Integration
perspective of the Talend Studio.

The System family groups together components that help you to interact with the operating system.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.



tRunJob

1642 Talend Open Studio Components Reference Guide

tRunJob

tRunJob Properties

Component family System

Function tRunJob executes the Job called in the component’s properties, in the frame of the context
defined.

Purpose tRunJob helps mastering complex Job systems which need to execute one Job after another.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema
is either Built-in or stored remotely in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

If you are using Talend Open Studio for Big Data, only the Built-
in mode is available.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created the schema and stored
it in the Repository. You can reuse it in various projects and
Job designs. Related topic: see the user guide of the Studio for
integration.

Use dynamic job Select this check box to allow multiple Jobs to be called and
processed. When this option is enabled, only the latest version
of the Jobs can be called and processed. An independent process
will be used to run the subjob. The Context and the Use an
independent process to run subjob options disappear.

The Use dynamic job option is not compatible with the
Jobserver cache. Therefore, the execution may fail if you
run a Job that contains tRunjob with this check box
selected in .

This option is incompatible with the Use or register a
shared DB Connection option of database connection
components. When tRunJob works together with a
database connection component, enabling both options
will cause your Job to fail.

Context job This field is visible only when the Use dynamic job option is
selected. Enter the name of the Job that you want to call from the
list of Jobs selected.

CopyChild Job Schema Click to fetch the child Job schema.

Job Select the Job to be called in and processed. Make sure you already
executed once the Job called, beforehand, in order to ensure a
smooth run through tRunJob.

Version Select the child Job version that you want to use.

Context If you defined contexts and variables for the Job to be run by the
tRunJob, select the applicable context entry on the list.

Use an independent process
to run subjob

Select this check box to use an independent process to run the
subjob. This helps in solving issues related to memory limits.



tRunJob Properties

Talend Open Studio Components Reference Guide 1643

This option is not compatible with the Jobserver cache.
Therefore, the execution may fail if you run a Job that
contains tRunjob with this check box selected in .

This option is incompatible with the Use or register a
shared DB Connection option of database connection
components. When tRunJob works together with a
database connection component, enabling both options
will cause your Job to fail.

Die on child error Clear this check box to execute the parent Job even though there
is an error when executing the child Job.

Transmit whole context Select this check box to get all the context variables from the parent
Job. Deselect it to get all the context variables from the child Job.

Context Param You can change the selected context parameters. Click the plus
button to add the parameters as defined in the Context of the child
Job. For more information on context parameters, see Talend Open
Studio User Guide.

Advanced settings Print Parameters Select this check box to display the internal and external
parameters in the Console.

tStatCatcher Statistics Select this check box to gather the processing metadata at the Job
level as well as at each component level.

Usage This component can be used as a standalone Job or can help clarifying complex Job by avoiding
having too many sub-jobs all together in one Job.

Global Variables Child return code: Indicates the Java return code of the child Job.
This is available as an After variable.

Returns an integer:

- if no errors > the code value is 0.

- if errors > an exception message shows.

Child exception stack trace: Returns a Java stack trace from a
child Job. This is available as an After variable.

Returns a string.

For further information about variables, see Talend Open Studio
User Guide.

Outgoing links (from one component to another):

Row: Main.

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component
Ok; On Component Error

Incoming links (from one component to another):

Row: Main; Reject; Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component
Ok; On Component Error; Synchronize; Parallelize.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation n/a



Scenario: Executing a child Job

1644 Talend Open Studio Components Reference Guide

Scenario: Executing a child Job

This scenario describes a two-component Job that calls another Job, which is the child Job, to display the content
of files specified in the parent Job on the Run log console.

Creating the child Job

Dropping and linking components

1. Drop a tFileInputDelimited and a tLogRow from the Palette to the design workspace.

2. Connect the two components together using a Row > Main link.

Configuring the components

1. Double-click tFileInputDelimited to open its Basic settings view and define its properties.

2. Click in the File Name field and then press F5 to open the [New Context Parameter] dialog box and
configure the context variable.



Scenario: Executing a child Job

Talend Open Studio Components Reference Guide 1645

3. In the Name field, enter a name for this new context variable, File in this example.

4. In the Default value field, enter the full path to the default input file.

5. Click Finish to validate the context parameter setup and fill the File Name field with the context variable.

You can also create or edit a context parameter in the Context tab view beneath the design workspace. For more
information, see Talend Open Studio User Guide.

6. Click the [...] button next to Edit schema to open the [Schema] dialog box where you can configure the
schema manually.

7. In the dialog box, click the [+] button to add columns and name them according to the input file structure.

In this example, this component will actually read files defined in the parent Job, and these files contain up to
five columns. Therefore, add five string type columns and name them col_1, col_2, col_3, col_4, and col_5
respectively, and then click OK to validate the schema configuration and close the [Schema] dialog box.

8. Double-click tLogRow to display its Basic settings view and define its properties.

9. Select the Table option to view displayed content in table cells.

Creating the parent Job

Dropping and linking components

1. Drop a tFileList and a tRunJob from the Palette to the design workspace.

2. Connect the two components together using an Iterate link.



Scenario: Executing a child Job

1646 Talend Open Studio Components Reference Guide

Configuring the components

1. Double-click tFileList to open its Basic settings view and define its properties.

2. In the Directory field, specify the path to the directory that holds the files to be processed, or click the [...]
button next to the field to browse to the directory.

In this example, the directory is called tRunJob and it holds three delimited files with up to five columns.

3. In the FileList Type list, select Files.

4. Check that the Use Glob Expressions as Filemask check box is selected, and then click the [+] button to
add a line in the Files area and define a filter to match files. In this example, enter “*.csv” to retrieve all
delimited files.

5. Double-click tRunJob to display its Basic settings view and define its properties.

6. Click the [...] button next to the Job field to open the [Find a Job] dialog box.



Scenario: Executing a child Job

Talend Open Studio Components Reference Guide 1647

7. Select the child Job you want to execute and click OK to close the dialog box. The name of the selected Job
appears in the Job field.

8. In the Context Param area, click the plus button to add a line and define the context parameter. The only
context parameter defined in the child Job, named File, appears in the Parameter cell.

9. Click in the Values cell, press Ctrl+Space on your keyboard to access the list of context variables, and select
tFileList-1.CURRENT_FILEPATH.

The corresponding context variable appears in the Values cell:
((String)globalMap.get(“tFileList-1.CURRENT_FILEPATH”)).

For more information on context variables, see Talend Open Studio User Guide.

Executing the parent Job

1. Press Ctrl+S to save your Job.

2. Press F6 to execute the Job.

The parent Job calls the child Job, which reads the files defined in the parent Job, and the content of the files
is displayed on the Run console.

Related topic: section tLoop, and section Scenario 1: Buffering data (Java) of the tBufferOutput component.



tSetEnv

1648 Talend Open Studio Components Reference Guide

tSetEnv

tSetEnv Properties

Component family System

Function tSetEnv adds variables temporarily to system environment during the execution of a Job.

Purpose tSetEnv allows to create variables and execute a Job script through communicating the
information about the newly created variables between subjobs. After job execution, the newly
created variables are deleted.

Basic settings Parameters Click the plus button to add the variables needed for the job.
name: Enter the syntax for the new variable.

value: Enter a parameter value according to the context.

append: Select this check box to add the new variable at the end.

Usage tSetEnv can be used as a start or an intermediate component.

Limitation n/a

Scenario: Modifying a variable during a Job execution

The following scenario is made of two Jobs parent and child. With the tSetEnv component, you can transfer and
modify in a child Job a value created in a parent Job. As part of this Job, the tMsgBox components allow you to
display, for information purposes only, that a variable is properly set, via an info-box.

To modify the value of the parent Job by using a variable set in the tSetEnv component, do as described in the
following sections:

Drop and link components

1. Create a first Job named parentJob: right-click on the Job Design node of the Repository, and choose Create
a Job.

2. From the Palette, drop a tSetEnv component, two tMsgBox components, and one tRunJob component onto
the design workspace.

3. Connect the tSetEnv component to a first tMsgBox component with a OnSubjobOk link : right-click on the
start component, select Trigger, then OnSubjobOk. Then click on the end component you want to connect.

4. Connect the first tMsgBox component to the tRunJob with a OnSubjobOk link.

5. Then connect the tRunJob component to the second tMsgbox with a OnSubjobOk link.



Scenario: Modifying a variable during a Job execution

Talend Open Studio Components Reference Guide 1649

6. Now create a child Job named ChildJob.

7. From the Palette, drop a tSetEnv component onto the design workspace.

8. Connect the tSetEnv component to the tMsgBox with a OnSubjobOk link : right click on the start component,
select Trigger, then OnSubjobOk. Then click on the end component you want to connect.

Set the components

In this example, the value set in the parent Job is transferred to the child Job. There, it is modified and adopts the
value of the child Job, and then transferred to the parent Job again.

1. In parentJob, select the tSetEnv component and click the Component tab. Add a variable row by clicking
the [+] button to set the initial value of the variable. Type Variable_1 in the Name field, and Parent job value
in the Value field.

2. Select the first tMsgBox component, and click the Component tab. In the Message field, type the message
displayed in the info-box which confirms that your variable has properly been taken into account. For example:
"Parent:"+System.getProperty("Variable_1") displays the variable set in the tSetEnv component (here
Parent job value).



Scenario: Modifying a variable during a Job execution

1650 Talend Open Studio Components Reference Guide

3. Select the second tMsgBox component, and click the Component tab. In the Message field, type the
"Parent:"+System.getProperty("Variable_1") line again. It makes the variable set in the child Job
appear.

4. Select the tRunJob component and click the Component tab. In the Job field, type the name of your child
Job, here ChildJob. This will run the child Job when you run the parent Job.

5. Now double-click the tRunJob component to open the child Job ChildJob.

6. Select the tSetEnv component, and click the Component tab. Add a variable row by clicking the [+] button to
set the initial value of the variable. Type Variable_1 in the Name field, and Child job value in the Value field.

7. Select the tMsgBox component and click the Component tab. In the Message field, type the message
displayed in the info-box which confirms that your variable has properly been taken into account. For example:
"Parent:"+System.getProperty("Variable_1") displays the variable set in the tSetEnv component (here
Child job value).

8. Save your Job, go back to parentJob, then run the Job by pressing F6.

Run the Job

Three info-boxes are displayed one after the other:

• Parent: Parent job value: parent Job's value is Parent job value.

• Child: Child job value: Child Job's value is Child job value.

• Parent: Parent job value: parent Job's value was modified by the variable set in the tSetEnv of the child Job,
then transferred again to the parent Job. parent Job's value is now the one set in the child Job.



tSSH

Talend Open Studio Components Reference Guide 1651

tSSH

tSSH Properties

Component family System

Function Returns data from a remote computer, based on the secure shell command defined.

Purpose Allows to establish a communication with distant server and return securely sensible information.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the preceding
component in the Job.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created the schema and stored it
in the Repository. You can reuse it in various projects and job
flowcharts. Related topic: see Talend Open Studio User Guide

Host IP address

Port Listening port number

User User authentication information

Authentication method Public Key/Key Passphrase/
Private Key

Select the relevant option.

In case of Public Key, type in the passphrase, if required, in the
Key Passphrase field and then in the Private key field, type in
the private key or click the three dot button next to the Private key
field to browse to it.

Authentication method Password/Password Select the relevant option.

In case of Password,type in the required password in the
Password field.

Authentication method Keyboard Interactive/
Password

Select the relevant option.

In case of Keyboard Interactive, type in the required password
in the Password field.

Pseudo terminal Select this check box to call the interactive shell that performs the
terminal operations.

Command separator Type in the command separator required. Once the Pseudo
terminal check box is selected, this field becomes unavailable.

Commands Type in the command for the relevant information to be returned
from the remote computer. When you select the Pseudo terminal
check box, this table becomes a terminal emulator and each row in
this table is a single command.

Use timeout/timeout in
seconds

Define the timeout time period. A timeout message will be
generated if the actual response time exceeds this expected
processing time.

Standard Output Select the destination to which the standard output is returned. The
output may be returned to:

- to console: the output is displayed in the console of the Run view.



Scenario: Remote system information display via SSH

1652 Talend Open Studio Components Reference Guide

- to global variable: the output is indicated by the corresponding
global variable.

- both to console and global variable: the output is indicated both
of the two means.

- normal: the output is a standard ssh output.

Error Output Select the destination to which the error output is returned. The
output may be returned to:

- to console: the output is displayed in the console of the Run view.

- to global variable: the output is indicated by the corresponding
global variable.

- both to console and global variable: the output is indicated both
of the two means.

- normal: the output is a standard ssh output.

Usage This component can be used as standalone component.

Global variables Standard Output: Indicates the standard execution output of the
remote command. It is available as an After variable.

Returns a String.

Error output: Indicates the error execution output of the remote
command. It is available as an After variable.

Returns a String.

Exit value: Indicates the exit status of the remote command. It is
available as an After variable.

Returns an Integer.

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Row: Main

Trigger: Run if; On Component Ok; On Component Error; On
Subjob Ok; On Subjob Error.

Incoming links (from one component to another):

Row: Main; Iterate

Trigger: Run if; On Component Ok; On Component Error; On
Subjob Ok; On Subjob Error.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation The component use is optimized for Unix-like systems.

Scenario: Remote system information display via SSH

The following use case describes a basic Job that uses SSH command to display the hostname of the distant server
being connected to, and the current date on this remote system.

The tSSH component is sufficient for this Job. Drop it from the Palette to the design workspace.

Double-click on the tSSH component and select the Basic settings view tab.



Scenario: Remote system information display via SSH

Talend Open Studio Components Reference Guide 1653

• Type in the name of the Host to be accessed through SSH as well as the Port number.

• Fill in the User identification name on the remote machine.

• Select the Authentication method on the list. For this use case, the authentication method used is the public key.

• Thus fill in the corresponding Private key.

• On the Command field, type in the following command. For this use case, type in hostname; date between
double quotes.

• Select the Use timeout check box and set the time before falling in error to 5 seconds.

The remote machine returns the host name and the current date and time as defined on its system.



tSystem

1654 Talend Open Studio Components Reference Guide

tSystem

tSystem Properties

Component family System

Function tSystem executes one or more system commands.

Purpose tSystem can call other processing commands, already up and running in a larger Job.

Basic settings Use home directory Select this check box to change the name and path of a dedicated
directory.

Use Single Command When the required command is very simple, to the degree that, for
example, only one parameter is used and without space, select this
option to activate its Command field. In this field, enter the simple
system command. Note that the syntax is not checked.

In Windows, the MS-DOS commands do not allow you
to pass directly from the current folder to the folder
containing the file to be launched. To launch a file, you
must therefore use an initial command to change the
current folder, then a second one to launch the file

Use Array Command Select this option to activate its Command field. In this field, enter
the system command in array, one parameter per line.

For example, enter the following command with consecutive
spaces in array for Linux:

"cp"
"/temp/source.txt"
"/temp/copy  to/"

Standard Output and Error
Output

Select the type of output for the processed data to be transferred to.

to console: data is passed on to be viewed in the Run view.

to global variable: data is passed on to an output variable linked
to the tSystem component.

to console and to global variable: data is passed on to the Run
view and to an output variable linked to the tSystem component.

normal: data is passed on to the component that comes next.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Click Edit Schema to make changes to the schema. Note that if
you make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the preceding
component in the Job.

Built-in: You create and store the schema locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You have already created the schema and stored it
in the Repository. You can reuse it in various projects and job
flowcharts. Related topic: see Talend Open Studio User Guide

Environment variables Click the [+] button to add as many global variables as needed.

name: Enter the syntax of the new variable.



Scenario: Echo ‘Hello World!’

Talend Open Studio Components Reference Guide 1655

value: Enter a value for this variable according to the context.

Usage This component can typically used for companies which already implemented other applications
that they want to integrate into their processing flow through Talend.

Global Variables Standard Output: Returns the standard output from a process.
This is available as an After variable

Returns a string.

Error Output: Returns the erroneous output from a process. This
is available as an After variable.

Returns a string.

Exit Value: Returns an exit code. This is available as an After
variable.

Returns an integer:

- if there are no errors > the exit code is 0.

- if there are errors > the exit code is 1.

For further information about variables, see Talend Open Studio
User Guide.

Connections Outgoing links (from one component to another):

Row: Main.

Trigger: On Subjob Ok; On Subjob Error; Run if.

Incoming links (from one component to another):

Row: Main; Reject; Iterate.

Trigger: On Subjob Ok; On Subjob Error; Run if; On Component
Ok; On Component Error; Synchronize; Parallelize.

For further information regarding connections, see Talend Open
Studio User Guide.

Limitation n/a

Scenario: Echo ‘Hello World!’

This scenario is one single component tSystem to execute a system command and shows the results in the Run
view “console”.

To replicate this scenario, proceed as follows:

1. Drop a tSystem component from the Palette to the design workspace.

2. Double-click tSystem to open its Component view.



Scenario: Echo ‘Hello World!’

1656 Talend Open Studio Components Reference Guide

3. Select the Use Single Command option to activate its Command field and type in "cmd /c echo Hello
World!".

4. In the Standard Output drop-down list, select to both console and global variable.

5. Press F6 to run this Job.

The Job executes an echo command and shows the output in the Console of the Run view.



Talend Open Studio Components Reference Guide

Talend MDM components
This chapter details the main components that you can find in the Talend MDM family of the Palette in the
Integration perspective of the Talend Studio.

The Talend MDM family groups together connectors that read and write master data in the MDM Hub.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.



tMDMBulkLoad

1658 Talend Open Studio Components Reference Guide

tMDMBulkLoad

tMDMBulkLoad properties

Component family Talend MDM

Function tMDMBulkLoad writes XML structured master data into the MDM hub in bulk mode.

Purpose This component uses bulk mode to write data so that big batches of data or data of high complexity
can be fast uploaded onto the MDM server.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields that
will be processed and passed on to the next component. The schema is
either built-in or remote in the Repository.

Click Edit Schema to modify the schema.

If you modify the schema, it automatically becomes built-in.

Click Sync columns to collect the schema from the previous component.

Built-in: You create the schema and store it locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: You have already created the schema and stored it in the
Repository. You can reuse it in various projects and Job designs. Related
topic: see Talend Open Studio User Guide.

XML field Select the name of the column in which you want to write the XML data.

URL Type in the URL required to access the MDM server.

Username and Password Type in the user authentication data for the MDM server.

Version Type in the name of the Version of master data you want to connect to,
for which you have the required user rights.

Leave this field empty if you want to display the default Version of
master data.

Data model Type in the name of the data model against which the data to be written
is validated.

Data Container Type in the name of the data container where you want to write the master
data.

Entity Type in the name of the entity that holds the data record(s) you want to
write.

Validate Select this checkbox to validate the data you want to write onto the MDM
server against validation rules defined for the current data model.

For more information on how to set the validation rules, see Talend Open
Studio for MDM Administrator Guide.

If you need faster loading performance, do not select this
checkbox.

Generate ID Select this check box to generate an ID number for all of the data written.

If you need faster loading performance, do not select this
checkbox.

Commit size Type in the row count of each batch to be written onto the MDM server.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the Job level
as well as at each component level.

Connections Outgoing links (from one component to another):



tMDMBulkLoad properties

Talend Open Studio Components Reference Guide 1659

Row: Main,

Trigger: Run if; On Component Ok; On Component Error, On Subjob
Ok, On Subjob Error.

Incoming links (from one component to another):

Row: Main

Trigger: Run if, On Component Ok, On Component Error, On Subjob
Ok, On Subjob Error

For further information regarding connections, see Talend Open Studio
User Guide.

Usage This component needs always an incoming link to offer XML structured data. If your data offered is
not yet in the XML structure, you need use components like tWriteXMLField to transform this data
into the XML structure. For further information about tWriteXMLField, see section tWriteXMLField.

Enhancing the MDM bulk data load

The information below concerns only MDM used with eXist.

As XML parsing is a CPU and memory consuming process, it is not really compatible with large datasets.
The following Scenario: section Scenario: Loading records into a business entity, which shows how to use the
tMDMBulkLoad component, has some limitations because it cannot work with large dataset, for the time being
at least.

An alternative scenario in which you process the dataset file per bulk load iterations can be designed as the
following:

In such a scenario, the tMDMBulkLoad component waits for XML data as an input. You must manually format
this incoming data to match the entity schema defined in the MDM Studio. Most of the time, the data you want
to import is in a flat “format”, and you have to transform it into XML.



tMDMBulkLoad properties

1660 Talend Open Studio Components Reference Guide

As XML parsing is memory consuming, you can workaround this problem by splitting your source file into several
files using the tAdvancedFileOutputXML component. To do this, you select the Split output in several files
option in the Advaced settings view of the component and then set the rows in each output file through a context
variable (context.chunkSize), for example.

The XML schema you must define in the XML editor of this component should be an exact match of the business
entity defined in the MDM Studio. The XML schema in the editor must represent a single <root> element which
contains all the other elements, so that you can loop on each of the element. The path of the file should be defined
in a temporary folder.

Use a tFileList component to read all the XML files that have just been created. This component enables you to
parallelize the process. Connect it to a tFileInputXML component using the Iterate link.

For the Iterate link, it is recommended that you set as many threads as the number of the physical cores of the computer.
You can achieve that using Runtime.getRuntime().availableProcessors()

The tFileInputXML component will read the data from the XML files you have created, by defining a loop on
the elements, and getting all the nodes that are already formatted as XML. You must then select the Get Nodes
check box.

Finally, you must setup the tMDMBulkLoad component as the following:



Scenario: Loading records into a business entity

Talend Open Studio Components Reference Guide 1661

Ensure that you set the commit size to the same value you defined in the tAdvancedfileOutputXML, the context.chunkSize
context variable.

The tFiledelete component in such a scenario will delete all the temporary data at the end of the Job.

Scenario: Loading records into a business entity

This scenario describes a Job that loads records into the ProductFamily business entity defined by a specific data
model in the MDM hub.

Prerequisites of this Job:

• The Product data container: this data container is used to separate the product master data domain from the
other master data domains.

• The Product data model: this data model is used to define the attributes, validation rules, user access rights and
relationships of the entities of interest. Thus it defines the attributes of the ProductFamily business entity.

• The ProductFamily business entity: this business entity contains Id, Name, both defined by the Product data
model.

For further information about how to create a data container, a data model, and a business entity along with its
attributes, see Talend Open Studio for MDM Administrator Guide.

The Job in this scenario uses three components.

• tFixedFlowInput: this component generates the records to be loaded into the ProductFamily business entity.
In the real case, your records to be loaded are often voluminous and stored in a specific file, while in order to
simplify the replication of this scenario, this Job uses tFixedFlowInput to generate four sample records.

• tWriteXMLField: this component transforms the incoming data into XML structure.

• tMDMBulkLoad: this component writes the incoming data into the ProductFamily business entity in bulk
mode, generating ID value for each of the record data.

For the time being, tWriteXMLField has some limitations when used with very large datasets. Another scenario is possible
to enhance the MDM bulk data load. For further information, see section Enhancing the MDM bulk data load.

To replicate this scenario, proceed as follows:



Scenario: Loading records into a business entity

1662 Talend Open Studio Components Reference Guide

• Drop tFixedFlowInput, tWriteXMLField and tMDMBulkLoad onto the design workspace.

• Right click tFixedFlowInput to open its contextual menu.

• Select Row > Main to connect tFixedFlowInput to the following component using Main link.

• Do the same to link the other components.

• Double click tFixedFlowInput to open its Basic settings view.

• Click the three-dot button next to Edit schema to open the schema editor.

• In the schema editor, click the plus button to add one row.

• In the schema editor, click the new row and type in the new name: family.

• Click OK.

• In the Mode area of the Basic settings view, select the Use inline table option.

• Under the inline table, click the plus button four times to add four rows in the table.

• In the inline table, click each of the added rows and type in their names between the quotation marks: Shirts,
Hats, Pets, Mugs.

• Double click tWriteXMLField to open its Basic settings view.



Scenario: Loading records into a business entity

Talend Open Studio Components Reference Guide 1663

• Click the three-dot button next to the Edit schema field to open the schema editor where you can add a row
by clicking the plus button.

• Click the newly added row to the right view of the schema editor and type in the name of the output column
where you want to write the XML content. In this example, type in xmlRecord.

• Click OK to validate this output schema and close the schema editor.

• In the popped up dialog box, click OK to propagate this schema to the following component.

• On the Basic settings view, click the three-dot button next to Configure Xml Tree to open the interface that
helps to create the XML structure.

• In the Link Target area, click rootTag and rename it as ProductFamily, which is the name of the business
entity used in this scenario.

• In the Linker source area, drop family to ProductFamily in the Link target area.

A dialog box displays asking what type of operation you want to do.



Scenario: Loading records into a business entity

1664 Talend Open Studio Components Reference Guide

• Select Create as sub-element of target node to create a sub-element of the ProductFamily node. Then the
family element appears under the ProductFamily node.

• In the Link target area, click the family node and rename it as Name, which is one of the attributes of the
ProductFamily business entity.

• Right-click the Name node and select from the contextual menu Set As Loop Element.

• Click OK to validate the XML structure you defined.

• Double-click tMDMBulkLoad to open its Basic settings view.

• In XML Field, click this field and select xmlRecord from the drop-down list.

• In the URL field, enter the bulk loader URL, between quotes: for example, http://localhost:8080/datamanager/
loadServlet.

• In the Username and Password fields, enter your login and password to connect to the MDM server.

• In the Data Model and the Data Container fields, enter the names corresponding to the data model and the
data container you need to use. Both are Product for this scenario.

• In the Entity field, enter the name of the business entity which the records are to be loaded in. In this example,
type in ProductFamily.

• Select the Generate ID check box in order to generate ID values for the records to be loaded.

• In the Commit size field, type in the batch size to be written into the MDM hub in bulk mode.

• Press F6 to run the Job.

• Log into your Talend MDM Web User Interface to check the newly added records for the ProductFamily
business entity.



Scenario: Loading records into a business entity

Talend Open Studio Components Reference Guide 1665



tMDMClose

1666 Talend Open Studio Components Reference Guide

tMDMClose

tMDMClose properties

Component family Talend MDM

Function tMDMClose closes an opened MDM server connection.

Purpose This component is used to terminate an opened MDM server connection after the execution of the
proceeding subjob.

Basic settings Component List Select the tMDMConnection component from the list if more than one
connection is planned for the current Job.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the Job level
as well as at each component level.

Usage This component is to be used along with the tMDMConnection component.

Related scenario

For a related use case, see section Scenario: Deleting master data from an MDM Hub.



tMDMConnection

Talend Open Studio Components Reference Guide 1667

tMDMConnection

tMDMConnection properties

Component family Talend MDM

Function tMDMConnection opens an MDM server connection for convenient reuse in the current transaction.

Purpose This component is used to open a connection to an MDM server for convenient reuse in the subsequent
subjob or subjobs.

Basic settings URL Type in the URL required to access the MDM server.

Username and Password Type in the user authentication data for the MDM server.

Version Type in the name of the Version of master data you want to connect to.

Leave this field empty if you want to display the default Version of
master data.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the Job level
as well as at each component level.

Usage This component is to be used along with the tMDMSP, tMDMViewSearch, tMDMInput,
tMDMDelete, tMDMRouteRecord, tMDMOutput, and tMDMClose components.

Related scenario

For a related use case, see section Scenario: Deleting master data from an MDM Hub.



tMDMDelete

1668 Talend Open Studio Components Reference Guide

tMDMDelete

tMDMDelete properties

Component family Talend MDM

Function tMDMDelete deletes data records from specific entities in the MDM Hub.

Purpose This component deletes master data in an MDM hub.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields that
will be processed and passed on to the next component. The schema is
either built-in or remote in the Repository.

Click Edit Schema to modify the schema.

If you modify the schema, it automatically becomes built-in.

Click Sync columns to collect the schema from the previous component.

Built-in: You create the schema and store it locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: You have already created the schema and stored it in the
Repository. You can reuse it in various projects and job designs. Related
topic: see Talend Open Studio User Guide.

Use an existing connection Select this check box if you want to use a configured tMDMConnection
component.

URL Type in the URL required to access the MDM server.

Username and Password Type in the user authentication data for the MDM server.

Version Type in the name of the Version of master data you want to connect to,
for which you have the required user rights.

Leave this field empty if you want to display the default Version of
master data.

Entity Type in the name of the entity that holds the data record(s) you want to
delete.

Data Container Type in the name of the data container that holds the data record(s) you
want to delete.

Use multiple conditions Select this check box to filter the master data to be deleted, using certain
conditions.

Xpath: Enter between quotes the path and the XML node to which you
want to apply the condition.

Function: Select the condition to be used from the list.

Value: Enter between inverted commas the value you want to use.

Predicate: Select a predicate if you use more than one condition.

Keys Specify the field(s) (in sequence order) composing the key when the
entity have a multiple key.

Logical delete Select this check box to send the master data to the Recycle bin and fill
in the Recycle bin path. Once in the Recycle bin, the master data can
be definitely deleted or restored. If you leave this check box clear, the
master data will be permanently deleted.



Scenario: Deleting master data from an MDM Hub

Talend Open Studio Components Reference Guide 1669

Die on error Select this check box to skip the row in error and complete the process
for error-free rows. If needed, you can retrieve the rows in error via a
Row > Rejects link.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the Job level
as well as at each component level.

Usage Use this component to write a file and separate the fields using a specific separator.

Scenario: Deleting master data from an MDM Hub

This scenario describes a four-component Job that deletes the specified data record from the MDM Hub.

Dropping and linking the components

1. Drop tMDMConnection, tMDMInput, tMDMDelete, and tMDMClose of the Talend MDM family from
the Palette onto the design workspace.

2. Connect tMDMInput to tMDMDelete using a Row > Main link.

3. Connect tMDMConnection to tMDMInput, and tMDMInput to tMDMClose using Trigger >
OnSubjobOK links.

Configuring the MDM server connection

In this scenario, a tMDMConnection component is used to open an MDM server connection for convenient reuse
in the subsequent subjob that performs the data record deletion task.

1. Double-click tMDMConnection to display its Basic settings view and define the component properties.



Scenario: Deleting master data from an MDM Hub

1670 Talend Open Studio Components Reference Guide

2. In the URL field, enter the MDM server URL, between quotation marks: for example, "http://localhost:8180/
talend/TalendPort".

3. In the Username and Password fields, enter your login user name and password to connect to the MDM server.

4. In the Version field, enter the name of the master data Version you want to access, between quotation marks.
Leave this field empty to access the default master data Version.

5. Double-click tMDMClose to display its Basic settings view and define the component properties.

This component closes the opened MDM server connection after the successful execution of the proceeding
subjob.

6. From the Component List list, select the component for the server connection you want to close if you have
configured more than one MDM server connection. In this use case, there is only one MDM server connection
opened, so simply use the default setting.

Configuring data retrieval

1. Double-click tMDMInput to display its Basic settings view and define the component properties.



Scenario: Deleting master data from an MDM Hub

Talend Open Studio Components Reference Guide 1671

2. From the Property Type list, select Built-in to complete the fields manually.

If you have stored the MDM connection information in the repository metadata, select Repository from the
list and the fields will be completed automatically.

3. From the Schema list, select Built-in and click [...] next to Edit schema to open a dialog box.

Here you can define the structure of the master data you want to read in the MDM hub.

4. The master data is collected in a four column schema of the type String: Id, Name, City and State. Click OK
to close the dialog box and proceed to the next step.

5. Select the Use an existing connection check box, and from the Component List list that appears, select the
component you have configured to open your MDM server connection.

In this scenario, only one MDM server connection exists, so simply use the default selection.

6. In the Entity field, enter the name of the business entity that holds the data record(s) you want to read, between
quotation marks. Here, we want to access the Agency entity.



Scenario: Deleting master data from an MDM Hub

1672 Talend Open Studio Components Reference Guide

7. In the Data Container field, enter the name of the data container that holds the master data you want to read,
between quotation marks. In this example, we use the DStar container.

The Use multiple conditions check box is selected by default.

8. In the Operations table, define the conditions to filter the master data you want to delete as follows:

• Click the plus button to add a new line.

• In the Xpath column, enter the Xpath and the tag of the XML node on which you want to apply the filter,
between quotation marks. In this example, we work with the Agency entity, so enter “Agency/Id”.

• In the Function column, select the function you want to use. In this scenario, we use the Starts With function.

• In the Value column, enter the value of your filter. Here, we want to filter the master data which Id starts
with TA.

9. In the Component view, click Advanced settings to set the advanced parameters.

10.In the Loop XPath query field, enter the structure and the name of the XML node on which the loop is to be
carried out, between quotation marks.

11.In the Mapping table and in the XPath query column, enter the name of the XML tag in which you want to
collect the master data, next to the corresponding output column name, between quotation marks.

Configuring data record deletion

1. In the design workspace, double-click the tMDMDelete component to display the Basic settings view and set
the component properties.



Scenario: Deleting master data from an MDM Hub

Talend Open Studio Components Reference Guide 1673

2. From the Schema list, select Built-in and click the three-dot button next to the Edit Schema field to describe
the structure of the master data in the MDM hub.

3. Click the plus button to the right to add one column of the type String. In this example, name this column
outputXML. Click OK to close the dialog box and proceed to the next step.

4. Select the Use an existing connection check box, and from the Component List list that appears, select the
component you have configured to open your MDM server connection.

In this scenario, only one MDM server connection exists, so simply use the default selection.

5. In the Entity field, enter the name of the business entity that holds the master data you want to delete, the
Agency entity in this example.

6. In the Data Container, enter the name of the data container that holds the data to be deleted, DStar in this
example.



Scenario: Deleting master data from an MDM Hub

1674 Talend Open Studio Components Reference Guide

7. In the Keys table, click the plus button to add a new line. In the Keys column, select the column that holds the
key of the Agency entity. Here, the key of the Agency entity is set on the Id field.

If the entity has multiple keys, add as many line as required for the keys and select them in sequential order.

8. Select the Logical delete check box if you do not want to delete the master data permanently. This will send
the deleted data to the Recycle bin. Once in the Recycle bin, the master data can be restored or permanently
deleted. If you leave this check box clear, the master data will be permanently deleted.

9. Fill in the Recycle bin path field. Here, we left the default path but if your recycle bin is in a path different
from the default, specify the path.

Saving and executing the Job

1. Press Ctrl+S to save your Job to ensure that all the parameters you have configured take effect.

2. Press F6 to execute your Job.

The master data with the Id starting with “TA” have been deleted and sent to MDM Recycle bin.



tMDMInput

Talend Open Studio Components Reference Guide 1675

tMDMInput

tMDMInput properties

Component family Talend MDM

Function tMDMInput reads master data in the MDM Hub.

Purpose This component reads master data in an MDM Hub and thus makes it possible to process this data.

Basic Settings Property Type Either Built in or Repository.

Built-in: No property data stored centrally

Repository: Select the repository file where properties are stored. The
fields that follow are completed automatically using the fetched data

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields that
will be processed and passed on to the next component. The schema is
either built-in or remote in the Repository.

Click Edit Schema to modify the schema.

If you modify the schema, it automatically becomes built-in.

Built-in: The schema will be created and stored for this component only.
Related Topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the repository.
You can reuse it in various projects and jobs. Related Topic: see Talend
Open Studio User Guide.

Use an existing connection Select this check box if you want to use a configured tMDMConnection
component.

URL Type in the URL to access the MDM server.

Username and Password Type in user authentication data for the MDM server.

Version Type in the name of the master data Version you want to connect to and
to which you have access rights.

Leave this field empty if you want to display the default Version.

Entity Type in the name of the business entity that holds the master data you
want to read.

Data Container Type in the name of the data container that holds the master data you
want to read.

Use multiple conditions Select this check box to filter the master data using certain conditions.

Xpath: Enter between quotes the path and the XML node to which you
want to apply the condition.

Function: Select the condition to be used from the list.

Value: Enter between inverted commas the value you want to use. Note
that if the value contains XML special characters such as /, you must
also enter the value in single quotes ("'ABC/XYZ'") or the value will be
considered as an XPath.

Predicate: Select a predicate if you use more than one condition.

If you clear this check box, you have the option of selecting particular
IDs to be displayed in the ID value column of the IDS table.



Scenario: Reading master data in an MDM hub

1676 Talend Open Studio Components Reference Guide

If you clear the Use multiple conditions check box, the Batch
Size option in the Advanced Settings tab will no longer be
available

Skip rows Enter the number of lines to be ignored.

Limit Maximum number of rows to be processed. If Limit = 0, no row is read
or processed.

Die on error Select this check box to skip the row in error and complete the process
for error-free rows. If needed, you can retrieve the rows in error via a
Row > Rejects link.

Advanced settings Batch Size Number of lines in each processed batch.

This option is not displayed if you have cleared the Use
multiple conditions check box in the Basic settings view.

Loop XPath query The XML structure node on which the loop is based.

Mapping Column: reflects the schema as defined in the Edit schema editor.

XPath query: Type in the name of the fields to extract from the input
XML structure.

Get Nodes: Select this check box to retrieve the Xml node together with
the data.

tStatCatcher Statistics Select this check box to gather the processing metadata at the Job level
as well as at each component level.

Usage Use this component as a start component. It needs an output flow.

Scenario: Reading master data in an MDM hub

This scenario describes a two-component Job that reads master data on an MDM server. The master data is fetched
and displayed in the log console.

• From the Palette, drop tMDMInput and tLogRow onto the design workspace.

• Connect the two components together using a Row Main link.

• Double-click tMDMInput to open the Basic settings view and define the component properties.



Scenario: Reading master data in an MDM hub

Talend Open Studio Components Reference Guide 1677

• In the Property Type list, select Built-In to complete the fields manually. If you have stored the MDM
connection information in the repository metadata, select Repository from the list and the fields will be
completed automatically.

• In the Schema list, select Built-In and click the three-dot button next to Edit schema to open a dialog box.
Here you can define the structure of the master data you want to read on the MDM server.

• The master data is collected in a three column schema of the type String: ISO2Code, Name and Currency. Click
OK to close the dialog box and proceed to the next step.

• In the URL field, enter between inverted commas the URL of the MDM server.

• In the Username and Password fields, enter your login and password to connect to the MDM server.

• In the Version field, enter between inverted commas the name of the master data Version you want to access.
Leave this field empty to display the default Version.

• In the Entity field, enter between inverted commas the name of the business entity that holds the master data
you want to read.

• In the Data Container field, enter between inverted commas the name of the data container that holds the
master data you want to read.

• In the Component view, click Advanced settings to set the advanced parameters.



Scenario: Reading master data in an MDM hub

1678 Talend Open Studio Components Reference Guide

• In the Loop XPath query field, enter between inverted commas the structure and the name of the XML node
on which the loop is to be carried out.

• In the Mapping table and in the XPath query column, enter between inverted commas the name of the XML
tag in which you want to collect the master data, next to the corresponding output column name.

• In the design workspace, click on the tLogRow component to display the Basic settings in the Component
view and set the properties.

• Click on Edit Schema and ensure that the schema has been collected from the previous component. If not, click
Sync Columns to fetch the schema from the previous component.

• Save the Job and press F6 to run it.

The list of different countries along with their codes and currencies is displayed on the console of the Run view.



tMDMOutput

Talend Open Studio Components Reference Guide 1679

tMDMOutput

tMDMOutput properties

Component family Talend MDM

Function tMDMOutput writes master data in an MDM Hub.

Purpose This component writes master data on the MDM server.

Basic settings Property Type Either Built-in or Repository.

Built-in: No property data stored centrally

Repository: Select the repository file where the properties are stored. The
fields which follow are filled in automatically using the fetched data.

Input Schema and Edit
schema

An input schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The schema
is either built-in or remote in the Repository.

Click Edit Schema to modify the schema. Note that if you modify the
schema, it automatically becomes built-in.

Click Sync columns to collect the schema from the previous component.

Built-in: You create the schema and store it locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: You have already created the schema and stored it in the
Repository. You can reuse it in various projects and job designs. Related
topic: see Talend Open Studio User Guide.

Build the document Select this check box if you want to build the document from a flat schema
If this is the case, double-click the component and map your schema in
the dialog box that opens.

If the check box is not selected, you must select the column in your schema
that contains the document from the Predefined XML document list.

Result of the XML
serialization

Lists the name of the XML output column that will hold the XML data.

Use an existing connection Select this check box if you want to use a configured tMDMConnection
component.

URL Type in the URL of the MDM server.

Username and Password Type in the user authentication data for the MDM server.

This user should have the right role in MDM, i.e. can connect
through a Job or any other web service call. For further
information, see Talend Open Studio for MDM Administrator
Guide.

Version Type in the name of the master data management Version you want to
connect to, for which you have the user rights required.

Leave this field empty if you want to display the default perspective.

Data Model Type in the name of the data model against which the data to be written
is validated.

Data Container Type in the name of the data container where you want to write the master
data.

This data container must already exist.



tMDMOutput properties

1680 Talend Open Studio Components Reference Guide

Return Keys Columns corresponding to IDs in order: in sequential order, set the
output columns that will store the return key values (primary keys) of the
item(s) that will be created.

Is Update Select this check box to update the modified fields.

If you leave this check box unchecked, all fields will be replaced by the
modified ones.

Fire Create/Update event Select this check box to add the actions carried out to a modification
report.

Source Name: Between quotes, enter the name of the application to be
used to carry out the modifications.

Enable verification by “before saving” process: Select this check box
to verify the commit that has been just added; prior to saving.

Use partial update Select this check box if you need to update multi-occurrences elements
(attributes) of an existing item (entity) from the content of a source XML
stream.

Once selected, you need to set the parameters presented below:

- Pivot: type in the xpath to the multi-occurrences sub-element where data
need to be added or replaced in the item of interest.

For example, if you need to add a child sub-element to the below existing
item:

<Person>
    <Id>1</Id> <!-- record key is 
     mandatory -->
    <Children>
        <Child>[1234]</Child> 
     <!-- FK to a Person Entity -->
    </Children>
</Person>

then the Xpath you enter in this Pivot field must read as the following:
/Person/Children/Child  where the Overwrite check box is set to
false.

And, if you need to replace a child sub-element in an existing item:

<Person>
  <Id>1</Id> 
  <Addresses>
    <Address>
      <Type>office</Type>
        (...address elements 
         are here....)
    </Address>
    <Address>
      <Type>home</Type>
        (...address elements 
         are here....)
    </Address>
  <Addresses>
</Person>

then the Xpath you enter in this Pivot field must read as the following: /
Person/Addresses/Adress where the Overwrites check box is set to
true, and the Key field is set to /Type .

In such example, assuming the item in MDM only has an office address,
the office address will be replaced, and the home address will be added.

- Overwrite: select this check box if you need to replace or update the
original sub-elements with the input sub-elements. Leave unselected if
you want to add a sub-element.

- Key: type in the xpath relative to the pivot that will help matching a sub-
element of the source XML with a sub-element of the item. If a key is not



Scenario: Writing master data in an MDM hub

Talend Open Studio Components Reference Guide 1681

supplied, all sub-elements of an item with an XPath matching that of the
sub-element of the source XML will be replaced.

-Position: type in a number to indicate the position after which the new
elements (those that do not match the key) will be added. If you do not
provide a value in this field, the new element will be added at the end.

Die on error Select this check box to skip the row in error and complete the process for
error-free rows. If needed, you can retrieve the rows in error via a Row
> Rejects link.

Advanced settings Extended Output Select this check box to commit master data in batches. You can specify
the number of lines per batch in the Rows to commit field.

Configure Xml Tree Opens the interface which helps create the XML structure of the master
data you want to write.

Group by Select the column to be used to regroup the master data.

Create empty element if
needed

This check box is selected by default. If the content of the interface's
Related Column which enables creation of the XML structure is null,
or if no column is associated with the XML node, this option creates an
opening and closing tag at the required places.

Advanced separator (for
number)

Select this check box to modify the number of separators used by default.

- Thousands separator: enter between inverted commas the separator
for thousands.

- Decimal separator: enter between inverted commas the decimal
separator.

Generation mode Select the appropriate generation mode according to your memory
availability. The available modes are:

• Slow and memory-consuming (Dom4j)

This option allows you to use dom4j to process the XML files
of high complexity.

• Fast with low memory consumption

Encoding Select the encoding type from the list or else select Custom and define
it manually. This is an obligatory field for the manipulation of data on
the server.

tStatCatcher Statistics Select this check box to gather the processing metadata at the Job level
as well as at each component level.

Usage Use this component to write a data record and separate the fields using a specific separator.

Scenario: Writing master data in an MDM hub

This scenario describes a two-component Job that generates a data record, transforms it into XML and loads it
into the defined business entity in the MDM server.

In this example, we want to load a new agency in the Agency business entity. This new agency should have an
id, a name and a city.

• From the Palette, drop tFixedFlowInput and tMDMOutput onto the design workspace.

• Connect the components using a Row Main link.



Scenario: Writing master data in an MDM hub

1682 Talend Open Studio Components Reference Guide

• Double-click tFixedFlowInput to view its Basic settings, in the Component tab and set the component
properties.

• In the Schema list, select Built-In and click the three-dot button next to Edit schema to open a dialog box in
which you can define the structure of the master data you want to write on the MDM server.

• Click the plus button and add three columns of the type String. Name the columns: Id, Name and City.

• Click OK to validate your changes and proceed to the next step.

• In the Number of rows field, enter the number of rows you want to generate.

• In the Mode area, select the Use Single Table option to generate just one table.

• In the Value fields, enter between inverted commas the values which correspond to each of the schema columns.

• In the design workspace, click tMDMOutput to open its Basic settings view and set the component properties.



Scenario: Writing master data in an MDM hub

Talend Open Studio Components Reference Guide 1683

• In the Property Type list, select Built-In and complete the fields manually.

If you have saved the MDM connection information under Metadata in the repository, select Repository from
the list and the fields which follow will be completed automatically.

• In the Schema list, select Built-In and, if required, click on the three dot button next to the Edit Schema field
to see the structure of the master data you want to load on the MDM server.

The tMDMOutput component basically generates an XML document, writes it in an output field, and then sends
it to the MDM server, so the output schema always has a read-only xml column.

• Click OK to proceed to the next step.

The Result of the XML serialization list in the Basic settings view is automatically filled in with the output
xml column.

• In the URL field, enter the URL of the MDM server.

• In the Username and Password fields, enter the authentication information required to connect to the MDM
server.

• In the Version field, enter between inverted commas the name of the master data Version you want to access,
if more than one exists on the server. Leave the field blank to access the default Version.



Scenario: Writing master data in an MDM hub

1684 Talend Open Studio Components Reference Guide

• In the Data Model field, enter between inverted commas the name of the data model against which you want
to validate the master data you want to write.

• In the Data Container, enter between inverted commas the name of the data container into which you want
to write the master data.

• In the Component view, click Advanced settings to set the advanced parameters for the tMDMOutput
component.

• Select the Extended Output check box if you want to commit master data in batches. You can specify the
number of lines per batch in the Rows to commit field.

• Click the three-dot button next to Configure Xml Tree to open the tMDMOutput editor.

• In the Link target area to the right, click in the Xml Tree field and then replace rootTag with the name of the
business entity in which you want to insert the data record, Agency in this example.

• In the Linker source area, select your three schema columns and drop them on the Agency node.



Scenario: Writing master data in an MDM hub

Talend Open Studio Components Reference Guide 1685

The [Selection] dialog box displays.

• Select the Create as sub-element of target node option so that the three columns are linked to the three XML
sub-elements of the Agency node and then click OK to close the dialog box.

• Right-click the element in the Link Target area you want to set as a loop element and select Set as Loop
Element from the contextual menu. In this example, we want City to be the iterating object.

• Click OK to validate your changes and close the dialog box.

• Save your Job and press F6 to run it.

The new data record is inserted in the Agency business entity in the DStar data container on the MDM server. This
data records holds, as you defined in the schema, the agency id, the agency name and the agency city.



Scenario: Writing master data in an MDM hub

1686 Talend Open Studio Components Reference Guide



tMDMReceive

Talend Open Studio Components Reference Guide 1687

tMDMReceive

tMDMReceive properties

Component family Talend MDM

Function tMDMReceive receives an MDM record in XML from MDM triggers or MDM processes.

Purpose This component decodes a context parameter holding MDM XML data and transforms it into a flat
schema.

Basic Settings Property Type Either Built in or Repository.

Built-in: No property data stored centrally

Repository: Select the repository file where properties are stored. The
fields that follow are completed automatically using the fetched data

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields that
will be processed and passed on to the next component. The schema is
either built-in or remote in the Repository.

Click Edit Schema to modify the schema.

If you modify the schema, it automatically becomes built-in.

Built-in: The schema will be created and stored for this component only.
Related Topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the repository.
You can reuse it in various projects and jobs. Related Topic: see Talend
Open Studio User Guide.

XML Record Enter the context parameter allowing to retrieve the last changes made
to the MDM server. For more information about creating and using a
context parameter, see Talend Open Studio User Guide.

XPath Prefix If required, select from the list the looping xpath expression which is a
concatenation of the prefix + looping xpath.

/item: select this xpath prefix when the component receives the record
from a process because processes encapsulate the record within an item
element only.

/exchange/item: select this xpath prefix when the component receives
the record from a trigger because triggers encapsulate the record within
an item element which is within an exchange element.

Loop XPath query Set the XML structure node on which the loop is based.

Mapping Column: reflects the schema as defined in the Edit schema editor.

XPath query: Type in the name of the fields to extract from the input
XML structure.

Get Nodes: Select this check box to retrieve the XML node together with
the data.

Limit Maximum number of rows to be processed. If Limit = 0, no row is read
or processed.

Die on error This check box is selected by default. Clear the check box to skip the row
on error and complete the process for error-free rows. If needed, you can
retrieve the rows on error via a Row > Reject link.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the Job level
as well as at each component level.



Related scenario

1688 Talend Open Studio Components Reference Guide

Usage Use this component as a start component. It needs an output flow.

Related scenario

No scenario is available for this component yet.



tMDMRouteRecord

Talend Open Studio Components Reference Guide 1689

tMDMRouteRecord

tMDMRouteRecord properties

Component family Talend MDM

Function tMDMRouteRecord submits the primary key of a record stored in your MDM Hub to Event Manager
in order for Event Manager to trigger the due process(es) against some specific conditions that you
can define in the process or trigger pages of the MDM Studio.

For more information on Event Manager and on a MDM process, see Talend Open Studio for MDM
Administrator Guide.

Purpose This component helps Event Manager identify the changes which you have made on your data so that
correlative actions can be triggered.

Basic Settings Use an existing connection Select this check box if you want to use a configured tMDMConnection
component.

URL Type in the URL of the MDM server.

Username and Password Type in the user authentication data for the MDM server.

Version Type in the name of the master data management Version you want to
connect to, for which you have the user rights required.

Leave this field empty if you want to display the default perspective.

Data Container Type in the name of the data container that holds the record you want
Event Manager to read.

Entity Name Type in the name of the business entity that holds the record you want
Event Manager to read.

IDS Specify the primary key(s) of the record(s) you want Event Manager
to read.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the Job level
as well as at each component level.

Global Variables Number of Lines: Indicates the number of lines processed. This is
available as an After variable.

Returns an integer.

For further information about variables, see Talend Open Studio User
Guide.

Connections Outgoing links (from one component to another):

Row: Iterate

Trigger: Run if; On Component Ok; On Component Error, On Subjob
Ok, On Subjob Error.

Incoming links (from one component to another):

Row: Iterate;

Trigger: Run if, On Component Ok, On Component Error, On Subjob
Ok, On Subjob Error

For further information regarding connections, see Talend Open Studio
User Guide.



Scenario: Routing a record to Event Manager

1690 Talend Open Studio Components Reference Guide

Usage Use this component as a start component. It needs an output flow.

Scenario: Routing a record to Event Manager

In this scenario, the tMDMRouteRecord component is used to submit the primary key of a record noting an
update to Event Manager in order for this element to trigger a process that informs the user of this update.

Talend MDM is case-sensitive, so respect the differences of uppercase and lowercase when realizing the scenario.

Scenario prerequisites

The following prerequisites must be met in order to replicate this scenario:

• A data container stores several records using a specific model. In this scenario, the container is named Product,
and a record in the container is entered against the model named Product:

This figure shows one of the stored product records with all of its viewable attributes.

For further information about how to create a data container, a data model, see your Talend Open Studio for MDM
Administrator Guide.

For further information about how to create a record and access its viewable attributes, see Talend MDM Web
User Interface User Guide.

• A Job used to inform the user of the update and already deployed on the MDM server. In this scenario, the Job
is called message, using only the tMsgBox component.

• Double-click the component to display and configure its Basic settings :



Scenario: Routing a record to Event Manager

Talend Open Studio Components Reference Guide 1691

• In the Title field, type in “Talend MDM”.

• In the Message field to be popped up, type in “A record is updated”.

For further information about the tMsgBox component, see section tMsgBox.

For further information about how to deploy a Job onto the MDM server, see Talend Open Studio for MDM
Administrator Guide.

Routing a record to trigger the corresponding process

This section shows you how to replicate the whole scenario using tMDMRouteRecord to trigger a process.

• Log onto your Talend MDM Web UI and click Browse Records.

For further details about how to log onto the Talend MDM Web UI and open the Browse Records view, see
Talend MDM Web User Interface User Guide.

• In the upper right corner of the web page, click on the  button to show the Actions panel.

• On the Actions panel on the right, select the required data container and data model in which is the record to
be updated. In this scenario, the data container and the data model are both Product.

• Click Save to save the selected data container and data model.

• In the Browse Records view, select the entity of your interest. In this example, it is Product.

• Click Search to open the record list on the lower part of the Web page.



Scenario: Routing a record to Event Manager

1692 Talend Open Studio Components Reference Guide

• Double-click one of the product records to display its viewable attributes in a new view dedicated to this product.
For example, open the product Talend Mug with unique Id 231035938.

• In this view, modify one of the attribute values. You can, for example, update this product and make it available
by selecting the Availability check box.

• Click Save to validate this update.

• Open your Talend MDM studio and access the MDM Hub. For further information about how to launch the
Talend MDM studio and connect it to the MDM hub, see Talend Open Studio for MDM Administrator Guide.



Scenario: Routing a record to Event Manager

Talend Open Studio Components Reference Guide 1693

• Under the Job Repository node of the MDM Server tree view, right click the message Job.

• In the contextual menu, select Generate Talend Job Caller Process.The process used to call this Job is
generated and displays in the directory Event Management > Process.

• Under the Event Management node, right click Trigger.

• In the contextual menu, select New.

• In the pop-up New Trigger wizard, name the trigger as, for example, TriggerMessage.



Scenario: Routing a record to Event Manager

1694 Talend Open Studio Components Reference Guide

• Click OK to open the new trigger’s view in the workspace of your studio.

• In the trigger’s view, configure the trigger to make it launch the process that calls the message Job once an
update is done.

• In the Description field, enter, for example, Trigger that calls the Talend Job: message_0.1.war to describe
the trigger being created.

• In the Entity field, select or type in the business entity you want to trigger the process on. In this example, it
is exactly Update.

• In the Service JNDI Name field, select callprocess from the drop-down list.

• In the Service Parameters field, complete the parameter definition by giving the value:
CallJob_message_0.1.war. This value is the name of the process to be called that you can find in the directory
Event Management > Process in the MDM server tree view.

•
In the Trigger xPath Expressions area, click the  button under the table to add a new XPath line.

• In the newly added line, click the three-dot button to open a dialog box where you can select the entity or element
on which you want to define conditions. In this example, it is Update/OperationType.



Scenario: Routing a record to Event Manager

Talend Open Studio Components Reference Guide 1695

• In the Value column, enter a value for this line. In this example, it is exactly UPDATE.

• In the Condition Id column, enter a unique identifier for the condition you want to set, for example, C1.

• In the Conditions area, enter the query you want to undertake on the data record using the condition ID C1
you set earlier.

• Press Ctrl+S to save the trigger.

• In the MDM server tree view, double click Data container > system > UpdateReport to open the Data
Container Browser UpdateReport view. An Update Report is a complete track of all create, update or delete
actions on any master data

•
Next to the Entity field of this view, click the  button to search all the action records in the UpdateReport.
Note that the Update entity does not necessarily mean that the corresponding action recorded is the update, as it
is just the entity name defined by the data model of UpdateReport and may record different actions including
create, delete, update.



Scenario: Routing a record to Event Manager

1696 Talend Open Studio Components Reference Guide

• The last record corresponds to what is done on the product record at the beginning of the scenario. The primary
key of this record is genericUI.1283244014172 and this is the record that will be routed to Event trigger.

• On the menu bar of the studio, click Window > Perspective > Integration to design the Job routing a record.

• On the Integration perspective, create a Job and name it RouteRecord.

• To do so, right-click Job Designs, in the Repository tree view. In the contextual menu, select Create Job.

• A wizard opens. In the Name field, type in RouteRecord, and click Finish.

• Drop the tMDMRouteRecord component from the Palette onto the design workspace.

• Double click this component to open its Component view.

• In the URL field, enter the address of your MDM server. This example uses http://localhost:8080/talend/
TalendPort.

• In the Username and the Password fields, type in the connection parameters.

• In the Data Container field, enter the data container name that stores the record you want to route. It is
UpdateReport in this example.

• In the Entity Name field, enter the entity name that the record you want to route belongs to. In this example,
the entity name is Update.

• In the IDS area, click the plus button under the table to add a new line.

• In the newly added line, fill in the primary key of the record to be routed to Event Manager, that is,
genericUI.1283244014172, as was read earlier from the Data Container Browser UpdateReport.

• Press F6 to run this Job. Event Manager calls the process to execute the message Job and generate the dialog
box informing the user that this recorded has been updated.



Scenario: Routing a record to Event Manager

Talend Open Studio Components Reference Guide 1697

This component submits the primary key of the record noting the update to Event Manager. When Event
Manager checks this record and finds that this record meets the conditions you have defined on the trigger
TriggerMessage’s configuration view, it calls the process that launches the message Job to pop up the dialog box
informing the user of this update.



tMDMSP

1698 Talend Open Studio Components Reference Guide

tMDMSP

tMDMSP Properties

Component family Talend MDM

Function tMDMSP calls the MDM Hub stored procedure.

Purpose tMDMSP offers a convenient way to centralize multiple or complex queries in a MDM Hub and
call them easily.

Basic settings Schema and Edit Schema In SP principle, the schema is an input parameter.

A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component. The schema is
either built-in or remotely stored in the Repository.

Built-in: The schema is created and stored locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see Talend Open
Studio User Guide.

Use an existing connection Select this check box if you want to use a configured
tMDMConnection component.

URL Type in the URL of the MDM server.

Username and Password Type in the user authentication data for the MDM server.

Version Type in the name of the master data management Version you want
to connect to, for which you have the user rights required.

Leave this field empty if you want to display the default perspective.

Data Container Type in the name of the data container that stores the procedure you
want to call.

SP Name Type in the exact name of the Stored Procedure

Parameters (in order) Click the Plus button and select the various Input Columns that will
be required by the procedures.

The SP schema can hold more columns than there are
parameters used in the procedure.

Connections Outgoing links (from one component to another):

Row: Main

Trigger: Run if; On Component Ok; On Component Error, On
Subjob Ok, On Subjob Error.

Incoming links (from one component to another):

Row: Main, Iterate;

Trigger: Run if, On Component Ok, On Component Error, On
Subjob Ok, On Subjob Error

For further information regarding connections, see Talend Open
Studio User Guide.

Usage This component is used as intermediary component. It can be used as start component but only no
input parameters are thus needed for the procedure to be called. An output link is required.



Scenario: Executing a stored procedure in the MDM Hub

Talend Open Studio Components Reference Guide 1699

Limitation N/A

Scenario: Executing a stored procedure in the MDM
Hub

The following job is intended for calculating the total price of each kind of products recorded on your MDM
Web UI.

This Job will generate parameters used to execute a stored procedure in the MDM Hub, then extract the desired
data from the returned XML-format result and present the extracted data in the studio.

The products of which the prices are to be treated are listed on your MDM Web UI.

The stored procedure to be executed can be found in Stored Procedure node of the MDM server’s tree view and
reads as follows:



Scenario: Executing a stored procedure in the MDM Hub

1700 Talend Open Studio Components Reference Guide

For more information on a stored procedure in the MDM server, see Talend Open Studio for MDM Administrator
Guide.

To realize this Job, proceed as follows:

• Drag and drop the following components used in this example: tFixedFlowInput, tMDMSP,
tExtractXMLField, tLogRow.

• Connect the components using the Row Main link.

• The tFixedFlowInput is used to generate the price range of your interest for this calculation. In this example,
define 10 as the minimum and 17 as the maximum in order to cover all of the products.

• Double-click on tFixedFlowInput to open its Component view.

• On the Component view, click the [...] button next to Edit schema to open the schema editor of this component.

• In the schema editor, add the two parameters min and max that are used to define the price range.

• Click OK to validate this editing.

• On the Values table in the Mode area of the Component view, the two parameters min and max that you have
defined in the schema editor of this component display.

• In the Value column of the Values table, enter 10 for the min parameter and 17 for the max parameter.



Scenario: Executing a stored procedure in the MDM Hub

Talend Open Studio Components Reference Guide 1701

• Double-click on tMDMSP to open its Component view.

• In the URL field of the Component view, type in the MDM server address, in this example, http://
localhost:8080/talend/TalendPort.

• In Username and Password, enter the authentication information, in this example, admin and talend.

• In Data Container and Procedure Name, enter the exact names of the data container Product and of the stored
procedure PriceAddition.

• Under the Parameters (in order) table, click the plus button two times to add two rows in this table.

• In the Parameters (in order) table, click each of both rows you have added and from the drop-down list, select
the min parameter for one and the max parameter for the other.

• Double-click on tExtractXMLField to open its Component view.



Scenario: Executing a stored procedure in the MDM Hub

1702 Talend Open Studio Components Reference Guide

• On the Component view, click the [...] button next to Edit schema to open the schema editor of this component.

• In the schema editor, add two columns to define the structure of the outcoming data. These two columns are
name and sum. They represent respectively the name and the total price of each kind of product recorded in
the MDM Web UI.

• Click OK to validate the configuration and the two columns display in the Mapping table of the Component
view.

• In the Loop XPath query field, type in the node of the XML tree, which the loop is based on. In this
example, the node is /result as you can read in the procedure code: return <result><Name>{$d}</

Name><Sum>{sum($product/Price)}</Sum></result>.

• In XPath query of the Mapping table, enter the exact node name on which the loop is applied. They are /result/
Name used to extract the product names and /result/Sum used to extract the total prices.

• Eventually, double-click tLogRow to open its Component view.



Scenario: Executing a stored procedure in the MDM Hub

Talend Open Studio Components Reference Guide 1703

• Synchronize the schema with the preceding component.

• And select the Print values in cells of a table check box for reading convenience.

• Then press F6 to execute the Job.

• See the outcoming data in the console of the Run view.

The output lists the four kinds of products recorded in the MDM Web UI and the total price for each of them.



tMDMTriggerInput

1704 Talend Open Studio Components Reference Guide

tMDMTriggerInput

tMDMTriggerInput properties

Component family Talend MDM

Function Once executed, tMDMTriggerInput reads the XML message (Document type) sent by MDM and
passes them to the component that follows.

This component works alongside the new trigger service and process plug-in in MDM version
5.0 and higher. The MDM Jobs, triggers and processes developed in previous MDM versions
remain supported. However, we recommend using this component when designing new
MDM Jobs.

Purpose Every time when you save a change in your MDM, the corresponding change record is generated in
XML format. At runtime, this component reads this record and sends the relative information to the
following component.

With this component, you do not need to configure your Job any more in order to communicate the
data changes from MDM to your Job.

Basic settings Property Type Either Built-in or Repository.

Built-in: No property data stored centrally.

tMDMTriggerInput is expected to use this option in order to apply the
default read-only schema. MDM_message is the only column of this
schema.

Repository: Select the repository file where properties are stored. The
fields that follow are completed automatically using the fetched data.

As tMDMTriggerInput provides a fixed read-only schema, you are
expected to use the Built-in option.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields that
will be processed and passed on to the next component. The schema is
either built-in or remote in the Repository.

Click Edit Schema to modify the schema.

If you modify the schema, it automatically becomes built-in.

Built-in: The schema will be created and stored for this component only.
Related Topic: see Talend Open Studio User Guide.

This is the default option for tMDMTriggerInput. With this option, the
read-only schema is used to deal with the XML-format MDM message.

Repository: The schema already exists and is stored in the repository.
You can reuse it in various projects and jobs. Related Topic: see Talend
Open Studio User Guide.

As tMDMTriggerInput provides a fixed read-only schema, you are
expected to use the Built-in option.

 Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the Job level
as well as at each component level.

Usage Use this component as a start component. It needs an output flow.

To receive the message from MDM, you need to deploy the Job using this component on your MDM
server and generate the corresponding trigger and process in MDM to invoke this Job.

For further information about how to deploy a Job onto MDM server and how to generate a trigger or
a process, see Talend Open Studio for MDM Administrator Guide.



Scenario: Exchanging the event information about an MDM record

Talend Open Studio Components Reference Guide 1705

For further information about how to change a record in MDM, see Talend MDM Web User Interface
User Guide.

Limitation During the deployment of this component on the MDM server, you need to select the Hosted (Zip)
type as the format of the deployed Job. If you deploy it in the Distributed (War) type, the relative
Job cannot be invoked. For further information about the available types, see Talend Open Studio for
MDM Administrator Guide.

Scenario: Exchanging the event information about an
MDM record

In this scenario, a four-component Job is used to exchange the event information about a product record. Using an
established MDM connection from the Repository, this Job is triggered by Talend Open Studio for MDM once
you have updated a product record.

To replicate this scenario, accomplish the following tasks sequentially:

1. Create an MDM connection of the Receive type in the Repository of the Studio. This connection is to the
MDM hub holding the record you want to update.

2. Create the Job receiving and sending the MDM update message.

3. Generate the process invoking this Job created.

4. Update a specific MDM record.

To create the MDM records, model and container used in this scenario, you can execute the Jobs in the MDM
demo project in the integration Studio and then update the MDM server to deploy the objects thus created for them
to be taken into account at runtime. You will use this server all through this scenario.

For further information about how to import a demo project, see Talend Open Studio User Guide.

For further information about how to update the server for deploying objects, see Talend Open Studio for MDM
Administrator Guide.

For further information about an MDM event and the event management, see Talend Open Studio for MDM
Administrator Guide.

Creating an MDM connection

Establishing the connection

1. Launch the MDM server with which you need to communicate the update message.

2. In the Integration perspective of the Studio, expand the Metadata node in the Repository.

3. Right-click the Talend MDM item and select Create MDM connection.



Scenario: Exchanging the event information about an MDM record

1706 Talend Open Studio Components Reference Guide

4. Enter the Name you want to use for this connection and if required, added the Purpose and the Description
in the corresponding fields. For example, we name this connection as receive_update.

5. In the Next step, enter the authentication information used to connect to the MDM web service through which
you manage the record to be updated.

Once you click the Check button and the connection is shown successful, the Next button becomes clickable.



Scenario: Exchanging the event information about an MDM record

Talend Open Studio Components Reference Guide 1707

6. In the Next step, select the Version, the Data model and the Data Container used by the record to be
updated. In this scenario, the model and the container are both Product.

7. Click Finish to validate the creation. The connection created appears under the Metadata node in the
Repository.

Retrieving entities

1. Right-click the connection created and from the contextual menu, select Retrieve entities. Then the wizard
appears.

2. Select Receive MDM and click Next to continue.



Scenario: Exchanging the event information about an MDM record

1708 Talend Open Studio Components Reference Guide

3. Select the entity to be retrieved. In this scenario, it is Product. Then the name field is entered automatically.

4. In the Next step, drop the elements you need to retrieve from the Source Schema area to the Target Schema
area. In this scenario, the Features element is the loop and the Id, the Name and the Description elements
are the fields to extract.



Scenario: Exchanging the event information about an MDM record

Talend Open Studio Components Reference Guide 1709

5. In the Next step, if required, change the description of the schema retrieved; otherwise, click Finish to finalize
retrieving this entity. In this scenario, we keep the default schema description and click Finish.



Scenario: Exchanging the event information about an MDM record

1710 Talend Open Studio Components Reference Guide

The schema of the product entity is retrieved. For further information about the container and the data model
used by the MDM, see Talend Open Studio for MDM Administrator Guide.

Creating the Job communicating the MDM message

Linking the components

1. In the Integration perspective of the Studio, select Create Job from the Job Design node in the Repository
tree view. Then the New Job wizard appears.

2. Name this new Job and click Finish to close the wizard and validate the creation. An empty Job is opened
on the workspace of the Studio.

3. Drop tMDMTriggerInput, tXMLMap, tMDMTriggerOutput and tLogRow from Palette onto the
workspace.

4. Right-click tMDMTriggerInput and from the contextual menu, select the Row > Main link to connect it
to tXMLMap.

5. Do the same to connect tXMLMap to tMDMTriggerOutput. When doing so, a dialog box appears to prompt
you to name this link created.

6. Double-click tMDMTriggerOutput to open its Component view.

7. Click Edit schema to open the editor.



Scenario: Exchanging the event information about an MDM record

Talend Open Studio Components Reference Guide 1711

8.
Select the single pre-defined column of tMDMTriggerOutput, then, click  to reproduce this column
on the input side (left).

Configuring the transformation of the MDM message

1. Double-click tXMLMap to open its editor.

2. In the table representing the input flow (up-left of the editor), right-click the column name MDM_Message
on the top of the XML tree and select Import from repository. The [Metadata] wizard appears.

3. Select the entity schema retrieved earlier using the Receive MDM model, then click OK. In this scenario,
the entity schema is ProductReceive.

4. A dialog box appears prompting you to add the schema of the Update Report to the input XML tree. Click OK
to accept it. This builds a complete input document for an MDM event. In the input XML tree, the Features
element is set as loop element automatically.

5. In the table representing the output flow (up-right of the editor), develop the output XML tree as presented in
the figure below. This tree is constructed depending on the required static model of the MDM output report.



Scenario: Exchanging the event information about an MDM record

1712 Talend Open Studio Components Reference Guide

The XML construct required to return the validation-success message is

<report><message type="info">message</message></report>

The XML construct required to return the validation-failure message is

<report><message type="error">message</message></report>

6. Map the OperationType element on the input side with the message element on the output side. This will
output the information about the type of the event occurring on the MDM record.

To get more information, you can build the concatenation of the input elements you need to extract in the
Expression column of this message element. Both tMap and tXMLMap allow you to edit expressions using
the expression editor. For further information about how to edit an expression, see Talend Open Studio User
Guide.

7. In the Expression column, enter "info" in the row corresponding to @type.

8. Click the pincer icon to display the output settings panel, then set the All in one option as true.

9. Click OK to close the editor and validate these changes.

10. Double click tLogRow to open its Component view, then, click Sync columns.

This Job is finalized. For further information about the input document and the output report of an MDM event,
see Talend Open Studio for MDM Administrator Guide.

Generating the process invoking the Job created

Deploying the Job to be called onto the MDM server

1. Switch to the MDM perspective by clicking the corresponding button in the up-right corner of the Studio.

2. In MDM Repository, click the refresh button so that the Job created appears under the Job Designs node
of this Repository's tree view.

3. Right-click this Job created, update_product in this scenario, and from the contextual menu, select Deploy
to in order to deploy it to the MDM server.



Scenario: Exchanging the event information about an MDM record

Talend Open Studio Components Reference Guide 1713

4. The deployment wizard appears. From the server list, select the MDM server you are using, then click OK.

5. In the [Deploy to Talend MDM] window that pops up, select the Export type and the Context scripts for
the Job to be deployed. In this scenario, keep the default settings: Export type is Hosted (zip) and Context
scripts is Default.

For further information about these settings, see Talend Open Studio for MDM Administrator Guide.

6. Click Finish to validate these settings and start the deployment. When the deployment is done, a message
box pops up to indicate that the deployment is successful.



Scenario: Exchanging the event information about an MDM record

1714 Talend Open Studio Components Reference Guide

7. Click OK to close this message box, then a window pops up to list the objects deployed. In this scenario,
it is the Job, update_product.

8. Click OK to terminate the deployment procedure.

Generating the process used to call the Job

1. Right-click the Job update_product again and select Generate Talend Job Caller Process from the
contextual menu.

2. In the pop-up window, keep the default settings for this scenario: Integrated and Embedded. For further
information about the available options in this window, see Talend Open Studio for MDM Administrator
Guide.



Scenario: Exchanging the event information about an MDM record

Talend Open Studio Components Reference Guide 1715

3. Click Generate to start the generation. Once done, a process named CallJob_update_product appears under
the Process node in MDM Repository.

4. Right-click this process, then select Deploy to from the contextual menu to deploy it onto the MDM server.

5. In the pop-up wizard, select the server you are using, then , click OK to open the window listing the objects
deployed.

6. Click OK to close this window and finalize the deployment. The question mark disappears from the icon
of this process.



Scenario: Exchanging the event information about an MDM record

1716 Talend Open Studio Components Reference Guide

7. In MDM Repository, right-click the CallJob_update_prodcut process, then select Rename from the
contextual menu.

8. In the pop-up window, rename this process as beforeSaving_update_product depending on the required
process naming pattern. Then click OK to validate it.

9. Deploy this process again as described earlier.

Updating a product record

1. Log in the web service of the MDM hub you are using.

2. In the Actions panel on the right side, verify the Data Container and the Data Model you are using are
both Product.

3. In the Data Browser page, launch the search in the product entities so as to list all the available product
records

4. Select the product record you need to update from the list, for example, Talend Trucker Hat. The details of
this record appears in the Product tab view.

5. Update one of its attributes. For example, update the price to 11.00, then click Save.

The message about the operation type of this event has been sent to the MDM server and thanks to tLogRow,
this message is displayed on the window of this MDM server.

For further information about how to use the MDM web service, see Talend MDM Web User Interface User Guide



tMDMTriggerOutput

Talend Open Studio Components Reference Guide 1717

tMDMTriggerOutput

tMDMTriggerOutput properties

Component family Talend MDM

Function tMDMTriggerOutput receives an XML flow (Document type) from its preceding component.

This component works alongside the new trigger service and process plug-in in MDM version
5.0 and higher. The MDM Jobs, triggers and processes developed in previous MDM versions
remain supported. However, we recommend using this component when designing new
MDM Jobs.

Purpose This component receives an XML flow to set the MDM message so that MDM retrieves this message at
runtime. With this component, you do not need to configure your Job any more in order to communicate
the data changes from MDM to your Job.

Basic settings Property Type Either Built-in or Repository.

Built-in: No property data stored centrally.

tMDMTriggerOutput is expected to use this option in order to apply
the default read-only schema. MDM_message is the only column of this
schema.

Repository: Select the repository file where properties are stored. The
fields that follow are completed automatically using the fetched data.

As tMDMTriggerOutput provides a fixed read-only schema, you are
expected to use the Built-in option.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields that
will be processed and passed on to the next component. The schema is
either built-in or remote in the Repository.

Click Edit Schema to modify the schema.

If you modify the schema, it automatically becomes built-in.

Built-in: The schema will be created and stored for this component only.
Related Topic: see Talend Open Studio User Guide.

This is the default option for tMDMTriggerOutput. With this option,
the read-only schema is used to deal with the XML-format MDM
message.

Repository: The schema already exists and is stored in the repository.
You can reuse it in various projects and jobs. Related Topic: see Talend
Open Studio User Guide.

As tMDMTriggerOutput provides a fixed read-only schema, you are
expected to use the Built-in option.

 Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the Job level
as well as at each component level.

Usage Use this component as an end component. It needs an input flow.

To send message to MDM, you need to deploy the Job using this component on your MDM server and
generate the corresponding trigger and process to invoke this Job in MDM.

For further information about how to deploy a Job onto MDM server and how to generate a trigger or
a process, see Talend Open Studio for MDM Administrator Guide.

Limitation During the deployment of this component on the MDM server, you need to select the Hosted (Zip)
type as the format of the deployed Job. If you deploy it in the Distributed (War) type, the relative



Related scenario

1718 Talend Open Studio Components Reference Guide

Job cannot be invoked. For further information about the available types, see Talend Open Studio for
MDM Administrator Guide.

Related scenario

For a related scenario, see section Scenario: Exchanging the event information about an MDM record



tMDMViewSearch

Talend Open Studio Components Reference Guide 1719

tMDMViewSearch

tMDMViewSearch properties

Component family Talend MDM

Function tMDMViewSearch selects records from an MDM Hub by applying filtering criteria you have created
in a specific view. The resulting data is in XML structure.

For more information on a view on which you can define filtering criteria, see Talend Open Studio for
MDM Administrator Guide.

Purpose This component allows you to retrieve the MDM records from an MDM hub.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields that
will be processed and passed on to the next component. The schema is
either Built-in or remote in the Repository.

Click Edit Schema to modify the schema. Note that if you modify the
schema, it automatically becomes built-in.

Click Sync columns to collect the schema from the previous component.

Built-in: You create the schema and store it locally for this component
only. Related topic: see Talend Open Studio User Guide.

Repository: You have already created the schema and stored it in the
Repository. You can reuse it in various projects and job designs. Related
topic: see Talend Open Studio User Guide.

XML Field Select the name of the column in which you want to write the XML data.

Use an existing connection Select this check box if you want to use a configured tMDMConnection
component.

URL Type in the URL of the MDM server.

Username and Password Type in the user authentication data for the MDM server.

Version Type in the name of the master data management Version you want to
connect to, for which you have the user rights required.

Leave this field empty if you want to display the default perspective.

Data Container Type in the name of the data container that holds the master data you
want to read.

View Name Type in the name of the view whose filters will be applied to process
the records.

Operations Complete this table to create the WHERE clause. The parameters to be
set are:

- XPath: define the path expression to select the XML node at which
point the filtering is operated.

- Functions: select an operator from the drop-down list, like Contains,
Starts with, Equals, etc.

- Value: type in the value you want to retrieve.

- Predicate: select the predicate to combine the filtering conditions in
different manners. The predicate may be none, or, and, exactly, etc.

The parameters are case sensitive.

Order (One Row) Complete this table to decide the presentation order of the retrieved
records. The parameters to be set are:



Scenario: Retrieving records from an MDM hub via an existing view

1720 Talend Open Studio Components Reference Guide

- XPath: define the path expression to select the XML node at which
point the sorting operation is performed.

- Order: select the presentation order that may be asc (ascending) or
desc (descending).

The parameters are case sensitive.

For the time being, only the first row created in the Order table
is valid.

Spell Threshold Set it to -1 to deactivate this threshold. This threshold is used to decide
the spell checking level.

Skip Rows Type in the count of rows to be ignored to specify from which row the
process should begin. For example, if you type 8 in the field, the process
will begin from the 9th row.

Max Rows Type in the maximum number of rows to be processed. If Limit = 0, no
row is read or processed. By default, the limit is -1, meaning that no limit
is set.

Advanced settings tStatCatcher Statistics Select this check box to gather the processing metadata at the Job level
as well as at each component level.

Usage Use this component to retrieve specific records.

Global Variables Number of Lines: Indicates the number of lines processed. This is
available as an After variable.

Returns an integer.

For further information about variables, see Talend Open Studio User
Guide.

Connections Outgoing links (from one component to another):

Row: Iterate

Trigger: Run if; On Component Ok; On Component Error, On Subjob
Ok, On Subjob Error.

Incoming links (from one component to another):

Row: Iterate;

Trigger: Run if, On Component Ok, On Component Error, On Subjob
Ok, On Subjob Error

For further information regarding connections, see Talend Open Studio
User Guide.

Limitation n/a

Scenario: Retrieving records from an MDM hub via an
existing view

This scenario describes a two-component Job that retrieves a data record in XML structure.



Scenario: Retrieving records from an MDM hub via an existing view

Talend Open Studio Components Reference Guide 1721

In this example, you will select the T-shirt information from the Product entity via the Browse_items_Product
view created from Talend Open Studio. Each record in the entity contains the details defined as filtering criteria:
Id, Name, Description and Price.

• From the Palette, drop tMDMViewSearch and tLogRow onto the design workspace.

• Connect the components using a Row Main link.

• Double-click tMDMViewSearch to view its Basic settings, in the Component tab and set the component
properties.

• In the Schema list, select Built-In and click the three-dot button next to Edit schema to open a dialog box in
which you can define the structure of the XML data you want to write in.

• Click the plus button and add one column of the type String. Name the column as Tshirt.

• Click OK to validate your creation and proceed to the next step.

• In the XML Field field, select Tshirt as the column you will write the retrieved data in.



Scenario: Retrieving records from an MDM hub via an existing view

1722 Talend Open Studio Components Reference Guide

• Use your MDM server address in the URL field and type in the corresponding connection data in the Username
and the Password fields. In this example, use the default url, then enter admin as username as well as password.

• In the Data Container field, type in the container name: Product.

• In the View Name field, type in the view name: Browse_item_Product.

• Below the Operations table, click the plus button to add one row in this table.

• In the Operations table, define the XPath as Product/Name, meaning that the filtering operation will be
performed at the Name node, then select Contains in the Function column and type in Tshirt in the Value
column.

• Below the Order (One Row) table, click the plus button to add one row in this table.

• In the Order (One Row) table, define the XPath as Product/Id and select the asc order for the Order column.

• In the design workspace, click tLogRow to open its Basic settings view and set the properties.

• Next to the three-dot button used for editing schema, click Sync columns to acquire the schema from the
preceding component.

• Press F6 to execute the Job.



Scenario: Retrieving records from an MDM hub via an existing view

Talend Open Studio Components Reference Guide 1723

In the console docked in the Run view, you can read the retrieved Tshirt records in XML structure, which are
sorted in the ascending order.



Talend Open Studio Components Reference Guide



Talend Open Studio Components Reference Guide

Technical components
This chapter details the components you can find in the Technical group of the Palette in the Integration
perspective of the Talend Studio.

The Technical components are Java-oriented components that perform very technical actions such as loading data
in memory (in small subset of information) and keep it to allow its reuse at various stage of the processing.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.



tHashInput

1726 Talend Open Studio Components Reference Guide

tHashInput

tHashInput Properties

This component is used along with tHashOutput. It reads from the cache memory data loaded by tHashOutput.
Together, these twin components offer high-speed data access to facilitate transactions involving a massive amount
of data.

Component family Technical

Function tHashInput reads from the cache memory data loaded by tHashOutput to offer high-speed data
stream.

Purpose This component reads from the cache memory data loaded by tHashOutput to offer high-speed
data feed, facilitating transactions involving a large amount of data.

Basic settings Schema and Edit schema A schema is a row description, i.e. it defines the number of fields to be
processed and passed on to the next component. The schema is either
built-in or remotely stored in the Repository.

Click Edit Schema to make changes to the schema. Note that if you
make changes, the schema automatically becomes built-in.

Built-in: The schema is created and stored locally for this component
only. Related topic: see the Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the Repository,
hence can be reused. Related topic: see the Talend Open Studio User
Guide.

Link with a tHashOutput Select this check box to connect to a tHashOutput component. It is
always selected by default.

Component list Drop-down list of available tHashOutput components.

Clear cache after reading Select this check box to clear the cache after reading the data
loaded by a certain tHashOutput component. This way, the following
tHashInput components, if any, will not be able to read the cached
data loaded by that tHashOutput component.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component is used along with tHashOutput. It reads from the cache memory data loaded
by tHashOutput. Together, these twin components offer high-speed data access to facilitate
transactions involving a massive amount of data.

Limitation n/a

Scenario 1: Reading data from the cache memory for
high-speed data access

The following Job reads from the cache memory a huge amount of data loaded by two tHashOutput components
and pass it to a tFileOutputDelimited. The goal of this scenario is to show the speed at which mass data is read
and written. In practice, data feed generated in this way can be used as lookup table input for some use cases where
a big amount of data needs to be referenced.



Scenario 1: Reading data from the cache memory for high-speed data access

Talend Open Studio Components Reference Guide 1727

Dropping and linking the components

1. Drag and drop the following components from the Palette to the workspace: tFixedFlowInput (X2),
tHashOutput (X2), tHashInput and tFileOutputDelimited.

2. Connect the first tFixedFlowInput to the first tHashOutput using a Row > Main link.

3. Connect the second tFixedFlowInput to the second tHashOutput using a Row > Main link.

4. Connect the first subjob (from tFixedFlowInput_1) to the second subjob (to tFixedFlowInput_2) using an
OnSubjobOk link.

5. Connect tHashInput to tFileOutputDelimited using a Row > Main link.

6. Connect the second subjob to the last subjob using an OnSubjobOk link.

Configuring the components

Configuring data inputs and hash cache

1. Double-click the first tFixedFlowInput component to display its Basic settings view.



Scenario 1: Reading data from the cache memory for high-speed data access

1728 Talend Open Studio Components Reference Guide

2. Select Built-In from the Schema drop-down list.

You can select Repository from the Schema drop-down list to fill in the relevant fields automatically if the relevant
metadata has been stored in the Repository. For more information about Metadata, see the Talend Open Studio User
Guide.

3. Click Edit schema to define the data structure of the input flow. In this case, the input has two columns: ID
and ID_Insurance, and then click OK to close the dialog box.

4. Fill in the Number of rows field to specify the entries to output, e.g. 50000.

5. Select the Use Single Table check box. In the Values table and in the Value column, assign values to the
columns, e.g. 1 for ID and 3 for ID_Insurance.

6. Perform the same operations for the second tFixedFlowInput component, with the only difference in the
values. That is, 2 for ID and 4 for ID_Insurance in this case.

7. Double-click the first tHashOutput to display its Basic settings view.



Scenario 1: Reading data from the cache memory for high-speed data access

Talend Open Studio Components Reference Guide 1729

8. Select Built-In from the Schema drop-down list and click Sync columns to retrieve the schema from the
previous component. Select Keep all from the Keys management drop-down list and keep the Append
check box selected.

9. Perform the same operations for the second tHashOutput component, and select the Link with a
tHashOutput check box.

Configuring data retrieval from hash cache and data output

1. Double-click tHashInput to display its Basic settings view.

2. Select Built-In from the Schema drop-down list. Click Edit schema to define the data structure, which is
the same as that of tHashOutput.

3. Select tHashOutput_1 from the Component list drop down list.

4. Double-click tFileOutputDelimited to display its Basic settings view.

5. Select Built-In from the Property Type drop-down list. In the File Name field, enter the full path and name
of the file, e.g. "E:/Allr70207V5.0/Talend-All-r70207-V5.0.0NB/workspace/out.csv".

6. Select the Include Header check box and click Sync columns to retrieve the schema from the previous
component.



Scenario 2: Clearing the memory before loading data to it in case an iterator exists in the same subjob

1730 Talend Open Studio Components Reference Guide

Saving and executing the Job

1. Press Ctrl+S to save the Job.

2. Press F6, or click Run on the Run tab to execute the Job.

You can find that mass entries are written and read very rapidly.

Scenario 2: Clearing the memory before loading data
to it in case an iterator exists in the same subjob

In this scenario, the usage of the Append option of tHashOutput is demonstrated as it helps remove repetitive or
unwanted data in case an iterator exists in the same subjob as tHashOutput.

To build the Job, do the following:

Dropping and linking the components

1. Drag and drop the following components from the Palette to the workspace: tLoop, tFixedFlowInput,
tHashOutput, tHashInput and tLogRow.

2. Connect tLoop to tFixedFlowInput using a Row > Iterate link.

3. Connect tFixedFlowInput to tHashOutput using a Row > Main link.

4. Connect tHashInput to tLogRow using a Row > Main link.

5. Connect tLoop to tHashInput using an OnSubjobOk link.



Scenario 2: Clearing the memory before loading data to it in case an iterator exists in the same subjob

Talend Open Studio Components Reference Guide 1731

Configuring the components

Configuring data input and hash cache

1. Double-click the tLoop component to display its Basic settings view.

2. Select For as the loop type. Type in 1, 2 1 in the From, To and Step fields respectively. Keep the Values
are increasing check box selected.

3. Double-click the tFixedFlowInput component to display its Basic settings view.



Scenario 2: Clearing the memory before loading data to it in case an iterator exists in the same subjob

1732 Talend Open Studio Components Reference Guide

4. Select Built-In from the Schema drop-down list.

You can select Repository from the Schema drop-down list to fill in the relevant fields automatically if the relevant
metadata has been stored in the Repository. For more information about Metadata, see the Talend Open Studio User
Guide.

5. Click Edit schema to define the data structure of the input flow. In this case, the input has one column: Name.

6. Click OK to close the dialog box.

7. Fill in the Number of rows field to specify the entries to output, for example 1.

8. Select the Use Single Table check box. In the Values table, assign a value to the Name field, e.g. Marx.

9. Double-click tHashOutput to display its Basic settings view.



Scenario 2: Clearing the memory before loading data to it in case an iterator exists in the same subjob

Talend Open Studio Components Reference Guide 1733

10. Select Built-In from the Schema drop-down list and click Sync columns to retrieve the schema from the
previous component. Select Keep all from the Keys management drop-down list and deselect the Append
check box.

Configuring data retrieval from hash cache and data output

1. Double-click tHashInput to display its Basic settings view.

2. Select Built-In from the Schema drop-down list. Click Edit schema to define the data structure, which is
the same as that of tHashOutput.

3. Select tHashOutput_2 from the Component list drop-down list.

4. Double-click tLogRow to display its Basic settings view.

5. Select Built-In from the Schema drop-down list and click Sync columns to retrieve the schema from the
previous component. In the Mode area, select Table (print values in cells of a table).

Saving and executing the Job

1. Press Ctrl+S to save the Job.

2. Press F6, or click Run on the Run tab to execute the Job.

You can find that only one row was output although two rows were generated by tFixedFlowInput.



Scenario 2: Clearing the memory before loading data to it in case an iterator exists in the same subjob

1734 Talend Open Studio Components Reference Guide



tHashOutput

Talend Open Studio Components Reference Guide 1735

tHashOutput

tHashOutput Properties

This component writes data to the cache memory and is closely related to tHashInput. Together, these twin
components offer high-speed data access to facilitate transactions involving a massive amount of data.

Component family Technical

Function tHashOutput writes data to the cache memory for high-speed access.

Purpose This component loads data to the cache memory to offer high-speed access, facilitating transactions
involving a large amount of data.

Basic settings Schema and Edit schema A schema is a row description, i.e. it defines the number of fields to
be processed and passed on to the next component. The schema is
either built-in or remotely stored in the Repository.

Click Edit Schema to make changes to the schema. Note that if you
make changes, the schema automatically becomes built-in.

Click Sync columns to retrieve the schema from the previous
component connected in the Job.

Built-in: The schema is created and stored locally for this component
only. Related topic: see the Talend Open Studio User Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused. Related topic: see the Talend Open
Studio User Guide.

Link with a tHashOutput Select this check box to connect to a tHashOutput component.

If multiple tHashOutput components are linked in this
way, the data loaded to the cache by all of them can be
read by a tHashInput component that is linked with any
of them.

Component list Drop-down list of available tHashOutput components.

Data write model Drop-down list of available data write modes.

Keys management Drop-down list of available keys management modes.

Append Selected by default, this option is designed to append data to the
memory in case an iterator exists in the same subjob. If it is
unchecked, tHashOutput will clear the memory before loading data
to it.

If Link with a tHashOutput is selected, this check box
will be hidden but is always enabled.

Advanced settings tStatCatcher Statistics Select this check box to collect log data at the component level.

Usage This component writes data to the cache memory and is closely related to tHashInput. Together,
these twin components offer high-speed data access to facilitate transactions involving a massive
amount of data.

Limitation n/a

Related scenarios

For related scenarios, see:



Related scenarios

1736 Talend Open Studio Components Reference Guide

• section Scenario 1: Reading data from the cache memory for high-speed data access.

• section Scenario 2: Clearing the memory before loading data to it in case an iterator exists in the same subjob.



Talend Open Studio Components Reference Guide

XML components
This chapter details the main components that you can find in the XML family of the Palette in the Integration
perspective of the Talend Studio.

The XML family groups together the components dedicated to XML related tasks such as parsing, validation,
XML structure creation and so on.

For Talend Open Studio for Big Data, the Property type, Schema and Query Type of components are always Built-in. For
how to edit a Built-in schema, see Talend Open Studio User Guide.



tAdvancedFileOutputXML

1738 Talend Open Studio Components Reference Guide

tAdvancedFileOutputXML

tAdvancedFileOutputXML properties

Component family XML or File/Output

Function tAdvancedFileOutputXML outputs data to an XML type of file and offers an interface to deal
with loop and group by elements if needed.

Purpose tAdvancedFileOutputXML writes an XML file with separated data values according to an
XML tree structure.

Basic settings Use Output Stream Select this check box process the data flow of interest. Once you
have selected it, the Output Stream field displays and you can
type in the data flow of interest.

The data flow to be processed must be added to the flow in
order for this component to fetch these data via the corresponding
representative variable.

This variable could be already pre-defined in your Studio or
provided by the context or the components you are using along
with this component; otherwise, you could define it manually and
use it according to the design of your Job, for example, using
tJava or tJavaFlex.

In order to avoid the inconvenience of hand writing, you could
select the variable of interest from the auto-completion list (Ctrl
+Space) to fill the current field on condition that this variable has
been properly defined.

For further information about how to use a stream, see section
Scenario 2: Reading data from a remote file in streaming mode.

File name Name or path to the output file and/or the variable to be used.

This field becomes unavailable once you have selected the Use
Output Stream check box.

Related topic: see Talend Open Studio User Guide

Configure XML tree Opens the dedicated interface to help you set the XML mapping.
For details about the interface, see section Defining the XML tree.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job
designs. Related topic: see Talend Open Studio User Guide.

Sync columns Click to synchronize the output file schema with the input
file schema. The Sync function only displays once the Row
connection is linked with the Output component.

Append the source xml file Select this check box to add the new lines at the end of your source
XML file.

Generate compact file Select this check box to generate a file that does not have any
empty space or line separators. All elements then are presented
in a unique line and this will reduce considerably file size.



tAdvancedFileOutputXML properties

Talend Open Studio Components Reference Guide 1739

Include DTD or XSL Select this check box to to add the DOCTYPE declaration,
indicating the root element, the access path and the DTD file, or
to add the processing instruction, indicating the type of stylesheet
used (such as XSL types), along with the access path and file
name.

Advanced settings Split output in several files If the XML file output is big, you can split the file every certain
number of rows.

Trim data This check box is activated when you are using the dom4j
generation mode. Select this check box to trim the leading or
trailing whitespace from the value of a XML element.

Create directory only if not
exists

This check box is selected by default. It creates a directory to hold
the output XML files if required.

Create empty element if
needed

This box is selected by default. If no column is associated to an
XML node, this option will create an open/close tag in place of
the expected tag.

Create attribute even if its
value is NULL

Select this check box to generate XML tag attribute for the
associated input column whose value is null.

Create attribute even if it is
unmapped

Select this check box to generate XML tag attribute for the
associated input column that is unmapped.

Create associated XSD file If one of the XML elements is defined as a Namespace element,
this option will create the corresponding XSD file.

To use this option, you must select Dom4J as the
generation mode.

Advanced separator (for
number)

Select this check box to change the expected data separator.

Thousands separator: define the thousands separator, between
inverted commas

Decimal separator: define the decimals separator between
inverted commas

Generation mode Select the appropriate generation mode according to your
memory availability. The available modes are:

• Slow and memory-consuming (Dom4j)

This option allows you to use dom4j to process the
XML files of high complexity.

• Fast with low memory consumption

Once you select Append the source xml file in the Basic
settings view, this field disappears because in this situation, your
generation mode is set automatically as dom4j.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Don’t generate empty file Select the check box to avoid the generation of an empty file.

tStatCatcher Statistics Select the check box to collect the log data at a Job level as well
as at each component level.

Usage Use this component to write an XML file with data passed on from other components using
a Row link.

Limitation n/a

Defining the XML tree

Double-click on the tAdvancedFileOutputXML component to open the dedicated interface or click on the three-
dot button on the Basic settings vertical tab of the Component Settings tab.



tAdvancedFileOutputXML properties

1740 Talend Open Studio Components Reference Guide

To the left of the mapping interface, under Schema List, all of the columns retrieved from the incoming data flow
are listed (on the condition that an input flow is connected to the tAdvancedFileOutputXML component).

To the right of the interface, define the XML structure you want to obtain as output.

You can easily import the XML structure or create it manually, then map the input schema columns onto each
corresponding element of the XML tree.

Importing the XML tree

The easiest and most common way to fill out the XML tree panel, is to import a well-formed XML file.

1. Rename the root tag that displays by default on the XML tree panel, by clicking on it once.

2. Right-click on the root tag to display the contextual menu.

3. On the menu, select Import XML tree.

4. Browse to the file to import and click OK.

• You can import an XML tree from files in XML, XSD and DTD formats.

• When importing an XML tree structure from an XSD file, you can choose an element as the root of your XML tree.



tAdvancedFileOutputXML properties

Talend Open Studio Components Reference Guide 1741

The XML Tree column is hence automatically filled out with the correct elements. You can remove and insert
elements or sub-elements from and to the tree:

1. Select the relevant element of the tree.

2. Right-click to display the contextual menu

3. Select Delete to remove the selection from the tree or select the relevant option among: Add sub-element,
Add attribute, Add namespace to enrich the tree.

Creating the XML tree manually

If you don’t have any XML structure defined as yet, you can create it manually.

1. Rename the root tag that displays by default on the XML tree panel, by clicking on it once.

2. Right-click on the root tag to display the contextual menu.

3. On the menu, select Add sub-element to create the first element of the structure.

You can also add an attribute or a child element to any element of the tree or remove any element from the tree.

1. Select the relevant element on the tree you just created.

2. Right-click to the left of the element name to display the contextual menu.

3. On the menu, select the relevant option among: Add sub-element, Add attribute, Add namespace or Delete.

Mapping XML data

Once your XML tree is ready, you can map each input column with the relevant XML tree element or sub-element
to fill out the Related Column:

1. Click on one of the Schema column name.

2. Drag it onto the relevant sub-element to the right.

3. Release to implement the actual mapping.



tAdvancedFileOutputXML properties

1742 Talend Open Studio Components Reference Guide

A light blue link displays that illustrates this mapping. If available, use the Auto-Map button, located to the bottom
left of the interface, to carry out this operation automatically.

You can disconnect any mapping on any element of the XML tree:

1. Select the element of the XML tree, that should be disconnected from its respective schema column.

2. Right-click to the left of the element name to display the contextual menu.

3. Select Disconnect linker.

The light blue link disappears.

Defining the node status

Defining the XML tree and mapping the data is not sufficient. You also need to define the loop element and if
required the group element.

Loop element

The loop element allows you to define the iterating object. Generally the Loop element is also the row generator.

To define an element as loop element:

1. Select the relevant element on the XML tree.

2. Right-click to the left of the element name to display the contextual menu.

3. Select Set as Loop Element.



tAdvancedFileOutputXML properties

Talend Open Studio Components Reference Guide 1743

The Node Status column shows the newly added status.

There can only be one loop element at a time.

Group element

The group element is optional, it represents a constant element where the groupby operation can be performed. A
group element can be defined on the condition that a loop element was defined before.

When using a group element, the rows should sorted, in order to be able to group by the selected node.

To define an element as group element:

1. Select the relevant element on the XML tree.

2. Right-click to the left of the element name to display the contextual menu.

3. Select Set as Group Element.



Scenario: Creating an XML file using a loop

1744 Talend Open Studio Components Reference Guide

The Node Status column shows the newly added status and any group status required are automatically defined,
if needed.

Click OK once the mapping is complete to validate the definition and continue the job configuration where needed.

Scenario: Creating an XML file using a loop

The following scenario describes the creation of an XML file from a sorted flat file gathering a video collection.

Configuring the source file

1. Drop a tFileInputDelimited and a tAdvancedFileOutputXML from the Palette onto the design workspace.

2. Alternatively, if you configured a description for the input delimited file in the Metadata area of the
Repository, then you can directly drag & drop the metadata entry onto the editor, to set up automatically
the input flow.

3. Right-click on the input component and drag a row main link towards the tAdvancedFileOutputXML
component to implement a connection.

4. Select the tFileInputDelimited component and display the Component settings tab located in the tab system
at the bottom of the Studio.



Scenario: Creating an XML file using a loop

Talend Open Studio Components Reference Guide 1745

5. Select the Property type, according to whether you stored the file description in the Repository or not. If you
dragged & dropped the component directly from the Metadata, no changes to the setting should be needed.

6. If you didn’t setup the file description in the Repository, then select Built-in and manually fill out the fields
displayed on the Basic settings vertical tab.

The input file contains the following type of columns separated by semi-colons: id, name, category, year,
language, director and cast.

In this simple use case, the Cast field gathers different values and the id increments when changing movie.

7. If needed, define the tFileDelimitedInput schema according to the file structure.



Scenario: Creating an XML file using a loop

1746 Talend Open Studio Components Reference Guide

8. Once you checked that the schema of the input file meets your expectation, click on OK to validate.

Configuring the XML output and mapping

1. Then select the tAdvancedFileOutputXML component and click on the Component settings tab to
configure the basic settings as well as the mapping. Note that a double-click on the component will open
directly the mapping interface.

2. In the File Name field, browse to the file to be written if it exists or type in the path and file name that needs
to be created for the output.

By default, the schema (file description) is automatically propagated from the input flow. But you can edit
it if you need.

3. Then click on the three-dot button or double-click on the tAdvancedFileOutputXML component on the
design workspace to open the dedicated mapping editor.

To the left of the interface, are listed the columns from the input file description.

4. To the right of the interface, set the XML tree panel to reflect the expected XML structure output.

You can create the structure node by node. For more information about the manual creation of an XML tree,
see section Defining the XML tree.

In this example, an XML template is used to populate the XML tree automatically.

5. Right-click on the root tag displaying by default and select Import XML tree at the end of the contextual
menu options.

6. Browse to the XML file to be imported and click OK to validate the import operation.

You can import the XML structure from XSML, XSD and STS files.

7. Then drag & drop each column name from the Schema List to the matching (or relevant) XML tree elements
as described in section Mapping XML data.

The mapping is shown as blue links between the left and right panels.



Scenario: Creating an XML file using a loop

Talend Open Studio Components Reference Guide 1747

Finally, define the node status where the loop should take place. In this use case, the Cast being the changing
element on which the iteration should operate, this element will be the loop element.

Right-click on the Cast element on the XML tree, and select Set as loop element.

8. To group by movie, this use case needs also a group element to be defined.

Right-click on the Movie parent node of the XML tree, and select Set as group element.

The newly defined node status show on the corresponding element lines.

9. Click OK to validate the configuration.

10. Press F6 to execute the Job.



Scenario: Creating an XML file using a loop

1748 Talend Open Studio Components Reference Guide

The output XML file shows the structure as defined.



tDTDValidator

Talend Open Studio Components Reference Guide 1749

tDTDValidator

tDTDValidator Properties

Component family XML

Function Validates the XML input file against a DTD file and sends the validation log to the defined
output.

Purpose Helps at controlling data and structure quality of the file to be processed

Basic settings Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number of fields to
be processed and passed on to the next component. The schema is
either built-in or remotely stored in the Repository but in this case,
the schema is read-only. It contains standard information regarding
the file validation.

DTD file Filepath to the reference DTD file.

XML file Filepath to the XML file to be validated.

If XML is valid, display If
XML is not valid detected,
display

Type in a message to be displayed in the Run console based on
the result of the comparison.

Print to console Select this check box to display the validation message.

Usage This component can be used as standalone component but it is usually linked to an output
component to gather the log data.

Limitation n/a

Scenario: Validating XML files

This scenario describes a Job that validates the specified type of files from a folder, displays the validation result
on the Run tab console, and outputs the log information for the invalid files into a delimited file.

1. Drop the following components from the Palette to the design workspace: tFileList, tDTDValidator, tMap,
tFileOutputDelimited.

2. Connect the tFileList to the tDTDValidator with an Iterate link and the remaining component using a main
row.

3. Set the tFileList component properties, to fetch an XML file from a folder.



Scenario: Validating XML files

1750 Talend Open Studio Components Reference Guide

Click the plus button to add a filemask line and enter the filemask: *.xml. Remember Java code requires
double quotes.

Set the path of the XML files to be verified.

Select No from the Case Sensitive drop-down list.

4. In the tDTDValidate Component view, the schema is read-only as it contains standard log information
related to the validation process.

In the Dtd file field, browse to the DTD file to be used as reference.

5. Click in the XML file field, press Ctrl+Space bar to access the variable list, and double-click the current
filepath global variable: tFileList.CURRENT_FILEPATH.

6. In the various messages to display in the Run tab console, use the jobName variable
to recall the job name tag. Recall the filename using the relevant global variable:
((String)globalMap.get("tFileList_1_CURRENT_FILE")). Remember Java code requires double
quotes.

Select the Print to Console check box.

7. In the tMap component, drag and drop the information data from the standard schema that you want to pass
on to the output file.



Scenario: Validating XML files

Talend Open Studio Components Reference Guide 1751

8. Once the Output schema is defined as required, add a filter condition to only select the log information data
when the XML file is invalid.

Follow the best practice by typing first the wanted value for the variable, then the operator based on the type
of data filtered then the variable that should meet the requirement. In this case: 0 == row1.validate.

9. Then connect (if not already done) the tMap to the tFileOutputDelimited component using a Row > Main
connection. Name it as relevant, in this example: log_errorsOnly.

10. In the tFileOutputDelimited Basic settings, Define the destination filepath, the field delimiters and the
encoding.

11. Save your Job and press F6 to run it.

On the Run console the messages defined display for each of the files. At the same time the output file is
filled with the log data for invalid files.



tEDIFACTtoXML

1752 Talend Open Studio Components Reference Guide

tEDIFACTtoXML

tEDIFACTtoXML Properties

Component family XML/Unstructured >
EDIFACT

Function This component reads a United Nations/Electronic Data Interchange For Administration,
Commerce and Transport (UN/EDIFACT) message and transforms it into the XML format
according to the EDIFACT version and the EDIFACT family.

Purpose This component is used to transform an EDIFACT message file into the XML format for better
readability to users and compatibility with processing tools.

Basic settings Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
to be processed and passed on to the next component.

The schema of this component is fixed and read-only, with only
one column: document.

EDI filename Filepath to the EDIFACT message file to be transformed.

EDI version Select the EDIFACT version of the input file.

Ignore new line Select this check box to skip carriage returns in the input file.

Die on error Select this check box to stop Job execution when an error is
encountered. By default, this check box is cleared, and therefore
illegal rows are skipped and the process is completed for the error
free rows.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is usually linked to an output component to gather the transformation result.

Limitation n/a

Scenario: From EDIFACT to XML

This scenario describes a simple Job that reads a UN/EDIFACT Customs Cargo (CUSCAR) message file and
saves it as an XML file.

1. Drop the tEDIFACTtoXML component and the tFileOutputXML component from the Palette to the design
workspace.

2. Connect the tEDIFACTtoXML component and the tFileOutputXML component using a Row > Main
connection.

3. Double-click the tEDIFACTtoXML component to show its Basic settings view.



Scenario: From EDIFACT to XML

Talend Open Studio Components Reference Guide 1753

4. Fill the EDI filename field with the full path to the input EDIFACT message file.

In this use case, the input file is 99a_cuscar.edi.

5. From EDI version list, select the EDIFACT version of the input file, D99A in this use case.

6. Select the Ignore new line check box to skip the carriage return characters in the input file during the
transformation.

7. Leave the other parameters as they are.

8. Double-click the tFileOutputXML component to show its Basic settings view.

9. Fill the File Name field with the full path to the output XML file you want to generate.

In this use case, the output XML is 99a_cuscar.xml.

10. Leave the other parameters as they are.

11. Save your Job and press F6 to run it.

The input EDIFACT CUSCAR message file is transformed into the XML format and the output XML file
is generated as defined.



Scenario: From EDIFACT to XML

1754 Talend Open Studio Components Reference Guide



tExtractXMLField

Talend Open Studio Components Reference Guide 1755

tExtractXMLField

tExtractXMLField properties

Component family XML

Function tExtractXMLField reads an input XML field of a file or a database table and extracts desired
data.

Purpose tExtractXMLField opens an input XML field, reads the XML structured data directly without
having first to write it out to a temporary file, and finally sends data as defined in the schema
to the following component via a Row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data is stored centrally.

Repository: Properties are stored in a repository file. When this
file is selected, the fields that follow are pre-filled in using fetched
data.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Built-in: You create the schema and store it locally for this
component only. Related topic: see Talend Open Studio User
Guide

Repository: You already created the schema and stored it in
the Repository, hence can be reused in various projects and job
flowcharts. Related topic: see Talend Open Studio User Guide.

XML field Name of the XML field to be processed.

Related topic: see Talend Open Studio User Guide

Loop XPath query Node of the XML tree, which the loop is based on.

Mapping Column: reflects the schema as defined by the Schema type field.

XPath Query: Enter the fields to be extracted from the structured
input.

Get nodes: Select this check box to recuperate the XML content
of all current nodes specified in the Xpath query list or select
the check box next to specific XML nodes to recuperate only the
content of the selected nodes.

Limit Maximum number of rows to be processed. If Limit is 0, no rows
are read or processed.

Die on error This check box is selected by default. Clear the check box to skip
the row on error and complete the process for error-free rows. If
needed, you can retrieve the rows on error via a Row > Reject
link.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component is an intermediate component. It needs an input and an output components.

Limitation n/a



Scenario 1: Extracting XML data from a field in a database table

1756 Talend Open Studio Components Reference Guide

Scenario 1: Extracting XML data from a field in a
database table

This three-component Java scenario allows to read the XML structure included in the fields of a database table
and then extracts the data.

1. Drop the following components from the Palette onto the design workspace: tMysqlInput,
tExtractXMLField, and tFileOutputDelimited.

Connect the three components using Main links.

2. Double-click tMysqlInput to display its Basic settings view and define its properties.

3. If you have already stored the input schema in the Repository tree view, select Repository first from the
Property Type list and then from the Schema list to display the [Repository Content] dialog box where
you can select the relevant metadata.

For more information about storing schema metadata in the Repository tree view, see Talend Open Studio
User Guide.

4. If you have not stored the input schema locally, select Built-in in the Property Type and Schema fields
and enter the database connection and the data structure information manually. For more information about
tMysqlInput properties, see section tMysqlInput.

5. In the Table Name field, enter the name of the table holding the XML data, customerdetails in this example.

Click Guess Query to display the query corresponding to your schema.

6. Double-click tExtractXMLField to display its Basic settings view and define its properties.



Scenario 1: Extracting XML data from a field in a database table

Talend Open Studio Components Reference Guide 1757

7. In the Property type list, select Repository if you have already stored the description of your file in the
Repository tree view. The fields that follow are filled in automatically with the stored data.

If not, select Built-in and fill in the fields that follow manually.

8. Click Sync columns to retrieve the schema from the preceding component. You can click the three-dot button
next to Edit schema to view/modify the schema.

Column in the Mapping table will be automatically populated with the defined schema.

9. In the Xml field list, select the column from which you want to extract the XML data. In this example, the
filed holding the XML data is called CustomerDetails.

In the Loop XPath query field, enter the node of the XML tree on which to loop to retrieve data.

In the Xpath query column, enter between inverted commas the node of the XML field holding the data you
want to extract, CustomerName in this example.

10. Double-click tFileOutputDelimited to display its Basic settings view and define its properties.

11. In the File Name field, define or browse to the path of the output file you want to write the extracted data in.

Click Sync columns to retrieve the schema from the preceding component. If needed, click the three-dot
button next to Edit schema to view the schema.

12. Save your Job and click F6 to execute it.



Scenario 2: Extracting correct and erroneous data from an XML field in a delimited file

1758 Talend Open Studio Components Reference Guide

tExtractXMLField read and extracted the clients names under the node CustomerName of the CustomerDetails
field of the defined database table.

Scenario 2: Extracting correct and erroneous data
from an XML field in a delimited file

This Java scenario describes a four-component Job that reads an XML structure from a delimited file, outputs the
main data and rejects the erroneous data.

1. Drop the following components from the Palette to the design workspace: tFileInputDelimited,
tExtractXMLField, tFileOutputDelimited and tLogRow.

Connect the first three components using Row Main links.

Connect tExtractXMLField to tLogRow using a Row Reject link.

2. Double-click tFileInputDelimited to open its Basic settings view and define the component properties.



Scenario 2: Extracting correct and erroneous data from an XML field in a delimited file

Talend Open Studio Components Reference Guide 1759

3. Select Built-in in the Schema list and fill in the file metadata manually in the corresponding fields.

Click the three-dot button next to Edit schema to display a dialog box where you can define the structure
of your data.

Click the plus button to add as many columns as needed to your data structure. In this example, we have one
column in the schema: xmlStr.

Click OK to validate your changes and close the dialog box.

If you have already stored the schema in the Metadata folder under File delimited, select Repository from the
Schema list and click the three-dot button next to the field to display the [Repository Content] dialog box where
you can select the relevant schema from the list. Click Ok to close the dialog box and have the fields automatically
filled in with the schema metadata.

For more information about storing schema metadata in the Repository tree view, see Talend Open Studio User Guide.

4. In the Property type list, select:

-Repository if you have already stored the metadata of your input file in the Repository, the fields that follow
are automatically filled in with the stored information, or

-select Built-in and fill in the fields that follow manually.

For this example, we use the Built-in mode.

5. In the File Name field, click the three-dot button and browse to the input delimited file you want to process,
CustomerDetails_Error in this example.

This delimited file holds a number of simple XML lines separated by double carriage return.

Set the row and field separators used in the input file in the corresponding fields, double carriage return for
the first and nothing for the second in this example.

If needed, set Header, Footer and Limit. None is used in this example.

6. In the design workspace, double-click tExtractXMLField to display its Basic settings view and define the
component properties.



Scenario 2: Extracting correct and erroneous data from an XML field in a delimited file

1760 Talend Open Studio Components Reference Guide

7. In the Property type list, select:

-Repository if you have already stored the metadata of your file in the Repository, the fields that follow are
automatically filled in with the stored information, or

-select Built-in and fill in the fields that follow manually.

For this example, we use the Built-in mode.

8. Click Sync columns to retrieve the schema from the preceding component. You can click the three-dot button
next to Edit schema to view/modify the schema.

Column in the Mapping table will be automatically populated with the defined schema.

9. In the Xml field list, select the column from which you want to extract the XML data. In this example, the
filed holding the XML data is called xmlStr.

In the Loop XPath query field, enter the node of the XML tree on which to loop to retrieve data.

10. In the design workspace, double-click tFileOutputDelimited to open its Basic settings view and display the
component properties.

11. Set Property Type to Built-in.

In the File Name field, define or browse to the output file you want to write the correct data in,
CustomerNames_right.csv in this example.

Click Sync columns to retrieve the schema of the preceding component. You can click the three-dot button
next to Edit schema to view/modify the schema.

12. In the design workspace, double-click tLogRow to display its Basic settings view and define the component
properties.



Scenario 2: Extracting correct and erroneous data from an XML field in a delimited file

Talend Open Studio Components Reference Guide 1761

Click Sync Columns to retrieve the schema of the preceding component. For more information on this
component, see section tLogRow.

13. Save your Job and press F6 to execute it.

tExtractXMLField reads and extracts in the output delimited file, CustomerNames_right, the client information
for which the XML structure is correct, and displays as well erroneous data on the console of the Run view.



tFileInputXML

1762 Talend Open Studio Components Reference Guide

tFileInputXML

tFileInputXML Properties

Component family XML or File/Input

Function tFileInputXML reads an XML structured file and extracts data row by row.

Purpose Opens an XML structured file and reads it row by row to split them up into fields then sends
fields as defined in the Schema to the next component, via a Row link.

Basic settings Property type Either Built-in or Repository.

Built-in: No property data stored centrally.

Repository: Select the Repository file where Properties are
stored. The following fields are pre-filled in using fetched data.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job
flowcharts. Related topic: see Talend Open Studio User Guide.

File Name/Stream File name: Name and path of the file to be processed.

Stream: The data flow to be processed. The data must be added
to the flow in order for tFileInputXML to fetch these data via
the corresponding representative variable.

This variable could be already pre-defined in your Studio or
provided by the context or the components you are using along
with this component, for example, the INPUT_STREAM variable
of tFileFetch; otherwise, you could define it manually and use
it according to the design of your Job, for example, using tJava
or tJavaFlex.

In order to avoid the inconvenience of hand writing, you could
select the variable of interest from the auto-completion list (Ctrl
+Space) to fill the current field on condition that this variable has
been properly defined.

Related topic to the available variables: see Talend Open Studio
User Guide. Related scenario to the input stream, see section
Scenario 2: Reading data from a remote file in streaming mode.

Loop XPath query Node of the tree, which the loop is based on.

Mapping Column:  Columns to map. They reflect the schema as defined
in the Schema type field.

XPath Query: Enter the fields to be extracted from the structured
input.

Get nodes: Select this check box to recuperate the XML content
of all current nodes specified in the Xpath query list, or select
the check box next to specific XML nodes to recuperate only the
content of the selected nodes. These nodes are important when the
output flow from this component needs to use the XML structure,
for example, the Document data type.



tFileInputXML Properties

Talend Open Studio Components Reference Guide 1763

For further information about the Document type, see Talend
Open Studio User Guide.

The Get Nodes option functions in the DOM4j and
SAX modes, although in SAX mode namespaces are
not supported. For further information concerning the
DOM4j and SAX modes, please see the properties
noted in the Generation mode list of the Advanced
Settings tab..

Limit Maximum number of rows to be processed. If Limit = 0, no row
is read nor processed. If -1, all rows are read or processed.

Die on error This check box is selected by default and stops the job in the
event of error. Clear the check box to skip erroneous rows. The
process will still be completed for error-free rows. If needed, you
can retrieve the erroneous rows using a Row > Reject link.

Advanced settings Ignore DTD file Select this check box to ignore the DTD file indicated in the XML
file being processed.

Advanced separator (for
number)

Select this check box to change data separator for numbers:

Thousands separator: define the separators to use for thousands.

Decimal separator: define the separators to use for decimals.

Ignore the namespaces Select this check box to ignore name spaces.

Generate a temporary file: click the three-dot button to browse
to the XML temporary file and set its path in the field.

Use Separator for mode
Xerces

Select this check box if you want to separate concatenated
children node values.

This field can only be used if the selected Generation
mode is Xerces.

The following field displays:

Field separator: Define the delimiter to be used to separate the
children node values.

Encoding Type Select the encoding type from the list or select Custom and define
it manually. This field is compulsory for DB data handling.

Generation mode From the drop-down list select the generation mode for the XML
file, according to the memory available and the desired speed:

• Slow and memory-consuming (Dom4j)

This option allows you to use dom4j to process the
XML files of high complexity.

• Memory-consuming (Xerces).

• Fast with low memory consumption (SAX)

Validate date Select this check box to check the date format strictly against the
input schema.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage tFileInputXML is for use as an entry componant. It allows you to create a flow of XML data
using a Row > Main link. You can also create a rejection flow using a Row > Reject link
to filter the data which doesn’t correspond to the type defined. For an example of how to use
these two links, see section Scenario 2: Extracting correct and erroneous data from an XML
field in a delimited file.

Limitation n/a



Scenario 1: Reading and extracting data from an XML structure

1764 Talend Open Studio Components Reference Guide

Scenario 1: Reading and extracting data from an XML
structure

This scenario describes a basic Job that reads a defined XML directory and extracts specific information and
outputs it on the Run console via a tLogRow component.

1. Drop tFileInputXML and tLogRow from the Palette to the design workspace.

2. Connect both components together using a Main Row link.

3. Double-click tFileInputXML to open its Basic settings view and define the component properties.

4. As the street dir file used as input file has been previously defined in the Metadata area, select Repository
as Property type. This way, the properties are automatically leveraged and the rest of the properties fields
are filled in (apart from Schema). For more information regarding the metadata creation wizards, see Talend
Open Studio User Guide.

5. Select the same way the relevant schema in the Repository metadata list. Edit schema if you want to make
any change to the schema loaded.

6. The Filename shows the structured file to be used as input

7. In Loop XPath query, change if needed the node of the structure where the loop is based.

8. On the Mapping table, fill the fields to be extracted and displayed in the output.

9. If the file size is consequent, fill in a Limit of rows to be read.

10. Enter the encoding if needed then double-click on tLogRow to define the separator character.

11. Save your Job and press F6 to execute it.



Scenario 2: Extracting erroneous XML data via a reject flow

Talend Open Studio Components Reference Guide 1765

The fields defined in the input properties are extracted from the XML structure and displayed on the console.

Scenario 2: Extracting erroneous XML data via a reject
flow

This Java scenario describes a three-component Job that reads an XML file and:

1. first, returns correct XML data in an output XML file,

2. and second, displays on the console erroneous XML data which type does not correspond to the defined one
in the schema.

1. Drop the following components from the Palette to the design workspace: tFileInputXML,
tFileOutputXML and tLogRow.

Right-click tFileInputXML and select Row > Main in the contextual menu and then click tFileOutputXML
to connect the components together.

Right-click tFileInputXML and select Row > Reject in the contextual menu and then click tLogRow to
connect the components together using a reject link.

2. Double-click tFileInputXML to display the Basic settings view and define the component properties.



Scenario 2: Extracting erroneous XML data via a reject flow

1766 Talend Open Studio Components Reference Guide

3. In the Property Type list, select Repository and click the three-dot button next to the field to display the
[Repository Content] dialog box where you can select the metadata relative to the input file if you have
already stored it in the File xml node under the Metadata folder of the Repository tree view. The fields that
follow are automatically filled with the fetched data. If not, select Built-in and fill in the fields that follow
manually.

For more information about storing schema metadat in the Repository tree view, see Talend Open Studio
User Guide.

4. In the Schema Type list, select Repository and click the three-dot button to open the dialog box where you
can select the schema that describe the structure of the input file if you have already stored it in the Repository
tree view. If not, select Built-in and click the three-dot button next to Edit schema to open a dialog box
where you can define the schema manually.

The schema in this example consists of five columns: id, CustomerName, CustomerAddress, idState and id2.

5. Click the three-dot button next to the Filename field and browse to the XML file you want to process.

6. In the Loop XPath query, enter between inverted commas the path of the XML node on which to loop in
order to retrieve data.

In the Mapping table, Column is automatically populated with the defined schema.



Scenario 2: Extracting erroneous XML data via a reject flow

Talend Open Studio Components Reference Guide 1767

In the XPath query column, enter between inverted commas the node of the XML file that holds the data
you want to extract from the corresponding column.

7. In the Limit field, enter the number of lines to be processed, the first 10 lines in this example.

8. Double-click tFileOutputXML to display its Basic settings view and define the component properties.

9. Click the three-dot button next to the File Name field and browse to the output XML file you want to collect
data in, customer_data.xml in this example.

In the Row tag field, enter between inverted commas the name you want to give to the tag that will hold
the recuperated data.

Click Edit schema to display the schema dialog box and make sure that the schema matches that of the
preceding component. If not, click Sync columns to retrieve the schema from the preceding component.

10. Double-click tLogRow to display its Basic settings view and define the component properties.

Click Edit schema to open the schema dialog box and make sure that the schema matches that of the preceding
component. If not, click Sync columns to retrieve the schema of the preceding component.

In the Mode area, select the Vertical option.

11. Save your Job and press F6 to execute it.



Scenario 2: Extracting erroneous XML data via a reject flow

1768 Talend Open Studio Components Reference Guide

The output file customer_data.xml holding the correct XML data is created in the defined path and erroneous
XML data is displayed on the console of the Run view.



tFileOutputXML

Talend Open Studio Components Reference Guide 1769

tFileOutputXML

tFileOutputXML properties

Component family XML or File/Output

Function tFileOutputXML outputs data to an XML type of file.

Purpose tFileOutputXML writes an XML file with separated data value according to a defined schema.

Basic settings File name Name or path to the output file and/or the variable to be used.

Related topic: see Defining variables from the Component view
section in Talend Open Studio User Guide

Incoming record is a
document

Select this check box if the data from the preceding component
is in XML format.

When this check box is selected, a Column list appears allowing
you to select a Document type column of the schema that holds
the data, and the Row tag field disappears.

Row tag Specify the tag that will wrap data and structure per row.

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Built-in: The schema will be created and stored locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: The schema already exists and is stored in the
Repository, hence can be reused in various projects and job
designs. Related topic: see Talend Open Studio.

Sync columns Click to synchronize the output file schema with the input
file schema. The Sync function only displays once the Row
connection is linked with the Output component.

Advanced settings Split output in several files If the output is big, you can split the output into several files, each
containing the specified number of rows.

Rows in each output file: Specify the number of rows in each
output file.

Create directory if not
exists

This check box is selected by default. It creates a directory to hold
the output XML files if required.

Root tags Specify one or more root tags to wrap the whole output file
structure and data. The default root tag is root.

Output format Define the output format.

Column: The columns retrieved from the input schema.

As attribute: select check box for the column(s) you want to use
as attribute(s) of the parent element in the XML output.

If the same column is selected in both the Output
format table as an attribute and in the Use dynamic
grouping setting as the criterion for dynamic grouping,
only the dynamic group setting will take effect for that
column.

Use schema column name: By default, this check box is selected
for all columns so that the column labels from the input schema



Related scenarios

1770 Talend Open Studio Components Reference Guide

are used as data wrapping tags. If you want to use a different tag
than from the input schema for any column, clear this check box
for that column and specify a tag label between quotation marks
in the Label field.

Use dynamic grouping Select this check box if you want to dynamically group the output
columns. Click the plus button to add one ore more grouping
criteria in the Group by table.

Column: Select a column you want to use as a wrapping element
for the grouped output rows.

Attribute label: Enter an attribute label for the group wrapping
element, between quotation marks.

Custom the flush buffer size Select this check box to define the number of rows to buffer
before the data is written into the target file and the buffer is
emptied.

Row Number: Specify the number of rows to buffer.

Advanced separator (for
numbers)

Select this check box to modify the separators used for numbers:

Thousands separator: define separators for thousands.

Decimal separator: define separators for decimals.

Encoding Select the encoding from the list or select Custom and define it
manually. This field is compulsory for DB data handling.

Don't generate empty file Select the check box to avoid the generation of an empty file.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage Use this component to write an XML file with data passed on from other components using
a Row link.

Limitation n/a

Related scenarios

For related scenarios using tFileOutputXML, see section Scenario 1: From Positional to XML file and section
Scenario 2: Using a SOAP message from an XML file to get weather information and saving the information to
an XML file.



tWriteXMLField

Talend Open Studio Components Reference Guide 1771

tWriteXMLField

tWriteXMLField properties

Component family XML

Function tWriteXMLField outputs data to defined fields of the output XML file.

Purpose tWriteXMLField reads an input XML file and extracts the structure to insert it in defined
fields of the output file.

Basic settings Output Column Select the destination field in the output component where you
want to write the XML structure.

Configure Xml Tree Opens the interface that supports the creation of the XML
structure you want to write in a field. For more information about
the interface, see section Defining the XML tree.

Schema type and Edit
Schema

A schema is a row description, i.e., it defines the number of fields
that will be processed and passed on to the next component. The
schema is either built-in or remote in the Repository.

Built-in: You create the schema and store it locally for this
component only. Related topic: see Talend Open Studio User
Guide.

Repository: You already created the schema and stored it in
the Repository, hence can be reused in various projects and job
flowcharts. Related topic: see Talend Open Studio User Guide.

Sync columns Click to synchronize the output file schema with the input
file schema. The Sync function only displays once the Row
connection is linked with the output component.

Group by Define the aggregation set, the columns you want to use to
regroup the data.

Advanced settings Remove the xml declaration Select this check box if you do not want to include the XML
header.

Create empty element if
needed

This check box is selected by default. If the Related Column in
the interface that supports the creation of the XML structure has
null values, or if no column is associated with the XML node, this
option creates an open/close tag in the expected place.

Create associated XSD file If one of the XML elements is defined as a Namespace element,
this option will create the corresponding XSD file.

To use this option, you must select the Dom4J
generation mode.

Advanced separator (for
number)

Select this check box if you want to modify the separators used
by default for numbers.

Thousands separator: enter between brackets the separators to
use for thousands.

Decimal separator: enter between brackets the separators to use
for decimals.

Generation mode Select the appropriate generation mode according to your
memory availability. The available modes are:

• Slow and memory-consuming (Dom4j)

This option allows you to use dom4j to process the
XML files of high complexity.



Scenario: Extracting the structure of an XML file and inserting it into the fields of a database table

1772 Talend Open Studio Components Reference Guide

• Fast with low memory consumption

Encoding Type Select the encoding type in the list or select Custom and define it
manually. This field is compulsory when working with databases.

tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage This component can be used as intermediate step in a data flow.

Limitation n/a

Scenario: Extracting the structure of an XML file and
inserting it into the fields of a database table
This three-component scenario allows to read an XML file, extract the XML structure, and finally outputs the
structure to the fields of a database table.

1. Drop the following components from the Palette onto the design workspace: tFileInputXml,
tWriteXMLField, and tMysqlOutput.

Connect the three components using Main links.

2. Double-click tFileInputXml to open its Basic settings view and define its properties.

3. If you have already stored the input schema in the Repository tree view, select Repository first from the
Property Type list and then from the Schema list to display the [Repository Content] dialog box where
you can select the relevant metadata.

For more information about storing schema metadata in the Repository tree view, see Talend Open Studio
User Guide.

4. If you have not stored the input schema locally, select Built-in in the Property Type and Schema fields and
fill in the fields that follow manually. For more information about tFileInputXML properties, see section
tFileInputXML.

If you have selected Built-in, click the three-dot button next to the Edit schema field to open a dialog box
where you can manually define the structure of your file.

5. In the Look Xpath query field, enter the node of the structure where the loop is based. In this example, the
loop is based on the customer node. Column in the Mapping table will be automatically populated with the
defined file content.



Scenario: Extracting the structure of an XML file and inserting it into the fields of a database table

Talend Open Studio Components Reference Guide 1773

In the Xpath query column, enter between inverted commas the node of the XML file that holds the data
corresponding to each of the Column fields.

6. In the design workspace, click tWriteXMLField and then in the Component view, click Basic settings to
open the relevant view where you can define the component properties.

7. Click the three-dot button next to the Edit schema field to open a dialog box where you can add a line by
clicking the plus button.

8. Click in the line and enter the name of the output column where you want to write the XML content,
CustomerDetails in this example.

Define the type and length in the corresponding fields, String and 255in this example.

Click Ok to validate your output schema and close the dialog box.

In the Basic settings view and from the Output Column list, select the column you already defined where
you want to write the XML content.

9. Click the three-dot button next to Configure Xml Tree to open the interface that helps to create the XML
structure.



Scenario: Extracting the structure of an XML file and inserting it into the fields of a database table

1774 Talend Open Studio Components Reference Guide

10. In the Link Target area, click rootTag and rename it as CustomerDetails.

In the Linker source area, drop CustomerName and CustomerAddress to CustomerDetails. A dialog box
displays asking what type of operation you want to do.

Select Create as sub-element of target node to create a sub-element of the CustomerDetails node.

Right-click CustomerName and select from the contextual menu Set As Loop Element.

Click OK to validate the XML structure you defined.

11. Double-click tMysqlOutput to open its Basic settings view and define its properties.

12. If you have already stored the schema in the DB Connection node in the Repository tree view, select
Repository from the Schema list to display the [Repository Content] dialog box where you can select the
relevant metadata.

For more information about storing schema metadata in the Repository tree view, see Talend Open Studio
User Guide.

If you have not stored the schema locally, select Built-in in the Property Type and Schema fields and enter
the database connection and data structure information manually. For more information about tMysqlOutput
properties, see section tMysqlOutput.

In the Table field, enter the name of the database table to be created, where you want to write the extracted
XML data.

From the Action on table list, select Create table to create the defined table.

From the Action on data list, select Insert to write the data.



Scenario: Extracting the structure of an XML file and inserting it into the fields of a database table

Talend Open Studio Components Reference Guide 1775

Click Sync columns to retrieve the schema from the preceding component. You can click the three-dot button
next to Edit schema to view the schema.

13. Save your Job and click F6 to execute it.

tWriteXMLField fills every field of the CustomerDetails column with the XML structure of the input file:
the XML processing instruction <?xml version=""1.0"" encoding=""ISO-8859-15""?>, the first node
that separates each client <CustomerDetails> and finally customer information <CustomerAddress> and
<CustomerName>.



tXMLMap

1776 Talend Open Studio Components Reference Guide

tXMLMap

tXMLMap belongs to two component families: Processing and XML. For more information on it, see section
tXMLMap.



tXSDValidator

Talend Open Studio Components Reference Guide 1777

tXSDValidator

tXSDValidator Properties

Component family XML

Function Validates an input XML file or an input XML flow against an XSD file and sends the validation
log to the defined output.

Purpose Helps at controlling data and structure quality of the file or flow to be processed

Basic settings Mode From this dropdown list, select:

- File, to validate an input file

- Flow, to validate an input flow

Schema and Edit Schema A schema is a row description, i.e., it defines the number of fields to
be processed and passed on to the next component. The schema is
either built-in or remotely stored in the Repository but in this case,
the schema is read-only. It contains standard information regarding
the file validation.

File mode only XSD file Filepath to the reference XSD file. HTTP URL also supported, e.g.
http://localhost:8080/book.xsd.

File mode only XML file Filepath to the XML file to be validated.

File mode only If XML is valid, display If
XML is invalid, display

Type in a message to be displayed in the Run console based on
the result of the comparison.

File mode only Print to console Select this check box to display the validation message.

Flow mode only Allocate Specify the column or columns to be validated and the path to the
reference XSD file.

Advanced settings tStatCatcher Statistics Select this check box to gather the Job processing metadata at a
Job level as well as at each component level.

Usage When used in File mode, this component can be used as standalone component but it is usually
linked to an output component to gather the log data.

Limitation n/a

Scenario: Validating data flows against an XSD file

This scenario describes a Job that validates an XML column in an input file against a reference XSD file and
outputs the log information for the invalid rows of the column into a delimited file. For the tXSDValidator use
case that validates an XML file, see section Scenario: Validating XML files.

1. Drop a tFileInputDelimited component, a tXSDValidator component, and two FileOutputDelimited
components from the Palette to the design workspace.



Scenario: Validating data flows against an XSD file

1778 Talend Open Studio Components Reference Guide

2. Double-click the tFileInputDelimited to open its Component view and set its properties:

3. Use the Built-In property type for this scenario.

Browse to the input file, and define the number of rows to be skipped in the beginning of the file.

Use a Built-In schema for this scenario. This means that it is available for this Job only.

Click Edit schema and edit the schema according to the input file. In this scenario, the input file has only two
columns: ID and ShipmentInfo. The ShipmentInfo column is an XML column and needs to be validated.

4. On your design workspace, connect the tFileInputDelimited component to the tXSDValidator component
using a Row > Main link.

5. Double-click the tXSDValidator component, and set its properties:



Scenario: Validating data flows against an XSD file

Talend Open Studio Components Reference Guide 1779

6. From the Mode dropdown list, select Flow Mode.

Use a Built-In schema for this scenario. Click Sync columns to retrieve the schema from the preceding
component. To view or modify the schema, click the three-dot button next to Edit schema.

Add a line in the Allocate table by clicking the plus button. The name of the first column of the input file
automatically appears in the Input Column field. Click in the field and select the column you want to validate.

In the XSD File field, fill in the path to your reference XSD file.

7. On your design workspace, connect the tXSDValidator component to one tFileOutputDelimited
component using a Row > Main link to output the information about valid XML rows.

8. Connect the tXSDValidator component to the other tFileOutputDelimited component using a Row >
Rejects link to output the information about invalid XML rows.

9. Double-click each of the two tFileOutputDelimited components and configure the component properties.

In the Property Type field, select Built-In.

In the File Name field, enter or, if you want to use an existing output file, browse to the output file path.

10. Select Built-In from the Schema list and click Sync columns to retrieve the schema from the preceding
component.

11. Save your Job and press F6 to run it.



Scenario: Validating data flows against an XSD file

1780 Talend Open Studio Components Reference Guide

The output files contain the validation information about the valid and invalid XML rows of the specified column
respectively.



tXSLT

Talend Open Studio Components Reference Guide 1781

tXSLT

tXSLT Properties

Component family XML

Function Refers to an XSL stylesheet, to transform an XML source file into a defined output file.

Purpose Helps to transform data structure to another structure.

Basic settings XML file File path to the XML file to be validated.

XSL file File path to the reference XSL transformation file.

Output file File path to the output file. If the file does not exist, it will be
created. The output file can be any structured or unstructured file
such as html, xml, txt or even pdf or edifact depending on your xsl.

Parameters Click the plus button to add new lines in the Parameters list and
define the transformation parameters of the XSLT file. Click in
each line and enter the key in the name list and its associated value
in the value list.

Usage This component can be used as standalone component.

Limitation n/a

Scenario: Transforming XML to html using an XSL
stylesheet

This scenario describes a two-component Job that converts xml data into an html document using an xsl stylesheet.
It as well defines a transformation parameter of the xsl stylesheet to change the background color of the header
of the created html document.

1. Drop the tXSLT and tMsBox components from the Palette to the design workspace.

2. Double-click tXSLT to open its Basic settings view where you can define the component properties.



Scenario: Transforming XML to html using an XSL stylesheet

1782 Talend Open Studio Components Reference Guide

3. In the XML file field, set the path or browse to the xml file to be transformed. In this example, the xml file
holds a list of MP3 song titles and related information including artist names, company etc.

4. In the XSL file field in the Basic settings view, set the path or browse to the relevant xsl file.

5. In the Output file field, set the path or browse to the output html file.

In this example, we want to convert the xml data into an html file holding a table heading followed by a table
listing artists’ names next to song titles.



Scenario: Transforming XML to html using an XSL stylesheet

Talend Open Studio Components Reference Guide 1783

6. In the Parameters area of the Basic settings view, click the plus button to add a line where you can define the
name and value of the transformation parameter of the xsl file. In this example, the name of the transformation
parameter we want to use is bgcolor and the value is green.

7. Double-click the tMsgBox to display its Basic settings view and define its display properties as needed.

8. Save the Job and press F6 to execute it. The message box displays confirming that the output html file is
created and stored in the defined path.



Scenario: Transforming XML to html using an XSL stylesheet

1784 Talend Open Studio Components Reference Guide

9. Click OK to close the message box.

You can now open the output html file to check the transformation of the xml data and that of the background
color of the table heading.


	Talend Open Studio Components
	Table of Contents
	Preface
	General information
	Purpose
	Audience
	Typographical conventions

	Feedback and Support

	Big Data components
	tHiveClose
	tHiveClose properties
	Related scenario

	tHiveConnection
	tHiveConnection properties
	Related scenario

	tHiveRow
	tHiveRow properties
	Related scenarios


	Business components
	tAlfrescoOutput
	tAlfrescoOutput Properties
	Installation procedure
	Prerequisites
	Installing the Talend Alfresco module
	Useful information for advanced use

	Dematerialization, tAlfrescoOutput, and Enterprise Content Management

	Scenario: Creating documents on an Alfresco server
	Setting up your Job
	Setting up the schema
	Setting up the connection to the Alfresco server
	Defining the document
	Executing your Job


	tBonitaDeploy
	tBonitaDeploy Properties
	Related Scenario

	tBonitaInstantiateProcess
	tBonitaInstantiateProcess Properties
	Scenario 1: Executing a Bonita process via a Talend Job
	Setting up the Job
	Configuring the deployment of the process
	Configuring the input flow
	Configuring the Basic settings of tBonitaInstantiateProcess
	Job Execution

	Scenario 2: Outputting the process instance UUID over the Row > Main link
	Linking the components
	Configuring the components
	Executing the Job


	tCentricCRMInput
	tCentricCRMInput Properties
	Related Scenario

	tCentricCRMOutput
	tCentricCRMOutput Properties
	Related Scenario

	tHL7Input
	tHL7Input Properties
	Scenario: Retrieving information about patients and events from an HL7 file
	Configuring the editor of tHL7Input
	Job Execution


	tHL7Output
	tHL7Output Properties
	Related scenario

	tMarketoInput
	tMarketoInput Properties
	Related Scenario

	tMarketoListOperation
	tMarketoListOperation Properties
	Scenario: Adding a lead record to a list in the Marketo DB
	Setting up the Job
	Configuring the input component
	Configuring tMarketoListOperation
	Job Execution


	tMarketoOutput
	tMarketoOutput Properties
	Scenario: Data transmission between Marketo DB and an external system
	Setting up the Job
	Configuring tFileInputDelimited
	Configuring tMarketoOutput
	Configuring tMarketoInput
	Configuring tFileOutputDelimited
	Using Java scripts to count API calls
	Job execution


	tMicrosoftCrmInput
	tMicrosoftCrmInput Properties
	Scenario: Writing data in a Microsoft CRM database and putting conditions on columns to extract specified rows
	Setting up the Job
	Configuring tFileInputDelimited
	Configuring tMicrosoftCrmOutput
	Configuring tMicrosoftCrmInput
	Configuring tFileOutputDelimited
	Job execution


	tMicrosoftCrmOutput
	tMicrosoftCrmOutput Properties
	Related Scenario

	tMSAXInput
	tMSAXInput properties
	Related scenarios

	tMSAXOutput
	tMSAXOutput properties
	Scenario 1: Inserting data in a defined table in a MicrosoftAX server
	Setting up the Job
	Configuring tFixedFlowInput
	Configuring tMSAXOutput
	Job execution

	Scenario 2: Deleting data from a defined table in a MicrosoftAX server
	Setting up the Job
	Configuring tFixedFlowInput
	Setting up the connection to the MicrosoftAX server
	Defining the action on data
	Job execution


	tOpenbravoERPInput
	tOpenbravoERPInput properties
	Related Scenario

	tOpenbravoERPOutput
	tOpenbravoERPOutput properties
	Related scenario

	tSageX3Input
	tSageX3Input Properties
	Scenario: Using query key to extract data from a given Sage X3 system
	Setting up the Job
	Configuring the schema of tSageX3Input
	Configuring the connection to the Sage X3 Web server
	Setting up the mapping and configuring the query condition
	Job execution


	tSageX3Output
	tSageX3Output Properties
	Scenario: Using a Sage X3 Web service to insert data into a given Sage X3 system
	Setting up the Job
	Configuring the schema for the input data
	Setting up the connection to the Sage X3 Web server
	Setting up the mapping
	Job execution


	tSalesforceBulkExec
	tSalesforceBulkExec Properties
	Related Scenario:

	tSalesforceConnection
	tSalesforceConnection properties
	Related scenario

	tSalesforceGetDeleted
	tSalesforceGetDeleted properties
	Scenario: Recovering deleted data from the Salesforce server
	Setting up the Job
	Setting up the connection to the Salesforce server
	Setting the search condition
	Job execution


	tSalesforceGetServerTimestamp
	tSalesforceGetServerTimestamp properties
	Related scenarios

	tSalesforceGetUpdated
	tSalesforceGetUpdated properties
	Related scenarios

	tSalesforceInput
	tSalesforceInput Properties
	Scenario: Using queries to extract data from a Salesforce database
	Setting up the Job
	Setting up the connection to the Salesforce server for the parent object
	Setting the query and the schema for the parent object
	Setting up the connection to the Salesforce server for the child object
	Setting the query and the schema for the child object
	Job execution


	tSalesforceOutput
	tSalesforceOutput Properties
	Scenario 1: Deleting data from the Account object
	Dragging and dropping as well as connecting the components
	Configuring the components
	Executing the Job

	Scenario 2: Gathering erroneous data while inserting data to a module at Salesforce.com
	Dragging and dropping components and linking them together
	Configuring the components
	Executing the Job

	Scenario 3: Inserting AccountIDs from an Excel File to the Contact Module
	Dragging and dropping components
	Configuring the components
	Executing the Job


	tSalesforceOutputBulk
	tSalesforceOutputBulk Properties
	Scenario: Inserting transformed bulk data into your Salesforce.com
	Setting up the Job
	Configuring the input component
	Setting up the mapping
	Defining the output path
	Setting up the connection to the Salesforce server
	Configuring the output component
	Job execution


	tSalesforceOutputBulkExec
	tSalesforceOutputBulkExec Properties
	Scenario: Inserting bulk data into your Salesforce.com
	Setting up the Job
	Setting the input data
	Setting up the connection to the Salesforce server
	Job execution


	tSAPBWInput
	tSAPBWInput Properties
	Scenario: Reading data from SAP BW database
	Set up the Job
	Set up the jdbc connection to the SAP BW server
	Set up a query
	Display the fetched data on the console


	tSAPCommit
	tSAPCommit Properties
	Related scenario

	tSAPConnection
	tSAPConnection properties
	Related scenarios

	tSAPInput
	tSAPInput Properties
	Scenario 1: Retrieving metadata from the SAP system
	Setting and configuring the SAP connection using wizard
	Retrieving different schemas of the SAP functions
	Retrieving the company metadata

	Scenario 2: Reading data in the different schemas of the RFC_READ_TABLE function
	Setting and configuring the SAP connection using wizard
	Retrieving the data column names of the SFLIGHT table


	tSAPOutput
	tSAPOutput Properties
	Related scenario

	tSAPRollback
	tSAPRollback properties
	Related scenarios

	tSugarCRMInput
	tSugarCRMInput Properties
	Scenario: Extracting account data from SugarCRM
	Setting up the Job
	Configuring the input component
	Job execution


	tSugarCRMOutput
	tSugarCRMOutput Properties
	Related Scenario

	tVtigerCRMInput
	tVtigerCRMInput Properties
	Related Scenario

	tVtigerCRMOutput
	tVtigerCRMOutput Properties
	Related Scenario


	Business Intelligence components
	tBarChart
	tBarChart properties
	Scenario: Creating a bar chart from the input data
	Dropping and linking components
	Reading the source data
	Adapting the source data to the tBarChart schema
	Generating the temporary input file
	Configuring bar chart generation
	Deleting the temporary file
	Executing the Job


	tDB2SCD
	tDB2SCD properties
	Related scenarios

	tDB2SCDELT
	tDB2SCDELT Properties
	Related Scenario

	tGreenplumSCD
	tGreenplumSCD Properties
	Related scenario

	tInformixSCD
	tInformixSCD properties
	Related scenario

	tIngresSCD
	tIngresSCD Properties
	Related scenario

	tJasperOutput
	tJasperOutput Properties
	Scenario: Generating a report against a .jrxml template
	Setting up the Job
	Configuring the input component
	Configuring the output component
	Job execution


	tJasperOutputExec
	tJasperOutputExec Properties
	Related Scenario

	tLineChart
	tLineChart properties
	Scenario: Creating a line chart to ease trend analysis
	Dropping and linking components
	Reading the source data
	Adapting the source data to the tLineChart schema
	Generating the temporary input file
	Configuring line chart generation
	Deleting the temporary file
	Executing the Job


	tMondrianInput
	tMondrianInput Properties
	Scenario: Cross-join tables
	Setting up the Job
	Setting up the DB connection
	Configuring the DB query
	Job execution


	tMSSqlSCD
	tMSSqlSCD Properties
	Related scenario

	tMysqlSCD
	tMysqlSCD Properties
	SCD management methodologies
	SCD keys
	Combining SCD types


	Scenario: Tracking changes using Slowly Changing Dimensions (type 0 through type 3)
	Defining the main flow of the Job
	Configuring the DB connection and the input component
	Configuring tMysqlSCD and tMysqlCommit
	Setting up the SCD editor
	Creating the SCD table
	Job execution


	tMysqlSCDELT
	tMysqlSCDELT Properties
	Related Scenario

	tOracleSCD
	tOracleSCD Properties
	Related scenario

	tOracleSCDELT
	tOracleSCDELT Properties
	Related Scenario

	tPaloCheckElements
	tPaloCheckElements Properties
	Related scenario

	tPaloConnection
	tPaloConnection Properties
	Related scenario

	tPaloCube
	tPaloCube Properties
	Scenario: Creating a cube in an existing database
	Configuring the tPaloCube component
	Job execution


	tPaloCubeList
	tPaloCubeList Properties
	Discovering the read-only output schema of tPaloCubeList
	Scenario: Retrieving detailed cube information from a given database
	Setting up the Job
	Configuring the tPaloCube component
	Job execution


	tPaloDatabase
	tPaloDatabase Properties
	Scenario: Creating a database

	tPaloDatabaseList
	tPaloDatabaseList Properties
	Discovering the read-only output schema of tPaloDatabaseList
	Scenario: Retrieving detailed database information from a given Palo server
	Setting up the Job
	Configuring the tPaloDatabaseList component
	Job execution


	tPaloDimension
	tPaloDimension Properties
	Scenario: Creating a dimension with elements
	Setting up the Job
	Setting up the DB connection
	Configuring the input component
	Configuration in the tMap editor
	Configuring the tPaloDimension component
	Job execution


	tPaloDimensionList
	tPaloDimensionList Properties
	Discovering the read-only output schema of tPaloDimensionList
	Scenario: Retrieving detailed dimension information from a given database
	Setting up the Job
	Configuring the tPaloDimensionList component
	Job execution


	tPaloInputMulti
	tPaloInputMulti Properties
	Scenario: Retrieving dimension elements from a given cube
	Setting up the Job
	Setting up the DB connection
	Configuring the Cube Query
	Job execution


	tPaloOutput
	tPaloOutput Properties
	Related scenario

	tPaloOutputMulti
	tPaloOutputMulti Properties
	Scenario 1: Writing data into a given cube
	Setting up the Job
	Configuring the input component
	Configuring the output component
	Job execution

	Scenario 2: Rejecting inflow data when the elements to be written do not exist in a given cube
	Setting up the Job
	Configuring the input component
	Configuring the tPaloCheckElements component
	Configuring the output component
	Job execution


	tPaloRule
	tPaloRule Properties
	Scenario: Creating a rule in a given cube
	Setting up the DB connection
	Setting the Cube rules
	Job execution


	tPaloRuleList
	tPaloRuleList Properties
	Discovering the read-only output schema of tPaloRuleList
	Scenario: Retrieving detailed rule information from a given cube
	Setting up the Job
	Configuring the tPaloRuleList component
	Job execution


	tParAccelSCD
	tParAccelSCD Properties
	Related scenario

	tPostgresPlusSCD
	tPostgresPlusSCD Properties
	Related scenario

	tPostgresPlusSCDELT
	tPostgresPlusSCDELT Properties
	Related Scenario

	tPostgresqlSCD
	tPostgresqlSCD Properties
	Related scenario

	tPostgresqlSCDELT
	tPostgresqlSCDELT Properties
	Related Scenario

	tSPSSInput
	tSPSSInput properties
	Scenario: Displaying the content of an SPSS .sav file
	Setting up the Job
	Configuring the input component
	Job execution
	Translating the stored values


	tSPSSOutput
	tSPSSOutput properties
	Scenario: Writing data in an .sav file
	Setting up the Job
	Configuring the input component
	Configuring the output component
	Job execution


	tSPSSProperties
	tSPSSProperties properties
	Related scenarios

	tSPSSStructure
	tSPSSStructure properties
	Related scenarios

	tSybaseSCD
	tSybaseSCD properties
	Related scenarios

	tSybaseSCDELT
	tSybaseSCDELT Properties
	Related Scenario


	Cloud components
	tAmazonMysqlClose
	tAmazonMysqlClose properties
	Related scenario

	tAmazonMysqlCommit
	tAmazonMysqlCommit Properties
	Related scenario

	tAmazonMysqlConnection
	tAmazonMysqlConnection Properties
	Scenario: Inserting data in mother/daughter tables
	Setting up the Job
	Setting up the DB connection
	Configuring the input component
	Configuring the tMap component
	Configuring the output component
	Configuring the tAmazonMysqlCommit component
	Job execution


	tAmazonMysqlInput
	tAmazonMysqlInput properties
	Scenario1: Writing columns from a MySQL database to an output file
	Setting up the Job
	Configuring the input component
	Configuring the output component
	Job execution


	tAmazonMysqlOutput
	tAmazonMysqlOutput properties
	Scenario 1: Adding a new column and altering data in a DB table
	Setting up the Job
	Configuring the input component
	Configuring the tMap component
	Configuring the output component
	Job execution

	Scenario 2: Updating data in a database table
	Setting up the Job
	Configuring the input component
	Configuring the output component
	Job execution

	Scenario 3: Retrieve data in error with a Reject link
	Setting up the Job
	Configuring the input component
	Configuring the tMap component
	Configuring the output component
	Job execution


	tAmazonMysqlRollback
	tAmazonMysqlRollback properties
	Scenario: Rollback from inserting data in mother/daughter tables

	tAmazonMysqlRow
	tAmazonMysqlRow properties
	Scenario 1: Removing and regenerating a MySQL table index
	Setting up the Job
	Configuring the tAmazonMysqlRow component
	Configuring the output component
	Job execution

	Scenario 2: Using PreparedStatement objects to query data
	Configuring the input component
	Setting up the DB connection
	Configuring the Advanced settings of tAmazonMysqlRow
	Configuring the tParseRecordSet component
	Configuring the output component
	Job execution

	Related scenarios

	tAmazonOracleClose
	tAmazonOracleClose properties
	Related scenario

	tAmazonOracleCommit
	tAmazonOracleCommit Properties
	Related scenario

	tAmazonOracleConnection
	tAmazonOracleConnection Properties
	Related scenario

	tAmazonOracleInput
	tAmazonOracleInput properties
	Related scenarios

	tAmazonOracleOutput
	tAmazonOracleOutput properties
	Related scenarios

	tAmazonOracleRollback
	tAmazonOracleRollback properties
	Related scenario

	tAmazonOracleRow
	tAmazonOracleRow properties
	Related scenarios

	tMarketoInput
	tMarketoListOperation
	tMarketoOutput
	tSalesforceBulkExec
	tSalesforceConnection
	tSalesforceGetDeleted
	tSalesforceGetServerTimestamp
	tSalesforceGetUpdated
	tSalesforceInput
	tSalesforceOutput
	tSalesforceOutputBulk
	tSalesforceOutputBulkExec
	tSugarCRMInput
	tSugarCRMOutput

	Custom Code components
	tGroovy
	tGroovy properties
	Related Scenarios

	tGroovyFile
	tGroovyFile properties
	Scenario: Calling a file which contains Groovy code
	Setting up the Job
	Configuring the tGroovyFile component
	Job execution


	tJava
	tJava properties
	Scenario: Printing out a variable content
	Setting up the Job
	Configuring the input component
	Configuring the output component
	Configuring the tJava component
	Job execution


	tJavaFlex
	tJavaFlex properties
	Scenario 1: Generating data flow
	Setting up the Job
	Configuring the tJavaFlex component
	Saving and executing the Job

	Scenario 2: Processing rows of data with tJavaFlex
	Setting up the Job
	Configuring the input component
	Configuring the tJavaFlex component
	Saving and executing the Job


	tJavaRow
	tJavaRow properties
	Scenario: Transforming data line by line using tJavaRow
	Setting up the Job
	Configuring the components
	Saving and executing the Job


	tLibraryLoad
	tLibraryLoad properties
	Scenario: Checking the format of an e-mail addressl
	Setting up the Job
	Configuring the tLibraryLoad component
	Configuring the tJava component
	Job execution


	tSetGlobalVar
	tSetGlobalVar properties
	Scenario: Printing out the content of a global variable
	Setting up the Job
	Configuring the tSetGlobalVar component
	Job execution



	Data Quality components
	tAddCRCRow
	tAddCRCRow properties
	Scenario: Adding a surrogate key to a file
	Setting up the Job
	Configuring the input component
	Configuring the tAddCRCRow component
	Job execution


	tChangeFileEncoding
	tExtractRegexFields
	tFuzzyMatch
	tFuzzyMatch properties
	Scenario 1: Levenshtein distance of 0 in first names
	Scenario 2: Levenshtein distance of 1 or 2 in first names
	Scenario 3: Metaphonic distance in first name

	tIntervalMatch
	tIntervalMatch properties
	Scenario: Identifying Ip country

	tReplaceList
	tReplaceList Properties
	Scenario: Replacement from a reference file

	tSchemaComplianceCheck
	tSchemaComplianceCheck Properties
	Scenario: Validating data against schema

	tUniqRow
	tUniqRow Properties
	Scenario 1: Deduplicating entries
	Setting up the Job
	Configuring the components
	Saving and executing the Job


	tUniservBTGeneric
	tUniservBTGeneric properties
	Scenario: Execution of a Job in the Data Quality Service Hub Studio

	tUniservRTConvertName
	tUniservRTConvertName properties
	Scenario: Analysis of a name line and assignment of the salutation

	tUniservRTMailBulk
	tUniservRTMailBulk properties
	Scenario: Creating an index pool

	tUniservRTMailOutput
	tUniservRTMailOutput properties
	Related scenarios

	tUniservRTMailSearch
	tUniservRTMailSearch properties
	Scenario: Adding contacts to the mailRetrieval index pool

	tUniservRTPost
	tUniservRTPost properties
	Scenario 1: Checking and correcting the postal code, city and street
	Scenario 2: Checking and correcting the postal code, city and street, as well as rejecting the unfeasible


	Databases - traditional components
	tAccessBulkExec
	tAccessBulkExec properties
	Related scenarios

	tAccessCommit
	tAccessCommit Properties
	Related scenario

	tAccessConnection
	tAccessConnection Properties
	Scenario: Inserting data in parent/child tables

	tAccessInput
	tAccessInput properties
	Related scenarios

	tAccessOutput
	tAccessOutput properties
	Related scenarios

	tAccessOutputBulk
	tAccessOutputBulk properties
	Related scenarios

	tAccessOutputBulkExec
	tAccessOutputBulkExec properties
	Related scenarios

	tAccessRollback
	tAccessRollback properties
	Related scenarios

	tAccessRow
	tAccessRow properties
	Related scenarios

	tAS400Close
	tAS400Close properties
	Related scenario

	tAS400Commit
	tAS400Commit Properties
	Related scenario

	tAS400Connection
	tAS400Connection Properties
	Related scenario

	tAS400Input
	tAS400Input properties
	Related scenarios

	tAS400LastInsertId
	tAS400LastInsertId properties
	Related scenario

	tAS400Output
	tAS400Output properties
	Related scenarios

	tAS400Rollback
	tAS400Rollback properties
	Related scenarios

	tAS400Row
	tAS400Row properties
	Related scenarios

	tDB2BulkExec
	tDB2BulkExec properties
	Related scenarios

	tDB2Close
	tDB2Close properties
	Related scenario

	tDB2Commit
	tDB2Commit Properties
	Related scenario

	tDB2Connection
	tDB2Connection properties
	Related scenarios

	tDB2Input
	tDB2Input properties
	Related scenarios

	tDB2Output
	tDB2Output properties
	Related scenarios

	tDB2Rollback
	tDB2Rollback properties
	Related scenarios

	tDB2Row
	tDB2Row properties
	Related scenarios

	tDB2SCD
	tDB2SCDELT
	tDB2SP
	tDB2SP properties
	Related scenarios

	tInformixBulkExec
	tInformixBulkExec Properties
	Related scenario

	tInformixClose
	tInformixClose properties
	Related scenario

	tInformixCommit
	tInformixCommit properties
	Related Scenario

	tInformixConnection
	tInformixConnection properties
	Related scenario

	tInformixInput
	tInformixInput properties
	Related scenarios

	tInformixOutput
	tInformixOutput properties
	Related scenarios

	tInformixOutputBulk
	tInformixOutputBulk properties
	Related scenario

	tInformixOutputBulkExec
	tInformixOutputBulkExec properties
	Related scenario

	tInformixRollback
	tInformixRollback properties
	Related Scenario

	tInformixRow
	tInformixRow properties
	Related scenarios

	tInformixSCD
	tInformixSP
	tInformixSP properties
	Related scenario

	tMSSqlBulkExec
	tMSSqlBulkExec properties
	Related scenarios

	tMSSqlColumnList
	tMSSqlColumnList Properties
	Related scenario

	tMSSqlClose
	tMSSqlClose properties
	Related scenario

	tMSSqlCommit
	tMSSqlCommit properties
	Related scenarios

	tMSSqlConnection
	tMSSqlConnection properties
	Related scenarios

	tMSSqlInput
	tMSSqlInput properties
	Related scenarios

	tMSSqlLastInsertId
	tMSSqlLastInsertId properties
	Related scenario

	tMSSqlOutput
	tMSSqlOutput properties
	Related scenarios

	tMSSqlOutputBulk
	tMSSqlOutputBulk properties
	Related scenarios

	tMSSqlOutputBulkExec
	tMSSqlOutputBulkExec properties
	Related scenarios

	tMSSqlRollback
	tMSSqlRollback properties
	Related scenario

	tMSSqlRow
	tMSSqlRow properties
	Related scenarios

	tMSSqlSCD
	tMSSqlSP
	tMSSqlSP Properties
	Related scenario

	tMSSqlTableList
	tMSSqlTableList Properties
	Related scenario

	tMysqlBulkExec
	tMysqlBulkExec properties
	Related scenarios

	tMysqlClose
	tMysqlClose properties
	Related scenario

	tMysqlColumnList
	tMysqlColumnList Properties
	Scenario: Iterating on a DB table and listing its column names

	tMysqlCommit
	tMysqlCommit Properties
	Related scenario

	tMysqlConnection
	tMysqlConnection Properties
	Scenario: Inserting data in mother/daughter tables

	tMysqlInput
	tMysqlInput properties
	Scenario 1: Writing columns from a MySQL database to an output file
	Dragging and dropping components and linking them together
	Configuring the components
	Executing the Job

	Scenario 2: Using context parameters when reading a table from a MySQL database
	Dragging and dropping components and linking them together
	Configuring the components
	Executing the Job


	tMysqlLastInsertId
	tMysqlLastInsertId properties
	Scenario: Get the ID for the last inserted record

	tMysqlOutput
	tMysqlOutput properties
	Scenario 1: Adding a new column and altering data in a DB table
	Scenario 2: Updating data in a database table
	Scenario 3: Retrieve data in error with a Reject link

	tMysqlOutputBulk
	tMysqlOutputBulk properties
	Scenario: Inserting transformed data in MySQL database
	Dropping and linking components
	Configuring the components
	Saving and executing the Job


	tMysqlOutputBulkExec
	tMysqlOutputBulkExec properties
	Scenario: Inserting data in MySQL database

	tMysqlRollback
	tMysqlRollback properties
	Scenario: Rollback from inserting data in mother/daughter tables

	tMysqlRow
	tMysqlRow properties
	Scenario 1: Removing and regenerating a MySQL table index
	Linking the components
	Configuring the components
	Executing the Job

	Scenario 2: Using PreparedStatement objects to query data
	Linking the components
	Configuring the components
	Executing the Job

	Scenario 3: Combining two flows for selective output
	Linking the components
	Configuring the components
	Executing the Job


	tMysqlSCD
	tMysqlSCDELT
	tMysqlSP
	tMysqlSP Properties
	Scenario: Finding a State Label using a stored procedure

	tMysqlTableList
	tMysqlTableList Properties
	Scenario: Iterating on DB tables and deleting their content using a user-defined SQL template
	Related scenario

	tOracleBulkExec
	tOracleBulkExec properties
	Scenario: Truncating and inserting file data into Oracle DB

	tOracleClose
	tOracleClose properties
	Related scenario

	tOracleCommit
	tOracleCommit Properties
	Related scenario

	tOracleConnection
	tOracleConnection Properties
	Related scenario

	tOracleInput
	tOracleInput properties
	Scenario 1: Using context parameters when reading a table from an Oracle database
	Dragging and dropping components and linking them together
	Configuring the components
	Executing the Job

	Related scenarios

	tOracleOutput
	tOracleOutput properties
	Related scenarios

	tOracleOutputBulk
	tOracleOutputBulk properties
	Related scenarios

	tOracleOutputBulkExec
	tOracleOutputBulkExec properties
	Related scenarios

	tOracleRollback
	tOracleRollback properties
	Related scenario

	tOracleRow
	tOracleRow properties
	Related scenarios

	tOracleSCD
	tOracleSCDELT
	tOracleSP
	tOracleSP Properties
	Scenario: Checking number format using a stored procedure

	tOracleTableList
	tOracleTableList properties
	Related scenarios

	tPostgresqlBulkExec
	tPostgresqlBulkExec properties
	Related scenarios

	tPostgresqlCommit
	tPostgresqlCommit Properties
	Related scenario

	tPostgresqlClose
	tPostgresqlClose properties
	Related scenario

	tPostgresqlConnection
	tPostgresqlConnection Properties
	Related scenario

	tPostgresqlInput
	tPostgresqlInput properties
	Related scenarios

	tPostgresqlOutput
	tPostgresqlOutput properties
	Related scenarios

	tPostgresqlOutputBulk
	tPostgresqlOutputBulk properties
	Related scenarios

	tPostgresqlOutputBulkExec
	tPostgresqlOutputBulkExec properties
	Related scenarios

	tPostgresqlRollback
	tPostgresqlRollback properties
	Related scenario

	tPostgresqlRow
	tPostgresqlRow properties
	Related scenarios

	tPostgresqlSCD
	tPostgresqlSCDELT
	tSybaseBulkExec
	tSybaseBulkExec Properties
	Related scenarios

	tSybaseClose
	tSybaseClose properties
	Related scenario

	tSybaseCommit
	tSybaseCommit Properties
	Related scenario

	tSybaseConnection
	tSybaseConnection Properties
	Related scenarios

	tSybaseInput
	tSybaseInput Properties
	Related scenarios

	tSybaseIQBulkExec
	tSybaseIQBulkExec Properties
	Related scenarios

	tSybaseIQOutputBulkExec
	tSybaseIQOutputBulkExec properties
	Scenario: Bulk-loading data to a Sybase IQ 12 database
	Linking the components
	Configuring the components
	Executing the Job

	Related scenarios

	tSybaseOutput
	tSybaseOutput Properties
	Related scenarios

	tSybaseOutputBulk
	tSybaseOutputBulk properties
	Related scenarios

	tSybaseOutputBulkExec
	tSybaseOutputBulkExec properties
	Related scenarios

	tSybaseRollback
	tSybaseRollback properties
	Related scenarios

	tSybaseRow
	tSybaseRow Properties
	Related scenarios

	tSybaseSCD
	tSybaseSCDELT
	tSybaseSP
	tSybaseSP properties
	Related scenarios


	Databases - appliance/datawarehouse components
	tGreenplumBulkExec
	tGreenplumBulkExec Properties
	Related scenarios

	tGreenplumClose
	tGreenplumClose properties
	Related scenario

	tGreenplumCommit
	tGreenplumCommit Properties
	Related scenarios

	tGreenplumConnection
	tGreenplumConnection properties
	Related scenarios

	tGreenplumGPLoad
	tGreenplumGPLoad properties
	Related scenario

	tGreenplumInput
	tGreenplumInput properties
	Related scenarios

	tGreenplumOutput
	tGreenplumOutput Properties
	Related scenarios

	tGreenplumOutputBulk
	tGreenplumOutputBulk properties
	Related scenarios

	tGreenplumOutputBulkExec
	tGreenplumOutputBulkExec properties
	Related scenarios

	tGreenplumRollback
	tGreenplumRollback properties
	Related scenarios

	tGreenplumRow
	tGreenplumRow Properties
	Related scenarios

	tGreenplumSCD
	tIngresBulkExec
	tIngresBulkExec properties
	Related scenarios

	tIngresClose
	tIngresClose properties
	Related scenario

	tIngresCommit
	tIngresCommit Properties
	Related scenario

	tIngresConnection
	tIngresConnection Properties
	Related scenarios

	tIngresInput
	tIngresInput properties
	Related scenarios

	tIngresOutput
	tIngresOutput properties
	Related scenarios

	tIngresOutputBulk
	tIngresOutputBulk properties
	Related scenarios

	tIngresOutputBulkExec
	tIngresOutputBulkExec properties
	Scenario: Loading data to a table in the Ingres DBMS
	Dragging and dropping components
	Configuring the components
	Executing the Job

	Related scenarios

	tIngresRollback
	tIngresRollback properties
	Related scenarios

	tIngresRow
	tIngresRow properties
	Related scenarios

	tIngresSCD
	tNetezzaBulkExec
	tNetezzaBulkExec properties
	Related scenarios

	tNetezzaClose
	tNetezzaClose properties
	Related scenario

	tNetezzaCommit
	tNetezzaCommit Properties
	Related scenario

	tNetezzaConnection
	tNetezzaConnection Properties
	Related scenarios

	tNetezzaInput
	tNetezzaInput properties
	Related scenarios

	tNetezzaNzLoad
	tNetezzaNzLoad properties
	Loading DATE, TIME and TIMESTAMP columns

	Related scenario

	tNetezzaOutput
	tNetezzaOutput properties
	Related scenarios

	tNetezzaRollback
	tNetezzaRollback properties
	Related scenarios

	tNetezzaRow
	tNetezzaRow properties
	Related scenarios

	tParAccelBulkExec
	tParAccelBulkExec Properties
	Related scenarios

	tParAccelClose
	tParAccelClose properties
	Related scenario

	tParAccelCommit
	tParAccelCommit Properties
	Related scenario

	tParAccelConnection
	tParAccelConnection Properties
	Related scenario

	tParAccelInput
	tParAccelInput properties
	Related scenarios

	tParAccelOutput
	tParAccelOutput Properties
	Related scenarios

	tParAccelOutputBulk
	tParAccelOutputBulk properties
	Related scenarios

	tParAccelOutputBulkExec
	tParAccelOutputBulkExec Properties
	Related scenarios

	tParAccelRollback
	tParAccelRollback properties
	Related scenario

	tParAccelRow
	tParAccelRow Properties
	Related scenarios

	tParAccelSCD
	tTeradataClose
	tTeradataClose properties
	Related scenario

	tTeradataCommit
	tTeradataCommit Properties
	Related scenario

	tTeradataConnection
	tTeradataConnection Properties
	Related scenario

	tTeradataFastExport
	tTeradataFastExport Properties
	Related scenario

	tTeradataFastLoad
	tTeradataFastLoad Properties
	Related scenario

	tTeradataFastLoadUtility
	tTeradataFastLoadUtility Properties
	Related scenario

	tTeradataInput
	tTeradataInput Properties
	Related scenarios

	tTeradataMultiLoad
	tTeradataMultiLoad Properties
	Related scenario

	tTeradataOutput
	tTeradataOutput Properties
	Related scenarios

	tTeradataRollback
	tTeradataRollback Properties
	Related scenario

	tTeradataRow
	tTeradataRow Properties
	Related scenarios

	tTeradataTPTUtility
	tTeradataTPTUtility Properties
	Related scenario

	tTeradataTPump
	tTeradataTPump Properties
	Scenario: Inserting data into a Teradata database table
	Dropping components
	Configuring the components
	Executing the Job


	tVectorWiseCommit
	tVectorWiseCommit Properties
	Related scenario

	tVectorWiseConnection
	tVectorWiseConnection Properties
	Related scenario

	tVectorWiseInput
	tVectorWiseInput Properties
	Related scenario

	tVectorWiseOutput
	tVectorWiseOutput Properties
	Related scenario

	tVectorWiseRollback
	tVectorWiseRollback Properties
	Related scenario

	tVectorWiseRow
	tVectorWiseRow Properties
	Related scenario

	tVerticaBulkExec
	tVerticaBulkExec Properties
	Related scenarios

	tVerticaClose
	tVerticaClose properties
	Related scenario

	tVerticaCommit
	tVerticaCommit Properties
	Related scenario

	tVerticaConnection
	tVerticaConnection Properties
	Related scenario

	tVerticaInput
	tVerticaInput Properties
	Related scenarios

	tVerticaOutput
	tVerticaOutput Properties
	Related scenarios

	tVerticaOutputBulk
	tVerticaOutputBulk Properties
	Related scenarios

	tVerticaOutputBulkExec
	tVerticaOutputBulkExec Properties
	Related scenarios

	tVerticaRollback
	tVerticaRollback Properties
	Related scenario

	tVerticaRow
	tVerticaRow Properties
	Related scenario


	Databases - other components
	tCreateTable
	tCreateTable Properties
	Scenario: Creating new table in a Mysql Database

	tDBInput
	tDBInput properties
	Scenario 1: Displaying selected data from DB table
	Scenario 2: Using StoreSQLQuery variable

	tDBOutput
	tDBOutput properties
	Scenario: Writing a row to a table in the MySql database via an ODBC connection

	tDBSQLRow
	tDBSQLRow properties
	Scenario: Resetting a DB auto-increment

	tEXAInput
	tEXAInput properties
	Related scenarios

	tEXAOutput
	tEXAOutput properties
	Related scenario

	tEXARow
	tEXARow properties
	Related scenarios

	tEXistConnection
	tEXistConnection properties
	Related scenarios

	tEXistDelete
	tEXistDelete properties
	Related scenario

	tEXistGet
	tEXistGet properties
	Scenario: Retrieve resources from a remote eXist DB server

	tEXistList
	tEXistList properties
	Related scenario

	tEXistPut
	tEXistPut properties
	Related scenario

	tEXistXQuery
	tEXistXQuery properties
	Related scenario

	tEXistXUpdate
	tEXistXUpdate properties
	Related scenario

	tFirebirdClose
	tFirebirdClose properties
	Related scenario

	tFirebirdCommit
	tFirebirdCommit Properties
	Related scenario

	tFirebirdConnection
	tFirebirdConnection properties
	Related scenarios

	tFirebirdInput
	tFirebirdInput properties
	Related scenarios

	tFirebirdOutput
	tFirebirdOutput properties
	Related scenarios

	tFirebirdRollback
	tFirebirdRollback properties
	Related scenario

	tFirebirdRow
	tFirebirdRow properties
	Related scenarios

	tHiveClose
	tHiveConnection
	tHiveRow
	tHSQLDbInput
	tHSQLDbInput properties
	Related scenarios

	tHSQLDbOutput
	tHSQLDbOutput properties
	Related scenarios

	tHSQLDbRow
	tHSQLDbRow properties
	Related scenarios

	tInterbaseClose
	tInterbaseClose properties
	Related scenario

	tInterbaseCommit
	tInterbaseCommit Properties
	Related scenario

	tInterbaseConnection
	tInterbaseConnection properties
	Related scenarios

	tInterbaseInput
	tInterbaseInput properties
	Related scenarios

	tInterbaseOutput
	tInterbaseOutput properties
	Related scenarios

	tInterbaseRollback
	tInterbaseRollback properties
	Related scenarios

	tInterbaseRow
	tInterbaseRow properties
	Related scenarios

	tJavaDBInput
	tJavaDBInput properties
	Related scenarios

	tJavaDBOutput
	tJavaDBOutput properties
	Related scenarios

	tJavaDBRow
	tJavaDBRow properties
	Related scenarios

	tJDBCColumnList
	tJDBCColumnList Properties
	Related scenario

	tJDBCClose
	tJDBCClose properties
	Related scenario

	tJDBCCommit
	tJDBCCommit Properties
	Related scenario

	tJDBCConnection
	tJDBCConnection Properties
	Related scenario

	tJDBCInput
	tJDBCInput properties
	Related scenarios

	tJDBCOutput
	tJDBCOutput properties
	Related scenarios

	tJDBCRollback
	tJDBCRollback properties
	Related scenario

	tJDBCRow
	tJDBCRow properties
	Related scenarios

	tJDBCSP
	tJDBCSP Properties
	Related scenario

	tJDBCTableList
	tJDBCTableList Properties
	Related scenario

	tLDAPAttributesInput
	tLDAPAttributesInput Properties
	Related scenario

	tLDAPConnection
	tLDAPConnection Properties
	Related scenarios

	tLDAPInput
	tLDAPInput Properties
	Scenario: Displaying LDAP directory’s filtered content

	tLDAPOutput
	tLDAPOutput Properties
	Scenario: Editing data in a LDAP directory

	tLDAPRenameEntry
	tLDAPRenameEntry properties
	Related scenarios

	tMaxDBInput
	tMaxDBInput properties
	Related scenario

	tMaxDBOutput
	tMaxDBOutput properties
	Related scenario

	tMaxDBRow
	tMaxDBRow properties
	Related scenario

	tParseRecordSet
	tParseRecordSet properties
	Related Scenario

	tPostgresPlusBulkExec
	tPostgresPlusBulkExec properties
	Related scenarios

	tPostgresPlusClose
	tPostgresPlusClose properties
	Related scenario

	tPostgresPlusCommit
	tPostgresPlusCommit Properties
	Related scenario

	tPostgresPlusConnection
	tPostgresPlusConnection Properties
	Related scenario

	tPostgresPlusInput
	tPostgresPlusInput properties
	Related scenarios

	tPostgresPlusOutput
	tPostgresPlusOutput properties
	Related scenarios

	tPostgresPlusOutputBulk
	tPostgresPlusOutputBulk properties
	Related scenarios

	tPostgresPlusOutputBulkExec
	tPostgresPlusOutputBulkExec properties
	Related scenarios

	tPostgresPlusRollback
	tPostgresPlusRollback properties
	Related scenarios

	tPostgresPlusRow
	tPostgresPlusRow properties
	Related scenarios

	tPostgresPlusSCD
	tPostgresPlusSCDELT
	tSasInput
	tSasInput properties
	Related scenarios

	tSasOutput
	tSasOutput properties
	Related scenarios

	tSQLiteClose
	tSQLiteClose properties
	Related scenario

	tSQLiteCommit
	tSQLiteCommit Properties
	Related scenario

	tSQLiteConnection
	SQLiteConnection properties
	Related scenarios

	tSQLiteInput
	tSQLiteInput Properties
	Scenario: Filtering SQlite data

	tSQLiteOutput
	tSQLiteOutput Properties
	Related Scenario

	tSQLiteRollback
	tSQLiteRollback properties
	Related scenarios

	tSQLiteRow
	tSQLiteRow Properties
	Scenario: Updating SQLite rows
	Related scenarios


	DotNET components
	tDotNETInstantiate
	tDotNETInstantiate properties
	Related scenario

	tDotNETRow
	tDotNETRow properties
	Scenario: Utilizing .NET in Talend
	Prerequisites
	Connecting components
	Configuring tDotNETInstantiate
	Configuring tDotNETRow
	Configuring tLogRow



	ELT components
	tCombinedSQLAggregate
	tCombinedSQLAggregate properties
	Scenario: Filtering and aggregating table columns directly on the DBMS

	tCombinedSQLFilter
	tCombinedSQLFilter Properties
	Related Scenario

	tCombinedSQLInput
	tCombinedSQLInput properties
	Related scenario

	tCombinedSQLOutput
	tCombinedSQLOutput properties
	Related scenario

	tELTGreenplumInput
	tELTGreenplumInput properties
	Related scenarios

	tELTGreenplumMap
	tELTGreenplumMap properties
	Scenario: Mapping data using a simple implicit join
	Dropping components
	Configuring the components
	Executing the Job

	Related scenario:

	tELTGreenplumOutput
	tELTGreenplumOutput properties
	Related scenarios

	tELTJDBCInput
	tELTJDBCInput properties
	Related scenarios

	tELTJDBCMap
	tELTJDBCMap properties
	Related scenario:

	tELTJDBCOutput
	tELTJDBCOutput properties
	Related scenarios

	tELTMSSqlInput
	tELTMSSqlInput properties
	Related scenarios

	tELTMSSqlMap
	tELTMSSqlMap properties
	Related scenario:

	tELTMSSqlOutput
	tELTMSSqlOutput properties
	Related scenarios

	tELTMysqlInput
	tELTMysqlInput properties
	Related scenarios

	tELTMysqlMap
	tELTMysqlMap properties
	Connecting ELT components
	Mapping and joining tables
	Adding where clauses
	Generating the SQL statement

	Scenario 1: Aggregating table columns and filtering
	Scenario 2: ELT using an Alias table

	tELTMysqlOutput
	tELTMysqlOutput properties
	Related scenarios

	tELTNetezzaInput
	tELTNetezzaInput properties
	Related scenarios

	tELTNetezzaMap
	tELTNetezzaMap properties
	Related scenarios

	tELTNetezzaOutput
	tELTNetezzaOutput properties
	Related scenarios

	tELTOracleInput
	tELTOracleInput properties
	Related scenarios

	tELTOracleMap
	tELTOracleMap properties
	Connecting ELT components
	Mapping and joining tables
	Adding where clauses
	Generating the SQL statement

	Scenario: Updating Oracle DB entries

	tELTOracleOutput
	tELTOracleOutput properties
	Scenario: Using the Oracle MERGE function to update and add data simultaneously

	tELTPostgresqlInput
	tELTPostgresqlInput properties
	Related scenarios

	tELTPostgresqlMap
	tELTPostgresqlMap properties
	Related scenario:

	tELTPostgresqlOutput
	tELTPostgresqlOutput properties
	Related scenarios

	tELTSybaseInput
	tELTSybaseInput properties
	Related scenarios

	tELTSybaseMap
	tELTSybaseMap properties
	Related scenarios

	tELTSybaseOutput
	tELTSybaseOutput properties
	Related scenarios

	tELTTeradataInput
	tELTTeradataInput properties
	Related scenarios

	tELTTeradataMap
	tELTTeradataMap properties
	Connecting ELT components
	Mapping and joining tables
	Adding WHERE clauses
	Generating the SQL statement

	Related scenarios

	tELTTeradataOutput
	tELTTeradataOutput properties
	Related scenarios

	tSQLTemplateAggregate
	tSQLTemplateAggregate properties
	Scenario: Filtering and aggregating table columns directly on the DBMS

	tSQLTemplateCommit
	tSQLTemplateCommit properties
	Related scenario

	tSQLTemplateFilterColumns
	tSQLTemplateFilterColumns Properties
	Related Scenario

	tSQLTemplateFilterRows
	tSQLTemplateFilterRows Properties
	Related Scenario

	tSQLTemplateMerge
	tSQLTemplateMerge properties
	Scenario: Merging data directly on the DBMS

	tSQLTemplateRollback
	tSQLTemplateRollback properties
	Related scenarios


	ESB components
	tESBConsumer
	tESBConsumer properties
	Scenario: Returning valid email
	Dropping and linking the components
	Configuring the components
	Executing the Job


	tESBProviderFault
	tESBProviderFault properties
	Scenario: Returning Fault message

	tESBProviderRequest
	tESBProviderRequest properties
	Scenario: Service sending a message without expecting a response

	tESBProviderResponse
	tESBProviderResponse properties
	Scenario: Returning Hello world response

	tRESTClient
	tRESTClient properties
	Scenario: Sending and retrieving data by interacting with a RESTful service
	Setting up the Job
	Configuring the components
	Saving and executing the Job


	tRESTRequest
	tRESTRequest properties
	Scenario 1: REST service accepting a HTTP request and sending a response
	Configuring the tRESTRequest component
	Configuring the tXMLMap component
	Configuring the tRESTResponse component
	Saving and executing the Job

	Scenario 2: Using URI Query parameters to explore the data of a database
	Creating the first subjob
	Creating the second subjob
	Configuring the tRESTRequest component
	Configuring the tMysqlInput component
	Configuring the tXMLMap component
	Configuring the tRESTResponse component

	Connecting the two subjobs
	Saving and executing the Job


	tRESTResponse
	tRESTResponse properties
	Related scenario

	tRouteFault
	tRouteFault properties
	Scenario: Getting messages from tRouteFault
	Creating an Data Integration Job
	Dropping and linking the components
	Configuring the components

	Creating a Mediation Route
	Dropping and linking the components
	Configuring the components
	Executing the Route



	tRouteInput
	tRouteInput properties
	Scenario: Getting messages from a Route
	Creating an Data Integration Job
	Dropping and linking the components
	Configuring the components

	Creating a Mediation Route
	Dropping and linking the components
	Configuring the components
	Executing the Route



	tRouteOutput
	tRouteOutput properties
	Scenario: Getting messages from tRouteOutput
	Creating an Data Integration Job
	Dropping and linking the components
	Configuring the components

	Creating a Mediation Route
	Dropping and linking the components
	Configuring the components
	Executing the Route




	File components
	tAdvancedFileOutputXML
	tApacheLogInput
	tApacheLogInput properties
	Scenario: Reading an Apache access-log file

	tCreateTemporaryFile
	tCreateTemporaryFile properties
	Scenario: Creating a temporary file and writing data in it

	tChangeFileEncoding
	tChangeFileEncoding Properties
	Scenario: Transforming the character encoding of a file

	tFileArchive
	tFileArchive properties
	Scenario: Zip files using a tFileArchive

	tFileCompare
	tFileCompare properties
	Scenario: Comparing unzipped files

	tFileCopy
	tFileCopy Properties
	Scenario: Restoring files from bin

	tFileDelete
	tFileDelete Properties
	Scenario: Deleting files

	tFileExist
	tFileExist Properties
	Scenario: Checking for the presence of a file and creating it if it does not exist

	tFileInputARFF
	tFileInputARFF properties
	Scenario: Display the content of a ARFF file
	Dropping and linking components
	Configuring the components
	Saving and executing the Job


	tFileInputDelimited
	tFileInputDelimited properties
	Scenario: Delimited file content display
	Dropping and linking components
	Configuring the components
	Saving and executing the Job

	Scenario 2: Reading data from a remote file in streaming mode
	Dropping and linking components
	Configuring the components
	Configuring Job execution and executing the Job


	tFileInputEBCDIC
	tFileInputEBCDIC properties
	Scenario: Extracting data from an EBCDIC file and populating a database

	tFileInputExcel
	tFileInputExcel properties
	Related scenarios

	tFileInputFullRow
	tFileInputFull Row properties
	Scenario: Reading full rows in a delimited file

	tFileInputJSON
	tFileInputJSON properties
	Scenario: Extracting data from the fields of a JSON format file

	tFileInputLDIF
	tFileInputLDIF Properties
	Related scenario

	tFileInputMail
	tFileInputMail properties
	Scenario: Extracting key fields from an email

	tFileInputMSDelimited
	tFileInputMSDelimited properties
	The Multi Schema Editor

	Scenario: Reading a multi structure delimited file
	Dropping and linking components
	Configuring the components
	Saving and executing the Job


	tFileInputMSPositional
	tFileInputMSPositional properties
	Scenario: Reading data from a positional file
	Dropping the components
	Configuring the components
	Executing the Job


	tFileInputMSXML
	tFileInputMSXML Properties
	Scenario: Reading a multi structure XML file

	tFileInputPositional
	tFileInputPositional properties
	Scenario 1: From Positional to XML file
	Dropping and linking components
	Configuring data input
	Configuring data output
	Saving and executing the Job

	Scenario 2: Handling a positional file based on a dynamic schema
	Dropping and linking components
	Configuring the first subjob: creating a dynamic schema
	Configuring the second subjob: reading and writing positional data
	Saving and executing the Job


	tFileInputProperties
	tFileInputProperties properties
	Scenario: Reading and matching the keys and the values of different .properties files and outputting the results in a glossary

	tFileInputRegex
	tFileInputRegex properties
	Scenario: Regex to Positional file

	tFileInputXML
	tFileList
	tFileList properties
	Scenario: Iterating on a file directory

	tFileOutputARFF
	tFileOutputARFF properties
	Related scenarios

	tFileOutputDelimited
	tFileOutputDelimited properties
	Scenario 1: Writing data in a delimited file
	Dropping and linking components
	Configuring the components
	Saving and executing the Job

	Scenario 2: Utilizing Output Stream to save filtered data to a local file
	Dropping and linking components
	Configuring the components
	Saving and executing the Job


	tFileOutputEBCDIC
	tFileOutputEBCDIC properties
	Scenario: Creating an EBCDIC file using two delimited files

	tFileOutputExcel
	tFileOutputExcel Properties
	Related scenario

	tFileOutputJSON
	tFileOutputJSON properties
	Scenario: Writing a JSON structured file

	tFileOutputLDIF
	tFileOutputLDIF Properties
	Scenario: Writing DB data into an LDIF-type file
	Dropping and linking components
	Configuring the components
	Saving and executing the Job


	tFileOutputMSDelimited
	tFileOutputMSDelimited properties
	Related scenarios

	tFileOutputMSPositional
	tFileOutputMSPositional properties
	Related scenario

	tFileOutputMSXML
	tFileOutputMSXML Properties
	Defining the MultiSchema XML tree
	Importing the XML tree
	Creating manually the XML tree

	Mapping XML data from multiple schema sources
	Defining the node status
	Loop element
	Group element


	Related scenario

	tFileOutputPositional
	tFileOutputPositional Properties
	Related scenario

	tFileOutputProperties
	tFileOutputProperties properties
	Related scenarios

	tFileOutputXML
	tFileProperties
	tFileProperties Properties
	Scenario: Displaying the properties of a processed file

	tFileRowCount
	tFileRowCount properties
	Related scenario

	tFileTouch
	tFileTouch properties
	Related scenario

	tFileUnarchive
	tFileUnarchive Properties
	Related scenario

	tGPGDecrypt
	tGPGDecrypt Properties
	Scenario: Decrypt a GnuPG-encrypted file and display its content
	Dragging and linking the components
	Configuring the components
	Saving and executing the Job


	tNamedPipeClose
	tNamedPipeClose properties
	Related scenario

	tNamedPipeOpen
	tNamedPipeOpen properties
	Related scenario

	tNamedPipeOutput
	tNamedPipeOutput properties
	Scenario: Writing and loading data through a named-pipe
	Dropping and linking the components
	Configuring the components
	Saving and executing the Job


	tPivotToColumnsDelimited
	tPivotToColumnsDelimited Properties
	Scenario: Using a pivot column to aggregate data
	Dropping and linking components
	Configuring the components
	Saving and executing the Job



	Internet components
	tFileFetch
	tFileFetch properties
	Scenario 1: Fetching data through HTTP
	Dropping and linking components
	Configuring the components
	Saving and executing the Job

	Scenario 2: Reusing stored cookie to fetch files through HTTP
	Dropping and linking components
	Configuring the components
	Saving and executing the Job

	Related scenario

	tFileInputJSON
	tFTPConnection
	tFTPConnection properties
	Related scenarios

	tFTPDelete
	tFTPDelete properties
	Related scenario

	tFTPFileExist
	tFTPFileExist properties
	Related scenario

	tFTPFileList
	tFTPFileList properties
	Scenario: Iterating on a remote directory
	Dropping and linking components
	Configuring the components
	Saving and executing the Job


	tFTPFileProperties
	tFTPFileProperties Properties
	Related scenario

	tFTPGet
	tFTPGet properties
	Related scenario

	tFTPPut
	tFTPPut properties
	Scenario: Putting files on a remote FTP server
	Dropping and linking components
	Configuring the components
	Saving and executing the Job


	tFTPRename
	tFTPRename Properties
	Related scenario

	tFTPTruncate
	tFTPTruncate properties
	Related scenario

	tHttpRequest
	tHttpRequest properties
	Scenario: Sending a HTTP request to the server and saving the response information to a local file

	tJMSInput
	tJMSInput properties
	Related scenarios

	tJMSOutput
	tJMSOutput properties
	Related scenarios

	tMicrosoftMQInput
	tMicrosoftMQInput Properties
	Scenario: Writing and fetching queuing messages from Microsoft message queue
	Posting messages on a Microsoft message queue
	Fetching the first queuing message from the message queue


	tMicrosoftMQOutput
	tMicrosoftMQOutput Properties
	Related scenario

	tMomCommit
	tMomCommit Properties
	Related scenario

	tMomConnection
	tMomConnection Properties
	Related scenario

	tMomInput
	tMomInput Properties
	Scenario 1: Asynchronous communication via a MOM server
	Configuring and executing the first Job
	Configuring and executing the second Job

	Scenario 2: Transmitting XML files via a MOM server
	Dropping and links the components
	Configuring the first subjob
	Configuring the input components
	Configuring the tMomOutput component

	Configuring the second subjob
	Saving and executing the Job


	tMomMessageIdList
	tMomMessageIdList Properties
	Related scenario

	tMomOutput
	tMomOutput Properties
	Related scenario

	tMomRollback
	tMolRollback properties
	Related scenario

	tPOP
	tPOP properties
	Scenario: Retrieving a selection of email messages from an email server

	tREST
	tREST properties
	Scenario: Creating and retrieving data by invoking REST Web service

	tRSSInput
	tRSSInput Properties
	Scenario: Fetching frequently updated blog entries.

	tRSSOutput
	tRSSOutput Properties
	Scenario 1: Creating an RSS flow and storing files on an FTP server
	Dropping and linking components
	Defining the data source
	Creating an RSS flow
	Writing the complete files to an FTP server

	Scenario 2: Creating an RSS flow that contains metadata
	Dropping and linking components
	Configuring the components
	Saving and executing the Job

	Scenario 3: Creating an ATOM feed XML file
	Dropping and linking components
	Configuring the components
	Saving and executing the Job


	tSCPClose
	tSCPClose Properties
	Related scenario

	tSCPConnection
	tSCPConnection properties
	Related scenarios

	tSCPDelete
	tSCPDelete properties
	Related scenario

	tSCPFileExists
	tSCPFileExists properties
	Related scenario

	tSCPFileList
	tSCPFileList properties
	Related scenario

	tSCPGet
	tSCPGet properties
	Scenario: Getting files from a remote SCP server

	tSCPPut
	tSCPPut properties
	Related scenario

	tSCPRename
	tSCPRename properties
	Related scenario

	tSCPTruncate
	tSCPRename properties
	Related scenario

	tSendMail
	tSendMail Properties
	Scenario: Email on error

	tSetKerberosConfiguration
	tSetKerberosConfiguration properties
	Related scenarios

	tSetKeystore
	tSetKeystore properties
	Scenario: Extracting customer information from a private WSDL file

	tSetProxy
	tSetProxy properties
	Related scenarios

	tSocketInput
	tSocketInput properties
	Scenario: Passing on data to the listening port
	Dropping and linking components
	Configuring the Jobs
	Executing the Jobs


	tSocketOutput
	tSocketOutput properties
	Related Scenario

	tSOAP
	tSOAP properties
	Scenario 1: Extracting the weather information using a Web service
	Scenario 2: Using a SOAP message from an XML file to get weather information and saving the information to an XML file
	Dropping and linking the components
	Configuring the input component
	Configuring the Web service via the tSOAP component
	Configuring the output component
	Executing the Job


	tWebService
	tWebService properties
	Scenario: Extracting a name list using a Web service

	tWebServiceInput
	tWebServiceInput Properties
	Scenario 1: Extracting images through a Web service
	Scenario 2: Reading the data published on a Web service using the tWebServiceInput advanced features

	tXMLRPCInput
	tXMLRPCInput Properties
	Scenario: Guessing the State name from an XMLRPC


	Logs & Errors components
	tAssert
	tAssert Properties
	Scenario: Setting up the assertive condition for a Job execution

	tAssertCatcher
	tAssertCatcher Properties
	Related scenarios

	tChronometerStart
	tChronometerStart Properties
	Related scenario

	tChronometerStop
	tChronometerStop Properties
	Scenario: Measuring the processing time of a subjob and part of a subjob

	tDie
	tDie properties
	Related scenarios

	tFlowMeter
	tFlowMeter Properties
	Related scenario

	tFlowMeterCatcher
	tFlowMeterCatcher Properties
	Scenario: Catching flow metrics from a Job

	tLogCatcher
	tLogCatcher properties
	Scenario 1: warning & log on entries
	Scenario 2: Log & kill a Job

	tLogRow
	tLogRow properties
	Scenario: Delimited file content display

	tStatCatcher
	tStatCatcher Properties
	Scenario: Displaying job stats log

	tWarn
	tWarn Properties
	Related scenarios


	Misc group components
	tAddLocationFromIP
	tAddLocationFromIP Properties
	Scenario: Identifying a real-world geographic location of an IP
	Dropping and linking components
	Configuring the components
	Saving and executing the Job


	tBufferInput
	tBufferInput properties
	Scenario: Retrieving bufferized data

	tBufferOutput
	tBufferOutput properties
	Scenario 1: Buffering data (Java)
	Scenario 2: Buffering output data on the webapp server
	Scenario 3: Calling a Job with context variables from a browser
	Scenario 4: Calling a Job exported as Webservice in another Job

	tContextDump
	tContextDump properties
	Related Scenario

	tContextLoad
	tContextLoad properties
	Scenario: Dynamic context use in MySQL DB insert

	tFixedFlowInput
	tFixedFlowInput properties
	Related scenarios

	tMemorizeRows
	tMemorizeRows properties
	Scenario: Counting the occurrences of different ages
	Dropping and linking the components
	Configuring the components
	Saving and executing the Job


	tMsgBox
	tMsgBox properties
	Scenario: ‘Hello world!’ type test

	tRowGenerator
	tRowGenerator properties
	Defining the schema
	Defining the function

	Scenario: Generating random java data


	Orchestration components
	tFileList
	tFlowToIterate
	tFlowToIterate Properties
	Scenario: Transforming data flow to a list
	Setting up the Job
	Configuring the Components
	Saving and executing the Job


	tForeach
	tForeach Properties
	Scenario: Iterating on a list and retrieving the values

	tInfiniteLoop
	tInfiniteLoop Properties
	Related scenario

	tIterateToFlow
	tIterateToFlow Properties
	Scenario: Transforming a list of files as data flow

	tLoop
	tLoop Properties
	Scenario: Job execution in a loop

	tPostjob
	tPostjob Properties
	Related scenario

	tPrejob
	tPrejob Properties
	Related scenario

	tReplicate
	tReplicate Properties
	Related scenario

	tRunJob
	tSleep
	tSleep Properties
	Related scenarios

	tUnite
	tUnite Properties
	Scenario: Iterate on files and merge the content
	Dropping and linking the components
	Configuring the components
	Saving and executing the Job


	tWaitForFile
	tWaitForFile properties
	Scenario: Waiting for a file to be removed

	tWaitForSocket
	tWaitForSocket properties
	Related scenario

	tWaitForSqlData
	tWaitForSqlData properties
	Scenario: Waiting for insertion of rows in a table


	Processing components
	tAggregateRow
	tAggregateRow properties
	Scenario 1: Aggregating values and sorting data

	tAggregateSortedRow
	tAggregateSortedRow properties
	Related scenario

	tConvertType
	tConvertType properties
	Scenario: Converting java types
	Dropping the components
	Configuring the components
	Executing the Job


	tDenormalize
	tDenormalize Properties
	Scenario 1: Denormalizing on one column
	Scenario 2: Denormalizing on multiple columns

	tDenormalizeSortedRow
	tDenormalizeSortedRow properties
	Scenario: Regrouping sorted rows

	tExternalSortRow
	tExternalSortRow properties
	Related scenario

	tExtractDelimitedFields
	tExtractDelimitedFields properties
	Scenario: Extracting fields from a comma-delimited file

	tExtractEBCDICFields
	tExtractEBCDICFields properties
	Related scenario

	tExtractPositionalFields
	tExtractPositionalFields properties
	Related scenario

	tExtractRegexFields
	tExtractRegexFields properties
	Scenario: Extracting name, domain and TLD from e-mail addresses

	tExtractXMLField
	tFilterColumns
	tFilterColumns Properties
	Related Scenario

	tFilterRow
	tFilterRow Properties
	Scenario: Filtering and searching a list of names

	tJoin
	tJoin properties
	Scenario 1: Doing an exact match on two columns and outputting the main and rejected data
	Dropping and linking the components
	Configuring the components
	Saving and executing the Job


	tMap
	tMap properties
	Scenario 1: Mapping data using a filter and a simple explicit join
	Scenario 2: Mapping data using inner join rejections
	Scenario 3: Cascading join mapping
	Scenario 4: Advanced mapping using filters, explicit joins and rejections
	Scenario 5: Advanced mapping with filters and different rejections
	Scenario 6: Advanced mapping with lookup reload at each row
	Scenario 7: Mapping with join output tables

	tNormalize
	tNormalize Properties
	Scenario: Normalizing data
	Setting up the Job
	Configuring the components
	Saving and executing the Job


	tReplace
	tReplace Properties
	Scenario: multiple replacements and column filtering

	tSampleRow
	tSampleRow properties
	Scenario: Filtering rows and groups of rows
	Dropping and linking the components
	Configuring the components
	Saving and execting the Job


	tSortRow
	tSortRow properties
	Scenario 1: Sorting entries

	tSplitRow
	tSplitRow properties
	Scenario 1: Splitting one row into two rows

	tWriteJSONField
	tWriteJSONField properties
	Related Scenarios

	tXMLMap
	tXMLMap properties
	Scenario 1: Mapping and transforming XML data
	Dropping and linking the components
	Configuring the input flow
	Configuring tXMLMap for transformation
	Executing the Job

	Scenario 2: Launching a lookup in a second XML flow to join complementary data
	Configuring the data flow for lookup
	Configuring the transformation

	Scenario 3: Mapping data using a filter
	Scenario 4: Catching the data rejected by lookup and filter
	Scenario 5: Mapping data using a group element
	Scenario 6: classing the output data with aggregate element
	Scenario 7: Restructuring products data using multiple loop elements
	Dropping and linking the components
	Configuring the input flow
	Configuring tXMLMap with multiple loops
	Configuring the output flow
	Executing the Job



	System components
	tRunJob
	tRunJob Properties
	Scenario: Executing a child Job
	Creating the child Job
	Creating the parent Job
	Executing the parent Job


	tSetEnv
	tSetEnv Properties
	Scenario: Modifying a variable during a Job execution
	Drop and link components
	Set the components
	Run the Job


	tSSH
	tSSH Properties
	Scenario: Remote system information display via SSH

	tSystem
	tSystem Properties
	Scenario: Echo ‘Hello World!’


	Talend MDM components
	tMDMBulkLoad
	tMDMBulkLoad properties
	Enhancing the MDM bulk data load

	Scenario: Loading records into a business entity

	tMDMClose
	tMDMClose properties
	Related scenario

	tMDMConnection
	tMDMConnection properties
	Related scenario

	tMDMDelete
	tMDMDelete properties
	Scenario: Deleting master data from an MDM Hub
	Dropping and linking the components
	Configuring the MDM server connection
	Configuring data retrieval
	Configuring data record deletion
	Saving and executing the Job


	tMDMInput
	tMDMInput properties
	Scenario: Reading master data in an MDM hub

	tMDMOutput
	tMDMOutput properties
	Scenario: Writing master data in an MDM hub

	tMDMReceive
	tMDMReceive properties
	Related scenario

	tMDMRouteRecord
	tMDMRouteRecord properties
	Scenario: Routing a record to Event Manager
	Scenario prerequisites
	Routing a record to trigger the corresponding process


	tMDMSP
	tMDMSP Properties
	Scenario: Executing a stored procedure in the MDM Hub

	tMDMTriggerInput
	tMDMTriggerInput properties
	Scenario: Exchanging the event information about an MDM record
	Creating an MDM connection
	Creating the Job communicating the MDM message
	Generating the process invoking the Job created
	Updating a product record


	tMDMTriggerOutput
	tMDMTriggerOutput properties
	Related scenario

	tMDMViewSearch
	tMDMViewSearch properties
	Scenario: Retrieving records from an MDM hub via an existing view


	Technical components
	tHashInput
	tHashInput Properties
	Scenario 1: Reading data from the cache memory for high-speed data access
	Dropping and linking the components
	Configuring the components
	Configuring data inputs and hash cache
	Configuring data retrieval from hash cache and data output

	Saving and executing the Job

	Scenario 2: Clearing the memory before loading data to it in case an iterator exists in the same subjob
	Dropping and linking the components
	Configuring the components
	Configuring data input and hash cache
	Configuring data retrieval from hash cache and data output

	Saving and executing the Job


	tHashOutput
	tHashOutput Properties
	Related scenarios


	XML components
	tAdvancedFileOutputXML
	tAdvancedFileOutputXML properties
	Defining the XML tree
	Importing the XML tree
	Creating the XML tree manually

	Mapping XML data
	Defining the node status
	Loop element
	Group element


	Scenario: Creating an XML file using a loop

	tDTDValidator
	tDTDValidator Properties
	Scenario: Validating XML files

	tEDIFACTtoXML
	tEDIFACTtoXML Properties
	Scenario: From EDIFACT to XML

	tExtractXMLField
	tExtractXMLField properties
	Scenario 1: Extracting XML data from a field in a database table
	Scenario 2: Extracting correct and erroneous data from an XML field in a delimited file

	tFileInputXML
	tFileInputXML Properties
	Scenario 1: Reading and extracting data from an XML structure
	Scenario 2: Extracting erroneous XML data via a reject flow

	tFileOutputXML
	tFileOutputXML properties
	Related scenarios

	tWriteXMLField
	tWriteXMLField properties
	Scenario: Extracting the structure of an XML file and inserting it into the fields of a database table

	tXMLMap
	tXSDValidator
	tXSDValidator Properties
	Scenario: Validating data flows against an XSD file

	tXSLT
	tXSLT Properties
	Scenario: Transforming XML to html using an XSL stylesheet



